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Abstract

Transfer entropy plays an important role in causal inference and causal discovery
in time series analysis. As an information-theoretic measure, transfer entropy can
detect nonlinear causal structures without any prior model assumptions. The
transfer-entropy-based causal analysis scenario thus has a broader range of appli-
cations than the model-based methods like Granger causality tests. This study
generalizes the definition of transfer entropy to time-parameterized quantum pro-
cesses. We define a basis-dependent operational measure of one-way information
flow through quantum channels, called quantum transfer entropy. Quantum transfer
entropy provides a new characteristic of quantum channels. A nonzero quantum
transfer entropy indicates the directed causal influence from the source to the target.
In addition, we study controlled-Z channels and find that the quantum transfer
entropy is a linear function of the total information of the control qubit—including
both classical Shannon information and coherence in a given reference basis —thus
providing an operational interpretation of information flow through quantum con-
trol channels. We further quantify the effect of a third party by studying the
extreme case of the Toffoli gate, where the two control qubits are equivalent and
symmetric with respect to the target qubit. This effect is characterized by the
quantum transfer entropy conditioned on the third party (or the environment). We
illustrate several bounds on the conditional quantum transfer entropy for the Toffoli
gate in terms of local systems. These bounds allow us to estimate the conditional
transfer entropy without any knowledge of the environment qubit. Finally, we
employ the proposed quantum transfer entropy for causal discovery in a synthetic
time-series dataset.
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Chapter 1

Causation in Classical
Information Systems

1.1 Measures of Information Flow
Schreiber [1] proposed an information-theoretic measure to quantify the causal
relationship between two time series. This measure is conventionally regarded
as an indicator of information transmission from one time-dependent stochastic
process to another. The so-called transfer entropy intuitively characterizes the di-
rection and magnitude of information flow within a communication network [1, 2, 3].

In the following, we introduce the notations used throughout this work. A
time series is denoted by a capital letter, e.g., X. The random vector of discrete
variables of X (or the coarse-grained random vector of continuous X) from time i to
j is represented as Xi:j . Accordingly, Xt denotes the random variable of X at time t.

Definition 1.1.1 (Shannon Entropy[4]). The Shannon entropy of a discrete random
variable X ∼ px is defined as the following function of distribution {px}:

H(X) := −
Ø
x

px log px. (1.1)

Definition 1.1.2 (Transfer entropy [1]). Given two time series Xt and Yt, the
transfer entropy from X to Y , denoted by T E(X → Y ) is defined as the mutual
infromation between the past of X and the present of Y , conditioned by the past of
Y :

T E(X → Y ) := I(X0:t−1 : Yt|Y0:t−1). (1.2)
The (classical) transfer entropy T E(X → Y ) quantifies the amount of informa-

tion that the past of X provides about the future of Y beyond what is already
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Causation in Classical Information Systems

contained in the past of Y .

Proposition 1.1.3 (Properties of transfer entropy).

1. Asymmetry. Generally, T E(X → Y ) /= T E(Y → X).

2. Upper and lower bounds. 0 ≤ T E(X → Y ) ≤ H(X), where H(X) is the
Shannon entropy of X.

3. Model-free. There’s no assumption, e.g. linearity or Gaussianity, for transfer
entropy.

4. Equivalence to Granger Causality. For Gaussian variables, transfer entropy
and Granger causality are equivalent.

1.2 Causality Modeling
Correlations do not imply causation; causal analysis requires a more subtle and
rigorous investigation. As proposed by Pearl in 2000 [5], the so-called Ladder of
Causation framework consists of three levels: association, intervention, and coun-
terfactual analysis [5, 6]. The first level, association, examines the raw correlations
between random variables, which may still include spurious relationships. The
second level, intervention, involves designed experiments in which the empirical
variables of interest can be fully controlled, thereby revealing the causal effects of
those variables. Finally, the counterfactual level seeks to uncover the underlying
causal structure of reality based on observed data.

The term causality modeling refers to the geometric structure of interactions
among a finite set of random variables. It is typically represented by a directed
acyclic graph (DAG) [6, 7, 8], where the variables are depicted as nodes, and arrows
indicate the direction of causal influence from one node to another.

