L |Il|||

\. IIIII iiii‘

o
\\ 1859
S, w2

Politecnico di Torino

Master’s Degree in Cybersecurity
A.a. 2024/2025

Graduation Session December 2025

Design and Implementation of an
Authentication and Authorization
Framework for OpenC2

Supervisors: Candidate:
Prof. Daniele Bringhenti Nicola Poidomani
Prof. Matteo Repetto
Prof. Fulvio Valenza

Abstract

The Open Command and Control (OpenC2) framework is emerging as a crucial
standard for orchestrating and automating defensive cyber operations, enabling
interoperability between heterogeneous security tools. However, the core specifica-
tions deliberately do not mandate specific security mechanisms, creating a critical
gap that could expose the command and control infrastructure to unauthorized
access and malicious manipulation. This thesis addresses this gap by designing,
implementing, and evaluating a comprehensive authentication and authorization
framework to secure the OpenC2 ecosystem.

The proposed solution leverages industry-standard protocols to ensure robust
and scalable security. For authentication and delegated access, we integrate the
OAuth 2.0 framework, utilizing the Authorization Code grant flow to guarantee
that only legitimate entities (Producers) can issue commands. The implementation
is developed in Python, using the Authlib library to build a dedicated Authorization
Server responsible for token issuance and management.

For fine-grained access control, the framework incorporates Casbin, a versatile
and powerful authorization library. By enforcing policies based on the PERM (Pol-
icy, Effect, Request, Matchers) metamodel, Casbin allows the OpenC2 command
recipient (Consumer) to verify whether an authenticated Producer is permitted to
perform a specific action on a given target, implementing a Role-Based Access Con-
trol (RBAC) model. The entire proof-of-concept is built upon the otupy/openc2lib
library, demonstrating a practical and seamless integration of these security layers
into the OpenC2 message flow.

Finally, the implemented solution is validated through functional testing, which
confirms the correct enforcement of access control policies, and a performance
analysis, which quantifies the latency overhead introduced by the security mech-
anisms. The results demonstrate that the integration of OAuth 2.0 and Casbin
provides a robust and viable solution for enhancing the security, trustworthiness,
and operational readiness of the OpenC2 framework in real-world deployments.

Table of Contents

List of Figures

1 Introduction

1.1 Context
1.2 Objectives
1.3 Thesis Structure

Access Control Background

2.1 Authorisation
2.1.1 Role Based Access Control
2.1.2 Attribute Based Access Control
2.1.3 Rule Based Access Control

2.2 Authentication
2.2.1 Password Authentication
2.2.2 Token Authentication.
2.2.3 Biometric Authentication.

The openc2 Framework

3.1 Imntroduction

3.2 Core Architecture
3.2.1 Architectural Roles
3.2.2 Transfer Protocols and Message Payloads
3.2.3 Commands and Responses
3.2.4 Actuator Profiles

3.3 Security Considerations and Requirements . . .

Authentication and Authorization Frameworks
4.1 Introduction
4.2 OAuth 2.0 Framework Overview
421 Roles.
4.2.2 Protocol Flow

4.2.3 Authorization Grants, Access Tokens, and Refresh Tokens . 21

4.3 OAuth 2.0 Grant types 21
4.3.1 Authorization Code Grant 21
4.3.2 Implicit Grant (Deprecated) 23
4.3.3 Resource Owner Password Credentials Grant (Discouraged) 26
4.3.4 Client Credentials Grant 27

4.4 From Authentication to Fine-Grained Authorization 29

4.5 Casbin Framework Overview 29

4.6 The PERM Metamodel in Detail 30

Thesis Objectives 32

Implementation of the Authentication and Authorization Frame-

work 35

6.1 Introduction 35

6.2 System Architecture Lo 36
6.2.1 Functional Blocks o000 36
6.2.2 Trust Boundaries and Security 37
6.2.3 Mapping to OAuth 2.0 Roles 38

6.3 End-to-End Flow 39
6.3.1 Detailed Step-by-Step Description 39
6.3.2 HTTP Call Mapping 42

6.4 Authorization Server (AS) Implementation 42
6.4.1 Technology Stack, 43
6.4.2 Implemented Endpoints 43
6.4.3 Database Schema 43
6.4.4 Client Registration 44
6.4.5 Security Mechanisms 45
6.4.6 Code Snippet: Grant Registration 45

6.5 User Agent (UA) Implementation 46
6.5.1 Role and Responsibilities 46
6.5.2 Main Endpoints 47
6.5.3 Session Management and Authentication Flow 47
6.5.4 Code Snippet: User Agent Endpoints 48

6.6 Producer Implementation 49
6.6.1 Architectural Design and Core Components 49
6.6.2 Producer Initialization and Configuration 50
6.6.3 Triggering the Authentication Flow 51

6.7 Consumer Implementation 52
6.7.1 Architectural Design and Core Components 52
6.7.2 Consumer Initialization and Configuration 53

II1

6.7.3 Casbin Authorization Implementation 54

6.7.4 The Two-Step Validation Process 56

6.8 Security of Transfer Layers and Tokens 57
6.8.1 Channel Security D7

6.8.2 Token Format: Opaque vs. JWS 58

6.8.3 Token Lifecycle Management 59

7 Testing and Performance Evaluation 60
7.1 Introduction 60
7.2 Functional Testing: Access Control Validation 61
7.2.1 Test Setup and Methodology 61

7.2.2 Results and Discussion 62

7.3 Performance Analysis L 62
7.3.1 Test Methodology 62

7.3.2 Results and Discussion L. 63

7.3.3 Attribution of Overhead via Network Traces 65
Bibliography 67

v

List of Figures

3.1

4.1
4.2
4.3
4.4
4.5

6.1
6.2

7.1

The OpenC2 Producer-Consumer Model [2] 13
Abstract Protocol Flow 20
Authorization Code Grant flow [3]. 23
Implicit Grant flow [3]. Lo 25
Resource Owner Password Credentials Grant flow [3]. 27
Client Credentials Grant flow [3]. 28
High-level architecture of the OAuth 2.0 integration in OpenC2. . . 36
Sequence diagram of the complete authentication and command

execution flow. 40
Wireshark capture of a secure OpenC2 transaction 65

Chapter 1
Introduction

This chapter explains the context and thesis motivation. It begins by explaining the
key issues with contemporary cybersecurity. It points to the increased sophistication
of attacks and the necessity of defense mechanisms that can interoperate. It then
introduces OpenC2 as a standard of remote command and control. The standard
ensures that various security systems have consistent communications. The chapter
then specifies the research goals. It centers on designing and using mechanisms
of authentication and authorization. Finally, the chapter explains the thesis
organization, showing how each chapter works to achieve the research intentions.

1.1 Context

The world of cybersecurity is evolving rapidly. It is characterized by sophistication
and an ever-increasing amount of data. Organizations struggle with frequent
attacks, including targeted attacks, sophisticated phishing attacks, ransomware,
and automated intrusions. The increased sophistication has rendered traditional
defense approaches, which heavily rely on human intervention and reactive postures,
inefficient and impractical. Although by now, their role is not obviated and they
continue to hold their relevance with regards to specific instances, they nevertheless
prove too slow to compete with the velocity of contemporary attacks. They also
cannot deliver the consistency that is necessary to address repeated and epidemic
attacks.

To address these sorts of problems, taking up automation and security operation
orchestration has now become very important. Automation enables rapid response
by machines, significantly reducing the risk. Orchestration assists various tools
to interoperate and execute defense strategies collaboratively. Through these
strategies, security responses can be scheduled, run, and confirmed consistently,
overcoming the shortcomings of isolated response.

1

Introduction

In this context, remote control of security operations has become one of the
key concepts in modern cybersecurity automation. Instead of relying on human
intervention on a case-by-case basis, this approach is founded on a command and
control (C2) system that allows a single authority to issue instructions to a wide
range of security devices and software — including firewalls, intrusion detection
and prevention systems (IDS/IPS), endpoint protection platforms, and network
monitoring tools — to perform specific actions. By enabling rapid responses such
as blocking a malicious IP address, isolating an infected file, or quarantining a
compromised host within seconds of detection, such systems not only accelerate
incident response but also reduce the likelihood of human error, thereby enhancing
the overall effectiveness of defense operations.

However, remote control systems have not been effective due to limited interop-
erability. Security platforms and devices by various vendors employ proprietary
message formats and incompatible protocols. This leads to single-boxed systems
that hinder orchestration and make it impossible to have an integrated security
ecosystem. To transcend these shortcomings, the Open Command and Control
(OpenC2) standard was created within the OASIS organization. OpenC2 specifies
a common language to control security capabilities, allowing diverse systems to
exchange information uniformly and automatically [1]. Through the encouragement
of interoperability between various security tools, OpenC2 enables faster, more
efficient, and coordinated incident responses. The standard, therefore, can be found
to act primarily as an important facilitator of contemporary cybersecurity methods
by decreasing reaction times while encouraging extensible and communal defense
strategies [2].

1.2 Objectives

While OpenC2 provides a standardized language for orchestrating defensive cyber
operations, the core specifications deliberately do not mandate specific security
mechanisms for protecting the command and control messages themselves [2|. This
architectural choice offers flexibility but simultaneously introduces a critical gap: in
a real-world deployment, commands such as isolating a host or blocking a malicious
IP address must be protected from unauthorized access, tampering, and repudiation.
Without robust security controls, an OpenC2 ecosystem could be vulnerable to
hijacking by malicious actors, who could issue unauthorized commands to disable
security tools or disrupt network operations.

This security gap is further amplified by the modern trend of outsourcing
cybersecurity services, where organizations delegate the management of Security
Operation Centers (SOC) and other detection, investigation, and response processes
to external operators. In such scenarios, it becomes necessary to grant these third

2

Introduction

parties the ability to apply configurations or issue defensive commands to specific
security appliances, but without providing them unrestricted administrative access
to the entire infrastructure. This vision highlights the need for a secure delegation
mechanism capable of enforcing limited, auditable, and revocable permissions.
Consequently, the adoption of a framework such as OAuth 2.0 is strongly justified:
originally designed for delegated access, OAuth 2.0 offers token-based authorization,
fine-grained control, and traceability, addressing the unique challenges of cross-
organizational trust and control that simpler mechanisms could not adequately
cover.

The main goal of this thesis is to address this gap by designing, implementing,
and evaluating a comprehensive framework for Authentication and Authorization
(AA) within an OpenC2 environment. This work aims to secure the remote
control of security functions, ensuring that every command is legitimate, properly
authorized, and fully traceable.

To achieve this, the following key objectives have been defined:

e Designing a Secure Architecture: Developing an architecture that seam-
lessly integrates authentication and authorization mechanisms into the OpenC2
message flow between Producers and Consumers. The proposed architecture
must be robust, scalable, and compliant with established security best prac-
tices.

o Implementing OAuth 2.0 for Authentication: Leverage the OAuth 2.0
framework [3] as the core mechanism for authentication. This includes a
detailed analysis of its various grant types (e.g., Authorization Code, Client
Credentials) to identify the most suitable flow for machine-to-machine (M2M)
communication, which is typical of OpenC2. The implementation will rely
on the Authlib library within a Python ecosystem to create a dedicated
Authorization Server.

» Integrate Casbin for Fine-Grained Authorization: Beyond authenti-
cation, implement a flexible authorization model using Casbin. Casbin is
a powerful and versatile authorization library that supports multiple access
control models, including Role-Based Access Control (RBAC) and Attribute-
Based Access Control (ABAC). This will enable the enforcement of granular
policies, ensuring that only authorized Producers can issue specific commands
to specific Consumers based on defined rules.

o Practical Implementation and Validation: Implement the entire frame-
work as a proof of concept using the otupy/openc2lib Python library [4].
This will demonstrate the practical feasibility of the proposed solution and
validate its effectiveness in a simulated environment.

3

Introduction

Ultimately, this thesis aims to demonstrate that the integration of OAuth 2.0 and
Casbin not only secures the OpenC2 framework but also enhances its trustworthiness
and operational readiness for deployment in complex, multi-vendor cybersecurity
environments.

1.3 Thesis Structure

This thesis is organized into the following chapters:

Chapter 2 — Access Control Background introduces the fundamental
concepts of access control. It reviews the main authorization models (RBAC,
ABAC, and rule-based approaches) and the core authentication mechanisms
(passwords, tokens, biometrics and multi-factor authentication), providing the
theoretical foundation for the rest of the work.

Chapter 3 — The OpenC2 Framework presents the OpenC2 standard, its
Producer—Consumer architecture, and the supported transfer protocols and
message formats. It details commands, responses, and actuator profiles, and
discusses the security requirements that motivate the need for a dedicated
authentication and authorization framework.

Chapter 4 — Authentication and Authorization Frameworks describes
the building blocks of the proposed solution. It introduces the OAuth 2.0
framework, its roles and grant types, and explains how access and refresh
tokens are used for delegated authorization. It then presents Casbin and the
PERM metamodel as a flexible policy engine for fine-grained authorization.

Chapter 5 — Thesis Objectives refines the research goals and contributions
of the work. It defines the design principles of the proposed architecture, maps
OpenC2 components to OAuth 2.0 roles, and outlines the validation strategy
based on functional testing and performance evaluation.

Chapter 6 — Implementation of the Authentication and Authorization
Framework details the practical realization of the architecture. It describes
the overall system design, the end-to-end flow of authenticated OpenC2
commands, and the implementation of the Authorization Server, the headless
User Agent, the Producer, and the Consumer, including token handling and
Casbin-based policy enforcement.

Chapter 7 — Testing and Performance Evaluation presents the exper-
imental validation of the framework. It reports the functional tests used
to verify correct enforcement of access control policies and the performance
measurements that quantify the latency overhead introduced by OAuth 2.0

4

Introduction

introspection and Casbin authorization, discussing their impact on OpenC2
operations.

Chapter 2
Access Control Background

This chapter provides the theoretical background necessary to understand the
fundamental concepts of access control, which underpin the mechanisms of au-
thentication and authorisation discussed in the following chapters. It introduces
the main principles, models, and policies that regulate how entities gain access
to resources and under what conditions such access is granted or denied. A solid
understanding of these concepts is crucial for designing and implementing a secure
and robust integration of authentication and authorisation within the OpenC2
framework.

Access control is a cornerstone of computer security, defining the mechanisms
and policies to control access to resources. Its primary goal is to protect the
confidentiality, integrity, and availability of information by ensuring only authorised
entities can perform permitted actions under specific conditions [5]. Access control
is a complex set of processes built upon two fundamental mechanisms:

o Authentication: The process of verifying the identity of an entity.

o Authorisation: The process of determining whether an authenticated entity
has the right to access a specific resource or perform a particular action.

In the context of OpenC2, a robust implementation of authentication and
authorisation is essential to ensure that only legitimate actors can issue and execute
commands within a cyber defense ecosystem, preventing unauthorised access and
malicious activities.

2.1 Authorisation

Authorisation is the process of defining and enforcing access rights. Access control
policies are implemented through various models, each with its own strengths
and weaknesses. The choice of a particular model, or combination of models,

6

Access Control Background

depends on the specific security requirements of a system. More advanced methods
employ rule, role, or attribute-based centralized mechanisms, which provide high
control and flexibility. Central to these models are often context forces like time,
place, or device condition to enable dynamic and high-granular access control
decisions. Modern security architectures often blend various authorisation schemes
to provide strong and uniform protection to distributed infrastructures. This
blended approach is particularly relevant in dynamic scenarios—cloud computing,
the Internet of Things (IoT), and cyber defence architectures like OpenC2—where
secure, authority-validated communication between Producers and Consuming
Parties is crucial to coordinated and secure operation.

