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Abstract

Security in RISC-V architectures requires hardware solutions that can guarantee
reliability, integrity, and data protection. In this scenario Trusted Platform Module
(TPM) and Physical Unclonable Functions (PUFs) play a primary role in the context
of hardware security. Trusted Platform Module (TPM) is a dedicated security chip
consolidated as building blocks to obtain a trusted root point, offering a standardized
set of features that cover cryptographic key generation and protection, platform
integrity measurements, and remote attestation. PUFs are unique cryptographic
primitives that exploit intrinsic variations in the physical characteristics of circuits
to generate answers that are distinct and cannot be replicated. The objective of this
thesis is to develop a simulation TPM model for RISC-V architecture integrated into
gem5. The research was carried out in two phases: first, the implementation of key
functionalities of the TPM 2.0 model according to the TCG specifications; second,
the integration of PUFs into the TPM. In particular, the TPM has been extended
to manage the forwarding phase of a challenge towards the PUF, which produces a
response based on its intrinsic characteristics. The results of the simulations show
that the developed framework allows faithful reproduction of the operations of the
TPM and can be used to explore the benefits of combining it with a PUF in RISC-V
environment, increasing the security by reducing the dependence on static secrets.
Moreover, the choice of gem5 as the basic platform makes the tool accessible and
flexible, allowing for experiments without the need for dedicated physical hardware.
The primary contribution of this work is the creation of an open-source simulation
environment for the TPM model on RISC-V. Future prospects include extending
TPM 2.0 specifications, testing distributed authentication protocols in cloud and
IoT contexts, and analyzing model resilience against advanced attacks.
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Chapter 1

Introduction

In the context of modern computing architectures, hardware security has become
an essential element in ensuring the reliability, integrity, and protection of sensitive
data. The RISC-V architecture, thanks to its open-source and modular Instruction
Set Architecture (ISA), has fostered a strong innovative impulse, finding rapid
diffusion in areas such as the Internet of Things (IoT) and embedded systems.
In particular, in these scenarios — characterized by physically exposed devices
and limited computational resources — software security alone is not sufficient.
Therefore, it’s essential to establish a root of trust at the hardware level. However,
unlike proprietary ISAs like ARM or x86, the RISC-V ecosystem does not natively
offer standardized hardware security mechanisms that serve as a trusted foundation.
This lack can introduce potential vulnerabilities, demanding the development of
dedicated solutions to ensure system integrity from the very early stages of startup.

To address this need, the work focuses on the integration of two fundamental
technologies. the Trusted Platform Module (TPM) and Physical Unclonable Func-
tions (PUF). The TPM is defined by the Trusted Computing Group (TCG) and
designed to provide cryptographic and hardware-based protection, isolating security
operations from the rest of the system. Key features provided by TPM 2.0 include:

• Protected Cryptographic Key Generation and Storage.

• Device authentication using a single key (e.g. RSA).

• Measurement of Platform Integrity (Integrity Measurement) during the boot
process using special registers called PCRs (Platform Configuration Registers).

Thanks to these features, TPM is the basis for implementing secure boot and
remote attestation, providing cryptographic proof of system health.

1



Introduction

PUFs are hardware cryptographic primitives that exploit the intrinsic physical
variability of integrated circuits, resulting from microscopic manufacturing differ-
ences, to generate unique and non-replicable secrets. A PUF acts as an "unclonable
physical function": given an input stress (challenge), it produces a unique output
fingerprint (response) for that specific circuit. This "silicon fingerprint" can be
converted into a cryptographic key of the device without the need to store it in
non-volatile memory. The key is regenerated on the fly whenever needed, eliminat-
ing the risk associated with storing static secrets.

By combining the potential of TPM and PUFs, it is possible to design hard-
ware security solutions more robust than using each technology individually. On
the one hand, TPM provides a consolidated and standardized set of features for
the creation, management and safe use of cryptographic keys, as well as for system
integrity verification and outward attestation. On the other hand, the TPM can
exploit PUFs to generate features-dependent secrets that are intrinsically unique to
each device. In this way, the TPM could delegate the generation of cryptographic
keys or authentication tokens to the PUF, avoiding having to rely on immutable
secret saved in memory. The union of TPM and PUF aims to increase the overall
security of the system, reducing the dependence on static secrets and making it
harder for an attacker to clone or compromise the hardware root of trust.

Currently, there is a lack of a unified open-source simulation platform that allows
studying and testing the integration of a TPM with PUFs on RISC-V architecture.
Although there are software emulators for TPM or hardware implementations
of PUF on FPGAs, there is no integrated framework available for the combined
analysis of these components in a full RISC-V environment.
This framework would be extremely useful both for the research community (which
could evaluate new security ideas without resorting to expensive dedicated hard-
ware) and for educational and experimental purposes. Furthermore, with the
growing adoption of RISC-V in areas such as the Internet of Things (IoT) and
edge or cloud systems, it becomes strategic to have trusted computing mechanisms
adaptable to these open contexts. An environment flexible and accessible simulation
would allow to explore, for example, secure protocols boot and remote attestation
in RISC-V-based IoT sensor networks, or to evaluate the use of TPM in virtual
RISC-V cloud infrastructures, all without proprietary hardware constraints.

To address these challenges, gem5 was chosen as a development platform and
simulation. Gem5 is an established modular, open-source and fullsystem-level
architectural simulator, widely used in both the academic and industrial worlds
for research on the architecture of computing systems. It supports several ISAs
(including RISC-V) and allows to model custom hardware components within
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complete systems, offering a balance between accuracy (at the cycle or instruction
level) and configuration flexibility. The choice of gem5 also ensures high repro-
ducibility of experiments: being open-source software, the developed model can
be shared with the scientific community, which can replicate the tests, verify the
results and possibly further extend the platform. In summary, gem5 provides the
ideal foundation for building a simulated environment that faithfully reproduces
behavior of a RISC-V system equipped with TPM and PUF, allowing interactions
to be observed in detail hardware-software in security scenarios.

The present thesis is therefore divided into two main phases of work. In the
first phase, it was designed and implemented a model of TPM 2.0 compliant with
TCG specifications, integrating it into the RISC-V architecture simulated on gem5.
This involved the development of the fundamental functions of the TPM according
to the standard: authentication mechanisms have been implemented (both with
password and HMAC, according to the authorization policies envisaged by TPM
2.0), the interfaces of FIFO and CRB (Command Response Buffer) communi-
cation for sending and receiving commands, the registers of configuration and
integrity measurement (the PCRs, Platform Configuration Registers), as well as
the management of TPM internal non-volatile memory (NV memory) for secure
data storage persistent such as activation keys, monotonic counters, policies, etc.
This stage required a deepening analysis of the TCG-defined TPM architecture
and careful integration into the simulator: the TPM is implemented as a peripheral
of the simulated RISC-V system, interfaced with the processor via a bus (as a
memory-mapped device). The second phase of the work consists in the integration
of a PUF module into the TPM. At this stage, the TPM was extended so that it
could interact with the simulated PUF. In practice, a forwarding procedure has
been implemented: TPM sends a challenge to the PUF module, which calculates
the response based on its unique physical properties and returns it to the TPM.
This integration also involved defining an interface between TPM and PUF in the
context of gem5: it has been assumed that the PUF is mapped as a device to which
the TPM can send commands.

The main outcome of this study is the creation of an open-source simulation
environment (based on gem5) combining TPM and PUF over RISC-V architec-
ture. This is, as far as is known, the first framework of this kind available to
the community. It allows to faithfully reproduce the behaviour of a real TPM,
however enriched by the presence of a PUF, to be able to experience the ben-
efits of the combination of TPM with PUF. In addition to reproducing known
scenarios, the environment of simulation also facilitates the exploration of new
ideas: thanks to the flexible nature of gem5, they could implement and test various
types of PUFs (e.g. PUF arbiter, ring oscillator PUF, PUF based on SRAMs, etc.)

3
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within the same TPM context to compare their behaviour, or evaluate the impact
of parameters such as challenge/response length on safety and security performance.

The structure of the thesis reflects these objectives: after this general introduction
to the problem (chapter 1), chapter 2 presents the context theoretical and the
state of the art in hardware security, describing RISC-V architectures, principles of
trusted computing, the operation of TPMs and concepts related to PUFs, as well as
an analysis of existing solutions and related research. Chapter 3 details the design
and Implementation of the TPM 2.0 model in gem5: the internal architecture of the
TPM and its integration with PUF is described, the design choices made, and the
features supported, with particular attention to adherence to the TCG standard.
Finally, in Chapter 5, the results obtained are discussed and analyzed. The thesis
concludes with the Conclusions where the benefits introduced by the TPM model
(e.g. in terms of increased security and flexibility) are explored, highlight the current
limitations of the solution and outline future prospects and possible developments
of work.

4



Chapter 2

State of Art

2.1 Trusted Platform Module (TPM)

2.1.1 Definition and Historical Context
The rapid expansion of computer systems connected to the network expanded the
attack surface, introducing crucial challenges for data reliability and confidentiality.
In this scenario, the introduction of persistent malware and threats operating at a
lower level than the operating system represent a critical vulnerability. The com-
promise of a device’s firmware, for example, allows malicious actors to achieve deep
persistence that is difficult to detect by software tools, jeopardizing the integrity
and confidentiality of information from the initial stages of booting. Such type
of threats have made it clear that software countermeasures alone are insufficient.
As a result, protecting data integrity and confidentiality has become a necessary
requirement which cannot be ensured software-type solutions only. The need has
emerged to introduce hardware-level security mechanisms that can act as Root
of Trusts, developing robust cryptographic and authentication capabilities that
operate independently of the operating system and application processes.

The first practical implementations of computer security based on hardware com-
ponents date back to the ’60s, with the Multics system (1964) often cited as a
pioneering example. Within CPUs each program runs at a protection layer (Protec-
tion Ring) controlled by Hardware and which has a predefined set of privileges, in
which programs can only execute a certain set of machine instructions [1]. These
ideas led to the definition of Trusted Computing Base (TCB), which is the set
of all hardware, firmware, and software components critical for the security of a
system. TCB represents the “trusted” basis of calculation on which security rests:
if the basic components of the hardware or software were compromised, the entire
system would be affected [2]. On the base of these principles, at the end of the

5
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’90s, the leading IT companies created an initiative called Trusted Computing,
focused on the introduction of security mechanisms at the hardware level. In 1999,
the Trusted Computing Platform Alliance (TCPA) consortium was founded, then
evolved in 2003 into the current Trusted Computing Group (TCG), with the aim of
standardizing hardware security solutions in personal computers [3]. In this context,
the TPM was born, a dedicated security chip that implements cryptographic and
integrity attestation capabilities at the platform level, providing a hardware anchor
for trust in the system.

According to Trusted Computing Group, “TPM (Trusted Platform Module) is
a computer chip (microcontroller) that can securely store artifacts used to authenti-
cate the platform (your PC or laptop)” [4, p. 1]. This dedicated security chip plays
a crucial role in safeguarding a system by enabling platform integrity measurements,
generating and securely storing cryptographic keys, and acting as a root of trust.
It ensures system security from a hardware perspective without depending on the
operating system or applications. The TPM is defined and standardized by the
Trusted Computing Group (TCG). As a root of trust, the TPM provides a reliable
foundation for higher-level security services, including verifying if the system is
running in a trusted state, and ensuring an isolated environment for cryptographic
operations. The design of TPM includes several main parts: a random number
generator and engines for cryptographic operations using both symmetric and
asymmetric algorithms. It also has secure non-volatile memory for storing keys
and configuration registers, known as Platform Configuration Registers (PCRs).
With these components, the TPM enables secure boot, disk encryption (such as
BitLocker), and remote attestation.

The earliest version, TPM 1.1 (2003), introduces basic features like key gen-
eration and saled storage. TPM 1.2 (2005) achieves the strongest cryptographic
capabilities by supporting RSA and SHA-1, with this version, there has been a
greater diffusion of the use of TPM in enterprise PCs. A fundamental change
occurred with the introduction of TPM 2.0 in 2014, which supports a greater
number of hash and asymmetric algorithms (such as elliptic curve cryptography
and SHA-256) along with support for the use of symmetric ciphers; amplify the
authorization methods allowing authorization with clear-text passwords and Hash
Message Authentication Code (HMAC) and targeted a wider range of devices,
including mobile platforms and embedded devices. In 2021, Microsoft made the
introduction of TPM mandatory in Windows 11 ensures protection against malware
and firmware attacks. Nowadays over 2 billion devices integrate TPM. [4] [5]

6
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2.1.2 Root of Trust
According to TCG “a Root of Trust (RoT) is a component that performs one or more
security-specific functions, such as measurement, storage, reporting, verification,
and/or update. A RoT is trusted always to behave in the expected manner, because
its misbehavior cannot be detected (such as by measurement) by attestation or
observation”[6, p. 9].
The TCG requires three Root of Trust in a platform to define it as trusted [7]:

• Root of Trust for Measurement (RTM) is the initial element in the chain of
trust. First, the Core Root of Trust for Measurement (CRTM) initiates the
process by measuring the code to be loaded. Then, the RTM computes its hash
and saves it in a secure storage such as Platform Configuration Register (PCRs).
Finally, this process spreads the chain of trust, with each component measuring
the next, ensuring a reliable sequence of trusted components. This role is
usually performed by the CPU, which is controlled by the CRTM. The CRTM
is the first set of instructions to execute during boot and it represents the
starting point from which the chain of trust takes shape. Starting from CRTM,
each component measures the following component, gradually spreading the
chain of trust.

• Root of Trust for Storage (RTS) ensures the secure storage of sensitive data,
such as cryptographic keys, hashes, passwords, and certificates. The TPM can
act as an RTS, ensuring that sensitive assets and data can be accessed only
by trusted hardware and software.

• Root of Trust for Reporting (RTR) generates cryptographic attestations by
creating a digitally signed hash of the specific PCR values stored within the
TPM. The RTR must verify that the integrity measurements taken by the
RTM and stored in the TPM’s PCRs match the expected reference values for
a trusted system state.

The main functions of the Root of Trust are [8]:

• Secure Boot verifies the integrity and authenticity of the firmware before
executing it. Secure boot is used to construct a chain of trust that goes from
hardware components to the application layers. This can be used to prevent
the injection of malicious code during the boot.

• Secure Storage provides a protected environment for storing sensitive data
by isolating the information from the entire system, thereby preventing both
physical and remote attacks.

• Secure Attestation is used to verify the identity of users or devices to guarantee
access only to trusted entities. It can be also used to generates ephemeral keys,
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which are essential for protecting conversations and safeguarding information
from tampering and eavesdropping.

• Secure Update prevents injection of malicious code via compromised update,
by verifying the authenticity and integrity of updates before installation.

• Cryptographic Acceleration used to perform encryption, decryption and signa-
ture faster than software alone.

• Secure Debug restricts access to debugging features giving the possibility
to perform these features only to authorized users. This prevents that the
attacker extracts sensitive information by exploiting debug interface.

2.1.3 Architecture of TPM
The TPM can be implemented in multiple forms but typically it is realized as
discrete chip welded into device’s motherboard. Modern implementation integrate
TPM in the CPU or chipset. It is a passive device this means that it perform only
action after a command is received. The architecture of the TPM include various
components [9] [10].

Figure 2.1: Architecture of TPM – diagram taken from Trusted Platform Module
2.0 Library Part 1[9, p. 39].

The TPM architecture is formed by a set of cryptographic functions, which are used
to set up the basis of its operations. These functions include asymmetrical encryp-
tion, symmetrical encryption, hashing and digital signatures. The integration of
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these algorithms allows the TPM to perform the key generation, the storage of the
keys and the encryption of safe data in a tampering resistant way. Asymmetrical
encryption, in particular through RSA or ECC algorithms, allows the key exchange
and safe digital signatures, thus guaranteeing non -repudiation and authentication.
Symmetrical encryption, such as AES, is used for rapid and efficient encryption
of data, contributing to the confidentiality of the sensitive information processed
by the TPM. Hashing algorithms, in particular SHA-256, play an essential role in
the functions of verification of the integrity of the TPM. They are used to create
unique digital fingerprints for software and firmware components. By generating
hash values, that correspond to the measurements of the software states, the TPM
can ensure that the start -up process has not been compromised. This ability is
crucial to establish a "trusted root" within the processing environments, since the
TPM can certify the integrity of the systems in which it is distributed.
Another component is the non volatile memory (NV memory) used to store keys
and certificates. There are also special memory register called platform configu-
ration registers (PCRs), which are volatile memory that stores the hashes of the
measurements of the system components.
The random number generator (RNG) is used to provides randomness for cryptog-
raphy operations.
An important TPM’s element is the execution engine that permits to execute
commands within the TPM in a secure way.
The I/O interface help to communicate with the external world.
TPM exposes its functionalities through a set of standard software interfaces. The
TPM Software Stack (TSS), defined by TCG, provides a layered architecture that
allows application and operating system to interact with TPM without knowing
hardware-specific details. TSS is organized in more levels each one with a different
level of abstraction [11].

• Feature API (FAPI) high-level interface to perform common operations like
keys creation and attestation.

• Enhanced System API (ESAPI) mid-level of abstraction that permits a broader
spectrum of operations.

• System API (SAPI) low-level interface that corresponds to the commands
defined in the TCG specific of TPM 2.0.

• Resource Manager handles TPM when more applications would like to use it
simultaneously.

This layered design makes TPM more flexible allowing applications to communicate
directly with API, while those who need advanced features can use the levels closest
to the hardware. An example of implementation is the open source project tpm2-tss
used in Linux. [12]
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TPM can be implemented in three different way [13]. Discrete TPM is an au-
tonomous physical chip welded in the motherboard, this type of TPM offers the
maximum level of security and they are used in most critical system. Integrated
TPM is also an hardware solution that is integrated into one or more semiconductor
packages together and separated from other components. Firmware TPM is a
software solution, that is executed in a protected environment such as a Trusted
Execution Environment (TEE), within CPU or System-on-Chip (SoC). Software
TPM it’s an emulator to simulate TPM without hardware protection. It’s the less
secure type, in fact is used during the development and testing phase to simulate
the product.
In the following scheme it’s possible to observe the main differences between each
type of implementation.

Figure 2.2: TPM’s types

2.1.4 Key functionalities of TPM
Key generation and Management

The key generation is one of the fundamental functionalities performed from the
Trusted Platform Module. Cryptography is the art of modifying information to
make them unreadable without knowing the key. This allow people to exchange
information in a way that prevents others from reading it. This process is called
encryption and can be performed through the use of symmetric encryption or
asymmetric encryption, both require the use of a key. As stated before thanks to its
integrated cryptographic engine, the TPM is able to create asymmetric, symmetric

10



State of Art

and ephemeral keys in an isolated and protected environment with respect to the
operating system. The TPM guarantees that the key are produced through a
random number generator and saved in a secure storage.
Trusted Platform Modules (TPMs) store secret values called seeds that remain
within the module and persist after system reboots. These seeds facilitate deter-
ministic key generation, eliminating the need to directly store cryptographic keys.
The process of key generation follows TCG’s standards and can generate different
types of key, each with a specific purpose. [14] [15]

• Endorsement Key (EK) is a persistent asymmetric key, installed in the TPM
during the production phase. This key represents the root of trust for operation
of attestation. The Endorsement Key (EK) is a public/private key-pair. The
private key is generated within the TPM and is never revealed outside. EK
uniquely identify TPM and other functions that cannot be modified. It can
be observed that much of the trust related to the TPM comes from the
characteristics assigned to the EK.

• Storage Root Key (SRK) is created when the TPM is initialized. As part of the
key hierarchy, it serves as the root of the storage structure. The Storage Root
Key protects other keys by encrypting them before they are stored outside
the TPM. This means that only the TPM that originally created these keys
can later reload and use them, making the system security more robust and
trustworthy.

• Attestation Identity Keys (AIK) are used to attest, allowing TPM to sign
quotes about the integrity of the platform. They are used to avoid direct
exposure of the EK. Typically, AIKs are certified by a Privacy Certificate
Authority (CA) or through Direct Anonymous Attestation (DAA) protocols.

• Ephemeral and session keys are temporary keys generated by the TPM for
the duration of a session. These types of keys are ephemeral, meaning that
they are deleted when the session is closed.

The following figure illustrates the structure of the key hierarchy in the Trusted
Platform Module (TPM).
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Figure 2.3: Key Hierarchy - diagram taken from Eric Chiang posts [14, p. 1]

Secure Boot and Firmware Integrity

The execution environment for code must be strictly controlled. Secure Boot refers
to the process of establishing a verifiable and secure initial system state. Ensuring
integrity involves storing the signature of the boot sequence in the Trusted Platform
Module (TPM) and verifying that this signature is valid during each boot. The
system cannot proceed without confirmation of the boot sequence by the TPM.
Standard secure boot methods are used to construct a chain of trust that goes from
hardware components to the application layers. This approach can be replicated
across several stages, creating a chain of trust by dividing the boot process into
distinct levels. [10]

Figure 2.4: Secure Boot

A first protected bootloader A, stored in a secure memory, verifies the integrity
and authenticity of a second bootloader B. The second bootloader, B, verifies
the integrity and authenticity of the Operating System kernel and the Firmware.
Typically, the first bootloader, A, cannot be modified and is trusted, whereas the
second bootloader, B, can be updated.
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Remote Attestation

Remote attestation constitutes a core function of the Trusted Platform Module
(TPM). This process allows an external verifier, known as a challenger, to acquire
trustworthy evidence regarding the integrity and configuration of a remote platform.
This function is accomplished by utilizing measurements stored within the TPM.
The primary objective of attestation is to verify that the system, whether hardware
or software, operates only authorized software and firmware, and remains free from
malicious code. During the attestation process, two distinct roles are defined: the
Attester, which refers to the entity that contains the TPM and seeks to demonstrate
its integrity, and the Verifier, which aims to assess the integrity of the Attester.
The process for performing remote attestation is the following [16]:

1. The Verifier sends a challenge to the Attester used to avoid reply attacks, plus
a command that tells the platform to read the values stored in the Platform
Configuration Registers (PCRs) and report them along with a signature. This
report is commonly referred as attestation report or quote. Since the report
values could be forged, the report must be signed using the Attestation Key
(AK) that is certified by the Endorsement Key (EK) or a Privacy CA. This
signature serves to confirm that the measurements are authentic and originate
from a specific TPM, since the EK is unique to each device.
The TPM manufacturer issues a certificate of identity for the AIK, signed by
the EK or a Privacy CA, so that the Verifier knows that the AIK belongs to a
genuine TPM without exposing the EK key itself.

2. The Attester signs the measurements and challenge using the AK private key
and sends them to the Verifier.

3. The Verifier validates the signature thanks to the AK public key and checks
the received measurements against reference measurements (known as good
values).

4. If the Verifier determines that the platform’s configuration is secure, the
Verifier will grant an authentication key to the platform, indicating a valid
attribute.
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Figure 2.5: Simplified workflow of Remote Attestation

Remote attestation is more than a single process and can take several forms, each
with its own practical factors. The main difference is between static attestation,
which uses measurements from the boot process stored in Platform Configuration
Registers (PCRs), and dynamic attestation, which starts after boot by a trusted
component like a hypervisor to check the platform’s current state. Static attestation
allows to verify that the system is in a safe state during the boot, while dynamic
attestation allows for checks runtime vulnerabilities that could not be founded
during the initial boot attestation. [17]
Even if remote attestation brings security advantages, it also comes with practical
challenges. It’s essential to keep updating Reference Integrity Measurements (RIMs),
since old or missing values can cause false negatives. In large environments like
enterprises or cloud systems, scalability is an issue because many devices may need
to be attested simultaneously. [18]

Integrity of Data

Binding is a fundamental function of the Trusted Platform Module (TPM), which
ensures data protection. This process involves encrypting information in a way
that only the device that generated the keys, or to which the keys are associated,
can decrypt the data. In fact, the data are restricted to the specific hardware
and cannot be accessed from an unauthorized device. The binding is particularly
important for sensitive files, like cryptographic keys or digital certificates. This
process strengthens the trustworthiness of the system by binding information to
the TPM, which acts as the root of trust.
In the binding process, the data to protect are encrypted with TPM’s blind key,
which is a unique RSA key derived from a storage key. Since the key is TPM-specific,
it cannot be used outside, and the data can be decrypted only on a platform that
has that TPM.
Another important process that ensures the integrity of the data is the sealing pro-
cess. Unlike the binding process, which is a standard encryption procedure, sealing
also relies on the system’s current state as recorded in the Platform Configuration
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Registers (PCRs). The Trusted Platform Module (TPM) prevents decryption
unless the PCR values match those stored during encryption. Consequently, data
is accessible only when the machine boots in the identical security state. [15]

Protected Location

One of the fundamental security properties of the Trusted Platform Module (TPM)
is the ability to offer secure environments for managing sensitive data and crypto-
graphic operations. In the specification, a distinction is made between protected
location and shielded location. A protected location ensures that data, such as
private keys, cannot be read or extracted directly from the TPM, thus offering
passive protection even when such data is stored externally, as long as it remains
encrypted. A shielded location, on the other hand, implies an active protection
context: sensitive data can only be used within the TPM via protected capabilities
(functionalities that can be executed only in the TPM), ensuring that critical
information never leaves the secure confines of the device. Together, these two
functions form the core of the TPM’s ability to protect keys and operations from
unauthorized access or manipulation. [7]

Authorization

The authorization process involves verifying who can access specific functionalities
and information within the TPM. TPM supports different authorization mechanisms
[9]:

• Password-Based Authorization is the simplest method, which involves sharing
a password between the TPM and the user or software that requires access.

• HMAC-Based Authorization is a method that can help prevent reply attacks
by utilizing a nonce, specifically one for the TPM and another for the caller.

• Policy-Based Authorization defines complex constraints through TPM policy.
Some of these constraints could include: PCR values, the signature of a specific
entity, counters, or temporal limits.

Support to authentication protocols

The Trusted Platform Module (TPM) is not only a module for key encryption and
protection, but also provides fundamental mechanisms for authentication protocols.
Thanks to its architecture based on asymmetric keys and a hardware root of trust,
TPM enables strengthening authentication processes at both local and remote
levels. [19]
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• Key-based authentication: The TPM generates and stores cryptographic keys
that can be used in authentication protocols, such as RSA and ECC, ensuring
that private keys never leave the device.

