
Politecnico di Torino

Cybersecurity Engineering
A.a. 2024/2025

Graduation Session December 2025

Design and Implementation of a
Secure Software Patching

Mechanism for the Space Rider
Avum Orbital Module

Supervisors:
Stefano Di Carlo (DAUIN)
Alessandro Savino (DAUIN)
Maurizio Ronzoni (AVIO)

Candidate:
Simone D’Addio

Abstract

Historically, civilian space missions have employed limited security mechanisms.
Telecommands, telemetry, and scientific payload data have often been transmitted
over unencrypted and unauthenticated Radio Frequency (RF) channels. While this
operational model was once considered acceptable, the growing threat landscape
makes such an approach increasingly dangerous.
In response to these evolving needs, this thesis focuses on the design and imple-
mentation of a secure software patching mechanism for the Avum Orbital Module
(AOM), part of Space Rider, the European Space Agency’s reusable space trans-
portation system. The project aims to enhance the spacecraft’s ability to safely
receive and apply software updates, reinforcing both its resilience and mission
reliability.
The developed solution employs the AES-GCM algorithm to ensure the confiden-
tiality, integrity, and authenticity of software patches. To maintain compliance with
ESA standards, the mechanism extends the Packet Utilization Standard Service
6 (PUS6), which defines how spacecraft commands and telemetry packets are
managed. By securing the update process, the system effectively mitigates the
risks associated with unauthorized or corrupted software patches. Additionally,
an anti-replay mechanism was implemented, ensuring that even valid, intercepted
ciphertexts cannot be fraudulently or repeatedly applied. This process effectively
authenticates the patch payload, along with associated data (AAD), strengthening
contextual integrity.
A significant contribution of this work involved the validation of the cryptographic
algorithm directly on the target spaceborne hardware. Since no prior verification
was available on the specific hardware, this activity was crucial to confirm the
correctness and robustness of the AES-GCM implementation under realistic opera-
tional conditions.
Additionally, a codebase analysis was carried out to map potential weaknesses by
correlating the MISRA C guidelines with the MITRE Common Weakness Enu-
meration (CWE) framework, with the goal of exploring their relationships and
supporting the potential extension of the internal coding standard.
Through these activities, the thesis contributes to introducing and strengthen-
ing cybersecurity capabilities and advancing the protection of critical spaceborne
software systems, enabling a safer transition from traditionally unprotected space
operations towards robust, security-aware mission architectures.

Table of Contents

List of Figures vi

1 Introduction 1
1.1 Scope . 4
1.2 Space Rider mission . 5

2 System Overview 8
2.1 Hardware . 8

2.1.1 Security aspects . 10
2.2 Software . 10

2.2.1 PikeOS . 11
2.3 Security Functionalities . 14
2.4 Telemetry and Telecommand . 15

3 Secure Software Patching 19
3.1 Secure Software Patch Functionality 20
3.2 Key steps of the Patching mechanism 20
3.3 Authenticated Encryption . 22

3.3.1 Internal Architecture: CTR Mode, GHASH function and
Initialization Vector . 22

3.4 Cryptographic Design Decision: Adoption of AES-GCM 23
3.4.1 Intrinsic weaknesses . 24

3.5 Crypto application . 25
3.6 Strategic importance . 26

3.6.1 Possible attack targets . 26
3.7 Modified PUS 6 packet structure 28

4 Implementation 31
4.1 Software Requirements Specification 31

4.1.1 Cryptographic configuration and key management 32
4.1.2 Patch Authentication and Decryption 33

iii

4.1.3 Counter validation and Replay Protection 33
4.1.4 Memory Access Control and Operational Constraints 34
4.1.5 Error Handling and Fault Recovery 34
4.1.6 Summary of Key Requirements 35

4.2 Partition Design, Configuration and Communication 35
4.2.1 Partition Design and Configuration 36
4.2.2 Inter-Partition Communication Design 37
4.2.3 Execution Flow . 38
4.2.4 FLASH partition . 39

4.3 Cryptographic Validation and NIST KAT Implementation 42
4.3.1 The Importance of Validation on Non-Standard Hardware . 42
4.3.2 Implementation of NIST Known Answer Tests (KAT) 42

5 Integration of MISRA C and CWE for the Modernization of SG34 44
5.1 SG34 Coding Standard . 44
5.2 MISRA C: Reliable Coding for Embedded Systems 45

5.2.1 Areas Covered . 46
5.2.2 Why MISRA is used as the embedded development Standard 47

5.3 CERT C: Missing link between MISRA and CWE 48
5.4 CWE: Common Weakness Enumeration 48
5.5 Synthesis: MISRA - CERT C - CWE 49

5.5.1 Analysis of selected MISRA-CWE mappings 49
5.6 CERT C: additional cross-check mapping 53

5.6.1 Integer Conversion Safety - INT31-C & FLP34-C → CWE
192, 197, 681 . 54

5.6.2 Memory and Pointer Integrity 54
5.7 Summary . 55

6 Polyspace Static Analysis Tools in Embedded C Verification 58
6.1 Polyspace Bug Finder: Static Analysis for Potential Defects 58

6.1.1 Purpose and defect detection 59
6.1.2 Coding standards and metrics 59
6.1.3 Bug Finder analysis in the project 59

6.2 Polyspace Code Prover: Formal Verification of Run-Time Errors . . 60
6.2.1 Purpose and analysis method 60
6.2.2 Proving absence of defects 61
6.2.3 Code Prover analysis in the project 62

6.3 Combined Use in the Verification Workflow 62

iv

7 Conclusion 64
7.1 Future Directions . 65
7.2 Final remarks . 67

Bibliography 68

v

List of Figures

1.1 Potential Threats in Space Systems[2] 2
1.2 Space Rider components . 5

2.1 Cross-strap redundancy between AOM and RM subsystems 9
2.2 AOM Layered Architecture . 11
2.3 PikeOS Architecture . 11
2.4 Example of resource and time partitioning interaction 12
2.5 Assigning Resource Partitions to Time Partitions 13
2.6 TC and TM exchange[7] . 18

3.1 Patching mechanism context . 21
3.2 Algorithm internal mechanics . 23
3.3 Packet format . 25
3.4 Anti-Replay mechanism . 26
3.5 Decryption and Authentication decision process 27
3.6 Modified PUS Service 6 packet structure 28
3.7 High level view: interaction between MODE and FLASH partition . 29

4.1 Anti-Replay mechanism . 34
4.2 Queuing port based Communication[11] 38
4.3 Execution flow . 39

vi

Chapter 1

Introduction

Over the last decade, the increasing reliance of modern societies on space-based
services, such as global navigation, Earth observation, satellite communications,
and scientific exploration, has turned space systems into strategic assets. Their
disruption could have cascading effects on national security, critical infrastructure,
and the global economy. Consequently, the cybersecurity of space systems has
evolved from a niche concern to a central pillar of modern space policy.
The global cybersecurity landscape has become increasingly complex, characterized
by a surge in both the sophistication and frequency of attacks. Advanced Persistent
Threats (APTs), supply chain compromises, and zero-day vulnerabilities now
routinely target high-value infrastructures.
The space sector, traditionally perceived as isolated, is no longer immune to these
dynamics. Recent incidents, such as jamming and spoofing of satellite signals,
ransomware targeting ground infrastructures, and unauthorized access to telemetry
and telecommand systems, have demonstrated the tangible risks facing space
operations. Some notable attack vectors include [1]:

• Ground Segment Attacks: Ground stations and mission control centers remain
prime targets for network exploitation, data corruption, and unauthorized ac-
cess. Outdated software, weak authentication, or physical intrusions can allow
attackers to seize control of spacecraft or disrupt telemetry and telecommand
flows.

• Space Segment Compromise: Spacecraft are susceptible to command intrusions,
signal replay, and malware injection. Due to the lack of physical access, any
unauthorized control or payload manipulation can result in mission failure or
even create orbital collision risks.

• User Segment Vulnerabilities: Terminals, antennas, and modems used by
end-users can be exploited through malware, ransomware, or spoofing attacks.

1

Introduction

Insecure configurations or hardcoded credentials may expose communication
links and satellite data.

• Communication Channel Threats: Uplink and downlink signals are exposed to
jamming, spoofing, eavesdropping, and replay attacks. These may degrade sig-
nal integrity, inject false commands, or enable data interception, undermining
mission confidentiality and availability.

• Cloud Infrastructure Risks: As satellite operations increasingly rely on cloud-
based systems for data storage and coordination, threats such as data breaches,
account hijacking, insider attacks, and Advanced Persistent Threats (APTs)
emerge, especially in multi-tenant or misconfigured environments.

• Supply Chain Compromise: The growing use of Commercial-Off-The-Shelf
(COTS) components introduces vulnerabilities such as firmware backdoors,
counterfeit hardware, or malicious updates. A compromised supplier can
embed persistent threats that remain undetected into orbit.

Figure 1.1: Potential Threats in Space Systems[2]

These risks collectively affect the availability, integrity, confidentiality, authenticity,
and trustworthiness of space data and operations. Furthermore, the long lifecycle
and physical inaccessibility of satellites exacerbate exposure to known vulnerabilities
and complicate patch management once deployed.
In Europe, the growing awareness of these threats has led to the establishment of
dedicated cybersecurity strategies and frameworks. The EU Cybersecurity Act,
the NIS2 Directive, and sector-specific initiatives promoted by the European Space
Agency (ESA) and the European Union Agency for Cybersecurity (ENISA) have
emphasized the need for resilience, risk management, and continuous assurance in
space missions.
Despite these advancements, significant challenges remain. Space systems often

2

Introduction

rely on legacy technologies with long development cycles, which limits their ability
to adopt modern security controls. Additionally, the distributed nature of the
space supply chain introduces numerous potential attack vectors, from firmware
tampering to insecure interfaces between contractors. Consequently, ensuring
cybersecurity in this domain requires coordinated efforts between governmental
agencies, industrial partners, and academia , combining technical innovation with
policy alignment.
Historically, space missions were designed under the assumption that isolation
from terrestrial networks provided inherent protection. However, the growing
interconnection between ground and space segments and the adoption of commercial-
off-the-shelf (COTS) components have expanded the attack surface. Threat actors
can now target the entire mission lifecycle, from supply chain vulnerabilities to
in-orbit operations, challenging traditional risk models.
Within this context, cybersecurity must be regarded as a mission enabler rather
than an afterthought. Guaranteeing the confidentiality, integrity, and availability of
space assets requires an integrated approach that spans hardware design, software
development, communication protocols, and mission operations. This evolution
is also reflected in standards such as the ESA Cybersecurity Framework and the
ECSS policies, which aim to harmonize best practices across the European space
ecosystem. In particular, the ECSS-E-ST-40C standard[3], which governs space
software engineering, has undergone a critical revision in 2025, and it represents a
necessary and fundamental strategic shift, elevating cybersecurity from an optional
consideration to a mandatory, integrated engineering discipline within space system
development. The standard’s scope is comprehensive, applying to Space system
product software developed across all elements of a space system, including the
space, the launch service segment, and the ground segment. The software-specific
cybersecurity mandates are enforced through the definition of some aspects, as
follows:

• Security in requirement engineering: the standard mandates the rigorous
capture of specific security requirements during the initial phase, ensuring
they are explicitly defined.

• Security in Design and Architecture: Security analysis must directly influence
architectural and design choices, through the Software Security Analysis
Report, a document that must be used and revised during the definition of
the detailed design. This ensures that all the identified security risks are
definitively addressed by the chosen design architecture.

• Security in Production and Verification, by introducing software code verifi-
cation activities implemented by Static Analysis tools, enhancing both code
quality and security.

3

Introduction

Moreover, ECSS-E-ST-80C [4] completes the picture by introducing security princi-
ples in space systems, defining concepts well known in the cybersecurity domain,
such as attack surface reduction, defence in depth, least privilege, and need-to-
know, and highlighting the most common threats affecting space missions, such as
denial-of-service, jamming, and replay attacks.
Particular attention must be devoted to on-board software, which plays a decisive
role in mission control and autonomy. Since in-orbit assets cannot be easily accessed
or repaired, the ability to securely update and reconfigure software throughout
the mission lifecycle is essential. Any unauthorized or corrupted update could
compromise guidance, communications, or safety functions. For this reason, secure
patching mechanisms have become a cornerstone of modern spaceborne cybersecu-
rity, combining cryptographic robustness with operational reliability.
These risks demonstrate that threats to space systems can originate from multiple
vectors (cyberspace, physical interference or supply chain), and this challenges
the outdated notion that space systems are inherently safe due to isolation, thus
the need for a holistic cybersecurity approach, targeting supply chain, ground
infrastructure, communication links and on board systems.
That is why it is important to have robust software and hardware design processes
that include security features. Manufacturers and companies should be aware of
the long lifetime of spacecrafts and enhance flexibility to address cyber threats over
the lifetime of the vehicle.

1.1 Scope
Recognizing the relevance of these issues, my thesis investigated the analysis,
design and implementation aspects of a secure software patching mechanism for
the Avum Orbital Module (AOM), subsystem of Space Rider, the ESA reusable
space transportation system. This was possible by first studying the overall system
architecture, both Hardware and Software, and then designing the necessary security
requirements. The proposed solution was developed in alignment with the European
Space Agency’s efforts to have a stronger stance on cybersecurity matters. The result
contributes to increasing the system’s resilience and adaptability while preserving its
safety and mission-critical reliability. Specifically, the secure software patching has
been implemented with AES-GCM algorithm, ensuring confidentiality, integrity and
authenticity. This is implemented maintaining compliance with ESA standards by
customizing the Packet Utilization Standard Service 6 (PUS6), which is a standard
that addresses the utilization of packets for the purpose of remote monitoring
and control of the spacecraft. Ensuring the authenticity and integrity of patches
is pivotal to mitigate risks associated with unauthorized or corrupted updates.

4

Introduction

Additional activities included the validation of the cryptographic algorithm, a task
of paramount importance given that the supplier had not conducted implementation
testing on the specific target hardware. This step was crucial to verify both the
correctness and robustness of the algorithm under actual operational conditions,
ensuring its compliance with functional and security requirements. Furthermore,
a codebase analysis was performed to identify and map potential vulnerabilities
according to the MITRE Common Weakness Enumeration (CWE) framework.
This activity provided a broader understanding of the system’s security posture,
highlighting areas where architectural or implementation-level weaknesses could
emerge.

1.2 Space Rider mission

Figure 1.2: Space Rider components

The Space Rider program (Space Reusable Integrated Demonstrator for Europe
Return) is developed by the European Space Agency (ESA). It is an uncrewed
robotic laboratory which is planned to stay in low orbit for about two months.
It “aims to provide Europe with an affordable, independent, reusable end-to-end
integrated space transportation system for routine access and return from low
orbit. It will transport payloads for an array of applications, orbit altitudes and
inclinations”[5]. This program will allow for experiments in microgravity, in-orbit
technology demonstration and validation for applications, and surveillance ap-
plications, such as Earth disaster monitoring. One of its main features is its
ability to bring back experiments and other payloads from orbit, enabling the
retrieval of data for detailed post-mission analysis. The purpose of the mission is
also to give access to space to entities that are not necessarily directly involved
in the aerospace sector, but wish to conduct experiments in such extreme conditions.

