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Introduction

Optical imaging plays a fundamental role in science and technology, providing access
to both the structural and functional properties of physical and biological systems. A
key challenge in optical imaging is the recovery of both the amplitude and phase of
the light field interacting with a sample. While the amplitude encodes absorption and
scattering, the phase carries critical information about refractive-index variations and
thickness—quantities that are essential for studying transparent or weakly absorbing
specimens, such as biological cells. When dealing with biological samples, it is funda-
mental to use low photon doses to avoid damaging the system or inducing phototoxicity.
Conventional phase-retrieval methods, however, are fundamentally constrained by shot
noise. This noise, originating from the discrete nature of photons, defines a classical
limit on the signal-to-noise ratio (SNR) achievable for a given number of photons. Over-
coming this limit is essential for low-dose imaging, where high-precision measurements
are required from a low photon number signal.

Phase measurements in optical systems are often categorized into interferometric and
non-interferometric methods. In interferometric techniques, such as Digital Holographic
Microscopy (DHM) [1] or forms of Quantitative Phase Microscopy (QPM) [2], an ob-
ject or phase variation is probed by mixing a reference beam and a signal beam and
measuring the resulting interference fringes. These methods offer highly precise and
quantitative phase measurements. Their advantages include high phase sensitivity and
the ability to measure small phase shifts, but they also come with disadvantages: they
require high temporal and spatial coherence, precise alignment, stabilization of the ref-
erence path, and can involve mechanical or thermal drift that undermines stability in
practical biological or wide-field imaging applications.

Non-interferometric phase imaging methods, by contrast, do not rely on an explicit
reference beam interfering with a signal beam but instead infer phase information from
intensity measurements, such as through the transport of intensity equation (TIE) [3],
contrast transfer function model (CTF) [4], wavefront sensing [5], and ptychography [6].
These techniques typically measure intensity distributions (often at different propagation
distances) and use computational algorithms to reconstruct the phase. The advantages
of non-interferometric methods are robustness (less stringent stability and coherence
requirements), simplicity of optical setup (no reference arm or active stabilization), and
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suitability to wide-field imaging. These approaches tend to have simpler experimental
configurations, do not require highly coherent light sources, and can be more robust
against noise and phase fluctuations.

Quantum technologies are a rapidly evolving field harnessing the principles of quan-
tum mechanics to develop transformative applications across computing, communica-
tion, sensing, and cryptography. These technologies, which include quantum comput-
ing, quantum communication, and quantum sensing, promise groundbreaking advances
in these fields. Quantum computing aims to solve problems unattainable by classical
computers, quantum communication focuses on secure information transfer, leveraging
quantum phenomena to create unbreakable encryption methods.

Quantum sensing and metrology represent some of the most advanced and rapidly
progressing areas within the broader field of quantum technologies, with strong poten-
tial to drive near-term technological breakthroughs. In general terms, quantum sens-
ing [7] and quantum metrology [8] encompass all measurement schemes that exploit
the distinct properties of quantum systems—such as discrete energy levels, superposi-
tion, or entanglement—to measure physical quantities with enhanced precision. Exam-
ples include atomic interferometers used in state-of-the-art atomic clocks, and nitrogen-
vacancy (NV) centers in diamond, which act as highly localized magnetometers and
thermometers with nanometric spatial resolution.

Quantum imaging [9] has emerged as a key branch of quantum sensing, dedicated
to exploiting the unique properties of quantum light to surpass the resolution and sensi-
tivity limits of classical imaging techniques, while also enabling entirely new imaging
paradigms. Over the past two decades, several groundbreaking approaches have been de-
veloped within this field. Among the most notable are ghost imaging (GI) [10], imaging
with undetected photons [11], entanglement-assisted holography [12], Hong-Ou-Mandel
(HOM) microscopy [13], quantum target detection [14], and quantum-enhanced adap-
tive optics [15].

Research in quantum imaging not only aims to develop new imaging paradigms but
also seeks to overcome the intrinsic limitations of classical optical systems. In con-
ventional imaging, two fundamental factors constrain measurement performance: the
diffraction limit and the shot-noise limit (SNL). The diffraction limit establishes the
ultimate boundary for spatial resolution in far-field imaging and microscopy. However,
recent advances have shown that this limit can be surpassed through a variety of quantum-
based strategies. One notable approach involves exploiting higher-order photon correla-
tions from single-photon fluorescent emitters, enabling sub-diffraction spatial resolution
[16].

The shot-noise limit (SNL) originates from the quantum nature of light and is de-
termined by the intrinsic intensity fluctuations of coherent states, which represent the
quantum description of an ideal laser. When using classical probes, measurement sensi-
tivity is therefore fundamentally bounded by the SNL. Although increasing the photon
flux (or optical power) can mitigate shot-noise-induced uncertainty, in many practical
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situations the optical power cannot be arbitrarily raised. A notable example is found in
gravitational wave detectors [17], where exquisite precision is required while maintain-
ing strict power constraints to avoid optical damage and radiation pressure noise.

In biological imaging, this limitation is even more critical since excessive photon
doses can harm or alter fragile specimens, as demonstrated in optical tweezers and high-
resolution microscopy experiments [18]. Moreover, numerous biophysical processes—
such as photosynthesis or phototransduction in the retina—must be investigated under
extremely low photon conditions due to their inherent light sensitivity [19].

A notable demonstration of wide-field sub-shot-noise imaging [20, 21] was realized
by harnessing the intensity correlations between twin beams produced via spontaneous
parametric down-conversion (SPDC)—a nonlinear optical process in which a single
pump photon is converted into two lower-energy photons that can exhibit entanglement
across several degrees of freedom. In this scheme, one of the correlated beams passed
through a weakly absorbing object (with absorption around 5%), while the other served
as a reference, propagating freely to an optically equivalent detection plane. Because of
the strong quantum spatial correlations between the two beams, their shot-noise-induced
intensity fluctuations were nearly identical. Consequently, by performing pixel-by-pixel
subtraction of the reference intensity from the probe, it was possible to cancel the uncor-
related noise and obtain sub-shot-noise images of the weakly absorbing sample.

This scheme has also been applied to non-interferometric phase imaging [22] and
recently has been proven successful for imaging of biological samples [23].

In this thesis, we explore and demonstrate quantum-enhanced phase imaging using a
non-interferometric approach based on a mixed CTF-TIE model [24]. While the Trans-
port of Intensity Equation (TIE) provides a powerful and widely used framework for
quantitative phase retrieval, it relies on small defocus approximations and assumes weak
absorption. These assumptions inherently limit its applicability in photon-limited sce-
narios since the phase-induced intensity variations, used for the reconstruction, become
lower with small defocus distances. This makes them more subject to various source
of noise that cannot always be compensated with quantum techniques (for example, the
electronic noise of the camera). The mixed CTF-TIE model overcomes this limitation by
not being limited to small defocus distances. Thus, increasing the defocus not only en-
hances phase contrast but also allows for a reduction in the number of photons required
to achieve a certain signal-to-noise ratio. In addition, the possibility of using acquisitions
at different defocus distances for the same reconstruction, allows to overcome this limita-
tion without reductions resolution. Moreover, the mixed approach maintains robustness
even in the presence of strong absorption, enabling accurate phase reconstruction under
conditions where the TIE would otherwise fail.

The thesis is structured as follows:

* In Chapter 1 the fundamentals of classical phase imaging are presented with a par-
ticular focus on non-interferometric phase imaging. A detailed explanation of dif-
ferent techniques is provided, together with a comparison between them.
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* In Chapter 2 presents the theoretical framework used to describe non-classical light
and to quantify quantum advantage, with particular attention to the role of optical
losses.

* In Chapter 3 the results of the simulations are reported. In particular, a comparison
between classical and quantum reconstructions is made using different figures of
merit. Moreover, the CTF-TIE mixed model is compared with the TIE.

* In Chapter 4 experimental data on both nano-fabricated structures and biolocical
samples are analysed in order to test the model in a real detection scenario.
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Chapter 1
Phase imaging

1.1 Introduction

Phase retrieval is an important research subject in the fields of optical metrology and
imaging technologies. It is particularly important in industrial inspection and biomedical
imaging applications. The phase imaging techniques, especially for biological samples
and weak-absorptive semi-transparent objects, have a long history of development [25].
In biological cells, the cytoplasm and most organelles exhibit minimal light absorption,
resulting in poor contrast under conventional bright-field microscopy. A common solu-
tion is to employ staining or labeling, where cellular components are tagged with dyes
or fluorophores to enhance intensity contrast or produce distinct fluorescence spectra.
Fluorescence microscopy remains the most widely used modality to increase contrast,
enabling targeted visualization of specific structures. Advanced techniques such as /laser
confocal and multiphoton microscopy [26] provide three-dimensional imaging through
optical sectioning and improvements in optical systems have led to the development of
super-resolution fluorescence microscopy methods, such as structured illumination mi-
croscopy (SIM) [27], stimulated emission depletion microscopy (STED) [28] and single-
molecule mocalization microscopy (SMLM) techniques (for example photo-activated
localization microscopy (PALM) [29]) which surpass the diffraction-limited resolution
of conventional confocal microscopy. However, such methods still require fluorescent
dyes and fluorescent proteins as biomarkers and are thus ill-suited for samples that can-
not be easily fluorescently tagged. Besides, the phototoxicity of the fluorescent agents
prevent live cells imaging over extended periods of time.

Nearly transparent biological samples, minimally alter light amplitude but induce
phase delays due to spatial variations in refractive index (RI). To visualize such phase
variations, Zernike introduced phase-contrast (ZPC) microscopy [30] in 1942, using a
phase mask to shift the unscattered light by a quarter wavelength so it interferes with the
scattered field, converting phase differences into intensity contrast. This breakthrough

1



Phase imaging

Standard image reconsiruction Phase retfrieval reconstruction

Figure 1.1: Comparison between a standard intensity image and a phase retrieval reconstruction of the
root of a plant.

enabled high-contrast imaging of unstained cells and tissues. A decade later, Nomarski
developed differential interference contrast (DIC) microscopy, which uses polarization
beam-splitting and shear interferometry to generate contrast proportional to the sample’s
phase gradient, producing a pseudo-3D relief effect.

While ZPC and DIC revolutionized biological imaging, both suffer from a nonlin-
ear, non-invertible relationship between measured intensity and actual phase, prevent-
ing quantitative extraction of parameters such as optical thickness, dry mass density, or
refractive index. Moreover, artifacts such as halos (ZPC) and shadowing (DIC) com-
plicate automated image analysis. These limitations, together with advances in digital
sensors and computational optics, have driven the rise of quantitative phase imaging
(QPI), which enables direct, quantitative measurement of phase information through a
fusion of optical, theoretical, and algorithmic innovations.

1.2 Interferometric phase measurement

Over several decades, optical interferometry has undergone significant advancements,
however, its fundamental principle remains unchanged. By superimposing a coherent
reference beam onto the original object beam, the otherwise inaccessible phase infor-
mation is transformed into a measurable intensity distribution, namely, the interference
pattern, which can be directly recorded using conventional imaging sensors. Various
fringe analysis algorithms can then be applied to demodulate the phase from the inter-
ferogram.

Through sustained development, interferometry has matured and diversified into sev-
eral specialized branches, including electronic speckle pattern interferometry (ESPI)
[31] and digital holography [32]. Digital holography stands out for its capability to
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1.2 — Interferometric phase measurement

digitally record and numerically reconstruct the wavefront. This unique combination of
flexibility and functionality has driven substantial progress over the past decades, estab-
lishing digital holography as a benchmark technique for quantitative phase measurement
and microscopy.

Despite the advancements, interferometric imaging techniques have not shaken the
position of traditional microscopic imaging techniques. The reasons reside in the inter-
ferometric aspects of such techniques:

1. Generally relies heavily on the light sources with a high degree of temporal coher-
ence (e.g. laser) and spatial coherence (e.g. pinhole filtering) as well as complex
interferometric optical setups involving both object and reference beams;

2. Due to the laser illumination sources used, these techniques suffer from speckle
noise arising from stray interferences from imperfections in the optical system,
which not only limits the imaging resolution but also deteriorates the image quality;

3. Due to the high degree of spatial coherence of the illumination, the imaging resolu-
tion is only limited to the coherent diffraction limit (half of the incoherent diffrac-
tion limit as in traditional microscopes);

4. The additional reference beam path makes the measurement highly sensitive to
external disturbance (e.g. vibrations);

5. The phase demodulated from the interferogram is wrapped in the range of (—m, 7]
(“wrapped phase ), and additional phase unwrapping is needed to obtain the true
absolute phase distribution.