• Challenge-response: The TPM can respond to cryptographic challenges pro-
posed by a server or verification entity, demonstrating possession of a key
without revealing it.

• User credential protection: TPM can be integrated with authentication proto-
cols such as Kerberos, TLS, or virtual smart cards, securely storing session
keys and certificates.

• Single Sign-On (SSO) and two-factor authentication: combining TPM with
PIN, password, or biometric data results in a secure hardware factor that
strengthens the entire login process.

• Remote Attestation.

2.1.5 Real-world applications of TPM
Security in Windows 11

With the introduction of Windows 11, Microsoft made support for TPM 2.0 manda-
tory, recognizing its central role as the trusted hardware root for operating system
protection. TPM facilitates different security features, in particular BitLocker and
Windows Hello.

BitLocker utilizes TPM to securely safeguard disk encryption keys, ensuring data
remains inaccessible if the drive is removed or the system is tampered. BitLocker,
a complete disk encryption function implemented in Microsoft Windows, is based
on a multi -level encryption protocol to safeguard sensitive data. At the center of
its framework are two critical keys: the integral volume encryption button (FVEK)
and the volume key (VMK). The FVEK is a symmetrical key generated specifically
to encrypt the data on the volumes, while the VMK acts as an intermediary that
encrypts the FVEK. This double key approach is the basis of BitLocker’s security
architecture, facilitating secure encryption and decryption processes. At the time
of the start of the system or access to the user, the VMK is decrypted using various
authentication mechanisms, allowing access to FVEK and thus allowing the decryp-
tion of the stored data. The use of the VMK allows BitLocker to provide further
security levels, ensuring that even if the FVEK is compromised, the encrypted
data would remain safe unless the VMK is possible to access. The VMK can be
protected using different authentication methods, including password-based access,
recovery keys and hardware-based safety via the reliable platform module (TPM).
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The importance of TPM becomes particularly obvious in the management of VMK.
When using BitLocker, the VMK is safe in the TPM chip. This hardware security
module guarantees that the VMK cannot be extracted or compromised by unau-
thorized software, thus retaining the secret of FVEK. BitLocker can works without
a Trusted Platform Module (TPM); however, with the use of TPM, it validates
the integrity of boot and system files before decrypting a protected volume. [10] [20]

In collaboration with BitLocker, Windows Hello serves as an advanced authen-
tication method which improves the user experience by providing secure access
without the need for traditional passwords. Using TPM, Windows Hello facili-
tates the management of biometric data, the firm storage of fingerprints or facial
recognition data in the module. This prevents exposure of authentication data
sensitive to potentially vulnerable operating environments, considerably reducing
the risks associated with systems based on passwords. The integration of TPM
into Windows Hello allows the generation of unique cryptographic keys linked
to the authenticated user; These keys are essential for operations such as secure
connection processes, unlock efforts of devices and even integration with online
services requiring user identification. [21]

Could and Virtual Environment

Together with the evolution of cloud computing, the concept of a virtual trust
platform module (VTPM) has become a fundamental innovation. The VTPM repli-
cates the central functionalities of a physical TPM, but operates within virtualized
environments. Its implementation in cloud infrastructure is particularly significant,
since it allows multiple tenants to safely share the underlying hardware while
maintaining their different security parameters. The VTPM generates, stores and
manages virtualized instances of keys and credentials in a way that aligns with multi-
ple cloud services. This is generally achieved through optimized emulation based on
software of TPM functionalities, allowing a safe virtualization of computing. Given
the growing adoption of TPM and VTPM in cloud and virtual environments, an
exhaustive analysis of its implications is essential, particularly in relation to safety,
performance and compatibility challenges. Security remains a main consideration,
since the deployment of TPM or VTPM does not automatically guarantee complete
protection against all forms of cyber threats. Potential risks include attacks against
hypervisors infrastructure and vulnerabilities introduced through erroneous con-
figuration of the VM that require comprehensive risk assessments and mitigation
strategies. Performance implications arise from computational overload associated
with cryptographic operations that can influence the capacity for response and
general efficiency of cloud services. Since TPM operations can incur latency due to
cryptographic processing requirements, especially in high demand environments,
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an examination of how to balance security benefits with performance compensation
is essential. In addition, compatibility challenges is a significant barrier in the
implementation of TPM and VTPM within cloud due to heterogeneity of hardware
and software platforms, and the variations of TPM specifications with different
manufacturers. In addition, existing virtualization technologies must guarantee
integration with physical and virtual TPM implementations to avoid interruptions
of the service. To address these compatibility challenges it is important the collab-
oration between cloud suppliers, hardware manufacturers and software developers
to create standardized solutions and guidelines to facilitate the adoption of TPM
in the cloud.

Internet of Things (IoT)

IoT devices spread through various sectors, including medical care, transport and
industrial automation, its interconnected nature raises important security concerns
related to the integrity of data, confidentiality and user privacy. Rapid diffusion
of these devices appear not to be in parallel with adequate safety measures, this
makes IoT networks vulnerable to various cyber threats, including unauthorized
access, data tempering, and distributed denial of service attacks (DDOS). There-
fore, ensuring security within the IoT ecosystem is essential not only to protect
confidential information, but also to maintain user confidence and to guarantee
the reliability of services that depend on millions of users around the world. The
TPM could play an important role in improving the security features of IoT. It
can facilitates authentication of the device, ensuring that only legitimate devices
can access to the network. This is particularly crucial in IoT environments, where
if unauthorized devices obtain access can lead to alarming security violations. In
addition, TPM allows safe communication channels through the key establishment
and management, safeguarding the data transmitted between IoT devices and their
associated applications. In addition, the capacity of TPM to verify the integrity
of the system, including the integrity of the firmware and the software, acts as
a significant element against malware and other malicious exploits designed to
compromise device performance or obtain unauthorized access to sensitive data. In
addition, the integration of TPM into IoT devices improves the general resilience
of the IoT ecosystem by providing a basis for establishing trust not only within
individual devices but also throughout the network. Even if there are a lot of ad-
vantages of the introduction of TPM in IoT, several challenges prevent its adoption.
One of the main challenges is the lack of standardization between various TPM
implementations. Given the variety of IoT devices, manufacturers can implement
TPM technology in different way, this could make communication and cooperation
between devices difficult. In addition, scalability restrictions and resources on
low power devices represent significant barriers to TPM implementation. Many
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IoT devices are designed to operate with minimal energy consumption and low
computational power, making the embedding of additional hardware modules diffi-
cult. Consequently, the integration of TPM technology into IoT devices requires
innovative designs and optimizations, to make sure that safety improvements do
not obstruct the efficiency of IoT. [22]

2.1.6 Vulnerabilities
This subchapter examines the vulnerabilities that can be found in TPM technology
and the challenges associated with its adoption. Understanding these weaknesses
is crucial to assessing the validity of TPM as a solution to ensure data integrity
and confidentiality. The main challenges associated with the adoption of TPM
arise from the complexity of its specification and the consequent extension of the
attack surface. The TPM 2.0 reference library is multifaceted and difficult to
manage without risk: an obvious example is the CVE-2023-1017 and CVE-2023-
1018 vulnerabilities, which affected billions of devices due to parsing errors and
buffer overflows in the library itself.[23]

Architectural and Implementation Vulnerabilities

In discrete TPMs (dTPMs) communication occurs on external buses, such as
SPIs or LPCs, susceptible to interception by an adversary with physical access; in
contrast, in TPM firmware versions (fTPM or PTT) the module is integrated into
the CPU or chipset, reducing physical exposure but increasing the attack surface
through side and shared channels. The operational complexity related to the use
of PCR registers for measured boot and for remote attestation is another issues.
While they make it possible to validate the integrity of the start-up chain, they
also require strict management policies and the constant updating of reference
baselines, without the system risks false positives or, worse, the impossibility of
detecting real compromises. [24]
A further challenge concerns the quality of the random number generator provided
by the TPM, whose compliance with the NIST SP 800-90 and FIPS 140-3 standards
is essential, but not always uniformly verifiable in different devices [25].

Firmware vulnerabilities and Software Stack Vulnerabilities

Firmware vulnerabilities represent another significant risk vector within TPM
technology. The firmware operates in a privileged mode and has wide control of
the system. Firmware violations can lead to unauthorized access or manipulation
of cryptographic functions performed by the TPM. An important problem issued
when the firmware is outdated or without patches. If the firmware has known
weaknesses, attackers can exploit them by sending malicious code or commands to
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the TPM.
In addition, insecure communication protocols are another type of firmware vulner-
ability. TPM often communicates safely with other devices, but if these communi-
cation protocols are weak, attackers can intercept data that are transferred. Poorly
secured firmware can lead to data leaks and unauthorized access to confidential
information.
Finally, implementation errors in libraries and the software stack, as demonstrated
by the 2023 vulnerabilities, confirm that the robustness of the TPM depends not
only on the hardware but also on the quality of the code that handles its operations.
[26]

Physical and Side-Channel Attacks

Hardware defects in TPM, although less frequently reported than software vulnera-
bilities, carry critical risks. The most relevant attack is the side-channel attack, in
particular through the analysis of module response times. TPM-FAIL has shown
how both dTPMs and fTPMs can reveal enough information to reconstruct ECDSA
keys through timing measurements, with a few thousand observations. [27]
These attacks are often aimed at cryptographic operations used by the TPM,
analyzing time information, energy consumption, or electromagnetic emissions. If
successfully run, an adversary could recover cryptographic keys or confidential data,
defeating the central purpose of the TPM. An example of a side channel attack is
the well-documented "electromagnetic side-channel attacks," which allows attackers
to capture and rebuild sensitive signals emitted by the TPM, revealing private keys.
[28]
Added to this are cases of traffic interception on external buses in systems with
dTPM. Research has shown how it is possible to capture BitLocker unlock keys
using economical tools for sniffing SPI or LPC traffic. [29]
Another physical vulnerability is related to failure injection techniques. In this
method, attackers try to induce errors in the TPM using different physical means,
such as voltage peaks or temperature changes. When normal TPM operations are
interrupted, confidential information may be exposed or compromised. [30]
Finally, TPM-only configurations for disk protection, in addition to being vul-
nerable to such techniques, also lend themselves to more classic bypasses such as
cold-boot attacks, which exploit the remanence of data in RAM, and DMA attacks.
[29]

Virtual TPM Vulnerabilities

Virtual Trusted Platform Modules (vTPMs), widely used in cloud environments
to provide a virtual “root of trust”, introduce additional layers of complexity and
attack surface. While offering flexibility and functions analogous to a physical
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TPM, vTPMs lose the physical security properties inherent in a dedicated chip and
depend entirely on the integrity of the host environment: if the hypervisor, virtual
machine monitor, or cloud control plane is compromised, all the guarantees offered
by the vTPM are severely weakened.
In such scenarios an attacker can exploit techniques such as VM escape, privilege
escalation, or VMM compromise to directly manipulate the vTPM service —such
as extracting keys from it or altering cryptographic operations— since trust is
delegated to the host’s software. The literature and practical implementations
also show more “ordinary” class vulnerabilities: NVRAM replacement, rollbacks,
vTPM backing file attacks, and communication channel control attacks between
guests and vTPMs, all of which are possible when the vTPM is not protected
by an isolated hardware environment (e.g., TEE). For this reason, many recent
proposals (e.g., SvTPM) recommend encapsulating the vTPM logic in a Trusted
Execution Environment or anchoring the vTPM to trusted hardware resources:
these countermeasures reduce the reliance on hypervisor correctness and mitigate
control attacks and key theft, while maintaining the benefits of virtualization.[31]

2.2 Physical Unclonable Function (PUF)
2.2.1 Definition
In recent years, the panorama of IT security has undergone significant trans-
formations, which require advanced techniques to strengthen the integrity and
confidentiality of data. A promising solution that has emerged in this domain is the
concept of physically unclonable functions (PUF). PUFs are unique cryptographic
primitives that exploit intrinsic variations in the physical characteristics of circuits
to generate answers that are distinct and cannot be replicated. A PUF operates
using the non-ideals found within the hardware components, such as the variations
of the properties of silicon, the inconsistencies of production and the differences
deriving from environmental influences. These factors culminate in the creation of
a response that is not only distinctive for each instance of a PUF but also resistant
to cloning efforts. The fundamental advantage of PUF technology lies in its ability
to produce a unique output based on these physical characteristics, thus facilitating
safe authentication and key generation processes that are based on the hardware
itself. In the context of authentication, the PUFs present significant progress with
respect to traditional cryptographic keys. Systems based on conventional key,
although effective, are often vulnerable to various forms of attack, including key
theft, replica and unauthorized access. On the contrary, the PUFs offer a solid
alternative, since the authentication process does not depend on a static key, which
can be intercepted or duplicated. Instead, the PUFs generate a reconstruct each
time a unique response based on the physical status of the device at the time of
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the query . [32] [33]

2.2.2 Property
PUFs exploit the inherent manufacturing variations that are within silicon hard-
ware to create unique digital identifiers or digital fingerprints for each device. The
silicon fingerprint is generated through inherent variations of the process that occur
during the manufacture of semiconductors. These variations occur thank to factors
such as temperature fluctuations, voltage differences and material inconsistencies.
Consequently, each chips manufactured, even if they have the same production line,
will have negligible discrepancies, which will lead to unique identification character-
istics. The silicon fingerprint acts as a digital signature for hardware, promoting
a robust identification that is practically impossible to replicate. These functions
are evaluated based on several parameters that contribute to their robustness and
effectiveness. [33]

• Uniqueness of PUFS is essential; Each instance is generated through random
physical characteristics that arise from the manufacturing process, ensur-
ing that even identical devices exhibit different responses. This uniqueness
property is essential to distinguish one unit from another in a multitude of
applications, to perform safe authentication and generation of cryptographic
keys. A device can be uniquely identified through its set of challenge-response
pair (CPR).

• Despite its unique characteristics, it is essential that the PUF produce consis-
tent results when they are submitted to the same entry, which allows reliable
performance over time. This aspect guarantees that legitimate users can
recover the same response to interacting with the PUF, reinforcing their role
in applications where authentication is vital. The ability to reproduce identical
results in specified conditions is essential for confidence in hardware security
mechanisms.

• The unpredictability of the results is vital to ensure several attacks, including
those derived from attempts on cloning or reverse engineering of the device.
PUF generates results that are not easy to predict, which fortifies their
effectiveness as a security measure. This unpredictability element ensures that
even if an adversary has an instance of a PUF, it cannot simply extrapolate
or derive the responses of other identical units.

• Unclonability further consolidates the importance of PUF in the field of
security devices. The physical variation inherent between different iterations
of the same hardware makes it practically impossible to clone a precision PUF,
also for manufacturer. This feature serves as a formidable barrier against
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replication attacks aimed at avoiding security characteristics. Unclonability
ensures that even with access to the same manufacturing conditions, intrinsic
discrepancies in unique physical characteristics prevent the generation of
equivalent PUF outputs.

• Evaluability means a computation of the response, given the challenge, which
is possible within the strict timing, area, power, energy and cost budget. So,
the response must be easy to compute.

• One-Wayness means that given a random response of that instance, there isn’t
an efficient inversion algorithm on the PUF instance, that finds a challenge
that would produce a response equal or close to the given response.

PUFs can be classified according to the size of Challenge-Response Pairs [33].

• Weak PUF are defined by their limited production capacity, generally capable
of producing a singular response for each unique challenge presented. They
are mostly used for key storage. The CPR access must be restricted, otherwise
the attacker can try to predict the unknown CPR. Example of weak PUF is
the SRAM-based PUF.

• Strong PUF are equipped with a significantly larger output potential, allowing
more responses corresponding to a single challenge. This improvement allows
the creation of resilient authentication systems. A portion of the CPR set
can be public, because is impossible to predict the unknown CPR from them.
Example of strong PUF are Arbiter and Ring Oscillator design.

PUFs are classified according to their composition in three different types: non-
electronic, electronic and silicon-based.
Non-electronic PUFs mainly use physical attributes of their substrates to create
intricate patterns that are inherently exclusive to each filament. They are based
on non-electronic technologies or material, for example, the random fiber structure
of a sheet of paper.
On the contrary, electronic PUFs integrate active components that interact with
electronic systems to produce responses to external stimuli. This interaction allows
advanced characteristics as dynamic real-time verification processes, which signifi-
cantly improve the effectiveness of security measures.
Silicon-based PUFs represent another critical innovation within this domain. These
PUFs take advantage of the properties of silicon, the random micro-variations
that are created during manufacturing, to develop unique complex but efficient
identifiers that are not only reliable but also scalable with the social demand for
security improvements. [33]

23



State of Art

There is another crucial distinction between intrinsic and non-intrinsic PUFs. The
intrinsic PUFs exploit the microscopic variations in the semiconductive themselves,
allowing unique fingerprint capacities without the need for additional components.
However, non-intrinsic PUFs require the integration of additional element to gener-
ate distinctive responses. [33]

2.2.3 Types of PUFs
PUFs can be categorized in various classes based on their underlying operational
principles. Delay-based PUFs, exploit variations in propagation delay in circuit
elements. On the other hand, memory-based PUFs depend on unpredictable
variations in memory elements, such as SRAM cells or DRAM cells. Mixed signal
PUFs combine aspects of delay and memory approaches, usually using components
such as oscillators or capacitors to generate exclusive signatures under different
environmental conditions.

Arbiter PUF

PUF Arbiters are explicitly classified as non-clonable physical functions based on
the delay, in which the essence of their uniqueness derives from these unpredictable
delays of the path. The architecture of an arbiter PUF consists on two parallel
rows of multiplexer and an input signal, that is splitted in two identical paths,
one on each row. The sub-paths taken from the input signal is decided from the
binary challenge. The fundamental construction embraces the concept that small
differences in propagation delays through the device can produce significantly varied
production. The response is given by an arbiter, typically a D-Latch Flip Flop,
that captures which of the two signals arrives first. [33]

Figure 2.6: Arbiter PUF Design - figure taken from [34, p. 1]
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The process of generation of unique responses within PUF Arbiter is mainly at-
tributed to the variations of the delays of the devices and associated parameters,
which can be sectioned in different key aspects. Firstly, the production process gives
small but critical differences in the actual dimensions of the transistors and in the
interconnection threads, changes that can thinly move the electrical characteristics,
leading to disparity in the travel times of the signal. Secondly, operating conditions
such as the temperature and power voltage can affect the mobility of electrons
within the semiconductor material, further contributing to the variability of the
delay. Thirdly, the intrinsic stochastic nature of these lines of delay guarantees
that identical devices will also produce different answers to the same challenge,
granting the PUF Arbiters their fundamental characteristics of uniqueness.

In terms of resistance to reverse engineering, the PUF Arbiters are designed
in such a way that the internal mechanisms cannot be easily discerned by the exit
produced. The complexity and unpredictability of the physical layout and intrinsic
randomness in the delays of the path make it extremely difficult for the opponents
to reconstruct the PUF or deduce its specific output characteristics. This aspect is
essential for applications that require the maintenance of secret key information
safely within a chip, as it limits exposure to contradictory attacks that generally
try to extract the cryptographic keys through invasive techniques.

The implications of these advantages become particularly relevant in applica-
tions such as safe communications, in which the integrity and authenticity of the
information transmitted on the networks are crucial. The ability to generate unique
cryptographic keys that are firmly connected to the hardware platform allows
safe distribution and authentication protocols that significantly reduce the risk of
man-in-the-middle attacks. [33]

Ring Oscillator PUF

Ring oscillator PUF represent a specific implementation that exploit the dynamic
behavior of ring oscillator circuits to generate unique answers. A ring oscillator
is an arrangement of a odd number of inverters connected in a loop forming a
closed circuit. The operational mechanics of a PUF ring oscillator depends on
variations in the propagation delay of each inverter, which can be influenced by
factors such as temperature, tension and inconsistencies inherent in manufacturing.
By using two multiplexer is possible to select two oscillators an then compare their
frequencies. In base of the result of the comparison the output will be zero or one.
The challenge is the input of the two multiplexers, so in base of the challenge two
specific oscillators will be selected. [33]
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Figure 2.7: Ring Oscillator Design - figure taken from [35, p. 1]

When measuring the frequency of ring oscillator is possible to derive a unique
output that can be used as an cryptographic key or for device authentication. The
output of a ring oscillator PUF depends also on the specific circuit configuration,
which is dictated by the stochastic nature of the silicon manufacturing process.
This variability ensures that each instance of a ring oscillator PUF is distinct.
In addition, the deployment of ring oscillators can mitigate the risks associated
with the attacks of the side channel. An opponent tries to collect information from
the physical implementation of the device, including the analysis of the times or the
consumption of energy, but the unpredictable intrinsic behavior of ring oscillators
complicates this type of analysis, since the characteristics of the output remain
significantly obscured. [33]

SRAM-based PUF

SRAM PUF uses the unique behavior of SRAM cells during the energy phase.
When the power is provided to a SRAM, the cells enter a state of power and stabilize
at a particular binary value, "0" or "1". The state of single tension for each cell
constitutes a distinct bits chain, which serves as a signature in the device’s silicon.
This bits chain remains consistent for a given device but is unpredictable and unique
on different devices, influenced by minimum variations in the manufacturing process,
temperature and other environmental conditions. This inherent randomness leads
to the generation of an exclusive distinct response from each device, actually serving
as a fingerprint. The selected cell is chosen from the challenge. [33]
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Figure 2.8: SRAM cell power-up - photo taken from Roel Maes’ book [33, p. 35]

In the figure it’s possible to observe that during the power-up phase the SRAM
cell is in an insecure state (gray line) and based on the physical characteristics of
the cell, it will stabilize either at 1 or 0.

A remarkable operating mechanism of SRAM PUFs is the process known as
bits massage, which plays a key role in increasing the reliability of PUF outputs. As
SRAM cell characteristics may display instability due to environmental fluctuations
or aging effects, the initial response may vary in subsequent energy cycles. To
address this variability, a series of bits masking algorithms can be implemented to
improve output robustness. Bits massage involves the application of error correction
or coding techniques that can selectively mask unreliable bits based on predefined
rules or historical data collected from previous measurements. This corrective
approach allows the stabilization of the PUF output, thus ensuring that, even
with small fluctuations, a consistent and reproducible unique response can still be
generated. The variability of power up state of SRAM cells serves as mechanisms
device identification and key generation. Additionally, SRAM-based PUFs benefit
of the high density of SRAM cells that allow for a large number of bits for robust
key generation. [33]

New Solutions

Optical Physical Unclonable Functions (oPUFs) represent one of the first and most
studied implementations of PUF technology. Unlike electronic PUFs, which rely
on the microscopic variations found in semiconductor devices, oPUFs exploit the
complex and inherently random interaction between light and the internal structure
of a disordered optical medium. When a coherent beam of light, such as a laser,
illuminates a transparent material characterized by a random distribution of diffu-
sive centers, a unique speckle pattern is generated which constitutes the system’s
response to the specific challenge. Since these scattering centers are determined by
uncontrollable variations introduced during the manufacturing process, each optical
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medium produces a unique, unrepeatable response that is practically impossible
to clone. The safety of oPUFs derives from the exponential complexity of the
scattering process: even minimal differences at the nanoscale generate completely
different interference patterns, making any attempt at replication computation-
ally and physically unachievable. Furthermore, the high dimensionality of optical
challenge–response pairs provides a very large source of entropy, allowing for the
extraction of robust cryptographic keys. This makes oPUFs not only intrinsically
unclonable, but also highly resistant to modeling attacks, since the relationship
between light input and output speckle patterns is too complex to be approximated
with classical algorithms. [36] [37]

The development of Quantum PUFs (qPUFs) takes this concept further by utiliz-
ing quantum mechanics, where challenges arise from quantum states rather than
classical signals, in which challenges are no longer classical signals, but quantum
states, and the responses derive from the interaction between these states and the
unrepeatable physical properties of the device. QPUFs draw their strength from
the fundamental principles of quantum mechanics. Firstly, no-cloning theorem
ensure that no perfect copying of unknown quantum states can be performed,
ensuring a higher level of security than traditional PUFs. Moreover, the destructive
nature of quantum measurement makes it impossible for an adversary to observe
the state, limiting the possibility of invasive attacks. Finally, the inherent proba-
bilistic randomness of quantum measurements contributes to making each response
unpredictable and non-modelable, further strengthening the resistance of qPUFs to
cloning or simulation attempts. Quantum PUF takes advantage of the quantum
tunneling phenomenon, that can be observed in transistor with dimension less
then 100 nm. This method explores the unpredictable and non replicable nature
of quantum mechanics, allowing the generation of exclusive cryptographic keys
that are inherently linked to the individual device. In modern transistors, a layer
of insulating oxide allows electrons to tunnel, generating a small electric current.
Intrinsic variations in manufacturing processes make each layer unique. These
differences result in leakage currents specific to each transistor that create a unique
fingerprint for each chip. [38] [39]

2.2.4 PUF Application
Key Generation

Secret key generation is a cornerstone in all cryptographic systems. A key must
have three main properties: randomness that ensure unpredictability of the key;
uniqueness, to reduce the likelihood of collisions with other keys; and stability, so
that it can be reproduced when necessary. Keys are generated through random
number generators (PRNG or TRNG), usually based on physical phenomena that
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are difficult to predict, such as thermal noise or temporal variations in processors.
However, in many embedded and IoT devices the availability of reliable entropy
sources may be limited. Once the key is generated it must be stored securely:
unprotected storage in non-volatile memory poses the risk of physical extraction and
cloning. Physical Unclonable Functions (PUFs) address these problems, allowing
to regenerate a key “on request”, avoiding having to save it permanently.