5

Introduction

The Space Rider system is organized into two segments:

• Flight segment, composed of:

– AOM (AVUM Orbital Module), responsible to interface with the VEGA-
C Launcher, to accommodate the Solar Panels and to perform all the
actuation maneuvers required during the orbital phase. It is physically
made of the AVUM and of the AVUM Life Extension Kit (ALEK).

– RM (Re-entry Module), which embarks the payload and ensures the
re-entry and precision landing. It provides communication with ground
stations for data download and commands uplink.

– Payloads

• Ground segment, which is not under the Flight segment responsibilities,
composed of:

– VegaC Launch Complex
– VCC (Vehicle Control Center), whose roles and responsibilities include

supporting the Space Rider system for routine access to and return from
low orbit, as well as ensuring the monitoring and control of the spacecraft
throughout all mission phases, and the Payloads Ground Control Center.

– Ground Stations Network
– Operational Simulator
– Landing Facilities

The purpose of the Ground Segment is to support the Space Rider System mission
throughout the different phases of its lifecycle, from pre-launch to RM landing
and AOM destructive re-entry. This component is particularly relevant within the
scope of this thesis, as the patching mechanism originates in the Ground Segment,
where the patch is ciphered and subsequently transmitted to the Flight Segment.
AOM, which is designed by AVIO, acts as a service module during the orbital
phase, and performs functions like power supply, battery recharging, communication
between AOM and RM, while RM, designed by Thales Alenia Space, is designed to
be an operative and reusable space platform. The two modules are interconnected
and exchange information, such as telecommands, which are essential for the
correct operation of the system. This program is part of a broader strategy to
strengthen Europe’s independent access to space, and to foster innovation and
technological advancement. Space Rider also opens up new possibilities for both
scientific research and commercial exploitation in space, thus making it a high-value
target for various adversaries.

6

Introduction

The on board software controls navigation, communication and critical flight
systems, so a compromised patch can jeopardize not only the mission but also
the safety of any other co-orbital asset dependent on the spacecraft’s operation,
or, even worse, it could enable remote control, disrupt autonomous operations or
introduce backdoors.

7

Chapter 2

System Overview

The Space Rider Avum Orbital Module (AOM) represents a complex, highly
integrated system where hardware and software components coexist within a con-
strained and safety-critical environment. Understanding the overall architecture is
essential to appreciate the challenges and design decisions behind the implementa-
tion of secure software patching and onboard cybersecurity functionalities. This
chapter provides a comprehensive overview of the AOM system, describing both
its hardware and software architecture, the hypervisor-based partitioning model,
and the mechanisms that ensure operational safety, reliability, and data security.
The discussion highlights how technical and organizational choices contribute to
building a resilient space system capable of supporting long-duration missions in
orbit.

2.1 Hardware
At the core of the AOM hardware architecture lies the On-Board Data Handling
(OBDH) subsystem, which serves as the computational backbone of the space-
craft. It coordinates all the major activities of the platform, from telemetry and
telecommand processing to payload management and system health monitoring.
The OBDH integrates multiple functional units, including the On-Board Computer
(OBC), mass memories, communication buses, and redundant interfaces that inter-
connect with other spacecraft modules.
The central processing element of the OBDH is the GR740 System-on-Chip (SoC),
a fault-tolerant quad-core processor based on the LEON4 SPARC V8 architecture,
specifically designed for space applications. This processor provides a balance
between computational power and reliability, supporting deterministic execution
for real-time tasks and featuring integrated interfaces such as SpaceWire, CAN,
MIL-STD-1553, and UART. These interfaces ensure interoperability with various

8

System Overview

spacecraft subsystems while adhering to European Cooperation for Space Stan-
dardization (ECSS) communication requirements.
In parallel with the processor, the system employs a Companion FPGA, which
handles peripheral functions and custom logic for the management of low-level
interfaces, timing synchronization, and redundancy control. The FPGA plays a
crucial role in managing the communication between the AOM and the Re-entry
Module (RM), ensuring robust data transfer and fault isolation in case of subsystem
anomalies.
Given the harsh space environment, the hardware design also integrates a number of
fault-tolerance mechanisms. Memory integrity is ensured through Error Detection
and Correction (EDAC) techniques, which detect and correct any kind of error
caused by cosmic radiation. Furthermore, critical components are implemented in
redundant configurations, following a cross-strap redundancy principle that enables
each subsystem to switch seamlessly to its backup channel in case of failure. This
approach eliminates single points of failure and enhances system availability, which
is crucial for long-duration missions. Additionally, the design includes non-volatile
memories (NVM) dedicated to the storage of the cryptographic keys and applica-
tion images, and MRAM memories, which support the memory scrubbing feature.
While the Scrubber mechanism is used to preserve memory integrity in volatile
components, it is not supported on NVM. The onboard computer’s redundant
architecture enables a patching mechanism where software updates are written to
the redundant memory area while preserving the nominal one. This allows the
system to restore the previous application image if the new patch fails, ensuring
system availability and mission continuity.
This architectural redundancy, combined with radiation-hardened electronics and
error-correction schemes, establishes the foundation upon which the onboard soft-
ware and security layers operate.

Figure 2.1: Cross-strap redundancy between AOM and RM subsystems

9

System Overview

2.1.1 Security aspects
From a security perspective, the onboard computer is equipped with dedicated
hardware mechanisms to ensure the protection of telecommands (TC) and teleme-
try (TM). Specifically, telecommands received from ground are decrypted, and
telemetry data generated in flight are encrypted using hardware-implemented cryp-
tographic algorithms, guaranteeing high reliability and performance. Specifically,
this is executed by an FPGA provided by the GR740 SoC, ANACOND, which
implements hardware decryption using AES-256.
To be clear, the software patching mechanism relies on a purely software-based
encryption and decryption process, which operates on top of the already encrypted
TC/TM channel. This results in a "double encryption", where hardware cryptogra-
phy ensures secure communication, while software-level encryption protects the
integrity and confidentiality of onboard software updates.

2.2 Software
The AOM on-board software (OBSW) is built upon a layered architecture that
separates low-level hardware-dependent components from mission-specific applica-
tions. This modular approach increases maintainability.
The architecture is composed of three primary layers:

• Basic Layer, which includes the Real-Time Operating System (RTOS), device
drivers, and board support packages. Its function is to provide a standardized
software interface to the hardware, allowing upper layers to operate inde-
pendently from specific processor or peripheral implementations. This layer
ensures portability and abstraction from the hardware components. It includes
the BootSW function, which resides in a dedicated PROM memory and is
responsible for the initialization of hardware resources such as the processor
and the memory (RAM). During the bootstrap sequence, the BootSW loads
the Application Software (APSW) into memory and prepares the system for
nominal operations. The Low Level I/O Device Drivers (Devices Interface)
have the purpose of guaranteeing a Low level Software interface to manage
I/O devices supported by the GR740.

• Service Layer, which provides shared services to higher-level applications.
It acts as an intermediary between the basic system components and the
mission-oriented functionalities.

• Application Layer, which implements mission functionalities such as telecom-
mand processing, data handling, and payload operations. Additionally, this
layer integrates the security functions responsible for patch authentication
and decryption, ensuring software integrity and confidentiality.

10

System Overview

Figure 2.2: AOM Layered Architecture

This layered organization ensures clear separation of concerns between hardware
control, system services, and mission-specific logic. A crucial aspect of the software
architecture is its deterministic real-time behaviour. Tasks with different priorities
must coexist without interfering with each other, and their execution order must
be predictable even under fault conditions. This requirement justifies the adoption
of a hypervisor-based system, described in the following section.

2.2.1 PikeOS

Figure 2.3: PikeOS Architecture

The main features that characterize PikeOS are Resource partitions and Time
partitions:

• Resource partitions are one of the basic security mechanisms to support
multiple virtual machines on top of PikeOS. They can be thought of as
containers within which applications are executed. They define the system
resources that their application can use and provide protection domains

11

System Overview

between different applications. It is important to note that an application
running in a partition is completely unaware of applications in other partitions
and of system resources to which it does not have access. The segregation
of resources, achieved through mechanisms provided by the hypervisor and
the IOMMU, enables a mixed-criticality approach. This allows software
components with different criticality level (A/B/C/D), to execute safely on the
same OBDH, while mantaining strict isolation and preventing any interference
between partitions.

• Time partitioning is a mechanism for allocating CPU time amongst the
partitions. It ensures that all the partitions get a predefined amount of
execution time and to prevent any thread from starving others, even in the
case of a faulting thread.

The power of PikeOS partitioning stems from the fact that time partitions and re-
source partitions are independent. Time partitioning is not just a case of allocating a
certain amount of CPU time to each resource partition; multiple resource partitions
can belong to the same time partition, while it is also possible in some circumstances
that different threads from the same resource partition belong to different time par-
titions. It is the main concept at the base of safety and security critical applications.

Figure 2.4: Example of resource and time partitioning interaction

This mechanism results in a scheduling that operates on two dimensions.
Specifically, at the start of each time window, the scheduler activates the time
partition assigned to that window. This time partition becomes the current time
partition, and all the applications within the partition are eligible to be scheduled
on the CPU. In the example 2.4, the system has five partition resources and three
time partitions: this illustrates the many to one relationship between resource and
time partitions.

12

System Overview

Figure 2.5: Assigning Resource Partitions to Time Partitions

Figure 2.5 shows how applications from the five resource partitions would be
mapped into the three time partitions. Seen this way, a time partition is simply
the set of applications from the resource partitions assigned to it.

In this system’s case, to obtain the best degree of determinism possible, each
partition has exactly one thread: the scheduler has the job to choose which thread
to schedule based on the current time window.
PikeOS offers inter partition communication capabilities by implementing queuing
ports and shared memory regions.
Specifically, there are two kinds of ports that enable interpartition communication:

• Queuing ports, which operate on a FIFO with a maximum message size.

• Sampling ports, which use a single message buffer that is atomically updated
by a write operation. It also mantains the age of a message measured from
the time of reception, which can be compared to the port’s refresh rate. This
allows to determine if a message is valid or not.

Another feature that is offered by PikeOS is the Health Monitoring (HM): it is
a core mechanism designed for fault detection and deterministic recovery, crucial
for maintaining system safety and resilience in mixed-criticality environments.
HM operates across multiple abstraction layers, like user, partition, and module
(global system), to ensure that detected errors, such as hardware exceptions,
missed deadlines, or severe timing overruns, are handled according to a strict, pre-
configured policy defined in the VMIT. A central safety principle enforced by HM
is fault containment: errors originating from applications, particularly untrusted
code, must be configured to trigger actions only within their local scope, typically
resulting in a partition restart or termination. This is vital because configuring a
local fault to execute a Module Level action (such as a full system reboot) would
directly violate temporal and spatial partitioning integrity, potentially allowing a
single non-critical fault to compromise the availability and safety state of the entire
system.
PikeOS enables the effective segregation of software components based on their
criticality. This classification is defined by the ECSS (European Cooperation for

13

System Overview

Space Standardization) and assigns each software component a criticality category.
The category corresponds to the severity of the most critical failure mode among
all possible failure modes for that component.
From a security standpoint, PikeOS allows applications with different criticality
levels to coexist on the same platform while maintaining strict isolation. This
feature is particularly advantageous in space systems, where hardware resources
are limited, and yet both safety-critical and non-critical tasks must share the same
computational environment. Each partition is allocated its own resources and is
assigned a criticality level as defined by the ECSS software classification:

• Category A: Software with the highest criticality. It implements functions
where failure could result in catastrophic consequences for the mission.

• Category B: High criticality software where failure results in major mission
impact but less severe than Category A.

• Category C: Medium criticality software where failure could cause minor
mission impact or degradation of functionality.

• Category D: Low criticality software, such as operational procedures or non-
critical functions where failure has minimal or no impact on mission success.

Naturally, the higher the criticality, the more rigorous the testing activities must
be.

2.3 Security Functionalities
The security model implemented within PikeOS and the AOM software architecture
is based on the principle of defense-in-depth, achieved through multiple layers of
control.
Spatial and temporal separation ensures that applications are confined to their as-
signed partitions, preventing any form of data leakage or unauthorized interference.
Communication between partitions occurs only through well-defined communication
objects, such as shared memory regions, regulated by strict access control policies.
This prevents unprivileged applications from modifying or corrupting configura-
tion tables, which define the mapping of partitions, communication channels, and
scheduling parameters.
The system’s configuration files effectively act as a security policy, defining the
boundaries of interaction between partitions and the privileges associated with
each.
Security integrity is further maintained through rigorous configuration require-
ments defined in the Virtual Machine Initialization Table (VMIT), which is a

14

System Overview

crucial file for partitions configuration. This includes restricted resource alloca-
tion, such as the mandatory protection of physical memory and I/O access rights
from untrusted domains, often requiring hardware mechanisms like IOMMU to
constrain Direct Memory Access (DMA). Additionally, PikeOS provides config-
urable countermeasures against modern threats, including processor-level attacks
exploiting speculative execution side channels (e.g. Spectre), which require careful
integration and software development practices. The hypervisor thus serves as a
high-assurance security domain responsible for managing and mediating all critical
shared resources.
Additionally, PikeOS’s security stance is centered on the principle of Robust Par-
titioning, which guarantees absolute spatial and temporal segregation between
partitions at the platform level. It is very important to analytically and system-
atically prove this segregation by identifying and demonstrating coverage for all
known potential Interference Channels possible. Interference Channels are a key
concept for PikeOS because they relate to how applications in one partition could
potentially compromise the robust partitioning of the hypervisor.
These design elements collectively enforce security mechanisms to reduce the
likelihood of compromise even in the presence of malicious or faulty components.

2.4 Telemetry and Telecommand
The basic operation [6] of nearly any spacecraft relies heavily on continuous
interaction with ground stations for control, command, communication, and data
return. In many cases, this interaction is supported by a high degree of onboard
autonomy. The Command and Data Handling (C&DH) system is responsible for
managing all data sent to and received from the spacecraft.
A space link refers to the communication channel established either between
a spacecraft and its corresponding ground system, or between two spacecraft.
The primary data types transmitted over a space link are Telemetry (TM) and
Telecommand (TC) data. A TC packet is the data unit that is used to carry a
service request from an application process on the ground to an application process
on-board. A TM packet is the data unit that is used to carry a service report from
an application process on-board to an application process on the ground.
Together, the TM downlink and TC uplink form the essential communication
interface between the spacecraft and ground operators.
On the uplink, the C&DH system receives and decodes all incoming commands
and data, which are related to both platform and payload operations. These
telecommands (TCs) are then routed to the appropriate subsystems or executed
directly at the platform level. Typically, the C&DH system does not process
payload-specific commands; instead, these are forwarded in encapsulated form

15

System Overview

directly to the payload. TC data can be broadly classified into:

• Direct spacecraft reconfiguration commands

• Application-specific commands

On the downlink, the C&DH system collects various types of data—either generated
by platform subsystems or produced by scientific payloads—and multiplexes them
into transfer frames for transmission to ground. Telemetry (TM) data can include:

• Spacecraft housekeeping (HK) data

• Orbital position data

• Scientific payload data

• Telecommand reception status (CLCW)

• Memory dump data

The Space Rider telecommanding architecture is based on a comprehensive set
of standardized and layered command services. These services are functionally
organized into three layers:

• Data Management Service

• Data Routing Service

• Channel Service

Within this architecture, the AOM OBC receives commands from the RM TC Data
Routing Service. A telecommand (TC) packet is transmitted to the AOM OBDH
system only after it has been completely and correctly received by the RM module.
To support this routing mechanism, each TC packet is tagged with a MAP ID,
which instructs the RM OBC to forward the packet to the AOM OBC.
The correct reception of each Transfer Frame by the Space Rider spacecraft is
actively monitored. If a frame is rejected, retransmission mechanisms ensure that
TC packets are delivered in sequence and without loss.
The TC Data Management Service standard defines how TC and telemetry (TM)
packets are utilized for remote monitoring and control of spacecraft subsystems and
payloads. In addition, the Packet Utilization Standard (PUS) complements these
lower-layer standards by defining the application-level interface between ground
systems and onboard software. Within the PUS framework, each application
process is uniquely identified by an APID (Application Process ID), which specifies:

16

System Overview

• the service user profile, determining which service requests the application is
allowed to issue, and

• the service capability set, defining the services the application process is able
to provide.