In order to mitigate the limitations of traditional interferometric phase imaging tech-
niques, research has shifted towards low-coherence holography and white-light inter-
ferometric microscopy. Some examples include Spatial Light Interference Microscopy
(SLIM) [33], White-Light Diffraction Phase Microscopy (wWDPM) [34] and more. By
combining broadband illumination with common-path configurations, these methods ef-
fectively reduce coherent noise and improve robustness against mechanical vibrations
and air turbulence (common issues in interferometric systems). However, most of these
techniques rely on complex optical setups that are not readily accessible to most biol-
ogists and pathologists, limiting their widespread adoption in biological and medical
applications.

Wavefront sensing

The other broad category of phase measurement techniques do not rely on interferome-
try and are known as non-interferometric phase measurements. A major branch of such
phase measurement techniques is called wavefront sensing, such as Shack-Hartmann
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wavefront sensor [5] often used in adaptive optics systems with the main applications
in astronomical observation. Here, “phase” represents the difference between the ref-
erence wavefront of an ideal optical system and the distorted wavefront of an actual
optical system (wavefront aberration). The Shack-Hartmann wavefront sensor, origi-
nally developed for astronomical imaging, now finds application in diverse areas such
as optical metrology and free-space laser communication. However, the finite physi-
cal dimensions of its microlens array limit the utilization of the full pixel resolution of
the underlying image sensor, leading to reduced spatial resolution in the reconstructed
wavefront. As a result, Shack-Hartmann sensors are rarely employed as direct imaging
instruments, particularly in quantitative phase imaging (QPI) and optical microscopy.

1.3 Non-interferometric quantitative phase retrieval

A widely used non-interferometric phase measurement technology is called phase re-
trieval. Since directly measuring the phase of light is challenging, we consider the pro-
cess of recovering (estimating) the phase from the intensity distribution as a mathemati-
cal “inverse problem”, since it is much easier to measure the intensity distribution of the
light. Phase retrieval techniques can be divided into two categories: iterative methods
and deterministic methods.

Starting from the iterative methods, there are two main approaches: the defocus based
phase retrieval and ptychography. The first originated from the Gerchberg-Saxton (GS)
algorithm [35] that employs an intensity measurement at the image plane and the far-
field diffraction pattern. The main issues result from the iterative algorithm itself that
tends to stagnate after early iterations or get trapped in local minima. Improved and
optimized algorithms have been proposed, like the so-called hybrid input-output (HIO)
algorithm proposed by Fienup [36].

The second approach was introduced by Rodenburg and Faulkner [6], the idea is to
illumate the object with a field that is limited in extent and the diffraction pattern is
recorded. This process is repeated until the area of interest has been completely scanned.
The resultant spatially overlapped “sub-aperture” diffraction patterns are used to recon-
struct the complex amplitude distribution by an iterative phase retrieval algorithm similar
to GS. The ptychographic phase retrieval is more stable and reliable than GS and HIO
algorithms due to the high data redundancy resulting from the large number of spatially
overlapped intensity data collected.

These techniques have played a crucial role in advancing fields such as adaptive op-
tics, X-ray diffraction imaging, and electron microscopy. Nevertheless, they face two
key limitations: (1) they typically require a substantial amount of intensity data to en-
sure stable convergence, and (2) they often demand many iterations to obtain a reliable
solution. These drawbacks hinder their suitability for high-speed or real-time imaging
applications.
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Figure 1.2: Summary of the different phase imaging techniques. Image from [25]

1.3.1 Deterministic phase retrieval methods

The other category of phase retrieval method uses propagation to recover phase directly,
in a non-iterative manner. This is done only with intensity measurements by exploit-
ing a spontaneous phase-to-intensity conversion process that is the propagation of the
field. If we imagine to impinge on a phase object with a plane wave, for example, the
transmitted light is redistributed and may be concentrated in some regions instead of
evenly distribute creating an intensity pattern that resambles the interference pattern of
inteferometry. This phenomenon is called “transport of intensity effect”.

This idea was first proposed by Teague [3], under the paraxial approximation, one
could employ Helmholtz equation to derive a second-order elliptic partial differential
equation that outlines the quantitative relationship between the variation of intensity
along the optical axis to the phase of the optical field at the plane perpendicular to the
optical axis. This equation is called transport of intensity equation (TIE) and is re-

ported here:
oI(x,
—/fg‘;) =V (I(x,0)Vé(x,0)) (1.1)

where 2 is the longitudinal coordinate (direction of propagation), x indicates the spatial
coordinates on the trasverse plane xy, k is the wave number and /(x, z) the intensity
distribution at distance z.



Phase imaging

The intensity distribution at the in-focus plane (¢ = 0) can be measured directly
and the axial intensity derivative can be estimated by the finite difference between two
defocused intensities:

Al =1(x,z=dz) — I(x,z2 = —dz) (1.2)

Once these are known, the phase information can be retrieved directly (deterministically)
by solving TIE without iterative operations. Indeed, using the Fourier transform the
solution is the following:

1 AT

FLO0IH@) = b g9 (13)

with F being the Fourier transform, q the spatial frequencies on the transverse direction
and e a small constant to avoid division by zero. Uniform intensity has been assumed,
ie. V- (I(x0)Ve(x,0)) ~ [ V26(x)

Compared with traditional interferometric methods, TIE has many unique advantages
of being non-interferometric (without a reference beam), simple calculation (no itera-
tions in principle), does not need phase unwrapping (directly obtains the absolute phase),
complicated optical setups, and stable measurement environment. Moreover the possi-
bility of using temporally/spatially partially coherent beams (e.g. LED illumination,
halogen lamp) is what enables the application of sub-shot-noise techniques.

Linearization conditions

The primary challenge in phase retrieval lies in the nonlinear relationship between a
sample’s intensity (or amplitude) and its phase during image formation. This problem
is solved either by iterative phase retrieval algorithms or by linearizing the relationship
between the intensity and the phase information.

TIE can be derived in a number of ways but all of them rely on two approximations:
paraxial wave (\%|q|?> < 1) and weak defocus (Az — 0) approximations. These two
conditions must be satisfied at the same time in order for the linear relation between
intensity and phase to be valid.

It is important to know that there is more than one approach to achieve linearization,
using different models that rely on different approximations. This is useful in situations
where some approximations are not suitable, in particular let’s consider the weak defo-
cus approximation: the phase contrast signal (A) also tends to 0 as Az — 0, in normal
conditions this is not an issue but when working with low intensities the signal becomes
completely masked by the noise of the camera or shot-noise at low illumination. Conse-
quently, models that enable an increase of the defocus distance are helpful for achieving
higher contrast signal.
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Contrast transfer function model (CTF)

The contrast transfer function (CTF) model based on weak object approximation is an-
other classical method for deterministic phase retrieval. The complex amplitude of the
field just behind the object illuminated by a coherent plane wave is:

Uo = T(x) = a(x) explip(x)] (1.4)

If the absorption and phase of the sample are sufficiently small (weak object approxima-
tion), then the complex amplitude can be simplified as:

Uo & lao + Aa(x)][1 +ip(x)] ~ ao + Aa(x) + iage(x) (1.5)

where we used ¢(x) < 1 and Aag < ag. The first term (ag) represents the direct current
component of the incident plane wave. The second term can be further expressed as
Aa(x) = agn(x) and represents the contribution of the absorption variation 7(x) and the
last term denotes the phase contribution.

The Fourier transform (indicated with the ”hat” symbol) of the complex amplitude
1s:

Uo = aol0(q) +7(q) + id(q)] (1.6)

In a coherent imaging system, the complex amplitude distribution in the image plane,
U;(x), can be expressed as the convolution between the ideal object field Uy(x) and the
point spread function (PSF) of the imaging system, A(x):

Ui(x) = Uy(x) * h(x) (1.7)

So the captured image intensity is:

Li(x) = U;(x)U; (x) = |U;(x) * h(x)|* (1.8)

Taking the Fourier transform of 1.7 we obtain the expression in frequency domanin:
Ui(a) = Us(a)H(q) (1.9)
where H(q) = F{h(x)} is the transfer function under coherent illumination. The

Fourier tranform of the intensity is:

@) = F{lF {O@H @) | (110

In a diffraction-limited aberration-free imaging system with infinite aperture of the ob-
jective, the transfer function is simply H (q) = 1. When the sample is located at distance
Az from the in-focus plane the transfer function becomes:

H(q) = exp [imz(m — \2|qf2 - 1)] (1.11)
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By substituting (1.6) and (1.11) into (1.10) and after some simplifications we obtain the
spectral distribution of the insity at distance Az:

Iau(@) = To{o(q) — 2cos |kaz(/1 = Nlq* = 1) |i(a)
— 2sin [kAz(W - 1)]03(‘1)}

where all the high-order diffraction terms (interaction between the intensity component
and the phase component) are neglected. To further simplify the expression the paraxial
approximation (A\?|q|? < 1) can be used:

(1.12)

Ia-(q) = Io{d(q) — 2cos(7AAz|q*)ii(q) — 2sin(7AAz[q]*)d(q)}  (1.13)

where I = a2 is the average intensity (or background intensity). The intensity now
has a linear relationship with the absorption function 7(q) and the phase function ¢(q).
The cosine and sine coefficients are usually called absorption transfer function (ATF,
H A(q)) and phase transfer function (PTF, Hp(q)) respectively. It is easy to notice that
the absorption and phase transfer functions are even and odd functions of the distance Az.
This indicates that the intensity variation induced by the equal but opposite defocusing
is the same for the absorption components, but is opposite for the phase components.
Thus, we can capture two intensity images with equal and opposite defocus so that the
subtraction of the two gives a pure phase-contrast image with the effect of the absorption
component canceled out

I5-(q) — I_».(q)
410Hp(q, Az)

= 4(q) (1.14)

In this way the relation becomes linear and the phase can be recovered with an inverse
Fourier transform.

Since Hp(q) tends to oscillate and create zero-crossings in the denominator. To avoid
this issue, it is possible to either use small defocus distances so that sin(rAAz|q|?) ~
wAAz|q|? or utilize more than two images at multiple defocus distances and combine
them with a least-square fitting.

Noise and phase blurring

Under noisy conditions, TIE reconstructions exhibit characteristic cloud-like, low fre-
quency artifacts. This well-known limitation arises from the inherent properties of TIE’s
phase transfer function (PTF). For the simplified uniform-intensity TIE case, the Fourier
domain solution involves dividing by the PTF (see eq. 1.14):

HTIE(q) :ﬂ')\AZ|q’2 (115)
8



1.3 — Non-interferometric quantitative phase retrieval

since Hrrp decreases quadratically as |g| approaches zero, low spatial frequencies are
poorly transferred into the intensity image via defocus [25]. The inverse filtering, there-
fore, applies a large gain near the zero-frequency region (and it becomes infinite at zero
frequency). When there is intensity noise, the low-frequency noise components will be
amplified by the inverse Laplacian to create cloud-like artifacts superimposed on the
reconstructed phase.

z=—dz z=10

(b) -.