In PUF-based key generation first the provisioning phase is executed, during
which a set of PUF responses is acquired and auxiliary data (or helper data) are
generated. This data does not directly reveal the key, but contains enough infor-
mation to regenerate it later. A classic approach uses fuzzy extractors and secure
sketches, which allow stable keys to be derived from noisy sources, correcting the
differences that emerge between different acquisitions. Here, reliability is crucial:
key regeneration must be identical even in the presence of temperature, voltage or
chip aging variations. [33] [40]

There are many schemes that have been proposed for PUF-based key genera-
tion:

• Helper data algorithms: store information derived from responses (syndrome)
that allows you to correct errors. However, a critical issue is the possibility of
leakage: helper data, while theoretically public, can reduce the opponent’s
search space and facilitate key extraction. To mitigate this problem, schemes
such as Index-Based Syndrome coding (IBS) have been introduced (Yu &
Devadas, 2010), which minimizes entropy loss and reduces hardware complexity.
[41]

• PUFKY (Maes et al., 2012): This approach is used to generate 128-bit keys
with high reliability through PUF over FPGA. This scheme combines error
correction codes (BCH), helper data and fuzzy extractors, demonstrating that
a PUF generator can be competitive with classical systems. [42]

• SRAM PUF key generators: exploit the initial random state of SRAM cells
on lighting as a source of entropy. More stable bit selection techniques
and majority voting algorithms increase reproducibility. The approach is
particularly attractive for low-power IoT devices (Gao et al., 2019). [43]

• Pattern Matching Key Generators (PMKG) (Paral & Devadas, 2011): scheme
that overturns the traditional paradigm. Instead of keeping responses secret
and challenges public, it makes short response patterns public and keeps
challenge indexes secret. The key is reconstructed via pattern recognition,
eliminating the need for complex decoders. This reduces hardware costs and
increases resistance to modeling attacks. [41]
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Identification and Authentication

Device identification consists of associating an entity (person or device) with a
specific identity within a set. While authentication consists of verifying the identity
already declared through proof. Within the reign of identification based on PUF,
two main distinction for the categorization of identity can be outlined: inherent
identity and assigned identity. The inherent identities derive from the unique
physical characteristics of the PUF, typically manifested as electrical, optical or
thermal discrepancies for individual devices. These identities are not scheduled or
assigned; Rather, they are a natural consequence of the complex interactions within
the microfabrication process. During the production process, environmental factors
and material inconsistencies contribute to the formation of distinct models that
can be extracted and used for identification. The consequent integrity of inherent
identities provides a solid solution to the challenge of imitation and unauthorized
access, which is fundamental in an era marked by sophisticated IT threats. On the
contrary, the assigned identities are summarized through discounted configuration
or assignment documents once the PUF has been established. Generally, this
involves the association of a specific identifier, such as a unique standard number
or a cryptographic key, with the inherent characteristics of a device produced
by the PUF. While the assigned identities allow customizable integration into
existing identification paintings, introduce potential vulnerability, such as the risks
associated with the management of keys and the possibility of reassigning identity
or theft. The Identification process works is divided in two phases. The first phase
is different based on the type of entity.

• For inherent identities, the first phase consists of collecting all the inherent
identities of the entities that needs to be identified. This phase is called
enrollment phase.

• For assigned identities, the first phase consist of giving all the unique identifier
of the entities that needs to be identified. This phase is called provisioning
phase.

The second phase is similar to both types. In this phase, called identification phase,
the entity presenting its identity when required.
When using PUF (Physical Unclonable Function) as the identity source for a device,
a challenge immediately araises: a PUF’s response is never perfectly stable. Even
though physical variations of silicon are unique and unclonable, the readings of a
PUF may differ slightly due to electrical noise, temperature, supply voltage, or
circuit aging. This means that although two consecutive readings from the same
device are very similar, they are not identical bit by bit. This is where the concept
of fuzzy identification comes into play.
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Fuzzy identification is a technique that allows the “flawed” responses of a PUF
to be used as a reliable fingerprint for identification. The basic idea is to treat
identity not as a rigid, immutable sequence of bits, but as a vector that can tolerate
small errors or discrepancies. In practice, instead of requiring a perfect match, you
accept a match “close enough”, within a pre-established threshold. The process
works in the following way: the system acquires one or more PUF responses and
associates them with the device identity. These responses are then processed
with the help of Error Correcting Codes (ECC) algorithms or similarity metrics
(e.g., the Hamming distance). When a device needs to be identified, it provides
its PUF response again. Even if the new response is not 100% the same as the
recorded one, the system checks whether it is close enough: if the number of dis-
cordant bits is within the acceptable threshold, the identification is considered valid.

At the heart of the authentication of PUF-based entities is the response-response
mechanism, which serves as a fundamental process to check the authenticity of
a device. This mechanism consists in presenting a random challenge to a PUF,
which subsequently produces a corresponding response based on its unique physical
characteristics. The generation and evaluation of challenges and responses create
a dynamic interaction which validates not only the device but also prevents the
feasibility of rereading attacks. Each challenge is generally unique and randomized,
ensuring that even if an opponent captures the pairs of responses to the previous
answer, the PUF will generate different responses for future challenges.The chal-
lenge mechanism is supported by two critical phases: registration and verification.
During the registration phase, the PUF is exposed to a series of challenges from
which it generates a set of corresponding responses. These pairs are stored in a
secure manner, generally in a trust platform or a secure chip, where they can then
be used for authentication purposes. The key aspect of registration is the creation
of a relationship of trust, in which the responses create a secure identity linked to
the physical characteristics of the PUF. After registration, the verification phase
mobilizes the response-response mechanism for authentication entities. In this
phase, a challenge is presented to the PUF of the entity tempting authentication,
and the resulting response is compared to the stored responses derived during
registration. A successful correlation confirms the authenticity of the entity, while
the differences indicate attempts to falsify potential or intrusion. This type of
protocol is low-cost and vary simple but there are several disadvantages:

• The challenge-response pair cannot be reused to avoid reply attack, meaning
that there is the need to store a large number of CRP.

• When the CRP are disclosed the entity can no longer authenticate, and the
enrollment phase must be redone.

• no mutual authentication.
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Mutual authentication, in which both parties in a communication verify mutual
identities before establishing a safe connection, is fundamental. The meaning of
mutual authentication cannot be overrated; It prevents unauthorized access and
the contrast of man-in-the-middle attacks, thus guaranteeing the integrity and
confidentiality of the data transmitted. In an environment in which attacks on
communication channels are increasingly widespread, the effectiveness of mutual
authentication schemes is fundamental in safeguarding sensitive information against
contradictory threats. The described PUF-based mutual authentication protocol is
a modified version of an earlier protocol, in which the order of authentication checks
is reversed: each entity authenticates only to a legitimate verifier. Each entity has
a unique identifier (ID) and its own PUF instance, from which only one response
is needed (no more challenge-response pairs are used). Before commissioning, the
verifier (Ver) carries out an envelopment step, recording in a database the response
of the PUF associated with each ID. For security reasons, the entity’s envelopment
interface is then blocked or destroyed, so as to prevent further direct acquisition of
the PUF responses. The protocol also uses a secure sketch: the entity computes
one “sketch” via a binary multiplication with a parity check matrix (derived from
a block cipher), while the verifier applies the retrieval procedure (with an error
correction algorithm), which requires more computational capacity. Both entities
and the verifier have a cryptographically secure hash function and a secure random
bit generator to produce nonces (random values used only once), which ensure
message freshness and protection against replay attacks. [33]

Protection of Intellectual Property of Hardware

The protection of intellectual property (IP) in hardware has become one of the
main challenges in the design of digital systems. With the spread of global supply
chains, the possibility of cloning, reverse engineering and counterfeiting of inte-
grated circuits and FPGA designs has grown significantly. In this scenario, Physical
Unclonable Functions (PUFs) could be an effective tool for strengthening security
and protecting intellectual property. Guajardo et al. (2007) proposed the use of
intrinsic PUFs on FPGAs as a defense mechanism against cloning. In fact, FPGAs
are particularly exposed to the risk of copying the design: the bitstream that defines
the configuration of the programmable logic can be extracted and transferred to
other devices, allowing the functionality of a circuit to be illegally replicated without
authorization from the designer. The idea is to use the unique and unrepeatable
response of the PUF as a cryptographic key to activate or decipher parts of the
design loaded into the FPGA. During the provisioning phase, the bitstream is
obfuscated or encrypted so only the PUF of the legitimate device is able to generate
the correct key to make it executable. If the bitstream is copied and transferred
to another FPGA it will not work because the new device will produce a different
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response and therefore will not be able to reconstruct the key. [44]

A significant step in the development of intellectual property protection tech-
niques was taken by Zheng and Potkonjak (2014), who introduced architectures
based on reconfigurable digital PUFs. The central idea of this approach is to tie
the proper functioning of a logic block or design to the unique behavior of the PUF
integrated into the chip that hosts it. In this way, even if a hardware project is
copied or cloned and loaded onto another device, it will not work properly without
the authentic PUF. The novelty of these architectures consists in the ability of the
PUF to dynamically modify its behavior. Unlike traditional PUFs, which produce
relatively static responses to challenges, reconfigurable digital PUFs allow internal
configurations to be varied, making output less predictable and more difficult to
model. This feature increases resistance against attacks, particularly those that
attempt to clone or simulate PUF responses through machine learning or reverse
engineering techniques. This architecture is not limited to protecting against static
hardware cloning, but also effective against runtime attacks, such as malicious code
injection or firmware tampering. Since enabling design is continuously dependent
on PUF output, an attacker cannot simply bypass the initial mechanism: the link
between genuine hardware and IP remains active throughout the entire execution.
[45] [46]

Other solution has explored the use of PUFs as watermarking mechanisms. By
incorporating PUF responses as inherent digital signatures into the hardware syn-
thesis process, it is possible to prove authorship of an IP design even in the event of
a legal dispute. Recent studies (Sengupta et al., 2025) have even proposed the use
of digital biomarkers combined with PUFs to provide robust and difficult-to-remove
watermarks. [47]

PUF could be applied in device binding, where the key derived from the PUF is
used to encrypt the code or pattern associated with the IP. In this way, the IP
remains bound to the original chip: even if copied, it cannot be executed elsewhere
without legitimate hardware (Pan et al., 2022). [48]

Secure boot

The introduction of Physical Unclonable Functions (PUFs) helps to increase the
security of boot. Instead of depending on static keys stored in memory, the PUF
dynamically generates the secret key every time the boot is performed. This key
does not exist in any permanent storage, but is produced directly by the chip’s
unique physical characteristics, making it impossible for an attacker to clone or
extract it. During the provisioning phase, only auxiliary data (helper data) is stored,
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which does not directly reveal the key but allows it to be regenerated reliably, even
in the presence of environmental variations. Upon boot, the PUF is stimulated to
produce its response and, thanks to correction mechanisms such as fuzzy extractors,
the original key is reconstructed. With this key, it is possible to decrypt the
firmware or verify its digital signature. If the verification result is positive, the
start continues; otherwise, the device stops the process, preventing unauthorized
code execution. The PUF-based secure boot is therefore an important evolution
compared to traditional models. It combines the advantages of encryption with
the uniqueness of silicon, eliminating the problem of key storage and strengthening
protection against cloning, tampering, and physical attacks. [49] [50] [51]

Vulnerabilities

The large-scale adoption of Physically Unclonable Functions (PUFs) is conditioned
by a number of design and implementation challenges that limit their full techno-
logical maturity. One of the main difficulties concerns the stability of the responses:
since PUFs are based on physical and parametric variations intrinsic to the manu-
facturing process, they are sensitive to environmental factors such as temperature,
supply voltage and aging of the devices. This variability can generate errors in key
regeneration and requires the adoption of correction mechanisms (fuzzy extractors,
helper data), resulting in an increase in complexity and hardware area.

A further challenge is related to technological scalability. With the progressive
miniaturization of production processes, physical variations tend to reduce, making
it more complex to obtain sufficiently unique and unrelated answers. In parallel,
some PUF implementations require significant additional circuitry, with negative
impacts on energy consumption and production costs.

From a security point of view, a crucial problem is the number of challenge-
response pairs (CRPs) that can be managed efficiently. PUFs based on high CRP
space offer greater resistance to modeling attacks, but lead to storage and com-
munication difficulties in real systems. Conversely, reducing the number of CRPs
exposes the PUF to predictability risks.

Two categories of attacks are particularly relevant and have had a strong impact
on the development of countermeasures: modeling attacks and side-channel attacks.
Modeling attacks typology exploits the observation of a set of challenge-response
pairs (CRPs) to train a mathematical or statistical model capable of predicting
with high probability the responses of the PUF to new challenges. Machine learning
techniques such as Support Vector Machines (SVM), logistic regression, deep neural
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networks, and evolutionary algorithms have proven effective against several imple-
mentations, most notably Arbiter PUF and Ring Oscillator PUF. In addition to
CRP analysis, an adversary can resort to indirect methods by exploiting auxiliary
signals produced by the circuit during operation. Side-channel analysis techniques
include observing power consumption, electromagnetic emissions, or circuit response
times. Such information can reveal correlations between the internal state of the
PUF and the responses generated, facilitating the reconstruction of patterns useful
for prediction or even physical cloning.

Replay attacks have also been reported, which exploit the lack of secure pro-
tocols in managing CRPs: an adversary can store legitimate responses and reuse
them in subsequent authentication processes. Finally, the dependence of PUFs on
environmental conditions and operating parameters introduces the risk of instabil-
ity: an attacker can manipulate voltage or temperature to induce systematic errors
and compromise system reliability. [52] [53] [54]

Due to the existence of the challenges and vulnerabilities analyzed, the research on
Physically Unclonable Functions focused on the elaboration of different mitigation
strategies, aimed at increasing reliability and resistance to attacks. To mitigate
the predictability of machine learning algorithms, architectural variants of classical
PUFs have been proposed. These include PUF XORs and PUF Feed-Forwards,
which introduce nonlinearity and make modeling the function more complex. Since
modeling attacks require a large number of challenge-response pairs, an effective
strategy is to reduce the amount of CRPs accessible to the adversary. This can be
achieved by constraining the number of queries allowed or by adopting protocols
that derive internal cryptographic keys without making the raw answers public.
To reduce information leakage through side channels, masking techniques and ran-
domization of execution times are adopted, in addition to the insertion of artificial
noise in consumption signals and electromagnetic emissions. [55] [52] [56]

2.3 Integration between TPM and PUF
2.3.1 Introduction
The objective of this section is to analyze how the integration between TPM
and PUF can constitute a complementary approach, capable of combining the
functional robustness of TPM with the physical uniqueness guaranteed by PUFs.
The integration between TPM and PUF aims to combine the strengths of both
technologies, bridging their respective weaknesses. One of the most promising
applications is to use PUFs for the generation of the TPM primary key in a way
that it is no longer necessary to store the key in a permanent way inside the module,
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reducing the risk of extraction by an attacker. Furthermore, PUFs can serve as
a physical attestation mechanism of the TPM itself. Since the PUF response is
unique and unclonable, it becomes extremely difficult to make a fake or emulated
form that is accepted as genuine. This strengthens trust not only in the software
certified by the TPM, but also in the physical device that hosts it. Finally, the
use of PUFs as a root of trust allows mitigating key-extraction attacks, where
an adversary manages to obtain keys stored within the TPM via side-channel or
invasive analysis. Since the key derived from a PUF does not exist until the time
of its reconstruction and is never stably stored, the attack surface is drastically
reduced.

2.3.2 Emerging Architectures
In recent years, academic and industrial research has explored different architectures
that combine the standard functionalities of TPM with the intrinsic properties of
PUFs, with the aim of building more robust solutions against cloning, key extraction
and advanced physical attacks.

PUFchain 4.0

A first approach is the one presented in PUFchain 4.0 (Bathalapalli, Mohanty,
Kougianos, et al., 2023). In this model, the key generated by the PUF is used to
perform the sealing and unsealing operations of the TPM. In practice, data in the
TPM can only be retrieved if the same PUF regenerates the same response, making
impossible using the module on a falsified device. Integration is particularly suited
to IoT and blockchain scenarios, where it is crucial to link the logical identity of
the TPM to the physical identity of the hardware that hosts it. [57]

iTPM

An evolution of the previous paradigm is represented by the iTPM (keyless TPM)
model proposed by the same authors (Bathalapalli, Mohanty, Kougianos, Iyer,
et al., 2023). In this protocol, primary TPM keys – such as the Endorsement
Key (EK) and the Storage Root Key (SRK) – are no longer stored in non-volatile
memory. On the contrary, they are dynamically regenerated by the PUF whenever
needed. This completely eliminates the risk of key extraction from NVRAM and
reduces the attack surface against physical compromise of the module. [58]

TPM2.0-ready

From an industrial point of view, the company PUFsecurity presented a platform
“TPM 2.0-ready”, the PUF takes on the role of Physical Root of Trust (PhRoT),
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while the TPM manages PCR, attestations and cryptographic protocols. The
central idea is to replace traditional non-volatile memories (NVMs), used to store
keys and certificates, with intrinsic PUFs that derive secrets directly from physical
variations in silicon. The PUF response is stabilized through fuzzy extractor
algorithms and used to securely power standard TPM functions. The approach
aims to reduce complexity, cost and consumption, while maintaining compatibility
with TCG standards. [59]

Dual Architecture

An interesting approach, discussed by Sharma, Joshi and Mohanty (2023), is the
one of dual architecture, in which TPM and PUF operate as two parallel and
complementary entities. In the traditional model, TPM represents the root of
logical trust: it stores or manages cryptographic keys, certifies the status of the
software via Platform Configuration Registers (PCRs) and provides standardized
authentication and encryption services. However, this approach focuses primarily
on the functional and logical plane of the system, and does not directly address
the possibility that the hardware itself could be counterfeited or replaced. This is
where PUF comes in, acting as a kind of physical certificate of the device. Since
the response generated by the PUF is closely linked to microscopic variations
in silicon, each chip possesses a unique and non-replicable identity. Integrating
a PUF alongside the TPM allows the introduction of an independent physical
authentication mechanism, which makes it possible to verify not only the logical
correctness of the operations of the TPM, but also the authenticity of the hardware
hosting it. This combination proves particularly useful in critical contexts such as
smart grids, where the compromise of a single device can have lead to dangerous
consequences across the entire infrastructure. [60]

2.3.3 Practical applications of TPM and PUF

Internet of Things

A critical point of IoTs is the need to guarantee the authenticity of devices and the
protection of cryptographic keys, without being able to count on expensive dedicated
hardware solutions. The TPM offers standardized authentication, attestation and
secure key management capabilities. The PUF provides a unique, unclonable
physical identity, avoiding the need to store static keys in unprotected memories.
This approach ensures protection of attacks based on cloning IoT devices and
greater lightness of security modules, thanks to the elimination of secure NVMs.
[61] [62]
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Cloud Computing

In this context, TPMs are already widely used as the root of trust for remote
attestation and encryption key protection. However, there remain issues related to
possible physical compromise of servers or cloning of security modules. PUFs allow
unique keys to be derived for every physical server, making it impossible to emulate
a TPM in another hardware context. This type of approach ensures security in
provisioning operations: VMs can only be started on authentic machines. [61] [63]

2.3.4 Advantages
• Better strength in cloning; PUFs provide a unique, non-replicable physical

identity for each chip. By integrating this mechanism into a TPM, it makes
it extremely difficult to create counterfeit module that can be accepted as
genuine. This strengthens attestation protocols and prevents attacks based on
hardware replacement.

• No need of permanent storage; Models such as iTPM (Bathalapalli et al., 2023)
allow the primary keys of the TPM to be dynamically regenerated starting
from a PUF, without the need to store them in NVRAM. This reduces the
risk of key extraction through physical or side-channel attacks.

• Two level security; Dual architecture (Sharma, Joshi & Mohanty, 2023) ensures
dual control: TPM attests to the logical state of the system, while PUF certifies
hardware authenticity.

• Compatibility with existing standards; Industrial solutions such as PUFsecurity
PUFcc [PUFsecurity, 2022] show that it is possible to integrate PUF while
maintaining full compatibility with the TPM 2.0 standard.

2.3.5 Challenges
• PUF responses may vary due to environmental factors such as temperature,

supply voltage, or aging of the device. Error correction algorithms (fuzzy
extractors) are needed, but these involve additional complexity and possible
costs in terms of latency and hardware area (Li et al., 2016).

• While TPM is well defined by the Trusted Computing Group, the use of
PUFs is not yet regulated by established standards. This creates difficulties in
interoperability and large-scale industrial deployment.

• The integration of PUFs within chips requires specialized hardware design
skills and, in some cases, more complex manufacturing processes. This can be
an obstacle for companies that produce low-cost devices.
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• Despite resistance to cloning, PUFs are not threat-free. Machine learning-
based modeling attacks can try to predict PUF responses from large chal-
lenge–response pair (CRP) datasets.
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Gem5

3.1 Introduction

"The gem5 simulator is a modular platform for computer-system architecture re-
search, encompassing system-level architecture as well as processor microarchitec-
ture."[01-simulation-background 64, p.8] In the context of hardware security, the
creation of devices dedicated exclusively to simulation is extremely expensive; for
this reason, software solutions are preferred, which allow a compromise between
accuracy and flexibility. Moreover, the increasing complexity of modern computing
systems, composed of a lot of interconnected components, makes difficult to conduct
accurate analysis without an integrated view of the whole system: gem5 attempts
to fill that gap.

gem5 is an open-source simulator widely used in both academia and industry.
It was founded about 15 years ago at the University of Michigan with the m5
project, conceived as a framework for event-driven simulation (events, objects,
statistics, and configurations), but also as a collection of models of hardware com-
ponents such as CPUs, caches, buses, and I/O devices. In parallel, the GEMS
(General Execution-driven Multiprocessor Simulator) project, specialized in the
simulation of multiprocessor systems, was born at the University of Wisconsin.
In 2011, the two projects were unified, resulting in the current gem5. Nowadays,
gem5 represents a central standard for computer architecture research: it has
been cited in over 2900 scientific publications and is employed by major industrial
laboratories such as AMD Research, Google, Samsung, ARM Research, as well
as numerous university research groups. The community that revolves around
gem5 has hundreds of active contributors and thousands of users, with the aim of
providing a flexible, extensible tool capable of covering the needs of both academic
research and industrial development. A central role is played by the community,
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which has hundreds of developers and thousands of users. The gem5 community
implements patches, extensions and always-up-to-date templates, but also provides
support through forums and shared documentation, ensuring continuous simulator
improvement and adjustment to emerging research and industry needs. [64] [65]
A key aspect of gem5 is its modularity, which enables the configuration of targeted
experiments including the processor microarchitecture level, such as pipeline and
branch predictor design, to the full system level, including memory controllers,
devices, interconnections, and operating systems. This flexibility allows simulations
to be adaptable to different scenarios, including the study of new caching techniques,
the analysis of memory coherence protocols, and the evaluation of applications in
multicore and manycore environments. The primary objective of gem5 is to provide
a integrated and realistic platform for simulating computing systems by trying to
balance accuracy, flexibility, and efficiency. [64]

3.2 Architecture of gem5

3.2.1 Discrete event simulation model

Gem5 is based on a discrete event simulation model. In this paradigm, simulation
time advances as a function of events occurring within the system, rather than con-
tinuously. Each event represents an elementary action (memory access, completion
of an instruction, arrival of a packet on a bus) and is programmed to occur at a
certain simulated instant of time.

Gem5’s simulation engine manages a global queue of events, ordered temporally,
meaning that are ordered based on the time in which their execution must be per-
form. Execution proceeds by extracting the event into the head of the queue from
time to time, updating the system state, and queuing any new events generated by
the operation. This approach allows you to obtain faithful and flexible simulations,
as it allows you to accurately represent both the competition between components
and the asynchronous interactions between devices. [64]
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Figure 3.1: Discrete event simulation model-photo taken from [01-simulation-
background 64, p.33]

Figure 3.1 illustrates how the Discrete Event Simulation model adopted by gem5
works. At the current time t = 10, the event at the head of the queue (Event - 10)
is extracted and processed. During processing, the event may generate other future
events (in the example Event - 55), which are immediately inserted into the queue
in an ordered position relative to the timestamp. Once execution is complete, the
simulator updates the simulated time to the next available event (Event - 11), and
the process is repeated.

3.2.2 SimObject

At the heart of the gem5 architecture is the concept of SimObject. Every simulated
component — be it a CPU, cache, bus, or I/O device — is modeled as SimObject.
SimObjects play a dual role:

• common abstraction, as they define the basic interface that all simulator
modules have in common;

• event containers, as each SimObject can generate, manage and respond to
events inserted into the global queue of the simulator.

Each SimObject can be configured through specific parameters (cache size, CPU
frequency, replacement policies, etc.) and interacts with other components via
ports and links. This makes gem5 highly modular: new components can be added
by simply defining new SimObjects, reusing much of the common infrastructure.
From an implementation point of view, SimObjects constitute the basis for building
complex configurations: by combining different objects it is possible to model entire
computing systems, from the single core with private memory to multiprocessor
platforms complete with devices and peripherals. [64]
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3.2.3 CPU Models
gem5 provides different CPU models, which allow you to simulate microarchitectures
with different levels of detail. They differ mainly in the compromise between
accuracy and simulation speed. The main CPU models supported are [65]:

• AtomicSimpleCPU: is the simplest and fastest model. It does not simulate
the time of operations in detail, but uses an “atomic” memory model: each
access is considered instantaneous and returns the data immediately, applying
only an estimated latency. This approach makes it ideal for warm-up tasks,
debugging, or getting very crude estimates. However, it is not suitable for
studies that require an accurate representation of timing or microarchitectural
effects.

• TimingSimpleCPU: is an in-order core, it executes instructions sequentially,
but unlike the atomic model it simulates memory access times and pipeline
latencies more realistically. It is slower than the AtomicSimpleCPU, but offers
more useful information in terms of time performance without arriving at the
complexity of an out-of-order model.

• MinorCPU: represents a more detailed and microarchitectural in-order model.
It implements a four-stage pipeline (fetch, decode, execute, writeback), allowing
to analyze phenomena such as hazards, stalls and forwarding mechanisms.
It is particularly useful for those who want to study in depth the behavior
of simple pipelines, such as those typical of in-order ARM processors. It is
slower than TimingSimpleCPU, but provides much greater fidelity than actual
behavior.

• DerivO3CPU: is the most complex and detailed model of gem5. It simulates
a full out-of-order processor, including advanced mechanisms such as register
renaming, dynamic scheduling, speculative execution, branch prediction, and
Reorder Buffer (ROB). This model is the most expensive in terms of simulation
time, but at the same time, the most accurate. It is used to study modern
high-performance architectures.