Once the MAP ID identifies the AOM OBDH as the destination of a TC packet, the
APID is then used to determine which specific service is requested by or required
from the AOM OBDH.
PUS defines various types of services that support spacecraft operations and
management. Among all the services:

• Service 1, Request verification: it provides the capability for checking that a
request received on-board has not been corrupted during transmission, or for
checking the availability of the service that executes that request.

• Service 3, Housekeeping: it provides the visibility of any on-board parameter.

• Service 5, Event reporting: it provides the capability to report information of
operational significance, such as on-board failures and anomalies, or initiation,
progress and completion of activities.

• Service 6, Memory Management: it provides the capability for loading, dump-
ing and checking the content of memory areas that exist on the spacecraft.
This service is what has been modified to include and implement the secure
software patching process.

17

System Overview

Figure 2.6: TC and TM exchange[7]

18

Chapter 3

Secure Software Patching

Ensuring the confidentiality, integrity, and authenticity of software patches in
spaceborne systems is essential for both mission success and cybersecurity. Any
alteration to onboard software has the potential to affect guidance, navigation,
communication, and payload control subsystems. Therefore, secure patching mech-
anisms must guarantee that only authorized, untampered, and verified updates are
accepted by the spacecraft, even under the most adverse operational conditions.
The secure patching mechanism for Space Rider is based on the AES-GCM algo-
rithm, an Authenticated Encryption with Associated Data (AEAD) mode providing
combined encryption and authentication in a single, efficient operation.
This design ensures end-to-end protection, addressing both confidentiality (protec-
tion against eavesdropping) and data authenticity (resilience against tampering
or spoofing). This implementation complies with ESA standards by extending
Packet Utilization Standard (PUS) Service 6, which is traditionally responsible for
memory management operations and has also been used for managing patching op-
erations. The integration of AES-GCM introduces a state-of-the-art cryptographic
assurances, transforming a crucial maintenance function into a trustworthy and
verifiable process.
The secure patching design leverages the WolfSSL cryptographic library, selected for
its compact footprint and proven reliability in resource-constrained, safety-critical
environments.
This combination of standards-based design and lightweight cryptography ensures
suitability for the hardware constraints of the onboard computer. The patching
mechanism operates within the AOM system and interacts closely with the OBSW
(onboard software), the PikeOS hypervisor, and the underlying Hardware architec-
ture. Therefore, its design had to respect not only cryptographic robustness, but
also real-time constraints and fault-tolerance requirements inherent to spaceborne
environments.

19

Secure Software Patching

3.1 Secure Software Patch Functionality
The actual security feature is executed by an application running on the AOM
OBC that decrypts and authenticates AOM on-board software patches encrypted
and authenticated on ground before transmitting it to the spacecraft. This ap-
plication is installed in a partition managed by the hypervisor. The ciphering
function, implemented with AES-GCM authenticated encryption with associated
data (AEAD), has the following security properties:

• Confidentiality: encrypted data will not leak any information about the
sensible plaintext data without the correct decryption key.

• Integrity and authenticity: to detect accidental or intentional modifications of
both the encrypted data and any additional authenticated data that is not
encrypted.

• Authenticated Encryption with Associated Data: it guarantees both encryption
of the plaintext and authentication of the ciphertext along with additional
authenticated, but unencrypted, data.

In addition to these properties, the security mechanism also features an anti-replay
mechanism by managing a patch counter register.

3.2 Key steps of the Patching mechanism
Patching is the only way to modify the software once the space vehicle has been
launched and together with software maintenance must be given proper considera-
tion during the whole software life cycle.
During the maintenance phase of the onboard software, the updated code shall be
validated before deploying it to the operational environment. This is achieved by
using simulation platforms, as they give developers visibility and control over the
system behaviour: any state can be reached and any condition can be triggered.
The patching process is about this phase too.
This is the general overview of the secure patching process:

1. Avio develops the onboard software patch in its protected software facility.
Avio encrypts and authenticates the patch and authenticates the additional
authenticated data. The AAD are composed of the key index, Initialization
vector and Patch counter. The key index parameter identifies which of the
available keys of 256 bits in the key database #1 is to be used.

2. Avio sends the encrypted patch and the authenticated associated data to the
simulation facility.

20

Secure Software Patching

Figure 3.1: Patching mechanism context

3. The patch gets injected in the simulator, which contains the same pre-shared
key database #1. The simulator is able to emulate the onboard software
functionalities, included the secure patch mechanism. The simulated onboard
software installs the patch only after successfully decrypting and authenticating
it, authenticating the AAD and checking the validity of the patch counter. In
case the simulations results are positive, the process can go on.

4. Avio encrypts and authenticates the patch already validated by the simulator
and authenticates the associated data, which are made up of key index,
Initialization Vector and Patch counter. This time around, the key index
identifies the selected key from database #2 which is a database residing on
the spacecraft.

5. Avio sends the encrypted patch and the additional authenticated data to
the ground facility that will be in charge of transmitting it to Space Rider.
This phase can include an additional layer of security, like encrypting the TC
packets sent, but it is out of scope of Avio responsibilities.

6. The AOM OBSW decrypts and authenticates the patch with the key whose
index is selected according to the received key index, from the pre-shared
onboard keys database #2. The AOM OBSW (onboard software) accepts the
patch if the patch and associated data authentication succeeds and install the
patch if the counter value is valid.

21

Secure Software Patching

3.3 Authenticated Encryption
The Advanced Encryption Standard (AES) in Galois/Counter Mode (GCM) is the
de facto standard for Authenticated Encryption with Associated Data (AEAD).
The primary goal of an AEAD algorithm is to combine the guarantee of three
fundamental properties into a single process: Confidentiality, Integrity, and Authen-
ticity. AES-GCM, specified in NIST Special Publication (SP) 800-38D[8], is the
most frequently used symmetric block cipher mode of operation globally, employed
in critical communication protocols such as TLS and IPsec. Its universal adoption
and continued validity demonstrated over twenty years of cryptographic analysis
confirm its robustness for intended uses.

3.3.1 Internal Architecture: CTR Mode, GHASH function
and Initialization Vector

GCM is inherently a composite algorithm, consisting of two main functional
components that work in parallel: the Counter Mode (CTR) for encryption and
the universal hashing function GHASH for authentication.

• CTR Mode - Encryption: AES, operating in Counter Mode, generates a
pseudo-random keystream by encrypting an incremental counter. This archi-
tecture is essential for GCM’s efficiency, as the keystream generation does not
depend on the plaintext blocks, thus allowing highly pipelined and parallelized
implementations. Counter Mode is recognized as the most effective method
for high-speed encryption.

• GHASH - Authentication: the authentication component uses the GHASH
function, a universal hashing mechanism defined over a binary Galois field
GF (2128). This function sequentially processes both authenticated but un-
encrypted data (Associated Data) and the ciphertext (C). The output of
GHASH is then combined via an XOR operation with the first keystream
block encrypted by AES in CTR mode, finally producing the Authentication
Tag. The structural separation between the CTR encryption pipeline and
the GHASH authentication pipeline is the fundamental reason for GCM’s
exceptional throughput, as the two processes are independent except for the
final tag encryption step.

• Initialization Vector: the Initialization Vector (IV), or Nonce, is a public
parameter, typically 96 bits long in AES-GCM, whose function is not to
maintain secrecy but to guarantee uniqueness for every encryption operation
performed with the same secret key. GCM’s security critically depends on
the fact that a key is never reused with the same initialization vector. This

22

Secure Software Patching

uniqueness condition is an absolute and fundamental security requirement for
the algorithm’s integrity.

Figure 3.2: Algorithm internal mechanics

3.4 Cryptographic Design Decision: Adoption of
AES-GCM

The choice of a symmetric-key algorithm like AES-GCM was driven by the possibility
to share a set of keys out-of-bounds, at the launch site. This option[9] significantly
reduces the complexity of the key management problem, completely removing all
the advantages an asymmetric key algorithm could have had, since there is no longer
a need for establishing a key over an insecure medium. Furthermore, symmetric
cryptosystems are generally less complex and less computationally expensive. For
all these reasons, symmetric key cryptography is the preferred solution for the
classic point-to-point space mission communication security scenarios.
Furthermore, AES-GCM was the preferred choice because of several considerations:

• Performance: Galois/Counter Mode enables parallelizable encryption and
authentication, minimizing latency, which is a crucial factor for real-time
systems.

• Proven security: AES is endorsed by NIST and already widely adopted in
space, aviation and defense applications, ensuring compatibility and trust.

23

Secure Software Patching

• AEAD flexibility: By authenticating additional non-encrypted fields (AAD),
such as patch counters or key indices, AES-GCM strengthens state awareness
and contextual integrity during patch verification.

3.4.1 Intrinsic weaknesses

Despite its performance and community support, AES-GCM exhibits operational
weaknesses that impose stringent requirements on state and key management. These
weaknesses primarily stem from its vulnerability to operational error (misuse) and
mathematical limits related to the reduced IV length. The most significant and
serious weakness is its sensitivity to IV reuse. If the same IV is used to encrypt
two different messages with the same key, the security failure is catastrophic:

• Loss of Confidentiality: a single IV reuse leads to the disclosure of the XOR
operation between the two plaintexts. If an attacker obtains ciphertexts C1
and C2 (encrypted with the same Nonce IV) and knows or guesses one of
the plaintexts (e.g., P1), they can completely decrypt the other (P2) via the
relationship P2 = (C1 ⊕ C2) ⊕ P1.

• Forgery Vulnerability: in addition to the loss of confidentiality, IV reuse
compromises authenticity. The attacker can narrow the field of possible keys
to a limited number of options and, through polynomial root-finding [10],
generate valid forgeries with a high probability of success. This makes GCM’s
authenticity guarantee extremely fragile in case of operational error.

Operational limits

The standard IV size of 96 bits imposes rigid limits on the volume of data that
can be encrypted with a single key, especially when using random IVs. Due to the
birthday paradox, even though there are 296 possible IV values, the probability of
encountering a collision (i.e., reusing the same IV under the same key) increases
much faster than intuition suggests. In cryptography, a collision probability
below 2−32 is generally considered acceptable. Applying the birthday bound, this
probability is reached after approximately 232 random IVs have been generated,
far fewer than 296, but still a very large number in practice. For this reason, NIST
imposes an operational limit of about 232 messages encrypted per key when using
a random IV construction. In our context, this threshold is far above the expected
operational usage, meaning that IV reuse due to random collisions is not a practical
concern.

24

Secure Software Patching

3.5 Crypto application

The application itself is implemented using the WolfCrypt library, a cryptographic
software API that also provides FIPS validation. The keys used in this process
consist of a set of pre-shared keys, injected through a dedicated interface on the on-
board computer at the launch site by authorized employees, and stored in memory,
which offers radiation-tolerant and Error Detection and Correction feature. The
memory contains a set of cryptographic keys, each 256 bits in length, and each
identified by a key index.
The picture 3.3 is the packet format expected from the OBSW.

Figure 3.3: Packet format

Patch counter, Key index and Authentication tag constitute the Additional Au-
thenticated Data (AAD), which is additional data sent in clear that will get
integrity-checked by the AES-GCM algorithm. The key index is the index which
identifies the key stored in the pre-shared keys database recorded in memory, and
each communicating entity shares the same keys database. The patch counter value
must be bigger than the value stored in memory, and in this case the patch can be
applied and the counter register is updated with the new value, otherwise the patch
is rejected. This mechanism avoids replay attacks, which occur when an attacker
eavesdrops on a secure communication, intercepts it, and then fraudulently delays
or resends it to misdirect the receiver into doing what he wants. Authentication
and Integrity check is provided by the authentication tag, which is managed by the
AES-GCM algorithm.
If either the patch payload or the additional authenticated data are not correctly
authenticated, the packet will be discarded, guaranteeing data authenticity by veri-
fying that the ciphertext and associated data were produced by an entity holding
the shared secret key (in this case, the legit ground segment).

25

Secure Software Patching

Figure 3.4: Anti-Replay mechanism

3.6 Strategic importance
The strategic value of securing Space Rider’s software patching mechanism extends
beyond the mission itself. Space Rider represents a cornerstone of European auton-
omy in space operations, offering reusable, cost-efficient access to Low Earth Orbit.
Any compromise to its onboard software could thus impact not only a single mission,
but also Europe’s strategic independence, scientific credibility, and commercial com-
petitiveness. Cyberattacks targeting the patching pipeline could result in mission
denial, loss of control, or the insertion of a persistent backdoor into flight-critical
systems. Given the increasing militarization and commercialization of space, threat
actors may include nation-states seeking espionage, criminal organizations pursuing
ransom or sabotage, or insiders with privileged access. The risk surface is therefore
broad and evolving. By securing the patching mechanism through end-to-end
encryption, authentication, and replay protection, the system effectively closes
one of the most critical attack vectors in post-deployment software management.
This aligns with the ESA Cybersecurity Framework, which emphasizes continuous
assurance and defense-in-depth across the mission lifecycle.

3.6.1 Possible attack targets
Below are several possible attack scenarios for introducing malware into a space-
craft’s on board software patch during the distribution phase.

• Infrastructure compromise

– Remote exploitation of vulnerabilities: attackers can exploit vulnerabilities
in the ground upload servers or software to gain unauthorized access.

26

Secure Software Patching

– Credential theft: if attackers steal or compromise the credentials used to
access the ground upload systems and impersonate authorized personnel.
This enables them to modify the patch or substitute it with a malicious
version.

– Insider threat: an insider with legitimate access to the ground systems
could intentionally modify the patch or bypass the integrity checks.

– Key injection risks: keys should be injected at the launch site by authorized
staff via software uploaded into NVM (non-volatile memory). The main
risk is malicious or accidental upload of tampered/unverified software.

• Development intrusion

– Attacker infiltration: an attacker infiltrates the developer environment or
source code repositories. By injecting malicious code early in the software
build process, the attacker ensures that the malware becomes part of the
patch before it’s even signed.

– Malicious or coerced personnel: an individual with privileged access may
intentionally insert malware into the patch.

Each of these scenarios underscores the necessity for a comprehensive, multi-
layered security approach spanning the entire software patch lifecycle, from initial
development to final distribution. For this reason, end-to-end encryption for patch
transmission has been implemented.
The use of WolfSSL’s WolfCrypt library is motivated by its lightweight design and

Figure 3.5: Decryption and Authentication decision process

high level of optimization for embedded systems. Its AES-GCM implementation
offers the following advantages:

• Low memory footprint, making it suitable for spaceborne hardware with
limited resources.