Defocus distance Az = 140um

| jo3
0z
01
o

=

Defocus distance Az = 250um

Figure 1.3: The effect of defocus distances on the TIE phase reconstruction. (a)Small defocus distance:
original intensity image (left); axial intensity derivative (middle) and recovered phase distribution (right);
(b) medium defocus distance; (c) large defocus distance; the square areas with red lines are magnified for
clarity. Image from [25]

At the opposite end of the spectrum, TIE also suffers from high-frequency blurring
when applied beyond its valid small-defocus regime. Under the weak object approxima-
tion, the CTF model has the PTF:

Herp(q) = sin(rAAz|q?) (1.16)

While the two match for small Az, they diverge as defocus increases. TIE assumes that
phase contrast increases linearly with Az quadratically with spatial frequency, which is
unrealistic as it ignores energy conservation. In contrast, CTF remains valid at larger
defocus distances, with the response oscillating at higher spatial frequencies. The mis-
match leads TIE to overestimate high-frequency contrast, resulting in the observed phase
blurring shown in Fig. 1.3 when used outside its intended defocus range.
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1.3.2 Mixed CTF and TIE model

As discussed above, the TIE and CTF methods are based on different underlying assump-
tions. The Transport of Intensity Equation is applicable for short propagation distances.
On the other hand, the Contrast Transfer Function method extends the linear approxi-
mation beyond weak defocus conditions (i.e. it does not require Az — 0). However,
its derivation assumes that the object exhibits weak absorption and weak phase varia-
tions. When dealing with thick or highly absorptive samples, this assumptions breaks
down. Moreover, it can be shown that CTF does not converge to TIE in the limit of
small distances when the absorption is not uniform.

Following the work of Guigay et al. [24], it is possible to tackle these issues with a
model that extends the CTF to slowly varying objects and converges to the TIE in the
limit of small distances. Consider an object described by a 3D complex refractive index
distribution:

n(x,y,z) =1—46.(x,y,2) +if(z,y, 2) (1.17)

When the object is illuminated with a monochromatic plane wave the wave-object inter-
action can be described by a transmittance function:

T(x) = a(x) explio(x)] = exp|~B(x) + id(x) (1.18)

where x represents the spatial coordinates in the plane transverse to the propagation
direction, ¢(x) is the phase shift induced by the sample and a(x) the absorption profile.
They are related to the real and imaginary part of of eq. (1.17) in the following way:

B(x) = Q;T/ﬁ(x, 2)dz (1.19a)

2
d(x) = Tﬂ [1— 6.(x, 2)|dz (1.19b)
When images are recorded at distance z from the object, the Fourier transform of the
measured intensity is related to the transmittance function through the Fresnel integral
[37]:
A A
F{IL.}(q) = /T(x - ;q)T* <X + ;q) exp(—i27x - q)dx (1.20)
here the paraxial approximation has been used to derive this formula. Now we introduce
the slowly varying object approximation:

\¢(X—A§1)—¢(x+?‘)\ <1 (1.21a)
A A
a(x + ;q) ~a(x) £ 24 Va(x) (1.21b)

these two conditions are less restrictive than the weak object approximation of the CTF,
especially for biological samples.

10



1.3 — Non-interferometric quantitative phase retrieval

Using now eq. (1.21a), the basic equation becomes:

F{I.}(q) :/exp(—z’27rx : q)a(x - )\;q>a<x + A;q) X

1—|—z¢(x — /\;’q> — i(b(x—l— )\;qﬂdx

(1.22)
X

The integral (1.22) can now be split in the sum of three integrals changing also variable
y=X— % in the second integral andy = x + % in the third:

F{I.}(q) = /exp(—i27rx : q)a<x - >\;q>a(x + )\Zq)dm—
+ i/exp(—i?wx -q)a(x)p(x)a(x + \2q) exp(—m)\z|q|2)dx— (1.23)

- i/exp(—i27rx -q)a(x)p(x)a(x — \zq) exp (i7r)\z|q|2)dx

Writing the exponentials in polar form and rearranging the terms:

F{L}(q) = F{IZ=} + sin(rAz[q[?) / exp(—i27x - q)a(x)B(x) x
X [a(x + Azq) + a(x — Azq)]dx + icos(w)\z\q|2> X (1.24)
X /exp(—i?wx ~q)a(x)o(x)[a(x + Azq) — a(x — Azq)|dx
Now using equation 1.21b in order to approximate a(x + A\zq) + a(x — \zq) ~ 2a(x)
and a(x + A\zq) — a(x — A\zq) =~ 2)Azq - Va(x), we get:
F{L}(q) = F{II™°}(q) + 2sin(mA2lq*) F{Los} (@)+

. (1.25)
+ cos(7r)\z|q|2> ;r]:{v (pa(x)Va(x))}Hq)

where we also used the property 2miq - F{A} = F{V - A}. To further simplify the
equation we can use a*(x) = I and approximate a(x)Va(x) ~ VI, and arrive to the
final formula:

F{L}q) = F{II°}(q) + 2sin(mA2lq*) F{Log}(@)+

(1.26)
+ COS(ﬂ')\Z|q|2> ;\;}"{V (¢V1y)}(q)

It is easy to see that this is generalization of the CTF formula in (1.13). F{I¢=°}(q) is
the Fourier transform of the intensity at distance z if the phase were zero: the object is
assumed to be purely absorptive (it can be approximated with F{Iy}(q)). At this point

11
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it is already possible to see that the model converges to the TIE when I, = const, indeed
in this situation the last term is null since VI, = 0 so we are left with:

F{L — Iy} = 2sin(mw\z|q|?) F{lo¢} (1.27)
in the limit 2 — 0 the sine can be approximated with its argument and 19~ = I so:

F{L-L} &k {d]}

T = = —
Filoo} orAzlq2  2mA|q)2” \dz

(1.28)

that is the Fourier transform of the TIE in the case of uniform absorption.

Being more complicated than the CTF, the relation between phase and intensity in this
model cannot be completely linearized and an iterative algorithm is needed. As for the
CTF, in order to solve the problem of the zero-crossings at the denominator, it is possible
to combine acquisitions taken at different distances. This method allows optimize the
final image over a wider range of spatial frequency at the expense of additional data
acquisition and processing. The different distances are taken into account by a linear
least square fitting: considering F{Iy¢} as the unknown, the minimization problem is
posed and the final solution is:

> A F{L}(q) — F{lo}(q) — Al (q)]
>S,AZ+ €

F{los" D} (q) = (1.29)
where A.(q) = 2sin(7Az[q[?), A = cos(mAz|q|*) 22 F {9V 1o}, ¢ represents the
phase at the n-th iteration with ¢(*) = 0 and ¢ is a small constant to avoid divisions by
Zero.

In order to show that this model converges to the TIE even when I, # const, we
start from equation (1.26) and use the chain rule V*(¢Iy) = V - (¢VIy) + V - (I,V)
to rewrite the last term:

F{L}(q) = F{I="}(q) + 2sin(7\z|q|*) F{lo0} (q)+

2 (1.30)
+ cos(w)\z\qﬁ)%}"{v2(¢[0) — V- (I,V$)}q)
Now using the property of Fourier transforms:
F{V?¢lo} = —4n’|q|*F{oIo} (1.31)

we can regroup the terms as:
F{L}q) = F{I"}(q) + 2[sin(rAz]q|?) — wAz]q]* cos(mAz|q )| F{ o0} (q)

— cos(m\elal?) 2 F LY - (13V6)} (@)
(1.32)

12



1.4 — Conclusions

Now in the limit z — 0 the second term vanishes as z3|q|°, cos(mAz|q|*) — 1 and
19=% = I, so we end up with:

FI. ~ I} (@) = — F{V - (°V6)} (1:33)

Applying the inverse Fourier transform on both sides:

IZ_]O
z

—k

=V (I,V) (1.34)

that is exactly the TIE shown in (1.1).

General considerations

The idea behind this iterative algorithm is based on the principle of principal compo-
nent linearization [25]. The principal components of the model constituted by the DC
term (F{y}), and the phase term (F{Iy¢}) are initially retained, and more complicated
nonlinear terms (F{V - (¢VIy)}) are neglected. In this way, the initial value can be
solved in a linearized manner. Then, the residual non-linear component is considered as
a perturbation term and can be substituted back into the reconstruction equation to fur-
ther refine the obtained phase distribution. In general, compared with the other iterative
phase retrieval techniques, the convergence of such principal component linearization
1s much faster and stable converging in 3-5 iterations (though an optimality proof is still
lacking [38]).

Similarly to what happens in the TIE and CTF, by choosing £z as distances the ab-
sorption contribution cancels out leaving a pure phase contrast image. The coefficient
A, ofeq. (1.29)is odd in z so the [ term is eliminated while the other two remain: when
the I, terms are subtracted they give the pure phase contrast image and the A term is
also odd in z so they add up.

This method for phase retrieval also works with partially coherent light [39], which is
required for the quantum-enhancing technique that will be discussed in the next chapter.

1.4 Conclusions

Phase retrieval methods have many advantages with respect to other phase imaging tech-
niques, being able to convert measured intensities into quantitative phase maps.

TIE tends to outperform the other methods under noise-free conditions, benefiting
from its minimal assumptions about the object. However, its dependence on only two
images limits redundancy, reducing robustness in noisy environments. By contrast,
the mixed approach and CTF methods achieve greater noise resilience through the use
of images at multiple propagation distances. This multi-distance acquisition enhances
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Table 1.1: Comparison between phase retrieval methods

Method Approximation conditions Advantages Disadvantages
Paraxial approximation * Low frequency
artifacts
Alql2 < 1 » Fastand
[ deterministic * Limited to
TIE small defocus
Weak defocus  High frequency distances
noise suppression
Az—0 * Problems with
strong absorption
Paraxial approximation
Mlg)* <« 1 L * More restrictive
 Deterministic algo- hvpoth
ithm ypotheses
Weak object n
CTF "
o * More
* Not limited to measurements
Aa(x) < 1 small defocus
necessary
P(x) €1

Paraxial approximation
Mlg)* < 1

Slowly varying object

a(x:l:ﬂ> ~
2

Mixed CTF-TIE

Azq
4+ —
a(x) £

Azq A

-Va(x)

|¢(x_7)_¢(x+ﬂ)| <1

2

.

Not limited to
small defocus

Works in presence
of strong
absorption

Best in noisy
scenarios

Iterative algorithm

More
measurements
necessary

frequency-domain coverage and improves statistical reliability, resulting in more accu-
rate reconstructions in general cases [38]. The advantage with respect to TIE will be fur-
ther illustrated later, giving the potential to improve the quantum-enhancing technique.
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Chapter 2
Sub-shot-noise imaging

2.1 Introduction

Shot noise is a fundamental source of noise that arises from the discrete, particle-like
nature of light. In optical detection, photons arrive randomly at the detector, and the
number of photons counted within a given integration time follows Poisson statistics.
As a result, the variance in the photon counts is equal to the mean number of detected
photons. This statistical fluctuation—independent of technical imperfections in the de-
tector or source—is referred to as shot noise.

The Poisson statistics has the form:

vk

p(k) = e~ 0 2.1)
k!

It indicates the probability of detecting & photons in a certain time interval, given that

the average number of received photons is (7). An important property of the Poisson

distribution is that the variance is equal to the average ((A%7) = (7)) so the signal-to-

noise ratio (SNR) is:

(") -

SNR = Ay (n) (2.2)
Normally, when working with a large number of photons, this ratio becomes very high
and the shot noise can be neglected, but in scenarios with low illumination it becomes
the dominant source of noise, posing a fundamental limit to classical imaging techniques.
An example of the effect of the shot noise in imaging is shown in Figure 2.1. Surpassing
this limit is particularly advantageous when the usable optical power is constrained—for
instance, by the damage threshold of the sample [40], the tolerance of optical compo-

nents, or the risk of altering photosensitive chemical and biological processes.
Building on the pioneering work of Caves [41], who demonstrated that squeezed
light can enhance interferometric sensitivity, non-classical states of light have long been
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Sub-shot-noise imaging

Figure 2.1: Effect of shot noise. Number of photons per pixel increases from left to right and from top
to bottom. Image from: https://en.wikipedia.org/wiki/Shot_noise

explored as a route to surpass shot-noise limits, leading to extensive theoretical develop-
ments and numerous proposed schemes [18]. The advent of techniques for generating
two-photon entangled states (e.g., NOON states with N = 2) together with the avail-
ability of single-photon detectors has enabled experimental demonstrations of quantum-
enhanced sensing [42]. These advances have shown the potential to approach the funda-
mental Heisenberg limit in applications such as phase-contrast polarization microscopy
[43], magnetic field detection [44], and concentration measurements in solutions [45].

2.2 Theory

One of the primary objectives of this chapter is to provide the theoretical background
necessary to understand the origin of quantum advantages in the applications discussed
previously. Particular emphasis will be placed on establishing the link between sensi-
tivity enhancements and the degree of non-classicality, quantified through appropriate
parameters. Since optical losses are inevitable in practical measurements and strongly
impact the performance of quantum strategies, they will be consistently accounted for
in the derivations presented [46].

