
Evaluation of Security and Privacy Flaws of Cross-platform Android App

Development Frameworks

BY

FEDERICO CIVITAREALE
B.S, Politecnico di Torino, Turin, Italy, 2023

THESIS

Submitted as partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

in the Graduate College of the
University of Illinois at Chicago, 2025

Chicago, Illinois

Defense Committee:

Jason Polakis, Chair and Advisor

Xiaoguang Wang

Fulvio Valenza, Politecnico di Torino

ACKNOWLEDGMENTS

First of all, I want to thank my family, without whose support this experience wouldn’t have

been possible. To my parents, who allowed me to stay here without ever asking for anything

in return, and to my sister, whom I always feel I can count on.

I’d also like to express my gratitude to my professor and his team, who helped me accomplish

this work. You were there when I had doubts or needed to solve problems.

I’m glad to have met so many special people in Chicago, who helped make this experience

even greater. A special thanks to Riccardo, companion of a thousand adventures, and to

Francesco, with whom I shared endless gym sessions.

I’m grateful for my friends overseas, Riccardo, Giorgio, Fabio, Alessandro, Luca, Samuele,

Ludovico, Lorenzo e Alessandro who despite the distance were always available for a chat or

when I needed to vent.

Last but not least, I want to thank Lućıa, who is my safe haven after hard days of work,

and who brought out a part of me that I didn’t think I had. No importa si estás cerca o lejos,

siempre te estaré agradecido. Te quiero.

FC

ii

TABLE OF CONTENTS

CHAPTER PAGE

1 INTRODUCTION . 1
1.1 Context and Motivation . 1
1.2 Problem Statement . 2
1.3 Objectives and Contributions 3
1.4 Thesis Structure . 4

2 BACKGROUND . 6
2.1 Mobile Application Models . 6
2.1.1 Native Applications . 6
2.1.2 Web Applications . 7
2.1.3 Hybrid Applications . 8
2.1.4 Cross-Platform Native Frameworks 10
2.2 Cordova Framework . 11
2.2.1 Architecture Overview . 11
2.2.2 Security Model and Risks . 17
2.2.3 Plugin System . 18
2.3 Ionic Framework . 19
2.3.1 Architecture and Rendering Model 20
2.3.2 Capacitor as the Modern Ionic Runtime 20
2.3.3 Security Considerations . 21
2.4 React Native Framework . 22
2.4.1 Architecture and Rendering Model 23
2.4.2 Plugin System and Native Modules 23
2.4.3 Security Considerations . 24
2.5 WebView Security Model . 25
2.5.1 Execution Environment and Sandboxing 26
2.5.2 JavaScript Bridges and Native Interaction 27
2.5.3 Same-Origin Policy in WebViews 28
2.5.4 Content Loading Policies . 28
2.5.5 WebView Settings and Configuration 29

3 METHODOLOGY . 31
3.1 Exploratory Analysis and Manual Testing of Frameworks . . . 31
3.2 Dataset Collection . 33
3.3 Static Analysis Script . 34
3.3.1 Decompilation Pipeline . 36
3.3.2 Framework Identification . 37

iii

TABLE OF CONTENTS (continued)

CHAPTER PAGE

3.3.3 Automated Vulnerability Scanning 38
3.3.4 Framework-specific Detection Strategy 40
3.3.5 Output Structure . 40
3.4 Targeted Dynamic Analysis with Frida 44
3.4.1 Environment Setup . 44
3.4.2 WebView Instrumentation and Debugging 45
3.4.3 Exploitation of the Vulnerability 45

4 EXPERIMENTAL FINDINGS . 49
4.1 Cordova Vulnerabilities . 50
4.1.1 Attack Scenario: Same-Origin File Exfiltrating FileSystem. . 53
4.1.2 Automated Detection Logic for Cordova 54
4.2 Ionic Vulnerabilities . 55
4.2.1 Attack Scenario: Capacitor FileSystem Exploitation 58
4.2.2 Automated Detection Logic for Ionic/Capacitor 60
4.3 React Native Vulnerabilities . 61
4.3.1 Attack Scenario: AsyncStorage Exfiltration 63
4.3.2 Automated Detection Logic for React Native 65
4.4 Dynamic Exploitation Case Study 66

5 EVALUATION AND RESULTS . 69
5.1 Introduction . 69
5.2 Frameworks Results . 69
5.2.1 Cordova Results . 70
5.2.2 Ionic Results . 73
5.2.3 React Native Results . 77
5.3 Security Analysis of Popular Applications 81
5.3.1 Cordova Applications . 81
5.3.2 Ionic Applications . 84
5.3.3 React Native Applications . 86
5.4 AndroZoo Brute-Force Scan Results 88
5.4.1 Framework Identification Findings 88

6 CONCLUSION . 90
6.1 Methodology Limitations . 93
6.2 Future Works . 94

APPENDICES . 96
Appendix A . 97

CITED LITERATURE . 98

iv

TABLE OF CONTENTS (continued)

CHAPTER PAGE

VITA . 100

v

LIST OF TABLES

TABLE PAGE
I SECURITY IMPACT OF CSP VS. ALLOW-NAVIGATION SET-

TINGS. 14
II VULNERABILITIES TESTED IN CORDOVA. 72
III VULNERABILITIES TESTED IN IONIC. 76
IV VULNERABILITIES TESTED IN REACT NATIVE. 80
V VULNERABILITY ANALYSIS OF CORDOVA APPLICATIONS. 83
VI VULNERABILITY ANALYSIS OF IONIC APPLICATIONS. . . 85
VII VULNERABILITY ANALYSIS OF REACT NATIVE APPLICA-

TION. 87
VIII BRUTE-FORCE SCAN RESULT. 89

vi

LIST OF FIGURES

FIGURE PAGE
1 Comparison between native, hybrid, and web mobile application ar-

chitectures. 2
2 Native application model. 7
3 Web application model. 8
4 Hybrid application model. 9
5 React Native application model. 10
6 Apache Cordova architecture. 12
7 WebView architecture. 26
8 Overview of the methodology pipeline. 36
9 JavaScript code executed to fetch the index.html file. 47
10 Retrieval of the session cookie on the server. 47
11 Cordova File Plugin API vulnerability flow. 51
12 Cordova same-origin file injection enabling file exfiltration. 54
13 Ionic Clipboard vulnerability flow diagram. 57
14 Capacitor FileSystem Exploitation Attack Flow. 59
15 AsyncStorage Vulnerability Diagram Flow. 63
16 AsyncStorage Exfiltration Attack Flow. 64
17 JavaScript executed in theWebView context to retrieve the index.html

file. 67
18 Exfiltration of the session cookie to a third-party server. 67

vii

LIST OF ABBREVIATIONS

UIC University of Illinois at Chicago

CSP Content Security Policy

CSP Same-Origin Policy

viii

SUMMARY

Summary

In recent years, the adoption of cross-platform frameworks for mobile application devel-

opment has grown substantially, driven by the need to shorten development cycles, reduce

maintenance costs, and enable the deployment of applications across multiple platforms from

a shared codebase. Frameworks such as Cordova, Ionic, and React Native allow developers

to build Android applications using familiar web technologies (HTML, CSS, and JavaScript),

which are then executed within native containers on mobile devices. Although this model pro-

vides significant advantages in terms of portability and productivity, it also introduces security

and privacy risks that are not typically present in applications developed natively.

The risks associated with hybrid applications mainly arise from their architectural structure.

These applications involve continuous interaction between a web layer, responsible for the user

interface and some application logic, and a native layer, which provides access to system fea-

tures and hardware resources. Communication between these layers occurs through JavaScript

bridges that, if misconfigured or not adequately protected, may allow untrusted code to obtain

elevated privileges or access sensitive data. Furthermore, practices commonly used in web de-

velopment, such as remote script inclusion or the absence of a strict Content Security Policy

(CSP), can become significantly more dangerous in a hybrid environment where web code is

executed outside of the browser’s traditional sandbox.

ix

SUMMARY (continued)

This thesis presents a systematic analysis of the security and privacy implications of cross-

platform Android frameworks. To support the evaluation, a dataset of Android applications

was collected from public sources, including the AndroZoo repository and platforms such as

APKMirror and APKPure. The applications were decompiled and subjected to static analysis

using a set of automated scripts developed explicitly for this purpose. These scripts are capable

of detecting insecure configurations, dangerous permission exposures, and known vulnerability

patterns related to WebView usage and native plugin integration.

The methodology enables scalable and reproducible testing across different application

builds and framework versions. Preliminary results indicate that hybrid applications frequently

expose a broader attack surface compared to their native counterparts. The most common

issues identified include permissive WebView settings, missing or misconfigured CSP policies,

unsafe use of JavaScript interfaces, and reliance on external or dynamically injected code.

The findings underscore the need for increased awareness and more stringent security prac-

tices in the development of hybrid applications. Additionally, the analysis and tools developed

in this work contribute to the improvement of automated vulnerability detection techniques and

provide a foundation for future research focusing on dynamic analysis and the identification of

emerging threats in cross-platform mobile environments.

x

CHAPTER 1

INTRODUCTION

1.1 Context and Motivation

Over the past decade, mobile applications have become a central component of modern

digital life. Smartphones are now used not only for communication and entertainment, but

also for banking, identity management, health monitoring, and professional collaboration. As a

result, mobile applications must be reliable, constantly updated, and available across multiple

platforms. This growing complexity has pushed developers and organizations to seek solutions

that allow faster development cycles and reduced duplication of effort.

Cross-platform development frameworks emerged in response to this need. Instead of main-

taining separate codebases for Android and iOS, these frameworks enable the writing of most

application logic once and its deployment across multiple platforms. Among the most widely

adopted solutions in this field are Cordova, Ionic, and React Native. Each of these frameworks

builds upon familiar web technologies such as HTML, CSS, and JavaScript, enabling developers

with a web background to transition into mobile development with relative ease.

1

2

Figure 1: Comparison between native, hybrid, and web mobile application architectures.

Although the motivations behind cross-platform frameworks are practical and compelling,

their architecture raises significant considerations regarding security and privacy. Hybrid appli-

cations typically operate at the intersection between two distinct execution environments: the

web environment, which was initially designed to run inside the confined and sandboxed space

of a browser, and the native environment of a mobile operating system, which has access to

device-level resources such as storage, sensors, and network interfaces.

1.2 Problem Statement

The interaction between these two layers is mediated through communication bridges that

expose native functionality to JavaScript code. While these bridges are essential for enabling

hybrid applications to function, they also represent potential attack surfaces. If not carefully

configured, they may allow untrusted web content to trigger privileged operations, bypass plat-

3

form security controls, or access sensitive user data. Furthermore, standard web development

practices, such as relying on external content sources, dynamically injecting scripts, or omitting

a strict Content Security Policy (CSP), may introduce vulnerabilities that have far more severe

consequences in a hybrid mobile context than in a traditional browser environment.

Despite the increasing adoption of hybrid development approaches, many developers may

not be fully aware of these risks, and there is still limited systematic evidence regarding how

widespread certain insecure configurations are in real-world applications. This gap forms the

central motivation of this thesis.

1.3 Objectives and Contributions

The main aim of this thesis is to examine the security and privacy implications of cross-

platform mobile development frameworks, focusing on Android applications developed using

Cordova, Ionic, and React Native. To achieve this goal, the work involves collecting and ana-

lyzing real-world hybrid applications, identifying recurring insecure patterns, and proposing a

reproducible methodology for large-scale security evaluation.

To support this study, a dataset of Android applications built using Cordova, Ionic, and

React Native was collected from publicly available sources, including the AndroZoo repository

and APK distribution platforms such as APKMirror and APKPure. The applications were

decompiled and analyzed using a set of automated scripts explicitly developed for this work.

These scripts are designed to detect configurations, interfaces, and code patterns known to

introduce security weaknesses in hybrid application environments.

The main contributions of this thesis are as follows:

4

• An overview of the architectural characteristics and security implications of the Cordova,

Ionic, and React Native frameworks.

• The development of automated analysis scripts capable of detecting insecure patterns and

configurations in decompiled Android applications.

• The collection and evaluation of a large dataset of real-world applications, enabling re-

producible and scalable assessment.

• The identification of recurring vulnerability trends and developer practices that contribute

to increased exposure in hybrid applications.

1.4 Thesis Structure

The remainder of this thesis is structured as follows.

1. Chapter 2: Background and Related Work - introduces essential concepts regard-

ing mobile application architectures, explains the differences between native, web, and

hybrid apps, and provides an overview of the Cordova, Ionic, and React Native frame-

works. It also presents relevant security mechanisms and summarizes prior research on

vulnerabilities in hybrid apps.

2. Chapter 3: Methodology - outlines the approach used for collecting samples of Android

applications, implementing the automated static analysis script, and utilizing Frida as a

dynamic analysis tool.

3. Chapter 4: Experimental Findings - presents the results of an exploratory vulnera-

bility analysis conducted on controlled mock applications, describing the security issues

5

identified in each framework and explaining how these observations influenced the design

of the automated detection logic. Additionally, a real-world application is exploited to

illustrate these concepts.

4. Chapter 5: Evaluation and Results - presents the experimental findings of the study,

highlighting common misconfigurations, vulnerabilities, and framework-specific risks ob-

served across the analyzed applications.

5. Chapter 6: Conclusion - summarizes the primary outcomes of the research and suggests

directions for future studies and improvements in automated analysis techniques.

CHAPTER 2

BACKGROUND

2.1 Mobile Application Models

The rapid evolution of mobile computing has given rise to several distinct approaches for

building mobile applications. Each approach differs in terms of the technologies used, the

performance trade-offs, and the level of access to system resources. Understanding these models

is essential for contextualizing the security and privacy challenges discussed in this thesis.

Broadly speaking, mobile applications can be categorized into three main models: native,

web-based, and hybrid applications. More recently, a fourth model, represented by modern

cross-platform frameworks such as React Native, has emerged, combining aspects of both hybrid

and native paradigms.

2.1.1 Native Applications

Native applications are developed specifically for a particular operating system, such as

Android or iOS, using the platform’s official programming languages and software development

kits (SDKs). On Android, this typically involves Java or Kotlin combined with the Android

SDK, while iOS applications are developed using Swift or Objective-C with Xcode.