2.1.1 Role Based Access Control

Role-Based Access Control (RBAC) is a security model where access decisions

are based on the roles that individual users have within an organization, and

permissions are not assigned directly to individual users. This approach allows

for more efficient, consistent, and secure management of authorizations, reducing

administrative complexity and making it the most commonly used model [6].
The main components of this model are:

» Users: The entities (individuals or systems) that request access to system
resources.

e Roles: Collections of permissions that represent job functions or operational
responsibilities within the organization (e.g., Administrator, Analyst, Basic

User).

» Permissions (or Privileges): The authorized operations that different roles
are allowed to perform (e.g., read, write, delete).

RBAC is based on the Principle of Least Privilege, ensuring that each user
has only the authorizations strictly necessary for their specific role. For example,
within an OpenC2 environment, a ’Security Analyst’ role might have permissions
to query for information, while an ’Administrator’ role would have the additional
permissions to execute commands that modify the system’s state.

2.1.2 Attribute Based Access Control

Attribute-Based Access Control (ABAC) is defined in [7] as a “logical access control
methodology where authorisation to perform a set of operations is determined by
evaluating attributes associated with the subject, object, requested operations, and,
in some cases, environment conditions against policy, rules, or relationships that
describe the allowable operations for a given set of attributes.” Unlike Role-Based

7

Access Control Background

Access Control (RBAC), which use roles to perform authorisation, ABAC evaluates
a combination of attributes such as those related to the subject (e.g., security level,
department) and the object (e.g., data classification, resource type) to determine
access permissions dynamically. This allows for a more fine-grained and context-
aware approach to access control, making it well-suited for complex and dynamic
environments like OpenC2 [8].

2.1.3 Rule Based Access Control

Rule-Based Access Control (RuBAC) defines access decisions through explicitly
defined conditional logic rules rather than relying solely on static roles or fixed
attributes [9]. In contrast to other models, RuBAC is predicated on policies
expressed as conditional rules that typically follow an if-then structure, combining
various real-time and contextual variables.

These variables provide a high degree of context-awareness for access enforcement.
Common variables used in RuBAC policies include:

o Time of day or day of week;

e Specific devices or mobile credentials;

o Geographic location or IP address;

« Concurrent authentication events (e.g., badge plus QR scan);
« Visitor status or pre-approved credentials.

For example, a typical RuBAC rule might be expressed as:

“If the request originates from the internal network AND the time is
between 8:00 AM and 6:00 PM, THEN allow access to the resource.”

This approach allows for the definition of more granular and adaptable policies
compared to traditional models. In practice, RuBAC is often implemented as a
layer of conditions on top of Role-Based Access Control (RBAC), providing the
foundational structure while RuBAC adds the necessary contextual constraints for
a more dynamic and secure authorization process. The combination of RBAC and
RuBAC is a powerful strategy that can provide both the structure of role-based
permissions and the flexibility of rule-based conditions.

2.2 Authentication

Authentication is the process of verifying the declared identity of an entity, such as
a user, a device, or a process, before granting it access to a protected resource.

8

Access Control Background

Authentication answers the question: “Who are you?” and ensures that the
entity presenting credentials genuinely corresponds to that identity. Once authen-
tication is completed, the system can determine what operations the entity is
authorized to perform [5].

Authentication can be achieved through several mechanisms, typically catego-
rized by the type of authentication factor used [10]:

 Knowledge-based factors: Something the user knows, such as a password
or a Personal Identification Number (PIN).

» Possession-based factors: Something the user has, such as a hardware
token, a smart card, or a mobile device generating One-Time Passwords (OTP)
or holding cryptographic credentials.

o Inherence-based factors: Something the user is or does, for instance,
biometric features (fingerprint, face, iris) or behavioral traits such as keystroke
dynamics or gait recognition.

o Location-based factors: Where the user is, such as their geographical
location or IP address.

o Behavioral-based factors: How the user acts, such as their typing speed or
mouse movements.

To increase reliability, modern systems often employ Multi-Factor Authenti-
cation (MFA), which combines two or more distinct factors (e.g., knowledge and
possession) to significantly reduce the risk associated with the compromise of any
single factor [5].

2.2.1 Password Authentication

Password-based authentication is the most traditional and widely adopted method
for verifying a user’s identity. It relies on a shared secret, typically a string known
only to the user and the authentication system, that must be presented correctly
to gain access [5].

Despite its simplicity and ubiquitous use, this method is vulnerable to several
threats, including:

o Brute-force attacks: An attacker attempts to guess a password by system-
atically trying every possible combination of characters.

o Dictionary attacks: A more targeted form of brute-force attack where the
attacker uses a list of common words and phrases.

9

Access Control Background

o Credential stuffing: Attackers use credentials stolen from one service to
attempt to log in to another service.

o Phishing: Attackers trick users into revealing their credentials through
deceptive emails or websites [11].

For this reason, modern systems rarely rely on passwords alone, instead re-
inforcing them with additional measures such as password hashing, salting, and
rate-limiting mechanisms to mitigate brute-force attacks.

2.2.2 Token Authentication

Token-based authentication represents a more modern and secure approach com-
pared to traditional password mechanisms. Instead of repeatedly transmitting
user credentials, the system issues a cryptographically protected token after a
successful authentication phase. This token acts as a temporary proof of identity
and authorisation, allowing the user or client to access protected resources without
resubmitting sensitive credentials [5, 3].

A popular format for tokens is the JSON Web Token (JWT), an open
standard (RFC 7519) that defines a compact and self-contained way for securely
transmitting information between parties as a JSON object [12]. A JWT consists
of three parts separated by dots (%):

o Header: Typically consists of two parts: the type of the token, which is JW'T,
and the signing algorithm being used, such as HMAC SHA256 or RSA.

» Payload: Contains the claims, which are statements about an entity (typically,
the user) and additional data.

» Signature: Used to verify that the sender of the JWT is who it says it is and
to ensure that the message wasn’t changed along the way.

Tokens are typically short-lived and contain information such as the user identity,
granted permissions (scope), and expiration time. They can be opaque strings or
structured data formats such as JW'Ts, which include cryptographically signed
claims to ensure integrity and authenticity. This design reduces the exposure of
credentials, limits the duration of access, and supports stateless communication
between distributed components.

Token-based authentication plays a central role in modern web and distributed
architectures, where clients and services operate independently. Its relevance is
particularly evident in the OAuth 2.0 framework [3], which relies on access tokens
as the primary mechanism for authenticating clients and delegating user access.
Through this model, authentication is decoupled from authorisation, allowing

10

Access Control Background

secure delegation of rights without exposing user credentials, a concept that will
be explored in more detail in the following sections.
Token authentication enhances both security and scalability:

e Security: tokens can be revoked, refreshed, or scoped to specific actions or
resources, reducing the impact of compromise [13].

o Scalability: tokens allow stateless verification by resource servers, avoiding
persistent sessions and enabling distributed deployments.

However, token management introduces its own challenges, such as secure storage
on the client side, proper handling of token expiration and renewal, and the need to
protect against replay or interception attacks. For this reason, token transmission
is generally performed over encrypted channels (e.g., HTTPS/TLS), and refresh
tokens are used to renew expired access credentials in a controlled way [3, 5].

2.2.3 Biometric Authentication

Biometric authentication relies on unique physiological or behavioural traits of
individuals to verify their identity. Rather than something the user knows or
has, biometrics authenticate based on something the user is or does [5]. Common
modalities include fingerprints, facial features, iris/retina scans, voice, as well as
behavioural patterns such as typing rhythm, gait, or touch dynamics.

Biometric methods are often praised for their usability and resilience against
credential theft. Since biometric traits are inherently tied to the individual, they
cannot be easily shared or forgotten, reducing typical user burdens associated with
passwords or tokens [14]. However, the use of biometric data raises significant
privacy and security concerns. Unlike passwords, biometric identifiers cannot be
changed if they are compromised. A data breach that exposes a database of
fingerprints or facial scans could have long-lasting consequences for the affected
individuals [15]. Furthermore, biometric systems can be vulnerable to "spoofing'
attacks, where an attacker uses a fake biometric sample (e.g., a photograph or a
latex fingerprint) to fool a sensor.

In practice, biometric authentication is often used in conjunction with other
factors (e.g. in multi-factor schemes) to balance security and usability.

11

Chapter 3

The openc2 Framework

3.1 Introduction

Open Command and Control (OpenC2) is a standardized, machine-readable lan-
guage designed to orchestrate and automate cybersecurity operations in real-time.
In an ecosystem where security tools from different vendors rarely interoperate
seamlessly, OpenC2 provides a common language that enables disparate technolo-
gies, such as firewalls, intrusion detection systems (IDS), and endpoint detection
and response (EDR) solutions, to work in concert [2]. This interoperability is
crucial for moving beyond slow, manual response processes and toward coordinated,
automated defense.

Developed under the stewardship of the OASIS standards organization, OpenC2
aims to reduce response times from minutes or hours to machine speed. The
fundamental premise is that if security components can understand each other’s
commands, an entire defense infrastructure can react to a threat as a single, cohesive
unit. This is achieved by abstracting cyber defense actions into a standard set of
Actions performed on well-defined Targets.

However, a language for command and control inherently introduces significant
security risks. If a malicious actor gains the ability to issue OpenC2 commands,
they could systematically disable an organization’s defenses or manipulate them
for malicious purposes. The OpenC2 standard anticipates this, specifying that
commands must be transmitted over a secure and authenticated channel, but it
intentionally does not mandate a single, universal mechanism for achieving this
security. This deliberate gap creates the central challenge addressed by this thesis:
designing a robust and scalable framework for authentication and authorisation
tailored to the OpenC2 ecosystem, using modern standards such as OAuth2 and
Casbin.

12

The openc2 Framework

3.2 Core Architecture

The OpenC2 architecture is defined by a simple yet powerful request-response
paradigm between two primary components: the Producer and the Consumer.
This model decouples the decision-making logic from the execution mechanics,
fostering a flexible and scalable environment for cyber defense orchestration [2].

OpenC2 OpenC2
Producer OpenC2 | OpenC2 Consumer
Command) Command
/\ OpenC2 _/_\
Message
Transfer
OpenC2 ’ OpenC2
Response p Response

Figure 3.1: The OpenC2 Producer-Consumer Model [2]

3.2.1 Architectural Roles

Producer A Producer is an entity that generates and issues commands. This
component typically houses the higher-level logic for cybersecurity management,
such as a Security Orchestration, Automation, and Response (SOAR) platform. It
determines what action needs to be taken in response to a threat and which target
is affected. As defined in the specification:

“A Producer is an entity that creates and transmits Commands instructing
one or more systems to execute Actions as specified in the Command.” [2]

Consumer A Consumer is the entity that receives, parses, and acts upon a
command. It is the component responsible for executing the requested action. A
Consumer may be a security sensor, a network device, or any other managed cyber
defense tool. The specification defines it as:

“An entity that receives and may act upon a Command. A Consumer
may create Responses that provide any information captured or necessary
to send back to the Producer.” [2]

Within a Consumer, one or more Actuators are responsible for translating the
abstract OpenC2 command into the specific, proprietary instructions required by

13

The openc2 Framework

the underlying technology (e.g., changing a firewall rule or quarantining a file on
an endpoint).

This clear separation of roles is the foundation of OpenC2’s vendor-agnostic and
interoperable design. It allows a single Producer to control a heterogeneous collec-
tion of security tools without needing to understand the specific implementation
details of each one.

3.2.2 Transfer Protocols and Message Payloads

The OpenC2 architecture is transport-agnostic, meaning it does not mandate a
single communication protocol. This flexibility allows it to be adapted to a wide
variety of environments. However, to ensure interoperability, the OASIS technical
committee has standardized specifications for common protocols. These include:

« HTTPS: For request-response interactions over standard web infrastructure,
secured with Transport Layer Security (TLS) [1].

e MQTT: For publish-subscribe messaging patterns, often used in IoT and
distributed environments where low-overhead, asynchronous communication
is beneficial.

Regardless of the transfer protocol, the message payload must be serialized
in a mutually understood format. The primary serialization format for OpenC2
messages is JSON (JavaScript Object Notation), due to its human-readability
and widespread support across programming languages. For environments where
bandwidth and processing power are constrained, CBOR (Concise Binary Object
Representation) is specified as a more compact binary alternative.

3.2.3 Commands and Responses

Communication in OpenC2 is structured around two message types: the Command
and the Response.

An OpenC2 Command is a structured message that instructs a Consumer to
perform a specific task. According to the OpenC2 Language Specification, every
command consists of two mandatory fields and several optional ones [1]:

« Action (mandatory): A verb defining the operation to be performed (e.g.,
deny, allow, query).

o Target (mandatory): The object of the action, specifying what the action
is to be performed on (e.g., an ipv4_net, a domain_name, or a file).

« Arguments (optional): Modifiers that provide context for the command,
such as timing (start_time, duration) or requesting a response (response_requested)!

14

The openc2 Framework

« Actuator (optional): Specifies which sub-component of the Consumer should
execute the command, which is essential when a Consumer manages multiple
functions (e.g., a firewall and an IDS).

« Command ID (optional but recommended): A unique identifier for
tracking and correlating commands with their corresponding responses.

The Response is a message sent from the Consumer back to the Producer
to acknowledge receipt and indicate the outcome of the command execution. A
response message includes:

o Status: A numerical status code indicating the result (e.g., 102 for Process-
ing, 200 for OK, 400 for Bad Request, 401 for Unauthorized, 501 for Not
Implemented).

« Status Text (optional): A human-readable string further describing the
status.

» Results (optional): A dictionary containing any data returned by the
command execution, such as the output of a query action.

The following example, drawn from the SLPF profile, illustrates this interaction:

Command :

{
"action": "allow",
"target": {

"ipv6_connection": {
"protocol": "tcp",
"dst_addr": "3ffe:1900:4545:3::f8ff:fe21:67cf",
"src_port": 21
}
1,
"actuator": {
"slpf": {}
}
}

Response:

{
"status": 200,
"results": {
"slpf": {

15

The openc2 Framework

"rule number": 1234
}
}
}

In this example, the Producer sends a command to allow FTP connections to a
specific IPv6 address. The Consumer applies the corresponding filtering rule and
returns a response confirming successful execution, along with the identifier of the
newly created rule.

3.2.4 Actuator Profiles

While the OpenC2 language defines a set of common Actions and Targets, it cannot
possibly cover every capability of every security product. To address this, the
standard uses Actuator Profiles. A profile is a separate specification that defines
the specific vocabulary applicable to a particular cyber defense function, such as
stateless packet filtering, endpoint security, or threat intelligence [16].

Profiles serve two key purposes:

1. Standardization: They define the precise combinations of actions, targets,
and arguments that are valid for a given function. For example, the SLPF
profile specifies that a firewall can deny an ipv4_net but does not define an
action to reboot it.