Photodetection

In a photodetector, the absorption of a single photon produces a measurable signal—
typically an electrical pulse—that is interpreted as a photon count. Ideally, the statistics

16


https://en.wikipedia.org/wiki/Shot_noise

2.2 — Theory

of these counting events should directly reflect the photon statistics. This condition
holds only if the detector possesses ideal characteristics: infinite spectral bandwidth (so
that the output pulse approximates a delta function in time), a linear response to the
number of incident photons, and perfect quantum efficiency (every photon incident on
the detector generates a count). In practice, however, real detectors deviate from these
ideal conditions, and such non-idealities compromise the one-to-one correspondence
between incoming photons and registered counts.

Consider the effect of non-unit quantum efficiency 7, this can be modeled as the ac-
tion of a bean splitter (BS) with transmission equal to 7. The incoming field is described
by the creation and annihilation operators a and a' such that [a,a] = 1. Since the op-
eration is unitary, the expressions for the transmitted and reflected fields by and b, will
be:

by =\na+ivI—no (2.3a)

by =1—n0D+iyna (2.3b)
where © represents the input field at the second port of the BS, here considered to be in
the vacuum state |0) and b, is the transmitted beam after the random selection process.

The statistics of the photocounts can be computed starting from b using the number
opearator for the incoming field 7 = a'a and the commutation relations:

A

(N) = (bibr) = n(n) (2.42)

(APN) = (N?) = (N)? = (Blbiblbi) — (Bibr)? = n?(A%A) + (1 —n)(A)  (2.4b)

where N is the measured photon-number operator, in this way <N ) is the measured
average and (A?N)) its variance.

2.2.1 Photon statistics

It is particulartly convenient to express the states of light in the Glauber-Sudarshan repre-
sentation by using coherent states as a basis. Such states have the property of rendering
evident any classical limit possessed by the state while keeping the intrinsic quantum-
mechanical description of the field [47].

Coherent states can be represented as a displaced vacuum state:

la) = D(a)0) = exp(ad’ — a*a) |0) (2.5)

and are the eigenstates of the annihilation operator a |o) = « |«) with a complex number.
In the photon-number basis, a single-mode coherent state |«v) can be expressed as:

«

) =Z J%\m 2.6)
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Sub-shot-noise imaging

from which we can compute the photon-number distribution p(n):

|a|2n

p(n) = |(nfa) [ = e

2.7)
that is a Poissonian distribution with average (n) = |a/%.

Coherent states form an over-complete basis for the space so they can be used to
represent density matrices:

p= [ @aP(a)) ol (2.8)

where P(«) is a quasi-probability distribution, i.e. P(«) is real and normalized to unity,
however it does not necessarly behave as a probability distribution since it may assume
negative values.

To compute the photon-number variance we use the following property:
(@' (@) = [ EaPla)(a’)a” 2.9)
that has been derived from (2.8). Now the variance becomes:
(A%h) = (a'a) + ((@")*(@)*) — (a'a)* = (n) + /d2aP(a)(|a|2 = (la*)* (2.10)

this shows a first term related to the discrete nature of light (shot noise) and a second
term that is a quasi-classical variance. For classical states P(«) > 0 [47], so the integral
is either positive or null and the fluctuations are Poissonian or super-Poissonian. For
non-classical states, the quasi-probability may assumes negative values and is possible
to have a negative integral, allowing sub-Poissonian fluctuations.

A useful parameter to quantify the non-classicality of a state is the Fano factor:

(2.11)

For classical states F' > 1, while 0 < I’ < 1 only for quantum states. The statistics of
a state are deteriorated by losses, so by using equations (2.4) the detected Fano factor
becomes:

Fdet—<<N—77F+1_7]

so the lower bound for non classical states becomes Fj; = 1 — 7).
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2.2 — Theory

Thermal states

An important example of classical states of light are thermal states since they describe
the radiation emitted by a black body at thermal equilibrium. The associated density
operator of the field can be expressed as:

Pin = Z P(n)|n) (n| (2.12)
n=0

where P(n) is the probability of finding n photons in the mode. From statistical physics,

the probability that a system at temperature 7" has energy £ = E(n) = ﬁw(n + %) in

the canonical ensamble is: )
hw(n+3)

P(n) e w7 (2.13)

where £y is the Boltzmann constant. The proportionality coefficent is found by normal-
izing the distribution, i.e. }-°° ; P(n) = 1. The normalization gives:

P(n) = ¢ HF (1 - e’k‘zf‘?) (2.14)

that is the Bose-Einstein distribution. The average number of photons is found:

N A > 1
() = Tr(pmn) = Y nP(n) = —m—— (2.15)
n=0 et —1

Rewriting equation (2.14) using the mean number of photons gives:

_ 1 (n) \"
P =y 3 1(<ﬁ> n 1) (2.16)
The photon number variance is:
(A%) = io(n — (1))*P(n) = (2)(1 + (7)) (2.17)

This result shows that for the same mean photon number, a thermal state exhibits larger
photon-number fluctuations than a coherent state. For this reason the photon statistics
of thermal light are referred to as super-Poissonian.

Two-modes states

In the Glauber-Sudarshan representation, a two-mode state is represented as:

pLQ = /d2061d2042P(061, Oég) |Oél> |Oé2> <Oél| <012| (218)
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To quantify the degree of correlation between modes we can use the noise reduction
factor (NRF) o, that is the ratio between the variance of the difference in the number of
photons and total number of photons:

(A%2(Ay — o)) (A%R) + (A%Ry) — 2(AR Afy)

o= — — = — — 2.19
<n1 + n2> <n1 + n2> ( )

For classical states 0 < 1, while in presence of quantum correlations 0 < o < 1. Also
o 1s affected by optical losses. Using equations (2.4) and supposing the same detection
efficiency for both beams 17, = 1, = n:

Oget =m0 +1—n (2.20)

So the lower bound for the NRF in presence of losses is 04t = 1 — 1.

2.2.2 Spontaneous parametric down conversion

One the most efficient way to produce quantum correlations between photons is Spon-
taneous Parametric Down Conversion (SPDC). This phenomenon occurs when an high
intensity laser beam (pump beam) interacts with an optical medium with second-order
non-linearity. The phenomenon consists in the decay of a pump photon into two photons,
called signal and idler, preserving the total energy and momentum:

Wp = w1 + wo (2213)

k, = k; + ko (2.21b)

where w; (7 = p,1,2) are the frequencies of the photons and k; (j = p,1,2) are the
corresponding wave vectors.
The hamiltonian of an electric field in a non-magnetic medium is:

|
H= /V SE- («E +P) (2.22)

where E is the electric field and P the dielectric polarization. In general, the dielectric
polarization can be expanded as:

P= X(l)E + X(Q)EE + X(g)EEE + ... (2.23)

where y! is the linear dielectric susceptibility and x?, x® ..., x(™ are called the non-
linear susceptibility coefficents. These non-linear terms become relevant only when the
medium interacts with an high intensity field. Considering non-linear eftects up to the
second order, the hamiltonian can be written as:

H(t) = /V [;EOEQ(r, £) + Xi(r,t) + Xo(r, t) [dV (2.24)
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2.2 — Theory

with
Xi(r,t) o< VBB (2.25a)
Xo(r,1) o< X\ BiE, By (2.25b)

where the summation is implicit over repeated indices and the integral is over the volume
V' of the dielectric medium. Equation (2.25b) is the one responsible for the non-linear
optical processes such as second harmonic generation and SPDC.

The interaction hamiltonian that describes the SPDC process will be:

Hi(t) / X EiE; BV (2.26)
|, Xi

Since the non-linear effect is small, the probability of down converting a pump photon is
very low, and since the pump is usually very intense, it will not be significantly depleated.
For this reason the pump can essentially be treated as a classical monochromatic wave
propagating along the z-axis:

Ey(r,t) = Ay(p)eitr=rt) (2.27)

where p is the coordinate vector in the transverse xy plane. The down converted fields,
instead, must be treated with a quantum mechanical description:

E;(r,t) / [af e~ 0or—it) — H.C]d°K; (2.28)

with j = 1,2. Considering the wave vectors divided into the longitudinal component
(pump propagation direction), k; ., and transverse components (q;, w) the interaction
hamiltonian becomes:

/X —i(kp—k1,z—ka, Z)z z(q1+q2)p6i(wp—w1+w2)t
(2.29)
x @) - dwldwgdqldqupdz

w1, w

Taking the initial state of the down converted fields to be the vacuum state, upon inter-
acting with the pump, the state evolves as follows:

) = §10.0) = exp [— ;i / Hﬁ/)dt’} 10,0) (2.30)

Now let’s brake down the hamiltonian in the different pieces. Starting with the integral
along z:

. . . .
—ilky—1 )z, — L (—iakny _ b T (z’AsL)( (i85L)_
/0 ‘ RN Ak ARC ¢ 231)
(_iAkL)> 1 (_Z-AkL)Q, . (Ak’L) I (_,L»AkL)SinC(Ak’L) .
—e 2 = ——ct 2 /21 8in = Le 2
Ak 2 2
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where Ak = k, — k1, — ko, is the longitudinal phase mismatch and L is the length of
the crystal. In the limit L — oo the sinc function becomes a delta and the integral in
non-zero only in the perfect phase matching condition Ak = 0. In realistic scenarios,
the finite length of the crystal allows for a phase mismatch.

The surface integral along the xy plane represents the Fourier transform of the pump
profile A,(p):

/gAp(p)e_i(q1+q2)pdp (2.32)

In the plane wave approximation (4,(p) = Ao) the integral is simply:
/ Ape~ 1@ +)P g — A5(q, + qu) (2.33)
S

With this approximation, the down converted modes are perfectly correlated in the trans-
verse momentum, in particular the mode with transverse momentum q is correlated to
the one with momentum —q. In reality, the pump is not a plane wave, so the integral
generates an uncertainty in the momentum of the correlated photons.

Finally the integral over time is:

/ei(wp’“l’WQ)tdt = 0(wy + wa —wp) (2.34)

This allows to express the frequencies as w; = 2 + Q and wy, = 2 4 (), “F is called
the degenerate frequency.

Putting together all the simplifications and considering discrete values of q and of 2,
the time evolution operator becomes:

§ = exp {Z Fla, af gy o — H.c.] (2.35)
q,Q2

where f(q,€?) is called phase matching function and the integrals over q,, q,, w1, ws
became sums over q and €.

ARL Ak(q,Q)L
flq,Q) = x(2)A0Lell5sinc(m2’)) (2.36)
Substituting (2.35) in (2.30) we get:
) =exp | 3 f(a, D gily o ~ HC| 00) (2.37)
q,Q2

Since the operators corresponding to different modes (q,€2) # (q', ') commute with
each other, then ¢*(A1t5) = ¢#4¢%5 50 the state can be written as:

[¥) = @ exp|flq, Qafoi’y o — H.C|0,0) (2.38)

q,Q2
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In the operator in Eq. 2.38 one recognizes a collection of two-mode squeezing operators
each coupling a pair of symmetric modes (€2, q) and (—£2, —q). Therefore, it can be
show that in the plane-wave pump approximation, the SPDC state can be rewritten as a
collection of independent so-called two-mode squeezed vacuum states (TMSVS):

) = QD cann) [n)gqln) g (2.39)

q, n

where cq(n) =, /# with g1 = sinh?(|f|) that is the mean number of photons per

mode as shown later. The proof is reported in the appendix A. TMSVS is an entangled
state and presents non-classical correlations in the photon statistics, as we will see in the
next section.