Native applications offer direct access to device capabilities, including sensors, storage,

network interfaces, and other system-level APIs. This allows them to deliver high performance

and a seamless user experience that aligns closely with the look and feel of the underlying

6

7

platform. However, native development requires maintaining separate codebases for different

operating systems, which can significantly increase development time and cost.

Figure 2: Native application model.

2.1.2 Web Applications

Web applications, by contrast, are built using standard web technologies - HTML, CSS, and

JavaScript - and executed within the browser environment. They are platform-independent by

nature, as the browser acts as a runtime layer that abstracts away the underlying operating

system.

Because web applications run in a sandboxed environment, they have very limited access

to system resources. This model greatly enhances user security but also limits functionality,

8

especially for use cases that require integration with native device features such as camera

access, Bluetooth communication, or local storage beyond the browser’s scope.

Web applications are easy to deploy and update, as changes can be made directly on the

server without requiring users to install new versions. However, their dependency on a network

connection and restricted access to hardware features limit their suitability for more complex

mobile applications.

Figure 3: Web application model.

2.1.3 Hybrid Applications

Hybrid applications aim to combine the portability of web technologies with the broader

access to system resources available in native apps. They are built using web technologies

(HTML, CSS, JavaScript) but are packaged inside a native container that includes a component

called the WebView. This WebView acts as an embedded browser within the app, capable of

rendering web content locally while still providing a bridge to the native APIs.

9

This approach enables developers to reuse a large portion of their codebase across platforms

while still distributing their applications through standard app stores. Frameworks such as

Apache Cordova and Ionic exemplify this model. These frameworks provide a set of plugins

that expose native functionality - such as camera, geolocation, or file system access - through

JavaScript interfaces.

While this model offers clear development advantages, it also introduces security concerns.

The interaction between the web and native layers creates a boundary where untrusted code

could potentially invoke privileged operations. The way this bridge is implemented and secured

plays a central role in the vulnerability landscape of hybrid applications.

Figure 4: Hybrid application model.

10

2.1.4 Cross-Platform Native Frameworks

In recent years, frameworks such as React Native have emerged to address some of the

performance limitations of traditional hybrid frameworks. Unlike Cordova or Ionic, React

Native does not render its interface inside a WebView. Instead, it uses JavaScript to control

native components directly through a bridge that communicates with the underlying platform’s

UI elements and APIs.

This architecture provides a middle ground between hybrid and native development: it

allows developers to use a single JavaScript codebase while still producing applications that

perform nearly as well as fully native ones. However, the introduction of a JavaScript bridge

still poses potential security challenges similar to those in hybrid apps, especially when third-

party modules or dynamic code execution are involved.

Figure 5: React Native application model.

11

2.2 Cordova Framework

Apache Cordova is one of the earliest and most influential frameworks for cross-platform

mobile development. Originally created under the name PhoneGap in 2008, it was later do-

nated to the Apache Software Foundation and renamed to Cordova. The framework became

a cornerstone of hybrid app development, providing the foundation upon which several other

frameworks - including Ionic - were later built.

Cordova enables developers to create mobile applications using standard web technologies

such as HTML, CSS, and JavaScript. These web resources are bundled into a native application

package, typically an Android APK, and executed inside an embedded component known as the

WebView. From the user’s perspective, a Cordova app appears indistinguishable from a native

application, but internally it renders and executes its interface within this WebView container.

2.2.1 Architecture Overview

The architecture of Cordova can be understood as a layered model that integrates web and

native components. At the core, the framework provides a bridge between JavaScript code

running in the WebView and native APIs implemented in Java or Kotlin on Android. This

bridge is realized through a bidirectional communication channel that allows JavaScript code

to invoke native functionality and receive responses asynchronously.

When an application requests access to a native feature (for example, the camera or file

system), the JavaScript code calls a specific API exposed by a Cordova plugin. This plugin

translates the request into native code, executes the corresponding operation on the device, and

12

Figure 6: Apache Cordova architecture.

then returns the result to the JavaScript environment. This mechanism allows web-based code

to perform actions that would normally be restricted in a standard browser environment.

Navigation Policies and the Role of CSP

During the exploratory testing phase, it became clear that Cordova’s navigation configura-

tion introduces additional complexity that directly impacts the application’s security posture.

Cordova defines three main navigation-related directives: allow-navigation, allow-intent,

and access-origin. Although these settings appear to control the same aspects of external

resource loading, they operate at different levels of the security model, and only the Content

Security Policy (CSP) provides true enforcement of script-level restrictions.

13

allow-navigation determines which external URLs can be loaded inside the WebView. If

misconfigured, for example, by using a wildcard such as "*", the WebView may load untrusted

content that executes with full access to the Cordova JavaScript bridge.

allow-intent regulates which external applications can be invoked via Android intents.

While less directly related to script injection, overly permissive intent filters can facilitate

phishing or malicious app redirection attacks.

access-origin is intended to control which external domains the application may contact

via XHR requests. However, this directive is largely superseded by modern browser security

mechanisms and is not recommended for use. In practice, it encourages developers to take a

permissive approach (e.g., using *), which weakens the isolation between local file:// resources

and external domains.

Despite these configuration mechanisms, it is theContent Security Policy (CSP) that ul-

timately governs whether external scripts can execute within theWebView. Even if allow-navigation

permits loading a remote page, CSP determines whether that page can run JavaScript, load

additional scripts, or interact with unsafe inline code. As confirmed during testing, CSP is

the strongest and most reliable defense against external script injection in Cordova, whereas

navigation directives merely control resource loading without preventing code execution.

The divergence between Cordova’s configuration directives and CSP enforcement explains

why many real-world Cordova applications are vulnerable to injection-based attacks: developers

frequently configure navigation policies permissively without understanding that CSP is the

14

actual mechanism responsible for restricting script execution. For this reason, CSP must be

defined carefully, and directives such as access-origin should be avoided entirely.

TABLE I: SECURITY IMPACT OF CSP VS. ALLOW-NAVIGATION SETTINGS.

Scenario Can script run in
CURRENT App?

Can App navigate
to malicious.com?

Can script run on mali-
cious.com?

No CSP YES
(Vulnerable)

YES
(If
allow-navigation

is *)

YES
(Because malicious.com

controls the rules there)

Strict
allow-navigation

YES
(If CSP is missing)

NO
(Blocked by Cor-
dova)

NO
(Page never loads)

Strict CSP NO
(Blocked by CSP)

YES
(Unless
allow-navigation

blocks it)

NO
(Because the XSS couldn’t
force the redirect in the
first place)

WebView Navigation Modes

Cordova applications rely on a specific navigation model that determines how URLs are

opened when a link is activated inside the WebView. Three primary navigation targets are

supported:

• self : loads the URL directly inside the main application WebView.

15

• blank: opens the URL in an InAppBrowser instance, which acts as an embedded browser

separate from the main WebView.

• system: delegates the URL to the device’s default external browser or application han-

dler.

These navigation modes play a critical role in security because only the main application

WebView runs with Cordova’s privileged environment and has access to the JavaScript bridge

and plugins. URLs opened in the InAppBrowser or the system browser do not (and cannot)

access Cordova APIs.

File Loading in Cordova

A major architectural change introduced in Cordova Android 10 (released in 2021) modified

the default origin of Cordova applications. Historically, Cordova loaded application assets using

a file:// URL:

file:///android asset/www/index.html

This origin exposed the application to several inconsistencies in the enforcement of the SOP

and allowed attacks that relied on loading arbitrary file:// resources inside the WebView.

Starting from Cordova Android 10, the default origin became:

https://localhost

This change significantly improves security and predictability:

16

• The WebView no longer allows navigation to absolute file:// paths such as

file:///android asset/www/....

• Only HTTP(S)-based loading is permitted, blocking many previously possible local file

access attacks.

• The https://localhost origin ensures consistent SOP enforcement across Android ver-

sions.

With the new origin, Cordova internally maps local application files to the

https://localhost scheme. As a result, local assets can be loaded in two ways:

– Relative paths, such as:

js/index.js

– Rooted paths under the localhost origin, such as:

https://localhost/js/index.js

Both resolve to the same internal asset loader, but they are processed using standard web

security rules rather than the legacy file:// behavior.

Because of this, previously exploitable behaviors—such as loading arbitrary file:// URLs

into iframes or script tags—are effectively blocked in the main WebView. Attempts to load

absolute file paths result in navigation failures or blocked requests.

Although the main application, WebView, enforces this new restriction, the InAppBrowser

plugin behaves differently. The InAppBrowser operates like a standard browser container with-

17

out Cordova’s special asset loader and therefore retains the ability to load local file:// paths,

for example:

file:///android asset/www/js/index.js

or other absolute paths inside the application package.

This distinction is important because:

• The InAppBrowser does not have access to the Cordova JavaScript bridge.

• Loading local files in InAppBrowser does not expose plugin APIs.

• However, attackers may attempt to use it for phishing or misleading UI attacks.

2.2.2 Security Model and Risks

The security of Cordova applications relies heavily on the assumption that the JavaScript

code running in the WebView is trusted and originates from a safe source. In practice, however,

this assumption is often violated. Many hybrid applications load content from remote servers or

use external JavaScript libraries. If an attacker can control or manipulate any of this content,

they may be able to execute arbitrary code within the WebView and use the Cordova bridge

to perform privileged operations.

This type of vulnerability is particularly dangerous because Cordova effectively grants the

WebView access to native capabilities that are normally protected by the Android permis-

sion system. In other words, compromising the web layer of a hybrid app can lead to a full

compromise of the native layer, a risk rarely present in traditional web applications.

18

To mitigate these issues, Cordova provides several configuration options and recommenda-

tions, such as:

• Defining strict domain whitelists using the Content-Security-Policy meta tag.

• Avoiding remote code loading and embedding only trusted local resources.

• Limiting the set of active plugins to the minimum required by the application.

• Keeping the framework and plugins up to date to patch known vulnerabilities.

Despite these measures, empirical studies have shown that many applications fail to follow

best practices, often due to a lack of awareness or the perceived complexity of configuring

security options correctly. These weaknesses make Cordova-based apps an appealing target for

attackers, especially those exploiting injection or privilege escalation vulnerabilities.

2.2.3 Plugin System

In Cordova, each plugin acts as a bridge module between the web layer and a specific

native functionality. Plugins can be official (maintained by the Cordova community) or third-

party modules created by developers to extend the framework’s capabilities. They are typically

defined by a JavaScript interface and a corresponding native implementation.

However, this flexibility also introduces security concerns. Plugins often run with elevated

privileges and can access sensitive resources such as the file system, network interfaces, or

hardware sensors. If a plugin is poorly implemented, outdated, or comes from an untrusted

source, it may expose critical vulnerabilities. Moreover, developers frequently include third-

19

party plugins without conducting thorough security audits, thereby increasing the application’s

attack surface.

Another source of risk arises from improper configuration of the Cordova config.xml file,

which defines permissions, whitelisted domains, and plugin usage policies. Overly permissive

configurations - for example, allowing remote code execution via the allow-navigation or

allow-intent directives - can enable attackers to inject malicious scripts or exfiltrate user

data.

2.3 Ionic Framework

The Ionic framework was introduced in 2013 as a modern and opinionated ecosystem for

building hybrid mobile applications. While Ionic is often described as a standalone solution,

its early versions relied heavily on Apache Cordova for native functionality. Ionic provided

the UI components, tooling, and development workflow, while Cordova supplied the underlying

WebView container and the plugin system for accessing native APIs.

Over time, however, the hybrid development landscape evolved, and the limitations of Cor-

dova became more apparent, particularly in terms of maintainability, plugin fragmentation, and

reliance on legacy WebView features. In response, the Ionic team introduced Capacitor, a new

native runtime designed to replace Cordova as the primary bridge between the web layer and

the underlying mobile platform. Capacitor now serves as the default native layer for modern

Ionic applications.

20

2.3.1 Architecture and Rendering Model

Regardless of whether Cordova or Capacitor is used as the native runtime, Ionic applications

are rendered inside a WebView. The core of an Ionic application comprises HTML templates,

TypeScript/JavaScript code, and CSS styles that define the app’s interface and logic. These

assets are bundled into the native application and served locally to the embedded WebView.

Ionic’s UI layer provides a comprehensive set of components that adapt their styling based

on the target platform. These components are implemented using modern web frameworks such

as Angular, React, or Vue, enabling developers to build complex interfaces with familiar web

technologies. The rendering remains web-based, but the user experience aims to emulate native

UI patterns.

The difference between Cordova and Capacitor lies not in how the UI is rendered, but in

how the web layer communicates with the native layer and how the native container is managed.

2.3.2 Capacitor as the Modern Ionic Runtime

Capacitor represents a new approach to bridging web code with native functionality. Unlike

Cordova, which evolved incrementally over more than a decade, Capacitor was designed from the

ground up with modern mobile requirements in mind. Its architecture simplifies the interaction

between the WebView and native APIs, and introduces several improvements:

• A more consistent and streamlined plugin system.

• First-class support for modern WebView features and platform standards.

• Easier integration with native mobile development tools.

21

• A persistent file structure that aligns more closely with standard Android and iOS projects.

• APIs designed to reduce reliance on legacy Cordova bridges.

Capacitor applications run their web code inside a WebView, similar to Cordova, but they

benefit from a simplified bridging mechanism that allows JavaScript to call native plugins using

a standardized and modern interface. Plugins are packaged as regular native modules, and

developers can write custom native code more easily compared to Cordova.

The empirical evaluation conducted in this thesis focuses specifically on Ionic applications

built on top of Capacitor, as Cordova-related vulnerabilities have already been extensively

explored in the previous framework. Moreover, Capacitor is now the default runtime for new

Ionic projects and represents the direction in which the ecosystem is evolving.

2.3.3 Security Considerations

Although Capacitor introduces improvements in architecture and plugin management, it

does not eliminate the fundamental security challenges inherent in hybrid development. The

application still relies on a WebView to execute its web layer, and therefore remains susceptible

to threats originating from untrusted or invalidated HTML and JavaScript code.

Security risks may arise from:

• improperly configured WebView settings,

• use of remote or dynamically generated content,

• inclusion of vulnerable third-party JavaScript libraries,

• overly permissive plugin usage or navigation policies,

22

• misconfigured Content-Security-Policy headers.