2. Extensibility: They allow the OpenC2 language to be extended in a controlled
and interoperable manner. New technologies can be integrated into the OpenC2
ecosystem by creating a new profile that defines their unique capabilities.

By using profiles, OpenC2 maintains a balance between a standardized core
language and the flexibility required to support a wide and ever-evolving range of
security technologies.

3.3 Security Considerations and Requirements

The power to command and control an organization’s entire security infrastructure
from a central point makes the OpenC2 ecosystem a high-value target for attackers.
The OpenC2 specifications acknowledge this and mandate the use of secure transport
protocols to protect the confidentiality and integrity of messages in transit. For
instance, the HTTPS transfer specification recommends the use of TLS for encrypted
communication [17].

However, transport-level security alone is insufficient. A comprehensive security
solution for OpenC2 must address two higher-level challenges:

16

The openc2 Framework

o Authentication: How does a Consumer verify that a command originates
from a legitimate, trusted Producer? How can a Producer trust the responses
from a Consumer? Without strong authentication, a malicious actor could
impersonate a Producer and inject unauthorized commands into the system.

e Authorisation: Once a Producer is authenticated, how does a Consumer
determine if that specific Producer is permitted to issue a particular command?
A Producer responsible for monitoring might be authorized to issue query
commands but should be denied from executing disruptive deny or delete
commands.

These requirements highlight the need for a robust access control framework that
can be integrated seamlessly into the OpenC2 architecture. This framework must
be capable of managing complex relationships between multiple Producers and
Consumers, enforcing granular policies, and operating effectively in a distributed,
heterogeneous environment. The following chapters will explore how the OAuth
2.0 framework and the Casbin authorisation library can be combined to meet these
critical security needs.

17

Chapter 4

Authentication and
Authorization Frameworks

4.1 Introduction

The goal of this thesis is to ensure that OpenC2 commands are both authenticated
and authorized. In the Access Control chapter, authentication (who you are) and
authorization (what you can do) were clearly distinguished, emphasizing that in
distributed systems they must be treated as separate yet coordinated functions:
authentication verifies identity or attributes, whereas authorization determines the
corresponding permissions according to defined policies and contextual constraints.
This distinction also guides the proposed architecture: OAuth 2.0 is adopted for
delegation and token management (who can access and to what extent), whereas
a policy engine such as Casbin is responsible for the fine-grained enforcement of
access control decisions (what actions are permitted on OpenC2 commands).

This chapter establishes the theoretical background for this two-part solution.
It is structured to first address the challenge of authentication and delegation,
followed by the challenge of fine-grained authorization.

For the first part, we introduce the OAuth 2.0 framework, referring to the
official RFC 6749 specification [3] as the normative basis. This framework is
motivated by its role as the industry standard for managing delegated access and
issuing secure access tokens. This mechanism is fundamental as it allows a client
(the OpenC2 Producer) to prove its identity to a resource server (the Consumer)
without sharing primary credentials.

For the second part, we introduce Casbin. We will describe its flexible, model-
driven architecture, centered on the PERM (Policy, Effect, Request, Matchers)
metamodel. Casbin is chosen for its ability to consume the authenticated identity
provided by OAuth 2.0 and use it to enforce granular, policy-based decisions on

18

Authentication and Authorization Frameworks

the incoming OpenC2 commands.

Together, these sections provide the necessary background to understand the
design and practical implementation of the complete security framework, which is
detailed in the following chapter.

4.2 OAuth 2.0 Framework Overview

OAuth 2.0 is an authorization framework that enables an application (client) to
obtain tokens with limited privileges to access protected resources, avoiding the
need to share the resource owner’s original credentials (resource owner). Compared
to OAuth 1.0 [18], OAuth 2.0 [3] simplifies the model, makes roles explicit, and
broadens support for public clients. It also shifts protection from per-request request
signing (typical of OAuth 1.0) to systematic use of TLS and Bearer Tokens [19].
Recent best practices recommend additional hardening (e.g., PKCE for public
clients, deprecation of the Implicit flow, tighter scope and token TTL) [20].

4.2.1 Roles

The framework defines four fundamental roles [3]:

+ Resource Owner (RO): the party that controls the resource (a person or,
in Machine-to-Machine (M2M) scenarios, a system entity).

o Client: the application requesting access. It may be confidential, able to
securely store credentials (e.g., backend servers), or public, unable to protect
them (e.g., single-page or mobile applications).

« Authorization Server (AS): issues tokens after obtaining/evaluating the
RO’s consent.

« Resource Server (RS): exposes the API/resource and validates tokens
presented by the client.

4.2.2 Protocol Flow

The abstract protocol flow, as defined in RFC 6749 [3], describes the interaction
between the main roles of the OAuth 2.0 framework. The process is divided into
two primary phases: obtaining an authorization grant and exchanging it for an
access token.

1. Authorization Request: The client requests authorization from the Resource
Owner, typically by redirecting the user agent (e.g., a web browser) to the
Authorization Server. This interaction occurs through the front-channel.

19

Authentication and Authorization Frameworks

2. Authorization Grant: The Resource Owner authenticates with the Autho-
rization Server and grants the client’s request. The Authorization Server then
redirects the user agent back to the client with an authorization grant.

3. Access Token Request: The client exchanges the authorization grant for
an access token by sending a direct POST request to the Authorization Server’s
token endpoint. This step occurs via the back-channel, invisible to the user
agent.

4. Access Token Response: The Authorization Server authenticates the client,
validates the authorization grant, and, if valid, issues an access token.

5. Accessing the Protected Resource: The client presents the access token
to the Resource Server when requesting access to a protected resource.

6. Resource Served: The Resource Server validates the token and, if it is valid
and authorized, returns the requested resource to the client.

This separation between the front-channel (browser-based redirection) and
the back-channel (direct server-to-server communication) is fundamental to the
OAuth 2.0 security model, ensuring that sensitive credentials and tokens are
exchanged securely.

R el + R +
	--(A)- Authorization Request ->	Resource
[Owner	
	<-(B)-- Authorization Grant ---	

| [S JETPSeppCp +
| |

| [S SETRSSppE Sy +
| |--(C)-- Authorization Grant -->| Authorization |
| Client | | Server |
| [<-(D)----- Access Token ------- |

| [R +
| |

| [Fommmm e mmeeam +
| [--(E)----- Access Token ------ > Resource |
| [| Server |
| |<-(F)--- Protected Resource ---|

F---m--—- + R +

Figure 4.1: Abstract Protocol Flow

20

Authentication and Authorization Frameworks

4.2.3 Authorization Grants, Access Tokens, and Refresh
Tokens

OAuth 2.0 defines several core artifacts that enable delegated authorization and
controlled access to protected resources:

o Authorization Grant: A temporary credential representing the Resource
Owner’s consent. It is exchanged by the client at the Authorization Server’s
token endpoint to obtain an access token. Different grant types (e.g., autho-
rization code, client credentials) define distinct ways to obtain and use this
credential, each with specific security assumptions and applicability condi-
tions [3].

o Access Token: A credential representing an authorization with a defined
scope and limited lifetime. It allows the client to access protected resources
and is typically used as a Bearer token in the HT'TP header: Authorization:
Bearer <token>. Because any party in possession of a bearer token can use
it, tokens must be transmitted exclusively over secure channels (TLS) and
stored securely [19].

e Refresh Token: An optional credential that allows the client to obtain new
access tokens without re-prompting the Resource Owner. It is usually issued
only to confidential or otherwise trusted clients and should be managed under
strict rotation and revocation policies [3, 20].

4.3 OAuth 2.0 Grant types

The framework specifies several authorization grants, or "flows," for obtaining an
access token. The choice of grant type is critical for security and depends on the
client’s type (confidential or public) and the specific use case.

4.3.1 Authorization Code Grant

The Authorization Code grant is the most commonly used and most secure
OAuth 2.0 flow. It is designed for confidential clients (e.g., traditional web
applications with a server-side backend) capable of securely storing a client secret.

Flow Description

As defined in RFC 6749 [3], the process consists of the following steps:
21

Authentication and Authorization Frameworks

1. Client initiates the authorization request: The client application directs
the user’s user agent (e.g., a web browser) to the Authorization Server’s
/authorize endpoint. The request includes several key parameters:

» response_type=code: Indicates that the client requests an authorization
code.

o client_id: The client’s unique identifier assigned by the Authorization
Server.

e redirect_uri: The URI to which the Authorization Server will redirect
the user after authorization.

o scope: The permissions being requested by the client.

« state: A value used to prevent Cross-Site Request Forgery (CSRF)
attacks. The Authorization Server returns this value unchanged.

2. User authenticates and grants consent: The Authorization Server
prompts the Resource Owner to log in and approve or deny the client’s
request.

3. Authorization Server redirects with authorization code: If access
is granted, the Authorization Server redirects the user agent to the client’s
registered redirect_uri, including the temporary code and the state value
in the query string.

4. Client exchanges the code for tokens: The client application receives the
redirect and makes a direct (back-channel) POST request to the Authorization
Server’s /token endpoint. The request includes:

e grant_type=authorization_code: Specifies the type of grant.

e code: The authorization code obtained in the previous step.

e redirect_uri: Must exactly match the URI used in the initial request.
e client_id and client_secret: The client’s credentials for authentica-

tion.

5. Authorization Server issues tokens: The Authorization Server validates
the client credentials and authorization code. If valid, it issues an access token
and, optionally, a refresh token, which the client can use to access protected
resources.

22

Authentication and Authorization Frameworks

R et +
| Resource |
| Owner |
| I
R et +
A
|
(B)

LR TR + Client Identifier T +
| -+----(A)-- & Redirection URI ---->|
| User- | | Authorization |
| Agent -+----(B)-- User authenticates --->| Server |
| I | I
| -+----(C)-- Authorization Code ---<|
+-]|----]---+ R T +

I | " v

(A) (C) | I

I I | I

Aoy | I
SCEETRORE + | |
| |>---(D)-- Authorization Code ---------
| Client | & Redirection URI
| | I
| |<---(E)----- Access Token ---------cocceoooo--
Focmeeao- + (w/ Optional Refresh Token)

Figure 4.2: Authorization Code Grant flow [3].

Security Considerations

This flow is considered robust because the access token is transmitted exclusively
through a secure back-channel between the client and the Authorization Server
and is never exposed to the user agent. This design mitigates threats such as token
leakage through browser history or Cross-Site Scripting (XSS) attacks.

For public clients (e.g., mobile or single-page applications), this flow is strength-
ened using the Proof Key for Code Exchange (PKCE) extension [21], which
prevents authorization code interception attacks and is now recommended for all
OAuth 2.0 clients.

4.3.2 Implicit Grant (Deprecated)

The Implicit grant was originally defined in RFC 6749 [3] for public clients such
as single-page or JavaScript-based applications that could not securely store a
client secret. However, it is now considered obsolete and strongly discouraged
by current security best practices [22], due to its inherent exposure of tokens within
the user agent.

23

Authentication and Authorization Frameworks

Flow Description

The Implicit flow is simplified compared to the Authorization Code grant and takes
place entirely within the user agent. It proceeds as follows:

1. Client initiates the request: The client redirects the user’s user agent (e.g.,
a web browser) to the Authorization Server’s /authorize endpoint, including:

» response_type=token: Indicates that the client requests an access token
directly, rather than an authorization code.

e client_id: The unique identifier of the client application.

o redirect_uri: The URI to which the Authorization Server will redirect
the user after authorization.

» scope: (Optional) The requested permissions.

e state: A random value used to maintain state between request and call-
back and to protect against Cross-Site Request Forgery (CSRF) attacks.

2. User authenticates and grants consent: The Authorization Server
prompts the Resource Owner to authenticate and approve the client’s re-
quest.

3. Authorization Server redirects with token: Upon successful autho-
rization, the Authorization Server redirects the user agent to the client’s
redirect_uri, embedding the access token in the URI fragment, e.g.: https:
//client.example.com/callback#access_token=ABC123&state=XYZ

4. Client extracts the token: The client-side script running in the browser
parses the URI fragment to retrieve the access token, which is then used in
API requests to the Resource Server.

24

https://client.example.com/callback#access_token=ABC123&state=XYZ
https://client.example.com/callback#access_token=ABC123&state=XYZ

Authentication and Authorization Frameworks

Fomm e - +
| Resource |
| Owner
| |
e +

AN

|

(B)
LRl R + Client Identifier Fommm - +
-+----(A)-- & Redirection URI --->		
User-		Authorization
Agent -	----(B)-- User authenticates -->	Server
	<---(C)--- Redirection URI ----<	
	with Access Token Fomemme e +	
	in Fragment	
	- +	
	----(D)--- Redirection URI ---->	Web-Hosted
	without Fragment	Client
		Resource
(F) [<---(E)------- Script --------- <		
	D - +	
+

Figure 4.3: Implicit Grant flow [3].

Security and Deprecation Rationale
The Implicit grant has been deprecated due to several structural security weaknesses:

o Token Exposure: The access token is returned directly to the user agent,
making it susceptible to theft through Cross-Site Scripting (XSS), browser
history leaks, or malicious extensions.

o Lack of Refresh Tokens: Since this flow does not issue refresh tokens, the
client must repeatedly obtain new access tokens, degrading both security and
user experience.

e No Client Authentication: The client cannot be reliably authenticated,
which increases the risk of impersonation and token misuse.

25

Authentication and Authorization Frameworks

4.3.3 Resource Owner Password Credentials Grant (Dis-
couraged)

The Resource Owner Password Credentials (ROPC) grant allows a client to obtain
an access token by directly handling the Resource Owner’s username and password.

Its use is strongly discouraged and should be limited to highly trusted, first-party
applications where redirect-based flows are not feasible.

Flow Description

As defined in RFC 6749 [3], this flow involves a direct exchange of the user’s
credentials for an access token:

1. User provides credentials to the client: The Resource Owner enters their
username and password directly into the client application.

2. Client requests a token from the Authorization Server: The client
sends a POST request to the Authorization Server’s /token endpoint, including:
» grant_type=password: Specifies the grant type.
o username: The Resource Owner’s username.
o password: The Resource Owner’s password.
o scope: (Optional) The requested access scope.

The client authenticates using its own credentials (client_id and client_secret))
typically through the HT'TP Authorization header.

3. Authorization Server issues tokens: The Authorization Server validates
both the client’s and the user’s credentials. If successful, it returns an access
token and, optionally, a refresh token.

26

Authentication and Authorization Frameworks

R et +

| Resource |

| Owner

| |

R et +
v

v
Fomm - + N et +
	>--(B)---- Resource Owner ------- >	
	Password Credentials	Authorization
Client		Server
	<--(C)---- Access Token --------- <	
	(w/ Optional Refresh Token)	
R e + R e +

Figure 4.4: Resource Owner Password Credentials Grant flow [3].

Security Considerations

This grant type violates the fundamental principle of OAuth 2.0 delegated autho-
rization without credential sharing. By requiring the Resource Owner to disclose
their username and password directly to the client, it exposes sensitive credentials
and increases the attack surface. Moreover, it conditions users to trust arbitrary ap-
plications with their credentials, encouraging unsafe habits and facilitating phishing
attacks.

4.3.4 Client Credentials Grant

The Client Credentials grant is used for non-interactive, machine-to-machine (M2M)
communication, where the client acts on its own behalf rather than on behalf of a
Resource Owner. It is commonly employed by backend services, daemons, or APIs
that need to authenticate and authorize themselves to access protected resources.