SPDC photon statistics

Now we are intrested in the photon statistics for a couple of conjugated modes, for sim-
plicity they will be indicated as:

a(q,0) = @1
a(fqvfﬂ) = a2

For calculation purposes, consider only one evolution operator in (2.38):
Siz = exp|f(q, Q)alal — f*(q, Q)] (2.40)

and rewrite f(q, ) = re?, with:

r(q,$) = X(Z)AoLsinc<Ak(qZ’Q)L) (2.41a)
0(q,9) = —Ak(qéQ)L (2.41b)

The following identities hold:
b1 = S{,a1512 = Uay + Va} (2.42a)
by = ] 52951 = Uty + V] (2.42b)
b} = 51,0181 = Ua] + V', (2.42¢)
by = 51,0581 = Ua} + V*ay (2.42d)

where:

U = cosh(r) (2.43a)
V = e sinh(r) (2.43b)
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These identities can be proved using the Baker-Campbell-Hausdorff (BCH) lemma:

1 1
&BKA:B+MJﬂ+5M¢&E}WﬂAVHABm+”. (2.44)
Indeed, consider the commutator:
[A, B] = [f*anay — fajab, ar] = —re®abfal, a1) = re”al (2.45)
from which:
(A [A, B]) = [f*ands — falad, real) = rafas,al) = o (2.46)
We can see that a pattern emerges, so by substituting in (2.44) we get:
N A , 1
5172&15172 = &1 -+ (T@ZO)CALE —+ (57“2)&1 + ... (247)
By collecting the terms with a; and &g we obtain:
A P2 A R i RE - )
8] 501515 = (1—1—5—I—E—i—...)al+69(T+§+§+...)a£ (2.48)
Using the expansion formulas for the sinh and cosh functions we finally get:
(2.49)

S'I,Q(AMSLQ = cosh(r)ay + sinh(r)e?al

With similar calculations it is possible to get the rest of the relations (2.42).
Now we are able to calculate the mean photon number for the mode j (j = 1,2):

H= <ZA7;BJ> = (0,0] IA’;IA’J 10,0) = {0,0] 31,2&;5'1,25{2&;'5'1,2 10,0) =
= (0,0] [cosh(r)al 4+ e ™ sinh(r)ay) x [cosh(r)a; + € sinh(r)a}] [0,0) = (2.50)

= sinh?(r)
Following the same steps, it is possible to derive the normally ordered statistical mo-

menta of superior order:
(: iyfy ) = (BIbEbyby) = sinh?(r) cosh?(r) 4 sinh?(r) = 2u% + p (2.51)
(: iy 2) = (: Rafg ) = 2sinh*(r) = 2 (2.52)
From these it is easy to compute the variance and covariance:
(A7) = (D) = (s iy 1) — (Mn)? + (fn) = p(1 + p) (2.53)
(- A ARy 1) = (: Raft ) — () (R2) = p(l + p) (2.54)
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It is possible to notice from (2.53) that the statistic of a single mode of the SPDC is
thermal (eq. (2.17)) with super-poissonian component equal to 2.
Now we can calculate the detected photon statistics using equations (2.4):

(N;) = my(aka;) = nip (2.552)
(A’N) =2 p® + e (2.55b)
(: ANJAN, 2) = mpp(1 + po) (2.55¢)

Finally, we can compute the NRF to quantify the degree of correlation between the two
modes. In the ideal case, we can substitute equations (2.53) and (2.54) into the definition
of NRF (2.19) and obtain:

oc=0 (2.56)

When balanced losses (17, = 7o = n) are considered we can subtitute equations (2.55)
into (2.19) so we get:

Oget = 1 —1 (2.57)
as in (2.20). Instead, if we assume unbalanced losses (17, # 12), we get:
— 2 1
wdzl—n+0““”(u+) (2.58)
2n 2

where 7 is the mean quantum efficiency. Equation (2.58) shows that in the case of equal
quantum efficiencies the NRF is always smaller than one. Otherwise the additional
positive term, that comes from the imperfect cancellation of the noise, can lead to the
measurement of a NRF greater than one even in the case of perfectly correlated quantum
light.

Mode collection

In the far-field region, corresponding to the focal plane of a thin lens in an f — f con-
figuration, each transverse mode q is mapped to a unique spatial position x through the
geometric relation (2¢f /w)q — x, where c is the speed of light. Under the plane-wave
pump approximation, the phase-matching condition q; + q, = 0 for correlated photon
pairs translates in the far field into a strict positional correlation x; +x, = 0. For degener-
ate frequencies, w; = wy = w,/2, the correlated photons are thus detected at symmetric
positions with respect to the pump axis x = 0.

When considering a more realistic Gaussian pump with finite angular spread Aq, this
perfect positional correlation becomes uncertain, expressed as x; + x5 = 0 + Ax, where
AX = (2¢f Jw)Aq defines the extent of the coherence area A, in the far field that is the
region within which photons from correlated spatial modes can be efficiently collected.

To efficiently collect the majority of correlated photons two symmetrically-placed
detectors must have sensitive areas larger than the coherence area A.,,. As illustrated
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X s

Figure 2.2: Schematic representation of the correlated modes M ., uncorrelated modes M, and partially
correlated modes M. The misalignment with respect to the centre of symmetry is indicated by the blue
dot.

in Figure 2.2, we consider two identical and symmetric detection regions Age;; (7 =
1,2), each encompassing a large number of transverse spatial modes M. = Ager j/Acon,
represented by the light blue circles in the figure.

At the detector edges, however, there are modes M, that are only partially collected,
with an efficiency [ that can be considered 1/2 on average. Additionally, experimental
misalignments ¢ can lead to the inclusion of uncorrelated modes M,,. Although careful
experimental optimization can minimize the contributions of M, and M, their effects
must still be considered to achieve a complete and realistic description of the system.
Since each SPDC pair of modes is statistically independent from the others, the total
variance and covariance of a state containing M pairs are simply M times those of a
single pair. Consequently, by accounting for the contributions of the different types of
modes involved, together with the single- and two-mode statistical properties described
in equations (2.55), we can derive the overall expressions for the system’s variance and
covariance:

(Nj) = (Me+ My + MyB)nn (2.59)
(AN;) = (M + My + MpB)nip+ (M + My + M, 32 1 (2.59b)

(AN AN,) = (M. + My mmap(1 + p) (2.59¢)

Substituting the previous expressions into the definition of the NRF in equation (2.20)
we get:
Odet =~ 1— nne (260)

where 0 < 7. < 1 can be interpreted as the collection efficiency of correlated photons
pairs, it is defined as:
M+ MBE— Myp
T TMoE M+ M
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2.3 — Quantum-enhanced phase imaging

It is possible to evaluate this collection efficiency using just some basic geometrical
considerations: with respect of Figure 2.2, § is the misalignement,  the coherence radius
at the detection plane and L the linear size of a detection region. Under the conditions
L > 2r and 0 < L, the number of the different types of modes are:

2L6

_ 2 _
M, = (L —2r)*—2Lo (2.62b)
2
4L L
My, = % = 2? (2.62¢)

By introducing the dimensionless parameters X = L/2r and D = d/2r, the collection
efficiency becomes:
X -2D(p—1)—-2)+ X*+1
e = X2+ (78— 2)X + 1

(2.63)

Thus, in the limit X > 1 i.e. when the detection size is much larger than the correlation
area, 7). approaches unity and the NRF reaches the value of equation (2.57), where we
have two correlated modes in the monochromatic plane-wave pump approximation.

2.3 Quantum-enhanced phase imaging

In order to take advantage of the quantum correlations between the signal (s) and idler
(i) beams in phase imaging, we can substitute the single beam intensity present in Eq.
(1.29) with the following:

I i(x, 2) = I(Xs, 2) — kopt AL (X;,0) (2.64)

where AI; = I; — (I;) represents the fluctuations of the intensity in the correlated pixel
of the i-arm and compensates for the fluctuation in the corresponding s-arm pixel. The
factor k., is a parameter chosen to minimize the residual fluctuation (A?7;), taking
into account imperfect correlations. It can be evaluated experimentally by a calibration
of the system since it is related to the detection efficiency as shown later.
The optimal factor £, is found by imposing:
0

SHA(x,2)) = 0 (2.65)

in order to minimize residual fluctuations. From this we obtain:
(AT (x5, 2)AL(x;,0))
(A21;(x;,0))
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(AI(xs, 2)AL(x;,0))?
(A21;(x;,0))

According to the Poisson distribution of the detected photons, we can replace the vari-
ance of the intensities with their mean values:

(A?1;(0)) = (1:(0)) = (A*Li(2)) = (I:(2)) (2.68)

(A2, (%, 2)) = (A2L,(x,, 2)) — (2.67)

where a spatial average has been performed. The covariance in Eq. (2.67) becomes:

where the last equality in again justified by the Poisson hypothesis. We introduced the
quantities 7) that is the detection efficiency, since the beams are correlated only for the
fraction of photons that is not lost, and 7. that is the collection efficiency defined in Eq.
(2.63) that further degrades the quantum correlations. The final step is to substitute Eq.
(2.68) and (2.69) into Eq. (2.66) and (si-sub-fluct) to obtain:

kopt = mme = 1 — 0 et (2.70)

where 4. 1s the NRF defined in Eq. (2.60), so it can be measured experimentally.
Lastly:
(A L) = (1= 0" n2)(L:(0)) < (L,(0)) (2.71)

This last equation proves that the quantity defined in Eq. (2.64) has lower fluctuations
with respect to the shot noise.
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Chapter 3

Simulations

In order to show the advantages of the mixed method presented in section 1.3.2 for
quantum-enhanced phase retrieval, Matlab simulations have been made. The program
simulates a partially coherent field, subject to spatio-temporal thermal fluctuations and
shot noise, defocused of a distance dz after the application of a phase and an absorption
mask (figure 3.1). It then performs the simulation of binning, misalignement and detec-
tion losses and finally the shot noise subtraction and phase retrieval. The simulation uses
700 photons per pixel per shot and a quantum efficiency of the camera of 0.85. The size
of the sample to reconstruct is 420m. More details about the simulation are reported

in appendix B
T T T T 1
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Figure 3.1: Phase (left image) and transmission (right image) masks used in the simulation. The values
of phase are reported in table 3.1, while the absorption mask produces an absorption of around 3%.
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3.1 Quantum advantage

The defocus distances used for the implementation of the reconstruction method of Sec.
1.3.2 have been parametrised as [+dz, £1.8dz]. This choice has been made for two
reasons: first, as previously shown in 1.3.2, the usage of symmetric displacement along
z cancels the absorption contribution in the phase contrast images. Second, in order to
avoid zero-crossings at the denominator of Eq. (1.29), the defocus distances must not
be an integer multiple of the others.

For the rest of this chapter, this parametrization will be used (unless specified), so
when talking about dz with respect of this model we will always mean [+dz, +1.8dz].
The zero-crossings at the denominator of Eq. (1.29) produce artifacts in the recon-
structed image as shown in 3.2. This effect can be avoided either by choosing dz in
such a way that the sin terms at the denominator do not have common zeros (i.e. dz not
integer multiples with each other) or by cutting the frequencies for which the denomina-
tor goes to zero in the final image.

Figure 3.2: Reconstruction artifacts produced by the zero-crossings at the denominator. The image is
obtained by averaging 100 reconstructions in order to suppress any residual shot noise.

The retrieved phase images are shown in figures 3.3 and 3.4. Figure 3.3 shows a
qualitative improvement in the reconstruction of the sub-shot-noise image with respect
to the classical one.

The 100-reconstruction average shows that the algoritm reconstructs the correct im-
age when any residual noise is suppressed.

The retrieved values of the phase (in radians) are reported in table 3.1 with the cor-
responding standard deviation. For each of the 100 reconstructions, the mean value
within each defined region is calculated. The resulting 100 mean values are then used
to determine the overall average and corresponding standard deviation for that region.
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Figure 3.4: 100-reconstruction average of the reconstructed phase at dz = 32um

Table 3.1: Simulation results computed at distance dz = 32um

Image region Classical value Quantum values Nominal value Advantage

Pi 0.222 £0.011 0.223 £ 0.006 0.23 45.45%
Null —0.360 £0.011  —0.360 £ 0.005 —0.35 54.54%
Pi and null —0.127 £0.009  —0.127 £ 0.005 —0.12 44.44%
No phase 0.003 £ 0.004 0.003 £ 0.002 0 50.0%

By comparing the standard deviation of the classical and quantum reconstruction it
is possible to find an average quantum advantage around 48%.