While Capacitor improves sandboxing and plugin isolation relative to Cordova, the bound-

ary between the web layer and the native layer remains a critical point of exposure. If an

attacker gains control of JavaScript executed within the WebView, they may be able to invoke

native functionality through the Capacitor bridge, depending on the configuration and installed

plugins.

2.4 React Native Framework

React Native, introduced by Facebook in 2015, represents a different paradigm within the

broader landscape of cross-platform mobile development. Unlike Cordova and Ionic, which rely

on a WebView to render their user interface, React Native enables developers to build mobile

applications using JavaScript while rendering actual native components on the device. This

approach allows React Native applications to achieve a near-native user experience, both in

terms of performance and visual consistency.

React Native builds on the concept of declarative UI programming introduced by the React

library for web development. Instead of defining HTML templates that are rendered inside

a WebView, developers write React components that describe the desired user interface. At

runtime, these components are translated into platform-specific native UI elements such as

Android Views or iOS UIViews. This architectural difference places React Native closer to

traditional native development than to hybrid WebView-based solutions.

23

2.4.1 Architecture and Rendering Model

React Native consists of three main layers: the JavaScript layer, the bridge, and the native

layer. Application logic is written in JavaScript and executed using the JavaScript engine

bundled with the app (Hermes, JSC, or V8, depending on configuration). When UI elements or

native functionality are required, the JavaScript code issues commands that are passed through

the React Native bridge.

The bridge acts as a communication channel between the JavaScript runtime and the un-

derlying platform’s native APIs. It serializes messages between the two environments and

coordinates the creation, update, or removal of UI components on the screen. Crucially, React

Native does not embed a WebView to render its interface; instead, it creates real native widgets

(like <View> and <Text>) controlled programmatically by JavaScript.

Due to its architecture, React Native typically achieves better performance than WebView-

based frameworks. Interfaces render more smoothly, animations are more fluid, and applications

behave more like fully native apps. However, performance is still limited by the asynchronous

nature of the bridge and the overhead involved in serializing messages between JavaScript and

the native environment.

2.4.2 Plugin System and Native Modules

React Native exposes native capabilities through Native Modules, which are conceptually

similar to Cordova and Capacitor plugins, but differ significantly in implementation. Native

Modules are written directly in Java (Android), Swift/Objective-C (iOS), or Kotlin, and they

provide callable interfaces that the JavaScript code can access.

24

The React Native ecosystem includes a rich collection of official and community-maintained

modules. These cover common functionalities such as camera access, geolocation, sensors,

storage, and network operations. Developers may also create custom modules to extend the

framework’s capabilities beyond the existing library.

While this modularity allows React Native to integrate seamlessly with native APIs, it

also introduces potential risks. Poorly maintained or insecure third-party modules can expose

sensitive functionality, and their tight coupling with native code means that vulnerabilities may

have a broader impact than in purely JavaScript-based environments.

2.4.3 Security Considerations

Although React Native mitigates many of the weaknesses associated with WebView-based

hybrid frameworks, it introduces its own security model and associated risks. Since React

Native does not rely on a WebView, it is less susceptible to classic injection attacks such as

DOM-based script injections, iframe abuses, or manipulations of HTML content.

However, React Native applications still execute untrusted or remote JavaScript code if

developers choose to enable features such as over-the-air (OTA) updates via services like Code-

Push. When external JavaScript is dynamically fetched and executed, the application may

become vulnerable to arbitrary code execution, script tampering, and supply-chain attacks.

The impact of such an attack is significant because compromising JavaScript execution effec-

tively grants the attacker indirect access to native APIs through the bridge.

React Native also depends heavily on its Native Modules ecosystem. Third-party modules

may expose overly permissive interfaces, lack proper security checks, or rely on outdated native

25

libraries. Vulnerabilities in these modules can allow unauthorized file access, insecure storage

of sensitive data, or unintended privilege escalation.

Ultimately, React Native remains subject to the general security models of Android and

iOS. Misconfigured permissions, insecure network requests, improper use of HTTPS/TLS, and

unsafe storage practices can impact React Native applications in the same way they affect

native apps.

2.5 WebView Security Model

The WebView component plays a central role in hybrid mobile applications. It functions

as an embedded browser that renders HTML, CSS, and JavaScript inside a native application,

enabling developers to reuse web technologies while still distributing their applications through

official app stores. In frameworks such as Cordova and Ionic (including their Capacitor-based

variants), the WebView is the primary execution environment for the application’s UI and a

significant portion of its logic.

Although the WebView shares many characteristics with traditional mobile browsers, its se-

curity model differs in important ways. Unlike a standalone browser, a WebView operates within

the privilege context of the hosting application. This means that vulnerabilities in WebView-

executed JavaScript can potentially escalate far beyond the browser sandbox, reaching native

APIs through JavaScript bridges exposed by the framework’s plugin system. Understanding

the security mechanisms of WebView and potential bypasses is crucial for assessing the risks of

hybrid mobile applications.

26

Figure 7: WebView architecture.

2.5.1 Execution Environment and Sandboxing

In a standard mobile browser, web content is confined to a strict sandbox enforced by the

browser engine. This sandbox restricts access to the file system, hardware sensors, and other

system-level resources. The WebView, however, runs within the sandbox of the hosting Android

application and therefore inherits any permissions granted to that application. For example, if

the application has permission to access the camera or read external storage, JavaScript running

inside the WebView may indirectly gain access to these resources through the plugin system.

This architectural difference means that the security boundary in hybrid applications shifts

from a strong, well-defined browser sandbox to a more fragile boundary between JavaScript and

27

native code. As a result, attacks targeting the WebView environment can have significantly

more severe consequences than similar attacks in traditional web applications.

2.5.2 JavaScript Bridges and Native Interaction

A key aspect of the WebView security model in hybrid applications is the presence of

JavaScript bridges. These bridges allow JavaScript code to access native functionality through

specific interfaces. For example, Cordova and Capacitor utilize their respective plugin systems

to provide APIs for various features such as camera access, file operations, geolocation, and

device information. Frameworks like Cordova, Capacitor, and, in a different way, React Native,

enable this access to native APIs for JavaScript code running within the application. This

connection is facilitated through:

• Cordova’s exec bridge,

• Capacitor’s plugin interface,

• React Native’s asynchronous message bridge for Native Modules.

From a security perspective, the bridge represents a privileged execution gateway: any

JavaScript that gains access to the bridge can potentially invoke sensitive native operations.

If an attacker succeeds in injecting malicious JavaScript into the WebView through external

scripts, manipulated HTML, or inadequate user input handling, they could execute actions

with the same permissions as the application itself.

28

The presence of the bridge, therefore, transforms many classic web vulnerabilities, such as

cross-site scripting (XSS) or DOM injection, into far more damaging attacks that can compro-

mise user data, access device files, or transmit sensitive information to remote servers.

2.5.3 Same-Origin Policy in WebViews

The SOP is one of the most fundamental mechanisms for securing the web. It restricts how

documents or scripts from one origin can interact with resources from another origin, preventing

unauthorized cross-origin data access.

However, the enforcement of SOP within WebViews differs from that in modern browsers.

In many hybrid frameworks, application assets are loaded from local file URLs such as:

file:///android asset/www/index.html

Resources loaded from the file:// scheme are treated inconsistently across different An-

droid versions and WebView implementations. In some configurations, file:// origins may

bypass SOP restrictions, allowing scripts within the application to request arbitrary local files

or interact with content not normally accessible to a remote website.

These inconsistencies create opportunities for attackers to exploit injection-based vulner-

abilities. For example, a malicious iframe loaded under the same file:// origin may gain

access to local application files or Cordova’s File Plugin, depending on the configuration of the

WebView.

2.5.4 Content Loading Policies

Security in WebViews also depends on the application’s content-loading policies. Hybrid

frameworks typically allow developers to specify which external domains can be loaded or

29

executed within the WebView. In Cordova and Capacitor, this configuration is controlled in

the config.xml file. Additionally, security headers such as the Content-Security-Policy

(CSP) can further restrict the execution of inline scripts, external files, or dynamic code.

However, many applications configure these settings improperly. Common mistakes include:

• Allowing all external navigation through wildcard policies (e.g., <allow-navigation

href="*">).

• Permitting external JavaScript from untrusted domains.

• Using overly permissive CSP directives such as script-src * or unsafe-inline.

• Loading remote HTML or templates dynamically without proper sanitization.

Such misconfigurations significantly increase the attack surface of hybrid applications, allow-

ing attackers to inject or manipulate JavaScript content that executes with elevated permissions.

2.5.5 WebView Settings and Configuration

Beyond high-level policies, certain WebView settings can have a direct effect on application

security. Some examples include:

• setJavaScriptEnabled(true) - required for hybrid apps, but expands attack surface.

• addJavascriptInterface() - exposes Java objects to JavaScript; dangerous if used in-

correctly.

• setAllowFileAccess() and setAllowUniversalAccessFromFileURLs() - can permit

unauthorized file access.

30

• setDomStorageEnabled(true) - enables Web Storage APIs which may contain sensitive

data.

If these settings are not configured carefully, the WebView may allow malicious JavaScript

to reach local files, bypass SOP, or call into privileged native methods.

CHAPTER 3

METHODOLOGY

The analysis presented in this thesis required the collection, decompilation, and examina-

tion of a large number of real-world hybrid Android applications. Because hybrid applications

integrate both web-based and native components, their analysis involves tools and techniques

from mobile security, static code analysis, and web security assessment. This chapter describes

the methodological approach adopted in this work, covering manual testing on mock applica-

tions, dataset acquisition, identification of relevant frameworks, decompilation steps, and the

design of the automated script used to detect security weaknesses.

The overarching objective of the methodology is to enable a reproducible and scalable

evaluation of the security posture of Cordova, Ionic (Capacitor-based), and React Native ap-

plications. By combining publicly available application repositories with automated analysis

tools, this approach enables a systematic investigation of framework-specific vulnerabilities and

common developer misconfigurations.

3.1 Exploratory Analysis and Manual Testing of Frameworks

Before conducting large-scale automated analysis, it was essential to gain a practical un-

derstanding of how each framework behaves in controlled conditions. For this reason, an initial

exploratory phase was conducted, during which small mock applications were developed using

Visual Studio Code. The frameworks explored were Cordova, Ionic (with its modern Capacitor

31

32

runtime), React Native, and Flutter, although the last one was abandoned for further explo-

ration due to its ad hoc programming language (Dart), making it immune to JavaScript code

injections. These applications were intentionally minimal, containing only the components nec-

essary to observe the frameworks’ configuration mechanisms, execution models, and interactions

between JavaScript and native code.

The purpose of this exploratory phase was twofold. First, it provided direct insight into

how hybrid and cross-platform frameworks configure their WebView environments, manage

permissions, register plugins, and expose native APIs. Second, it allowed the identification of

potential vulnerability patterns that could later be formalized into automated detection rules.

Each mock application was built with different combinations of settings in order to test

their impact on security. Examples include enabling or disabling file access within the Web-

View, adjusting navigation whitelists, modifying CSP directives, introducing external scripts,

and manipulating the SOP through intentionally crafted file loads or iframe injections. These

tests revealed how each framework enforces, relaxes, or bypasses web security guarantees de-

pending on its configuration. To ensure a controlled and verifiable testing environment, a

dedicated server hosted at the UIC was employed. This infrastructure served a dual purpose:

first, to rigorously simulate the unauthorized extrapolation of sensitive data, and second, to au-

thentically replicate the behavioral patterns of an external third-party entity within the network

ecosystem.

The mock applications were initially executed on emulators, but later, a physical Android

device was used. Logs, network traffic, and internal framework debug messages were exam-

33

ined to understand how the frameworks handled navigation requests, plugin initialization, and

JavaScript bridge communication.

Insights gained from this exploratory testing phase provided the foundation for the vulnera-

bility classes discussed in Section 3.2. Moreover, the empirical observations collected during this

stage directly informed the design of the unified static analysis script described in Section 3.4.

By validating the security implications of framework behaviors in controlled environments prior

to automation, the methodology ensures that the final detection rules are grounded in real, ob-

servable phenomena rather than theoretical assumptions.

3.2 Dataset Collection

To perform a meaningful evaluation of hybrid application security, it was essential to gather a

representative and diverse dataset of Android applications built using the targeted frameworks.

The dataset used in this thesis was constructed from three primary sources:

• AndroZoo Library: A large-scale dataset of Android applications collected from multi-

ple markets, providing APKs along with metadata such as package names, version codes,

and cryptographic hashes.

• APKMirror: A widely used third-party distribution platform that hosts numerous ver-

sions of popular Android applications.

• APKPure: Another alternative Android marketplace offering a broad range of applica-

tions across different categories and regions.

34

Applications were selected for download using the official framework website, which includes

examples of apps that use the framework, websites that mention the most famous apps built

with that specific framework, and random samples from the AndroZoo database, filtering only

those in the Google Play Store, obtained through the command:

zcat latest.csv.gz | awk -F, ’if ($11 ~ /play\.google\.com/) print ’.

A filtering step was therefore required to identify which applications were built using Cordova,

Ionic, or React Native.

For each downloaded application, associated metadata such as the APK’s package name,

version, and source was stored to support later analysis.

3.3 Static Analysis Script

A central component of this thesis is the development of a single, unified static analysis

script designed to automatically process Android applications and detect framework-specific

vulnerabilities. Instead of relying on multiple independent tools, the script integrates all stages

of the analysis pipeline, from framework identification to targeted vulnerability scanning. This

design choice improves reproducibility, reduces operational complexity, and ensures consistent

behavior across different categories of hybrid applications. The script can be found at this

GitHub repository: https://github.com/Civita2107/app_scanner.

The script operates in multiple phases. First, it inspects the decompiled APK directory and

identifies the framework used by the application. This step relies on the same markers described

in Section 3.2, such as the presence of Cordova configuration files, Capacitor assets used by

modern Ionic applications, or React Native bundle files. Once the framework is determined,

https://github.com/Civita2107/app_scanner

35

the script automatically invokes the corresponding analysis routine embedded within the same

codebase.

Each framework scanner is implemented as an internal module within the script. These

modules examine framework-specific assets, configuration files, and architectural patterns to

detect misconfigurations or known vulnerability classes. For example, the Cordova module

inspects the config.xml file, WebView policies, plugin declarations, and JavaScript assets to

identify patterns such as external script injection or improper file access restrictions. The

Ionic (Capacitor-based) module evaluates the Capacitor configuration and WebView runtime

options, while the React Native module analyzes the JavaScript bundle, native modules, and

bridge configuration to highlight potential security risks.