Flow Description

As defined in RFC 6749 [3], this flow consists of a direct exchange between the
client and the Authorization Server, without any user interaction:

1. Client requests an access token: The client sends a POST request to the
Authorization Server’s /token endpoint. The request body includes:

e grant_type=client_credentials: Indicates the grant type.
27

Authentication and Authorization Frameworks

» scope: (Optional) Specifies the access scope requested by the client.

The client authenticates using its client_id and client_secret, typically
through the HT'TP Authorization header with Basic authentication.

2. Authorization Server issues an access token: The Authorization Server
validates the client’s credentials and, if successful, returns an access token rep-
resenting the client’s own authorization context. Refresh tokens are generally
not issued in this flow, as the client can request a new access token whenever

necessary.
R + e +
	>--(A)- Client Authentication --->	Authorization
Client		Server
	<--(B)---- Access Token --------- <	

| | | |
F--mme - - + R i +

Figure 4.5: Client Credentials Grant flow [3].

Security Considerations

The Client Credentials grant is considered secure when properly implemented, since
no user credentials are involved. However, the following measures are essential to
ensure its security:

e Protect client credentials: The client_secret must be securely stored
and transmitted only over HT'TPS. It should never be embedded in public or
client-side code.

o Limit token scope: Access tokens should be issued with the minimum
privileges necessary to reduce potential impact if compromised.

o Use strong client authentication: When possible, prefer mutual TLS
(mTLS) or JWT-based client authentication (private_key_jwt) instead of
static shared secrets.

e No user context: Since no Resource Owner is involved, access control
decisions must rely solely on the client’s identity and assigned privileges.

28

Authentication and Authorization Frameworks

4.4 From Authentication to Fine-Grained Autho-
rization

As discussed earlier in this chapter, OAuth 2.0 provides a standardized framework
for authentication and delegation, allowing a Producer to prove its identity and
demonstrate the right to interact with a Consumer. While this mechanism effectively
answers the question “who are you?”, it does not, by itself, define “what are you
allowed to do?”.

In a distributed control environment such as OpenC2, this distinction becomes
essential. Authenticating the source of a command is only the first step toward
ensuring secure coordination between Producers and Consumers. It is equally
necessary to determine, with fine-grained precision, whether a received command is
authorized to perform the requested action on its intended target. This verification
process evaluating both the command’s origin and the operation it seeks to execute
constitutes the foundation of authorization.

To address this requirement, this work integrates Casbin!, an open-source,
policy-based authorization engine, into the OpenC2 Consumer. Casbin provides a
flexible, model-driven approach that decouples authorization logic from application
code, making it particularly suitable for modular and distributed architectures. It
supports several access control paradigms, including Role-Based Access Control
(RBAC) and Attribute-Based Access Control (ABAC), as described in Chapter 2.
Supported by a robust Python implementation and formal model definitions [23,
24], Casbin offers a solid foundation for fine-grained, transparent, and interoperable
authorization within the OpenC2 framework.

4.5 Casbin Framework Overview

Casbin is a versatile authorization framework architected on the principle of
decoupling its core components: the enforcement logic, the policy definitions, and
the storage layer [23]. This separation of concerns is fundamental, as it allows
authorization rules to be managed independently of the application source code.
The entire framework is unified under the PERM metamodel, which abstracts
any access control decision into four key elements: Policy, Effect, Request, and
Matchers.

The operational heart of the framework is the Enforcer. This engine is re-
sponsible for evaluating an incoming authorization request—typically expressed as
a tuple (subject, object, action)—and returning a binary decision (allow or

'https://casbin.org

29

https://casbin.org

Authentication and Authorization Frameworks

deny). To do so, the Enforcer dynamically loads two distinct artifacts:

The Model Definition A configuration file (e.g., model.conf) that formally
defines the structure of the request, the syntax of the policies, and the matching
logic that binds them. It is this externalized model that makes Casbin model-
agnostic, capable of implementing various access control schemes like RBAC

or ABAC.

The Policy Set The concrete access rules, which are persisted separately from
the model. Policies can be stored in a simple file (e.g., a .csv file) or managed
via an Adapter connected to a database or other storage backend.

This modular design ensures that Casbin can be deployed in diverse environments,
from monolithic services to distributed systems like OpenC2.

Furthermore, Casbin provides several advanced features critical for modern
security architectures:

» Role Hierarchies: Support for permission inheritance and multi-level dele-
gation.

« Domain/Tenant Separation: Policy isolation for multi-tenant applications.

o Custom Matcher Functions: Extensible logic using functions like ipMatch
for IP-based filtering or keyMatch?2 for path-based control.

« Policy-Effect Strategies: Defines how multiple matching policies are recon-
ciled (e.g., allow-override, deny-override).

4.6 The PERM Metamodel in Detail

As introduced, Casbin’s flexibility stems from its use of the PERM (Policy, Effect,
Request, Matchers) metamodel, which allows developers to formally define a wide
range of access control models in a single configuration file [25]. Each section of
the model plays a precise role in the authorization process:

[request_definition] This section defines the structure of an incoming access
request. It specifies the names and the order of the parameters that will be
passed to the enforce() method. The most common definition is a tuple of
subject, object, and action:

[request_definition]
r = sub, obj, act

30

Authentication and Authorization Frameworks

[policy_definition] Here, the structure of a single policy rule is defined. The
definition specifies the fields that compose a policy, mapping them to the
elements of the request. For a standard RBAC model, a policy links a subject
(or role), an object, and an action:

[policy_definition]
p = sub, obj, act

[policy_effect] This crucial section determines how the results of multiple
matching policies are consolidated into a single decision. The most common
effect strategy is allow-override, which grants access if at least one policy
permits it. This is expressed as:

[policy_effect]
e = some(where (p.eft == allow))

A more restrictive strategy, deny-override, could be implemented by ensuring
that at least one policy allows the request and none deny it: e = some(where
(p.eft == allow)) && !some(where (p.eft == deny)).

[matchers] This is where the core matching logic resides. The matcher is an
expression that evaluates to true if an incoming request r matches a policy
rule p. For RBAC, this involves checking for role inheritance using the g()
function, alongside object and action equality:

[matchers]

m = g(r.sub, p.sub) && r.obj == p.obj && r.act == p.act

In addition to these, models implementing RBAC must include a [role_definition]|
section to define the structure of role inheritance (e.g., g = _, _ signifies that a
user can be assigned to a role).

31

Chapter 5

Thesis Objectives

OpenC2 standardizes the language for cyber-defense commands while leaving
authentication and authorization to the implementer. This maximizes flexibility
across deployments but opens a concrete security gap: there is no standard,
interoperable way to prove the identity of a Producer and to enforce fine-grained
policy at the Consumer. This thesis closes that gap with a standards-based
Authentication and Authorization (AA) framework that is native to OpenC2 and
compatible with existing transfer bindings.
In practical terms, the work pursues four objectives:

o integrate an OAuth 2.0-based identity layer into OpenC2 without altering the
language or transfer bindings, preserving interoperability;

« employ Casbin to enforce fine-grained, auditable authorization over action/
target pairs with predictable correctness;

o quantify the performance overhead introduced by per-request token introspec-
tion and policy evaluation, from both Producer and Consumer perspectives;

« ensure portability and maintainability through centralized policy with dis-
tributed enforcement, remaining compatible with off-the-shelf Authorization
Servers.

The central contribution is a cohesive architecture that unifies OAuth 2.0
(identity and delegation) with Casbin (policy enforcement) inside the OpenC2
ecosystem. The design is guided by three principles. First, separation of concerns:
authentication (who acts) and authorization (what is allowed) remain distinct,
tokens carry identity and claims; policies decide on actions and targets after token
validation. Second, standards-based interoperability: open interfaces avoid lock-in
and respect OpenC2’s separation of language and transfer. Third, centralized policy

32

Thesis Objectives

with distributed enforcement: policies are authored centrally but enforced at the
edge, directly on the Consumer, in line with OpenC2’s operating model.

These principles translate into a clear role mapping. The OpenC2 Producer
acts as the OAuth 2.0 Client; the OpenC2 Consumer is both the OAuth 2.0
Resource Server and the local Policy Enforcement Point (PEP); the human Operator
corresponds to the Resource Owner; and a dedicated Authorization Server (AS)
issues and validates tokens as the root of trust. At runtime, the Producer sends
bearer-authenticated OpenC2 requests over the standard HTTPS binding. The
Consumer extracts the token, performs an introspection call to the AS to verify
liveness and claims, and then evaluates the requested action/target through a
local Casbin enforcer. Only when both checks succeed is the command dispatched
to the actuator, with logs and metrics making the decision path auditable.

A key challenge is reconciling the browser-oriented Authorization Code flow
with console-driven Producers. To keep the same security properties without
forcing interactive browsing, the design introduces a headless User Agent (UA) that
programmatically follows redirects, submits login forms, and processes consent on
behalf of the Operator. In this way, a CLI Producer can obtain short-lived access
tokens securely while remaining compliant with the OpenC2 HTTPS/TLS binding,.
On the receiving side, the Consumer enforces a two-step pipeline, introspection
followed by policy evaluation, which cleanly decouples the global lifecycle of identities
and claims (anchored at the AS) from local, explainable allow/deny decisions at
the edge.

The scope assumes a controlled environment: Producer, UA, Consumer, and
AS communicate over HTTP; tokens are short-lived; and policies are explicit and
versioned. The AS is trusted to issue and validate tokens; clocks are reasonably
synchronized; the Consumer can reach the AS introspection endpoint; and the UA
acts as an honest proxy for the Operator. Token replay windows and revocation
latency are mitigated by short token lifetimes and introspection, although they are
not exhaustively modeled.

Validation follows two complementary axes. First, functional correctness checks
that the Consumer authorizes only policy-compliant action/target pairs under
valid tokens, covering both positive and negative cases. Second, performance
analysis quantifies the overhead introduced by per-request introspection and Casbin
evaluation, using Producer round-trip time and Consumer processing times, and
supports the attribution with packet-level traces. Together, these experiments
establish both correctness and the expected cost of strong, per-request validation.

In summary, the thesis contributes: a standards-aligned AA architecture for
OpenC2; a precise mapping of roles and interactions; a headless UA to enable
secure CLI flows; and a Consumer-side validation pipeline that is both auditable
and interoperable. The next chapter details the implementation of the Producer,
the Authorization Server integration, the User Agent, and the Consumer, and shows

33

Thesis Objectives

how the otupy library parses and serializes OpenC2 messages while remaining
faithful to OpenC2 semantics.

34

Chapter 6

Implementation of the
Authentication and
Authorization Framework

6.1 Introduction

The primary objective of this chapter is to describe the practical implementation
of the Authentication and Authorization framework within the OpenC2
environment. This section transitions from the theoretical concepts discussed in
the previous chapter—such as the OAuth 2.0 roles defined in RFC 6749 [3] and
the Casbin PERM metamodel [23]—to their concrete application. We will detail
the integration between the key entities: the OpenC2 Producer, which acts as
the OAuth 2.0 Client; the Consumer, which functions as the Resource Server
and Policy Enforcement Point (PEP); the Authorization Server (AS),
responsible for authentication and token issuance; and the User Agent (UA),
which facilitates the operator’s interaction with the system.

The implementation primarily utilizes the Python programming language, and
the entire framework is built as an extension of the otupy library [4]. The web-
based components, including the Authorization Server and the User Agent, are
built using the Flask web framework. The core OAuth 2.0 logic is handled by the
Authlib library [26], while the Casbin library [23] is integrated into the Consumer
to provide fine-grained authorization based on the policies discussed in the previous
chapter.

The following sections will delve into the overall system architecture, the end-to-
end communication flow, and the specific implementation details of each component.

35

Implementation of the Authentication and Authorization Framework

6.2 System Architecture

The implemented system’s architecture is designed to integrate the OAuth 2.0
authorization framework into the existing OpenC2 structure [2]. It is composed of
four primary functional blocks: the Producer, the Consumer, the Authorization
Server (AS), and the User Agent (UA). These components communicate over
a Transfer Layer, which in our implementation supports both HTTP and MQTT.
Figure 6.1 provides a high-level overview of this architecture, illustrating the
interactions between each component.

System Architecture
OpenC2 Components
2. OpenC2 Command

Producer

1. OpenC2 C d
. OpenC2 Comman —
\\ e
a. Authorization Request
OAuth 2.0 Components

Transfer Layer
HTTP / MQTT

c. Access Token
/ b. User Authentication& = | User Agent.
" Consent

Authorization Server

\ 4. Validation Resp
3. Token Validation

Figure 6.1: High-level architecture of the OAuth 2.0 integration in OpenC2.

6.2.1 Functional Blocks

e Producer: The Producer is an OpenC2 component responsible for creating
and sending OpenC2 commands to a Consumer. In our security-enhanced
architecture, it is modified to handle authentication flows, manage access
tokens, and attach them to outgoing commands.

e Consumer: The Consumer is the recipient of OpenC2 commands. It acts
as the guardian of the protected resources (i.e., the cyber defense functions

36

Implementation of the Authentication and Authorization Framework

it controls). Its primary security role is to receive commands, validate the
attached access token, and enforce authorization policies before executing the
requested action on a given target.

Authorization Server (AS): This is a new, centralized component dedicated
to managing security. It is responsible for authenticating the identity of the
human operator (the Resource Owner) and, upon successful authentication,
issuing access tokens to the Producer (the Client).

User Agent (UA): The User Agent is a web-based intermediary that facili-
tates the authentication process. Since the Producer is often a command-line
application or a background service without a direct user interface, the UA
provides the necessary web interface for the operator to interact with the AS
and grant the Producer permission to obtain an access token.

Transfer Layer: This layer is responsible for the transport of OpenC2
messages between the Producer and Consumer. Our implementation supports
both HTTP [17] and MQTT, with the security token embedded in the protocol
headers or message properties.

6.2.2 Trust Boundaries and Security

The architecture defines clear trust boundaries, with the Authorization Server
acting as the central root of trust for authentication. The choice of communication
protocols is tailored to the specific interaction:

o Authentication Flow: The entire authentication process, involving the

Producer, User Agent, and Authorization Server, is conducted exclusively over
HTTP. This is a fundamental requirement, as the OAuth 2.0 framework relies
on a standard, redirect-based web flow that is native to HTTP.

Command and Control: For the subsequent command and control mes-
saging between the Producer and Consumer, the architecture is flexible,
supporting both HT'TP and MQT'T as transport protocols.

Among the available grant types, the architecture adopts the Authorization

Code Grant, as recommended by the OAuth 2.0 Security Best Current Prac-
tice [22]. This flow ensures a strong separation between the front-channel (used for
redirections and user authentication) and the back-channel (used for secure token
exchanges), thereby preventing access token exposure to the browser or user agent.

This approach provides three key guarantees:

o Authentication: Producers are verified through token-based credentials
issued by the Authorization Server.

37

Implementation of the Authentication and Authorization Framework

o Delegation: Authorization is granted according to explicit user or system
consent, limited by scope and token lifetime.

e Trust Foundation: The token acts as a verifiable proof of identity and
permission, serving as the basis for fine-grained policy enforcement.