3.2.4 Memory Hierarchy
The memory hierarchy is another key element to perform simulations in gem5. It
includes models for multi-level caches (L1, L2, L3), memory controllers and coher-
ence protocols, fundamental for the simulation of multiprocessor systems. Gem5
offers great flexibility in defining cache size, latencies, and replacement policies.
Furthermore, it is possible to configure different memory coherence protocols (MSI,
MESI, MOESI), allowing to study the behavior of parallel applications and the
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traffic generated by synchronization mechanisms. The simulator also enables to
connect custom DRAM models and memory controllers, facilitating the study of
new techniques for managing main memory. [65] [64]

3.2.5 I/O Devices
In addition to processors and memory, gem5 includes a wide range of I/O devices
and modules, allowing simulation to be extended to complete systems. The main
elements include:

• buses and interconnections, such as crossbars;

• I/O devices including disk controllers, network interfaces, UARTs;

• support for basic peripherals needed to run operating systems in full-system
mode.

This capability makes gem5 more than just a CPU simulator: it can represent entire
computing systems, enabling experiments that also include kernel management,
drivers and hardware-software interactions. [65][64]

3.3 Type of simulation
Gem5 offers different simulation modes that meet different experimental needs. The
simulation mode is chosen based on the level of detail required, the type of analysis
to be conducted and the trade-off between accuracy and simulation performance.
In particular, gem5 supports two main approaches:

• System Emulation (SE) enables running individual applications without the
involvement of a full operating system;

• Full System (FS), which simulate the entire hardware-software stack, including
operating system, drivers and peripherals.

Both modes are based on the same discrete event simulation engine and use the
same components (CPU, memory, devices). However, they differ in the level of
abstraction adopted and the experimental scenario that is intended to be analyzed.

3.3.1 System Emulation
System Emulation (SE) mode allows you to simulate the execution of individual
applications without including a complete operating system. In this scenario, gem5
provides the simulated program with a simplified environment, in which system calls
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are intercepted and managed directly by the simulator and not by the operating
system.
This mode has several advantages:

• Speed: The absence of the operating system significantly reduces complexity,
allowing faster simulations.

• Simplicity of configuration: There is no need to load kernels or disk images,
but just provide the simulator with the program executable.

• Focus: This approach is particularly advantageous for studying CPU or
memory behavior in relation to a single workload, as it avoids interference
from other system processes.

However, SE mode presents several limitations. It does not enable analysis of
interactions between software and the operating system, lacks support for complex
drivers or devices, and is unsuitable for simulations that require a realistic system
context. [64][65]

3.3.2 Full System
Full System (FS) mode allows to simulate a complete calculation system, including
processors, memory, I/O devices and operating system. In this case, gem5 runs a
real kernel image (for example, Linux) and allows the boot and management of
applications as in a real system.
The main advantages of this mode are:

• Fidelity: allows to reproduce the behavior of a real system in detail, including
kernels, drivers and hardware-software interfaces.

• Flexibility: Makes possible to analyze complex applications, multiprocessor
systems, memory coherence protocols, and interactions between multiple
devices.

• Realistic Experimentation: is the ideal choice for assessing the impact of
architectural choices on complete systems and real software environments.

The downside is the high computational cost. FS mode takes longer to configure
and simulate, because it’s necessary to load disk images, kernels, and configure
devices. Furthermore, the complexity of the simulation results in significantly
longer execution times than in the SE mode.[64][65]
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3.4 Extendability of gem5
A primary strength of gem5 is its high extensibility. Due to its open-source nature
and modular design, based on SimObject and the discrete event model, gem5 allows
new features, models, or protocols to be easily integrated, without rewriting the
entire infrastructure. This design makes gem5 an effective tool to support research
in diverse domains.

3.4.1 Open-source nature and the role of the community
The gem5 community plays a central role in the extension process. There are
hundreds of active contributors that regularly propose new patches, templates, and
improvements, which are integrated after an open review process.
The use of collaborative platforms (such as GitHub and dedicated mailing lists)
allows:

• the rapid sharing of new features;

• peer review, which ensures code quality and consistency;

• the public availability of extensions developed in both academic and industrial
fields.

This collaborative mechanism led to the inclusion of advanced CPU models, memo-
ries, coherence protocols, and interconnections that were unlikely to be developed
by a single research group. [64][65]

3.4.2 Extension mechanisms
Each new component (e.g. an accelerator, a memory protocol, a new bus) is
integrated as a SimObject; it uses common APIs and integrates with the global
event queue. Gem5 uses scripts in Python for configuring simulations, enabling easy
addition of parameters and creation of complex scenarios without requiring recompi-
lation of the simulator, which requires a lot of time. In addition, gem5 provides an
extensible infrastructure to collect detailed statistics (such as instruction counters,
latencies, throughput, etc.) that can be expanded with new researcher-defined
metrics. Finally, gem5 can be integrated with other tools, such as simulators for
DRAM memory, networks on chips, or energy analysis tools like McPAT, allowing
to further expand the search domain. [64][65]

Some examples of extensions that are commonly developed with gem5 are:

• new CPU models, such as specialized microarchitectures or RISC-V prototypes;

46



Gem5

• custom cache coherence protocols, useful for studying multiprocessor systems;

• emergent memory models (such as PCM, ReRAM, HBM);

• dedicated hardware accelerators (such as for artificial intelligence, encryption,
or graphics);

• new interconnections and on-chip networks (NoCs).

3.5 Workfolw of simulation in gem5
The use of gem5 is not limited to understanding its internal architecture. It also
requires a very precise simulation workflow. This process includes selecting the
operating mode, configuring components, loading workloads, and finally, collecting
and analyzing statistics. This section will describe the basic steps to set up a
simulation correctly and will present some typical examples, such as running
standard benchmarks like the SPEC suite. The first step is to establish the most
suitable simulation mode. The choice is generally between System Emulation (SE)
and Full System (FS). SE is used for fast application or microbenchmark execution.
FS is needed when analyzing more complex scenarios, including operating systems,
drivers, and multiprocessor configurations. Once you have selected the mode, you
move on to configuring the simulation environment. This is primarily done via
scripts in Python. These scripts allow you to flexibly define the target architecture
features. At this stage, specify the number and type of CPU to be used and the
structure of the memory hierarchy with cache and controller. In FS mode, you can
also include devices and peripherals. This step represents the heart of the workflow,
as it allows you to model the hardware configuration you intend to analyze. The
next step is loading the workload, which varies depending on the chosen mode.
In System Emulation, provide the simulator with the executable of the program
to be executed. In Full System mode, prepare an operating system kernel, for
example Linux, and a disk image containing the applications to be started. After
the simulation begins, gem5 generates statistics that are saved in the stats.txt file.
Key metrics include instructions executed, IPC, cache miss rate, average memory
latency, and overall system throughput. Analyzing these data is the final step in
the workflow and supports conclusions about the performance and behavior of the
simulated configuration. [64][65]

3.5.1 Examples
The use of gem5 lends itself to a wide range of scenarios, ranging from simple
microbenchmarks up to complex, standardized benchmarks. A first category of
experiments is represented by microbenchmarks, small programs specifically created
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to solicit a specific component of the system. For example, synthetic loads that
generate regular or irregular memory access patterns can be designed to analyze
cache behavior, or branch sequences can be designed to evaluate the effectiveness
of jump prediction mechanisms. These tests have the advantage of being quick
to perform and easily interpretable, thus representing a helpful tool in the early
stages of developing and can be used to validate simulation configurations.
For more systematic and precise analyses, standardized benchmarks such as the
SPEC CPU suite are used. This collection in the scientific community enables the
objective measurement of processor and memory hierarchy performance through
workloads that represent real or nearly-real-world applications. Running SPEC in
gem5 provides reliable metrics, such as average IPC, memory access latencies, and
cache miss rates, offering a solid foundation for comparing different architectural
configurations. [64][65]

3.6 Adding a new SimObject in gem5
The extensibility of gem5 is also realized through the possibility of introducing
new SimObjects, that is, the fundamental entities with which all the components
of the simulator are modeled, ranging from CPUs to caches and I/O devices.
Each new element intended to be added to the system, whether a functional unit,
an accelerator, or a memory-mapped peripheral, is implemented as a SimObject
that interacts with others via events and communication ports. The extension
process follows a well-defined path. First, it is necessary to develop the structure
in C++, defining a class that inherits from the basic classes of gem5, specifically
from SimObject or its specializations, such as MemObject or BasicPioDevice.
Within the classroom, the internal state of the component and the methods for
handling read, write, or process operations are declared, along with the logic for
generating and handling events. In this phase that the basic behaviors of the new
object are established, i.e. the reactions to certain stimuli and the production of
new events in the global queue of the simulator. A crucial aspect of integration
concerns communication interfaces. SimObjects in gem5 interact with each other
via ports, which represent connection channels with other modules. After making
the part in C++, the corresponding representation in Python needs to be defined,
so that the new SimObject can be invoked within the configuration scripts. At
this stage, configurable parameters, such as addresses, dimensions, or latencies,
are exposed, allowing the user to modify them without intervening in the source
code. This mechanism, characteristic of gem5, provides high flexibility and allows
the same object to be reused in different scenarios. Once the definition in C++
and Python is complete, it’s essential to update the gem5 build system, based on
SCons, to include the new files. The recompilation allows the new component to
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be definitively integrated into the simulator, making it available like any other
native SimObject. The last step concerns validation. To check that it is working
properly, the new object is placed in a test configuration and linked to existing
modules. In the case of a memory-mapped device, for example, it is possible to
connect it to the bus and test its behavior using programs that read and write to
the corresponding addresses. Validation is not limited to functional control, but
must also ensure temporal consistency with the discrete event model that regulates
the entire simulator. [64][65]

3.7 TPM Simulations
3.7.1 Motivations
A crucial aspect in modern architectural research is the development of accurate
and modular simulation environments. Among the most popular simulators, gem5
is distinguished for its ability to model complex systems at different levels of
abstraction, offering the researcher an in-depth control over both the behavior of the
microarchitecture and the interaction between hardware and software components.
Despite its flexibility, gem5 does not include models for hardware security devices,
such as trusted module. This absence limits the ability to realistically analyze
how security features affect a system’s overall performance or how they interact
with the processor and peripherals during software execution. The introduction
of a component dedicated to security allows the potential of the simulator to be
extended, enabling the testing of scenarios that are difficult to observe on real
hardware. The integration of a security module in gem5, like the one developed in
the present work, responds to three main research needs. First, it aims to fill a
structural void in the architectural simulator landscape by introducing a device that
can handle trusted operations and protect sensitive data. This allows the impact
of such operations on the simulated system to be studied in a systematic way,
measuring its computational cost and influence on overall latency. Secondly, the
simulation of a security component allows to analyze the trade-off between security
and performance, evaluating how protection functions — such as the generation
and management of cryptographic keys or the attestation of software components

— affect the execution time and the efficiency of the system. In real scenarios,
such operations introduce non-negligible overhead, which can only be studied
in a controlled way via a reproducible simulation environment. Third, adding
a trusted module inside gem5 provides an open and customizable experimental
environment for hardware security research. Unlike proprietary simulators or closed
implementations, an open-source model allows to freely extend and modify security
functions, introduce new authentication logic, or explore emerging mechanisms
such as Physical Unclonable Functions (PUFs). This approach paves the way for
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the creation of virtual prototypes and the analysis of new trusted architectures
without the need to have expensive or unavailable physical hardware. Finally,
the availability of a safety model integrated into gem5 favors the reproducibility
and comparability of experimental results. In the academic field, the possibility
of replicating experiments in a completely open-source environment represents a
fundamental requirement for validating results and building a shared knowledge
base. The adoption of open simulators such as gem5 therefore allows reliable tools
to be made available to the community for the joint study of performance and
security in advanced architectures.

3.7.2 Correlated Works
In recent years, architectural simulation has evolved from a simple performance
analysis tool to a platform capable of also supporting research in the field of
hardware security. In this context, various works have attempted to model or
emulate the behavior of the Trusted Platform Module (TPM), also with different
approaches and purposes. However, most of these attempts favored emulation at
the operating system or firmware level, rather than real module integration within
an architectural simulator such as gem5.

One of the first relevant contributions is represented by TPM-SIM, a framework
designed to analyze the performance of TPM in combination with the CPU, through
the execution of micro-benchmarks that reproduce the most common commands
of the module, such as key generation and digital signature. The authors show
how the simulation of TPM operations allows to evaluate the load and overhead
induced on the system, highlighting how parallelization or batching of requests can
improve throughput in the presence of competing applications (Hu et al., 2010). [66]

A conceptual evolution of this approach is proposed by the TPMSim (Exten-
sible TPM Simulator) project, which introduces more accurate time modeling,
allowing the exploration of what-if scenarios in the trust domain. The simulator
implements a modular architecture capable of precisely emulating latencies and
command execution times, offering a flexible platform for experimental analyses.
The authors show how accurate time simulation can reproduce the behaviors of
real devices with average error margins of less than one percent (Tate et al., 2009).
[67]

Since 2013, Pirker and Winter have explored a different approach, based on the
semi-automatic generation of TPM 2.0 simulators directly from the TCG specifi-
cations. Their proposal links the simulation process with hardware synthesis on
FPGAs, suggesting a methodology for moving from abstract model to concrete
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prototyping. Such methodology reinforces the idea that an accurate and formally
derived TPM model can serve as an intermediate tool between software simulation
and physical realisation. [68]

libtpms and swtpm

In the emulation domain, the libtpms and swtpm projects, developed and main-
tained mainly by Stefan Berger (IBM Research), are now the reference base for
Trusted Platform Module virtualization in software environments. Both are com-
patible with the specificications issued by TCG for TPM 1.2 and TPM 2.0 and
constitute the TPM backend used by QEMU, KVM, Proxmox, and in general by
many Linux-based hypervisors. libtpms is a library implemented in C that performs
functional primitives of TPM: it internally manages key tables, monotonic counters,
non-volatile memory (NVRAM), Platform Configuration Registers (PCRs), and
the command interpreter. Each TPM command is processed by the library, which
returns a binary response structured according to the standard format.
The library does not interface directly with hardware or the operating system, but
exposes an API that can be called by a higher-level emulator, such as swtpm. In
this way, libtpms represents the “logical engine” of the TPM, while swtpm provides
the communication infrastructure with the virtualized system. swtpm (Software
TPM Emulator) is a user-space application that encapsulates libtpms and offers
the external system a virtual TPM device accessible via several channels:

• UNIX or TCP sockets (used by QEMU to connect to the emulator);

• device character (/dev/vtpm0);

• or a character device in userspace (CUSE) interface that allows you to map
the TPM as a kernel device.

Since swtpm operates as an external process to the simulator or hypervisor, commu-
nication between virtual CPU and TPM occurs through an asynchronous, typically
socket-based, messaging channel. Each command involves serializing data, switch-
ing to the kernel, performing context switching, and deserializing on the swtpm side.
As a result, the observed latency is not the device’s actual latency but is affected by
inter-process communication overhead. Moreover, the TPM response times are not
synchronized with the simulator’s virtual clock. In QEMU, for example, the virtual
CPU can advance through simulated time independently of the swtpm process,
leading to a discrepancy between simulated time and real processing time. This
makes it difficult to conduct accurate timing analysis to studying timing attacks or
accurately measuring the security overhead introduced by the module. A further
limitation concerns the lack of internal visibility: swtpm and libtpms operate as
black boxes. It is not possible to directly access the internal state of the TPM
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(PCR, counters, NVRAM) nor to dynamically modify its behaviors to simulate
faults, fault injection or software attacks. This limits their usefulness in research
areas oriented towards architectural or experimental simulation. Despite these
limitations, libtpms and swtpm are essential tools for testing complete software
stacks (drivers, OS, applications) that require a TPM. They are also widely adopted
by open-source hypervisors and cloud-native projects, and provide an established
foundation for integrating trusted functionality into virtualized systems. [69] [70]

3.7.3 Simulation Architectures
In the context of architectural simulation, the integration of security modules such
as the Trusted Platform Module can be defined following different approaches,
depending on the desired level of fidelity and the degree of interaction required with
the simulated processor. The most used architectures are: external co-simulation,
integrated internal model, and hybrid approach.

In the first scenario, the TPM module is implemented as an independent pro-
cess that communicates with the main simulator through a standard interface
channel, such as socket or pipe. This approach is typically used in virtualization
systems such as QEMU, which rely on the swtpm emulator to provide a virtual
TPM compatible with the TCG 2.0 specification. Although this architecture en-
sures excellent functional compatibility and allows the execution of real software
that interacts with the TPM, it has limitations from an architectural point of view.
In particular, the TPM module operates outside the time domain of the simulator,
and inter-process communication introduces delays that are difficult to control.
This makes the study of temporal or performance phenomena complex and limits
internal visibility into cryptographic operations. [71]

The second approach consists in integrated internal model, in which the TPM is
implemented as a native component of the simulator. In environments such as
gem5, such integration can be accomplished by defining the TPM as SimObject,
that is, an entity with behavior, state and communication interfaces internal to the
simulator. This solution allows the device to be modeled directly into the processor
time domain and connected to the system bus via an MMIO interface. In this
way, each operation sent by the core is managed synchronously, allowing accurate
temporal simulation and a realistic representation of the interactions between CPU
and trusted module. The internal implementation also offers high flexibility: it
is possible to access the TPM’s internal state, introduce controlled faults and ob-
serve the real latency, or add new features, such as authentication modules or PUFs.

The third approach combines elements of the previous two. In this case, the
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main logic of the TPM is maintained in an external component, but communication
with the simulator is synchronized via timed exchange mechanisms or dedicated
connectors. This solution is used in some hardware/software co-simulation en-
vironments, where a functional emulator is connected to a system simulator via
deterministic data exchange protocols (e.g., TLM or SystemC). While this model
allows existing implementations to be reused, maintaining time synchronization
and managing communication makes the design complex and less flexible.

In the specific case of gem5, the choice of an internal architecture is the most
effective trade-off between accuracy and control. It allows to extend the simulator
with fully customized safety modules, maintaining synchronization consistent with
the simulation cycle and guaranteeing the reproducibility of the results. This
approach constitutes the conceptual basis of the model developed in this work,
which will be described in the next chapter. [72]

3.7.4 TPM Simulation Challenges
Simulating a security module such as the Trusted Platform Module in an architec-
tural environment presents a number of technical and conceptual challenges that
arise from the very complexity of the TPM 2.0 specification and the trusted nature
of that component. An accurate model must in fact combine functional fidelity,
i.e. the correct implementation of the commands and data structures defined by
the Trusted Computing Group (TCG), with temporal coherence, i.e. the ability to
realistically represent the sequence and duration of the operations performed by
the module.
A first complex aspect is represented by the modeling of internal memory and
trusted resources. The TPM has volatile and non-volatile memory areas, which
are used to store keys, monotonic counters, and configuration data. Reproducing
such structures in simulation implies the need to implement persistence and data
protection mechanisms consistent with TCG specifications. Moreover, random-
ness management is an obstacle: in a deterministic environment such as gem5,
generating random numbers must be simulated without compromising experiment
reproducibility while maintaining statistically realistic behavior.

Another challenge relates to managing the functional complexity of TPM 2.0.
The official specification includes hundreds of distinct commands, each with specific
parameters, permissions, and access policies. Fully implementing this set would be
burdensome.

From a security point of view, the simulation of adversarial behavior constitutes a
further element of complexity. Reproducing scenarios such as timing attacks, fault
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injection or PCR register manipulations requires a flexible and observable model,
capable of exposing the internal state of the TPM while preserving the consistency
of the simulation environment. [73]
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Chapter 4

Implementation

This chapter describes in detail the practical implementation of the Trusted Platform
Module (TPM) model integrated in the gem5 simulation environment. After
presenting the development tools used, will be illustrated how the simulated TPM
device was made within gem5, highlighting the extensions and modifications to
the simulator. The main steps of the implementation will then be described: the
design of the hardware communication interface (mapped memory) between RISC-
V processor and TPM, the internal management of TPM commands according
to TPM 2.0 specifications defined by TCG, and the modifications performed to
support PUFs.

4.1 Introduction
The TPM module was designed as a simulated safety device, integrated directly
into the system as a memory-mapped peripheral, accessible from the RISC-V CPU
via read and write operations on dedicated registers. The architecture follows a
modular model that mirrors, in a simplified form, the functional structure of a
real TPM 2.0, including the main logical sections: CRB (Command Response
Buffer), FIFO, PCR, NV Memory, and the PUF extension. All these components
are implemented in the C++ source code within the src/dev/ directory of gem5,
where the device logic and the management of its interactions with the simulated
processor resides.

The simulated system configuration was realized in the configs/ directory of gem5,
through dedicated Python scripts that define the RISC-V system architecture and
link the TPM module to the main components. Furthermore, it was possible to
implement simulations in bare-metal mode, directly testing the communication
between the CPU and the TPM device within the gem5 environment.
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4.2 Development Environment and Build Process
The implementation of the TPM was developed and tested in a gem5 environment,
which was configured for the 64-bit RISC-V architecture. Gem5 is a modular
architecture simulator that allows to add custom hardware devices using extensions
in C++ and Python. In particular, TPM has been implemented as a memory-
mapped I/O device using the basic classes of gem5, in particular BasicPioDevice.
The code is written in C++ and integrated into the gem5 source code; Python scripts
provided by gem5 (which define system parameters and map device addresses) were
used to configure and dock the TPM device to the simulated system. SCons is the
build system used by gem5 to manage the modular compilation of the simulator.
Each component of the project is described by a file SConscript, which specifies
dependencies, the compilation parameters and libraries to be linked. In the case
of TPM, it was therefore necessary to extend the SConscript file to include the
libcrypto libraries of OpenSSL. the OpenSSL library (version 3.0) was used to
implement the cryptographic primitives required by the TPM, such as SHA-256
hash computation, cryptographic random number generation, and HMAC. The
integration of OpenSSL into gem5 required modifying the build system, so the
SConscript file, to link libcrypto libraries.

Listing 4.1: Extension of the file SConscript to use OpenSSL
1 # Link with OpenSSL
2 i f env [ ’PLATFORM’ ] != ’ darwin ’ : # Linux only
3 env . ParseConf ig ( ’ pkg−c o n f i g −−c f l a g s −−l i b s opens s l ’ )

This code allows SCons to automatically include the compilation and link options
needed to use OpenSSL, avoiding having to manually configure paths or libraries.
The host operating system for compiling and running simulations is Ubuntu 20.04
LTS 64-bit, with GNU C++ toolchain for gem5 and RISC-V GCC toolchain to
compile any test bare-metal programs run in the simulator.

4.3 TPM Model Architecture in gem5
4.3.1 Integration as a BasicPioDevice device
On the implementation side in C++ the TPM module was realized by defining
a new SimObject in gem5. Creating a SimObject allows to have a C++ object
inside the simulator that interacts with the rest through standard interfaces (doors,
events, etc). The TPMDevice class is derived from BasicPioDevice and overwrites
the key methods read() and write() to intercept CPU accesses to registers of the
simulated TPM. At initialization, the TPMDevice constructor sets the device
occupied memory size (pioSize) and base address (pioAddr) by taking them from
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the configuration parameters (provided by the Python script of gem5). In this way,
gem5 knows that every address range access [pioAddr, pioAddr+pioSize) must be
handled by TPM device.

4.3.2 Memory-mapped communication interface
The TPM module communicates with the simulated CPU through a Memory-
Mapped I/O interface (MMIO). In gem5, this means that to the TPM device is
assigned a range of addresses in the physical address space of the simulation; when
the CPU accesses those addresses, the calls are intercepted and managed by device
logic instead of standard memory.

The address range reserved for TPM records is 0x10001000 – 0x10001FFF. That’s
4 kB of space (4,096 B), analogous to the size of memory pages, to map registers.
This space is subdivided further to implement both the FIFO interface classic
TPM 1.2/2.0 (based on the TIS – TPM Interface Specification standard) is the new
interface CRB (Command Response Buffer) introduced with TPM 2.0 to improve
performances.

In particular, in the read(PacketPtr pkt) method (and symmetrically in
write(PacketPtr pkt)), the offset relative to the base address pioAddr is cal-
culated and the location determined as loc = offset/LocalitySpacing; next,
the function checks whether the offset corresponds to a register belonging to
the FIFO or CRB interface, invoking respectively, handleFifoRead/Write or
handleCrbRead/Write.

Listing 4.2: implementation of the function read()
1 Tick TPMDevice : : read ( PacketPtr pkt )
2 {
3 Addr addr = pkt−>getAddr ( ) ;
4 Addr o f f s e t = addr − pioAddr ;
5 unsigned l o c = o f f s e t / Loca l i tySpac ing ;
6

7 i f ( l o c >= MaxLoca l i t i e s )
8 {
9 panic ( " I n v a l i d l o c a l i t y read : %u" , l o c ) ;

10 }
11

12 Addr l o c a l i t y _ o f f s e t = o f f s e t % Loca l i tySpac ing ;
13

14 i f ( i s F i f o O f f s e t ( l o c a l i t y _ o f f s e t ) )
15 {
16 re turn handleFifoRead ( pkt , l o c ) ;
17 }
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18

19 i f ( i sCrbOf f s e t ( l o c a l i t y _ o f f s e t ) )
20 {
21 re turn handleCrbRead ( pkt , l o c ) ;
22 }
23

24 panic ( " Unhandled TPM read : l o c a l i t y %u o f f s e t %#x s i z e %u" ,
25 loc , l o c a l i t y _ o f f s e t , pkt−>g e t S i z e ( ) ) ;
26 }

The auxiliary functions isFifoOffset() and isCrbOffset() recognize the relevant
registers of the two interfaces: for FIFO, for example TPM_ACCESS_REG_OFFSET,
TPM_STS_REG_OFFSET and the data window between FIFO_DATA_BASE_OFFSET and
FIFO_DATA_END_OFFSET; for CRB, the registers as CRB_CTRL, CRB_CMD_ADDR_ and
CRB_RSP_ADDR_. This logic allows maintaining compatibility with drivers that still
use FIFO, while supporting the most modern and high-performance CRB interface.
In case of unrecognized out-of-range or offset accesses, the device generates an
exception via panic(), ensuring deterministic behavior and facilitating debugging
during simulation.

Locality Management

In the Trusted Platform Module, the concept of locality represents a logical isolation
mechanism that allows multiple software components to interact with the TPM
in a controlled and mutually exclusive way. In particular, localities (from 0 to 4,
for a maximum of five) allow distinct entities — such as BIOS, operating system,
hypervisor, or privileged applications — to access the TPM without interfering
with each other. Each location has its own set of registers and internal status, and
can be activated or released via dedicated registers.