To asses the quantum advantage in the quality of the reconstruction, the Pearson cor-
relation coefficient can be evaluated between the theoretical image and the reconstructed
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one. The Pearson correlation coefficient is defined as:

o D600 = 6)(6() ~ 6)
Var (¢, ) Var(¢)

(3.1)

where ¢ is the phase, ¢ the spatial average and Var(¢) the spatial variance. The correla-
tion coefficient ranges from -1 to 1, an absolute value of exactly 1 implies that a linear
equation perfectly describes the relationship between two images. In figure 3.5 the av-
erage correlations of the images with respect to the theoretical one is shown as function
of the defocus distance dz. The improvement in terms of correlation is larger at small
distances where the phase contrast is lower (as discussed in section 1.3.1), making the
effect of the noise more prominent, thus providing a higher quantum advantage. At large
defocus distances, instead, the intensity of the phase contrast is higher, the role of shot
noise is less effective, and as a consequence the quantum advantage is reduced.

Correlations varying dz
0.95 T T ry‘ 9 T

09
085

08

Correlations

0751

—&@— Classical
—if— Quantum

07

065 . . . . . . .
30 40 50 60 70 80 90 100
Defocus distance dz (um)

Figure 3.5: Pearson correlations varying defocus distance

A more precise tool to evaluate the similarity of two images A and B is the Structure
Similarity Index Measure (SSIM) defined as:

(2uaps +c1)(204p + ¢2)
(W4 +pg +a)(0h +0f + )

SSIM(A, B) = (3.2)

where /1 repesents the average, o2 the variance of the image and o 45 the covariance be-
tween image A and B. The two constants ¢; and ¢, are used to stabilize the division with
weak denominator, The SSIM can assume values between -1 and 1, where 1 indicates
perfect similarity, 0 indicates no similarity, and -1 indicates perfect anti-correlation. In
figure 3.6 the average SSIM is plotted in function of the defocus distance. The behaviour
is similar to the one of the correlations, indeed, as explained before, at lower defocus

32



3.1 — Quantum advantage

distance the shot noise has a greater effect than at large defocus distances, reducing the
quantum advantage. Moreover, in this case the similarity between the reconstructed im-
ages and the reference one is further reduced by the increased blurriness of the images
at large defocus distances.

SSIM varying dz
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Figure 3.6: SSIM varying defocus distance

It is possible to notice that the values of the SSIM (fig. 3.6) are much smaller than the
ones of the correlation coefficient (fig. 3.5). This happens because the Pearson correla-
tion coefficient quantifies global linear similarity between two images, focusing only on
the overall pixel-by-pixel correspondence and remaining largely insensitive to scaling or
offset differences. In contrast, the SSIM evaluates structural fidelity by comparing lumi-
nance (mean value), contrast (variance), and structure (covariance). It is therefore more
sensitive to variations in local amplitude, dynamic range, and small structural distor-
tions, penalizing effects such as blurring (reduced contrast similarity) or local intensity
mismatches even when the overall correlation remains high.

Therefore, since both the correlation coefficient and the SSIM are computed between
the single reconstructions and the theoretical image, the SSIM captures the effect of
noise in a more pronounced way. If one instead computes the SSIM between the 100-
reconstruction average (that is the reconstruction without shot noise) and the theoretical
image the resulting SSIM is 0.65 at dz = 32pm. This value is much higher than the ones
shown in 3.6 but still not quite close to 1. This can be attributed to the lower resolution
of the reconstructed image and the phase values that present an higher variance with
respect to the ideal image.
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3.2 Comparison with the TIE

In order to compare TIE and CTF-TIE model, it is necessary to analyse images that have
a similar resolution. To evaluate the spatial resolution of the images, an error function
(Edge Spread Function, ESF) is fitted along a perpenducular line at the edge of the re-
constructed object averaged over 200 reconstructions in order to suppress any residual
shot noise.

ESF(z) — “erf( N ) +o (3.3)

where a and b are fitting coefficents, z is the central position and w the characteristic
width parameter of the transition. The derivative of (3.3) gives a Gaussian Line Spread
Function (LSF):

dESF( ) a

. 2

The spatial resolution is defined as the Full Width Half Maximum (FWHM) of the LSF:

r=2y/2In(2)w (3.5)

The uncertainty is quantified by determining the 95% confidence interval of the fitted
parameter w, indicated as [wgyup, Wsyp|, then the standard error for w is calculated as
seyw = (Wsyp — Wsyp)/3.92 according to the z-test [23].

Average at 20 um Average at 50 um

20 20
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80 80
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Figure 3.7: Average over 200 reconstructions of the reconstructed phase at dz = 20um (left image) and

dz = 50um (right image)

Figure 3.7 shows two of the images reconstructed with the CTF-TIE model used for
the fits, the red line indicates the points over which the fit is performed. The difference
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3.2 — Comparison with the TIE

in resolution between the left image (dz = 20pum) and right one (dz = 50um) is clear.
Figure 3.8 plots the results of the fitting for both images. The blue dots are the points
to fit, while the red line is the fiting curve. Since the phase over the selected red line
goes from zero (green region) to negative values (blue region), the function used for the
fitting is -ESF but this does not change the resolution. It is also important to mention
that the values of the phase have been normalized between 0 and 1 before performing

the fitting.
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Figure 3.8: Fitted curves for the image at defocus distance 20m (left image) and at 50m (right image)

Figure 3.9 shows the behaviour of the resolution (in pixels) of the CTF-TIE model
(blue dots). Here, we fixed two-out of the four-values of the defocusing as [+32um =

Resolution fixing dz1

Resolution (pixel)

TIE @ 32 um

10 20 30 40 50 60 70 80 90
dz2 (um)

100

Figure 3.9: Resolution of the mixed model (blue line) at fixed dz;. The TIE resolution at the same dz is
shown as reference (red line)
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+dz, +dz]. The spatial resolution achieved with the mixed reconstruction model is
mainly governed by the smallest defocus distance. Indeed, consider the denominator of
eq. (1.29), the sine term oscillates and goes to zero at discrete frequencies, therefore, for
stable reconstruction, frequencies beyond the first zero of this term cannot be reliably
recovered. The position of that first zero defines an effective cutoff frequency: f. ~
1v2\dz, indicating that shorter propagation distances correspond to higher recoverable
spatial frequencies and, therefore, finer image resolution. However, the behaviour of
the plot in Figure 3.9 shows that the resolution varies also when the larger dz changes.
This can be explained by the fact that greater defocus distances produce higher phase
contrasts with the effect of having an higher ”weight” in the reconstruction reducing the
overall resolution.

10 Resolution comparison varying dz

Resolution {pixel)

Mixed + err
Mixed
TIEx err
TIE

10 20 30 40 50 60 70 80
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Figure 3.10: Comparison of the resolution (in pixels) between the TIE(red line) and mixed model(blue
line) as function of dz

In particular, Figure 3.10 shows a comparison between the resolution of the TIE and
the one of the mixed CTF-TIE model as function of the defocus distance. Due to the
higher number of shots used in the mixed CTF-TIE model, there is a small advantage in
terms of resolution for small distances. As the distance increases the advantage disappear.
This behaviour is due to the way in which the distances have been parametrised: using
+1.8dz degrades the resolution as dz increases, a lower scaling factor would reduce this
problem at the cost of increasing the standard deviation of the reconstructions.

From the plot it is possible to see that for 20pum < dz < 50um the resolution of the
two models is quite similar so this range of distances will be used for the next compar-
isons.
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Low photon number condition

In order to show an advantage with respect to the TIE, it is necessary that the total number
of photons used by both models is the same. Since we use two shots for TIE [dz, —dz]
and four for the CTF-TIE model [+dz, £1.8dz], the simulations have been made using
double number of photons for the TIE.

Figure 3.11 shows the standard deviation of the phase reconstructed using the sub-
shot-noise technique as function of the number of photons used. As expected the stan-
dard deviation increases as the number of photon reduces due to the higher influence of
shot noise. It is clear that the mixed model provides an advantage with respect to the
TIE of around 20% when the total number of photon is fixed.

1072 Low photon number comparison

—&— Mixed
—#—TIE

200 250 300 350 400 450 500 550 600
Number of photons

Figure 3.11: Standard deviation of the reconstructions at low photons number at dz = 32um

Figure 3.12 shows the behaviour of the standard deviation of the quantum enhanced
reconstructions as function of the defocus distance, using 200 photons per pixel with
the mixed model and 400 with the TIE. As the defocus distance increases the standard
deviation reduces since the greater phase constrast of the captured intesities reduces the
effect of the noise. However, this happens at the expense of blurring of the images, as
discussed in section 1.3.1.

Finally, the reconstructed images are shown for a qualitive comparison.

Absorption effect

All the results discussed up to now used an absorption of 4% as shown in Figure 3.1.
Here we analyse the presence of strong absorption in the sample. Figure 3.14 shows
how the absorption mask has been modified by applying a filter to smooth the border
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Figure 3.12: Standard deviation of the reconstructions with number of photons fixed
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Figure 3.13: Quantum single reconstruction with low photon number. TIE (left image) 400 photons per
pixel per shot, CTF-TIE (right image) 200 photons per pixel per shot at dz = 32um

of the null sign. This has been done in order to satisfy the slowly varying absorption
assumption required for the implementation of the CFT-TIE reconstruction algorithm.

In particular, the level of absorption varies along the sample from 50% up to 75% in
order to keep its maximum gradient around 10~ since it is a necessary hypothesis of the
mixed model. If the hypothesis breaks, the image is still reconstructed correctly but the
values of the phase are not. Moreover, the simulations have been made by keeping the
total number of photons equal between the TIE and mixed model (1400 and 700 photons
per pixel per shot, respectively).

Figure 3.15 shows the standard deviation of the reconstructions in presence of strong
absorption for both the TIE and mixed model as function of the defocus distance.

The standard deviation increases as the distance decreases as expected, and the overall
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Figure 3.14: Strong absorption mask
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Figure 3.15: Standard deviation of the reconstructions in presence of strong absorption of the TIE (red

line) and mixed model (blue line). Absorption varies between 50% and 75%.

advantage with respect to the TIE is around 25% on average, reaching 35% at small
distances and 20% at large distances. The difference from fig. 3.12 is that the standard
deviation of the reconstructions is much higher, indeed, as explained in section 2.2.2, the
effect of the higher and strongly unbalanced losses is to affect the NRF, which makes

the quantum enhanced technique less effective.

The reduction of the quantum advantage is shown in Figure 3.16 where the standard
deviations of the classical (blue line) and quantum reconstructions (red line) are reported.
The quantum advantage is clearly much smaller than the one reported in table 3.1 where
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Figure 3.16: Standard deviation

the absorption was around 4%. In particular it goes from an average of 50% to an average
of 8%.

-3 Low absorption
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Figure 3.17: Standard deviation of the reconstructions varying the absorption. Defocus distance fixed at
32pum.

Figure 3.17 shows the standard deviation of the quantum reconstructions as function
of the absorption. As the absorption increases, also the gain of CFT-TIE becomes higher
up to 15%. This shows that the CTF-TIE model has better performances than the TIE
even in low absorption cases-making it a valid alternative for quantum-enhanced phase
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retrieval of biological samples that often present low levels of absorption.

Figure 3.18: Quantum single reconstruction in presence of absorption using TIE (left image) and mixed
model (right image). The absorption varies from 50% to 75% as shown in fig. 3.14 and dz = 32um

Finally we shows the quantum reconstructions obtained with the TIE and with the
CTF-TIE model in Figure 3.18.

3.3 Conclusions

The results presented in this chapter demonstrate that the mixed CTF-TIE model can im-
prove sub-shot noise techniques performances in phase retrieval. Moreover, this model
is also able to achieves better reconstruction performance with respect to the TIE, partic-
ularly in photon-limited or absorbing samples, without compromising spatial resolution,
making it a reliable approach for quantum-enhanced quantitative phase imaging.
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Chapter 4

Experimental data

4.1 Sub-shot-noise wide field microscopy

Most quantum-enhanced imaging and sensing protocols rely on the generation, control
and detetion of single or few spatial modes of the probe beam—For example, interfero-
metric schemes moslty use single mode squeezed light and single mode homoyne detec-
tion of quadratures. Other techniques, based on two-photo correlated states, often use
single-photon detectors which do not have spatial resolution. In both cases, only a single
parameter of the system, corresponding to a single point of the sample, can be measured
in one acquisition. Reconstructing the full 2D sample therefore requires sequential scan-
ning and the accumulation of many detection events, which is time-consuming. By con-
trast, quantum-enhanced wide-field imaging demands the simultaneous exploitation of a
large number of spatial modes—on the order of thousands—in a single run. The number
of structural details that can be probed in parallel is ultimately determined by the num-
ber of spatial modes supported by the illuminating field. Parametric Down-Conversion
(PDC) multi-mode quantum correlations enable wide-field sub-shot-noise imaging [48].