By adopting the Authorization Code Grant, the OpenC2 communication model
gains a secure and interoperable mechanism for authenticating Producers and
validating their privileges.

In a production environment, all these communication channels must be secured
using Transport Layer Security (TLS), i.e., HTTPS and MQTTS. This is a
critical requirement to ensure the confidentiality and integrity of all exchanges,
including redirects, authorization codes, access tokens, and OpenC2 commands,
thereby preventing eavesdropping and man-in-the-middle attacks. The Consumer
operates under the assumption that it can trust the Authorization Server, verifying
the authenticity and validity of every access token through a secure introspection
call.

For the scope of this thesis, however, the communication channels were imple-
mented using plain HTTP and MQTT without TLS. This decision was made to
simplify the development and testing setup, allowing the focus to remain on vali-
dating the core authentication and authorization logic provided by OAuth 2.0 and
Casbin, rather than on the complexities of managing a Public Key Infrastructure
(PKI). The migration to a secure setup is straightforward and discussed further in
Section 6.8.

6.2.3 Mapping to OAuth 2.0 Roles

To align our implementation with the standard OAuth 2.0 framework [3], we
mapped each architectural component to a specific OAuth 2.0 role. This mapping
clarifies the responsibilities of each component within the authorization flow.

e Producer — Client: The Producer is the application that requests access to
a protected resource on behalf of the user. It initiates the authorization flow
and uses the access token to authenticate its command messages.

o Consumer — Resource Server: The Consumer hosts the protected re-
sources (the cyber defense functions) and accepts access tokens from the
Producer, which it must validate before granting access.

« Authorization Server (AS) — Authorization Server: This is a direct
mapping. The AS is responsible for the entire authorization process, from
authenticating the user to issuing tokens.

38

Implementation of the Authentication and Authorization Framework

» User Agent (UA) / Operator — Resource Owner: The human operator,
interacting via the UA, is the Resource Owner. They own the right to grant or
deny access to the protected resources and delegate this right to the Producer
by authenticating with the AS.

6.3 End-to-End Flow

The entire authentication and command-dispatch process is orchestrated through a
sequence of interactions between the four main components. This flow is designed
to be initiated automatically when the Producer attempts to send an OpenC2
command without a valid access token.

The process is based on the OAuth 2.0 Authorization Code grant type [3],
which is considered the most secure flow for confidential clients. However, the
standard Authorization Code flow is designed for traditional web applications,
where a human user operating a web browser grants an external application (the
Client) access to their resources (hosted on a Resource Server).

In our OpenC2 architecture, this model is adapted. The Producer (the Client)
is a command-line application or a background service, not a web application.
The operator (the Resource Owner) is interacting with a console, not a browser.
This scenario presents a challenge, as the Authorization Code flow fundamentally
relies on HTTP redirects, login forms, and user consent screens—all of which are
browser-based interactions.

To bridge this gap, our architecture introduces the User Agent (UA) com-
ponent. The UA acts as a "headless browser" or an automated agent for the
console-based operator. It effectively "bypasses" the need for a manual browser
session by programmatically handling the redirects and credential submissions
required to complete the OAuth 2.0 flow, allowing a console application to securely
obtain an access token.

The complete sequence of operations, including this modified flow, is illustrated
in the sequence diagram in Figure 6.2. The following subsections provide a detailed,
step-by-step explanation of this flow.

6.3.1 Detailed Step-by-Step Description

The process begins when a Producer needs to send a command but does not yet
possess a valid access token.

1. Initial Command and Unauthorized Response: The Producer attempts
to send an OpenC2 command to the Consumer’s endpoint. Since the Producer
does not yet have a valid access token, the transmission lacks the required

39

Implementation of the Authentication and Authorization Framework

Producer UA Authorization Server Consumer
Producer| Producer/callback UA/authenticate UA/as_urI‘ lAS/oauth/authorize AS/ AS/tokenHAS/introspect Consumer
i 1) Send cdmmanc without token | i
1b) 401 Unauthorized
(UA URL info)
2) GET AS URL i
2b) AS URL
3) POST /authenticate
'3b) 200 OK |
| 4) GET Joauth/authorize
4b) Redirect to AS/
5) GET
5b) 401 Unauthorized
6) POST ¢redentials
6b) 200 OK
7) GET /oauth/authorize
1 7b) 200 OK (JSON redirect URI)
| 8) GET /callback?code=... i
'Save code
—
8b) 200 O i
10) POST (exchange code)
10b) 200 OK (token JSON)
Save token 5
— |
11) Resend command with token : ‘
i | 12) POST token |
D
! | 12b) Token info |
) T
11b) Command response ! i
‘Producer Producef/callback UA/authenticate UA/as_urI‘ ‘AS/oauth/authorize As/||As/token ‘ ‘AS/introspect‘ Consumer‘

Figure 6.2: Sequence diagram of the complete authentication and command

execution flow.

authentication credentials. The specific rejection mechanism depends on the
transport protocol:

e When using HT'TP, the absence of an Authorization header prompts
the Consumer to respond with a 401 Unauthorized status code.

e When using MQTT, the command is published without a token. The
Consumer, failing to validate the message, constructs an OpenC2 response
with a 401 status and publishes it to the response_topic specified by

the Producer.

In both scenarios, the body of the response message crucially contains the URL
of the User Agent (UA), enabling the Producer to initiate the authentication

flow.

Discovery of the Authorization Server: The Producer’s authentication

module parses the 401 response to extract the UA’s URL and makes a GET
request to its /as_url endpoint. This allows the Producer to dynamically
learn the location of the Authorization Server.

40

Implementation of the Authentication and Authorization Framework

10.

11.

12.

Initiating Authentication with the User Agent: The Producer sends a
POST request to the UA’s /authenticate endpoint to signal the start of the
user-mediated authentication process.

First Authorization Request: The UA, on behalf of the Producer, con-
structs an authorization request and sends it to the AS’s /oauth/authorize
endpoint. This request includes the client_id, redirect_uri, scope, and a
state parameter for CSRF protection. Since the operator is not yet authenti-
cated, the AS redirects to its own login page.

User Login Challenge: The UA follows the redirect and presents the AS’s
login page to the operator, where the operator must prove their identity.

Operator Submits Credentials: The operator enters their username and
password into the login form. The UA sends these credentials in a POST request
to the AS’s login endpoint. If successful, the AS establishes an authenticated
session.

Second Authorization Request and Consent: The UA re-sends the
original request to the /oauth/authorize endpoint. Now authenticated, the
AS may present a consent screen. Upon the operator’s approval, the AS
generates a single-use authorization code.

Callback to the Producer: The AS redirects the UA to the Producer’s
pre-registered callback endpoint (/callback), including the generated code
and the state parameter. The Producer saves the code and validates the
state.

Token Exchange: The Producer makes a direct, server-to-server POST request
to the AS’s /token endpoint, authenticated with its client credentials and
including the authorization code it just received. The AS validates the code
and the client’s identity.

Token Issuance: If validation is successful, the AS generates an access
token and an optional refresh token, returning them in a JSON response.
The Producer securely stores these tokens for future use.

Authenticated Command and Introspection: The Producer resends the
command, this time including the access token (in the Authorization header
for HTTP or in message properties for MQTT). The Consumer extracts the
token and validates it by sending it to the AS’s /introspect endpoint.

Token Validation and Command Execution: The AS’s introspection
endpoint verifies the token and returns an "active": true status if it is

41

Implementation of the Authentication and Authorization Framework

valid. The Consumer then proceeds to the authorization phase (handled by
Casbin) and, if authorized, executes the command.

6.3.2 HTTP Call Mapping

The table below summarizes the key HT'TP interactions during the authentication

flow.
Step | Source Destination | Description
1 Producer Consumer Send command without token; receives 401.
2 Producer UA GET /as_url to discover the AS.
3 Producer UA POST /authenticate to start the flow.
4 | UA AS GET /oauth/authorize (redirects to login).
56 | UA / Operator | AS Operator authenticates via login form.
7 UA AS GET /oauth/authorize again; gets auth code.
8 AS Producer Redirect to /callback with auth code.
9 Producer AS POST /token to exchange code for token.
11 | Producer Consumer Send command with Authorization header.
11b | Consumer AS POST /introspect to validate the token.
12 Consumer - Execute command after successful validation.

Table 6.1: Mapping of HT'TP calls to the roles involved in the end-to-end flow.

6.4 Authorization Server (AS) Implementation

The Authorization Server is the cornerstone of the OAuth 2.0 framework, responsible
for authenticating the resource owner and issuing access tokens. While many robust,
enterprise-grade Authorization Servers already exist (such as Keycloak, which, as
discussed in the performance evaluation chapter, was later used for benchmarking),
this thesis adopts a different approach for the initial design and validation phase.

This choice was primarily methodological. For the initial design, implementation,
and functional validation of the framework presented in this chapter, adopting a
full-scale Authorization Server would have introduced significant configuration and
deployment complexity, potentially obscuring the core integration logic between
the OpenC2 components.

Instead, a minimal yet standards-compliant AS was implemented using Flask
and the Authlib library [26], in order to obtain a lightweight, transparent, and
fully controllable environment. This setup was essential to support rapid proto-
typing, detailed inspection of the OAuth 2.0 flows, and effective debugging of the
interactions among Producer, User Agent, and Consumer.

42

Implementation of the Authentication and Authorization Framework

Once the correctness of the proposed architecture was validated using this custom
AS, it was subsequently replaced with Keycloak to evaluate the performance and
scalability of the solution against a realistic, production-grade reference.

The resulting lightweight AS is implemented as a standalone web application
based on Flask, providing a flexible foundation that remains compliant with the
relevant RFCs [3, 27].

6.4.1 Technology Stack

The choice of Flask was motivated by its simplicity and extensibility, making it
ideal for creating a dedicated service with a clear set of responsibilities. Authlib
was selected for its comprehensive implementation of the OAuth 2.0 specification,
including support for the Authorization Code Grant, token introspection, and token
revocation. Data persistence is managed using Flask-SQLAlchemy, which allows
for easy integration with a relational database like SQLite for development.

6.4.2 Implemented Endpoints

The AS exposes a set of standard OAuth 2.0 endpoints, implemented as Flask
routes:

e /oauth/authorize: Handles the initial authorization request. It authenticates
the resource owner and obtains their consent before issuing an authorization
code.

o /token: The endpoint where the client exchanges an authorization code for an
access token. The request must be authenticated with the client’s credentials.

» /introspect: As defined in RFC 7662 [27], this endpoint allows Resource
Servers (OpenC2 Consumers) to validate an access token.

o /: This endpoint serves the user login page and handles the operator’s creden-
tials.

6.4.3 Database Schema

A persistent storage backend is crucial for managing state. The implementation
uses a relational database with four main tables defined as SQLAlchemy models:

« User: Stores resource owner credentials (username and hashed password).

e OAuth2Client: Contains registration information for each Producer, includ-
ing its client_id, client_secret, redirect_uris, and authorized scopes.

43

Implementation of the Authentication and Authorization Framework

e OAuth2AuthorizationCode: Temporarily stores the authorization codes.
Once used, a code is invalidated.

e OAuth2Token: Stores the issued access and refresh tokens, linked to a user
and a client, including expiration and status (active or revoked).

6.4.4 Client Registration

Before a Producer can participate in an OAuth 2.0 flow, it must be registered as
a client with the Authorization Server. This process involves storing the client’s
metadata in the database, primarily in the 0OAuth2Client table. While the OAuth
2.0 Dynamic Client Registration Protocol [28] defines a standard API for this, our
implementation uses a simpler, manual registration method for populating the
initial client data.

The necessary client metadata includes:

client_id and client_secret: Credentials for the client to authenticate
itself to the AS.

o redirect_uris: A list of allowed callback URLs to which the AS can send
the authorization code.

o grant_types: The grant types the client is permitted to use (e.g., authorization_code)|

» response_types: The response types the client expects (e.g., code).

scope: The scopes the client is allowed to request.

The following code snippet demonstrates how a new client can be programmati-
cally added to the database. This script is typically run once to set up the trusted
clients of the Authorization Server.

Script to add a new UAuthZ2 client to the database

Based on: examples/oauth2_exzamples/AS/website/models.py
from website.app import app, db

from website.models import OAuth2Client

def create_client():
with app.app_context():
Ezample client metadata
client_metadata = {

'client_name': 'OpenC2 Producer',
'client_uri': 'http://localhost:5002/',
'grant_types': ['authorization_code', 'refresh_token'],

'redirect_uris': ['http://localhost:5002/callback'],

44

Implementation of the Authentication and Authorization Framework

'response_types': ['code'],
'scope': 'openc2',
'token_endpoint_auth_method': 'client_secret_basic'

The client_id and client_secret are typically generated

and stored securely.

client = OAuth2Client(
client_id='my-producer-client-id',
client_secret='my-super-secret-key',
**client_metadata

Set client metadata for Authl<bd
client.set_client_metadata(client_metadata)

db.session.add(client)
db.session.commit ()
print("Client registered successfully.")

if __name__ == '__main__"':

create_client ()

6.4.5 Security Mechanisms

The implementation incorporates several security mechanisms, adapted for the
development environment.

o TLS: Endpoints are designed for HT'TPS. However, for simplicity during
development, TLS was not activated. To run the server over HTTP, the
Authlib library’s default HT'TPS enforcement was disabled by setting the
environment variable AUTHLIB_INSECURE_TRANSPORT=1.

o State Parameter: The use of a randomized state parameter is enforced
during the authorization flow to prevent Cross-Site Request Forgery (CSRF)
attacks.

It is important to note that Proof Key for Code Exchange (PKCE) [21], a recom-
mended security measure, has not been implemented in the current version of the
code.

6.4.6 Code Snippet: Grant Registration

The following snippet from website/oauth?2.py illustrates how Authlib is used
to configure the AS and register the supported grant types.

45

Implementation of the Authentication and Authorization Framework

File: examples/oauth2_exzamples/AS/website/oauth2. py

from authlib.integrations.flask_oauth2 import AuthorizationServer
from .models import db, User, OAuth2Client, OAuth2Token
from .oauth2_grants import (
AuthorizationCodeGrant,
RefreshTokenGrant,
)

def config_oauth(app):
query_client = OAuth2Client.get_by_client_id
save_token = 0OAuth2Token.save

server = AuthorizationServer(

app,
query_client=query_client,

save_token=save_token

Register the supported grant types for the token endpoint
server.register_grant (AuthorizationCodeGrant)
server.register_grant (RefreshTokenGrant)

6.5 User Agent (UA) Implementation

The User Agent (UA) is a critical component that bridges the gap between the
typically non-interactive Producer and the authentication flow of the Authorization
Server. Since the Producer is often a command-line tool or a background service,
it lacks the web browser interface required for an operator to enter credentials and
grant consent. The UA is implemented as a lightweight Flask web application that
acts as a temporary, headless browser on behalf of the Producer, orchestrating the
necessary HTTP requests and redirects to complete the authentication process.