By consolidating all logic into a single executable script, the analysis process becomes highly

scalable. The script can be executed over large batches of applications with minimal manual

intervention, and all results are produced following a uniform structure. This unified approach

also simplifies maintenance and reduces the likelihood of inconsistent results arising from dif-

ferent toolchains or version mismatches.

For each analyzed application, the script produces a structured output file containing de-

tected vulnerabilities, framework classification, relevant configuration details, and additional

metadata. These results form the basis for the comparative analysis presented in subsequent

chapters.

36

Figure 8: Overview of the methodology pipeline.

3.3.1 Decompilation Pipeline

After identifying the relevant applications, each APK underwent a decompilation process

to extract:

• Java/Kotlin source code (via jadx),

• JavaScript assets (HTML, JS, CSS),

37

• WebView configuration files,

• Framework-specific configuration files (e.g., config.xml, capacitor.config.json),

• Native module implementations (for React Native).

The decompilation pipeline was designed to operate automatically, enabling the processing

of dozens or hundreds of applications in sequence. Errors such as corrupted APKs, unsupported

formats, or obfuscation issues were logged and handled gracefully.

3.3.2 Framework Identification

Identifying whether an Android application was built with Cordova, Ionic, or React Native

required inspecting the application’s package contents. After unpacking each APK, the following

indicators were used to classify the framework:

• Cordova: Presence of assets/www/cordova.js, cordova plugins.js, res/xml/config.xml,

and Cordova-related directory structures.

• Ionic (Capacitor-based): Presence of assets/capacitor.config.json, Capacitor

Java packages (e.g., com.getcapacitor), and web asset folders consistent with Ionic

builds.

• React Native: Presence of index.js, React Native Java modules (e.g., com.facebook.react),

ReactNativeHost classes, and assets/index.android.bundle.

Applications were classified based on these characteristic indicators. In cases where multiple

frameworks were present, the classification prioritized the dominant runtime (e.g., Capacitor

over Cordova when both were detected due to legacy support files).

38

This classification step ensured that only Android applications built with the targeted frame-

works proceeded to the static analysis phases.

3.3.3 Automated Vulnerability Scanning

Once an application has been decompiled and its framework identified, the static analysis

script executes the framework-specific scanning routine embedded within the same codebase.

This phase implements the detection logic derived from the exploratory analysis (Section 3.1)

and the vulnerability taxonomies described in Section 3.2. The scanning routine follows a

deterministic sequence of checks designed to minimize false positives while being robust to

minor variations in project structure or obfuscation.

Scanning workflow. The scanner proceeds through the following ordered steps for each

decompiled APK:

1. Asset indexing: Enumerate extracted files and build an index of Java/Kotlin sources,

resource manifests, JavaScript bundles, HTML assets, plugin descriptors, and configura-

tion files. This index allows targeted queries without repeated file system traversal.

2. Configuration parsing: Parse framework configuration files (e.g., res/xml/config.xml,

capacitor.config.json, AndroidManifest.xml) to extract declared permissions, navi-

gation directives (allow-navigation, allow-intent, access-origin), whitelists, and

plugin declarations.

3. Web asset analysis: Analyze HTML, CSS and JavaScript assets for indicators of inse-

cure patterns:

39

• presence of localStorage usage and suspicious keys,

• insecure CSP headers or overly permissive meta CSP tags,

• dynamic script inclusion patterns (e.g., document.write, eval, script tags with

remote src).

4. Plugin and native API inspection: Inspect plugin descriptors and native code for use

of sensitive APIs (FileSystem, Camera, Clipboard, Preferences, AsyncStorage bridges).

For React Native, search for Native Module registrations and calls to postMessage,

injectedJavaScript, or URL parameter patterns that carry secrets.

5. Vulnerability rule application: Apply framework-specific detection rules (see below)

that map observed artifacts to one or more vulnerability classes. Each rule comprises a

condition (file presence, code pattern, configuration flag) and a confidence score indicating

the likelihood of an actual vulnerability.

6. Heuristic validation and de-duplication: For matches with medium confidence, at-

tempt secondary validation (e.g., cross-check a declared permission with actual API us-

age). De-duplicate multiple findings that refer to the same underlying issue to avoid

inflating counts.

7. Result tagging: Annotate each finding with metadata including affected file paths,

line/snippet examples (when available), rule identifier, confidence level, and mitigation

hint.

40

3.3.4 Framework-specific Detection Strategy

The static analysis tool incorporates separate detection strategies for Cordova, Ionic/Capacitor,

and React Native.

Each strategy inspects framework-specific files, configuration structures, and runtime pat-

terns to identify signals relevant to hybrid application security.

Rather than applying a single set of checks to all applications, the script activates the

appropriate detection routine once the framework has been identified.

These routines examine characteristic markers—such as Cordova configuration directives,

Capacitor plugin usage, or React Native WebView integration patterns to extract security-

relevant indicators from each application.

3.3.5 Output Structure

The final phase of the static analysis script consists of producing a structured, machine-

readable report that summarizes the detected framework, the extracted security-relevant con-

figuration details, and the vulnerability verdicts associated with the analyzed application. Each

report is generated in JSON format to ensure interoperability with downstream tools and to

facilitate statistical aggregation. The report contains the following top-level fields:

• apk: Absolute path to the processed APK file.

• framework detection: A structured object indicating the detected framework (CORDOVA,

IONIC, or REACT NATIVE) together with the justification used for classification (e.g., pres-

ence of config.xml, Capacitor assets, or React Native bundles).

41

• framework: A shorthand confirmation of the detected framework, provided for conve-

nience.

• vulnerability checks: A set of boolean or categorical flags representing the raw analysis

signals observed in the application, such as:

– whether localStorage is used,

– presence of Cordova File plugin calls,

– whether the application is debuggable,

– whether a CSP is present in index.html,

– whether sensitive APIs (e.g., resolveLocalFileSystemURL) appear in scripts.

• security config: Extracted configuration indicators including navigation directives (allow navigation),

access-origin usage, presence of wildcards, and other WebView- or plugin-relevant flags.

• vulnerability verdicts: A list of human-readable vulnerability descriptions produced

by combining the raw checks with the framework-specific rules. Each entry corresponds

to one of the vulnerability classes discussed in Chapter 4.

The following snippet illustrates the structure of a typical report generated for a Cordova

application:

{

"apk": "/path/to/app.apk",

"framework_detection": {

42

"detected": "CORDOVA",

"reason": "Found key Cordova indicators: config.xml in res/xml,

cordova.js in assets/www/"

},

"framework": "CORDOVA",

"vulnerability_checks": {

"internet_permission": true,

"android_debuggable": false,

"index_csp_present": false,

"cordova_plugin_file": true,

"resolveLocalFileSystemURL_used": true,

"localStorage_used": true

},

"security_config": {

"allow_navigation": true,

"permissive_access_origin": true,

"wildcard_access_origin": true

},

"vulnerability_verdicts": [

"External Script Injection accessing Cordova File Plugin API

(due to: CSP missing and permissive access origin configuration)",

43

"External Script Injection accessing the application HTML files

(due to: CSP missing and permissive access origin configuration)",

"Same-Origin Iframe loading of malicious files accessing the

Cordova File Plugin API (due to: CSP missing and permissive

access origin configuration)",

"Same-Origin Iframe loading of malicious files accessing the

application HTML files (due to: CSP missing and permissive

access origin configuration)",

"localStorage data can be exfiltrated (due to: CSP missing

and permissive access origin configuration)"

]

}

This output format enables analysis on two complementary levels. First, the low-level

configuration signals (e.g., index csp present, localStorage used) describe exactly which

behaviors were observed in the decompiled files. Second, the high-level vulnerability verdicts

represent the script’s interpretation of these signals, correlating them to determine whether the

application exhibits one or more of the vulnerability patterns described in Chapter 4.

This layered output design makes the reports both human-readable for manual validation

and structured enough to support large-scale aggregation, cross-framework comparisons, and

the generation of summary statistics in later chapters.

44

3.4 Targeted Dynamic Analysis with Frida

While the primary evaluation in this thesis relies on static analysis, a limited dynamic

analysis was conducted to validate the practical exploitability of selected vulnerabilities. The

goal of this experiment was not to build a large-scale dynamic testing pipeline, but rather to

confirm that specific vulnerability classes identified through static analysis could be leveraged

in a real execution environment. To this end, Frida - a widely used dynamic instrumentation

framework for Android - was employed to inspect the runtime behavior of Moodle, a Cordova

application from the dataset that was found to be vulnerable during the static analysis phase.

3.4.1 Environment Setup

The dynamic analysis required an environment that allowed for arbitrary code instrumen-

tation and WebView inspection. For this purpose, a rooted Android device was used, allowing

the installation and execution of the Frida server binary. The setup consisted of the following

components:

• Rooted Android phone: provided full access to application processes and permitted

runtime instrumentation.

• Frida server: deployed on the phone and executed with root privileges.

• Frida client: installed on the computer to issue commands, attach to processes, and

inject instrumentation scripts.

• USB debugging environment: enabled communication between the workstation and

the device, including access to Chrome remote debugging features.

45

This setup enabled real-time inspection of the application’s WebView and JavaScript con-

texts.

3.4.2 WebView Instrumentation and Debugging

A custom Frida script was taken from this GitHub repository to enable WebView debugging

at runtime. The script attached to the target application’s main process and programmatically

invoked debugging flags on the Android WebView class. This ensured that the WebView instance

exposed a remote debugging endpoint, even if the application did not enable it at build time.

Once instrumentation was active, the WebView instance became visible in the Chrome

remote debugging interface via chrome://inspect. This allowed examination of the following:

• the index.html document hosted by the WebView,

• JavaScript execution context,

• loaded scripts and injected resources,

• the state and contents of localStorage.

3.4.3 Exploitation of the Vulnerability

Using Chrome DevTools, JavaScript code was executed directly within the application’s

WebView context through the debugger console. This made it possible to evaluate the feasibility

of specific attacks identified during static analysis. Hence, the test verified that:

• localStorage keys marked as sensitive in the static analysis were accessible at runtime,

• the WebView allowed script execution originating from DevTools (as a proxy for attacker-

controlled injection),

https://gist.github.com/n1sh1th/d3ccd68ee17eb9b94b28ecfd6514854b

46

• navigation and resource loading policies permitted by the app configuration matched those

identified statically.

During the dynamic analysis, the selected Moodle application, previously identified as vul-

nerable through static analysis, confirmed the practical exploitability of the detected misconfig-

urations. In particular, the application’s index.html file and its active session cookie, stored in

the localStorage, were accessible from within the WebView’s JavaScript context, as exposed

through Chrome DevTools. The following images show the code executed in the DevTools

console to retrieve the index.html file (the one that fetches the session cookie is analogous), as

well as the receipt of the session cookie on the third-party server.

47

Figure 9: JavaScript code executed to fetch the index.html file.

Figure 10: Retrieval of the session cookie on the server.

48

A key contributing factor was the application’s CSP configuration, which specified a wild-

card * as the allowed source for network requests. This configuration enabled scripts running

inside the WebView to interact with arbitrary remote endpoints, including third-party servers

unrelated to the Moodle infrastructure. Because the WebView permitted outbound requests

to any origin, it became feasible for injected JavaScript to issue an HTTP POST request to a

remote server and transmit locally accessible data. As a result, both the retrieved index.html

file and the session cookie stored within the WebView environment could be programmatically

forwarded to an external domain.

This validation step demonstrated that the issues detected by the static analysis—namely,

the permissive CSP and unrestricted navigation rules were not merely theoretical risks; they

were actual vulnerabilities. Instead, they directly enabled the exfiltration of sensitive applica-

tion data during real execution. This confirms the relevance of the vulnerability classes defined

earlier in the methodology and highlights the security impact of overly permissive WebView

configurations in hybrid Android applications.

CHAPTER 4

EXPERIMENTAL FINDINGS

The exploratory testing described in Section 3.1 enabled the identification of security-

relevant behaviors within hybrid frameworks. Building on these observations, this section

formalizes the vulnerability classes that were identified as characteristic of each framework.

These classes served as the foundation for the automated detection logic in the static analysis

script.

Because the security architecture varies significantly between Cordova, Ionic (Capacitor-

based), and React Native, each framework exhibits different patterns of misconfiguration, mis-

use, or structural weaknesses. For example, WebView-based frameworks such as Cordova and

Ionic expose a large surface area for script injection and SOP violations, whereas React Native’s

risks are more closely linked to unsafe JavaScript bundle execution, untrusted OTA updates,

or insecure native modules.

The subsections that follow define these vulnerability classes individually, explain their

significance within each framework, and describe how they guided the implementation of the

scanning modules in Section 3.4. This structure ensures that the analysis pipeline is grounded

in an explicit and framework-aware threat model.

49

50

4.1 Cordova Vulnerabilities

Cordova applications rely on a WebView that renders local HTML and JavaScript files and

exposes native capabilities through a privileged JavaScript bridge. Because the platform is his-

torically designed around file:// origins, permissive navigation rules, and globally accessible

plugin interfaces, Cordova applications exhibit a distinctive set of security weaknesses related

to script injection, origin relaxation, and unrestricted plugin exposure. During the exploratory

analysis, six vulnerability classes were identified. These represent the characteristic risks that

arise when Cordova applications are configured without strict WebView hardening or robust

Content Security Policies.

External Script Accessing the LocalStorage. Cordova applications frequently store ap-

plication state, session identifiers, and user-related information using theWebView’s localStorage.

Any JavaScript executed inside the WebView inherits access to these values. When developers

omit a restrictive Content Security Policy or allow untrusted navigation, injected scripts can

read and exfiltrate sensitive data. Although navigation to a new WebView instance applies a

different CSP, the localStorage of the original view remains exposed to any script running

within that original context.

Same-Origin Iframe Accessing the LocalStorage. Because Cordova relies on file://

origins, Same-Origin Policy enforcement is inconsistent across Android versions. If an applica-

tion loads content inside an iframe that resolves to the same origin—either through permissive

allow-navigation rules or unvalidated remote content—an attacker-controlled iframe can read

51

or modify localStorage. This vulnerability is amplified by Cordova’s tendency to treat mul-

tiple file:// locations as origin-equivalent.