27

Secure Software Patching

• Compliance with FIPS 140-2 and other relevant standards for use in safety-
and mission-critical systems.

3.7 Modified PUS 6 packet structure
The PUS Service 6 is responsible for memory management in a spacecraft’s onboard
software system. This service plays a crucial role in handling memory related
operations, including patching, modification, and verification of software running
on the spacecraft’s onboard computer. The original PUS Service 6 telecommand
includes:

• Primary header, containing the packet ID, length, etc.

• Secondary header, Indicates the service type and subtype. This is used
to discriminate between different memory management operations such as
memory load or software update.

• Payload

Figure 3.6: Modified PUS Service 6 packet structure

The updated Service 6 packet layout was designed to introduce fields that would
be useful for the decryption: patch metadata, initialization vector, authentication
tag and the encrypted payload.
Due to PUS Service 6 design constraints, a Telecommand (TC) cannot carry a

28

Secure Software Patching

payload larger than 986 bytes. Therefore, whenever the encrypted payload exceeds
this size, the ground segment must segment it into multiple TCs.
Although the PUS standard defines Service 13 (Large Packet Transfer) to handle
the reliable transmission of large packets, including retransmission of individual
missing segments,this service is not supported by AOM. As a result, Service-13-
style redirection and retransmission mechanisms are unavailable. The solution
adopted is to transfer the retransmission responsibility to the ground segment:
for each transmitted TC, identified by a sequence number, the spacecraft sends a
TM acknowledging whether it was correctly received. The ground segment then
identifies the missing TCs and retransmits them selectively. This ensures reliable
transfer of large payloads without requiring Service 13.
Additionally, a custom extension of Service 6 was introduced (outside of the PUS
standard). This dedicated command explicitly informs the OBSW when the
transmission of the entire segmented payload is complete, enabling the decryption
process to start safely. Once this command is received, the OBSW stores the full
payload in non-volatile memory (NVM) and triggers decryption. This process is
handled by a high-priority partition, MODE, which delegates the decryption activity
to a lower-priority partition, FLASH. The FLASH partition runs in background
mode, which means it is scheduled only when other applications within its time
partition are idle. Upon successful decryption, the task of applying (flashing) the
patch is transferred back to MODE partition. This design results in a significantly

Figure 3.7: High level view: interaction between MODE and FLASH partition

more efficient use of CPU cycles, by offloading computationally intensive tasks
(such as decryption) to idle time, while ensuring that critical operations (such as
flashing) are handled promptly by higher-priority components. This architecture
provides several advantages in terms of real-time scheduling and fault tolerance.
From a real-time scheduling perspective, offloading the decryption process to
the low-priority FLASH partition allows the system to perform computationally
expensive operations without affecting the responsiveness of time-critical tasks.
Since the FLASH partition is scheduled only when higher-priority applications
are idle, this approach ensures optimal CPU utilization without interfering with

29

Secure Software Patching

mission-critical software. The actual flashing of the patch, which is time-sensitive
and potentially hazardous if interrupted, is delegated to a high-priority partition,
guaranteeing its execution within a predictable and bounded time frame.
In terms of fault tolerance, the classification of the FLASH partition as Category
C reflects a design philosophy where potential failures in the decryption process
do not lead to catastrophic consequences. By isolating the patch processing logic
within this non-critical partition, the system limits the impact of potential software
errors or transient faults. Furthermore, by separating the decryption and flashing
stages into distinct partitions with different priority levels and safety classifications,
the overall robustness of the patching mechanism is enhanced. This separation
of concerns reduces the risk of a single point of failure and contributes to system
reliability, especially in spaceborne environments where recovery options are limited.

30

Chapter 4

Implementation

This chapter describes the practical implementation of the secure software patching
mechanism introduced in the previous chapter. The work focused on the develop-
ment of the software module responsible for patch authentication and decryption
within the AOM OBSW. The implementation required the creation of a dedi-
cated PikeOS partition, the configuration of shared memory for inter-partition
communication, and its integration with the existing OBSW framework.

4.1 Software Requirements Specification
In space software engineering, system quality and mission reliability are directly
dependent on the quality and rigor of the requirements that drive the development
process. Without clear, verifiable, and traceable requirements, it becomes impossible
to ensure correctness of the final product or to demonstrate that it satisfies mission
objectives. This principle is particularly critical when cybersecurity is involved:
security cannot be added retroactively once the architecture has been defined.
Instead, it must be specified, engineered, and verified from the very beginning of
the lifecycle. The introduction of cybersecurity mandates in ECSS-E-ST-40C [3]
institutionalizes this paradigm by elevating security to a first-class engineering
requirement, to be handled with the same level of rigor as functional performance,
reliability, and safety.
In this context, the detailed specification of the secure patching functionality was
defined through a formal Software Requirements Specification (SRS) document,
following ESA and Avio standards. The requirements were written in compliance
with ECSS-E-ST-40C [3], ensuring full bidirectional traceability across system
design, implementation, verification, and validation.
Each requirement is uniquely identified through a structured ID naming convention,
enabling traceability to higher-level system and mission requirements. The SRS

31

Implementation

defines the functional behavior of the secure patching module integrated within
the AOM OBSW, including operational constraints, error handling mechanisms,
and cybersecurity safeguards.
The specification addresses four primary functional domains:

• Cryptographic configuration and key management

• Patch authentication and decryption

• Counter validation and replay protection

• Memory access control and operational modes

These requirements collectively ensure that the patching mechanism operates
securely, deterministically, and in compliance with the cybersecurity provisions
established by ECSS and ESA for space-grade onboard software.

4.1.1 Cryptographic configuration and key management
The decryption function relies on a pre-initialized portion of MRAM whose purpose
is to contain configuration parameters, such as the Patch counter value and the
256-bit symmetric keys, each referenced by a unique index. The OBSW shall select
the proper key according to the index received within the incoming telecommand.
The key management requirements specify that:

• Keys are stored in a radiation-tolerant memory region protected by Error
Detection and Correction mechanism: in order to protect configuration data,
the Memory Controller provides an EDAC function capable to correct up to 2
wrong 4-bits Symbols in the same 32-bits Codeword.

• The memory region is read-only for the application layer to prevent tampering.
In fact, this is implemented by a Hardware interlock, requiring an explicit
write-enable command before accessing the memory.

• if the EDAC system detects uncorrectable errors, the OBSW shall attempt
recovery from the redundant memory.

If recovery fails, the patching process is aborted and a Telemetry (TM) event shall
be sent to notify ground segment.
These mechanisms ensure both key integrity and system resilience in the event of
radiation-induced data corruption.

32

Implementation

4.1.2 Patch Authentication and Decryption
Upon reception of a patch Telecommand (TC), the OBSW extracts three essential
parameters:

• the Key Index,

• the Initialization Vector,

• the Patch Counter value.
These parameters are used during the AES-GCM decryption process. In particular,
the Key Index and the Patch Counter value must be included as Additional
Authenticated Data (AAD), to ensure their integrity and protect them against
tampering.
The AES-GCM decryption and authentication process is performed using WolfSSL’s
WolfCrypt library, which provides an implementation optimized for embedded
systems. The adoption of WolfSSL’s WolfCrypt library should be regarded as an
implementation hypothesis. The development work described in this thesis has
been performed using WolfSSL’s APIs.
The module ensures that:

• AES-GCM is used as the only supported decryption scheme.

• both ciphertext and AAD are verified for authenticity before patch installation.
If authentication succeeds, the patch payload is stored in a Non-volatile Memory
(NVM) for further installation. In case of failure, the patching sequence is immedi-
ately terminated, and a Telemetry (TM) event report is generated and issued.
This mechanism guarantees end-to-end integrity and prevents unauthorized or
corrupted patches from being installed.

4.1.3 Counter validation and Replay Protection
The SRS also specifies a robust anti-replay system based on an increasing patch
counter stored in memory.
The OBSW compares the counter received with the patch against the stored value:

• If the new counter value is greater, the patch is accepted and processed.

• If the new counter value is equal to or lower, the patch is rejected and the
event is reported to ground via a TM report.

After successful patch installation, the onboard counter register is updated to match
the latest value received from ground.This simple but effective mechanism ensures
chronological integrity, preventing rollback or downgrade attacks, and maintaining
synchronization between ground and onboard states.

33

Implementation

Figure 4.1: Anti-Replay mechanism

4.1.4 Memory Access Control and Operational Constraints
In accordance with safety and mission assurance requirements, the secure patching
functionality can operate only under specific conditions and modes. This restriction
prevents accidental or malicious modification of software during critical mission
phases.
Additionally, the OBSW shall also:

• Inhibit memory load or dump commands targeting critical memory areas.

• Notify the ground segment of any attempt to access or modify such restricted
memory regions.

• Select the appropriate NVM Flash bank (nominal or redundant).

These requirements implement defense-in-depth at both software and system levels,
ensuring that even if the cryptographic layer is secure, operational policies still
enforce safety and integrity during patch installation.

4.1.5 Error Handling and Fault Recovery
The SRS includes explicit requirements for fault detection, correction and reporting.
In case of authentication or decryption failure, the module shall:

• Abort the patching operation,

• Generate a TM message to notify the ground,

• Log the failure cause (counter error, authentication or decryption failure,
EDAC correction error).

34

Implementation

If the EDAC mechanism cannot correct memory faults, the OBSW shall attempt
decryption using the redundant memory. Persistent failures result in termination
of the process and transmission of a diagnostic TM.

4.1.6 Summary of Key Requirements
The formal requirements define a tightly controlled and secure patching workflow
where:

• Key management, decryption and validation are clearly separated.

• All cryptographic operations are deterministic and traceable.

• Error conditions are explicitly handled and reported.

• Operational safety is enforced by limiting patch execution to predefined mission
modes.

4.2 Partition Design, Configuration and Commu-
nication

The implementation of the secure patching functionality required the creation of a
dedicated PikeOS partition within the AOM On-Board Software (OBSW). This new
partition, named FLASH, was designed to host all cryptographic operations related
to patch decryption and authentication, ensuring full isolation from mission-critical
tasks and adherence to real-time and cybersecurity constraints.
The integration process followed the PikeOS system definition workflow, which is
managed by the Virtual Machine Initialization Table (VMIT). The VMIT represents
the core configuration file that defines the system structure, including:

• the list of partitions (e.g., MODE, FLASH),

• each partition’s scheduling and priority,

• memory requirements and allowed memory regions,

• communication channels (message queues, sampling ports),

• file access permissions and shared memory mappings.

In other words, the VMIT acts as the single source of truth for system configuration.
During system startup, PikeOS reads the VMIT and deterministically instantiates
the partitions, allocates memory segments, and configures inter-partition communi-
cation. This guarantees deterministic initialization, controlled data flow, and strict
enforcement of security boundaries.

35

Implementation

1 <Partition Name="FLASH" Identifier ="19" >
2 <MemoryRequirementTable >
3 <MemoryRequirement Name="RAM" Type=" VM_MEM_TYPE_RAM " Size=

" xxxxxxx "/>
4 </ MemoryRequirementTable >
5 <FileAccessTable >
6 <FileAccess FileName ="shm:MODE" AccessMode =" VM_O_MAP

VM_O_RD "/>
7 <FileAccess FileName ="shm:FLASH" AccessMode =" VM_O_MAP

VM_O_RD VM_O_WR "/>
8 </ FileAccessTable >
9 <QueuingPortTable >

10 <QueuingPort Name=" recv_queue_from_PUS_to_FLASH " Type="
VM_PORT_QUEUING " Direction =" VM_PORT_DESTINATION " MaxMessageSize
="xxxx" />

11 <QueuingPort Name=" snd_queue_from_FLASH_to_PUS " Type="
VM_PORT_QUEUING " Direction =" VM_PORT_SOURCE " MaxMessageSize ="
xxxx" />

12 </ QueuingPortTable >
13 </Partition >

Listing 4.1: VMIT structure: definition of the FLASH partition

The XML code snippet 4.1 is extracted from the project’s VMIT. In the configura-
tion interface, each partition is associated with a dedicated Partition tab, where its
parameters and interactions with other partitions can be defined and controlled.

4.2.1 Partition Design and Configuration
The creation of the FLASH partition aimed to provide an isolated execution
environment dedicated to the secure patching process. This separation ensures
that any malfunction or fault in the decryption process remains confined, without
affecting higher-criticality tasks such as attitude control or telemetry management.
The code that will reside in this partition is classified as Category C, following
ECSS-E-ST-40C[3], and the partition is configured as a low-priority entity within
the PikeOS scheduling plan. Within the VMIT, the partition is declared as a
virtual machine instance, and its parameters include:

• Memory segments for code, stack, and data, statically allocated to guarantee
predictability.

• Definition of input and output shared memory regions, specifying the direction
of communication (source and destination partitions).

• Access control policies ensuring strict isolation between partitions.

36

Implementation

The VMIT thus acts as the authoritative source defining the spatial and temporal
boundaries of the partition, serving as a single configuration point from which the
PikeOS system image is generated.

4.2.2 Inter-Partition Communication Design
The FLASH partition primarily communicates with MODE partition, as it is the
high priority partition chosen to install the patch once the authentication and
decryption phase are successfully over.
This interaction is established through shared memory regions, which is defined in
the VMIT. Each communication object is explicitly declared with its ownership,
access rights, and direction, ensuring that no implicit or unauthorized data exchange
occurs between partitions.
The VMIT configuration specifies the following properties for each shared region:

• Virtual memory address and size allocation.

• Source and destination partitions.

• Access rights (read/write).

As seen in 4.1, the shared memories, which are used to exchange data between the
two partitions FLASH and MODE, have different direction of communication: for
the FLASH partition, the shared memory shm:MODE is read only, while the shared
memory shm:FLASH has write enabled. Moreover, FLASH partition cannot access
any other shared memory, enforcing isolation policies offered by PikeOS.
Within its configuration, queueing ports are also defined for FLASH, establishing
a communication channel with the PUS partition. Queuing ports provide an
asynchronous communication mechanism, where messages sent to a port are stored
in an internal FIFO queue until the receiving process retrieves them. Only the
partition owning the port can invoke send/receive operations on it. When a
message is sent, it is placed into the FIFO buffer associated with the source port;
the separation kernel later transfers that message to the buffer of the destination
port according to the channel configuration. PikeOS, being fully compliant with
ARINC-653 (Avionics Application Software Standard Interface), defines a system
event that moves messages from source to destination ports independently of
partition execution. This isolates communication from scheduling and avoids
interference between partitions.

Possible Security shortcomings of queuing ports

The paper[11] demonstrates that the original ARINC-653 specification contains
hidden covert channels, meaning that the state of a queuing buffer (full/not full)

37

Implementation

Figure 4.2: Queuing port based Communication[11]

could be exploited to leak information between partitions. This violates the
requirement that partitions must not influence one another outside the predefined
communication policy.
To eliminate this covert channel, the suggestion is to modify the queuing port
behavior so that when a buffer is full, messages are silently discarded, instead of
returning an error to the sender.

4.2.3 Execution Flow
The secure patching execution flow, starting from the reception of the telecommand
(TC), involves multiple PikeOS partitions, each responsible for a different stage of
the operation:

• FLASH: executes the decryption and authentication of the received patch
and handles any cryptographic error conditions.