6.5.1 Role and Responsibilities

The primary role of the User Agent is to act as an intermediary, managing the
complex sequence of interactions required by the Authorization Code grant. Its
key responsibilities include:

e Service Discovery: Providing the Producer with the necessary endpoint
information for the Authorization Server.

o Authentication Orchestration: Handling the redirect-based authentication

46

Implementation of the Authentication and Authorization Framework

flow, which involves receiving the operator’s credentials, submitting them to
the AS, and managing the session cookies to maintain an authenticated state.

o Consent and Redirection: Forwarding the authorization request to the AS
and, upon successful authentication and consent, relaying the final authoriza-
tion code back to the Producer’s callback endpoint.

6.5.2 Main Endpoints

The User Agent exposes a minimal set of endpoints to fulfill its role. These are
defined in the UA.py file within the 'otupy’ source code.

o /as_url: This is a simple discovery endpoint. When the Producer first receives
a 401 Unauthorized response, it contacts this endpoint via a GET request to
dynamically obtain the base URL of the Authorization Server. This decouples
the Producer from the AS, avoiding hardcoded configurations.

o /authenticate: This is the main functional endpoint. It is triggered by a POST
request from the Producer to initiate the authentication flow. Upon receiving
this request, the UA starts a new authentication session, constructs the initial
authorization URL with the required parameters (client_id, redirect_uri,
scope, state), and begins the series of HTTP requests to the AS to log the
user in and obtain the authorization code.

6.5.3 Session Management and Authentication Flow

The UA’s implementation leverages the requests library to maintain a persistent
session throughout the authentication flow. This is crucial for handling the session
cookies set by the Authorization Server after a successful login.

The process managed by the UA is as follows:

1. A requests.Session object is created to ensure that cookies are persisted
across subsequent requests to the AS.

2. The UA first makes a request to the AS’s /oauth/authorize endpoint. Since
the session is not yet authenticated, the AS responds with a redirect to its
login page.

3. The UA follows the redirect and then programmatically submits the operator’s
credentials (which could be pre-configured or passed to the UA) via a POST
request to the AS’s login endpoint.

4. Upon successful login, the AS sets a session cookie. The UA’s session object
automatically stores this cookie.

47

Implementation of the Authentication and Authorization Framework

5. The UA then re-sends the original request to the /oauth/authorize endpoint.
This time, because the request includes the valid session cookie, the AS recog-
nizes the operator as authenticated and proceeds to issue the authorization
code, redirecting the UA to the Producer’s callback URL.

6. Finally, the UA makes a request to this callback URL, delivering the autho-
rization code to the Producer and thus completing its role in the flow.

6.5.4 Code Snippet: User Agent Endpoints

The following code snippet, extracted from the src/otupy/apps/oauth2/UA/UA.py
file, shows the implementation of the main Flask routes of the User Agent. The
logic for handling the authentication flow is encapsulated within the AuthAgent
class, which is instantiated and used within the /authenticate route.

File: src/otupy/apps/oauth2/UA/UA.py

from flask import Flask, request, jsonify
from AuthAgent import AuthAgent
import os

app = Flask(__name__)

Load configuration from environment wvariables

AS_URL = os.environ.get("AS_URL")

PRODUCER_CALLBACK_URL = os.environ.get ("PRODUCER_CALLBACK_URL")
CLIENT_ID = os.environ.get("CLIENT_ID")

CLIENT_SECRET = os.environ.get ("CLIENT_SECRET")

USERNAME = os.environ.get ("USERNAME")

PASSWORD = os.environ.get ("PASSWORD")

auth_agent = AuthAgent(
as_url=AS_URL,
redirect_uri=PRODUCER_CALLBACK_URL,
client_id=CLIENT_ID,
client_secret=CLIENT_SECRET,
username=USERNAME,
password=PASSWORD

)

Q@app.route('/as_url', methods=['GET'])
def get_as_url(Q):

nimnn

Endpoint for the Producer to discover the Authorization Server URL.

48

Implementation of the Authentication and Authorization Framework

nnn

return jsonify({"as_url": AS_URL})

@app.route('/authenticate', methods=['P0OST'])
def authenticate():

nimnn

Initiates the authentication process on behalf of the Producer.
try:
auth_agent.authenticate()
return "Authentication process started.", 200
except Exception as e:
return f"An error occurred: {e}", 500
if __name__ == '__main__
app.run(port=5001, debug=True)

6.6 Producer Implementation

The OpenC2 Producer, acting as the OAuth 2.0 Client, is the initiator of both the
authentication flow and the command-and-control sequence. Its implementation
is a critical piece of the architecture, as it must seamlessly integrate the security
mechanisms without disrupting the core functionality of creating and dispatching
OpenC2 commands.

6.6.1 Architectural Design and Core Components

The Producer is designed as a command-line application that leverages the existing
otupy library’s Producer class [4]. The key to integrating the OAuth 2.0 flow
is the introduction of a modular Authenticator. This design choice decouples
the authentication logic from the Producer’s primary responsibility of sending
commands.

The authentication mechanism is encapsulated within the 0OAuth2Authenticator
class, which inherits from a generic Authenticator abstract base class defined
in src/otupy/auth/Authenticator.py. This abstract class defines a simple in-
terface, ensuring that different authentication methods can be implemented and
swapped without altering the Producer’s core logic.

File: src/otupy/auth/Authenticator.py

class Authenticator:
def authenticate(self, auth_endpoint): pass
def is_authenticated(self): pass

49

Implementation of the Authentication and Authorization Framework

The OAuth2Authenticator class implements this interface, handling all the
steps of the Authorization Code Grant flow described in Section 6.3. It manages
the discovery of the AS, the interaction with the UA, the handling of the callback,
the exchange of the authorization code for an access token, and the secure storage
of that token.

6.6.2 Producer Initialization and Configuration

The main application logic is contained within examples/oauth2_examples
/producer_oauth2.py. During initialization, the Producer is configured with the
necessary components: an encoder (e.g., JSONEncoder), a transfer mechanism (e.g.,
HTTPTransfer), and, most importantly, an instance of the OAuth2Authenticator.

The OAuth2Authenticator is instantiated with the client’s credentials and the
redirect URI for the callback endpoint. This information is used to identify the
Producer to the Authorization Server and to correctly route the authorization
code back to the Producer. The following code snippet from producer_oauth?2.py
illustrates this setup.

File: examples/oauth2_examples/producer_oauth2.py
... imports ...

def main():
"mincreate an OAuth2 Producer and send commands'"""

Keycloak configuration for UAuthZ

oauth2_config = {
'client_id': 'Producer',
‘client_secret': 'RYuumxqGJwXTZP520f5ImUcWEA4TnTUa',
'redirect_uri': 'http://127.0.0.1:8000/callback’,
'callback_port': 8000

3

oauth2authenticator = OAuth2Authenticator (**oauth2_config)

producer = Producer (
producer="producer.example.net",
encoder=JSONEncoder (),
transfer=HTTPTransfer("127.0.0.1", 9000),
authenticator=oauth2authenticator

... command creation ...

producer.sendcmd (cmd3)

50

Implementation of the Authentication and Authorization Framework

6.6.3 Triggering the Authentication Flow

The authentication process is transparently triggered by the sendcmd () method
of the Producer class. When sendcmd () is called, it first checks if the provided
authenticator has a valid access token.

« If a valid token is not available, the Producer calls the authenticate()
method on its authenticator instance. This initiates the entire end-to-end
flow described in Section 6.3. The OAuth2Authenticator will then guide the
operator through the login and consent process via the User Agent, ultimately
obtaining an access token from the Authorization Server.

o If a valid token is already present, the Producer proceeds directly to
dispatching the command, attaching the token to the request. The token
is included in the Authorization header for HTTP requests, following the
Bearer Token scheme [19].

This lazy-initialization approach to authentication ensures that the user is
only prompted to log in when necessary, and that subsequent commands can be
sent using the stored token until it expires. The code snippet below, from the
main execution block of producer_oauth2.py, shows the creation of an OpenC2
command and the call to sendemd () that initiates this process.

File: examples/oauth2_exzamples/producer_oauth2.py
... (inside main function)

actuator_profile = slpf.Specifiers({

'hostname': 'firewall',
'named_group': 'firewalls',
'asset_id': 'iptables'

)

args = slpf.Args({'response_requested': oc2.ResponseType.complete})

Ezample command: allow traffic from a specific subnet
cmd3 = oc2.Command (

oc2.Actions.allow,

oc2.IPv4Net('130.0.16.0"),

args,

actuator=actuator_profile

)

producer . sendcmd (cmd3)

51

Implementation of the Authentication and Authorization Framework

... (exception handling) ...
if __name__ == "__main__":

logger.info("Starting OpenC2 Producer with OAuth2...")
logger.info("Sending Command...")

main()

The modular design, centered around the Authenticator interface, provides a
clean and extensible way to secure the OpenC2 Producer, making the authentication
process a transparent and integrated part of the command execution workflow.

6.7 Consumer Implementation

The OpenC2 Consumer, functioning as the OAuth 2.0 Resource Server, is the
component responsible for receiving and processing OpenC2 commands. Its primary
security role is to act as a gatekeeper for the protected resources it controls, enforcing
both authentication (via OAuth 2.0) and authorization (via Casbin) before
executing any action.

6.7.1 Architectural Design and Core Components

In contrast to the Producer, the Consumer is a passive participant in the authenti-
cation flow. It does not initiate authentication but is responsible for validating the
credentials, the access token, provided with each incoming command.

To centralize this security logic, the implementation extends the generic
Authorizer class into a more specific 0Auth2Authorizer class. This design main-
tains a separation of concerns, keeping the security validation logic distinct from
the Consumer’s core task of command processing and actuator management. The
OAuth2Authorizer is responsible for two critical security checks:

» Token Introspection (Authentication): It validates the received access
token by communicating with the Authorization Server’s introspection end-
point [28]. This step verifies that the token is active, has not expired, and was
issued by a trusted AS.

e Authorization Enforcement: After successful authentication, it enforces
access control policies using Casbin. It evaluates whether the identity associ-
ated with the token is permitted to perform the requested OpenC2 action on
the specified target.

52

Implementation of the Authentication and Authorization Framework

6.7.2 Consumer Initialization and Configuration

A secure Consumer is instantiated by providing it with an instance of the
OAuth2Authorizer during its setup. The authorizer itself is configured with the
necessary security parameters, including the URL of the Authorization Server
(for token introspection), the URL of the User Agent (to be returned in case of
failed authentication), and the paths to the Casbin model and policy files. The
following code snippet illustrates how a secure Consumer would be configured and
initialized. The HTTPTransfer layer is configured to pass incoming requests to
the OAuth2Authorizer for validation before they are processed by the Consumer’s
main logic.

File: examples/oauth2_examples/consumer_oauth2.py (logic adapted)

from otupy.core.consumer import Consumer
from otupy.transfers.http import HTTPTransfer

from otupy.oauth2.0Auth2Authorizer import OAuth2Authorizer
... other imports

def main():
"""Create and run a secure UpenC2 Consumer."""

Unified configuration for the UAuthZAuthorizer
auth_config = {
'as_url': 'http://127.0.0.1:5000',
'ua_url': 'http://127.0.0.1:5001',
'model': 'src/otupy/apps/oauth2/UA/model.conf"',
'policy': 'src/otupy/apps/oauth2/UA/policy.csv'

Initialize the single Authorizer component
authorizer = OAuth2Authorizer (**auth_config)

consumer = Consumer (
actuators={'slpf': MyFirewallActuator()},
authorizer=authorizer

Il transfer layer (HTTP) userd l'authorizer per
wvalidare ogni richiesta in arrivo.

http_server = HTTPTransfer("127.0.0.1", 9000)
http_server.start (consumer)

53

Implementation of the Authentication and Authorization Framework

if __name__ == "__main__":
logger.info("Starting OpenC2 Consumer with OAuth2...")
main()

6.7.3 Casbin Authorization Implementation

The integration of Casbin within the otupy framework is designed to centralize
authorization logic, making it both maintainable and extensible. The authorization
process is managed by the Authorizer class, located in src/otupy/auth/
Authorizer.py [29]. For this implementation, a standard Role-Based Access
Control (RBAC) model was selected. This paradigm offers an ideal balance between
simplicity and expressive power, naturally fitting the operational requirement
of assigning distinct permissions to different classes of OpenC2 actors, such as
administrators and standard users.

Model and Policy Configuration

The authorization model for the OpenC2 Consumer is defined in
src/otupy/apps/oauth2/UA/model. conf. It implements a standard RBAC model
with role inheritance, as shown below:

[request_definition]
r = sub, obj, act

[policy_definition]
p = sub, obj, act

[role definition]
€= _, _

[policy_effect]
e = some(where (p.eft == allow))

[matchers]
m = g(r.sub, p.sub) && r.obj == p.obj && r.act == p.act

This model establishes that a request is authorized if the requesting subject (r.sub)
is a member of a role (p.sub) that has permission to perform the requested action
(r.act) on the specified object (r.obj).

The corresponding policies are defined in src/otupy/apps/oauth2/UA/policy.csv|
This file contains both policy rules (p) and role assignments (g):

p, admin, openc2, allow

o4

Implementation of the Authentication and Authorization Framework

p, user, openc2_command, allow

g, alice, admin
g, bob, user

In this configuration:

o The ‘admin‘ role is granted permission to perform any action (‘allow‘) on the
‘openc2‘ object.

o The ‘user’ role has a more restricted permission, limited to the ‘openc2_commandf
object.

o User ‘alice’ is assigned the ‘admin‘ role, while user ‘bob‘ is assigned the ‘user*
role.

The Base Authorization Workflow

The Authorizer base class encapsulates the core logic in its enforce method,
which receives the subject, object, and action and returns a boolean decision. This
clean separation allows the authorization rules to be updated by simply modifying
the policy.csv file.

The following code snippet from src/otupy/auth/Authorizer.py illustrates
this base implementation:

import casbin

class Authorizer:
def __init__(self, model_path, policy_path):
self.enforcer = casbin.Enforcer(model_path, policy_path)

def enforce(self, sub, obj, act):

Checks 1f a subject has permisstion to perform an action

on an object.
nnn

return self.enforcer.enforce(sub, obj, act)

This clean separation allows the authorization rules to be updated by simply
modifying the policy.csv file, without requiring any changes to the Python source
code. This is particularly advantageous in a dynamic security environment where

permissions may need to be altered frequently in response to evolving threats or
operational requirements.

59

Implementation of the Authentication and Authorization Framework

6.7.4 The Two-Step Validation Process

The enforcement of security policies is triggered automatically by the transfer layer
for every incoming command.

« If a request contains a valid access token, the OAuth2Authorizer per-
forms the two-step validation. It first sends the token to the AS for introspec-
tion. If the token is active, it then uses the identity information (e.g., the
sub claim from a JWT or the introspection response) to perform a Casbin
enforce() check. Only if both checks pass is the command forwarded to the
appropriate actuator for execution.

« If a request is missing a token or the token is invalid (expired, revoked,
or unknown), the introspection fails. The authorizer then instructs the transfer
layer to reject the command with a 401 Unauthorized status. Crucially, the
body of this response contains the URL of the User Agent, providing the
Producer with the entry point to initiate the authentication flow as described
in Section 6.3.

The code snippet below, from src/otupy/oauth2/0Auth2Authorizer. py, shows
the implementation of the core validation logic, combining token introspection with
Casbin policy enforcement.