In the simulated device, the main data structure implementing this logic is
TPMRegisters, defined as a collection of registers for each interface (FIFO and
CRB), replicated for all localities:

Listing 4.3: Management of Locality
1 std : : array<TPMRegisters , MaxLocal i t i es > tpmRegs ;
2 s t a t i c const i n t MaxLoca l i t i e s = 5 ;
3 s t a t i c constexpr Addr Loca l i tySpac ing = 0x10000 ;

Where TPMRegisters is implemented as follows.

Listing 4.4: TPMRegisters
1 s t r u c t TPMRegisters
2 {
3 // FIFO i n t e r f a c e
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4 uint8_t ac c e s s = 0 ;
5 uint8_t a c t i v e = 0 ;
6 uint8_t s t s = 0 ;
7 uint8_t i n t f _ c a p a b i l i t y = 0 ;
8 uint8_t i n t e r f a c e _ i d = 0 ;
9 std : : vector<uint8_t> f i f o ;

10 uint32_t f i f o E x p e c t e d S i z e = 0 ;
11 s i z e_t f i f oByt e sRece i v ed = 0 ;
12 bool f i f o R e c e i v i n g = f a l s e ;
13 // CRB i n t e r f a c e
14 uint32_t crb_ctr l_req = 0 ;
15 uint32_t crb_ctr l_st s = 0 ;
16 uint32_t crb_ctr l_cance l = 0 ;
17 uint32_t crb_ct r l_sta r t = 0 ;
18 uint32_t crb_cmd_size = 0 ;
19 uint32_t crb_rsp_size = 0 ;
20 uint64_t crb_cmd_addr = 0 ;
21 uint64_t crb_rsp_addr = 0 ;
22 std : : vector<uint8_t> crb_cmd_buf ;
23 std : : vector<uint8_t> crb_rsp_buf ;
24 CrbState crb_state = CrbState : : I n i t ;
25 // Loca l i t y r e g i s t e r s (CRB−s p e c i f i c )
26 uint8_t l o c _ c t r l = 0 ;
27 uint8_t loc_st s = 0 ;
28 } ;

In the code 4.3 there is the LocalitySpacing field which defines the distance,
in bytes, between the address space reserved for two consecutive localities. In
this way, each locality is mapped into a distinct range of the MMIO address
space. The actual offset associated with locality n is calculated as offset = loc
* LocalitySpacing. Indeed, if the base address of the TPM is 0x10001000, the
locality 0 will occupy the addresses 0x10001000–0x10010FFF, the locality 1 the
next interval 0x10011000–0x10020FFF, and so on, up to a maximum of five blocks
of 64 kB.

Each element of the tpmRegs array contains the logical registers for its local-
ity, including registers specific to control and status of locality in CRB mode,
defined as aliases on the same offset 0x008C:

Listing 4.5: CRB lolcality control
1 s t a t i c constexpr Addr LOC_CTRL_OFFSET = 0x008C ; // write , to

a c t i v a t e a l o c a l i t y (0 x1 f o r request , 0x0 f o r r e l e a s e )
2 s t a t i c constexpr Addr LOC_STS_OFFSET = 0x008C ; // read , to check

the s t a tu s o f the l o c a l i t y (0 x1 i f the l o c a l i t y i s ac t ive , 0x0 i f
not )

The LOC_CTRL register allows the host software to request or release a locality by
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setting a specific value: writing 0x1 to LOC_CTRL_OFFSET triggers the locality, while
writing 0x0 drops it. Instead, the LOC_STS register, read from the same address,
allows checking whether the locality is currently active (returning 0x1) or inactive
(0x0). Such address aliasing faithfully reproduces the behavior of the real TPM,
where the same physical register is read and write accessible for different functions.

Operational management of localities occurs during read and write operations
on the FIFO or CRB. In the case of FIFO, the handleFifoRead() function calcu-
lates the address offset within the current locality and selects the corresponding
register structure:

Listing 4.6: Calculation of the locality
1 Addr o f f s e t = pkt−>getAddr ( ) % Loca l i tySpac ing ;
2 auto &reg s = tpmRegs [ l o c ] ;

During simulation, only the active locality (indicated by the global active_locality
field) is enabled to execute TPM commands; any access from other inactive locali-
ties is ignored or generates an exception (panic("Invalid locality")). This mechanism
guarantees that each communication session between host and TPM is mutually
exclusive, faithfully reproducing the localities arbitrage logic required by the TIS
standard.

FIFO Interface

In FIFO mode, the TPM simulates the classical register-based interface: Ac-
cess, Status, and Data FIFO, which is historically used by TPMs on LPC, SPI,
or I2C. FIFO mode management is implemented mainly in the two functions
handleFifoRead() and handleFifoWrite(), which represent the two fundamental
communication paths between the simulated CPU and the TPM device. The first
is invoked when the host performs a read operation on one of the MMIO addresses
belonging to the FIFO range, while the second handles write operations. Basically,
handleFifoWrite() receives and interprets data from the host — as a request to
activate a locality, bytes of a TPM command, or the CommandReady flag setting

— while handleFifoRead() returns data that the TPM makes available, such as
device status or response bytes.

Each locality has a dedicated address window, and within it, the FIFO mode
registers are mapped at fixed offsets with respect to the base address. In particular:

Listing 4.7: FIFO Registers
1 s t a t i c constexpr Addr TPM_ACCESS_REG_OFFSET = 0x0000 ;
2 s t a t i c constexpr Addr TPM_INTF_CAPABILITY_OFFSET = 0x0014 ;
3 s t a t i c constexpr Addr TPM_STS_REG_OFFSET = 0x0018 ;

60



Implementation

4 s t a t i c constexpr Addr FIFO_DATA_BASE_OFFSET = 0x0024 ;
5 s t a t i c constexpr Addr FIFO_DATA_END_OFFSET = 0x0027 ;
6 s t a t i c constexpr Addr TPM_INTERFACE_ID_OFFSET = 0x0030 ;

These offsets allow quickly distinguishing in which register the incoming packet
should be handled. The communication, through the FIFO, between the TPM and
the software happens in the following way.

Activation of locality. First of all, software (for example, a TPM driver) must
“require” the use of a locality by writing the value 0x20 to the Access(0) registry
(bit TPM_ACCESS_REQUEST_USE). When bit 0x20 is written, a check is performed
to activate the selected locality and deactivate any other.

Listing 4.8: Request of Locality activation
1 // Host i s r eque s t i ng to a c t i v a t e t h i s l o c a l i t y
2 f o r ( auto &r : tpmRegs )
3 r . a c t i v e = f a l s e ;
4 r eg s . a c t i v e = true ;

When the locality is active, the TPM performs a read of the Access register and
returns 0x20 (the TPM_ACCESS_ACTIVE_LOCALITY bit) to confirm that the host can
use the required locality.

Writing the command to FIFO. The software prepares a TPM command
compliant with the TPM 2.0 standard (2 bytes of tags, 4 bytes of size, 4 bytes of
command code, any handles and parameters). The TPM sees it as a blob of N
bytes; the host writes it byte-per-byte (or in blocks) in the FIFO Data window.
With each write, handleFifoWrite() appends the byte in the regs.fifo buffer
and updates the fifoBytesReceived and fifoExpectedSize counters. When at
least 6 bytes are received, the device can extract the overall command size from
the [2..5] fields of the TPM header and use it to determine how many bytes it
expects in total. Until all the expected bytes have arrived, the TPM keeps the
EXPECT bit active (0x02) in the STS register, to signal that other input is expected:

Listing 4.9: Write FIFO
1 e l s e i f ( o f f s e t >= FIFO_DATA_BASE_OFFSET && o f f s e t <=

FIFO_DATA_END_OFFSET) {
2 // Ignore wr i t e s whi l e a re sponse i s s t i l l pending
3 i f ( ( r eg s . s t s & 0x01 ) && ! r eg s . f i f o R e c e i v i n g ) {
4 pkt−>makeResponse ( ) ;
5 re turn pioDelay ;
6 }
7

8 i f ( ! r eg s . f i f o R e c e i v i n g ) {
9 r eg s . f i f o . c l e a r ( ) ;
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10 r eg s . f i f o R e c e i v i n g = true ;
11 r eg s . f i f o E x p e c t e d S i z e = 0 ;
12 r eg s . f i f oByt e sRece i v ed = 0 ;
13 }
14

15 i f ( r eg s . f i f o E x p e c t e d S i z e && reg s . f i f oByt e sRece i v ed >= reg s .
f i f o E x p e c t e d S i z e ) {

16 pkt−>makeResponse ( ) ;
17 re turn pioDelay ;
18 }
19

20 r eg s . f i f o . push_back ( va l ) ;
21 r eg s . f i f oByt e sRece i v ed++;
22

23 i f ( r eg s . f i f oByt e sRece i v ed >= 6 && regs . f i f o E x p e c t e d S i z e ==
0) {

24 r eg s . f i f o E x p e c t e d S i z e =
25 ( s ta t i c_cas t <uint32_t >( reg s . f i f o [ 2 ] ) << 24) |
26 ( s ta t i c_cas t <uint32_t >( reg s . f i f o [ 3 ] ) << 16) |
27 ( s ta t i c_cas t <uint32_t >( reg s . f i f o [ 4 ] ) << 8) |
28 s ta t i c_cas t <uint32_t >( reg s . f i f o [ 5 ] ) ;
29 i f ( r eg s . f i f o E x p e c t e d S i z e < reg s . f i f oByt e sRece i v ed ) {
30 r eg s . f i f o E x p e c t e d S i z e = sta t i c_cas t <uint32_t >( reg s .

f i f oByt e sRece i v ed ) ;
31 }
32 }
33

34 i f ( r eg s . f i f o E x p e c t e d S i z e == 0 | | r eg s . f i f oByt e sRece i v ed <
reg s . f i f o E x p e c t e d S i z e ) {

35 r eg s . s t s |= 0x02 ; // EXPECT more data
36 } e l s e {
37 r eg s . s t s &= ~0x02 ;
38 }
39 }

val is the byte written by the host; as soon as it arrives, it ends up in regs.fifo
for that location. The STS log can be read by the host to monitor status.

Sending the command to the TPM. When the host has finished writing the
command, it must signal that it is ready for processing by setting the CommandReady
bit (0x40) in the STS register (write to the offset of STS with that bit active).

Listing 4.10: Command Ready
1 i f ( va l & 0x40 ) {
2 i f ( ! r eg s . f i f o R e c e i v i n g | |
3 r eg s . f i f o E x p e c t e d S i z e == 0 | |
4 r eg s . f i f oByt e sRece i v ed < reg s . f i f o E x p e c t e d S i z e ) {
5 r eg s . s t s |= 0x02 ;

62



Implementation

6 pkt−>makeResponse ( ) ;
7 re turn pioDelay ;
8 }
9

10 std : : vector<uint8_t> command = reg s . f i f o ;
11 r eg s . f i f o . c l e a r ( ) ;
12 r eg s . f i f o R e c e i v i n g = f a l s e ;
13 r eg s . f i f o E x p e c t e d S i z e = 0 ;
14 r eg s . f i f oByt e sRece i v ed = 0 ;
15 r eg s . s t s &= ~0x02 ;
16 r eg s . s t s &= ~0x40 ;
17 r eg s . s t s &= ~0x01 ;
18

19 // Process the command
20 std : : vector<uint8_t> response = processCommand (command) ;
21

22 // Load response in to FIFO
23 sendFi foResponse ( loc , r e sponse ) ;
24 }

The code accomplishes the following operations:
(i) As soon as it sees the CommandReady bit, the TPM knows that the host has
finished the input phase and that the received command is complete. It then copies
the accumulated bytes into the regs.fifo buffer to the local vector command,
and empties the input FIFO —that data is considered “consumed” and ready for
processing.
(ii) Clears the internal state, resetting the flags CommandReady, DataAvail and
EXPECT within the register STS, so as to signal that there are no more input bytes
to receive and that the TPM is being processed.
(iii) Invokes the function processCommand(command), which represents the logical
engine of the TPM: this function interprets the command according to the TPM 2.0
format (header, parameters, handles, etc.), performs the requested operation (for
example extension of a PCR) and produces a response vector response containing
the bytes of the output.
(iv) Finally, it calls sendFifoResponse(loc, response), which takes care of load-
ing the response bytes into the output FIFO buffer and updating the status flags
consistently: if there is data available, the DataAvail (0x01) bit is set, while
EXPECT (0x02) is reset to zero, indicating that the TPM has completed processing
and is ready for the reading phase by the host.

Reading the answer; the host reads the response byte by byte from FIFO_DATA.
Each read returns the first available byte and removes it from the buffer. When all
bytes have been read, the TPM resets DataAvail and reports EXPECT=1, signaling
that it is ready for a new command.
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CRB Interface

The Command Response Buffer (CRB) mode implements the interface introduced
with TPM 2.0 to improve the communication performances between hosts and TPM
compared to the classical FIFO. In this mode, the host and TPM exchange com-
mands and responses through two shared memory areas, named Command Buffer
and Response Buffer, respectively. The device no longer receives bytes through
registers; instead, it only receives control signals indicating where to read and write
data, thereby realizing a more efficient mapped memory interface.
Within the TPM model, communication with the simulated CPU occurs via two
main functions: handleCrbWrite() and handleCrbRead(). The first is invoked
whenever the host (or simulated CPU) performs a write operation on an address
belonging to the TPM device space; the second is instead invoked at a read. In
other words, handleCrbWrite() handles all commands sent from the host side —
such as configuring control registers, starting a command, or asking to delete—
by updating the module’s internal state and the state machine CrbState. The
function handleCrbRead(), on the contrary, serves to return the contents of the
TPM registers to the host, allowing the status of the device to be queried or the
parameters currently configured to be read. The communication, through the CRB,
between the TPM and the software happens in the following way.

Activation of locality; Locality management is performed via the LOC_CTRL
register, which shares the same memory address as LOC_STS. Depending on the
type of access, a write to this address is interpreted as a request to activate or
release the locality (LOC_CTRL), while a read returns the current state of the same
(LOC_STS). By writing the value 0x1 to LOC_CTRL, the host requests activation of
the corresponding location. Our implementation in handleCrbWrite() updates
the internal state of the device by setting regs.active and regs.loc_sts and
disabling all other locations:

Listing 4.11: Request Locality
1 i f ( o f f s e t == LOC_CTRL_OFFSET)
2 {
3 r eg s . l o c _ c t r l = val32 ;
4 r eg s . a c t i v e = val32 & 0x1 ;
5 r eg s . l o c_st s = reg s . a c t i v e ? 0x1 : 0x0 ;
6 i f ( r eg s . a c t i v e )
7 {
8 f o r ( unsigned i = 0 ; i < MaxLoca l i t i e s ; ++i )
9 {

10 i f ( i != l o c )
11 {
12 tpmRegs [ i ] . a c t i v e = 0 ;
13 tpmRegs [ i ] . l o c_st s = 0 ;
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14 }
15 }
16 }
17 pkt−>makeResponse ( ) ;
18 re turn pioDelay ;
19 }

Reading the same offset, handled in handleCrbRead(), returns 0x1 if the location
is active, or 0x0 otherwise.

Start of the Execution. Execution of a CRB command is initiated by writing
the value 0x1 to the register CRB_CTRL_START (offset 0x004C). When the TPM is
in the Ready state, the host indicates that the command is ready in the previously
configured memory. The function handleCrbWrite() captures this write, updates
the internal state and reads the command from the simulated memory via the
function dmaRead():

Listing 4.12: Execution Start
1 case CRB_CTRL_START_OFFSET:
2 r eg s . c rb_ct r l_s ta r t = val32 ;
3 i f ( ( va l32 & 0x1 ) && reg s . crb_state == CrbState : : Ready )
4 {
5 r eg s . crb_state = CrbState : : Execution ;
6 r eg s . crb_cmd_buf = dmaRead( r eg s . crb_cmd_addr , r eg s .

crb_cmd_size ) ;
7 execCrbCommand( r eg s ) ;
8 i f ( ! r eg s . crb_rsp_buf . empty ( ) && reg s . crb_rsp_addr != 0)
9 {

10 dmaWrite ( r eg s . crb_rsp_addr , r eg s . crb_rsp_buf ) ;
11 }
12 }
13 break ;

At this stage, the TPM reads from the Command Buffer the bytes of the full
command, processes them through execCrbCommand(), and writes the response to
the memory pointed to by CRB_RSP_ADDR.
The function execCrbCommand() encapsulates the command execution logic, in-
cluding exception handling. If successful, the result is passed to the function
finishCommand() with return code TPM_RC::SUCCESS; if not, an error response is
constructed:

Listing 4.13: execCrbCommand()
1 void TPMDevice : : execCrbCommand( TPMRegisters &reg s )
2 {
3 t ry
4 {
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5 auto rsp = processCommand ( r eg s . crb_cmd_buf ) ;
6 r eg s . crb_rsp_buf = std : : move( rsp ) ;
7 finishCommand ( regs , s t a t i c_cas t <uint32_t >(TPM_RC: : SUCCESS) ) ;
8 }
9 catch ( const std : : except ion &e )

10 {
11 DPRINTF(TPMDevice , "CRB command f a i l e d : %s " , e . what ( ) ) ;
12 r eg s . crb_rsp_buf . c l e a r ( ) ;
13 finishCommand ( regs , s t a t i c_cas t <uint32_t >(TPM_RC: : FAILURE) ) ;
14 }
15 }

The function finishCommand() constructs the final response, setting the TPM
status flags. If the response is too short or the return code does not indicate success,
a minimum 10-byte packet compliant with the TPM 2.0 standard is generated,
with the fields tag, size, and responseCode. The completion stage also updates
the control logs:

Listing 4.14: Construction of the response packet
1 r eg s . crb_rsp_buf . r e s i z e (10) ;
2 r eg s . crb_rsp_buf [ 0 ] = ( tag >> 8) & 0xFF ;
3 r eg s . crb_rsp_buf [ 1 ] = tag & 0xFF ;
4 r eg s . crb_rsp_buf [ 2 ] = 0x00 ;
5 r eg s . crb_rsp_buf [ 3 ] = 0x00 ;
6 r eg s . crb_rsp_buf [ 4 ] = 0x00 ;
7 r eg s . crb_rsp_buf [ 5 ] = 0x0A ;
8 r eg s . crb_rsp_buf [ 6 ] = ( responseCode >> 24) & 0xFF ;
9 r eg s . crb_rsp_buf [ 7 ] = ( responseCode >> 16) & 0xFF ;

10 r eg s . crb_rsp_buf [ 8 ] = ( responseCode >> 8) & 0xFF ;
11 r eg s . crb_rsp_buf [ 9 ] = responseCode & 0xFF ;

During execution, an ongoing command can be canceled by writing 0x1 to the
CRB_CTRL_CANCEL register. In this case, if the TPM is in the Execution state, the
handleCrbWrite() function calls finishCommand() with error code
TPM_RC::CANCELED, and, if a response address has been configured, writes an error
packet compliant with the TPM specification to memory. The handleCrbRead()
function allows the host to read the TPM status at any time. The main registers
(CRB_CTRL_STS, CRB_CTRL_REQ, CRB_CMD_SIZE, CRB_RSP_SIZE, LOC_STS) return
the current values stored in regs. If the location is not active, the value 0xFF is
returned, simulating unauthorized access.
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4.3.3 Basic commands implemented in the TPM module
To validate the operation of the simulated TPM module and ensure compatibility
with the fundamental operations envisioned by the TPM 2.0 standard, a set
of basic commands was implemented, selected to cover the main phases of the
device’s life cycle. In particular, the module supports the commands TPM2_Startup,
TPM2_Shutdown, TPM2_Create, and _TPM_Init, each of which has been modeled to
faithfully reproduce the logical behavior described in the TCG specification, while
maintaining an abstraction layer compatible with the gem5 simulation environment.

_TPM_Init — Module initialization The command _TPM_Init represents
the initialization stage of the module, and is the first logical operation performed
after the device is created. In the model, this function is called directly inside
the constructor of the TPMDevice, so that each new instance of the TPM in the
gem5 simulator starts from a coherent and completely reset state. Its purpose is
to restore the internal state of the TPM by removing any residual information
from previous executions. All status flags are cleared (initialized, failureMode,
orderlyShutdownFlag) and the shutdown type before TPM_SU::CLEAR is set.

Listing 4.15: _TPM_Init() function
1 void TPMDevice : : _TPM_Init ( )
2 {
3 DPRINTF(TPMDevice , "_TPM_Init : r e s e t t i n g v o l a t i l e s t a t e \n " ) ;
4

5 s t a t e . i n i t i a l i z e d = f a l s e ;
6 s t a t e . fa i lureMode = f a l s e ;
7 s t a t e . orderlyShutdownFlag = f a l s e ;
8 s t a t e . lastShutdownType = TPM_SU: :CLEAR;
9

10 discardOrder lySnapshot ( ) ;
11 purgeStClearNvIndexes ( ) ;
12 c l e a r T r a n s i e n t S t a t e ( ) ;
13 populatePufsFromConfig ( ) ;
14 resetPcrBanks ( t rue ) ;
15 r e se tCrbState ( ) ;
16 }

At this stage, the device registers are not yet configured, but only the internal
status structures. The _TPM_Init command must always precede a subsequent call
to TPM2_Startup, as required from the standard.

TPM2_Startup() — Logical start of TPM The command TPM2_Startup()
is the one that performs the actual initialization of the TPM, bringing it into a
consistent operational state. It can be invoked with two modes: TPM_SU::CLEAR,
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which performs a “cold” start by clearing all volatile information, or TPM_SU::STATE,
which attempts to restore the sorted state (orderly state) previously saved via
TPM2_Shutdown.

Listing 4.16: TPM2_Startup() implementation
1 TPMDevice : :TPM_RC TPMDevice : : TPM2_Startup(TPM_SU startupType )
2 {
3 DPRINTF(TPMDevice , "TPM2_Startup : startupType = %d\n" ,
4 s ta t i c_cas t <int >(startupType ) ) ;
5

6 // 1) Must be f i r s t l o g i c a l command a f t e r _TPM_Init
7 i f ( s t a t e . i n i t i a l i z e d )
8 re turn TPM_RC: : INITIALIZE ; // Startup a l ready done
9

10 r e se tCrbState ( ) ;
11

12 i f ( startupType == TPM_SU: : STATE) {
13 i f ( s t a t e . lastShutdownType != TPM_SU: : STATE | | ! s t a t e .

orderlyShutdownFlag )
14 re turn TPM_RC: :VALUE;
15

16 i f ( ! r e s t o r eOrde r l yS ta t e ( ) ) {
17 discardOrder lySnapshot ( ) ;
18 s t a t e . orderlyShutdownFlag = f a l s e ;
19 re turn TPM_RC: : FAILURE;
20 }
21

22 discardOrder lySnapshot ( ) ;
23 } e l s e i f ( startupType == TPM_SU: :CLEAR) {
24 discardOrder lySnapshot ( ) ;
25 c l e a r T r a n s i e n t S t a t e ( ) ;
26 purgeStClearNvIndexes ( ) ;
27 populatePufsFromConfig ( ) ;
28 resetPcrBanks ( t rue ) ;
29 s t a t e . fa i lureMode = f a l s e ;
30 } e l s e {
31 re turn TPM_RC: :VALUE;
32 }
33

34 s t a t e . i n i t i a l i z e d = true ;
35 s t a t e . orderlyShutdownFlag = f a l s e ;
36

37 i f ( startupType == TPM_SU: :CLEAR)
38 measureSystemState ( ) ;
39

40 DPRINTF(TPMDevice , "TPM2_Startup : completed s u c c e s s f u l l y \n " ) ;
41 re turn TPM_RC: : SUCCESS;
42 }
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When a boot of type CLEAR is performed, the TPM completely erases the volatile
state: the PCR banks are reset, the volatile NV memory is cleaned up and the
PUF instances are reloaded from configuration. If, on the other hand, the type
is STATE, the restoration of the last saved orderly state is attempted, provided
that the previous shutdown was successfully carried out by a command of type
STATE. In both cases, when finished, the state.initialized flag is set to true,
indicating that the TPM is now operational. In case of startup CLEAR, the system
measurement (measureSystemState()) is also performed, simulating the initial
attestation phase of the real TPM.

TPM2_Shutdown() — Stop ordered or clear status The command TPM2_Shutdown()
handles the logical TPM shutdown stage and internal state storage. As with
Startup, there are two types of shutdown: TPM_SU::STATE, which saves the con-
tents of PCR banks, sessions, and NV indexes (orderly state) to memory, and
TPM_SU::CLEAR, which instead performs a “clear” shutdown by wiping volatile
data.

Listing 4.17: TPM2_Shutdown() implementation
1 TPMDevice : :TPM_RC TPMDevice : : TPM2_Shutdown(TPM_SU shutdownType )
2 {
3 i f ( ! s t a t e . i n i t i a l i z e d )
4 re turn TPM_RC: : INITIALIZE ; // must c a l l Startup f i r s t
5

6 i f ( shutdownType != TPM_SU: :CLEAR && shutdownType != TPM_SU: :
STATE)

7 re turn TPM_RC: :VALUE;
8

9 r e se tCrbState ( ) ;
10 TPM_RC r e s u l t = TPM_RC: : SUCCESS;
11

12 i f ( shutdownType == TPM_SU: : STATE) {
13 i f ( ! p e r s i s t O r d e r l y S t a t e ( ) ) {
14 r e s u l t = TPM_RC: : FAILURE;
15 s t a t e . orderlyShutdownFlag = f a l s e ;
16 } e l s e {
17 s t a t e . orderlyShutdownFlag = true ;
18 }
19 } e l s e { // TPM_SU_CLEAR
20 discardOrder lySnapshot ( ) ;
21 c l e a r T r a n s i e n t S t a t e ( ) ;
22 s t a t e . orderlyShutdownFlag = f a l s e ;
23 }
24

25 s t a t e . lastShutdownType = shutdownType ;
26 s t a t e . i n i t i a l i z e d = f a l s e ;
27 re turn r e s u l t ;
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28 }

In the case of STATE, the function persistOrderlyState() serializes the internal
state structures (pcrBanks, sessionTable, chosenPufs, nvIndices) in memory,
creating a snapshot that can be restored the next time you boot. If a shutdown of
type CLEAR is requested, all temporary data is deleted and the PUF structures are
cleaned. In both cases, the TPM status is returned to uninitialized, ready for a
new boot cycle.