External Script Accessing the File Plugin API. When a Cordova WebView permits

external script execution—due to missing CSP directives, permissive access-origin settings,

or uncontrolled script sources—malicious JavaScript gains access to the full Cordova plugin

bridge. This includes the File plugin, which exposes internal storage directories such as the

application cache, persistent files, or user-generated data. Such access represents a severe

escalation beyond typical web-based code injection.

Figure 11: Cordova File Plugin API vulnerability flow.

52

External Script Accessing the Application HTML Files. In addition to plugin

access, injected scripts can retrieve the application’s internal HTML and JavaScript files. If the

WebView allows file:// access or universal access from file URLs, attackers can read assets

such as index.html, bundled JavaScript files, or configuration artifacts. These resources often

contain embedded secrets, API endpoints, or logic that facilitate further exploitation.

Same-Origin Iframe Accessing the File Plugin API. Cordova applications that allow

broad navigation patterns or relaxed file-access settings may load attacker-controlled HTML

inside a same-origin iframe. In this scenario, the iframe inherits the full Cordova JavaScript

bridge, including plugin interfaces. As a result, malicious iframe content gains the ability to

enumerate files, read application storage, or invoke privileged APIs.

Same-Origin Iframe Accessing the Application HTML Files. Similarly, a same-

origin iframe may directly access internal HTML resources if the WebView applies relaxed

origin rules. This enables an attacker-controlled iframe to read bundled assets or reconstruct

application logic. These behaviors are particularly prominent in legacy Android versions where

file:// equivalence is overly permissive.

These six vulnerability classes form the basis of the Cordova-specific findings from the

exploratory phase and directly inform the automated static detection logic described in Sec-

tion 3.3. Their prevalence highlights the substantial risk posed by permissive WebView config-

urations, broad navigation allowances, and global plugin exposure within Cordova applications.

A summary table of all Cordova vulnerability tests is provided in Subsection 5.2.1.

53

4.1.1 Attack Scenario: Same-Origin File Exfiltrating FileSystem.

During the exploratory analysis, an attack on the Cordova File System was conducted on

the mock application, resulting in the extrapolation of a file created through the Cordova File

Plugin.

In this configuration, any HTML file stored inside the application’s asset structure (e.g.

assets/ or www/) is considered part of the same origin (https://localhost). If the application

allows users to download files or store content within these directories, a malicious HTML

file may later be rendered in an iframe inside the WebView while still inheriting the trusted

application origin.

Once loaded, the attacker-controlled file executes JavaScript with full same-origin privileges.

As a result, it gains access to the Cordova JavaScript bridge and can invoke privileged plugins

such as the File API. This enables the injected file to:

• read files created by the application in directories like dataDirectory,

• load stored files via resolveLocalFileSystemURL(),

• exfiltrate the retrieved data to a remote server using fetch().

In the demonstrated attack (Figure 12), the malicious file, once rendered under

https://localhost, reads a stored file such as sensitive data.txt and transmits its content

to an attacker-controlled endpoint. Because the file was executed in a fully trusted origin, no

WebView restrictions blocked its access to the Cordova APIs.

54

Figure 12: Cordova same-origin file injection enabling file exfiltration.

This vulnerability highlights the risks of allowing untrusted or user-supplied files to be stored

in locations that inherit the https://localhost origin. When combined with the globally

exposed Cordova plugin bridge, any such file becomes a vehicle for full privilege escalation

within the WebView environment.

4.1.2 Automated Detection Logic for Cordova

The static analysis script implements a dedicated detection routine tailored to the architec-

tural characteristics of Cordova applications. Once an APK is identified as Cordova-based, the

corresponding module inspects a series of configuration files, runtime parameters, andWebView-

related assets that reflect the vulnerability patterns validated during the exploratory analysis.

The module first examines the config.xml file, which defines navigation rules, origin

permissions, and Content Security Policies. Permissive allow-navigation entries, wildcard

55

access-origin directives, or missing CSP definitions are recorded as indicators of weakened

origin isolation. The detector then inspects the assets/www directory to identify the presence

of localStorage usage patterns, external script references, or inline JavaScript that could be

abused through injection.

Furthermore, the module analyzes the WebView configuration by scanning for unsafe An-

droid flags such as addJavascriptInterface or allowFileAccessFromFileURLs, which may

expose sensitive plugin interfaces. It also checks whether the Cordova File plugin is referenced

and whether its API calls appear in the decompiled JavaScript. These indicators collectively

allow the module to associate the application with the Cordova vulnerability classes described

in Section 4.1.

The output of this detection routine provides a high-level summary of the application’s

security posture, linking configuration signals to the vulnerability classes observed in the manual

experiments.

4.2 Ionic Vulnerabilities

Modern versions of Ionic rely on the Capacitor runtime, which replaces the older Cordova

backend with a more modular and streamlined architecture. Although Capacitor applications

still depend on a WebView, their plugin model, https://localhost origin, and permission han-

dling differ substantially from traditional Cordova apps. The exploratory analysis conducted in

controlled mock applications revealed seven recurrent vulnerability classes arising from insecure

WebView behavior, plugin exposure, and insufficient origin restrictions.

56

External Script Accessing the LocalStorage. Capacitor does not modify the seman-

tics of the Web Storage API, and all localStorage values remain directly accessible to any

JavaScript executing inside the WebView. If an attacker manages to inject arbitrary JavaScript

or load untrusted same-origin content, these values can be extracted and exfiltrated. The risk

becomes more severe when developers store sensitive tokens or user identifiers in localStorage.

Capacitor Preferences Access. The @capacitor/preferences plugin provides persis-

tent storage via a native-backed key-value store. However, this API is exposed to the WebView

without additional filtering. Injected JavaScript, if it gains access to the Capacitor bridge,

can read or modify application preferences, potentially altering authentication state or leaking

sensitive configuration values.

Capacitor FileSystem Access. The Capacitor FileSystem plugin allows direct file oper-

ations on the device. In the presence of script injection, malicious JavaScript may invoke this

API to read internal application files or user-generated data. Access to sensitive files represents

a significant escalation, extending the impact beyond typical web-based vulnerabilities.

Same-Origin Iframe Accessing the LocalStorage. Ionic applications are served from

the https://localhost origin. If an untrusted iframe is loaded under the same origin (due

to misconfigured routing or overly permissive navigation rules), it inherits the ability to read

and modify the same localStorage namespace. This enables attacker-controlled documents

to gain access to persistent application data.

Same-Origin Iframe Accessing the Capacitor Preferences. Because Capacitor ex-

poses plugin functionality through a global JavaScript interface, same-origin iframes also gain

57

access to the Preferences API. An attacker-controlled iframe, therefore, inherits the ability to

read and modify native-backed persistent state, making this vulnerability particularly impact-

ful.

Clipboard Access Vulnerability. The Capacitor Clipboard plugin allows reading and

writing of the system clipboard. If arbitrary JavaScript executes within the WebView, it can re-

trieve or replace clipboard contents with attacker-controlled data. Depending on user behavior,

this may expose sensitive items such as passwords or two-factor authentication codes.

Figure 13: Ionic Clipboard vulnerability flow diagram.

58

Camera Access Vulnerability. The Capacitor Camera plugin allows web-exposed JavaS-

cript to capture images using the device camera. After the user grants the runtime permis-

sion, injected scripts may programmatically trigger camera access, potentially capturing images

without the user’s legitimate intent. This constitutes a direct privacy risk driven by WebView

injection vectors.

These seven vulnerability classes form the basis of the automated detection rules imple-

mented in the static analysis script. They capture the principal security risks observed during

manual exploration of Ionic and Capacitor applications, highlighting how plugin exposure and

origin misconfiguration can significantly expand the attack surface.

A summary table of the vulnerabilities tested in Ionic applications is provided in Subsec-

tion 5.2.2.

4.2.1 Attack Scenario: Capacitor FileSystem Exploitation

During manual testing, an attack scenario was validated on a mock Ionic/Capacitor appli-

cation to illustrate the practical impact of insecure WebView execution and unrestricted plugin

exposure. The scenario highlights the Capacitor FileSystem plugin and illustrates how an in-

jected script, once executed within the WebView, can access and exfiltrate files stored in the

application’s private directories.

The attack proceeds in three phases. First, the user interacts with a benign application

interface that stores files locally through the FileSystem API. Second, the attacker succeeds in

injecting arbitrary JavaScript into the WebView, for example, through an untrusted navigation

flow or an iframe-based injection vector. Once running, the injected code invokes the FileSys-

59

tem plugin with the same privileges as the legitimate application, retrieving files stored under

the Directory.Documents namespace. Finally, the retrieved data is transmitted to a remote

attacker-controlled server.

This process is depicted in Figure 14, which illustrates how exposing Capacitor plugins

to arbitrary JavaScript enables direct access to native-backed storage and allows for the silent

extraction of user or application-generated files.

Figure 14: Capacitor FileSystem Exploitation Attack Flow.

60

This attack confirms that plugin-level vulnerabilities in Ionic are not merely theoretical; they

are real and can be exploited. When WebView injection is possible, exposing native APIs such

as FileSystem directly enables unauthorized access to local data. This reinforces the need for

strict navigation controls, CSP enforcement, and careful limitation of plugin surface available

to WebView-executed JavaScript.

4.2.2 Automated Detection Logic for Ionic/Capacitor

For Ionic applications, the detection logic focuses on the Capacitor runtime, which exposes

native functionality through globally accessible JavaScript interfaces. Once an application is

classified as Ionic/Capacitor, the module inspects the capacitor.config.json file, plugin

declarations, and the generated WebView assets to extract security-relevant indicators.

The detector searches for evidence of Capacitor plugin usage, including the

@capacitor/preferences, Filesystem, Clipboard, and Camera APIs. References to these

plugins within the JavaScript bundle reveal which privileged operations may be accessible if

untrusted code executes inside the WebView. The module also identifies application reliance

on localStorage or sessionStorage, which may expose persistent data in the presence of

injection.

To capture navigation-related risks, the module scans for same-origin iframe inclusion, rela-

tive asset loading patterns, and any conditions that may unintentionally expose the application

to same-origin iframe abuse. These indicators correspond to the Ionic vulnerability classes iden-

tified in Section 4.2, including Preference manipulation, Filesystem access, clipboard extraction,

and plugin misuse.

61

By correlating plugin exposure with storage usage and origin-related behaviors, the Ionic/Capacitor

detection routine provides a structured assessment of how closely an application’s configuration

resembles the vulnerable patterns observed in the controlled mock applications.

4.3 React Native Vulnerabilities

Among the three frameworks examined, React Native exhibited the smallest attack surface

and the lowest number of detectable vulnerabilities. This advantage primarily stems from its

architecture: React Native does not rely on a WebView to render its interface, uses a strongly

controlled JavaScript–native bridge, and executes JavaScript logic in an isolated runtime envi-

ronment (JavaScriptCore or Hermes). Web content is introduced into the application only when

the developer explicitly embeds a WebView component. Consequently, many of the WebView-

driven weaknesses affecting Cordova and Ionic, like direct access to native interfaces or file

system exposure, are not applicable to React Native by default.

However, the exploratory analysis identified a notable vulnerability class originating not

from the framework design, but from insecure developer practices that intentionally bridge

sensitive native state into a WebView. The unified vulnerability mechanism described below

represents the most significant security risk observed in real-world React Native applications.

AsyncStorage Access Vulnerability. Applications frequently store authentication to-

kens, user identifiers, and other security-sensitive data using AsyncStorage or secure alter-

natives such as SecureStore. As long as these values remain within the React Native layer,

they are not accessible to WebView-rendered content. The vulnerability arises when developers

manually inject stored values into the WebView environment using calls such as:

62

• postMessage() to forward values into the DOM context,

• injectedJavaScript to write secrets directly into the page,

• URL parameters appended to the requested resource (e.g., https://example.com/?token=...).

Once forwarded into the WebView, these values become subject to the standard browser se-

curity constraints rather than React Native’s isolation guarantees. If the WebView is configured

with permissive settings such as:

• originWhitelist = [’*’] (arbitrary navigation permitted), or

• javaScriptEnabled = true with untrusted content loadable,

then any malicious or compromised page rendered within the component can execute ar-

bitrary JavaScript and read the injected data. The attacker can subsequently exfiltrate the

information by issuing simple fetch() or XHR requests to a remote server, leveraging the

WebView’s full browser-like capabilities.

This unified vulnerability scenario represents the primary security risk observed in React

Native applications during this research. It highlights that React Native’s strong security pos-

ture can be undermined not by the framework itself, but by developer decisions that bridge

protected application state into a permissively configured WebView environment. Proper ori-

gin restrictions, removal of unnecessary WebView integrations, and avoiding the injection of

sensitive values into WebViews are essential to maintaining React Native’s security guarantees.

63

Figure 15: AsyncStorage Vulnerability Diagram Flow.

4.3.1 Attack Scenario: AsyncStorage Exfiltration

Although React Native applications generally exhibit a more secure architecture due to the

isolation between the JavaScript execution environment and the native layer, a high-impact

vulnerability can occur when developers intentionally bridge sensitive application state into a

WebView.

During the exploratory analysis, a realistic attack scenario was demonstrated in which

data stored using AsyncStorage was exfiltrated through a malicious page rendered inside the

WebView. Sensitive data stored with AsyncStorage (e.g. tokens, usernames, identifiers) persists

64

across application sessions and is not automatically protected from disclosure once injected into

the WebView context.

The vulnerability does not originate from AsyncStorage itself, but from the developer’s

bridging logic. The WebView provides a two-way messaging channel via postMessage(), which

allows the native side to send arbitrary values into the web content. For example:

webViewRef.current.postMessage(JSON.stringify({ username }));

If a developer chooses to forward stored values into the WebView, any JavaScript running

inside that page, whether it is legitimate or malicious, gains access to those values and can then

exfiltrate them. The WebView context is therefore the only environment at risk: React Native

views and other components remain isolated from such manipulation.

Figure 16: AsyncStorage Exfiltration Attack Flow.