File: src/otupy/oauth2/0Auth2Authorizer.py (logic adapted)
class OAuth2Authorizer (CasbinAuthorizer):
def __init__(self, as_url, ua_url, model, policy):
self.as_url = as_url
self.ua_url = ua_url
self .enforcer= casbin.Enforcer(model,policy)

def is_authorized(self, access_token: str, command: Command) -> bool:

nnn

Vertfy if the token is wvalid and the command s authorized.
if not self._is_token valid(access_token):

return False
Placeholder for exztracting subject (user) from a JWT token
sub = "user_identity_from_token"

Extract action and target for Casbin enforcement
act = command.action.value
obj = str(command.target)

return self.enforcer.enforce(sub, obj, act)

56

Implementation of the Authentication and Authorization Framework

def _is_token_valid(self, access_token: str) -> bool:

nnn

Introspects the token with the Authorization Server.

nnn
introspection_url = f"{self.as_url}/introspect"
try:
response = requests.post(introspection_url,
data={'token': access_token})
if response.status_code != 200:
return False

return response.json().get('active', False)
except requests.exceptions.RequestException:
return False

This modular approach ensures that the Consumer robustly enforces security
policies, protecting its resources while providing the necessary feedback to unau-
thorized clients to enable proper authentication.

6.8 Security of Transfer Layers and Tokens

The security of the authentication framework does not solely rely on the OAuth 2.0
protocol but extends to the practical implementation details of the communication
channels and the tokens used. While TLS was disabled during development for
simplicity, its enforcement is non-negotiable in a production environment. This
section expands on the security considerations for the transfer layer and discusses
the critical aspects of token management, including token format choices and their
lifecycle.

6.8.1 Channel Security

As established, all communication channels must be secured using Transport
Layer Security (TLS) to ensure confidentiality and integrity. This applies to:

o The entire authentication flow between the Producer, User Agent, and Autho-
rization Server (i.e., HTTPS).

e The command and control messaging between the Producer and Consumer
(i.e., HTTPS or MQTTS).

o The token introspection calls from the Consumer to the Authorization Server
(i.e., HTTPS).

57

Implementation of the Authentication and Authorization Framework

Without TLS, sensitive data such as authorization codes, access tokens, and
the content of OpenC2 commands would be transmitted in cleartext, making them
vulnerable to eavesdropping and man-in-the-middle attacks.

For HT'TP-based communication, migrating to HT'TPS is achieved by configuring
a valid X.509 certificate on the server. In a Flask application, this can be done as
follows:

app.run(ssl_context=('cert.pem', 'key.pem'))

Similarly, for MQTT, secure transport (MQTTS) is enabled by configuring a
TLS-capable broker (e.g., mosquitto) and setting up the necessary certificate files
in the client:

client.tls_set(ca_certs="ca.crt", certfile="client.crt", keyfile="client.key")
client.connect ("broker.example.com", 8883)

6.8.2 Token Format: Opaque vs. JWS

An access token is the credential used by the Producer to authenticate its requests
to the Consumer. The OAuth 2.0 specification does not mandate a specific token
format, leaving the decision to the implementation. The two primary approaches
are opaque tokens and self-contained tokens, such as JSON Web Signature (JWS).

« Opaque Tokens: These are random strings that do not contain any user
or permission information. An opaque token acts as a reference to the au-
thorization data stored securely on the Authorization Server. To validate an
opaque token, the Consumer must send it back to the AS via a dedicated
introspection endpoint. This was the approach taken in our implementation,
as it is simple and highly secure. Since the token itself contains no data, there
is no risk of information leakage if a token is intercepted.

« JSON Web Signature (JWS) Tokens: JWT is a standard for creating
self-contained, digitally signed tokens. A JWS token is typically a JSON
Web Token (JWT), which consists of three parts: a header, a payload, and a
signature. The payload contains claims, such as the user’s identity (sub), the
token’s expiration time (exp), and the authorized scopes. The token is signed
by the AS with a private key. The Consumer, possessing the corresponding
public key, can verify the token’s authenticity and integrity locally without
contacting the AS. This avoids the overhead of an introspection call for every
request, improving performance. However, it also means the token’s claims
are readable (though not modifiable) by anyone who intercepts it.

The choice between these formats involves a trade-off. Opaque tokens offer
better security against information leakage but require a network call for every

58

Implementation of the Authentication and Authorization Framework

validation. JWS tokens are more performant for validation but require careful
management of cryptographic keys and expose claims data.

6.8.3 Token Lifecycle Management

Regardless of the format, access tokens must be managed throughout their lifecycle
to maintain security. This includes timely revocation and periodic rotation of the
cryptographic keys used to sign them.

o Token Revocation: An access token should be invalidated before its natural

expiration if it is compromised or if the user’s session is terminated. For
opaque tokens, revocation is straightforward: the AS simply marks the
token as invalid in its database. The next time the Consumer attempts to
introspect the token, the AS will report it as inactive. For JWS tokens,
revocation is more complex because they are validated offline. To revoke a
JWS, the Consumer must be able to check a revocation list (CRL) or use an
online validation service, which reintroduces the network dependency that
JWS aims to avoid.

Key Rotation: When using JWS tokens, the keys used by the Authorization
Server to sign the tokens must be periodically rotated. If a signing key is
compromised, an attacker could forge valid tokens. A key rotation strategy
ensures that even if a key is leaked, its useful lifetime is limited. The AS
should expose a JSON Web Key Set (JWKS) endpoint where Consumers can
dynamically fetch the current set of public keys for validating JWS signatures.

In our implementation, the use of opaque tokens simplifies lifecycle management,

as both validation and revocation are handled centrally by the Authorization
Server’s database. This design prioritizes security and control over the performance
benefits of stateless JWS tokens.

59

Chapter 7

Testing and Performance
Evaluation

7.1 Introduction

After implementing the authentication and authorization framework, it is essential
to validate its correctness and evaluate its performance. This chapter presents the
testing methodology and the results obtained from two main sets of experiments.
The primary goals are twofold:

1. Functional Testing: To verify that the security mechanisms work as in-
tended, ensuring that access control policies are correctly enforced by the
Consumer. This involves testing that authorized commands are executed while
unauthorized ones are rejected.

2. Performance Analysis: To measure the overhead introduced by the OAuth
2.0 authentication and Casbin authorization layers. By comparing the system’s
performance with and without these security measures, we can quantify the
latency they add to the command processing pipeline.

All the tests described in this chapter were conducted using the scripts and
configurations available in the project’s validation directory. The test environment
for both functional and performance validation was hosted entirely on a single local
machine to minimize latency and ensure a controlled, repeatable setup.

The OpenC2 Producer, the OpenC2 Consumer, and the User Agent (UA) were
each bound to a separate local port, ensuring isolation between components without
relying on external networks. The Authorization Server (AS) was implemented
using a Keycloak instance running in a Docker container on the same host. This
consistent setup allowed both functional validation and performance analysis to

60

Testing and Performance Evaluation

be executed under identical architectural conditions, providing a reliable and
reproducible baseline for assessing correctness and measuring overhead.

7.2 Functional Testing: Access Control Valida-
tion

The first phase of testing focused on validating the correctness of the access control
logic implemented in the Consumer. The objective was to ensure that the combined
use of OAuth 2.0 token introspection and Casbin policy enforcement correctly
filters incoming OpenC2 commands.

7.2.1 Test Setup and Methodology

The test campaign was orchestrated by the Python script test_access_control.py]
which acts as an OpenC2 Producer. The script systematically sends predefined
commands to the secured Consumer using the HT'TP-based transport and the same
OAuth 2.0 authentication mechanisms employed by the actual Producer.

The OpenC2 commands used for validation are loaded from the validation/
/otupy/oauth2/openc2-commands directory. This directory contains 76 distinct
command definitions, each representing a specific authorization scenario. Before
executing the tests, the script obtains a valid access token for the user “admin”
through the full OAuth 2.0 flow against the local Authorization Server. It then
iterates over the entire command set, generating a new authorization check for
each command against the secured Consumer. For each request, the script records
the HT'TP status code and relevant log information.

The Consumer is configured with the OAuth2Authorizer, which relies on the
Casbin model defined in model.conf and the policies specified in policy.csv to
make authorization decisions. An excerpt of the policy is reported below:

p, user, ipv4_net, allow
p, user, file, update

p, user, features:*, query
p, user, ipv6_net, deny

Listing 1: Example policies from policy.csv

The command set is intentionally heterogeneous and is designed to exercise both
permitted and forbidden cases. In particular, it includes:

« commands targeting resources that are explicitly allowed (e.g. ipv4_net);

« commands targeting resources that are explicitly denied (e.g. ipv6_net);

61

Testing and Performance Evaluation

« commands involving the features target, used to verify fine-grained permis-
sions such as allowed query operations;

« variants where only specific fields (such as the target type or the requested
operation) are modified, to confirm that even small deviations from the allowed
action—target combinations are correctly rejected.

This setup ensures systematic coverage of the relevant policy rules and validates the
interaction between token introspection, policy evaluation, and command execution
under realistic usage conditions.

7.2.2 Results and Discussion

The execution of test_access_control.py confirmed that the access control
mechanism behaves as expected across the entire test set. The logs collected
in controller.log show that the Consumer’s responses are consistent with the
configured policies.

For each command sent, the system operated as follows:

o Commands whose action—target pair matched an applicable “allow” rule in
policy.csv for the authenticated “user” were successfully authorized, and
the Consumer returned a status of 200 OK.

o Commands for which no matching “allow” rule existed, or that were explicitly
disallowed by policy, were correctly rejected by the Casbin enforcer, resulting
in a 403 Forbidden status.

These results demonstrate that the 0Auth2Authorizer correctly introspects the
access token to identify the caller and that Casbin reliably enforces the defined
authorization rules over OpenC2 commands. The functional correctness of the core
security logic is therefore validated on a substantial and systematically constructed
set of test cases.

7.3 Performance Analysis

While security is paramount, it is also important to understand the performance
impact of the implemented framework. In particular, this analysis aims to quan-
tify the overhead introduced by the OAuth 2.0 authentication and Casbin-based
authorization layers when processing OpenC2 commands.

7.3.1 Test Methodology

To isolate the cost of the security mechanisms, two comparative tests were executed
under identical conditions, using the same local environment described in Section 7.1.

62

Testing and Performance Evaluation

In both scenarios, an OpenC2 Producer and an OpenC2 Consumer were instantiated
on the same host and communicated via HTTP.

The performance evaluation is based on the same set of OpenC2 command defi-
nitions used in the functional testing phase. This ensures that any difference in
execution time between the two scenarios can be attributed to the presence or
absence of the security components, rather than to variations in the workload.
The scripts in the validation/otupy/oauth2/test_performance/ directory im-
plement the following two configurations:

1. Baseline (No Authentication): The controller_no_auth.py script sends
the selected OpenC2 commands to a Consumer instance with no authenti-
cation or authorization enabled. This scenario measures the raw processing
performance of the OpenC2 stack.

2. Secure (OAuth 2.0 4+ Casbin): The controller_aouth.py script sends the
same set of commands to a Consumer configured with the 0Auth2Authorizer
and Casbin policies. For each incoming command, the Consumer validates
the access token via an OAuth 2.0 token introspection request to the local
Keycloak Authorization Server and enforces the authorization rules before
executing the actuator logic.

In both cases, the Producer issues the same OpenC2 commands in the same order,
ensuring a one-to-one comparability of the measured timings. For each request,
the following metrics were collected:

« the end-to-end round-trip time (RTT) as observed by the Producer;

 the internal processing time on the Consumer side, decomposed into decoding,
processing, and encoding stages, as recorded in the server logs.

The resulting log files were processed using AWK scripts to compute the mean,
minimum, and maximum values for each metric.

7.3.2 Results and Discussion

The performance data, summarized in Table 7.1 and Table 7.2, highlights the
latency overhead introduced by the security layers. All measurements are expressed
in milliseconds (ms).

63

Testing and Performance Evaluation

Table 7.1: Producer-side Performance Comparison (RTT). Data extracted from
controller-no-auth.txt and controller-auth.txt.

Producer Metric (RTT) Baseline (ms) Secure (ms) Overhead (ms)

Mean Tot. Transaction 4.88 19.35 14.47
Mean Send-to-Receive 3.67 17.40 13.73

Table 7.2: Consumer-side Processing Time Comparison. Data extracted from
server.txt and server-auth.txt.

Consumer Metric Baseline (ms) Secure (ms) Overhead (ms)

Mean Tot Processing 1.01 13.20 12.19
Mean Decoding 0.43 0.71 0.28
Mean Processing 0.37 11.86 11.49
Mean Encoding 0.21 0.63 0.42

From the Producer’s perspective (Table 7.1), the mean round-trip time for a
complete transaction increases from 4.88 ms in the baseline scenario to 19.35 ms
in the secure scenario. This corresponds to an additional latency of 14.47 ms per
command, i.e. a relative increase of approximately four times.

The Consumer-side measurements (Table 7.2) provide a more fine-grained view.
The mean total processing time rises from 1.01 ms to 13.20 ms, introducing an
overhead of 12.19 ms and resulting in a significant increase in the server’s processing
effort. The dominant contribution is captured by the “Mean Processing” metric:
in the baseline case, the actuator-specific logic alone requires 0.37 ms on average,
whereas in the secure configuration the same logical step is preceded by token
introspection and Casbin policy evaluation, for a combined mean of 11.86 ms. The
resulting 11.49 ms increase in this stage accounts for the majority of the server-side
overhead and directly explains the RTT growth observed by the Producer.

This overhead is largely attributable to the per-request interaction with the Autho-
rization Server (Keycloak), which in this setup runs as a Docker container on the
same host. Despite the local deployment, the additional HT'TP introspection call
and the internal processing within Keycloak introduce measurable latency.

In summary, the comparison between the two scenarios, identical commands with
and without security, shows that the adoption of OAuth 2.0 introspection and
Casbin authorization introduces a consistent overhead of approximately 12-15 ms
per transaction in this environment.

This represents an expected trade-off for strong, per-request validation. In high-
throughput deployments, this cost could be reduced by introducing token caching

64

Testing and Performance Evaluation

on the Consumer side, thereby limiting the number of introspection calls at the
expense of slightly relaxed real-time revocation guarantees.

7.3.3 Attribution of Overhead via Network Traces

To clarify how the overhead manifests on the end-to-end path, we analyzed
a single representative transaction in the secure configuration while captur-
ing traffic on the loopback interface. This measurement targets the full
Producer—Consumer—Producer round trip (i.e., the Producer’s send-to-
receive time) in steady state: the Producer already holds a valid access token, so
the overhead comes from the Consumer’s per-request token introspection against
Keycloak plus local policy evaluation.

No. Time Source Destination Protocol Length Info s.port d.port

«\—» 7 0.000117 localhost localhost HTTP/JSON 767 POST /.well-known/openc2 HTTP/1.1 , JSON (json) 51647 9000
15 0.004367 localhost localhost HTTP 1469 POST /realms/openc2/protocol/openid-connect/token/introspe.. 51648 8080
17 0.008574 localhost localhost HTTP/JSON 1079 HTTP/1.1 200 OK , JSON (application/json) 8080 51648

<~ 41 0.014355 localhost localhost HTTP/JSON 430 HTTP/1.1 403 FORBIDDEN , JSON (json) 9000 51647

Figure 7.1: Wireshark capture of a secure OpenC2 transaction (Pro-
ducer-Consumer—Keycloak-Consumer—Producer).