TPM_Create — Creating PUF objects The command TPM_Create() has
been implemented to allow dynamic configuration of Physical Unclonable Functions
(PUFs). This command receives as input a data buffer with the number and type
of PUF to activate, and updates the chosenPufs structure accordingly.
The function decodes the command according to the standard TPM format (tag,
size, command code, payload) and uses the next field to identify the types of
PUFs to create. Each type is validated and added to the set chosenPufs, which
represents the simulated physical generators of PUFs.

4.3.4 Authorization and Session Management
A key feature of TPM 2.0 is its sophisticated authorization mechanisms for com-
mands affecting sensitive objects. TPM 1.2 used fixed entities with dedicated
passwords. TPM 2.0 introduces authorization sessions that offer HMAC authoriza-
tion, policy, and parameter encryption in a flexible manner. Our model implements
a subset of these features: authorization with a simple password, the command
directly contains the cleartext value of the shared password; HMAC authorization
is based on creating a temporary session identified by a nonce and, optionally, a salt.
This type of authorization uses HMAC SHA-256 to cover the secret AuthValue
of the target object. Each entity protected in the TPM, such as a key, NV index,
or PUF, has its own value AuthValue, which represents the “secret key” used to
validate permissions and calculate authorization HMACs.

Authorization type identification

According to the TCG TPM 2.0 Library Specification, Part 3, the authoriza-
tion type used in a command is determined by the tag field in the command
packet header. This field lets the TPM know if it should expect an authorization
area (TPMS_AUTH_COMMAND) and which mechanism to apply: TPM_ST_NO_SESSIONS
(0x8001) — indicates that the command contains no authorization session. In this
case, the TPM interprets authorization as “password-only” or “null” (no active
session); TPM_ST_SESSIONS (0x8002) — indicates that the command includes one
or more TPMS_AUTH_COMMAND structures in the parameter area. The TPM then
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reviews the handle of each session to determine its type: if sessionContext.type
== TPM_SE::HMAC, the session is of type HMAC; if instead it is POLICY or TRIAL,
it is treated according to the other mechanisms provided by the standard.
The two main cases are handled in our model: NO_SESSIONS (password autho-
rization) and SESSIONS with session HMAC, enough to cover the most common
authorization operations.

Authorization session structure

Each session information is stored in the SessionContext structure, which main-
tains the status of the active HMAC session.

Listing 4.18: Authorization Session
1 s t r u c t Sess ionContext {
2 uint32_t handle ; // s e s s i o n handle
3 TPM_SE type ; // s e s s i o n type HMAC or POLICY
4 uint32_t nonceSize ; // s i z e o f the nonce
5 std : : vector<uint8_t> nonceCa l l e r ; // nonce f o r the s e s s i o n
6 std : : vector<uint8_t> nonceTPM ; // TPM nonce
7 HashAlg hashParam ; // hash a lgor i thm used to encrypt s e s s i o n

parameters
8 HashAlg authHashAlg ; // hash a lgor i thm used f o r au t ho r i z a t i on
9 std : : vector<uint8_t> s a l t ; // s a l t f o r the s e s s i o n

10 std : : vector<uint8_t> sess ionKey ; // der ived key
11

12 std : : vector<uint8_t> cachedAuthValue ; // cached au th o r i z a t i on
value f o r unbound s e s s i o n s

13 bool isBounded ;
14

15 } ;

Each active session is stored using a global table sessionTable, which maps the
session handle to its context.

Creating a HMAC session - TPM2_StartAuthSession

The command TPM2_StartAuthSession allows the software to start a new autho-
rization session. This is used to negotiate security parameters between hosts and
TPM, as shown below:

• tpmKey — Handle of a TPM key used to encrypt any salt of the session. If
set to TPM_RH_NULL, it means that no key is used (unsalted session).

• bind (authHandle) — Handle of the object to which the session is linked. If
not null, the session is “bound”: the AuthValue of the object is included in
the session key derivation, making the session valid only for that object.
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• nonceCaller — Random value sent by caller (host).

• encryptedSalt — Optional salt value encrypted with the key specified in
tpmKey. If present, the TPM decrypts it with the function decryptSaltWithEVP().

• sessionType — Session type: HMAC (0x00), Policy (0x01), Trial, etc.

• authHash — Hash algorithm used for session digests and HMACs (SHA-256,
SHA-1, SHA-384)

During command processing, the TPM:

1. Checks the received parameters and checks the validity of the handles (NV,
Hierarchy, PUF, etc.).

2. Reads nonceCaller and, if present, decrypts the salt through RSA key. In
case of an error (missing key or decryption failed), the command is rejected.

3. Generates a random value nonceTPM of the same length as nonceCaller.

4. Determines whether the session is bound or salted:

• Bound: authHandle /= TPM_RH_NULL, then l’AuthValue of the associated
object is retrieved.

• Salted: the field salt is non-empty.

5. Derives session key with function KDFa():

K = KDFa(authValue ∥ salt, “TPM2_HMAC”, nonceCaller ∥ nonceTPM, L)

where L is the length of the algorithm uses for calculate the HMAC (for
example, SHA-256 the length is 256 bits).

Listing 4.19: KDFa()
1 ctx . sess ionKey = KDFa(
2 getEVPFromHashAlg ( ctx . authHashAlg ) ,
3 authValue , ctx . s a l t ,
4 "TPM2_HMAC" ,
5 ctx . nonceCal ler , ctx . nonceTPM ,
6 getHashSize ( ctx . authHashAlg ) ∗ 8
7 ) ;

6. Allocates a unique session handle and registers the context in the table
sessionTable. The handle is allocated progressively starting from 0x03000000,
as in the real TPM:
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Listing 4.20: Allocate Session
1 uint32_t a l l o ca t eSe s s i onHand l e ( ) {
2 s t a t i c uint32_t nextHandle = 0x03000000 ;
3 re turn nextHandle++;
4 }

7. Constructs the response for the host with the handle and the new nonceTPM.

At this point, the host can use the returned handle to authenticate subsequent
commands.

Bounded and Unbounded Sessions

In this model, the distinction between bounded and unbounded sessions mirrors the
behavior defined by the TCG in TPM 2.0 standard. A session is considered bounded
when an authHandle other than TPM_RH_NULL is specified: in that case, the session
is logically tied to an object of the TPM, and its session key (sessionKey) is derived
by including the AuthValue of that object. This means that the authorization
obtained through that session is valid only for that specific object: if the object
changes authorization value, or if the session is used for another handle, the HMAC
calculation will no longer coincide and the authorization will fail. In other words,
binding ensures that the session cannot be reused for different resources, reinforcing
the isolation of credentials in the TPM. Sessions unbounded, in contrast, are
initialized with authHandle = TPM_RH_NULL. In this case, the session key does not
depend on any AuthValue inside the TPM, but only on the salt (if present) and
the nonces exchanged between host and TPM. This makes them more flexible, but
also less tied to a specific context: typically, these sessions are used for temporary
authorization or to establish encrypted data exchange channels, without tying the
session to a particular object. In the code, such a distinction is represented by the
flag:

1 ctx . isBounded = ( authHandle != TPM_RH_NULL) ;

Where the authValue parameter is empty for unbounded sessions, while for bounded
sessions it contains the secret associated with the bound object (for example the
password of an NV index or the authorization value of a PUF). This allows that
the session key is effectively different for each combination of handle and nonce,
ensuring that two nominally identical sessions but tied to different objects produce
distinct HMACs.
The diagram below summarizes how bounded and unbounded sessions are handled.
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Figure 4.1: Overview of Bounded and Unbounded Session Handling

The first part of the scheme describes how the session is created in the case of
bounded or unbounded sessions. While the second part describe where the session
key is taken based on the type of session.

Using the HMAC session

When the host sends a protected command, it includes a TPMS_AUTH_COMMAND
structure containing:

• the session handle (4 bytes),

• the updated nonceCaller,

• one byte of attributes,

• and finally two bytes of size followed by the HMAC or password value.

In the case of a Password Session, the final field contains the cleartext password;
in the case of an HMAC session, it contains the HMAC calculated according to the
formula:

HMAC(sessionKey ∥ authValue, cpHash ∥ nonceCaller ∥ nonceTPM ∥ sessionAttr)

where cpHash is the hash of the command parameters and command code, excluding
the authorization area.
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Authorization verification

The function hmacAuth() implements all the validation logic of the authorization
areas present in the received commands.
Depending on the type of session, the behavior is different:

• Password session: checks that the nonce is null and directly compares the
received password with the expected AuthValue.

• HMAC session:

– Extracts nonceCaller, attributes and HMAC value.

– Calculate the cpHash of the command.

– Retrieve sessionKey and AuthValue from context.

– Calculate the expected HMAC with computeTPMAuthHMAC() and compare
it with the sent one.

– If valid, it updates the session by generating a new nonceTPM.

In case of an error, TPM_RC_AUTH_FAIL or TPM_RC_SESSION_HANDLE is returned.
This mechanism is used by all functions that require authorization, such as
verifyNvAuthorization() or generateChallengeResponse() for PUFs.
Finally, after each valid authorization, the TPM generates a new random nonceTPM:

1 RAND_bytes( s e s s i onPt r −>nonceTPM . data ( ) , s e s s i onPtr −>nonceTPM . s i z e ( ) ) ;

This behavior, compliant with TCG specifications, ensures that each authenticated
command uses a unique nonce, preventing the reuse of old HMACs and therefore
replay attacks. Furthermore, the new nonce is stored in the SessionContext
structure, making it possible to safely continue multi-command sessions.

Decrypt salt and load RSA keys

To support “salted” sessions, the module includes the function decryptSaltWithEVP(),
which uses OpenSSL APIs to decipher an RSA-OAEP-encrypted salt. The RSA
keys are preloaded into the simulated TPM via loadKeyFromHex(), which con-
structs a EVP_PKEY object starting from hexadecimal parameters (modulus, expo-
nent, private exponent). This part allows to realistically simulate the creation of
cryptographic sessions based on asymmetric keys.

75



Implementation

Closing sessions — TPM2_FlushContext()

Sessions can be closed explicitly via the TPM2_FlushContext(handle) command,
which removes the corresponding entry from the sessionTable. During Shutdown,
all sessions are automatically deleted, since — as in real TPM — they are volatile
entities that do not survive a reboot.

Security Considerations

This authorization model makes the simulated TPM capable of requesting the
correct credentials (passwords or HMAC) to access protected resources. If an NV
index or a PUF has a defined AuthValue, any command that does not provide
proper authorization is rejected.
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4.3.5 Platform Configuration Registers (PCR)
PCRs are registers dedicated to the secure storage of cryptographic measurements
that reflect the state of the platform over the course of the boot process and during
execution. Every time a system component is loaded (for example BIOS, bootloader,
kernel or critical modules), its hash is calculated and this value is “extended” in
the corresponding PCR, creating a chain of trust. This chain helps ensure that
the current state of the system is the result of a sequence of verifiable, unaltered
events. The fundamental property of PCRs is retroactive non-modifiability: once a
value is extended in the register, it is not possible to trace the previous value or
modify it arbitrarily, but only to add new measurements cumulatively.
According to the TCG (Part 2: Structures) specification, a compliant TPM module
must implement at least 24 PCRs, numbered 0 through 23, each of which may be
associated with one or more hashing algorithms (for example, SHA-1, SHA-256,
SHA-384, SHA-512).

General operation of the PCR mechanism

The logical operation of a PCR can be described through three basic operations:
Initialization; at the time of TPM start or initialization, each PCR is set to a
known value, generally a sequence of zeros of the adopted hash length.
Extension; whenever a new event or component needs to be measured, its hash is
calculated as H(date). The new PCR value is the result of the concatenated hash
of the previous value and the new digest:

PCRnew
i = H

1
PCRold

i ∥ H(data)
2

This operation is called an extend and ensures that each change in the state of the
system deterministically changes the PCR value, preserving the integrity of the
measurement chain.

Verification and attestation; the contents of the PCRs can be read and signed
by the TPM to generate a quote, which is a cryptographically verifiable proof of
the status of the platform. External entities can verify these quotas by comparing
the PCR values with the expected ones, ensuring that the system has not been
compromised.

PCR Data Structure

In the code, the PCR data structure is defined as follows:

Listing 4.21: PCR Data Structure
1 s t r u c t PCR
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2 {
3 std : : vector<uint8_t> value ;
4 bool r e s e t t a b l e = f a l s e ; // f o r TPM2_PCR_Reset ( g e n e r a l l y f a l s e

f o r 0−15 PCRs)
5 std : : vector<uint8_t> authValue ; // au tho r i z a t i on value

a s s o c i a t e d with the PCR
6

7 PCR() : va lue ( ) {} // d e f a u l t con s t ruc to r l e a v e s va lue empty
8 PCR( HashAlg alg , bool i s R e s e t t a b l e = f a l s e )
9 : va lue ( getHashSize ( a lg ) , 0) , r e s e t t a b l e ( i s R e s e t t a b l e ) {}

// i n i t i a l i z e with hashSize zeroed bytes
10 } ;

Each PCR includes:

• value: the current value of the register, represented as a vector of bytes. This
value is initialized with a sequence of zeros the size of the hashing algorithm
used (for example, 32 bytes for SHA-256);

• resettable: a Boolean flag indicating whether the PCR can be zeroed (only
some registers, typically 16 onwards, are resettable);

• authValue: An associated authorization value, used to control access to or
modification of the PCR.

The total number of PCRs is set at 24, accoding to TCG specification.

Software implementation operation

The software implementation of PCRs within the TPMDevice class faithfully repli-
cates the logic of TPM, providing the following main operations:

Reading; the pcrRead() function provides access to the contents of a log, return-
ing the current digest. It preliminarily checks the validity of the required index
and the presence of the “bank” corresponding to the hashing algorithm used (for
example SHA-256).

Extension; the pcrExtend() function implements hash concatenation and re-
calculation logic. The new PCR value is calculated by concatenating the current
register value with the event digest and applying the selected hash function:

Listing 4.22: pcrExtend()
1 toHash . i n s e r t ( toHash . end ( ) , pcr . va lue . begin ( ) , pcr . va lue . end ( ) ) ;
2 toHash . i n s e r t ( toHash . end ( ) , d i g e s t . begin ( ) , d i g e s t . end ( ) ) ;
3 pcr . va lue = shaHash ( alg , toHash ) ;
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This implementation guarantees the forward integrity property, since each subse-
quent value cryptographically depends on all previous values.

Reset. Some PCRs can be returned to zero, marked as resettable. The function
pcrReset() checks for that condition and, if successful, zeroes the registry contents
for all active algorithms. Non-reset PCRs (typically 0 to 15) retain their value
until the TPM is restarted.

Events and measurements; the pcrEvent() and measureSystemState() func-
tions allow simulating the measurement of the system state. In particular,
measuresystemState() collects structural system information (name, available
memory, number of threads, active workload) and calculates an SHA-256 digest of
that data. The result is then extended into PCR0, which takes the role of the main
register for measuring platform integrity. This approach allows the chain of trust
to be emulated at the software level, allowing any changes to the state of the plat-
form to be verified by comparing the current value of the PCR with the expected one.

Listing 4.23: measuresystemState()
1 appendString ( sys−>name ( ) ) ;
2 appendU64 ( sys−>memSize ( ) ) ;
3 appendU32 ( s ta t i c_cas t <uint32_t >(sys−>cacheL ineS i ze ( ) ) ) ;
4 appendU32 ( s ta t i c_cas t <uint32_t >(sys−>threads . s i z e ( ) ) ) ;
5 appendU32 ( s ta t i c_cas t <uint32_t >(sys−>threads . numActive ( ) ) ) ;
6 i f ( sys−>workload )
7 appendString ( sys−>workload−>name ( ) ) ;

Authorization; the verifyPcrAuthorization() method implements an access
control on PCRs, verifying that the provided handle actually belongs to the PCR
category and that the authorization (authValue) is valid.

Function of cryptographic hashes and libraries

The function shaHash() represents the base cryptographic primitive used to calcu-
late integrity measures associated with Platform Configuration Registers (PCR). It
performs digest calculation from an arbitrary data buffer, using one of the hashing
algorithms required by the TPM 2.0 standard. Its behavior complies with what
is defined in the TCG TPM 2.0 Library Specification – Part 2: Structures, which
specifies the use of hash functions such as SHA-1, SHA-256 and SHA-384 for digest
generation used in extension and attestation operations.
The function has the following implementation:

Listing 4.24: shaHash()
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1 std : : vector<uint8_t> TPMDevice : : shaHash ( HashAlg alg ,
2 const std : : vector<uint8_t> &

data )
3 {
4 const EVP_MD ∗md = getEVPFromHashAlg ( a lg ) ;
5 i f ( !md)
6 throw std : : runtime_error ( "TPM_RC_HASH: Unsupported hash

algor i thm " ) ;
7

8 EVP_MD_CTX ∗ ctx = EVP_MD_CTX_new( ) ;
9 i f ( ! ctx )

10 throw std : : runtime_error ( " Fa i l ed to a l l o c a t e d i g e s t context " )
;

11

12 std : : vector<uint8_t> r e s u l t (EVP_MD_size(md) ) ;
13 unsigned i n t l en = 0 ;
14

15 EVP_DigestInit_ex ( ctx , md, n u l l p t r ) ;
16 i f ( ! data . empty ( ) )
17 EVP_DigestUpdate ( ctx , data . data ( ) , data . s i z e ( ) ) ;
18 EVP_DigestFinal_ex ( ctx , r e s u l t . data ( ) , &l en ) ;
19 EVP_MD_CTX_free( ctx ) ;
20

21 r e s u l t . r e s i z e ( l en ) ;
22 re turn r e s u l t ;
23 }

The function shaHash() is used in multiple places in the implementation:

• to calculate the digest of data to be extended in PCRs;

• to generate the measurement values of the system during the phase boot
measurement;

• for extension operations in NV type registers EXTEND, in combination with
hashConcat().

The developed implementation accurately reproduces the behavior of the PCRs
defined by the TCG, ensuring cryptographic consistency and correct updating
of the platform status. Each extension generates a new value dependent on all
previous events, preventing any retroactive manipulation. Moreover, integrating
the measureSystemState() function allows maintaining a synthetic yet reliable
representation of the system state that’s useful for remote attestation or integrity
verification operations.
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4.3.6 NV Memory
General context and operation

In the Trusted Platform Module (TPM), non-volatile memory (NV) is a persistent
area intended for storing NV indices and related data even in the absence of power.
According to the TCG TPM 2.0 specification, each NV index is identified by
a unique handle and described by a public block (policy, attributes, size, name
algorithm) and a private state (permissions, values and locks).
Conceptually:

• a NV Index is a persistent object characterized by a type (ORDINARY, COUNTER,
BITS, EXTEND, PIN_FAIL, PIN_PASS), by a series of attributes (TPMA_NV) gov-
erning its behavior, and by a set of authorization policies and values;

• fundamental operations include defining and removing NV space, reading
and writing with offset and bounds checking, managing locks (read/write/-
global), typed operations (increment, setBits, extend), and changing login
credentials.

NV attributes (TPMA_NV) enable security and operational consistency constraints,
including:

• TPMA_NV_WRITTEN: indicates whether the index has been initialized or written
at least once;

• TPMA_NV_WRITELOCKED and TPMA_NV_READLOCKED: prevent index writing or
reading, respectively;

• TPMA_NV_WRITEDEFINE, TPMA_NV_WRITE_STCLEAR, TPMA_NV_READ_STCLEAR: spec-
ify lock persistence (permanent or until TPM is reset);

• TPMA_NV_GLOBALLOCK: enable global locking on all NV indexes;

• TPMA_NV_ORDERLY: differs the persistent update by moving it to a volatile
representation.

The NV area then provides secure persistence of platform security-related data and
policies, maintaining strict control over access and integrity of operations.

NV Data Structure

Non-volatile memory management is modeled in the project through three main
structures: TPMS_NV_PUBLIC, TPMS_NV_PUBLIC2 and NVIndex. These represent, re-
spectively, the public portion of an NV index, its extended variant with handle-type
information, and the complete internal representation maintained by the TPM
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device.

The structure TPMS_NV_PUBLIC defines the public area of an NV index,
i.e. the set of static parameters that describe how the register is configured. It is
modeled according to the TCG TPM 2.0, Part 2 – Structures specification
and includes the following fields:

• nvIndex: unique NV index identifier, encoded as a 32-bit handle. NV han-
dles belong to the category TPM_HT_NV_INDEX and permanently identify the
memory location reserved for an object.

• nameAlg: specifies the hashing algorithm (for example SHA-256, SHA-384,
etc.) used to calculate the Name of the index. This is used as a digest that
uniquely represents NV Index public definition. This field allows you to ensure
the integrity of the public descriptor and verify it cryptographically during
attestation operations.

• attributes: contains configuration bits defined by the field TPMA_NV. Each
bit represents an index property or restriction, such as read and write locks,
index persistence after TPM reset, or the use of the ORDERLY flag for partial
maintenance in volatile memory.

• authPolicy: represents the authorization policy associated with the index,
stored as a byte vector. It is the digest of a policy structure generated by the
TPM, and is compared with the authorization provided during operations to
verify that access conditions are respected.

• dataSize: indicates the maximum size, in bytes, of the data that the index
can contain. This value is used to validate write operations and to allocate
the necessary NV memory.

• type: specifies the index type, via enumeration

– ORDINARY: generic read/write space;
– COUNTER: numeric register incremental with TPM2_NV_Increment();
– BITS: set of bits that can be manipulated via OR logical operations;
– EXTEND: PCR-like extension register, based on concatenated hashes;
– PIN_FAIL and PIN_PASS: indexes dedicated to managing PIN-based access

policies.

The TPMS_NV_PUBLIC structure describes all immutable and verifiable
parameters of an NV Index, providing the information necessary to calculate its
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Name and control its security policies.
The TPMS_NV_PUBLIC2 structure represents a extension of TPMS_NV_PUBLIC, intro-
duced for more modular handling. Includes two fields:

• handleType: identifies the type of handle associated with the object (for
example TPM_HT_NV_INDEX for NV indexes). This field allows different objects
to be distinguished within the TPM handle space.

• nvPublic: structure TPMS_NV_PUBLIC proper, which contains index details.

The NVIndex structure represents the internal and dynamic part of an NV Index,
that is, the actual state of the object within the TPM. It contains both information
derived from the public part, as well as additional fields necessary for managing
content and permissions.
The main fields are:

• handle: index internal identifier (full 32-bit handle). The most significant
byte encodes the handle type according to TCG rules, while the remaining 24
bits identify the specific index.

• nameAlg: hashing algorithm used to calculate the index name, as defined in
the public section.

• data: byte vector containing the persistent data stored in NV. In special
cases (COUNTER, BITS, EXTEND), it represents the numeric counter, bit value,
or cumulative digest, respectively.

• size: field size data, consistent with dataSize in the public part. It is used
to validate offsets and write limits.

• attributes: bit field (TPMA_NV) that keeps the updated state of the index,
including dynamic flags such as WRITTEN or WRITELOCKED.

• authValue: secret value associated with the index, used for password autho-
rization operations or HMAC. It is distinct from authPolicy, which instead
defines a logical constraint on access conditions.

• authPolicy: copy of the associated public policy, necessary to verify the
coherence between the public and internal areas.

• type: logical index type, as defined in TPM_NT.

• volatileCounter: temporary counter used to manage indexes of type COUNTER
with attribute ORDERLY. It is maintained in RAM and consolidated on NV
only when a threshold is exceeded or when the TPM status is saved.
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• volatileData: temporary buffer in RAM used for indexes with attribute
ORDERLY. It allows you to reduce physical writes to non-volatile memory,
preserving their duration.

• writeLocked: Boolean flag indicating whether the index is currently locked
in write.

• written: flag that signals whether the index has been written at least once
(equivalent to TPMA_NV_WRITTEN).

The distinction between TPMS_NV_PUBLIC and NVIndex reflects the conceptual
division between static and verifiable description (public area) and operational
status (private area). This separation allows only information necessary for
integrity verification to be made public, keeping sensitive data and the internal
dynamic state of the TPM confidential.

Operations implemented

The functions writeNV() and readNV() allow writing and reading data on the NV
indices, verifying the attributes and memory limits in each operation and the index
permissions.
The write performs the following checks:

1. checking for index presence and authorization by verifyNvAuthorization();

2. checking absence of flag TPMA_NV_WRITELOCKED;

3. consistency between offset, size and attributes (eg. TPMA_NV_WRITEALL).

Listing 4.25: Verifying limits in NV writing
1 i f ( o f f s e t + input . s i z e ( ) > index . s i z e )
2 throw std : : runtime_error ( "TPM_RC_NV_RANGE: Write exceeds NV index

s i z e " ) ;
3

4 std : : copy ( input . begin ( ) , input . end ( ) , index . data . begin ( ) + o f f s e t ) ;
5

6 index . a t t r i b u t e s |= NVAttr : :WRITTEN;

The read similarly checks block attributes (TPMA_NV_READLOCKED), the offset and
size limits, and the actual initializing the data (TPMA_NV_WRITTEN), raising excep-
tions in case of violations of policies or constraints.

The undefineNVSpace() function allows you to delete an existing NV index,
updating available memory and checking security policies. The operation is blocked
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for indexes that have the attribute TPMA_NV_POLICY_DELETE, and it requires plat-
form permission if the corresponding bit is set. For cases where there is an explicit
cancellation policy, the undefineNVSpaceSpecial() function allows conditional
removal to the validation of the policy digest and the authorized command code
(TPM_CC_NV_UndefineSpaceSpecial).

Typed indices

NV indices can take on different logical types, defined by the field TPM_NT, which
determine its operating behavior:

• Counter (incrementNV()): Handles persistent counters and ORDERLY. The
value is stored in the first four bytes of data and updated in RAM if the
ORDERLY attribute is active:

counternew = counterold + 1

• Bitfield (setBitsNV()): allows logical operation OR between the current
value and a 64-bit mask:

bitsnew = bitsold ∨ mask

• Extend (extendNV()): implements an extension analogous to that of the
PCRs, concatenating the current value and the supplied buffer, therefore
calculating:

new = H(current ∥ buffer)

The result is stored in data (for persistent indexes) or in volatileData (for
indexes ORDERLY).