65

Importantly, this attack (depicted in Figure 16) is only feasible when the developer explicitly

bridges sensitive values into the WebView. If the WebView never receives such information, it

cannot expose it. However, when bridging is present, any storage mechanism - AsyncStorage,

SecureStore, SQLite databases, native files, or even cloud-retrieved values - becomes vulner-

able as soon as the data is passed into the WebView.

This scenario highlights that React Native’s strong default isolation can be undermined by

insecure developer practices. While the framework does not inherently expose storage to web

content, unsafe data bridging reintroduces WebView-based attack vectors similar to those of

hybrid frameworks like Cordova and Ionic.

4.3.2 Automated Detection Logic for React Native

The React Native module reflects the more constrained attack surface of this framework.

Because React Native does not inherently rely on a WebView, the detection logic focuses on

optional components and specific developer choices that may introduce security risks.

The detector first searches the JavaScript bundle (typically index.android.bundle) for

uses of AsyncStorage or SecureStore, which represent common storage locations for appli-

cation secrets. It then examines whether these values are ever forwarded into a WebView

environment, for example, through postMessage, injectedJavaScript, or dynamic URL con-

struction. Such patterns may enable the attack scenario described in Section 4.3, where sensitive

tokens can be exfiltrated once introduced into the WebView context.

If the application embeds a WebView component, the module inspects its configuration for

permissive settings such as originWhitelist=[’*’] or mixedContentMode="always", as well

66

as potentially dangerous native bindings created through addJavascriptInterface. These

checks identify cases where the application inadvertently exposes privileged functionality to

injected scripts.

Overall, the React Native detection routine links WebView configuration, storage handling,

and message-passing patterns to the vulnerability class validated during the manual exper-

iments, offering a precise view of where React Native applications deviate from the secure

defaults established by the framework.

4.4 Dynamic Exploitation Case Study

To complement the static analysis results and validate the practical impact of the detected

vulnerabilities, a dynamic exploitation test was performed on a real-world hybrid application.

Among the applications identified in the dataset, the Moodle Android client exhibited several

high-risk indicators during static analysis, including a missing Content Security Policy (CSP)

and permissive navigation directives. Its architecture, based on Cordova, made it an appropriate

candidate for demonstrating the runtime implications of these misconfigurations.

During execution, the application’s WebView allowed arbitrary JavaScript evaluation, en-

abling direct inspection of the internal WebView context. Within this environment, both the

index.html source file and the authenticated session cookie stored in localStorage were ac-

cessible. Figure 17 and Figure 18 illustrate the retrieval of these resources through JavaScript

executed inside the WebView.

67

Figure 17: JavaScript executed in the WebView context to retrieve the index.html file.

Figure 18: Exfiltration of the session cookie to a third-party server.

68

A central enabling factor for this attack was the application’s highly permissive CSP config-

uration, which defined the wildcard * as an allowed source for network requests. Combined with

equally permissive navigation and access-origin rules, this configuration allowed JavaScript run-

ning inside the WebView to perform unrestricted outbound HTTP requests. As a result, once

sensitive data were accessible inside the WebView, exfiltration to an external domain became

trivial.

The test confirmed that the issues flagged by the static analysis were not hypothetical. The

combination of a missing CSP, permissive origin policies, and unrestricted file access allowed the

extraction of both application resources and authentication material. This demonstrates how

insecure WebView configurations can escalate into full data compromise in real-world hybrid

applications, reinforcing the importance of the vulnerability classes defined in the preceding

sections.

CHAPTER 5

EVALUATION AND RESULTS

5.1 Introduction

This chapter presents the results of the large-scale security evaluation performed on Android

applications developed using Cordova, Ionic (Capacitor-based), and React Native. Building on

the methodology outlined in Chapter 3, the analysis combines three complementary sources of

evidence: (i) framework-specific vulnerability detection carried out on mock applications, (ii) a

review of selected high-profile or representative applications identified as vulnerable, and (iii)

a brute-force scanning campaign over a substantial subset of the AndroZoo repository.

5.2 Frameworks Results

This section presents the empirical results obtained from the security evaluation of the

three hybrid and cross-platform frameworks analyzed in this thesis: Cordova, Ionic (Capacitor-

based), and React Native. Each subsection summarizes the outcomes of the controlled attack

tests conducted on representative applications developed with the corresponding framework.

The results highlight how architectural design choices, default WebView configurations, and

plugin exposure models influence the types of attacks that are feasible in each environment. By

comparing the behavior of these frameworks under equivalent attack scenarios, this section

provides a clear view of their relative strengths, recurring misconfigurations, and common

69

70

sources of risk. Detailed findings for Cordova, Ionic, and React Native are presented in the

following subsections.

5.2.1 Cordova Results

The analysis of Cordova applications revealed a consistent pattern of vulnerabilities stem-

ming primarily from permissive WebView configurations, missing or weak Content Security

Policies, and the broad exposure of Cordova’s File Plugin API within the JavaScript context.

Table II summarizes the results of the systematic vulnerability tests conducted on representative

Cordova applications.

Overall, the evaluation shows that Cordova WebViews remain highly susceptible to external

script injection when no restrictive CSP is enforced. Such injected scripts are not only capable

of reading application-owned files through the File Plugin API but also accessing local HTML

resources such as index.html and bundled JavaScript files. These results confirm that inade-

quate isolation between WebView content and native plugin interfaces constitutes a recurring

security issue in Cordova-based applications.

The tests also demonstrate that same-origin iframes inherit the full privileges of the main

WebView. When the iframe loads a resource from the application’s origin, either through a

relative path or the https://localhost scheme used by modern Cordova versions, it can invoke

native APIs and read application HTML files just as the main WebView can. However, when

the iframe loads remote content, the SOP effectively prevents access to local files and plugin

interfaces, blocking several attack paths.

71

Further testing showed that CORS protections are correctly applied: neither local HTML

files nor iframe-loaded documents were able to bypass cross-origin restrictions when interacting

with remote APIs. Similarly, mixed-content restrictions blocked the loading of cleartext HTTP

resources, unless explicitly overridden via the usesCleartextTraffic flag in the application

manifest.

Finally, localStorage proved accessible to both injected scripts and same-origin iframes, con-

firming that sensitive data stored in the WebView context remains exposed when the application

lacks a strong CSP and employs permissive navigation or plugin access rules.

Taken together, these findings highlight Cordova’s continued reliance on secure developer

configuration. In the absence of strict CSPs, restricted navigation rules, and controlled plugin

exposure, Cordova applications are prone to a range of WebView-driven attacks that can lead

to file disclosure, script injection, and unauthorized access to locally stored data.

72

TABLE II: VULNERABILITIES TESTED IN CORDOVA.

Vulnerability Context Target Result Notes

External script
accessing cre-
ated file

WebView File Cre-
ated in the
Application

✔ Successful Can access files created through
the File Plugin (saved in dataDi-
rectory, cacheDirectory, etc.),
also cross-directory

External
script access-
ing HTML
files

WebView Application
HTML files

✔ Successful Can fetch local files like in-
dex.html and index.js
through relative path (../in-
dex.html) or absolute path
(https://localhost/index.html)

Cross-origin
iframe access-
ing created file

Iframe
(file from
remote
server)

File Cre-
ated in the
Application

X Blocked SOP blocks access to Cordova
File Plugin API

Cross-origin
iframe access-
ing created file

Iframe
(file from
remote
server)

Application
HTML files

X Blocked SOP blocks access to local files

Same-origin
iframe access-
ing created file

Iframe (file
from app
origin)

File Cre-
ated in the
Application

✔ Successful Since the file is loaded from
within the app, it can access Cor-
dova File Plugin API

Same-origin
iframe access-
ing HTML
files

Iframe (file
from app
origin)

Application
HTML files

✔ Successful Since the file is loaded from
within the app, it can access lo-
cal files

CORS fetching
from local file

Local
HTML file

External
API with
CORS pro-
tection

X Blocked CORS is respected

CORS Fetch-
ing from
Iframe

Malicious
file loaded
in iframe

External
API with
CORS pro-
tection

X Blocked CORS is respected

Cleartext
HTTP Load-
ing

WebView,
iframe,
InApp-
Browser

External
website

X Blocked Mixed content is blocked by de-
fault, but it can be allowed
by setting usesCleartextTraf-
fic=true in the AndroidMan-
ifest.xml

73

Vulnerability Context Target Result Notes

External
Script Access-
ing localStor-
age

WebView localStorage ✔ Successful Can access sensitive data stored
in the localStorage

Same-origin
Iframe Access-
ing localStor-
age

Iframe (file
from app
origin)

localStorage ✔ Successful Since the file is loaded from
within the app, it can access data
stored in localStorage

Cross-App File
Fetching

WebView File Cre-
ated in
Another
Cordova
Application

X Blocked Android sandboxing prevents
apps from accessing other apps’
files in /Android/data/...

5.2.2 Ionic Results

The evaluation of Ionic applications reveals a security posture that differs substantially

from that observed in Cordova. Ionic applications benefit from a more modern WebView

architecture, improved defaults, and a less permissive bridging model. However, the results also

indicate that several vulnerability classes remain exploitable when developers expose Capacitor’s

runtime objects in the global JavaScript context. Table III summarizes the outcomes of the

vulnerability tests performed on representative Ionic applications.

The tests show that, as in Cordova, external script injection is feasible in Ionic applications

lacking restrictive Content Security Policies. Once arbitrary JavaScript is executed inside the

WebView, it gains full access to Web Storage APIs such as localStorage and sessionStorage.

More importantly, whenever window.Capacitor is accessible to web content (which is the

74

default unless explicitly disabled), the injected script can call sensitive native APIs, including

the Capacitor Preferences and Filesystem plugins. This enables an attacker to retrieve data

stored by the application or access files written to the device.

In contrast, Ionic Storage (the high-level key-value API provided by the Ionic framework)

remains inaccessible to injected scripts unless the developer manually exposes a storage instance

to the global JavaScript scope. This indicates that Ionic Storage introduces an additional layer

of indirection, which reduces exposure compared to Web Storage or Capacitor plugins, although

it is not inherently a security boundary.

Iframe-based tests confirm a stricter adherence to SOP compared to Cordova. Cross-origin

iframes are unable to access Web Storage or Capacitor APIs, as expected under the default

Chromium security model. However, same-origin iframes such as resources loaded from the

application’s own /assets/ directory inherit full access to storage and native plugin interfaces,

again provided that window.Capacitor is exposed. These results demonstrate that same-origin

iframe attacks remain feasible when internal application pages can be manipulated or loaded

in unintended contexts.

Further tests show that iframe attempts to load external pages protected by X-Frame-Options

are correctly blocked, indicating that Ionic’s WebView respects modern anti-framing headers.

Additionally, privileged operations such as clipboard reading and camera access are reachable

through injected scripts, but only if window.Capacitor is present and the user grants the re-

quired runtime permissions. This confirms that Capacitor’s permission model limits abuse to

75

scenarios in which either permissions have been previously granted or the attacker can induce

the user to authorize them.

Overall, the results illustrate that Ionic’s security largely depends on the developer’s Web-

View configuration and on whether the Capacitor runtime is exposed globally. While the default

platform behavior is more restrictive than Cordova’s, insecure CSP settings or the unintentional

exposure of window.Capacitor can still lead to severe compromise scenarios involving storage

access, file retrieval, and invocation of sensitive native APIs.

76

TABLE III: VULNERABILITIES TESTED IN IONIC.

Vulnerability Context Target Result Notes

External script
accessing lo-
calStorage

WebView localStorage,
sessionStor-
age

✔ Successful Full access

External script
accessing Ca-
pacitor Prefer-
ences

WebView Capacitor.
Plugins.
Preferences

✔ Successful As long as window.Capacitor
is exposed

External script
accessing Ionic
Storage

WebView Ionic Stor-
age

X Blocked Unless the developer exposes
window.storageInstance
manually

External
script access-
ing Capacitor
Filesystem

WebView Capacitor.
Plugins.
Filesystem

✔ Successful Can read files created within
the app as long as win-
dow.Capacitor is exposed

Cross-origin
iframe access-
ing localStor-
age

Iframe
(file from
remote
server)

localStorage,
sessionStor-
age

X Blocked SOP blocks access to parent
window

Cross-origin
iframe access-
ing Capacitor
Preferences

Iframe
(file from
remote
server)

Capacitor.
Plugins.
Preferences

X Blocked Can’t access win-
dow.Capacitor from different
origin

Same-origin
iframe access-
ing localStor-
age

Iframe (file
from /as-
sets/)

localStorage,
sessionStor-
age

✔ Successful Since the file is loaded from
within the app, it can access the
storage

Same-origin
iframe access-
ing Capacitor
Preferences

Iframe (file
from /as-
sets/)

Capacitor.
Plugins.
Preferences

✔ Successful Since the file is loaded from
within the app, it can access
the storage as long as win-
dow.Capacitor is exposed

Iframe loading
protected page

Iframe
(file from
remote
server)

External
URL with
X-Frame-
Options

X Blocked X-Frame-Options header is re-
spected by iframe, so the file is
not loaded

Clipboard ac-
cess

WebView Capacitor.
Plugins.
Clipboard

✔ Successful Works if window.Capacitor
is exposed and permission is
granted

Camera access WebView Capacitor.
Plugins.
Camera

✔ Successful
(camera is
prompted)

Works if window.Capacitor
is exposed and permission is
granted

77

5.2.3 React Native Results

React Native applications exhibited the strongest security posture among the three frame-

works analyzed. In contrast to Cordova and Ionic, React Native does not rely on a WebView to

render its interface, and thus is inherently immune to many WebView-driven attacks unless the

developer explicitly embeds a WebView component. The tests summarized in Table IV reflect

this architectural advantage: most WebView-based attacks were blocked by default browser

security mechanisms or React Native’s conservative WebView configuration.

The first set of tests concerned attempts to bypass CORS restrictions. Regardless of whether

the request originated from a WebView, a malicious iframe, or a local HTML file, all CORS-

protected external APIs correctly rejected unauthorized cross-origin requests. This behavior

confirms that React Native’s WebView fully adheres to the SOP and does not introduce non-

standard extensions or bypasses that could compromise remote endpoints.