• MODE: interfaces with the memory areas where cryptographic keys and
application software reside and manages the storage of the incoming encrypted
APSW chunks.

• RM: receives telecommands and sends telemetry messages. It interfaces
directly with RM subsystem, which exchanges TCs and TMs with the ground
segment.

• PUS: validates and interprets the TCs received from RM and generates TMs
according to the ECSS-PUS standard.

The complete interaction chain shown in Figure 4.3 proceeds as follows:

38

Implementation

Figure 4.3: Execution flow

1. RM receives the TC (Service 6) from the ground segment and forwards it to
PUS.

2. PUS validates the TC format and parameters. It immediately generates a
TM(1,1) or TM(1,2) to notify RM (and consequently the ground segment)
whether the TC is valid or rejected. If the TC is accepted, PUS forwards it to
MODE. MODE then begins collecting the APSW encrypted chunks.

3. Once the final Service 6 TC is received, indicating that the full encrypted
APSW image has been transferred, MODE notifies FLASH that the encrypted
payload is available in the shared memory region.

4. FLASH performs the decryption and authentication of the received payload.
If an error occurs (e.g., failed authentication, invalid parameters), FLASH
requests PUS to generate a TM(5,2) containing the rejection reason. Otherwise,
upon successful decryption, FLASH requests PUS to generate a TM(5,1),
meaning authentication and decryption successful, and writes the decrypted
image into the shared memory shm:FLASH.

5. MODE retrieves the decrypted APSW image and sends a request to PUS to
generate TM(1,8), notifying the ground segment of the successful completion
of the telecommand.

6. PUS generates and forwards the TMs.

4.2.4 FLASH partition
Once the FLASH partition has been correctly configured, as described in Chapter 4.2,
the next step consists in implementing the software components, in particular the
integration of wolfSSL’s WolfCrypt module. The integration required adapting the

39

Implementation

WolfCrypt library to include only the functionalities relevant to this project, namely
the AES-GCM cryptographic routines. For this purpose, both the Makefile and
the include directives were modified so that only the necessary source files were
compiled. WolfCrypt offers a wide range of cryptographic algorithms, but in a
safety and security-critical environment such as this one, it is essential to minimize
the codebase and remove all unused features in order to reduce complexity, attack
surface, and resource usage.
After this process, the development environment was fully set up and ready for
implementation. The following sections illustrate the cryptographic functions that
have been used.

1 int wc_AesInit (
2 Aes * aes ,
3 void * heap ,
4 int devId
5)

Listing 4.2: Initialization Function

The function wc_AesInit() initializes the AES context structure used by WolfCrypt.
It prepares the internal state of the AES object and allows the caller to optionally
specify a memory heap and device identifier to use with crypto callbacks or async
hardware. If the initialization fails, the returned error code is propagated to ensure
that no cryptographic operation is performed on an uninitialized context. In this
case, since only static memory use is allowed, the memory heap is not defined, and
so is the device ID: the whole functionality is implemented in software.

1 int wc_AesGcmSetKey (
2 Aes * aes ,
3 const byte * key ,
4 word32 len
5)

Listing 4.3: Key management

The function wc_AesGcmSetKey() loads the AES-256 key into the AES context.
In this case, the key is a pre-shared symmetric key stored onboard and used to
decrypt the incoming APSW ciphered image. By separating key loading from
context initialization, WolfCrypt allows flexibility in key management and enforces
explicit key assignment before any encryption or decryption attempt. This function
returns an error code in case of a wrong size key assignment.

1 int wc_AesGcmDecrypt (
2 Aes * aes ,
3 byte * out ,
4 const byte * in ,
5 word32 sz ,

40

Implementation

6 const byte * iv ,
7 word32 ivSz ,
8 const byte * authTag ,
9 word32 authTagSz ,

10 const byte * authIn ,
11 word32 authInSz
12)

Listing 4.4: Decrypt function

Finally, the function wc_AesGcmDecrypt() performs the authenticated decryption
using AES-GCM. It takes as input the ciphertext, the Initialization Vector (IV),
the authentication tag, and Additional Authenticated Data (AAD), which contains
the Patch Counter value and the key index. During execution, the function verifies
the authenticity and integrity of both the ciphertext and the metadata (AAD). If
authentication fails, it means that the packet, Additional data, Initialization Vector
or tag has been tampered, returning an error code, and no plaintext is produced,
ensuring that corrupted or malicious patches are never applied.

1 int wc_AesFree (
2 Aes * aes
3)

Listing 4.5: Free function

In the end, the function wc_AesFree releases the AES context previously initialized
with wc_AesInit(). It performs all necessary cleanup operations on the internal
data structures used by the AES object, such as clearing sensitive material from
memory and releasing any resources allocated during the cryptographic operation.
Calling this function ensures that no residual key material or intermediate state
remains in memory after the decryption procedure completes, contributing to both
memory safety and secure key handling.
This is true on HOST environment, but not on the real target hardware: here
resource allocation is strictly controlled and the wolfCrypt library is configured
to avoid dynamic allocation, hence this method results in a no-op. Moreover, the
standard math library is used on the HOST environment, whereas on the real
hardware the system relies on libmcs[12], a mathematical library provided by ESA.
libmcs is designed for embedded and safety-critical systems and is pre-qualified for
ECSS software criticality category B.

41

Implementation

4.3 Cryptographic Validation and NIST KAT
Implementation

The operational environment of the Spacecraft On-Board Computer (OBC), char-
acterized by non-standard, radiation-tolerant hardware and the use of a Real-Time
Operating System like PikeOS, imposes more stringent cryptographic validation
requirements compared to implementations on COTS (Commercial Off-The-Shelf)
platforms. Validation was not limited to the WolfCrypt library but extended the
tests to the integration on the target hardware to ensure that the execution of the
AES-GCM algorithm produced correct and compliant results under all operational
conditions.

4.3.1 The Importance of Validation on Non-Standard Hard-
ware

Flight hardware is optimized for resilience and low power, not for general-purpose
performance, and often features vendor-specific architectures for the processor (e.g.,
SPARC LEON architecture) and memory modules. In this context:

• Architectural Differences: The implementation of cryptographic algorithms,
though standard at the source code level, can be affected by specific compiler
optimizations for the architecture, or by potential hardware errors that could
deviate execution.

• Memory Management: Memory restrictions imposed by PikeOS and the use of
protected memories like MRAM with EDAC (Error Detection and Correction)
must coexist with cryptographic operations, making it necessary to verify
that the manipulation of input buffers (Ciphertext, AAD, Tag) and output
(Plaintext) is not corrupted by the environment.

• In-Orbit Reliability: Verification of the algorithm’s correctness on a specific
architecture is a fundamental prerequisite for Mission Assurance.

Verification using NIST KAT on the real hardware closes the validation loop,
proving that the specific software implementation and cryptographic library behave
as expected on the target architecture.

4.3.2 Implementation of NIST Known Answer Tests (KAT)
To validate the AES-GCM implementation, a test suite based on the Known Answer
Tests (KATs) defined by the National Institute of Standards and Technology (NIST)
was developed. These tests involve executing the algorithm with specific sets of

42

Implementation

known input data (Key, IV, AAD, Authentication Tag, Ciphertext) and comparing
the generated output (Plaintext) with pre-calculated, published NIST output values.
The implementation and verification process was as follows:

• Selection of Test Vectors: Relevant test vectors for the AES-256 operation in
GCM mode (specifically the decrypt tests) were extracted from the Crypto-
graphic Algorithm Validation Program, published by NIST.

• Test Driver Development: A customized build containing the software module
responsible to do the cryptographic testing was created and executed on the
target platform.

• Execution on Hardware: The WolfCrypt AES-GCM implementation was
invoked on the target OBC to perform the decryption and authentication
operation for each set of vectors.

• Result Verification: After execution, the generated Plaintext, if the expected
result of the decrypt operation was successful, was compared bit-by-bit with
the expected value (Known Answers) from NIST.

1 [Keylen = 256]
2 [IVlen = 96]
3 [PTlen = 128]
4 [AADlen = 0]
5 [Taglen = 120]
6
7 Count = 0
8 Key =

e51f5a7db5a4fe8c5dc78a105ad263ac81d740d2f26034040fae0cce0722e515

9 IV = e874dab5de4319958379d42d
10 CT = 82424 f7297e2c24f835f10c9605c3b4f
11 AAD =
12 Tag = be1d7f4f51bb87ebbf2c5e567948a7
13 FAIL

Listing 4.6: KAT

The code snippet in Listing 4.6 shows one of the NIST Known Answer Test (KAT)
vectors, in which all parameters (Key, IV, Ciphertext, AAD, and Tag) are provided
with fixed lengths. The test suite consists of multiple vectors, and each vector is
structured into a block containing 15 individual test cases. In this specific example,
the first test case is expected to fail if the cryptographic implementation is correct,
since its purpose is to verify that the system properly detects invalid authentication
data and rejects the message.

43

Chapter 5

Integration of MISRA C and
CWE for the Modernization
of SG34

The objective of this chapter is to analyze the relationship between MISRA C
and MITRE CWE, and to determine whether cybersecurity-oriented classifications
(CWE) can be mapped onto coding rules used in embedded systems (MISRA C).
The goal of this study is to update and modernize the internal coding standard
SG34, making it both safety-oriented (MISRA C philosophy) and security-aware
(CWE vulnerability taxonomy).
MISRA is widely used in safety-critical embedded software. CWE provides a
vulnerability classification recognized internationally in cybersecurity.
However:

• MISRA does not explicitly classify vulnerabilities,

• CWE does not prescribe coding rules.

By studying these elements together, the scope is to evaluate how SG34 can be
supported by a set of security standards.

5.1 SG34 Coding Standard
The SG34 internal coding standard defines the software development rules adopted
by Avio, covering all phases from requirements analysis to design, coding, testing,
delivery, and maintenance. It applies to all on-board software, both specifically
developed and reused components.

44

Integration of MISRA C and CWE for the Modernization of SG34

The standard mandates consistency and traceability across lifecycle phases, pre-
scribing uniform naming conventions for constants, variables, operations, and types.
It enforces rules that promote readability, maintainability, and determinism, in-
cluding limits on loop nesting depth, forbidding dynamic memory allocation and
goto statements, requiring single return points in functions, and avoiding equality
comparisons between floating-point values. Coding rules are language-independent
but include language-specific profiles for Ada, C, and Assembly, reflecting the
high reliability constraints of space-grade real-time embedded systems. Overall,
SG34 ensures uniformity, verifiability, and safety, reducing integration effort and
improving review and testing efficiency.
It includes rules for the entire software lifecycle:

Table 5.1: Key SG34 Rules by Development Phase

Phase / Area SG34 rules include...
Requirements & Design document structure, traceability, architecture con-

straints
Coding indentation, naming convention, modularity, cy-

clomatic complexity limits, no recursion or hidden
control flow

Testing unit test planning, integration tests, coverage re-
quirements

Configuration & Docu-
mentation

versioning, reviews, code ownership

Many of the existing rules aim at portability, style consistency, readability, and
maintainability. However, SG34 is outdated today especially because it lacks
explicit connection to security concepts.
Updating SG34 requires adding:

• safety in C → enforced via MISRA C rules

• security awareness → via CWE classifications

5.2 MISRA C: Reliable Coding for Embedded
Systems

MISRA C is a widely adopted set of guidelines that defines a safe and secure subset of
the C programming language for high-integrity software development. Its mission is
to provide “world-leading best practice guidelines for the safe and secure application
of both embedded control systems and standalone software”[13]. Originally focused

45

Integration of MISRA C and CWE for the Modernization of SG34

on safety-critical embedded applications, MISRA C has evolved into a reference
also for cybersecurity-oriented development, addressing vulnerabilities inherent
to the C language. The guidelines achieve this by restricting unsafe language
constructs and enforcing disciplined coding practices, with the goal of creating
a subset of C “in which the opportunity to make mistakes is either removed or
reduced”. Recent addenda demonstrate MISRA’s proactive alignment with other
security standards: MISRA C:2023 Addendum 3[13] shows full coverage of CERT
C secure coding rules, strengthening the claim that MISRA C is applicable not
only to safety but also to security. Similarly, MISRA C:2025 Addendum 5[14] maps
MISRA rules to weaknesses in MITRE’s Common Weakness Enumeration (CWE),
specifically addressing memory-safety related weaknesses through explicit, implicit,
or restrictive guidelines.
Together, these documents confirm that MISRA C provides structured, enforceable
rules that reduce the risk of typical C vulnerabilities and support the development
of robust, secure, and portable software.
The analysis of the MISRA addenda shows that many security-related vulnerabilities
are already mitigated by MISRA rules, either explicitly, implicitly, or through
restrictive prohibitions of unsafe language constructs. The goal of this analysis
is to identify which CWE classes are covered by the MISRA ruleset, thereby
strengthening and expanding the security-oriented metrics of the static analysis
activities performed internally at AVIO.
MISRA C is organized into:

• Directives: organizational or process constraints

• Rules: syntactic and semantic restrictions on the language itself (what is
allowed or forbidden)

5.2.1 Areas Covered
MISRA rules span almost every critical aspect of developing embedded C software.
They are grouped into thematic categories:

46

Integration of MISRA C and CWE for the Modernization of SG34

Table 5.2: Coding Standard Categories, Focus, and Purpose[15]

Category Focus Area Purpose
Directives (D.x) Process-level compliance

(documentation, verifica-
tion, justification)

Ensure traceability and reviewabil-
ity of code decisions

General Rules (1.x,
2.x)

Language behavior, avoid-
ance of undefined or un-
specified behavior

Ensures code behaves identically on
all platforms

Declarations and
Initialization (8.x,
9.x)

Variable lifetime, scope,
initialization require-
ments

Prevents uninitialized memory us-
age and improves determinism

Arithmetic and
Type Rules (10.x,
12.x)

Type conversions, inte-
ger promotion, signed/un-
signed operations

Prevents overflow, truncation, loss
of precision

Pointers and Mem-
ory (11.x, 18.x)

Pointer casts, pointer
arithmetic, dynamic mem-
ory

Eliminates unsafe pointer opera-
tions and memory risks

Control Flow (13.x,
14.x)

if/else, loops, switch, re-
cursion

Avoids dead code, invariant condi-
tions, and hidden control flow

Expressions (12.x) Operator precedence, side
effects, sequential points

Ensures clarity and avoids ambigu-
ous expressions

Preprocessor Use
(19.x)

#define, macros, condi-
tional compilation

Limits use of preprocessor to avoid
untraceable logic

Standard Library
(20.x)

Limits usage of C stan-
dard library

Avoids non-deterministic or non-
portable library functions

Some MISRA rules prohibit entire language features when they introduce risk:
• Dynamic memory allocation (malloc, free) → not allowed in freestand-

ing/embedded environments

• Recursion → forbidden due to unpredictable stack usage

• Implicit type conversion → forbidden due to hidden loss of precision
This restrictive philosophy is justified in high-integrity embedded software, where
predictability is more valuable than flexibility.

5.2.2 Why MISRA is used as the embedded development
Standard

MISRA is considered as the standard in high-criticality systems for three reasons:

47

Integration of MISRA C and CWE for the Modernization of SG34

• Determinism: forbidden behaviors prevent undefined or compiler-dependent
execution.

• Portability: code behaves the same across compilers, architectures, and
toolchains.