For indexes with attribute TPMA_NV_ORDERLY, the implementation maintains a tem-
porary copy of the value in volatile memory (volatileData or volatileCounter),
which is synchronized with NV memory only in system stability conditions or when
a predefined threshold is exceeded. This behavior replicates the orderly update
policy described in the TPM 2.0 Part 3 specifications.

NV memory persistence between Simulations

To ensure the persistence of non-volatile memory (NV) of the TPM between differ-
ent simulations runs, a new feature was introduced in the model: the serialization
of NV state to file. In particular, the TPMDevice::savePersistentNvState()
method takes care of exporting the contents of the NV memory to a binary file,
saving all the metadata necessary to correctly restore the state in subsequent
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executions. Saving includes a “magic number” and a version number, useful for
checking format consistency, as well as information on the number of NV indexes
present and the amount of memory used. For each index, the main fields of the
NVIndex structure are then written to file, such as the identifier (handle), the
associated hashing algorithm (nameAlg), attributes, data size, type, vectors data,
authPolicy, and authValue, as well as flags that indicate whether the index has
been written or blocked in writing.

The persistNvState() method acts as a wrapper for savePersistentNvState(),
automatically invoking it at critical points in the TPM lifecycle (e.g. at shutdown
or reset) and handling any errors via log messages. In this way, the state of NV
memory is preserved even between successive simulations, making it possible to
model in gem5 a TPM with realistic behavior, in which permanent data - such as
keys, monotonic counters or authorization policies - survive reboots of the simulated
system.

Instead, the complementary function, loadPersistentNvState(), is invoked dur-
ing device initialization for reconstruct NV status starting from the saved file. It
reads the fields in order, verifying the magic number and the version, and recreates
the map of the NV indices in memory, allocating the structures and populating the
respective fields with deserialized data. In case of inconsistencies or missing files,
loading is ignored and NV memory is initialized to a clean state, thus ensuring the
robustness of the persistence mechanism. This extension allows to more faithfully
simulate the behavior of a real TPM, which maintains sensitive information and
internal state in non-volatile memory between reboots.

Lock and Policy

The blocking functions, writeLockNV(), readLockNV() and globalWriteLockNV(),
apply write and read restrictions on NV indices according to TPMA_NV attribute
bits. The function changeNVAuth() allows updating the value of authorization
(authValue), after checking the associated policy (TPM_CC_NV_ChangeAuth) and
the imposed maximum digest limit from the hashing algorithm used. authorization
is handled by the verifyNvAuthorization() function, supporting both password-
based logins and HMAC sessions, checking the match between the calculated digest
and the fields authValue of the index.
Although the authorization mechanism using policy was not fully implemented in
this version, the data structure and management functions have been designed to
accept one in the future extension compatible with policy-based authoriza-
tion. Specifically, the fields authPolicy and policyDigest are already foreseen
in the data structures (NVIndex and TPMS_NV_PUBLIC), allowing future integration
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of a system of authorization policy.

Hash function and calculation of integrity measures

The function hashConcat() constitutes one of the fundamental primitives for the
calculation of integrity measures and for the management of NV indices of type
EXTEND. It implements the concatenation and hashing operation defined in the
specification TCG TPM 2.0 Library Specification – Part 2: Structures, required
for obtain a new value cryptographically bound to the previous data.
The function calculates:

H(a ∥ b)
where H represents the selected hash function, while a and b they are two byte
vectors (e.g. the current value and the extension buffer). The use of binary
concatenation ensures that the resulting digest is uniquely determined by the order
of the data, preventing any possibility of inversion or independent manipulation of
the parts. From an implementation point of view, the function uses cryptographic
APIs EVP from OpenSSL, as shown in the fragment below:

Listing 4.26: hashConcat()
1 std : : vector<uint8_t> TPMDevice : : hashConcat ( uint32_t alg ,
2 const std : : vector<uint8_t>

&a ,
3 const std : : vector<uint8_t>

&b)
4 {
5 const EVP_MD ∗md = n u l l p t r ;
6 i f ( a l g == TPM_ALG_SHA256)
7 md = EVP_sha256 ( ) ;
8 e l s e i f ( a l g == TPM_ALG_SHA384)
9 md = EVP_sha384 ( ) ;

10 e l s e i f ( a l g == TPM_ALG_SHA1)
11 md = EVP_sha1 ( ) ;
12 e l s e
13 throw std : : runtime_error ( " Unsupported hash algor i thm " ) ;
14

15 EVP_MD_CTX ∗ ctx = EVP_MD_CTX_new( ) ;
16 std : : vector<uint8_t> r e s u l t (EVP_MD_size(md) ) ;
17

18 EVP_DigestInit_ex ( ctx , md, n u l l p t r ) ;
19 EVP_DigestUpdate ( ctx , a . data ( ) , a . s i z e ( ) ) ;
20 EVP_DigestUpdate ( ctx , b . data ( ) , b . s i z e ( ) ) ;
21 EVP_DigestFinal_ex ( ctx , r e s u l t . data ( ) , n u l l p t r ) ;
22 EVP_MD_CTX_free( ctx ) ;
23

24 re turn r e s u l t ;
25 }
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Using the EVP APIs allows you to abstract from the algorithm type and to easily
extend support to additional hash functions without changing the architecture of
the code. Currently, the algorithms SHA-1, SHA-256, and SHA-384 are supported,
in line with the most common implementations of TPM 2.0. This function is used
by indexes of type EXTEND to replicate the behavior of Platform Configuration
Registers (PCR), calculating a cumulative digest that maintains the forward
integrity of the value. Each new extension generates a result that uniquely depends
on all the older extensions, depending on the model:

NVnew = H(NVold ∥ data)

so that no retroactive modification of the content can produce a value consistent
with the legitimate state of the registry.

4.3.7 TPM commands: mechanism of dispatch
The component TPMDevice::processCommand() represents the entry point of the
command interface of the simulated TPM. All commands coming from the top
level (software or CPU) are forwarded to this function, which deals with:

1. validate binary packet structure;

2. identify the command type by the field cmdCode;

3. perform routing (dispatch) to the appropriate management function;

4. build and return the formatted response according to the TPM 2.0 standard.

Each packet sent to the TPM follows the standard format defined in the specifica-
tions TCG TPM 2.0 Part 3 – Commands:

tag (2B) | size (4B) | commandCode (4B) | parameters

The dispatcher initially checks that the package complies with this structure, check-
ing that the actual buffer length matches the value size declared in the header field.
Such checks prevent memory corruption and attack attempts based on malformed
packages or with inconsistent lengths.
The routing to the correct function is handled by a switch on the field cmdCode.
Each code identifies a distinct TPM operation — be it standard (eg. NV_Read)
or an extended one (eg. PUF_ChallengeResponse). The architecture of the dis-
patcher is deliberately modular: command codes are declared as readable constants,
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and adding a new command only requires the insertion of a new case with the
corresponding management function.
In the context of the thesis, two custom commands were implemented for PUF
management:

• 0x0A0A0A0A: executes the flow of challenge–response by calling the generateChallengeResponse()
function;

• 0x0A0A0A0B: Dynamically selects active PUFs within the TPM lifecycle via
TPM_Create().

This approach allows the TPM behavior to be extended without altering compati-
bility with standard commands defined by the TCG.
An example of how the dispatch process has been performed is the follows:

Listing 4.27: hashConcat()
1 std : : vector<uint8_t> response {} ;
2 switch (cmdCode) {
3 case 0x0A0A0A0A: { // puf − cha l l enge −response
4 re sponse = generateChal lengeResponse (command , tag ) ; // tag ==

0x8001 o 0x8002
5 break ;
6 }
7

8 case 0x20000000 : { // f l u s h s e s s i o n
9 re sponse = TPM2_FlushContext (command) ;

10 break ;
11 }
12

13 case 0x0A0A0A0B : { // TPM_Create ( custom ) : choose a c t i v e PUF( s )
14 // Execute and return a minimal s u c c e s s header
15 TPM_Create(command) ;
16 uint16_t cmd_tag =
17 ( s ta t i c_cas t <uint16_t >(command [ 0 ] ) << 8) |
18 s ta t i c_cas t <uint16_t >(command [ 1 ] ) ;
19 re sponse = makeRespHeader ( cmd_tag , 0x0000 ) ;
20 break ;
21 }

The function makeRespHeader() constructs the standard response header, including
the return code (TPM_RC) that indicates the operation’s outcome. Any exceptions
raised during command execution are intercepted and relaunched as errors consistent
with TPM semantics, preserving interface robustness and traceability.
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4.4 Integration of PUFs
The objective of this section is to illustrate in detail the integration of the Phys-
ical Unclonable Functions (PUFs) in the simulated TPM module, highlighting
the solutions adopted for the management of several heterogeneous types (SRAM,
RING_OSCILLATOR, ARBITER) and for their interoperability with the security infras-
tructure of the TPM.
The integration was designed according to two fundamental architectural principles:

1. Separation between configuration and instance: each PUF is defined by
a configuration object (PufConfig), which specifies its static parameters, and
by an instance object (PufWrapper), which manages the operational status
and authorization logic.

2. Static polymorphism and typed security: the different PUF families
are managed uniformly via std::variant, allowing dynamic selection of the
concrete type while maintaining compile-time type security.

The resulting infrastructure allows heterogeneous PUFs to be defined and used
while maintaining semantics consistent with the TPM 2.0 model, in which each
resource is associated with a unique identifier, an authorization area and a set of
access attributes.

4.4.1 PUFs Data Structure
To integrate heterogeneous PUFs into the simulated TPM, the implementation
clearly distinguishes between: (i) declarative configurations (PufConfig) and
(ii) runtime instances (PufWrapper) ready to use. At the system level, facilities
are organized into maps by type, with a set dedicated to operational selection.

Listing 4.28: PUF types
1 enum c l a s s PufType : uint32_t
2 {
3 GENERIC = 0x06000004
4 // other types can be added here
5 } ;

The 32-bit value allows stable identification even in the binary protocol (explicit
endianness). The 0x06 prefix in the high byte facilitates quick checks of “names-
paces” of handles. The isValidPufType() function avoids the use of unsupported
types.
The structure PufConfig represents the logical and static description of a PUF,
that is, the set of parameters that define its expected behavior before the instance
is created. It is therefore a “configuration”, non-operational object that contains all
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the information needed to initialize a PUF properly. The information defined here
are used by the function createPufFromConfig() to construct the corresponding
PufWrapper instance.

Listing 4.29: PUF configuration structure
1 s t r u c t PufConfig {
2 PufType type ;
3 std : : vector<uint8_t> authValue ; // s e c r e t /key f o r PUF acc e s s
4 uint8_t authSize ; // ac tua l l ength o f authValue
5 uint16_t c h a l l e n g e S i z e ; // in bytes (CRP input )
6 uint16_t r e spon s eS i z e ; // in bytes (CRP output expected )
7 bool userWithAuth ; // r e q u i r e s user auth (pw/HMAC)
8 bool adminWithPolicy ; // r e q u i r e s admin i s t r a t i v e p o l i c y
9 bool hasSeed = f a l s e ; // i f present , use s t a t i c seed

10 std : : s t r i n g seedLabe l ; // seed l a b e l ( f o r l ogg ing / debugging )
11 PufSeedT e x p l i c i t S e e d = 0 ; // s t a t i c seed value
12 } ;

• type: select the PUF to use.

• authValue, authSize: authorization material (password/HMAC key) and
its length; used in generateChallengeResponse() to authorize access to the
PUF.

• challengeSize, responseSize: sizing of the CRP (validation constraint in
input/output); keeps buffers consistent and prevents overflow/underflow.

• userWithAuth: enable “user” access control (TPM tag TPM_ST_SESSIONS
required for authenticated access).

• adminWithPolicy: reserved for advanced policies (not yet operational here),
but already provided for future command constraints/conditions.

• hasSeed, explicitSeed, seedLabel: enable a declarative static seed for
determinism and test reproducibility; the label facilitates traceability and
debugging.

The structure PufWrapper instead represents the materialization runtime of a
PUF within the TPM module. While the configuration defines static parameters,
the wrapper maintains the PUF operational status, such as:

• the concrete implementation reference (Generic);

• the active authorization values;

• the seed initialization state (static or generated);
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• the login information (user or policy).

It is the logical equivalent of an “active object” within the TPM, used directly by
challenge–response functions.

Listing 4.30: PUF instance wrapper
1 us ing ConcretePuf = std : : var iant <SramPuf , RingOsc i l l a torPuf ,

ArbiterPuf >;
2

3 s t r u c t PufWrapper {
4 PufType type ; // conc re t e type o f i n s t anc e
5 ConcretePuf pu f Ins tance ; // conc re t e implementation ( va r i an t )
6

7 uint8_t authValue [ 3 2 ] ; // copy o f s e c r e t ( bounded )
8 uint8_t authSize ; // ac tua l l ength o f s e c r e t
9

10 bool userwithAuth = true ; // r e q u i r e s auth user
11 bool adminWithPolicy = f a l s e ; // p o l i c y admin preparat i on
12

13 bool hasStat i cSeed = f a l s e ; // use o f s t a t i c seed
14 PufSeedT s t a t i c S e e d = 0 ; // s t a t i c seed value
15

16 bool hasGeneratedSeed = f a l s e ; // i f generated at runtime
17 PufSeedT generatedSeed = 0 ; // generated seed value
18 } ;

• type: replicate configuration type for consistency and runtime controls.

• pufInstance: encapsulates the concrete object (Generic) into a std::variant.

• authValue[32], authSize: local copy and size of authorization material; fixed
maximum length array to avoid reallocations and simplified bounds checks.

• userwithAuth, adminWithPolicy: enable access control paths; if either is
true authenticated access requires 0x8002 tags (TPM sessions).

• hasStaticSeed, staticSeed: if present, the PUF uses a predefined (deter-
ministic) seed; useful for repeatable tests and comparisons against ground
truth.

• hasGeneratedSeed, generatedSeed: in the absence of static seed, the first
access generates a random seed (persisted in the wrapper) to make the behavior
of the instance stable along the TPM lifecycle.

The PufWrapper then provides the direct interface between the logic of the TPM
and the concrete implementations of PUFs, maintaining a polymorphic model via
std::variant and std::visit.
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Listing 4.31: Maps and PUF management sets
1 std : : unordered_map<PufType , PufConfig> _pufConfigs ; // copy o f the

params
2 std : : unordered_map<PufType , PufWrapper> pufs ; // each PUF i s

i d e n t i f i e d by the
3 type std : : unordered_set<PufType> chosenPufs ; // t h i s s e t i s used to

take t r a c e to the puf that we would l i k e to use from the s ta r tup
o f the TPM u n t i l the shutdown o f the TPM.

• _pufConfigs: “catalogue” of declarative configurations; each entry defines
how a PUF of that type will be constructed and protected.

• pufs: map of instances actually created and ready to use; key PufType for
O(1) access at CRP request stage.

• chosenPufs: set of PUF types “enabled” at runtime via the TPM_Create
command; avoids accidental use of PUFs not intended in the current scenario.

The process of initializing PUFs occurs in two distinct stages:

1. the stage of declaration, where configurations (PufConfig) are registered in
_pufConfigs;

2. the step of materialization, in which populatePufsFromConfig() creates
the concrete instances (PufWrapper) using the function createPufFromConfig().

The createPufFromConfig() acts as a factory, selecting the appropriate construc-
tor based on the type of PUF indicated in the configuration. The sizes of challenge
and texttt response are converted to bits.
Populating via populatePufsFromConfig() transfers all security parameters (au-
thorization value, digest size, access policies, seeding strategy) to the runtime
structure and allocates instances in memory, maintaining explicit control over the
lifecycle. During this stage, initialization of the authValue and authSize fields
establishes object access limits, while the userWithAuth and adminWithPolicy
flags define the level of protection required for access. The function is designed
to be idempotent: any instances already created are not reconstructed, ensuring
consistency of the pufs map content and reducing risks of state inconsistency.

4.4.2 Challenge-Response flow
The heart of the implementation lies in generateChallengeResponse(), which
implements the entire generation flow of the Challenge–Response Pair (CRP). The
structure of the data packet sent to the generateChallengeResponse() function
is shown below.
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Figure 4.2: Structure of the data packet sent to the generateChallengeResponse
function

Parsing and preliminary validation

The function parses the received packet according to the binary format of TPM
commands (tag|size|cmd|payload) and extracts the PUF identifier (handle).
Handle validity is checked in three steps:

1. prefix check 0x06 (PUF namespace identifier);

2. type validation via isValidPufType();

3. checks that the PUF is present in the chosenPufs set, i.e. among those
activated in the current life cycle.

This step ensures that each access is consistent with the current state of the TPM
and that uninitialized or deactivated types cannot be addressed.

Authorization

Authorization control is then performed, compliant with the TPM 2.0 model.
Each PUF can be:

• free, if no authorization mechanism is required;

• authorization with password (tag 0x8001);

• authorization via HMAC/policy session (tag 0x8002).
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For PUFs with flags userWithAuth or adminWithPolicy, the use of the tag
TPM_ST_SESSIONS (0x8002) is mandatory; any requests with legacy tags 0x8001
are rejected. In the case of authorization via HMAC, the function delegates valida-
tion to hmacAuth(), which calculates the digest on the session area and returns
the new nonce to be included in the response.
The following snippet highlights security enforcement:

Listing 4.32: Tag control and TPM authorization
1 i f ( ( puf . userwithAuth | | puf . adminWithPolicy ) && authSe l e c to r != 0

x8002 )
2 throw std : : runtime_error ( "TPM_ST_SESSIONS requ i r ed f o r PUF acc e s s

" ) ;

Even though the mechanism of policy-based authorization is not yet fully opera-
tional, the data structures (authPolicy, adminWithPolicy) and control paths are
already in place, allowing in the future the introduction of complex policies based
on digest and command constraints, in line with the TCG specifications.

Validation of the challenge

After the authorization step, the function generateChallengeResponse() pro-
ceeds with the validation of the challenge field, which represents the data of entrance
to the PUF. The challenge is a byte vector provided by the caller and must respect
the dimensions expected from the configuration associated with the PUF type.
Incorrect validation of this phase causes errors.

Listing 4.33: Parsing and challenge validation
1 uint16_t c h a l l e n g e S i z e = read_u16_be ( o f f s e t ) ;
2 auto i t = _pufConfigs . f i n d ( s ta t i c_cas t <PufType>(pufType ) ) ;
3 i f ( en == _pufConfigs . end ( ) )
4 throw std : : runtime_error ( "PUF type not found in _pufConfigs " ) ;
5

6 i f ( cha l l eng e S i z e != i t −>second . c h a l l e n g e S i z e )
7 throw std : : runtime_error ( "Wrong c ha l l eng e s i z e " ) ;
8

9 // o f f s e t now po in t s to the ac tua l s t a r t o f the c ha l l eng e
10 i f ( o f f s e t >= command . s i z e ( ) )
11 throw std : : runtime_error ( " packet miss ing cha l l eng e " ) ;
12

13 // e x t r a c t i n g the cha l l eng e from the package
14 std : : vector<uint8_t> cha l l eng e (command . begin ( ) + o f f s e t , command . end

( ) ) ;
15

16 i f ( cha l l eng e . s i z e ( ) != i t −>second . c h a l l e n g e S i z e )
17 throw std : : runtime_error ( " wrong cha l l eng e s i z e " ) ;
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Three main checks are performed at this stage:

1. correspondence between the PUF type and the configuration registered in
_pufConfigs;

2. consistency of the challenge size with that declared in PufConfig;

3. validity of the offset within the packet to avoid out-of-bounds readings.

Seed management and controlled determinism

Once the challenge has been validated, the function determines the seed (seed)
to be used for processing. In the real model, the seed represents the origin of
the physical uniqueness of the PUF; in the simulated context, it is modeled as a
pseudorandom integer value that guarantees the same property of non-replicability
and stability over time.
Each PUF can operate in two modes:

• Static seed: the seed is declared in the configuration (hasSeed = true)
and is used for all subsequent responses. This mode is useful in testing and
validation, as it allows to obtain deterministic and reproducible results.

• Runtime seed: if there is no explicit seed, it generates a random one on the
first request via the function generateRandomSeed(). The generated value
is then stored inside the PufWrapper, so that all subsequent responses of the
same PUF remain consistent throughout the session.

Listing 4.34: Managment of Seed
1 PufSeedT chosenSeed = 0 ;
2 i f ( puf . hasStat i cSeed ) {
3 chosenSeed = puf . s t a t i c S e e d ;
4 } e l s e {
5 i f ( ! puf . hasGeneratedSeed ) {
6 chosenSeed = generateRandomSeed ( ) ;
7 puf . generatedSeed = chosenSeed ;
8 puf . hasGeneratedSeed = true ;
9 } e l s e {

10 chosenSeed = puf . generatedSeed ;
11 }
12 }

This logic allows reproducibility and realism to be combined: in the absence
of static seed, the simulation generates a pseudorandom behavior analogous to
the one equal to a physical system, but ensuring consistency between multiple
invocations of the same PUF. After seed selection, the value is injected into the
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concrete instance via the functions serialize() and deserialize(), to change
its internal state in a transparent but controlled manner. The combination of
validated challenge and controlled seed ensures that the CRP calculation is both
safe, reproducible and traceable in the TPM lifecycle.

Challenge-Response Elaboration

Once the challenge has been validated and the seed to be used has been determined,
the module proceeds with the actual processing of the Challenge–Response Pair
(CRP). In the implemented model, the concrete PUF (Generic) exposes a function
crp() that receives as input the vector challenge and returns a vector response
containing the response generated. The call is made polymorphically via the
standard function std::visit, which applies a lambda to the instance contained
in the variant pufInstance, ensuring that the correct method is invoked on the
concrete type.

1 appPayload = std : : v i s i t (
2 [& ] ( auto& impl ) −> std : : vector<uint8_t> {
3 us ing ImplT = std : : decay_t<dec l type ( impl ) >;
4 i f constexpr ( std : : is_same_v<ImplT , std : : monostate >)

{
5 throw std : : runtime_error ( "PUF in s tance not

i n i t i a l i z e d " ) ;
6 } e l s e {
7 re turn impl . crp ( cha l l eng e ) ;
8 }
9 } ,

10 puf . pu f Ins tance
11 ) ;

Using std::visit allows to maintain a dynamic dispatch and safe to compile-
time, avoiding the use of virtual pointers and ensuring efficiency and typified safety.
In this way, the infrastructure can handle multiple PUF implementations without
sacrificing performance or breaking the abstraction of the TPM model.

Response generation

The final response is encapsulated in a packet conforming to the TPM 2.0 response
format: tag | size | rc | payload, including the new nonce generated for
HMAC sessions.
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4.5 Integration of the TPM module into the gem5
simulator

After implementing the internal logic of the TPM module, it’s necessary to integrate
the module within the simulation environment gem5. That phase included two
main components:

1. the device definition in Python, through the class TPMDevice (file TPMDevice.py),
describing parameters of configuration and the module interface;

2. the inclusion of the device in the simulated RISC-V platform, by the script
tpm.py, which builds the whole system (CPU, memory, bus and peripherals).

4.5.1 Device definition: TPMDevice.py

The file TPMDevice.py introduces a new Python class that extends BasicPioDevice,
the basic gem5 abstraction for devices memory-mapped (MMIO). The class asso-
ciates the C++ module (dev/TPM_Device/tpm_device.hh) to its Python repre-
sentation, specifying its fundamental parameters:

• pio_addr: base address in I/O bus (0x30000000);

• pio_size: address space reserved for the device;

• pio_delay: simulated access latency (default 10ns);

• PufConfig: the structure of the parameters associated to the PUFs;

• tpm_keys: structure of tthe default keys loaded in TPM;

• nvstoragepath : structureofthefile′spathtosavepersistentmemory.

Listing 4.35: TPMDevice.py
1 from m5. params import ∗
2 from m5. o b j e c t s import Bas icPioDevice
3

4 c l a s s TPMDevice( Bas icPioDevice ) :
5 type = ’TPMDevice ’
6 cxx_header = " dev/TPM_Device/tpm_device . hh "
7 cxx_class = "gem5 : : TPMDevice "
8

9 pio_addr = Param . Addr (0 x30000000 , " Base address " )
10 p io_s i ze = Param . Addr (0 x50000 , " S i z e o f address range " )
11 pio_delay = Param . Latency ( ’ 10 ns ’ , " Delay " )
12 nv_storage_path = Param . St r ing ( " " , " Optional path to p e r s i s t e n t

NV sto rage f i l e " )

98



Implementation

13

14 PufConfig = VectorParam . St r ing ( [
15 " 0 x06000004@default_gener ic :AABBCC: 6 4 : 3 2 : 1 : 0 " # SRAM PUF

seed l a b e l op t i ona l
16 ] , " Fixed PUF c o n f i g u r a t i o n s " )
17

18 tpm_keys = VectorParam . St r ing ( [ ] , " L i s t o f p r ede f in ed keys :
handle : modulus : exponent : privExponent " )

Using VectorParam.String parameters allows passing directly from the Python
layer to the C++ logic the PUF configurations, encoding them in compact form.

4.5.2 Integration into simulated RISC-V system: tpm.py

The script tpm.py builds the entire system architecture simulated in gem5, inte-
grating the TPM module as a peripheral memory-mapped connected to main bus.
The implemented architecture reproduces a minimal but complete RISC-V system,
built to support TPM module operation in full-system mode.
The platform consists of:

• a CPU of type TimingSimpleCPU, capable of modeling execution times and
memory accesses in detail;

• a DRAM memory subsystem DDR3_1600_8x8, connected using the main mem-
ory bus;

• a dual communication bus (SystemXBar and IOXBar) to separate memory
traffic and I/O traffic;

• a TPM device connected via MMIO to the address 0x30000000;

• a RISC-V interrupt system (CLINT and PLIC) and a hardware reference timer
(RiscvRTC).

Listing 4.36: CPU definition and memory subsystem
1 system . cpu = TimingSimpleCPU ( )
2 system . cpu . i s a = RiscvISA ( )
3 system . cpu . c r e a t e I n t e r r u p t C o n t r o l l e r ( )
4

5 system . mem_ranges = [ AddrRange (0 x80000000 , s i z e=’ 512MB’ ) ]
6 system . mem_ctrl = MemCtrl ( )
7 system . mem_ctrl . dram = DDR3_1600_8x8 ( )
8 system . mem_ctrl . dram . range = system . mem_ranges [ 0 ]
9 system . mem_ctrl . port = system . membus . mem_side_ports
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The choice of CPU TimingSimpleCPU was dictated by the balance between sim-
plicity and temporal realism: the model allows for simulating delays in accessing
the bus and memory, providing an accurate basis for evaluating the behavior of
the TPM and its PIO operations.
The 512 MB DDR3 DRAM represents a typical configuration for embedded systems
or experimental RISC-V platforms, sufficient for performing bare-metal tests and
for managing TPM communication buffers.