Similarly, attempts to load external pages protected with X-Frame-Options headers were

consistently blocked. The embedded WebView respected the browser’s anti-framing directives,

preventing malicious iframes from rendering or interacting with protected content. Mixed-

content protections also behaved as expected: HTTP resources could not be loaded within an

HTTPS WebView unless the developer explicitly weakened the configuration by enabling clear-

text traffic at the Android manifest level or setting mixedContentMode="always". This demon-

strates that React Native inherits the robust default security properties of modern Chromium-

based WebViews.

78

However, one critical vulnerability class emerged from the exploratory analysis and was

confirmed by the structured testing process: the risk associated with forwarding sensitive ap-

plication state into the WebView environment. In the final test from Table IV, external script

injection was successful due to the application’s practice of passing an authentication token

from AsyncStorage to the WebView via postMessage. Because the WebView simultaneously

permitted arbitrary JavaScript execution and accepted content from unrestricted origins, an

attacker-controlled page could read the forwarded token and exfiltrate it to an external server.

This unified attack vector discussed in detail in Section 3.2 demonstrates that even though

AsyncStorage itself is secure at rest, placing its contents inside the WebView context under-

mines all isolation guarantees.

Importantly, this vulnerability is not inherent to React Native’s architecture, but rather

rooted in unsafe developer practices. When React Native applications avoid bridging secrets into

a WebView and maintain restrictive origin policies, the attack surface remains small and difficult

to exploit. But when developers merge native state with permissively configured WebViews,

React Native becomes susceptible to the same class of WebView-based attacks affecting Cordova

and Ionic.

Overall, the results confirm that React Native provides the safest baseline among the frame-

works examined. Most attack attempts, namely, CORS circumvention, anti-framing bypass,

mixed-content loading, and iframe escalation were blocked by default. The only successful

attack required explicit developer actions that weakened the security model. This highlights

the importance of caution when integrating WebViews into React Native applications and re-

79

inforces the broader conclusion that secure-by-default frameworks can still be compromised

through improper design decisions.

80

TABLE IV: VULNERABILITIES TESTED IN REACT NATIVE.

Vulnerability Context Target Result Notes

Fetch with
CORS from
WebView

WebView External
API with
CORS pro-
tection

X Blocked CORS is respected

Fetch with
CORS from
iframe in Web-
View

Malicious
file loaded
in iframe

External
API with
CORS pro-
tection

X Blocked CORS is respected

Fetch with
CORS from
local file

Local
HTML file

External
API with
CORS pro-
tection

X Blocked CORS is respected

Iframe loads
protected page

WebView
Component

External
URL with
X-Frame-
Options

X Blocked X-Frame-Options header is re-
spected by iframe, so the file is
not loaded

HTTP loading
in WebView

WebView External
website

X Blocked Blocked by default (unless using
Expo React Native project or
usesCleartextTraffic=”true”
in the AndroidManifest.xml)

HTTP iframe
loading in
HTTPS Web-
View

WebView External
website

X Blocked Blocked by default due to
mixed content restrictions, but
it can be allowed by using
<WebView mixedContent-
Mode=”always” />

External script WebView asyncStorage ✔ Successful asyncStorage token is passed to
the WebView via postMessage

81

5.3 Security Analysis of Popular Applications

In addition to the controlled tests performed on mock applications, this thesis evaluated

a selection of well-known real-world applications built with each framework. The goal of this

analysis was to determine whether the vulnerability patterns identified during exploratory test-

ing and automated scanning were also present in large, widely deployed production apps. For

each framework—Cordova, Ionic (Capacitor-based), and React Native—a set of popular ap-

plications was identified through official framework showcases, public repositories, developer

websites, and third-party listings. These applications were then subjected to the same static

and manual testing techniques described in Chapter 3.

The following subsections summarize the results of these evaluations. The tables report

whether each application was affected by the vulnerabilities associated with its framework,

based on the presence of insecure configurations, exposed plugin interfaces, or unsafe WebView

integration patterns.

5.3.1 Cordova Applications

Table V presents the results for the most prominent Cordova applications identified during

the dataset collection. The findings reveal a consistent trend: many widely used Cordova apps

still expose functionality that can be accessed through injected scripts and same-origin iframes.

Well-known applications such as Moodle, Bajaj Finserv, eToro, and Morgan Stanley exhibited

complete exposure across all tested dimensions, including access to the File Plugin API, retrieval

of local HTML files, and extraction of localStorage through both direct script injection and

iframe-based attacks.

82

While some applications showed partial resilience - for example, Western Union and IDBI

Bank blocking access to the File Plugin API - most remained vulnerable to at least one of the

tested attack paths. These results confirm that insecure configurations in Cordova persist even

in high-profile deployments, likely due to legacy design choices and the reliance on permissive

defaults.

83

TABLE V: VULNERABILITY ANALYSIS OF CORDOVA APPLICATIONS.

File Plugin API localStorage HTML file

Application S
cr
ip
t
In
je
ct
io
n

If
ra
m
e
In
je
ct
io
n

S
cr
ip
t
In
je
ct
io
n

If
ra
m
e
In
je
ct
io
n

S
cr
ip
t
In
je
ct
io
n

If
ra
m
e
In
je
ct
io
n

Moodle ✔ ✔ ✔ ✔ ✔ ✔

Bajaj Finserv ✔ ✔ ✔ ✔ ✔ ✔

Western Union ✔ ✔

Unicredit ✔ ✔ ✔ ✔

IDBI Bank ✔

Libertex ✔ ✔ ✔ ✔

StormGain ✔ ✔ ✔ ✔

UBA Mobile ✔ ✔

FedMobile ✔

eToro ✔ ✔ ✔ ✔ ✔ ✔

Banco General ✔ ✔

Morgan Stanley ✔ ✔ ✔ ✔ ✔ ✔

myCSS ✔ ✔ ✔ ✔

Fanreact ✔ ✔

Ubank Money App ✔ ✔ ✔ ✔

ChefSteps ✔

CryptoChange ✔ ✔

84

5.3.2 Ionic Applications

Table VI reports the analysis results for popular Ionic applications built with the Ca-

pacitor runtime. Compared to Cordova, Ionic apps displayed fewer critical exposures, al-

though many still exhibited vulnerabilities when plugin interfaces were globally exposed via

window.Capacitor or when storage mechanisms were left unprotected.

Applications such as Sworkit and Vygo demonstrated broad vulnerabilities across all cat-

egories, including access to Capacitor Preferences, localStorage, the Filesystem plugin, and

device-level features like the clipboard and camera. Others, such as BHD or Lecturio, re-

stricted some plugin access but remained vulnerable to storage-based attacks. Overall, the

results indicate that insecure WebView usage and permissive plugin exposure remain common

pitfalls even in modern Ionic/Capacitor applications.

85

TABLE VI: VULNERABILITY ANALYSIS OF IONIC APPLICATIONS.

Capacitor Preferences localStorage

Application S
cr
ip
t
In
je
ct
io
n

If
ra
m
e
In
je
ct
io
n

S
cr
ip
t
In
je
ct
io
n

If
ra
m
e
In
je
ct
io
n

C
ap

ac
it
or

F
il
es
y
st
em

C
li
p
b
oa
rd

C
am

er
a

MyBlock ✔ ✔ ✔ ✔ ✔

BHD ✔ ✔ ✔

Tufts Health Plan ✔ ✔ ✔

Sworkit ✔ ✔ ✔ ✔ ✔ ✔

BCMSM ✔ ✔ ✔

AAA Mobile ✔ ✔ ✔ ✔

MyAflac ✔ ✔ ✔ ✔

Walden Univ. Lecturio ✔ ✔

Vygo ✔ ✔ ✔ ✔ ✔ ✔ ✔

JustWatch ✔ ✔ ✔

86

5.3.3 React Native Applications

Finally, Table VII summarizes the results for widely used React Native applications. As

expected from the framework’s architecture, React Native applications displayed far fewer vul-

nerabilities than their Cordova or Ionic counterparts. The only vulnerability systematically

detected was related to the unsafe practice of forwarding AsyncStorage values into a permis-

sively configured WebView. Several major applications, including Discord, Coinbase, Amazon

Shopping, and Societe Generale, were found to pass sensitive tokens into WebViews, making

them susceptible to the unified AsyncStorage exfiltration attack described earlier.

Other high-profile applications, such as Facebook and Stock Plan, did not exhibit this

behavior, highlighting that the vulnerability is tied to developer choices rather than limitations

of the framework itself. Overall, the results confirm that React Native provides a more secure

baseline, but improper WebView integration can still undermine its security guarantees.

87

TABLE VII: VULNERABILITY ANALYSIS OF REACT NATIVE APPLICATION.

Application asyncStorage

Untappd ✔

iMobile ✔

Societe General ✔

Stock Plan

Amazon Shopping ✔

Coinbase ✔

Discord ✔

Facebook

Mercari ✔

Tesla ✔

88

5.4 AndroZoo Brute-Force Scan Results

In addition to evaluating known Cordova, Ionic, and React Native applications, a large-

scale brute-force scan was conducted on a subset of the AndroZoo repository. The goal of

this experiment was to identify hybrid applications “in the wild,” without relying on curated

lists, public showcases, or framework self-identification. This step provides an unbiased view of

the actual distribution of hybrid frameworks within the broader Android ecosystem, serving as

external validation of the framework detection module in the static analysis script.

A randomly selected subset of AndroZoo APKs was downloaded and processed through the

unified static analysis pipeline. For each APK, the script attempted to determine whether it was

built using Cordova, Ionic/Capacitor, React Native, or none of the targeted frameworks. The

detection relied exclusively on file-system artifacts and structural markers, as described in Sec-

tion 3.4.2, allowing the scanner to autonomously classify applications without prior knowledge

of their technology stack.

5.4.1 Framework Identification Findings

The brute-force scan revealed that hybrid applications represent only a small fraction of

the randomly sampled AndroZoo set. Cordova and React Native were detected more fre-

quently than Ionic/Capacitor, likely reflecting the longer historical prevalence of Cordova and

the widespread adoption of React Native among large commercial apps. Ionic/Capacitor apps

appeared less frequently, consistent with their more recent emergence and partial overlap with

web-first development teams.

89

A non-negligible proportion of APKs displayed ambiguous or partial indicators—such as

residual Cordova assets left after migration to Capacitor, or embedded WebViews used for

isolated features without representing a full hybrid architecture. These apps were labeled as

non-hybrid by the script, in accordance with the strict classification rules described earlier.

Table VIII shows the results of the script execution, while the apps that exhibit at least one

vulnerability related to their framework are marked as vulnerable.

TABLE VIII: BRUTE-FORCE SCAN RESULT.

Framework Total Apps Vulnerable Apps

React Native 387 358

Ionic/Capacitor 34 28

Cordova 296 293

Unknown/Other 3664 0

Total 4381 679

CHAPTER 6

CONCLUSION

This thesis set out to evaluate the security posture of three major cross-platform mobile

development frameworks - Cordova, Ionic (Capacitor-based), and React Native - through a

combination of exploratory analysis, controlled vulnerability testing, automated static analysis,

and targeted dynamic experimentation. The overarching objective was to understand how ar-

chitectural choices, WebView usage, and bridging mechanisms influence the exposure of hybrid

applications to web-origin and native-level attacks.

The exploratory phase and the construction of mock applications established the architec-

tural foundations that shape each framework’s security properties. Cordova, the oldest and

most legacy-oriented of the three frameworks, exhibited the broadest and most consistent ex-

posure to WebView-driven threats. Weak or missing Content Security Policies, permissive

allow-navigation and access-origin rules, and globally exposed plugin interfaces allowed

successful exploitation of multiple vulnerability classes, including script injection, local file dis-

closure, and persistent storage exfiltration. These weaknesses were also reflected in real-world

applications: the large-scale dataset showed that Cordova apps frequently adopt insecure de-

faults or permissive configurations, which can be detected via static analysis.

Ionic applications, while grounded in a more modern architecture, still retained meaningful

attack surfaces. When the global window.Capacitor object was exposed, injected JavaScript

could access sensitive native APIs such as Preferences, Filesystem, Clipboard, or Camera. De-

90

91

spite some improvements—such as strict enforcement of the SOP and the isolation of Ionic

Storage—the risk introduced by exposing native capabilities through a WebView context re-

mains substantial. The results indicate that the security of Ionic apps depends heavily on

developer-enforced isolation and CSP rigor, rather than on framework-level restrictions alone.

React Native, in contrast, emerged as the most secure framework observed in this study.

Unlike Cordova and Ionic, React Native does not rely on WebViews for rendering its interface

and exposes native functionality through a strongly typed, structured bridge. As a conse-

quence, most of the vulnerabilities observed in other frameworks simply do not apply. The

few risks identified originated not from the framework itself but from application-level deci-

sions—specifically, developers embedding a WebView with permissive settings and forwarding

sensitive data (e.g., AsyncStorage values) into it. When used according to its design principles,

React Native provides a significantly smaller attack surface.

The brute-force scan of the AndroZoo dataset further supported the external relevance of

these findings. Hybrid applications represented only a small subset of the scanned APKs, yet

many of those identified exhibited misconfigurations consistent with the vulnerability classes

defined in this thesis. This alignment between controlled tests and real-world samples reinforces

the claim that hybrid misconfigurations are not merely theoretical concerns, but active and

recurring issues in deployed applications.

Dynamic analysis using Frida provided an additional layer of validation. By enabling Web-

View debugging at runtime, a practical exploitation scenario was demonstrated against a real

application (the Moodle Android client). In this case, the combination of a wildcard CSP and

92

permissive WebView settings enabled JavaScript-based exfiltration of both the index.html file

and authenticated session cookies to an external server. Although this required a rooted de-

vice and access to debugging features that attackers may not always possess, the experiment

confirmed the real-world consequences of insufficient WebView hardening and insecure CSP

configurations.

Taken together, these findings highlight that hybrid frameworks are powerful and productive

development tools, but they also introduce security concerns that require deliberate attention.

Most of the vulnerabilities identified are not intrinsic flaws of the frameworks themselves; in-

stead, they stem from configuration choices, assumptions about trust in local WebViews, and

insufficient control over injected or dynamically loaded content. Frameworks must therefore

offer safer defaults, clearer security guidance, and stronger isolation mechanisms. Likewise,

developers must adopt best practices, apply strict CSP rules, and avoid exposing privileged

native functionality unnecessarily.