The scheme of the setup is reported in Figure 4.1. The object is placed in one of the
twin beams, while the other serves as a reference. This double-beam (or double-path)
configuration is widely employed also in classical imaging and spectroscopy involv-
ing weak absorptions, as it effectively suppresses classical (super-Poissonian) noise and
allows for direct estimation of absolute transmittance (or absorption) through instanta-
neous comparison with the unperturbed reference beam. However, when the two beams
are correlated at the quantum level, also the shot noise can be eventually canceled. The
two correlated beams (signal and idler) are generated by SPDC by a pump laser pass-
ing through a beta-barium borate (BBO) crystal. The interference filter (IF) blocks the
residual pump field that is not down converted. The first lens (L1) transforms the cor-
relations in the momentum of the photons into correlations in position in the far field
of the lens. The second lens (L2) images the far field plane on the camera chip with a
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certain magnification factor. By placing the object near the far field of the source, one
of the two beams can be used as a probe and interact with it, while the other is used as a
reference.

This scheme has been successfully applied to the realization of a sub shot noise wide
field microscope for absorption imaging [21] and for phase imaging with the TIE [22]. In
[23], an important step forward has been done by applying this quantum phase imaging
scheme to biolocical cells. Indeed sub-cellular structures can be imaged with improved
SNR. The main goal of this chapter is to verify the applicability and the possible im-
provement that CFT-TIE reconstruction method can offer in the context of biological
imaging. For this purpose, here we have used the same experimental setup, while we
have acquire and elaborated a new set of data.

4.1.1 Experimental setup

The experimental setup employs a continuous-wave (CW) laser source (OBIS405, Co-
herent) operating at a wavelength of \, = 405 nm with a beam width of w = 0.5 mm.
Although the laser is CW, it is externally triggered in a pulsed mode synchronized with
the camera acquisition. The pump beam generates photon pairs via spontaneous para-
metric down-conversion (SPDC) in a 1.5 cm-long type-II BBO crystal with transverse
dimensions of 0.8 x 0.8 cm?. The down-converted photons are spectrally filtered by
an interference filter centered at 800 + 20 nm, selecting photons near the degenerate
wavelength \; = 810 nm.

Spatial correlations are formed at the crystal far-field (CFF) plane, obtained using
a lens with focal length £/ = 1 cm. A second imaging lens with focal length F' =
1.6 cm projects the far-field onto the CCD detection plane, providing a magnification
factor of M ~ 8. Detection is performed with a Pixis 400BR Excelon CCD camera
(Princeton Instruments) featuring a 1024 x 1024 pixel array with a 13 um pixel pitch,
corresponding to approximately 1.5 um on the object plane. The camera operates in
linear mode, offering high quantum efficiency (>95%), low electronic noise, and a full
fill factor.

4.2 Experimental data

Experimental procedure

Before taking acquisitions, the laser needs to be aligned with the center of the crystal
in order to have an optimal condition for the SPDC to be as efficient as possible. The
SPDC produces two ’beam-like” spots on the camera that are shown in Figure 4.2. The
two spots are the ones that present quantum correlations in their intensity pattern (photon
count).
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l Far field

X

Figure 4.1: Scheme of the experimental setup. The object placed near the far-field of the source interacts
with the signal (s) beam, while the idler (i) is used as a reference. L1 is the far-field lens. The exact
far-field of the sources is imaged at a CCD camera with L2. The filter (IF) is used to remove the residual
pump laser that did not interact with the crystal. Displacing the object of a certain dz allows to take
measurements at some out of focus plane. The out of focus acquisitions can later be used to retrieve the
phase. Image from [22]
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Figure 4.2: Intensity spots produced by the SPDC on the camera. The two spots are correlated thanks to
the SPDC process. The spot with higher intensity at the center is produced by the residual pump that has
not been eliminated by the filter.

Experimentally, precise alignment of the optical components is crucial to maximize
the correlation level and minimize the value of the NRF. To achieve this, a real-time
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estimation of the NRF is performed using a Matlab program. In practice, the NRF is
measured by keeping a region of one of the spots fixed and scanning the position of
another region in the second beam until the optimal value is found. The optimal config-
uration corresponds to the minimum NRF value, which defines the center of symmetry
(CS) of the correlation pattern.

Since the correlation can sometimes be distributed between neighboring pixels, sub-
pixel camera positioning is used to refine the alignment. Once the optimal NRF is
reached, the sample is positioned, and acquisition is started.

Samples

The first sample used for the reconstruction features a nano-fabricated structure with
a ”’pi” pure phase profile overimposed to a “null” shaped profile with both phase and
absorption features like the one shown in figure 3.1. The structure is fabricated on a
fused silica glass window (WG41010-A, Thorlabs) with an anti-reflection coating on one
side. The window is first coated with a positive PMMA resist, and the desired pattern
is written using electron-beam lithography. The exposed areas are then developed in an
MIBK-IPA solution. After development, the window is immersed in a buffered oxide
etch for 30 seconds to transfer the pattern into the glass, with the etch depth controlled
by the immersion time. The remaining unexposed resist is finally removed using an
acetone solution.

The resulting sample is designed to exhibit negligible absorption differences between
the signal and idler beams. Since both beams propagate through the same glass substrate,
the only difference in their optical paths arises from an additional 66 nm of glass corre-
sponding to a transmission imbalance on the order of 10~%, which is negligible for the
purposes of the experiment.

While the absorption produced by the etched glass is negligible, the phase difference
it introduces is the one that creates the pure phase profile (pi-shaped region). The "null”
shape consists of a thin layer of Si3 /N, is deposited using ICPCVD process (PlasmaPro
100, Oxford Instruments) resulting in a layer thickness of about 37 nm.

Profile measurements shown in Figure 4.3 were made using a profilometer (Dek-
takXT, Bruker). The etch depth of phase mask is 64.38 £ 1.79 nm (1 o) and the layer
thickness of the S13N4 is 42.16 + 1.70 (1 o). The refractive indices of the substrate,
UV fused Silica, and Si3N4 layer @ 810 nm wavelength are 1.455 and 2.055, respec-
tively [49]. The refractive index of the Si3N4 layer was measured experimentally using
ellipsometry (M-2000, Woollam).

The second sample is investigated is an unstained sea urchin ova, selected for their
inherent transparency and strong intrinsic phase contrast. The samples were sourced
from an industrial preparation with minimal staining, ensuring that the native optical
properties of the cells were largely preserved.

Figure 4.4 shows the CTF-TIE single reconstruction of the nano-fabricated sample.
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Figure 4.3: Left image shows a microscope image of the phase-amplitude mask. The right image shows
the profile measurement along the dashed line of the microscope image.
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Figure 4.4: Single reconstruction of the sample. Classical reconstruction (left image) and quantum re-
construction (right image) are reported

We observe improvement between the classical (left image) and quantum (right image)
reconstruction. Figure 4.5 show the 100-reconstruction average of the sample. The
defocus distances used for the reconstructions are [dz; = £25um, dzy = £50pm)|. To
avoid the reconstruction artifacts similar to the ones shown in Figure 3.2, the frequencies
for which the denominator of equation (1.29) goes to zero have been filtered out in the
final reconstructions.

It is possible to notice that the center of the image presents higher phase values than
at the border. This is caused by the fact that the sample was slightly tilted during the ac-
quisitions. This can be seen in Figure 4.6 where the acquisition at dz = 25um (averaged
over 100 acquisitions) is shown. It can be seen that the top right border of the sample
has lower intensity than the bottom left border. Indeed, Figure 4.6 is an intensity image
so the borders of the sample are given by the accumulation and depletion of the photons
produced by the phase object through the transport of intensity effect. For this reason,
if the sample is tilted, one portion of the object will produce a higher phase contrast, i.e.
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Figure 4.5: 100-reconstruction average of the sample
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Figure 4.6: Phase contrast image acquired at dz = 25um. The yellow and blue borders are regions of
higher and lower intensity, respectively, produced by the transport of intensity effect. The null-shaped
region also presents a lower intensity due to the absorption.

Table 4.1 reports the phase values retrieved from the reconstruction with the corre-
sponding standard deviation.

Comparing the standard deviations of the classical and quantum reconstructions we
find an average quantum advantage of about 22% obtained the averaging of the values
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Table 4.1: Retrieved phase values

Image region Classical value Quantum values Advantage

Pi 0.204 £ 0.013 0.204 £ 0.010 23.08%
Null —0.268 £0.012 —0.268 + 0.009 25.0%
No phase 0.008 £ 0.011 0.007 £ 0.009 18.18%

reported in the last column of the Table 4.1.

Comparison with the TIE

Now we compare the performances of the algorithm with the TIE reconstructions. As
discussed in section 3.2, the comparison must be done by using images reconstructed
with the same number of photons in total. Since all the acquisition have been acquired
with the same number of photons, when using the TIE the acquisitions have been aver-
aged in groups of two. In this way, the the redundancy given by the higher number of
acquisitions used in the mixed CTF-TIE model is removed.

Table 4.2 reports the standard deviation (in radians) of the quantum reconstructions
with the TIE and mixed model. The results show a significant improvement of the re-

Table 4.2: Standard deviation comparison

Image region TIE Mixed CTF-TIE Advantage
Pi 0.017 +0.002  0.010 4+ 0.001 41.18%
Null 0.014 £0.001  0.009 £ 0.001 35.71%
No phase 0.015£0.002  0.009 £ 0.001 40.0%

construction with respect to the TIE. The higher advantage with respect to the one found
in the simulations can be attributed to the less ideal conditions of the experimental setup
with respect to the simulated ones. This result further demonstrates that the improvement
offered by the mixed CTF-TIE model is even more significant in real noisy scenarios.

Figure 4.7 shows the images reconstructed with the TIE and with the mixed CTF-TIE
model for a qualitative comparison.

4.2.1 Biolocical samples

Figure 4.8 shows the classical (left image) and quantum (right image) reconstructions
of the biological sample. Again, the advantage in the reconstruction is evident. Indeed
the internal structure of the cell is more visible in the quantum reconstruction than in the
classical one.
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Figure 4.7: Quantum single reconstruction using TIE (left image) and the mixed CTF-TIE model (right
image). The defocus distance is dz = +£25um for the TIE and dz = [£25um, £50um] for the mixed
model
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Figure 4.8: Single reconstruction of the biological sample. Classical reconstruction (left image) and
quantum reconstruction (right image).

Figure 4.9 shows the 100-reconstruction average of the sample. These images have
been reconstructed by using as defocus distances [dz; = +£15um,dzy = £27um],
following the parametrization used in chapter 3 to avoid reconstruction artifacts as ex-
plained in section 3.1.

Finally, we show a comparison between the reconstructions with the TIE and the
mixed CTF-TIE model. The reconstructed images are reported in Figure 4.10. It is clear
that the reconstruction with TIE is noisier and that it presents some cloud-like artifacts
at the borders of the image.
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Figure 4.9: 100-reconstruction average of the biological sample. The green stain above the cell is pro-
duced by a particle of dust.
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Figure 4.10: Quantum single shot reconstruction using TIE (left image) and the mixed CTF-TIE model
(right image). The defocus distance is dz = +15um for the TIE and dz = [£15um, £27um)] for the

mixed model
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4.3 Conclusions

In this chapter, we demonstrated the experimental implementation of the mixed CTF-
TIE phase retrieval model in the framework of quantum-enhanced imaging. By exploit-
ing spatially correlated photon pairs generated through spontaneous parametric down-
conversion, we achieved an improvement in phase reconstruction sensitivity compared
to classical illumination in realistic detection conditions. This highlights the potential of
the mixed CTF-TIE approach, that, combined with quantum correlations, is a powerful
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tool sub-shot-noise wide-field phase imaging.
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Optical phase imaging plays a crucial role in exploring both biological and physical
systems, providing access to information that cannot be retrieved through intensity mea-
surements alone. Among the various approaches, non-interferometric phase retrieval
methods such as the Transport of Intensity Equation (TIE) and Contrast Transfer Func-
tion (CTF) have attracted significant attention due to their robustness, simplicity, and
compatibility with incoherent or partially coherent light sources.