Listing 4.37: Integration of TPM into the gem5 system
1 system . tpm = TPMDevice(
2 pio_addr=0x30000000 ,
3 p io_s i ze=0x50000 ,
4 pio_delay=’ 10 ns ’ ,
5 PufConfig =[
6 " 0x06000001 :AABBCC: 6 4 : 3 2 : 1 : 0 " ,
7 " 0x06000003@0x9ABCDEF0 :AABBCC: 1 2 8 : 1 6 : 1 : 0 "
8 ] ,
9 tpm_keys=[

10 " 0x81000001 : D2C1337B . . . A1"
11 ]
12 )
13 system . tpm . pio = system . membus . mem_side_ports

The device is then connected to the main memory bus via the pio interface, making
it accessible to the CPU as a peripheral MMIO. Thanks to this approach, TPM
operations can be performed by simulated software (e.g. a bare-metal kernel)
writing and reading in range-mapped addresses 0x30000000–0x3004FFFF.

To enable firmware execution and communication with the simulated TPM, the
device was integrated within the RISC-V platform HiFive, already available in
the gem5 framework. This platform provides a complete environment, including an
interrupt handler, a real-time clock (RTC), a serial console (UART) and a PCI
host for routing peripherals off-chip.
The aim has been to place the TPM in an architectural context realistic, where
the CPU can communicate with the module via the I/O bus and generate events
or prints via the UART.

Listing 4.38: Integration of TPM in HiFive platform
1 # RISC−V Platform ( HiFive )
2 system . plat form = HiFive ( )
3 system . plat form . r t c = RiscvRTC( frequency=Frequency ( ’ 100MHz ’ ) )
4 system . plat form . c l i n t . int_pin = system . plat form . r t c . int_pin
5

6 # Terminale UART
7 system . plat form . te rmina l . o u t f i l e = ’ stdoutput ’
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This section of the configuration code in gem5 is crucial because it allows to
customize the parameters of the simulated TPM without the need to recompile
the entire environment or modify the simulator source code. The TPM is con-
nected to the HiFive platform via the membus, which conveys memory-mapped
I/O operations. While the UART remains responsible for external communication
(textual output and debugging). Synchronization with the timer and interrupts
is handled by the subsystem CLINT/PLIC, which guarantees a correct execu-
tion sequence even in presence of simulated latencies (eg. pio_delay = 10ns).
During the simulation, the bare-metal firmware (tpm_test.elf) communicates
directly with the TPM and produces messages through the UART, redirected
on the file stdoutput. This makes it possible to monitor the TPM initialization
steps in real time, the responses to commands and the execution of PUF operations.

The script loads an ELF executable (tpm_test.elf) compiled for RISC-V which
interacts with the simulated TPM, initializing it and sending test commands such
as Startup, NV_Write, or PUF_ChallengeResponse. Uploading is done via the
system.workload.bootloader field, typical of bare-metal gem5 models.

Listing 4.39: Configuring workload and starting simulation
1 system . workload = RiscvBareMetal ( )
2 system . workload . boot loader = " tpm_test . e l f "
3 system . cpu . createThreads ( )
4

5 root = Root ( fu l l_system=True , system=system )
6 m5. i n s t a n t i a t e ( )
7

8 pr in t ( " Beginning s imu la t i on ! " )
9 exit_event = m5. s imulate ( )

10 pr in t ( f " Ex i t ing @tick {m5. curTick ( ) } because { exit_event . getCause ( ) } "
)

In this way, the complete simulation reproduces a hardware environment RISC-V
with a TPM compliant with the TCG specification.
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Chapter 5

Results

To assess the correctness and reliability of the implemented TPM module, a series
of experimental tests was conducted within the environment of simulation gem5.
The main objective of this evidence was to verify both the functional behavior
of TPM commands (_TPM_Init, TPM2_Startup, TPM2_Shutdown), NV memory
operations, PCR extensions, PUF management, and the correct architectural
integration of the device within of a complete RISC-V system.

The test environment was configured as a bare-metal system, in which the CPU di-
rectly executes firmware written in C language, without the presence of an operating
system. This choice allows precise control of the interface with the TPM, allowing
command encoding to be analyzed in detail, the structure of the responses and the
temporal effects introduced by the model of PIO communication (Programmed I/O).

All tests were performed on a 64-bit RISC-V architecture simulated in gem5,
using a dedicated firmware (tpm_test.elf) that implements a minimal set of TPM
commands and a simple UART-based debug interface. Analysis of the results
confirmed the correct implementation of the TPM logic, demonstrating the pos-
sibility of integrating PUF-based cryptographic primitives in a reliable hardware
component simulated in a software environment. Subsequent sections detail the
experimental environment, the structure of the test programs, and the main results
obtained.

5.1 Validation of the PUF Interaction
To verify the correct functioning of the TPM, PUF (Physically Unclonable Func-
tion) and its integration within the TPM module, several experimental tests were
conducted, each designed to evaluate a different scenario of authentication and
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management of cryptographic parameters. The main objective was to observe the
coherence and variability of the PUF response as the initial conditions — namely
the seed and the challenge — were varied.

Four main test cases were run, differentiated by authentication mode and handling
of seed and salt parameters:

• Test 1 – HMAC without salt, with default seed: In this scenario, a
standard HMAC authentication was used, without the addition of a salt value.
The initial seed, is provided through the configuration file tpm.py, remained
constant to allow verification of consistency of the PUF response under equal
initial conditions.

• Test 2 – Password-based, with default seed: In this test, authentication
was performed using a static password. Again, the seed was kept constant to
verify that the behavior of the module remained deterministic in the absence
of random variations.

• Test 3 – HMAC with salt, with default seed: A known salt value was
introduced, in order to verify the correct propagation of the parameter within
the authentication. Two different challenges were sent to the PUF to verify
that two different challenges give two different responses.

• Test 4 – HMAC with salt and randomly generated seed: In the last
experiment, a seed was dynamically generated at the start of the simulation.
The results showed a consistent variation of responses, confirming the correct
implementation of the internal entropy mechanism.

During execution: the challenge sent to the PUF consists of a vector of 64 bytes at
incremental values (from 0x00 to 0x3F); the response from the PUF is calculated
internally on the device, authenticated using HMAC SHA-256 for test1, test3 and
test4 and using the RS_PW command, which includes the login password directly
in the packet for test2; the entire communication is via Programmed I/O (PIO)
interface, which allows direct packet transfer between CPU and simulated TPM.
The firmware, written in C language, explicitly handles command encoding, binary
packet construction, and synchronization with the TPM status register (STS).

5.1.1 Execution Flow
Each test was performed in a bare-metal environment, with a sequence of standard
TPM commands:
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Figure 5.1: Testing workflow

TPM_StartUp / TPM_Init

• Host: Builds the command using build_cmd_startup_clear() (TAG+SIZE+
CM). Sends the command to FIFO followed by 0x40 (commandReady).

• Device (TPM): Waits for the Host to write 0x40. Executes processCommand() →
TPM2_StartUp() and returns the response code 0x20.

TPM2_Create

• Host: Constructs the command as header + payload(N + N × 4), where N
is the number of chosen PUFs. For each PUF, 4 bytes contain its identifier.
Sends the command bytes to FIFO followed by 0x40.

• Device (TPM): Executes processCommand() → TPM_Create() and re-
turns 0x20.

TPM2_StartAuthSession (If HMAC Authentication is Used)
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• Host: Constructs the command using build_cmd_start_auth_session(),
specifying tpmKeyHandle, authHandle, nonce, salt, HMAC session(0x00),
and hashAlg(0x000B for SHA256).

• Device (TPM): Executes processCommand() → TPM_StartAuthSession(),
constructs the session, and returns the response: 0x20+handleOfTheSession+
nonceLen + nonce.

generateChallengeResponse

• Host: Constructs the command using build_cmd_challenge_hmac(), includ-
ing the PUF handle (0x06000001u), auth_sram, sessHandle (if applicable),
nonces, and the **challenge** vector. Sends the command bytes to FIFO
followed by 0x40.

• Device (TPM): Executes processCommand() → generateChallengeResponse().
Verifies authentication, calls the PUF to generate the response, and returns:
0x20 + nonceLen + nonce + response to the challenge.

TPM2_FlushContext

• Host: Constructs the command with the session handle to be flushed. Sends
the command bytes to FIFO followed by 0x40.

• Device (TPM): Executes processCommand() → TPM2_FlushContext(),
flushes the session, and returns 0x20.

TPM2_Shutdown

• Host: Constructs the shutdown command (command +0x0000).

• Device (TPM): Executes processCommand() → TPM2_Shutdown() and
returns 0x20.

In case of test 3, TPM2_StartAuthSession function was not called because a
password-based authentication method was used.

During execution, two types of logs were obtained:

• Bare-metal output: containing the low-level messages and hex packets sent
and received by the TPM;

• Debug log (tpm.log): reporting the command tags, session handles, and
internal states of the TPM during processing.

Both logs confirm the correct generation of the challenge, implementation of the
TPM, and authentication protocols.

105



Results

5.1.2 HMAC without salt, with default seed
The first test was conducted to verify the correct functioning of the authentication
phase via HMAC session and the direct interaction with the PUF configured as a
TPM peripheral.
In this scenario, no salt value was used, while the seed was provided deterministically
within the module, to ensure repeatability of the behavior. The HMAC session was
defined as bounded, as it was associated with a specific PUF identifier (authHandle
= 0x06000004), corresponding to the GENERIC PUF type.

Figure 5.2: Bare-metal output - test 1

The figure 5.2 gives the log of bare-metal execution. The initial message confirms
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the activation of location 2 and the start of the test.
The sequence of commands highlights the following main stages:

1. Initializing the TPM – the TPM2_Startup(CLEAR) command is successfully
executed (rc = 0x0000), activating the module’s operating context.

2. Creating the PUF – the TPM_Create command instantiates a PUF of type
0x06000004, registering it as an authenticable entity.

3. HMAC session start – the TPM2_StartAuthSession command initializes
an authentication session with a 16-byte nonceCaller and null salt. The TPM
returns a valid session handle (0x03000000), which will be used in subsequent
commands.

4. Execute challenge–response protocol – the firmware sends the challenge
64 bytes in length and receives a response of the same length as shown in
the [BM] Response field. Note that the output buffer contains 66 bytes, since
the first two bytes encode the length of the response (64 bytes in this case),
followed by the actual PUF response.

5. State termination and persistence – the TPM2_FlushContext and TPM2_Shutdown
(CLEAR) commands run regularly, ensuring session closure and TPM NV state
storage.

At all stages, the return code (rc = 0x0000) confirms the absence of functional
errors and the correct interpretation of the packets by the simulated device.

Figure 5.3: Debug - test1

The internal log (tpm.log) confirms the sequence and parameters of the executed
commands:

• Configured PUF: type = 0x06000004, challengeSize = 64, responseSize = 64,
authSize = 3;
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• HMAC session: nonceCaller = 16 bytes, salt = 0, hashAlg = SHA-256;

• Session handle: 0x03000000;

• PUF response: PUF response size = 64, Auth OK;

• State persistence: NV state persisted (TPM2_Shutdown).

The absence of errors and the consistency of the parameters demonstrate the correct
execution of the TPM command chain and the full integration of the PUF logic in
the simulated model.
During the initialization phase, the TPM2_Startup (CLEAR) command also activates
the system measurement procedure, as reported in the log:

system.tpm: System state measured and extended into PCR0 (SHA-256
digest 26f093c3c3cbc331560e462c9a57eef24e360981fe1a123298e1a2bab6cea93c)

This step confirms that the model retains the behavior predicted by the TPM
2.0 standard, performing SHA-256 hash calculation of the initial system content
and subsequent value extension in the Platform Configuration Register (PCR0).
Such an operation represents the first step in the secure boot measurement chain,
ensuring the integrity of the execution environment.
From the gem5 log it’s possible to observe the tick values associated with the main
test events:

• TPM2_Startup: completed at approximately 1.64 × 108 ticks;

• PUF Challenge–Response: Performed between 6.00 × 109and 6.81 × 109 ticks,
with an overall latency of approximately 8.00 × 108 ticks.

Comparison with standard TPM model timelines shows that PUF integration
does not introduce significant time overheads. The additional latency is negligible
compared to the total command processing time, confirming that the extension of
the model does not compromise efficiency or synchronization between CPU and
peripheral.

The test confirms the correct implementation of the HMAC protocol and the
functional consistency between the TPM module and the integrated PUF. The
64 byte PUF response is stable between successive executions, certifying the re-
peatability of the behavior with the same seed and challenge. Furthermore, the
initial extended system measure in PCR0 demonstrates the preservation of the
secure boot functionalities of the standard TPM, while simulation time analysis
highlights the absence of measurable overheads. Overall, the experiment confirms
that PUF integration occurs transparently and efficiently, preserving the safety
and performance properties of the original model.
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5.1.3 Password-based, with default seed

The second experiment aimed to check how the PUF challenge–response command
works using a password-based authentication mode (RS_PW), as an alternative to
the HMAC session from the previous test. In this scenario, communication with the
TPM does not involve the creation of an HMAC-type session nor the use of nonces
or salts, but is based on the direct sending of a secret key (password) associated
with the selected PUF.

Figure 5.4: Bare-metal output - test 2

109



Results

The execution bare metal shows the correct sequence of commands and absence of
errors at all stages:

1. Initializing the TPM – the TPM2_Startup(CLEAR) command completes
with rc = 0x0000.

2. Creating the PUF – TPM_Create registers a PUF of type 0x06000004, as
in the previous test.

3. Execute Challenge–Response (Password-based) – the PUF Challenge–Response
(PWD) command receives a valid 64-byte response, indicated by the [BM2]
Response log.

4. Correct termination – TPM2_Shutdown(CLEAR) persists non-volatile state
(NV state persisted).

All commands return rc = 0x0000, confirming correct packet decoding and consis-
tent PUF handling even with direct authentication.

Figure 5.5: Debug - test 2

Test 2 highlights the versatility of the PUF model integrated into the TPM, capable
of operating in both authenticated mode (HMAC) and direct mode (password).
With the same challenge and seed, the PUF response is identical to that obtained in
test 1, confirming the internal consistency of the generator in absence of variations.
Furthermore, execution occurs with latency comparable to the HMAC case, without
introducing measurable overheads.

5.1.4 HMAC with salt, with default seed
In this test, the session is:

• unbounded, as it is not bound to a specific object (bind = RH_NULL);

• salted, as it uses an RSA-OAEP salt value encrypted with the TPM public
key (tpmKeyHandle = 0x81000001).
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After the session was created, two consecutive Challenge–Response PUF commands
were executed, each authenticated using HMAC. Finally, the session was closed
with TPM2_FlushContext, followed by TPM2_Shutdown(CLEAR).

Figure 5.6: Bare-metal output - test 3

In the following figure, it’s possible to observe that, differently from test 1, the size
of salt is different from zero.
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Figure 5.7: Debug - test 3

Test 3 demonstrates that the HMAC mechanism with external salt is fully compati-
ble with PUF management. The use of the KDFa function (SHA-256) to derive the
session key from nonceCaller, nonceTPM, and salt ensures a high level of security
and prevents accidental reuse of keys between different sessions.
The TPM was able to:

• create and manage salted session,

• correctly calculates authentication HMACs,

• generate consistent and repeatable PUF responses.

The two consecutive requests (GENERIC #1 and #2) returned different responses
because the PUF received two different challenges.

5.1.5 HMAC with salt and randomly generated seed

The fourth test replicates the configuration of Test 3 (HMAC session unbounded +
salted), but with one substantial difference: the enabling of random seed within
the TPM. In this case, the PUF component and the KDFa function are initialized
with a dynamically generated seed value at startup.
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Figure 5.8: Bare-metal output - test 4

The only functional difference lies in the hasSeed=0 configuration, which enables
pseudo–random generation of the seed internal to the PUF component, visible in
the TPM initialization log.
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Figure 5.9: Debug - test 4

Introduction of a random seed has a direct impact on the variability of the PUF
response, but does not alter the behavior of the rest of the system. Authentication
pipeline, HMAC session management and communication through PIO maintain
the same latency and structure.

This experiment demonstrates that internal seed can be used as a source of hardware
entropy to increase the diversity of PUF responses, without introducing significant
instability or overhead into the simulation.

5.1.6 Final Evaluation
To evaluate the fundamental properties of the PUF — coherence (stability of
the response with the same input) and variability (difference between responses
to different inputs) —, the challenge and response values for each test were col-
lected. The results will be summarized in a comparative table, showing for each
configuration:

Table 5.1: Analysis of the variability of the PUF response

Test Challenge (hexadecimal) Seed PUF Response (64B)
Test 1 00010203...3E3F 3735928559 4A 49 0A 0C ... C0 BB DA 69
Test 2 00010203...3E3F 3735928559 4A 49 0A 0C ... C0 BB DA 69
Test 3 00010203...3E3F 3735928559 4A 49 0A 0C ... C0 BB DA 69

40414243...7E7F 3735928559 98 77 8B 21 ... 5F 85 42 29

Test 4 00010203...3E3F 136280749 4C E6 46 15 ... 9C 94 BD 50
40414243...7E7F 136280749 93 99 8E 67 ... A3 AD F1 2B

Such analysis allows to check:
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• that with the same seed and challenge the response remains stable (consis-
tency);

• that at different seeds or challenges the response varies significantly (vari-
ability), confirming the correct behavior of the PUF as a source of hardware
entropy.

5.2 Validation of Non-Volatile Memory Reten-
tion Across Simulations

To check that the simulated TPM is handling non-volatile memory (NV) correctly,
a bare-metal test (test4_tpm_nv.c) has been developed that defines, writes and
reads an NV index. The program also runs a persistent counter, updated at each
startup, to demonstrate data survival between distinct simulation sessions.

The following code defines an NV space (NV_DefineSpace), increments a counter,
writes updated data, and finally reads it again for verification. At the end, a com-
mand from TPM2_Shutdown is executed to force persistent memory to be written
to disk:

[BM4] NV index not present – provisioning baseline data
[BM4] NV_Write updated counter to 00000001
[BM4] NV memory demo complete
[BM4] Re-run this workload with the same nv_storage_path

to watch the counter persist.

During the first run, the TPM finds no pre-existing NV index:

• the line appears in the bare-metal log NV index not present – provisioning
baseline data;

• the file tpm.log shows the index creation with the command TPM2_NV_DefineSpace;

• a start counter of 1 is written.
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Figure 5.10: Debug - NV Memory
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Figure 5.11: Bare-metal output - NV Memory
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In a second simulation, launched with the same parameter nv_storage_path, the
TPM detects the presence of the previously defined index:

• prints NV index already exists, expecting persisted data;

• the output clearly shows the line Retrieved persisted counter = 0x00000001.

• the counter stored in the NV memory is read and incremented from 1 to 2;

Figure 5.12: Debug - NV Memory 2
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Figure 5.13: Bare-metal output - NV Memory 2
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The results show that:

• NV memory correctly maintains content between runs, as required by the
TPM specification;

• the command TPM2_Shutdown forces data persistence on the status file;

• on reboot, the module is able to reread previously written values.

5.2.1 Final Evaluation
Results obtained confirm the correct functional implementation of the non-volatile
memory (NV) management protocol according to the specifications of TPM 2.0.
The executed command sequence — NV_DefineSpace → NV_Write → NV_Read
→ TPM2_Shutdown — it shows that the simulated module is able to define an NV
index, write a persistent payload, read it correctly in subsequent runs, and finally
save the state securely after the simulation is finished.

From a performance perspective, log measurements show that write and read
operations on NV introduce negligible time overhead compared to the overall flow
of TPM commands. Persistent state file management does not significantly alter
simulation cycle execution times, highlighting efficient integration of non-volatile
memory functionality into the gem5 model.
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Chapter 6

Conclusions

Despite the existence of increasingly sophisticated software security solutions —
such as advanced cryptographic libraries or fully virtualized Trusted Execution
environments — such measures often prove insufficient when employed in systems
subject to physical attacks. The growing popularity of RISC-V architectures,
especially in IoT contexts and embedded systems, makes the adoption of hardware-
based security mechanisms indispensable. In this scenario, the Trusted Computing
paradigm takes on a central role. This thesis aims to fill this gap by strengthening
hardware security in RISC-V architectures through the integration of a Trusted
Platform Module (TPM) and a Physical Unclonable Function (PUF) within the
gem5 simulation environment. The main goal is to ensure a high level of protection
from the early stages of system startup —a requirement not achievable through
software security alone — while exploiting the unique potential of PUFs, capable
of providing cryptographic guarantees based on the unique physical properties of
the circuit.

The work was developed in two complementary phases:

• Implementation of the TPM 2.0 Model: A software model of TPM 2.0 has
been designed and built, faithful to the specifications of the TCG (Trusted
Computing Group). This model includes support for key authentication
mechanisms (Password, HMAC), communication interfaces (FIFO, CRB),
Platform Configuration Registers (PCR), and non-volatile memory for key
and counter management.

• PUF Module Integration: The TPM model has been extended with the in-
tegration of a simulated PUF module. This allows the TPM to forward
challenges and receive unique responses derived from the intrinsic physical
characteristics of the circuit. This integration is essential for on-the-fly gen-
eration of hardware-related keys, eliminating the need to store static secrets
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and consequently the risk of extracting a key saved in memory.

The entire TPM system was integrated into the RISC-V architecture within the
gem5 emulator, exploiting its open-source nature to ensure flexibility and experi-
mental reproducibility.

The simulation results fully confirmed the validity of the proposed approach:

• Functional Validity of TPM: The TPM framework developed in gem5 is
able to faithfully reproduce the behavior of a real TPM. Tests have shown
that standard calls to the TPM receive the expected responses, and security
features, such as integrity measurement, operate according to specifications. It
was possible to launch a simulated RISC-V platform and observe the correct
updating of the PCR logs during the secure boot sequence.

• Dynamic Key Generation via PUF: PUF integration demonstrated its
primary benefit: the simulated TPM was able to generate unique keys for
each PUF run or fingerprint, without reusing or storing a fixed key. For
example, the change in response value was verified as the challenge sent to the
PUF changed (or as the simulated intrinsic characteristics of the PUF itself
changed).

• Minimum Impact on Performance: Although a systematic and rigorous
performance analysis in terms of latency and throughput was not conducted,
observation of simulation logs and execution times allowed us to note that the
integration of the TPM module and the addition of PUF logic do not introduce
significant overhead into the system. In particular, critical operations such as
system boot (boot) or integrity measurement occurred with latency times that,
while observable, were found to be reasonable and not such as to compromise
the usability of the system in an embedded or IoT context. This suggests that
the approach is not only security-friendly, but also efficient.

This work has generated benefits that go beyond a single functional demonstra-
tion. The most significant advantage is the drastic reduction of the attack surface
related to static secrets. Since there are no permanent keys stored in the TPM’s
non-volatile memory (NV-RAM), an attacker cannot obtain sensitive information
through physical memory extraction. Any critical secret is recreated at startup
using the PUF and vanishes at shutdown (power-off). This increases the level of
protection against low-level attacks (such as hardware sniffing or reverse engineering
of the chip). The inherent uniqueness introduced by the PUF means that even
compromising a single device does not provide useful information to attack another.
Each device has unpredictable and unrelated PUF responses. This is crucial in
distributed network contexts such as IoT or data centers, where compromising a
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node often preludes attacking similar nodes.

The simulation-based approach in gem5 constitutes a crucial methodological benefit.

• Total Observability: Unlike a sealed real chip, in gem5 you can print
and verify all TPM internals (registers, authorization states, hash values),
facilitating system debugging and validation.

• Economical and Flexible Experimentation: The developed framework
is open source and can be used by the research community as a test bed to
evaluate new security ideas. It is now possible to simulate complex scenarios,
such as client-server networks or multi-device ecosystems (each node with its
own TPM), at no hardware cost and without the need to build initial physical
prototypes.

Developing and integrating a complex system into a simulation environment pre-
sented significant challenges. The implementation of TPM 2.0 required a thorough
understanding and faithful translation of the TCG specifications, which are ex-
tremely detailed and extensive. Maintaining the consistency and logical security of
the software model has been a challenging task. Integrating the TPM model into
gem5, and in particular its correct interface with the RISC-V architecture (e.g.,
for managing memory registers and interrupts), required significant learning and
debugging effort. The gem5 ecosystem, while powerful, has a steep learning curve
and requires careful configuration for hardware/software customizations.

The limitations found suggest directions for improvement and new research oppor-
tunities:

• Extension of TPM Functional Coverage: The current implementation,
while widely usable, does not cover all the functionality under TPM 2.0 (for
example, advanced authorization policies or some specific types of keys). The
model can be extended to achieve full equivalence with a commercial hardware
TPM.

• Formal and Performance Analysis: A systematic performance evaluation
was not conducted. It will be essential to measure the overhead introduced by
the use of PUF (in terms of latency in TPM operations or boot time) using
gem5’s profiling capabilities.

• Advanced Security Testing: The framework can be used as a basis for
studying the resilience of the TPM integrated with a PUF against more sophis-
ticated attacks. Logical Side-Channel Attacks analyze memory access patterns
or cache usage generated by the system to infer sensitive information. Fault
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Conclusions

Injection Simulation inserts hooks into the simulator to emulate disturbances
or errors (such as power glitches) when generating PUF responses to check
their robustness. Modeling ML Attacks that repeatedly query the TPM model
to attempt to build a machine learning-based predictive model, evaluating the
intrinsic robustness of the simulated PUF against automated learning.

In conclusion, the work achieved the goal of creating an open source and innovative
simulation environment for hardware security on RISC-V. This framework not
only fills a gap in RISC-V trusted computing tools but tangibly demonstrates the
feasibility and utility of combining TPM and PUF to raise the level of security,
fully in tune with RISC-V’s open source philosophy. It is hoped that this work can
serve as a solid basis for further research and implementations.
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