The unified static analysis script developed in this thesis contributes to these goals by

providing a reproducible and scalable methodology for detecting common misconfigurations

and dangerous framework patterns. Its ability to process large datasets, automatically classify

frameworks, and consistently identify security issues can support both research and industry

efforts to better understand and mitigate risks in hybrid application development.

93

6.1 Methodology Limitations

While the methodology adopted in this thesis provides a structured and scalable approach

to evaluating hybrid application security, several limitations must be acknowledged to contex-

tualize the results.

Static Analysis Constraints. Static analysis examines applications only in their decom-

piled, at-rest form. Accordingly, it cannot capture dynamic behaviors that manifest only during

execution, such as:

• JavaScript injected at runtime,

• navigation flows triggered by user interaction,

• code paths that depend on remote servers or runtime network conditions,

• dynamically generated, encrypted, or obfuscated JavaScript.

Consequently, static analysis may miss vulnerabilities that activate only under specific run-

time circumstances, and it cannot reliably distinguish between reachable and unreachable code

paths, which may result in false negatives.

Obfuscation and Minification. Hybrid applications frequently use bundling and opti-

mization tools (Webpack, Rollup, Metro bundler, R8, ProGuard), which can:

• flatten or reorganize asset directories,

• compress JavaScript into monolithic bundles,

• rename symbols and plugin interfaces,

94

• introduce build-time optimizations that hide code paths.

Although the analysis script is designed to be resilient to common packing strategies, heavy

obfuscation may conceal indicators of vulnerable behavior or plugin usage, reducing detection

accuracy.

Limitations of the Dynamic Analysis. Dynamic testing with Frida was intentionally

narrow in scope. It focused on a single vulnerable real-world application and did not attempt

a dataset-wide dynamic assessment. Furthermore:

• enabling WebView debugging generally requires root access,

• Chrome DevTools provides capabilities far beyond those available to real attackers,

• the debugging environment affords visibility and injection opportunities that are unavail-

able on non-debuggable production devices.

Thus, the dynamic attack confirms that the vulnerability is exploitable under permissive

conditions, but does not imply that attackers can necessarily reproduce the same exploit path

on arbitrary user devices.

6.2 Future Works

Several directions emerge from this work and could further strengthen the understanding

of hybrid application security. A first natural extension would be to scale the static analysis

pipeline to a significantly larger portion of the AndroZoo dataset. Although the present study

already demonstrates the feasibility of large-scale scanning, analyzing a broader sample would

95

provide a more complete view of how widespread the identified misconfigurations are in real-

world applications.

Another promising line of research involves expanding the study to additional cross-platform

frameworks such as Flutter or Kotlin Multiplatform. Because these technologies do not rely on

WebView-based architectures, they may expose different security properties and offer a valuable

point of comparison with the frameworks examined in this thesis.

Future work may also focus on enhancing the dynamic analysis component. Automating

runtime testing—through instrumentation, guided execution, or lightweight fuzzing—could re-

veal behaviours and vulnerabilities that static analysis alone cannot detect, especially those

dependent on user interaction or conditional navigation.

Finally, further refinement of the static analysis techniques could improve detection accuracy

in applications that employ heavy obfuscation or bundling. Integrating semantic analysis or

pattern-based heuristics may help identify hybrid components even when traditional structural

indicators are obscured.

Taken together, these directions highlight the potential for a more comprehensive and in-

depth investigation into the security posture of hybrid applications, as well as opportunities to

support developers through more robust analysis tools and clearer security guidance.

APPENDICES

96

97

Appendix A

FIGURE CREDITS

• Figure 1 - Original image from: https://www.telerik.com/blogs/hybrid-or-native-mobile-

app-use-the-right-tool-for-the-job

• Figure 4 - Original image from: https://digimonksolutions.com/mobile-app-architecture/

• Figure 5 - Original image from: https://bosctechlabs.com/react-native-new-architecture-

in-2023/

• Figure 6 - Original image from: https://medium.com/riseconsulting/microsoftun-mobil-

uygulama-geli

• Figure 7 - Original image from: https://securityboat.net/deep-dive-into-android-security/

https://www.telerik.com/blogs/hybrid-or-native-mobile-app-use-the-right-tool-for-the-job
https://www.telerik.com/blogs/hybrid-or-native-mobile-app-use-the-right-tool-for-the-job
https://digimonksolutions.com/mobile-app-architecture/
https://bosctechlabs.com/react-native-new-architecture-in-2023/
https://bosctechlabs.com/react-native-new-architecture-in-2023/
https://medium.com/riseconsulting/microsoftun-mobil-uygulama-geli%C5%9Ftirme-ser%C3%BCveni-ve-net-maui-e8f6c482a8c9
https://medium.com/riseconsulting/microsoftun-mobil-uygulama-geli%C5%9Ftirme-ser%C3%BCveni-ve-net-maui-e8f6c482a8c9
https://securityboat.net/deep-dive-into-android-security/

CITED LITERATURE

1. DevonBlog: Difference between CORS and CSP security headers. DevonBlog, n.d. [Online,
accessed 02/11/2025].

2. Apache Cordova Documentation: https://cordova.apache.org/docs/en/latest/index.html,
n.d. [Online, accessed 02/25/2025].

3. Intel Forum: https://community.intel.com/t5/software-archive/cordova-webview-vs-
inappbrowser/m-p/1076167, 2017. [Online, accessed 03/06/2025].

4. Beer, P., Squarcina, M., Veronese, L., and Lindorfer, M.: Tabbed out: Subverting the
Android custom tab security model. In 2024 IEEE Symposium on Security and
Privacy (SP), pages 4591–4609. IEEE, May 2024.

5. Yang, G., Huang, J., and Gu, G.: Iframes/Popups are dangerous in mobile WebView:
Studying and mitigating differential context vulnerabilities. In 28th USENIX
Security Symposium (USENIX Security 19), pages 977–994, Santa Clara, CA, Au-
gust 2019. USENIX Association.

6. Ionic: Ionic documentation. https://ionicframework.com/docs. Ionic Website, n.d.
[Online, accessed 03/18/2025].

7. Lynch, M.: Capacitor vs. Cordova: Modern hybrid app development. Ionic Resources,
2022. [Online, accessed 03/20/2025].

8. Goyal, R.: Basic security for Ionic & Cordova mo-
bile applications. https://medium.com/@rohit157.rg/

basic-security-for-ionic-cordova-mobile-applications-d7a9f06c767b,
August 2020. [Online, accessed 27/11/2025].

9. LinkedIn Community: https://www.linkedin.com/advice/1/what-pros-cons-capacitor-vs-
cordova-native-features, n.d. [Online, accessed 03/23/2025].

10. Meta Platforms, Inc.: React native documentation. https://reactnative.dev/docs/
getting-started, n.d. [Online, accessed 05/17/2025].

98

https://ionicframework.com/docs
https://medium.com/@rohit157.rg/basic-security-for-ionic-cordova-mobile-applications-d7a9f06c767b
https://medium.com/@rohit157.rg/basic-security-for-ionic-cordova-mobile-applications-d7a9f06c767b
https://reactnative.dev/docs/getting-started
https://reactnative.dev/docs/getting-started

99

CITED LITERATURE (continued)

11. Sattlegger, P. F.: Security analysis of WebViews in cross-plattform mobile frameworks.
Master’s thesis, Technische Universität Wien, 2023. [Online] Available: https:

//repositum.tuwien.at/handle/20.500.12708/188813.

12. Illogical Robot LLC: Apkmirror. https://www.apkmirror.com/, n.d. [Online, accessed
08/28/2025].

13. Capgo: Top Cordova apps. https://capgo.app/top_cordova_app/, n.d. [Online, accessed
08/28/2025].

14. APKPure: Apkpure. https://apkpure.com/, n.d. [Online, accessed 08/28/2025].

15. Androzoo: Androzoo documentation. https://androzoo.uni.lu/api_doc, 2016. [Online,
accessed 09/03/2025].

16. Ionic: Ionic showcase. https://ionic.io/showcase, n.d. [Online, accessed 09/24/2025].

17. Google Developers: Remote debugging WebViews https://developer.chrome.com/

docs/devtools/remote-debugging/webviews, n.d. [Online, accessed 10/04/2025].

18. Kumar, T.: Android webview hacking: Enable we-
bview debugging. https://infosecwriteups.com/

android-webview-hacking-enable-webview-debugging-d292b53f7a63. In-
foSec Write-ups, September 2020. [Online, accessed 10/06/2025].

19. n1sh1th: Frida script to enable WebView debugging. https://gist.github.

com/n1sh1th/d3ccd68ee17eb9b94b28ecfd6514854b, 2021. [Online, accessed
10/06/2025].

20. Ostorlab Team: Testing Cordova applications. https://blog.ostorlab.co/

testing-cordova-applications.html, November 2016. [Online, accessed
10/19/2025].

21. Wayal, V.: Effortless pentesting of apache Cordova applications. https://payatu.com/
blog/effortless-pentesting-of-apache-cordova-applications/, July 2023.
[Online, accessed 10/10/2025].

https://repositum.tuwien.at/handle/20.500.12708/188813
https://repositum.tuwien.at/handle/20.500.12708/188813
https://www.apkmirror.com/
https://capgo.app/top_cordova_app/
https://apkpure.com/
https://androzoo.uni.lu/api_doc
https://ionic.io/showcase
https://developer.chrome.com/docs/devtools/remote-debugging/webviews
https://developer.chrome.com/docs/devtools/remote-debugging/webviews
https://infosecwriteups.com/android-webview-hacking-enable-webview-debugging-d292b53f7a63
https://infosecwriteups.com/android-webview-hacking-enable-webview-debugging-d292b53f7a63
https://gist.github.com/n1sh1th/d3ccd68ee17eb9b94b28ecfd6514854b
https://gist.github.com/n1sh1th/d3ccd68ee17eb9b94b28ecfd6514854b
https://blog.ostorlab.co/testing-cordova-applications.html
https://blog.ostorlab.co/testing-cordova-applications.html
https://payatu.com/blog/effortless-pentesting-of-apache-cordova-applications/
https://payatu.com/blog/effortless-pentesting-of-apache-cordova-applications/

VITA

NAME Federico Civitareale

EDUCATION

Master of Science in “Computer Science”, University of Illinois at
Chicago, Dec 2025, USA

Specialization Degree in “Cybersecurity”, Dec 2025, Polytechnic of
Turin, Italy

Bachelor’s Degree in ”Computer Engineering”, Mar 2023, Università
degli Studi dell’Aquila, Italy

LANGUAGE SKILLS

Italian Native speaker

English Full working proficiency

A.Y. 2024/25 - One Year of study abroad in Chicago, Illinois

A.Y. 2023/24 - Lessons and exams attended exclusively in English

2023 - TOEFL Examination (101/120)

2018 - Cambridge C1 Advanced Certification (180/210)

Spanish Basic understanding

SCHOLARSHIPS

Fall 2024 Italian scholarship for TOP-UIC students

TECHNICAL SKILLS

Programming
Languages

Python, JavaScript, Bash, Java, PHP

Frameworks Git, Docker, Kubernetes, Node.js, React.js, SQL

Cybersecurity
Tools

Burp Suite, Nmap, TCPdump, Pwntools, OpenSSL, Scapy, Wireshark

100

101

VITA (continued)

Skills Software Engineering, Artificial Intelligence, Neural Networks,
Databases, Data Management, Programming & Software Development,
Academic Research, Web Application Development, System Design,
Object-Oriented Programming

ACADEMIC PROJECTS

2024- 2024 Web Application Project

Developed a web-based ticketing platform with real-time updates and
ticket categorization. Utilized JavaScript, Node.js, and React for the
interface, and Passport.js for secure session management.

2023 - 2023 Patterns in Encrypted Web Traffic

Implemented machine learning models to classify TCP flows and iden-
tify server origins. Applied clustering and regression techniques to an-
alyze and understand server behavior within encrypted web traffic.

2022 - 2023 Iterative Algorithms on Apache Spark

Implemented iterative algorithms using PySpark and NumPy to solve
large systems of linear equations. Optimized scalability on a 20-node
cluster, significantly reducing execution time through Spark’s parallel
processing.

	to1 Introduction
	 Context and Motivation
	 Problem Statement
	 Objectives and Contributions
	 Thesis Structure

	to2 Background
	 Mobile Application Models
	 Native Applications
	 Web Applications
	 Hybrid Applications
	 Cross-Platform Native Frameworks

	 Cordova Framework
	 Architecture Overview
	 Security Model and Risks
	 Plugin System

	 Ionic Framework
	 Architecture and Rendering Model
	 Capacitor as the Modern Ionic Runtime
	 Security Considerations

	 React Native Framework
	 Architecture and Rendering Model
	 Plugin System and Native Modules
	 Security Considerations

	 WebView Security Model
	 Execution Environment and Sandboxing
	 JavaScript Bridges and Native Interaction
	 Same-Origin Policy in WebViews
	 Content Loading Policies
	 WebView Settings and Configuration

	to3 Methodology
	 Exploratory Analysis and Manual Testing of Frameworks
	 Dataset Collection
	 Static Analysis Script
	 Decompilation Pipeline
	 Framework Identification
	 Automated Vulnerability Scanning
	 Framework-specific Detection Strategy
	 Output Structure

	 Targeted Dynamic Analysis with Frida
	 Environment Setup
	 WebView Instrumentation and Debugging
	 Exploitation of the Vulnerability

	to4 Experimental Findings
	 Cordova Vulnerabilities
	 Attack Scenario: Same-Origin File Exfiltrating FileSystem.
	 Automated Detection Logic for Cordova

	 Ionic Vulnerabilities
	 Attack Scenario: Capacitor FileSystem Exploitation
	 Automated Detection Logic for Ionic/Capacitor

	 React Native Vulnerabilities
	 Attack Scenario: AsyncStorage Exfiltration
	 Automated Detection Logic for React Native

	 Dynamic Exploitation Case Study

	to5 Evaluation and Results
	 Introduction
	 Frameworks Results
	 Cordova Results
	 Ionic Results
	 React Native Results

	 Security Analysis of Popular Applications
	 Cordova Applications
	 Ionic Applications
	 React Native Applications

	 AndroZoo Brute-Force Scan Results
	 Framework Identification Findings

	to6 Conclusion
	 Methodology Limitations
	 Future Works

	to APPENDICES
	to Appendix A
	to CITED LITERATURE
	to VITA