• Static analyzability: MISRA is designed to be automatically verifiable
with tools such as Polyspace, which supports rule checking and compliance
reporting.

Furthermore, MISRA Addendum 5[14] maps MISRA guidelines to CWE weaknesses,
proving that MISRA inherently covers memory safety and security concerns.

5.3 CERT C: Missing link between MISRA and
CWE

The SEI CERT C Coding Standard[16] defines rules for developing safe, reliable,
and secure software in the C language. Its purpose is to eliminate undefined
and insecure behaviors that may lead to exploitable vulnerabilities. Each rule
specifies mandatory requirements, together with non-compliant and compliant code
examples, helping developers understand how to write secure C code and how static
analysis tools can detect violations. CERT C focuses explicitly on security and
targets developers of systems that must be reliable and resistant to attack. MISRA
C:2023 Addendum 3[13] maps CERT C rules to MISRA rules, showing that CERT
C serves as a bridge between MISRA’s safety-oriented guidelines and security-
oriented vulnerability taxonomies such as CWE. By exploiting this mapping, it
becomes possible to identify which security issues (classified as CWEs) are already
mitigated through MISRA rules.

5.4 CWE: Common Weakness Enumeration
The Common Weakness Enumeration[17] (CWE) is a community-developed clas-
sification system of software and hardware weakness types, maintained by The
MITRE Corporation, which aims to provide a unified language for describing the
root causes of vulnerabilities. At its core, CWE defines a weakness as “a condition
in software, firmware or hardware, that when introduced during development or
operation, may enable or contribute to an exploitable vulnerability”[18]. The
CWE list is structured as a hierarchical taxonomy, with entries ranging from
very abstract categories to specific language or technology-dependent variants,
enabling developers, testers and static analysis tools to map individual issues to
standardized identifiers. The current CWE repository includes hundreds of distinct

48

Integration of MISRA C and CWE for the Modernization of SG34

weakness types and supports multiple “views” to aid navigation and analysis. One
of the key uses of CWE is enabling measurement and tracking of weaknesses across
tools, codebases and architectures, thereby supporting metrics such as how many
instances of particular weakness classes have been identified or mitigated. By
embedding CWE identifiers into static analysis outputs or compliance dashboards,
organizations can extend their assessments from generic “non-compliance” flags
toward measurable “weakness-type coverage” metrics.

5.5 Synthesis: MISRA - CERT C - CWE
The integration of MISRA C, CERT C, and CWE enables a unified methodology to
evaluate both safety and security in C code. MISRA C acts on the language itself,
eliminating unsafe or undefined constructs, while CERT C defines secure coding
practices and bridges MISRA guidelines to concrete vulnerability classes. CWE
provides the taxonomy to classify weaknesses and quantify their security impact.
Their analysis followed a two-step approach:

1. the direct correspondence between MISRA C and CWE, as officially provided
in the MISRA Addendum 5[14], was reviewed to establish a baseline under-
standing of how MISRA rules inherently address known software weaknesses.
This initial mapping highlights MISRA’s role in mitigating several CWE
categories, particularly those related to memory safety, control flow integrity,
and type correctness.

2. A reverse-correlation was developed, between CERT C, MISRA and CWE.
Since CERT C explicitly links its secure coding rules to CWE identifiers, it
serves as a methodological bridge, enabling the derivation of additional and
more granular correspondences between MISRA rules and CWE weakness
classes. This cross-standard correlation was reached also thanks to MISRA
Addendum 3 [13], which focuses on mapping CERT C and MISRA rules
together.

The MISRA Addendum 5 [14] defines several coverage types, and each mapping is
assigned one of them.

5.5.1 Analysis of selected MISRA-CWE mappings
CWE-119: Improper Restriction of Memory Buffer Bounds

This weakness represents one of the most critical categories of memory-safety
vulnerabilities in C. It occurs when operations exceed allocated buffer limits,
leading to memory corruption or code execution. MISRA C mitigates this class of

49

Integration of MISRA C and CWE for the Modernization of SG34

Table 5.3: Type of coverage [14]

Type of cover-
age

What it means interpretation in practice

Explicit The weakness is directly
addressed by one or more
MISRA rules

A rule exists that exactly
specifies what to not do

Implicit MISRA rules prevent the
weakness, but the CWE is
not named explicitly

Following the rules naturally
avoids the weakness

Restrictive MISRA solves the weakness
by prohibiting the dangerous
language feature entirely

E.g. banning dynamic mem-
ory in critical code removes
entire CWE classes

Partial MISRA covers some but not
all aspects of the weakness

Additionalk control outside
MISRA may be required

Collection Multiple MISRA rules to-
gether mitigate the CWE

No single rule solves it, but
a combination of rules does

weaknesses through a collection of rules addressing arrays, pointers, and dynamic
memory. Rules R.9.1 and R.11.1–R.11.6 impose strict boundaries on array indexing
and pointer conversions, while R.18.1 limits pointer arithmetic to valid object ranges.
Additional safeguards from R.21.6, R.21.17, and R.21.18 restrict unsafe standard
library functions known to cause buffer overflows. Since dynamic memory allocation
is typically forbidden in high-critical embedded systems, MISRA encourages static
allocation and compile-time sizing, reducing the attack surface and eliminating
unpredictable memory behavior. Collectively, these rules provide strong coverage
under the Collection classification, preventing out-of-bounds memory access at its
root.

CWE-120/121/122: Buffer Overflow, Stack Overflow, Heap Overflow

The CWE series 120–122 extends CWE-119 to specific memory regions, emphasizing
how incorrect input handling or pointer misuse can overwrite adjacent memory
on the stack or heap. MISRA mitigates these weaknesses primarily through
R.18.1, which restricts pointer manipulation, and through the R.21.x family, which
discourages dangerous library functions such as strcpy and sprintf. Furthermore,
R.1.3 prohibits undefined behavior, ensuring that memory access patterns remain
well-defined. In high-critical software, dynamic heap allocation is often disallowed,
which further reduces exposure to heap-based overflows and eliminates run-time
fragmentation and non-determinism. MISRA’s rules therefore enable predictable
memory usage and reduce the attack surface associated with buffer overflows.

50

Integration of MISRA C and CWE for the Modernization of SG34

Table 5.4: MISRA C rules mapped to CWE IDs [14]

CWE Weakness Mapped MISRA
Rule

Type of
coverave

Strength

CWE-119: Improper Re-
striction of Memory Buffer
Bounds

R.9.1 + R.11.1
+ R.18.1 +
R.21.6/21.17/21.18
+ R.22.2 + D.4.7 +
R.1.3

Collection Strong

CWE-120/121/122: Buffer
overflow / stack overflow /
heap overflow

R.18.1 + R.21.x rules
+ R.1.3

Implicit Strong

CWE-415: Double Free R.22.2 + D.4.x +
R.1.3

Partial /
Restrictive

Strong

CWE-476: NULL Pointer
Dereference

D.4.1(defensive cod-
ing)

Implicit Weak

CWE-590: Freeing stack
memory

R.22.2 Explicit Strong

CWE-822: Pointer to invalid
memory location

R.11.1-6 + D.4.7 +
D.4.14

Explicit Strong

CWE-780-
789(memory/pointer han-
dling variants)

R.18.1 +
R.21.6/21.17/21.18

Partial /
Restrictive

Strong

CWE-415: Double Free

This weakness occurs when the same dynamically allocated memory region is
freed more than once, potentially resulting in heap corruption or arbitrary code
execution. MISRA reduces exposure to this risk by limiting or outright prohibiting
dynamic allocation in safety-critical systems. Rule R.22.2 enforces that memory
obtained via allocation functions must be released exactly once, and directives
such as D.4.x encourage runtime checks before deallocation. Combined with R.1.3,
which prohibits undefined behavior, these rules ensure controlled memory lifecycles.
In many high-reliability environments, dynamic allocation is avoided altogether,
meaning that the conditions leading to double-free situations are structurally
eliminated.

CWE-476: NULL Pointer Dereference

Dereferencing a null pointer can lead to crashes or unpredictable system behavior.
MISRA addresses this issue implicitly through D.4.1, which promotes defensive

51

Integration of MISRA C and CWE for the Modernization of SG34

programming practices such as validating pointer values before dereferencing.
Although the coverage is considered weak, it still ensures that software designed
under MISRA principles systematically validates all inputs and references. This
approach transforms potential null-pointer dereferences into detectable, controlled
errors rather than fatal faults, aligning with MISRA’s emphasis on predictable
system behavior.

CWE-590: Freeing Stack Memory

This CWE targets incorrect deallocation of non-heap memory, for example when
using free() on stack-allocated variables. MISRA explicitly forbids this pattern
under R.22.2, which requires that only memory obtained via dynamic allocation
functions (e.g., malloc, calloc) may be released. The coverage is explicit and
strong, since the rule directly addresses this dangerous practice. By eliminating
the possibility of freeing invalid memory regions, MISRA ensures runtime stability
and guards against memory corruption that could otherwise arise from improper
deallocation.

CWE-822: Pointer to Invalid Memory Location

Invalid pointer references often occur after deallocation, incorrect typecasting, or
pointer arithmetic errors. MISRA offers explicit and strong coverage through
R.11.1–R.11.6, which prohibit unsafe pointer conversions, and through D.4.7 and
D.4.14, which mandate defensive programming and pointer validity checks. These
rules ensure that pointers always reference valid, well-defined objects throughout
their lifecycle. This alignment between MISRA rules and CWE-822 demonstrates
MISRA’s capability to enforce memory safety at the language-usage level, thereby
preventing access to stale or non-existent memory.

CWE-780–789: Memory/Pointer Handling Variants

These CWEs encompass several specialized memory-safety and pointer-handling
issues, such as improper pointer scaling or incorrect object referencing. MISRA
mitigates these through R.18.1 and the standard-library restrictions defined in
R.21.6, R.21.17, and R.21.18. The Addendum identifies this mapping as partial/re-
strictive with strong coverage, reflecting the fact that MISRA not only defines rules
to prevent unsafe pointer arithmetic but also disallows the use of dangerous library
functions that could introduce these vulnerabilities. Collectively, these constraints
foster robust pointer discipline and help maintain strict control over memory access
semantics.

52

Integration of MISRA C and CWE for the Modernization of SG34

5.6 CERT C: additional cross-check mapping

The additional mappings presented in this section were derived through a reverse-
correlation methodology. Although a direct mapping between MISRA C and
CWE was already analysed, this correspondence alone does not fully capture the
semantic links between coding rules and weakness classes, due to the different scopes
and abstraction levels of the two frameworks. For this reason, the analysis was
complemented by a CERT C–based approach, leveraging the fact that CERT rules
explicitly associate coding practices with well-defined CWE categories. Starting
from each relevant CERT C rule, the corresponding MISRA C rules enforcing the
same constraint were identified. Since CERT C rules already include a systematic
mapping to MITRE CWE categories, this intermediate step allowed the final
derivation of an indirect but reliable relationship between MISRA C and the CWE
weakness taxonomy. Through this “CERT C → MISRA C → CWE” cross-check
process, it becomes possible to determine not only whether MISRA covers a specific
weakness, but also how strongly (Explicit, Implicit or Restrictive), enabling a
deeper assessment of MISRA C as a security-coding standard.

Table 5.5: MISRA C rules mapped to CERT C and CWE IDs

CERT C
Rule

CWE Description
Summary

Related MISRA C
Rule ID

Related
CWE
IDs

INT31-C,
FLP34-C

Integer coercion / trunca-
tion errors, incorrect nu-
meric conversion

10.1, 10.3, 10.4, 10.6, 10.7 192, 197,
681

ARR30-C Out-of-bounds access, in-
correct pointer/index use,
buffer sizing issues

18.1, 21.17, 21.18 119, 125,
788

EXP33-C Out-of-bounds read, im-
proper initialization

9.1, 21.3 125, 665

EXP39-C,
INT36-C

Strict aliasing violation,
incorrect pointer–integer
conversion

11.1, 11.2, 11.3, 11.7 119, 123,
125, 466,
587

MEM31-C,
MEM34-C

Memory/file descriptor
leaks, freeing non-heap
memory

22.1, 22.2, Dir 4.12 401, 415,
416, 590

53

Integration of MISRA C and CWE for the Modernization of SG34

5.6.1 Integer Conversion Safety - INT31-C & FLP34-C →
CWE 192, 197, 681

CERT C Rule INT31-C demands that integer conversions must not result in lost
or misinterpreted data[16]. This imperative is addressed by a stringent family of
MISRA C rules, collectively providing an Explicit Strong defense[13].

• MISRA C Rules 10.1 through 10.4, 10.6, and 10.7 rigorously control implicit
and explicit type conversions to prevent truncation, sign errors, and loss
of precision. For example, Rule 10.1 dictates that "Operands shall not be
of an inappropriate essential type"[13]. This proactively manages the risk
that a value exceeding the representable range of a smaller type is truncated
(CWE-197), or that an incorrect conversion logic is used (CWE-681).

• The same strong ruleset applies to floating-point conversions (FLP34-C),
explicitly covered by MISRA Rules 10.3, 10.4, 10.5, and 10.8.

5.6.2 Memory and Pointer Integrity
Pointer-related vulnerabilities form the bulk of critical exploits (CWE-119, CWE-
125). MISRA’s role here is to impose rigorous, explicit constraints on pointer
manipulation.

Out-of-Bounds Access: ARR30-C → CWE 119, 125, 788

CERT C Rule ARR30-C prohibits forming or using out-of-bounds pointers or array
subscripts[16]. This maps directly to memory safety vulnerabilities.
MISRA C Rule 18.1 ("A pointer resulting from arithmetic on a pointer operand
shall address an element of the same array as that pointer operand"[13]) explicitly
confines pointer arithmetic to valid array boundaries. This rule, alongside related
rules 21.17 and 21.18, provides Implicit Strong protection[13]. The implicit nature
stems from MISRA defining this as an integrity or portability rule, rather than
an explicit "buffer overflow prevention" measure, but the practical effect against
CWE-119 (Improper Restriction of Operations within the Bounds of a Memory
Buffer) is robust.

Uninitialized Memory Access EXP33-C → CWE 125, 665

Reading uninitialized memory (EXP33-C) can lead to data exposure (CWE-125)
or unpredictable control flow (CWE-665, Improper Initialization)[13].
MISRA C Rule 9.1 mandates that "The value of an object with automatic storage
duration shall not be read before it has been set"[13]. This is backed by Dir 4.1 and

54

Integration of MISRA C and CWE for the Modernization of SG34

Rule 21.3, yielding an Explicit Strong coverage[13]. This is a fundamental safeguard
against a class of errors highly prioritized by safety and security standards.

Incompatible Type Access and Aliasing (EXP39-C & INT36-C → CWE
119, 123, 125)

The practice of accessing a variable through a pointer of an incompatible type
(strict aliasing violation, EXP39-C) triggers Undefined Behavior and can lead to
memory corruption or data leaks[13].
MISRA addresses this explicitly and strongly through the Rule 11.x family. Rules
11.1, 11.2, 11.3, and 11.7 strictly govern pointer conversions (e.g., preventing
conversion between a pointer to an object type and a pointer to a different object
type). This comprehensive restriction on type punning ensures the compiler cannot
perform detrimental optimizations based on false non-aliasing assumptions, thus
mitigating the root cause of CWE-119 and CWE-125 exploits stemming from
pointer misuse. CERT C Rule INT36-C (converting a pointer to integer or integer
to pointer) is also managed by this family of rules (11.1, 11.2, 11.4, 11.6, 11.7, Dir
1.1)[13].