Sequence (steady state, token already present): (1) Producer—Consumer
POST /.well-known/openc2; (2) Consumer— Keycloak POST
/realms/openc2/protocol/openid-connect/token/introspection; (3)
Keycloak—Consumer HTTP/1.1 200 0K; (4) Consumer—Producer HTTP/1.1 403
FORBIDDEN.

The capture reports the following timestamps (seconds, relative to the trace start):

« (1) POST /.well-known/openc2 at ¢ty = 0.000117;

e (2)POST /realms/openc2/protocol/openid-connect/token/introspection

at t; = 0.004367;
« (3) HTTP/1.1 200 OK at t5 = 0.008574;
o (4) HTTP/1.1 403 FORBIDDEN at t3 = 0.014355.

From these timestamps we obtain the following breakdown (steady-state per-request
behavior):

Pre-introspection local handling t; — ty ~ 4.25 ms

Keycloak introspection RTT t; —t; =~ 4.21 ms

Post-introspection local handling t3 —t, ~ 5.78 ms
Total RTT (send — receive) t3 —1ty~ 14.24 ms

65

Testing and Performance Evaluation

Table 7.3: Packet-level breakdown for one secure RTT
(Producer—Consumer—Producer).

Component Lat. (ms)
Pre-introspection handling (parse, token extract, build call) 4.25
Introspection RTT (Consumer+«Keycloak) 4.21
Post-introspection handling (validate, Casbin, encode) 5.78
Total RTT (tg—to) 14.24

Consistency with Producer Send-to-Receive. The packet-level timing above
(t3 — to ~ 14.24 ms) is anchored at the Consumer (arrival—reply) and therefore
excludes the Producer<»Consumer path outside the server. To compare with the
Producer-side Mean Send-to-Receive in the secure scenario (17.40 ms, Table 7.1), we
add the baseline Producer<>Consumer path measured without security (3.67 ms):

14.24 ms + 3.67ms ~ 1791 ms ~ 17.40 ms.

The small difference (~0.5 ms, ~3%) is consistent with run-to-run variance and
the fact that the trace refers to a single transaction while Table 7.1 reports means
over many. Overall, the packet-level evidence is consistent with the aggregated
measurements and confirms that the secure scenario’s overhead decomposes into:
(i) the extra HTTP round trip for token introspection (Consumer<«sKeycloak) and
(ii) additional local processing (token result handling, Casbin evaluation, response
encoding).

66

Bibliography

Duncan Sparrell. Open Command and Control (OpenC2) Language Specifica-
tion Version 1.0. Tech. rep. OASIS Open, 2022. URL: https://docs.oasis-
open . org/openc2/o0c2ls/v1.0/cs02/0c2ls-v1.0-cs02.html (cit. on
pp- 2, 14).

Duncan Sparrell. Open Command and Control (OpenC2) Architecture Specifi-
cation Version 1.0. Tech. rep. OASIS Open, 2022. URL: https://docs.oasis-

open.org/openc2/oc2arch/v1.0/cs01/oc2arch-v1.0-cs01.html (cit. on
pp- 2, 12, 13, 36).

D. Hardt. The OAuth 2.0 Authorization Framework. RFC 6749, Internet
Engineering Task Force (IETF). 2012. URL: https://datatracker.ietf.
org/doc/html/rfc6749 (cit. on pp. 3, 10, 11, 18, 19, 21, 23, 25-28, 35, 38,
39, 43).

Matteo Repetto et al. «openc2lib: a Flexible, Portable, and Extensible Library
for Remote Control of Security Functionsy. In: (2023) (cit. on pp. 3, 35, 49).

Dieter Gollmann. Authentication, Authorisation € Accountability Knowledge
Area. Tech. rep. v1.0.2. Accessed: October 2025. The Cyber Security Body Of
Knowledge (CyBOK), 2021 (cit. on pp. 6, 9-11).

Frontegg. 8§ Access Control Types to Know in 2025. https://frontegg.com/
blog/access-control-types. Accessed: October 2025. Sept. 2025 (cit. on
p. 7).

Vincent C. Hu, David Ferraiolo, and D. Richard Kuhn. Guide to Attribute
Based Access Control (ABAC) Definition and Considerations. Tech. rep.

NIST SP 800-162. National Institute of Standards and Technology, 2014. DOTI:
10.6028/NIST.SP.800-162 (cit. on p. 7).

MobiDev. Access Control Security Models Fxplained: ACL vs RBAC vs ABAC.
https://mobidev.biz/blog/access-control-models-explained-acl-
vs-rbac-vs-abac. Accessed: October 2025. Sept. 2025 (cit. on p. 8).

67

https://docs.oasis-open.org/openc2/oc2ls/v1.0/cs02/oc2ls-v1.0-cs02.html
https://docs.oasis-open.org/openc2/oc2ls/v1.0/cs02/oc2ls-v1.0-cs02.html
https://docs.oasis-open.org/openc2/oc2arch/v1.0/cs01/oc2arch-v1.0-cs01.html
https://docs.oasis-open.org/openc2/oc2arch/v1.0/cs01/oc2arch-v1.0-cs01.html
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6749
https://frontegg.com/blog/access-control-types
https://frontegg.com/blog/access-control-types
https://doi.org/10.6028/NIST.SP.800-162
https://mobidev.biz/blog/access-control-models-explained-acl-vs-rbac-vs-abac
https://mobidev.biz/blog/access-control-models-explained-acl-vs-rbac-vs-abac

BIBLIOGRAPHY

[12]

[13]

[14]

[15]

[16]

[18]

[19]

Delinea. Access Control Models and Methods | Types of Access Control. ht
tps://delinea.com/blog/access-control-models-methods. Accessed:
October 2025. 2023 (cit. on p. 8).

Sumo Logic. Discover authentication factors | 5 categories. https://www.
sumologic . com/glossary/authentication-factor. Accessed: October
2025. 2024 (cit. on p. 9).

SecHard. Most Common Types Of Password Attacks And How To Prevent
Them. https://sechard.com/blog/most-common-types-of-password-
attacks-and-how-to-prevent-them/. Accessed: October 2025. 2023 (cit.
on p. 10).

AuthO. JSON Web Token Introduction. https://jwt.io/introduction.
Accessed: October 2025. 2025 (cit. on p. 10).

Cloudflare. What is token-based authentication? https://www .cloudfla
re.com/learning/access-management/token-based-authentication/.
Accessed: October 2025. 2024 (cit. on p. 11).

Office of the Victorian Information Commissioner. Biometrics and Privacy.

Tech. rep. Accessed: October 2025. OVIC, 2019 (cit. on p. 11).

Identity.com. Privacy Concerns With Biometric Data Collection. https :
//www.identity.com/privacy-concerns-with-biometric-data-collec
tion/. Accessed: October 2025. Sept. 2025 (cit. on p. 11).

Duncan Sparrell. Open Command and Control (OpenC2) Profile for Stateless
Packet Filtering Version 1.0. Tech. rep. OASIS Open, 2022. URL: https:
//docs . oasis-open. org/openc2/oc2slpf/v1.0/cs01/oc2slpf-vl.0-
cs01.html (cit. on p. 16).

OASIS OpenC2 Technical Committee. Specification for Transfer of OpenC2
Messages via HTTPS Version 1.1. Tech. rep. Committee Specification 01.
OASIS Standard, Nov. 2021. URL: https://docs.oasis-open.org/openc2/
open-impl-https/vl.1/cs01/open-impl-https-vl.1-cs01l.pdf (cit. on
pp. 16, 37).

Eran Hammer-Lahav. The OAuth 1.0 Protocol. Request for Comments 5849.

Internet Engineering Task Force (IETF), Apr. 2010. URL: https://www.rfc-
editor.org/rfc/rfcb849 (cit. on p. 19).

Michael B. Jones, Dick Hardt, and David Recordon. The OAuth 2.0 Au-

thorization Framework: Bearer Token Usage. Request for Comments 6750.
Internet Engineering Task Force (IETF), Oct. 2012. URL: https://www.rfc-
editor.org/rfc/rfc6750 (cit. on pp. 19, 21, 51).

68

https://delinea.com/blog/access-control-models-methods
https://delinea.com/blog/access-control-models-methods
https://www.sumologic.com/glossary/authentication-factor
https://www.sumologic.com/glossary/authentication-factor
https://sechard.com/blog/most-common-types-of-password-attacks-and-how-to-prevent-them/
https://sechard.com/blog/most-common-types-of-password-attacks-and-how-to-prevent-them/
https://jwt.io/introduction
https://www.cloudflare.com/learning/access-management/token-based-authentication/
https://www.cloudflare.com/learning/access-management/token-based-authentication/
https://www.identity.com/privacy-concerns-with-biometric-data-collection/
https://www.identity.com/privacy-concerns-with-biometric-data-collection/
https://www.identity.com/privacy-concerns-with-biometric-data-collection/
https://docs.oasis-open.org/openc2/oc2slpf/v1.0/cs01/oc2slpf-v1.0-cs01.html
https://docs.oasis-open.org/openc2/oc2slpf/v1.0/cs01/oc2slpf-v1.0-cs01.html
https://docs.oasis-open.org/openc2/oc2slpf/v1.0/cs01/oc2slpf-v1.0-cs01.html
https://docs.oasis-open.org/openc2/open-impl-https/v1.1/cs01/open-impl-https-v1.1-cs01.pdf
https://docs.oasis-open.org/openc2/open-impl-https/v1.1/cs01/open-impl-https-v1.1-cs01.pdf
https://www.rfc-editor.org/rfc/rfc5849
https://www.rfc-editor.org/rfc/rfc5849
https://www.rfc-editor.org/rfc/rfc6750
https://www.rfc-editor.org/rfc/rfc6750

BIBLIOGRAPHY

[20]

[21]

22]

23]

[24]

[25]

[26]

[27]

28]

[29]

OAuth 2.0 Security Best Current Practice. Request for Comments 9700.
Internet Engineering Task Force (IETF), 2024. URL: https://www.rfc-
editor.org/rfc/rfc9700 (cit. on pp. 19, 21).

Michael B. Jones, Dick Hardt, and David Recordon. Proof Key for Code
Exchange by OAuth Public Clients. Request for Comments 7636. Internet
Engineering Task Force (IETF), Oct. 2012. URL: https://www.rfc-editor.
org/rfc/rfc7636 (cit. on pp. 23, 45).

Torsten Lodderstedt, John Bradley, Andrey Labunets, and Daniel Fett. OAuth
2.0 Security Best Current Practice. Internet-Draft draft-ietf-oauth-security-
bep-23. Work in Progress. Internet Engineering Task Force (IETF), Mar.
2021. URL: https://datatracker . ietf . org/doc/html/draft-ietf-
oauth-security-bcp-23 (cit. on pp. 23, 37).

Casbin Authors. Casbin: An Authorization Library that Supports Access
Control Models like ACL, RBAC, ABAC. Accessed: October 2025. 2020. URL:
https://casbin.org (cit. on pp. 29, 35).

Vincent C. Hu, David F. Ferraiolo, D. Richard Kuhn, Adam Schnitzer, Ken-
neth Sandlin, Robert Miller, and Karen Scarfone. «Guide to Attribute Based
Access Control (ABAC) Definition and Considerationsy. In: NIST Special
Publication 800-162 (2015). DOI: 10.6028/NIST.SP.800-162 (cit. on p. 29).

Casbin Authors. How It Works. https://casbin.org/docs/how-it-works.
2024 (cit. on p. 30).

Hsiaoming Yang. Authlib: The ultimate Python library in building OAuth,
OpenID Connect clients and servers. https://authlib . org/. Accessed:
October 2025. 2017 (cit. on pp. 35, 42).

J. Richer. OAuth 2.0 Token Introspection. RFC 7662. IETF, Oct. 2015. URL:
https://www.rfc-editor.org/info/rfc7662 (cit. on p. 43).

Justin Richer, Michael B. Jones, John Bradley, Maciej Machulak, and Phil
Hunt. OAuth 2.0 Dynamic Client Registration Protocol. RFC 7591. July
2015. DOI: 10.17487/RFC7591. URL: https://www.rfc-editor.org/info/
rfc7591 (cit. on p. 44).

Nicola Poidomani. otupy Source Code: Authorizer.py. Git Repository. File:
src/otupy/auth/Authorizer.py. 2025 (cit. on p. 54).

69

https://www.rfc-editor.org/rfc/rfc9700
https://www.rfc-editor.org/rfc/rfc9700
https://www.rfc-editor.org/rfc/rfc7636
https://www.rfc-editor.org/rfc/rfc7636
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-bcp-23
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-bcp-23
https://casbin.org
https://doi.org/10.6028/NIST.SP.800-162
https://casbin.org/docs/how-it-works
https://authlib.org/
https://www.rfc-editor.org/info/rfc7662
https://doi.org/10.17487/RFC7591
https://www.rfc-editor.org/info/rfc7591
https://www.rfc-editor.org/info/rfc7591

	List of Figures
	Introduction
	Context
	Objectives
	Thesis Structure

	Access Control Background
	Authorisation
	Role Based Access Control
	Attribute Based Access Control
	Rule Based Access Control

	Authentication
	Password Authentication
	Token Authentication
	Biometric Authentication

	The openc2 Framework
	Introduction
	Core Architecture
	Architectural Roles
	Transfer Protocols and Message Payloads
	Commands and Responses
	Actuator Profiles

	Security Considerations and Requirements

	Authentication and Authorization Frameworks
	Introduction
	OAuth 2.0 Framework Overview
	Roles
	Protocol Flow
	Authorization Grants, Access Tokens, and Refresh Tokens

	OAuth 2.0 Grant types
	Authorization Code Grant
	Implicit Grant (Deprecated)
	Resource Owner Password Credentials Grant (Discouraged)
	Client Credentials Grant

	From Authentication to Fine-Grained Authorization
	Casbin Framework Overview
	The PERM Metamodel in Detail

	Thesis Objectives
	Implementation of the Authentication and Authorization Framework
	Introduction
	System Architecture
	Functional Blocks
	Trust Boundaries and Security
	Mapping to OAuth 2.0 Roles

	End-to-End Flow
	Detailed Step-by-Step Description
	HTTP Call Mapping

	Authorization Server (AS) Implementation
	Technology Stack
	Implemented Endpoints
	Database Schema
	Client Registration
	Security Mechanisms
	Code Snippet: Grant Registration

	User Agent (UA) Implementation
	Role and Responsibilities
	Main Endpoints
	Session Management and Authentication Flow
	Code Snippet: User Agent Endpoints

	Producer Implementation
	Architectural Design and Core Components
	Producer Initialization and Configuration
	Triggering the Authentication Flow

	Consumer Implementation
	Architectural Design and Core Components
	Consumer Initialization and Configuration
	Casbin Authorization Implementation
	The Two-Step Validation Process

	Security of Transfer Layers and Tokens
	Channel Security
	Token Format: Opaque vs. JWS
	Token Lifecycle Management

	Testing and Performance Evaluation
	Introduction
	Functional Testing: Access Control Validation
	Test Setup and Methodology
	Results and Discussion

	Performance Analysis
	Test Methodology
	Results and Discussion
	Attribution of Overhead via Network Traces

	Bibliography