In this thesis, a quantum-enhanced phase imaging approach, that combines the ad-
vantages of non-interferometric phase retrieval with the noise reduction capabilities of
quantum correlations, has been applied with the mixed CTF-TIE model. The model
merges the strengths of both methods: it retains the minimal assumptions of TIE while
gaining frequency-domain completeness characteristic of CTF-based approaches. This
hybrid strategy enables more accurate phase reconstruction, especially under photon-
limited conditions, where classical techniques often fail.

From a theoretical perspective, we have analyzed how the degree of non-classicality
in correlated photon pairs—generated through spontaneous parametric down-conversion
(SPDC)—can be harnessed to surpass the shot-noise limit. The sensitivity improvement
achieved is directly linked to the quantum correlations between the probe and reference
beams, allowing the system to operate with reduced uncertainty even in the presence of
optical losses and experimental imperfections.

Experimentally, we implemented this model using a wide-field imaging configura-
tion based on SPDC-generated twin beams. The correlated detection of these beams,
in combination with the mixed CTF-TIE algorithm, enabled sub-shot-noise phase re-
construction of transparent and weakly absorbing samples. The results demonstrate that
the proposed approach achieves superior phase sensitivity without compromising spatial
resolution, paving the way for high-precision, low-dose imaging applications.

Beyond its immediate impact on visible-light microscopy, the methodology devel-
oped in this work has broader implications. Its non-interferometric nature ensures sta-
bility and scalability, making it particularly suitable for implementation at other wave-
lengths (such as X-rays) where photon dose minimization and robustness to mechanical
instabilities are essential. Furthermore, the combination of quantum correlations with
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advanced computational imaging models opens new perspectives for quantitative imag-
ing of complex biological structures.

In conclusion, this thesis demonstrates that the integration of quantum resources
with non-interferometric phase retrieval can overcome fundamental noise and resolution
trade-offs that have long limited optical imaging. The mixed CTF-TIE model provides a
versatile and efficient framework for realizing sub-shot-noise phase imaging, establish-
ing a foundation for future developments in quantum-enhanced microscopy and metrol-
ogy. Future work will focus on extending this approach to dynamic imaging, adaptive
quantum measurement schemes, and applications at non-visible wavelengths, moving
closer to the realization of practical, high-sensitivity quantum imaging systems for real-
world applications.
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Appendix A

SPDC as collection of
independent entangled states

In order to prove equation (2.39) consider the two-mode squeezing operator acting only
on a couple of conjugated modes, that is:

§1,2 =exp(fK; — fTK-) (A.1)
It is first necessary to decompose the exponential as:
Sz = exp(fK, — fTK_) = exp(aK,) exp(8K,) exp(vK ) (A.2)
where:
K, =ala) (A.3a)
K_ = a4 (A.3b)
1
Ko = 5(&1611 + abay + 1) (A.3c)

This can be done using the BCH formula, but since [&]{ &TQ, d1G9] # 0 it is not easy to

apply the infinite series of the formula. An alternative method is to use a faithful matrix
representation: use a set of simple matrices that obey the same commutation rules as
our quantum operators to compute the identity. This is possible since the three operators
K., K_ and K, generate the Lie algebra su(1,1). So, following a fundamental result
of Lie theory (Ado’s theorem), there exists a faithful matrix representation in which the
commutation relations are exactly preserved. The commutation relations are:

Ko Ky] = Ky [Ko, K] =—K_ [K K]=2K (A4)
A simple set of 2x2 matrices that satisfies these rules is:
0 1 00 111 0
Ky = [o 01 K-= [1 0] Ko=3 [0 —1] (A-5)
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To prove the identity and find the coefficents we first compute the matrix at the exponent
on the LHS:

Azfm—f*K_:f[g é}—f" [(f 8] - L? ﬂ (A6)

2
A?—[}l {;] L? ﬂ—[‘{)’ |]9|2]—|f\21 (A7)

where [ is the identity matrix. This simple form for A?makes the Taylor series for e
easy to sum:

From which:

A2 A3 A
eA:1+A+§+§+---:Icosh(|f|)+msinh(yf|) (A.8)

so in matrix form the LHS is:

4| cosh([f])  fysinh(|f])
e _[’Zﬂsmhﬂf\) cosh(| f]) (A.9)

Now we compute the exponentials on the RHS. Since K7 and K? are zero matrices,
their exponentials are simply:

exp(aly) =1 +ak, = [(1] ﬂ (A.10a)
1 0
exp(VK_)=1+~vyK_= 1 (A.10b)
Since K|, is diagonal its exponential is:
ez 0
exp(BKy) = [ o (A.11)
0 ez
Multiplying these three matrices together gives the RHS:
1 allez 0 1 0 eg—orye’g ae~2 (A12)
0 1 0 e_g -y 1| —ve_g e‘g '

Now we just need to compare the elements of the two matrices to compute the coefficents.
Element (2,2):

B
2

cosh(|f]) =e 2 — B = —2In(cosh(|f])) (A.13)
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Element (1,2):
sinh((f1) = ae  —acosh(fl) o = rtanh(lf) (A

Element (2,1):
Lrsinh(1) = =367 = —yeosh(f) =7 = ~Lrranh(lr)  als)

Finally the operator can be decomposed as:

S1a = exp ( tanh(| f|)K+> exp(—21n(cosh(|f])) Ko) exp( I tanh(] f|)K_>

|/ |/
(A.16)
Writing f = re'® defined by equations (2.41) we obtain:

S12=exp (tanh(r)eieKJr) exp(—2In(cosh(r))Ky) exp(— tanh(r)e’ieK,> (A.17)

Now we need to apply this operator to the vacuum state |0,0) by expanding the expo-
nentials. Starting from the first:

exp(— tanh(r)e’w[(,) 0,0) =>" ;l(— tanh(r))"e " K™ |0,0) (A.18)

Applying K _ to the vacumm always yields 0 except when n = 0 in which case it give
the identity:

exp(— tanh(r)e_wK_) |0,0) =0,0) (A.19)

The second opearator:
1 1
Ky 0,0) = 5(7%1 + 79+ 1)]0,0) = 3 |0,0) (A.20)

so the exponential becomes:

1
exp(—2In(cosh(r))Ky) [0,0) = exp(—21n(cosh(r))2> 10,0) = cosh(r) 10,0) (A.21)
The last operator:
1 1
exp(ak)[0,0) = > i "(al)(ad)™ 10,0y = > mann! In, n) (A.22)

n n

Finally putting all together:

N (tanh r)"ein?
S1210,0) =>" cosh) ) In,n) => c(n) |n) |n) (A.23)

n
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that is exactly the expression in (2.39) for a couple of conjugated modes. Rewriting

tanh?(r) = :g;iz((:)) and using cosh?(r) = 1 + sinh?(r) we get:

c(n) = ,u—”emg (A.24)

with p = sinh?(r).
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Matlab simulation

The scheme for sub-shot noise imaging relies on two key physical properties of the prob-
ing light: the partial spatial coherence of the probe beam and the quantum correlations
between the probe and reference field intensities. This scheme can be simulated using
a “semi-classical” approach. First, a classical step is performed, in which a partially
coherent beam is generated and propagated to the imaging plane. Then, shot noise is
introduced to simulate quantum fluctuations. Correlations between the probe and refer-
ence beams are modeled by producing two identical deterministic copies of the beam up
to the object plane. At the detection plane, identical shot noise is added to both images,
while the simulated non-unit detection efficiency introduces a degradation of the corre-
lation between their intensity fluctuations. Once the intensity patterns are obtained in
focus and at the two defocused planes (4-dz), the phase profile can be retrieved.

Propagation

To simulate partial spatial coherence at the object and at the detection plane, we expliot
the same approach tipically used for the generation of the so called ”’pseudo-thermal
light”. The source is modeled as a collection of L independent field modes, each de-
fined on an m x m pixel grid with a Gaussian intensity profile and a randomized phase
mask showing a, delta-autocorrelation. Each incoherent mask is numerically propagated
through the optical system, which includes the far-field lens, the phase object placed near
the far-field plane (at positions z = 0, +dz), and a subsequent 2f-2f imaging lens. The
final intensity distribution at the image plane is obtained as the incoherent sum of all in-
dividual mode contributions. According to the Van Cittert-Zernike theorem, the mutual
coherence function 7y(x, x’) at the far-field plane corresponds to the Fourier transform of
the source intensity distribution. Consequently, the field u(x) at the far-field exhibits an
almost uniform average intensity 7(x) = (u*(x)u(x)), and a Gaussian spatial coherence
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function: (
! <u* (X)u Xl)) - 7'22
-_ ——---——— 2lc B.l
W) = s = (B.1)

where r = |x — X'| and [, is the coherence length, related to the Gaussian width w of the
source field by:

_ A
~ V2wr

where f is the focal length of the far field lens and A the wavelength. Each simulated field
mode represents a single temporal mode of the real source, producing, at the detection
plane, a characteristic speckle pattern—classical spatial excess noise at the coherence
length scale—where the intensity fluctuations are proportional to the square of the mean
intensity, tipical of the thermal light (See Sec.2.2.1). In particular, the incoherent sum of
the L independent masks reduces this excess noise by a factor of L. On average, the far-
field intensity profile is then flat and follows a classical multithermal statistics, where L
is the number of modes. However, the shot noise component of the fluctuation, propor-
tional to the mean number of photon is still not included in this classical approach and
must be introduced afterwords.

le (B.2)

Detection and correlations

The cross-correlation length between the signal and idler beams is, in first approxima-
tion, equal to the auto-correlation length of the individual beam intensity. We need to
distinguish between the propagation grid and the detection grid. During propagation,
accurate numerical simulation demands that the propagation “pixel” be much smaller
than the relevant spatial scale—namely, the coherence area—to correctly describe field
evolution. The detection grid, instead, needs to simulate the actual size of the camera
pixels.

For the statistical analysis that follows, it is convenient to express the results in terms
of the photon number N rather than the intensity /, since both quantities are proportional
when the detection time and area are fixed. In classical propagation, the only source of
noise arises from the multi-thermal statistical fluctuations, which scale as (N)?. In many
quantum imaging experiments employing a PDC source, a large number of temporal
modes are collected at detection, while the mean number of photons per mode is very
small ((N)/L < 1). Under these conditions, the multithermal noise term (=~ (N)?/L)
becomes negligible compared to the shot noise contribution (=~ (N)). To reproduce this
experimental regime, we simulate a number of random masks L much larger than the
average photon number detected per pixel.

The signal and idler beams are generated using the same set of random phase masks,
ensuring that their classical multithermal intensity patterns are identical. The only dif-
ference is that the reference (idler) beam does not interact with the phase object and
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therefore remains unperturbed by phase variations. To account for quantum shot noise,
Poissonian noise i1s manually added to the m x m image matrices of both the signal and
idler beams. The idler’s noise is generated to be perfectly correlated with that of the
signal, reflecting the quantum correlations between the two beams. The single-channel
detection efficiency, n, introduced in section 2.2.2, is simulated by extracting the de-
tected photon number in each pixel from a binomial distribution. For each pixel at po-
sition (i,j containing) N{“7) photons, the detected photon number N\"7) is drawn from
B(N{") 1,). This process is applied independently to both the signal and idler beams,
leading to a partial loss of correlation between their intensity patterns.

The final step in the simulation accounts for the spatial-frequency-dependent noise
reduction. As discussed in section 2.2.2 one limiting factor for the collection efficiency
7. 1s the spatial misalignment o (expressed in units of the coherence area) between cor-
responding pixels detecting correlated photons in the signal and idler planes. In the
simulation, this effect is reproduced by applying a lateral shift to the reference matrix of
A,z = 0kp, which approximates the desired scale-dependent collection efficiency.
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