Dynamic Memory Management (MEM31-C, MEM34-C → CWE 401,
415, 416, 590)

MISRA adopts a high-level, design-based restriction for memory management.
MISRA C Directive 4.12 requires that "Dynamic memory allocation shall not
be used"[13]. This prohibition immediately grants a Restrictive Strong coverage
against the entire class of heap-based memory vulnerabilities. This highly effective
security measure eliminates issues such as Double Free (CWE-415), Use After
Free (CWE-416), Memory Leak (CWE-401, addressed by MEM31-C), and freeing
non-heap memory (CWE-590, addressed by MEM34-C, via Rule 22.2)[13].

5.7 Summary
From a comparative standpoint, SG34 already provides substantial coverage of
many practices later formalized in MISRA C and linked, through CERT C and
CWE, to concrete security weaknesses. Core SG34 constraints, such as the pro-
hibition of dynamic memory allocation, the enforcement of deterministic control
flow (no recursion, no hidden control flow), disciplined pointer usage, mandatory
initialization, and strict rules on documentation and traceability, are conceptually
aligned with MISRA directives and rules. Through the MISRA–CERT–CWE
mappings, these practices can be seen as indirectly mitigating critical weakness
classes such as buffer overflows, pointer misuse, double free, improper initialization,

55

Integration of MISRA C and CWE for the Modernization of SG34

and use of invalid memory. However, SG34 remains mostly safety-oriented and
does not explicitly address security taxonomies, nor does it systematically restrict
dangerous standard library functions or type conversions as rigorously as MISRA
and CERT C. As a result, SG34 offers strong but implicit coverage for many CWE
categories, while leaving gaps in areas such as vulnerability classification, strict
handling of integer and floating-point conversion, aliasing, preprocessor safety, and
the explicit treatment of security-specific behaviors. Aligning SG34 with MISRA,
CERT C, and CWE therefore turns it from a purely safety-driven coding standard
into a framework that also provides measurable security coverage.

56

Integration of MISRA C and CWE for the Modernization of SG34

Table 5.6: Summary of SG34 coverage w.r.t. MISRA C / CERT C / CWE

Area Related MISRA / CERT /
CWE concepts

SG34 coverage

Prohibition of dynamic
memory allocation

MISRA Dir 4.12, R.22.x; CERT
MEM31-C, MEM34-C (CWE-
401, 415, 416, 590)

Strong coverage
(heap-related weak-
nesses structurally
removed)

Deterministic control flow
(no recursion, limited nest-
ing, no hidden flow)

MISRA 13.x, 14.x; CERT EXP
rules (CWE-480, CWE-691)

Strong, implicit cov-
erage of control-flow
related weaknesses

Pointer discipline and
restricted pointer arith-
metic

MISRA 11.x, 18.x; CERT
ARR30-C, INT36-C (CWE-119,
125, 466, 822)

Partial coverage
of memory-safety
issues

Mandatory initialization
and deterministic data
lifetime

MISRA 9.x; CERT EXP33-C
(CWE-665, 125)

Strong coverage
against uninitialized
use

Naming, readability, mod-
ularity, documentation
and traceability

MISRA general guidelines and
directives

Strong coverage for
safety, indirect ben-
efit for security

Restrictions on unsafe C
standard library functions
(string and memory APIs)

MISRA 21.x; CERT
STR/MSC rules (various
CWE-119/120/121/122)

Weak coverage in
SG34 (not explicitly
codified)

Integer and floating-point
conversion safety (over-
flow, truncation)

MISRA 10.x; CERT INT31-C,
FLP34-C (CWE-190, 192, 197,
681)

Partially covered by
general SG34 princi-
ples

Null pointer checks and
defensive pointer valida-
tion

MISRA D.4.1; CERT EXP34-C
(CWE-476)

Weak / implicit
coverage (recom-
mended, but not
fully formalized)

Strict aliasing and type-
punning control

MISRA 11.x; CERT EXP39-C,
INT36-C (CWE-119, 123, 125)

Partial coverage;
SG34 does not
define an explicit
“essential types”
model

Explicit vulnerability tax-
onomy and security met-
rics

CERT → CWE mapping,
MISRA Addenda 3[13] and
5[14]

Not covered: SG34
does not reference
CWE or security
coverage metrics

57

Chapter 6

Polyspace Static Analysis
Tools in Embedded C
Verification

In an embedded systems verification workflow, Polyspace Bug Finder and Polyspace
Code Prover serve as complementary static analysis tools to improve code safety
and reliability without executing the software. Both tools analyze C (and C++)
source code for onboard software to detect defects early and verify correctness,
which is crucial in safety-critical domains like automotive or aerospace. Unlike
dynamic testing, Polyspace analysis does not run the code on hardware, but it
inspects the code statically (using mathematical methods) to find problems and
prove the absence of certain errors[19]. Below the purpose and analysis methods of
each tool and the types of defects they target.

6.1 Polyspace Bug Finder: Static Analysis for
Potential Defects

Polyspace Bug Finder is a static code analyzer designed to scan embedded C/C++
code for potential bugs, vulnerabilities, and coding standard violations at an early
development stage, without executing the code. It examines the code’s structure
and flows to catch issues as soon as the code is written or integrated. Internally,
Bug Finder performs semantic static analysis of the program’s control flow, data
flow, and interprocedural interactions to spot anomalies[20]. This means it tracks
how data moves through the program and how functions call each other, looking for
anything suspicious, for example, variables used before initialization, null pointers
that might be dereferenced, or array indices that could go out of bounds. Because

58

Polyspace Static Analysis Tools in Embedded C Verification

it’s static (no actual running of the program), it explores these paths symbolically
to flag potential run-time errors (like overflows or divide-by-zero) and logic bugs in
the code. The analysis is relatively fast and tries to minimize false positives, so
developers can quickly focus on real issues.

6.1.1 Purpose and defect detection
The primary purpose of Bug Finder is to act as a bug-hunting tool for developers:
essentially an automated code review that catches runtime error conditions, danger-
ous code patterns, and bad practices before the code ever runs. It identifies a broad
range of defects such as numeric errors (e.g. overflow or underflow possibilities),
invalid pointer usage (null or dangling pointer dereferences), buffer and array
overruns, division by zero risks, and data flow problems like use of uninitialized
variables. All of these are detected through static analysis algorithms that sym-
bolically evaluate how the code could execute in different scenarios. Importantly,
no actual code execution or test vectors are needed; Bug Finder infers problems
by analyzing the code itself, so it can find subtle bugs that might only surface
under rare conditions. By catching these issues early, developers can fix them in
the development cycle rather than during testing or deployment.

6.1.2 Coding standards and metrics
In addition to finding bugs, Polyspace Bug Finder also checks the code against
industry coding standards and best practices, which is especially relevant for
embedded software quality. It has built-in rules for several guidelines, and any
violations of these rules, such as misusing language features, unsafe constructs, or
deviating from style mandates, are reported. This helps ensure the code not only is
bug-free but also compliant with standards required for certification. Furthermore,
Bug Finder gathers code quality metrics like cyclomatic complexity, code size,
and other maintainability metrics. These metrics give insight into the complexity
of functions and can signal high risk modules. The tool outputs comprehensive
reports listing all the bugs found, coding rule violations, and metrics. Overall, Bug
Finder’s role is preventative: it performs a wide sweep for potential problems and
enforce good coding practice, improving code quality before deeper verification is
done.

6.1.3 Bug Finder analysis in the project
A static analysis on a subset of the project has been conducted using Polyspace
Bug Finder. The tool scanned the codebase and reported 83 findings distributed
across the involved testing units. Most issues detected in the application code were

59

Polyspace Static Analysis Tools in Embedded C Verification

minor and related to structural or maintenance weaknesses such as empty code
blocks(CWE-1071), indicating areas where initialization routines were declared
but not yet implemented. Some of the scanned issues were about unsafe type
conversions (CWE-704, CWE-758) and integer overflows/underflows (CWE-190,
CWE-191, CWE-128, CWE-197) occurring when casting between pointer-sized and
integer-sized types or when narrowing 32-bit values into 8-bit variables. Importantly,
critical classes of memory-safety vulnerabilities such as buffer overflows (CWE-
120/121/122) or use-after-free (CWE-416) were not observed in the analyzed files,
confirming that the application code adheres to safe memory usage patterns and
that the integration of the crypto library does not introduce uncontrolled dynamic
memory operations.
Overall, the analysis demonstrated that the project does not present high-risk
memory-safety defects.

6.2 Polyspace Code Prover: Formal Verification
of Run-Time Errors

Polyspace Code Prover is a more advanced static analysis tool that uses formal
methods to mathematically prove properties about the code’s correctness. Its main
purpose is to verify the absence of certain critical run-time errors in C code by
exhaustively analyzing all possible executions, inputs, and values that the program
can take without running the program on a target. Under the hood, Code Prover
implements abstract interpretation, a formal methods technique that interprets the
program with abstract values representing all possible real values, to explore every
feasible path and state of the program. This exhaustive analysis is aimed at proving
that no runtime error of a certain class can ever occur when the software runs.
In other words, while Bug Finder might say “this line might cause a null pointer
dereference if X happens,” Code Prover goes further to determine conclusively
whether such an error can or cannot happen in any scenario. It verifies each
operation in the program for correctness with respect to runtime errors, effectively
acting like a mathematical proof checker for the code.

6.2.1 Purpose and analysis method
The focus of Code Prover is on deep formal verification of critical code. It is
typically used on the most safety-critical components of embedded software, where
you need absolute confidence that no catastrophic run-time errors will occur. Code
Prover analyzes the program by considering all possible inputs and states, thanks to
its formal approach. It performs value range analysis on variables and expressions,
deducing the possible range of values each variable can take at each point in

60

Polyspace Static Analysis Tools in Embedded C Verification

the code. By propagating these ranges through the control flow, it can prove
facts such as “this index will always stay within array bounds” or “this pointer
will never be null when dereferenced,” etc. Importantly, Code Prover checks for
runtime errors that include: buffer overflows (array index out of bounds), arithmetic
overflows/underflows, division by zero, null or invalid pointer dereferences, out-
of-range numeric casts, and other undefined-behavior cases that could crash or
corrupt a program. If the analysis can guarantee that none of these errors can
happen, it will consider the operation proved safe. This process is exhaustive in the
sense that it simulates all feasible control paths and combinations of input values
within the program’s constraints. Behind the scenes, the tool builds an exhaustive
function call tree and a global memory access map of the program. This means
it understands every function call sequence and how memory (global variables,
etc.) is accessed across the program, which helps in reasoning about interactions
and side-effects across the entire codebase. All this is done through static analysis
algorithms based on formal semantics of the language, ensuring that the verification
is sound.

6.2.2 Proving absence of defects
The output of Polyspace Code Prover is not just a list of potential issues, but a
guarantee level for each operation in the code. Each statement or operation in
the source code gets a color-coded result indicating its proven status. In practice,
Green code means that Code Prover has proven that this operation cannot fail (e.g.
an array access that is proven always in bounds, or a division proven never to have
a zero divisor). Red means a definite error: the tool found a combination of inputs
or a path that will lead to a runtime error (so a bug that needs fixing). Orange
indicates unproven or potentially unsafe: the analysis could not conclusively prove
the operation safe, which often means there is a possible but not guaranteed error
(or the tool had to make a conservative assumption), and thus it flags it for review.
Gray denotes code that wasn’t executed in any feasible path (dead code), such as
a function that is never called or an if-branch that is never true. This color-coding
provides developers and verification engineers a clear map of the code’s health:
ideally, all critical sections should be green (proven safe). If any red or orange
remains, those are either real bugs or areas that need further scrutiny or perhaps
additional assumptions. Achieving all-green status in Code Prover gives a high level
of confidence that the embedded software is free of run-time crashes like overflows
and invalid memory accesses.
Because Polyspace Code Prover uses formal verification, it is computationally
heavier than Bug Finder (analysis can take longer on large codebases), but it
delivers a higher assurance level. It’s often used in later stages of development or
on subsets of the code that are safety-critical, after using Bug Finder to clean out

61

Polyspace Static Analysis Tools in Embedded C Verification

the obvious issues. No code execution is required for this verification; the proofs
are all done through static mathematical reasoning on the source code. In essence,
Code Prover acts like an automated code proof assistant, showing that under all
possible operating conditions, certain classes of errors will not happen.

6.2.3 Code Prover analysis in the project
The Polyspace Code Prover analysis reported a total of 159 open runtime checks,
all marked in orange, indicating operations for which the tool could not conclusively
prove safety. These checks span across data flow (118 issues), numerical operations
(8), static memory usage (24), and a few under miscellaneous categories (9). No-
tably, among the orange results are warnings for illegally dereferenced pointers,
potential integer overflows, and invalid shift operations, all of which correspond to
high-impact CWEs such as CWE-119, CWE-190, and CWE-681. These unresolved
proofs highlight areas where runtime behavior may be unsafe under certain input
conditions or data paths, particularly in embedded environments where deter-
ministic behavior is critical. The complete absence of “red” errors suggests that
no proven unsafe operations were detected. However, the presence of unresolved
orange checks emphasizes the need for refinement. In particular, applying Data
Range Specification (DRS) techniques could help convert many of these orange
results into green outcomes. As such, Code Prover acts as a formal diagnostic
stage, revealing which operations require further adjustments or annotations to
attain proof completeness in safety-critical software components.

6.3 Combined Use in the Verification Workflow
Polyspace Bug Finder and Code Prover are often used in tandem to achieve robust
static verification for embedded software. In a typical workflow, developers first
run Bug Finder on new or modified code to quickly identify and fix all the obvious
bugs, dangerous constructs or standard violations. This improves the code quality
and ensures compliance with coding standards early on. Subsequently, Code Prover
is applied to the cleaned-up code to perform deep formal verification on the most
critical components, confirming that no runtime error conditions remain. Together,
the tools provide an end-to-end static analysis solution: Bug Finder’s fast bug
detection and coding rule checking combined with Code Prover’s exhaustive proof
capabilities. This combination means that by the time the code is ready to deploy
on the embedded hardware, it has been both scanned for defects and formally
proven for key correctness properties, all without executing a single line on target.
This approach greatly increases confidence in the software’s reliability.
In the context of onboard embedded software, where failures can be catastrophic,

62

Polyspace Static Analysis Tools in Embedded C Verification

using these tools is now a common practice to meet safety and quality requirements.
The results from Polyspace analyses can be used to produce evidence for certification
and standards compliance. For example, Polyspace outputs can be turned into
reports that demonstrate code quality, list all found issues (with justifications for
any that are deemed acceptable), and show which parts of the code have been
proven free of run-time errors, which is very useful for auditors or safety engineers.
By integrating Bug Finder and Code Prover into the development lifecycle, teams
can continuously monitor code for issues and regressions. This ensures that the
embedded C code for onboard systems remains robust: potential defects are caught
early by static analysis, and the final code is backed by mathematical proofs of
correctness for critical safety properties. The end result is highly reliable embedded
software, with Polyspace providing a line of defense against runtime bugs long
before the code ever runs on the actual device.

63

Chapter 7

Conclusion

This thesis presented the analysis, design, implementation, and validation of a
secure software patching mechanism for the Avum Orbital Module (AOM), a core
element of ESA’s Space Rider mission. The work addressed a critical challenge in
modern space systems: enabling safe, authenticated, and resilient software updates
throughout the mission lifecycle, despite the constraints imposed by deterministic
real-time architectures, limited computational resources, and the absence of physical
access once in orbit.
The project began with a comprehensive exploration of the AOM hardware and
software architecture, emphasizing the role of the GR740 processor, the PikeOS
hypervisor, and the layered organization of the onboard software (OBSW). Un-
derstanding these foundations was essential to ensure that the proposed security
mechanism could be integrated without compromising real-time behavior, fault
tolerance, or mission-critical operations.
A complete end-to-end update pipeline was then designed, based on AES-GCM
as an Authenticated Encryption with Associated Data (AEAD) algorithm. This
choice ensured that each patch delivered to the spacecraft benefits from confiden-
tiality, integrity, authenticity, and contextual binding via the use of Additional
Authenticated Data (AAD). The mechanism was integrated within a customized
extension of PUS Service 6, enabling secure handling of segmented payloads without
relying on unsupported PUS large-packet services. A robust anti-replay mechanism,
based on a monotonic patch counter, ensured chronological integrity and prevented
downgrade or replay attacks.
A key contribution of this thesis was the validation of the AES-GCM implementa-
tion directly on the GR740 flight hardware via NIST Known Answer Tests (KATs).
Since no prior verification existed for this specific spaceborne platform, this activity
was fundamental to guarantee correctness, robustness and suitability for onboard
use.

64

Conclusion

The implementation of the decryption functionality required the creation of a
dedicated PikeOS partition, FLASH, configured with strict spatial and temporal
isolation requirements and integrated seamlessly within the real-time execution
model.
In parallel, the thesis investigated how modern software assurance practices could
strengthen the existing SG34 coding standard. By analyzing the correspondence
between MISRA C guidelines, CERT C recommendations, and the CWE weakness
taxonomy, the work highlighted how many safety-driven MISRA constraints also
implicitly mitigate security flaws, particularly those related to memory safety,
pointer misuse, and undefined behaviors. This mapping also revealed gaps where
SG34 could be extended with explicit security rules, thereby aligning development
practices with the new ECSS cybersecurity mandates.
Overall, this work delivered both a practical operational capability (a secure, vali-
dated patching mechanism ready for integration into Space Rider) and a method-
ological contribution, showing how safety-critical coding standards and modern
cybersecurity taxonomies can converge toward unified software assurance principles.
In doing so, the thesis supports ESA’s strategic shift toward treating cybersecurity
not as an optional add-on, but as a foundational engineering discipline embedded
throughout the mission lifecycle.
The integration of this mechanism demonstrates that spaceborne systems can
achieve higher levels of cybersecurity without compromising safety, determinism,
or performance. As space missions become increasingly autonomous, intercon-
nected, and reliant on long-duration reusability, such capabilities will be essential
to maintain trust, resilience, and operational superiority in an evolving threat
landscape.

7.1 Future Directions
While this thesis focused on secure software update mechanisms and coding-level
assurance, several promising directions remain open for future development:

Hardware-rooted security

Current cryptographic protection is performed at the software level. An evolution
of this design consists in introducing security functions directly within hardware
elements:

• Hardware Security Modules (HSM) for key storage and cryptographic opera-
tions

• Secure Enclaves or Trusted Execution Environments

65

Conclusion

• Physically Unclonable Functions (PUFs) to derive cryptographic keys from
intrinsic silicon randomness

Moving cryptography from software to hardware increases resistance to exploitation,
prevents attacks targeting memory access, and reduces the exposure of crypto-
graphic material.

Secure Boot and chain of trust

Extending the patching mechanism with secure boot would ensure that every
software image executed at startup is authenticated based on a root of trust
embedded in non-modifiable memory. This would prevent persistent malware and
unauthorized firmware replacement, ensuring that only cryptographically signed
software can ever run on the spacecraft. Although this mechanism perfectly aligns
with the security objectives of this thesis, it was not adopted in this case for specific
technical reasons. In particular:

• The hardware platform used (GR740) does not natively support Secure Boot
features, unlike other architectures (e.g., many ARM-based SoCs) that provide
hardware support for key storage, secure bootloaders, and firmware cooperation
for authentication and decryption.

• The selected bootloader (a COTS component) does not implement a secure
boot chain nor comparable cryptographic validation capabilities.

Hence the need to implement a cryptographically protected software update mech-
anism.

Cryptographic agility and post-quantum readiness

AES-GCM is secure today, but long-duration missions require resistance against fu-
ture cryptographic breakthroughs, hence future work may explore post-quantum–resistant
cryptography. Additionally, crypto-agility ensures that future missions can switch
algorithms without redesigning the whole architecture.

In-orbit anomaly detection and attack monitoring

With new connectivity models and increasing mission autonomy, security should
evolve beyond preventive protections. Future spacecraft may integrate:

• Telemetry-based anomaly detection

• On-board intrusion detection mechanisms

• Forensic logging and tamper-evident audit trails
This shifts cybersecurity from static protection to dynamic resilience.

66

Conclusion

7.2 Final remarks
Space systems are transitioning from isolated, deterministic machines into net-
worked, intelligent, and long-lived assets. With this transformation comes a
fundamental shift: security can no longer be an afterthought imposed late in the
design cycle, but must become an intrinsic property of spacecraft architectures.
The secure patching mechanism and assurance framework developed in this thesis
demonstrate how this shift can begin practically and without compromising safety.
As missions grow more autonomous and interconnected, the ability to protect,
update, and trust onboard software will become as essential as propulsion, naviga-
tion, or thermal control. The results presented here contribute to this emerging
paradigm, pointing toward a future where spacecraft are not only reliable and safe,
but also resilient, adaptable, and secure by design.

67

Bibliography

[1] Shah Khalid Khan, Nirajan Shiwakoti, Abebe Diro, Alemayehu Molla, Iqbal
Gondal, and Matthew Warren. «Space cybersecurity challenges, mitigation
techniques, anticipated readiness, and future directions». In: International
Journal of Critical Infrastructure Protection 47 (2024). S1874-5482(24)00065-9.
doi: 10.1016/j.ijcip.2024.100724 (cit. on p. 1).

[2] ESA Security Office. ESA Cyber Security Resilience Achievement. Plan ESA-
ESO-PL-2023-0068. Version Issue 1.0. European Space Agency (ESA), Oct.
2023. url: https://connectivity.esa.int/sites/default/files/2025-
04/ESA%20Cyber%20Security%20Resilience%20Achievement.pdf (cit. on
p. 2).

[3] Space Engineering - Software. Tech. rep. ECSS, April 2025 (cit. on pp. 3, 31,
36).

[4] Space Engineering - Security in Space Systems Lifecycle. Tech. rep. ECSS,
July 2024 (cit. on p. 4).

[5] ESA. Space Rider overview. https://www.esa.int/Enabling_Support/
Space_Transportation/Space_Rider_overview (cit. on p. 5).

[6] ESA. Telemetry & Telecommand. https://www.esa.int/Enabling_Sup
port/Space_Engineering_Technology/Onboard_Computers_and_Data_
Handling/Telemetry_Telecommand (cit. on p. 15).

[7] Space Engineering - Telemetry and telecommand packet utilization. Tech. rep.
ECSS, April 2016 (cit. on p. 18).

[8] Morris Dworkin. Recommendation for Block Cipher Modes of Operation:
Galois/Counter Mode (GCM) and GMAC. Tech. rep. NIST - National Institute
of Standard and Technology, November 2007 (cit. on p. 22).

[9] SYMMETRIC KEY MANAGEMENT. Tech. rep. The Consultative Commit-
tee for Space Data Systems, February 2022 (cit. on p. 23).

68

https://doi.org/10.1016/j.ijcip.2024.100724
https://connectivity.esa.int/sites/default/files/2025-04/ESA%20Cyber%20Security%20Resilience%20Achievement.pdf
https://connectivity.esa.int/sites/default/files/2025-04/ESA%20Cyber%20Security%20Resilience%20Achievement.pdf
https://www.esa.int/Enabling_Support/Space_Transportation/Space_Rider_overview
https://www.esa.int/Enabling_Support/Space_Transportation/Space_Rider_overview
https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Onboard_Computers_and_Data_Handling/Telemetry_Telecommand
https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Onboard_Computers_and_Data_Handling/Telemetry_Telecommand
https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Onboard_Computers_and_Data_Handling/Telemetry_Telecommand

BIBLIOGRAPHY

[10] Hanno Böck, Aaron Zauner, Sean Devlin, Juraj Somorovsky, and Philipp
Jovanovic. «Nonce-Disrespecting Adversaries: Practical Forgery Attacks on
GCM in TLS». In: 10th USENIX Workshop on Offensive Technologies (WOOT
16). Available under CC0 1.0 license. USENIX Association. 2016. url: https:
//github.com/nonce-disrespect/nonce-disrespect (cit. on p. 24).

[11] Yongwang Zhao, David Sanán, Fuyuan Zhang, and Yang Liu. «Reasoning
About Information Flow Security of Separation Kernels with Channel-Based
Communication». In: Lecture Notes in Computer Science. Available on Re-
searchGate. 2015. doi: 10.1007/978-3-662-49674-9_50 (cit. on pp. 37,
38).

[12] ESA. libmcs. https://essr.esa.int/project/libmcs-mathematical-
library-for-critical-systems (cit. on p. 41).

[13] The MISRA Consortium Limited. MISRA C:2023 Addendum 3 – Coverage
of MISRA C:2023 against CERT C (2016 Edition). Tech. rep. 1 St James
Court, Whitefriars, Norwich, Norfolk, NR3 1RU, UK: The MISRA Consortium
Limited, Jan. 2025. url: https://misra.org.uk/app/uploads/2025/03/
MISRA-C-2023-ADD3-CERT.pdf (cit. on pp. 45, 46, 48, 49, 54, 55, 57).

[14] The MISRA Consortium Limited. MISRA C:2025 Addendum 5 – Coverage
of MISRA C:2025 against the Common Weakness Enumeration (CWE). Tech.
rep. 1 St James Court, Whitefriars, Norwich, Norfolk, NR3 1RU, UK: The
MISRA Consortium Limited, Mar. 2025. url: https://misra.org.uk/app/
uploads/2025/03/MISRA-C-2025-ADD5.pdf (cit. on pp. 46, 48–51, 57).

[15] MISRA. MISRA C:2023 Directives and Rules. https://uk.mathworks.com/
help/bugfinder/misra-c-2023-reference.html (cit. on p. 47).

[16] SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and
Secure Systems. Tech. rep. 2016 Edition. Pittsburgh, PA, USA: Software
Engineering Institute, Carnegie Mellon University, 2016. url: https://
docenti.ing.unipi.it/~a009435/issw/extra/c-coding-standard.pdf
(cit. on pp. 48, 54).

[17] MISRA. MITRE CWE. https://cwe.mitre.org/ (cit. on p. 48).
[18] Common Weakness Enumeration (CWE): A Community-Developed Dictio-

nary of Software Weakness Types. Tech. rep. Introductory Handout, MITRE
Corporation. Bedford, MA, USA: MITRE Corporation. url: https://cwe.
mitre.org (cit. on p. 48).

[19] Mathworks. Formal Methods. https://uk.mathworks.com/discovery/
formal-methods.html (cit. on p. 58).

69

https://github.com/nonce-disrespect/nonce-disrespect
https://github.com/nonce-disrespect/nonce-disrespect
https://doi.org/10.1007/978-3-662-49674-9_50
https://essr.esa.int/project/libmcs-mathematical-library-for-critical-systems
https://essr.esa.int/project/libmcs-mathematical-library-for-critical-systems
https://misra.org.uk/app/uploads/2025/03/MISRA-C-2023-ADD3-CERT.pdf
https://misra.org.uk/app/uploads/2025/03/MISRA-C-2023-ADD3-CERT.pdf
https://misra.org.uk/app/uploads/2025/03/MISRA-C-2025-ADD5.pdf
https://misra.org.uk/app/uploads/2025/03/MISRA-C-2025-ADD5.pdf
https://uk.mathworks.com/help/bugfinder/misra-c-2023-reference.html
https://uk.mathworks.com/help/bugfinder/misra-c-2023-reference.html
https://docenti.ing.unipi.it/~a009435/issw/extra/c-coding-standard.pdf
https://docenti.ing.unipi.it/~a009435/issw/extra/c-coding-standard.pdf
https://cwe.mitre.org/
https://cwe.mitre.org
https://cwe.mitre.org
https://uk.mathworks.com/discovery/formal-methods.html
https://uk.mathworks.com/discovery/formal-methods.html

BIBLIOGRAPHY

[20] NIST. Source Code Security Analyzers. https://www.nist.gov/itl/ssd/
software- quality- group/source- code- security- analyzers (cit. on
p. 58).

70

https://www.nist.gov/itl/ssd/software-quality-group/source-code-security-analyzers
https://www.nist.gov/itl/ssd/software-quality-group/source-code-security-analyzers

	List of Figures
	Introduction
	Scope
	Space Rider mission

	System Overview
	Hardware
	Security aspects

	Software
	PikeOS

	Security Functionalities
	Telemetry and Telecommand

	Secure Software Patching
	Secure Software Patch Functionality
	Key steps of the Patching mechanism
	Authenticated Encryption
	Internal Architecture: CTR Mode, GHASH function and Initialization Vector

	Cryptographic Design Decision: Adoption of AES-GCM
	Intrinsic weaknesses

	Crypto application
	Strategic importance
	Possible attack targets

	Modified PUS 6 packet structure

	Implementation
	Software Requirements Specification
	Cryptographic configuration and key management
	Patch Authentication and Decryption
	Counter validation and Replay Protection
	Memory Access Control and Operational Constraints
	Error Handling and Fault Recovery
	Summary of Key Requirements

	Partition Design, Configuration and Communication
	Partition Design and Configuration
	Inter-Partition Communication Design
	Execution Flow
	FLASH partition

	Cryptographic Validation and NIST KAT Implementation
	The Importance of Validation on Non-Standard Hardware
	Implementation of NIST Known Answer Tests (KAT)

	Integration of MISRA C and CWE for the Modernization of SG34
	SG34 Coding Standard
	MISRA C: Reliable Coding for Embedded Systems
	Areas Covered
	Why MISRA is used as the embedded development Standard

	CERT C: Missing link between MISRA and CWE
	CWE: Common Weakness Enumeration
	Synthesis: MISRA - CERT C - CWE
	Analysis of selected MISRA-CWE mappings

	CERT C: additional cross-check mapping
	Integer Conversion Safety - INT31-C & FLP34-C CWE 192, 197, 681
	Memory and Pointer Integrity

	Summary

	Polyspace Static Analysis Tools in Embedded C Verification
	Polyspace Bug Finder: Static Analysis for Potential Defects
	Purpose and defect detection
	Coding standards and metrics
	Bug Finder analysis in the project

	Polyspace Code Prover: Formal Verification of Run-Time Errors
	Purpose and analysis method
	Proving absence of defects
	Code Prover analysis in the project

	Combined Use in the Verification Workflow

	Conclusion
	Future Directions
	Final remarks

	Bibliography