Definition 1.2.1 (Classical Causal Model [6]). A classical causal model is given by

(1) a causal strcture associated to a DAG G(N,E) with nodes corresponding to
random variables Xi,

(2) for each Xi, a classical channel P (Xi|Pa(Xi)), where Pa(Xi) denotes the set
of parents of Xi.

Thus the joint probability distribution over X1, . . . , Xn is given by

P (X1, . . . , Xn) =
Ù
i

P (Xi|Pa(Xi)). (1.3)
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Causation in Classical Information Systems

Figure 1.1: An example of classical causal model.
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Causation in Classical Information Systems

There are two categories of causal analysis: causal inference and causal discov-
ery [6]. Causal inference relies on the ability to empirically control the variables
under investigation and is widely employed in scientific laboratory settings. In
contrast, causal discovery seeks to recover the underlying causal structure solely
from observational data, where experimenters cannot directly control any variables

— a situation commonly encountered in social and economic research.
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Chapter 2

Introduction to Quantum
Information Theory

The formalism of quantum theory provides an operational probabilistic framework
that extends beyond Shannon’s classical information theory. Each quantum system
is associated with a Hilbert space—a complex normed linear vector space—in which
linear operations and distances between states are well defined. A quantum state is
represented by an element of the corresponding Hilbert space. The superposition p
rinciple of quantum states enables a reduction in data-encoding resources owing to
its inherently high parallelism. Moreover, quantum correlations such as entangle-
ment offer an even more powerful resource for information processing compared
with the classical counterpart.

2.1 State Space and Operators
Definition 2.1.1 (Hilbert space). A complete inner product space is called a Hilbert
space, denoted by H. In quantum mechanics we focus on complex Hilbert spaces.
The dimension of H is the number of its basis vectors needed to span the space,
denoted by dim H.

In quantum information theory, we focus on the complex finite-dimensional
Hilbert space and employ the Dirac’ notation [4, 9]. Given H = Cn with
n = dimH < ∞, an element in H can be represented as a colunm vector, de-
noted by the "ket" |ψ⟩. Its dual vector is represented using the "bra" notation ⟨ψ|.

Definition 2.1.2 (Projector). The projector of a unit vector |ψ⟩ on H is the outer
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Introduction to Quantum Information Theory

product of itself:
P = |ψ⟩ ⟨ψ| , (2.1)

which maps from H onto the one-dimensional space C |ψ⟩.

Definition 2.1.3 (Quantum operator). The set of linear maps from Hilbert space
HA onto HB is called the quantum operators, denoted by

L(HA,HB) := {O : HA → HB|O is linear}. (2.2)

Each O ∈ L(HA,HB) has a adjoint operator, denoted by O†.

Definition 2.1.4 (Self-adjoint/Hermitian operator). An operator A is called self-
adjoint (or Hermitian) if A† = A.

Theorem 2.1.5. The eigenvalues of a Hermitian operator are always real.

Theorem 2.1.6 (Spectral Theorem). If an operator O ∈ L(H) is Hermitian, then
it can be decomposed in terms of the linear combination of one of its orthonormal
basis:

O =
d−1Ø
i=0

λi |ψi⟩ ⟨ψi| , (2.3)

where λ1, . . . , λd ∈ R are real eigenvalues of O, {|ψi⟩}d−1
i=0 forms an orthormal

eigenvalues of O, and d = dim(H).

We summarize and clarify the main concepts of operators, observables, and
transformations within the framework of quantum information theory. These nota-
tions and concepts constitute the foundation of our work.

• Quantum operators. The quantum operators from Hilbert space HA to HB

are elements of the collection of linear maps from HA onto HB.

• Quantum observables. In quantum mechanices, the observables manifest
as self-adjoint operators on a complex Hilbert space H.

• Quantum channels (transformations). A quantum channel is a complete
positive trace preserving (CPTP) superoperator that maps from L(HA) to
L(HB). A quantum superoperator can be represented by the Choi operator.

Definition 2.1.7 (Positive semi-definite operator). An operator A ∈ L(H) is
positive semi-definite if A is Hermitian and all its eigenvalues are nonnegative.
We define the set of positive semi-definite operators on H as

PSD(H) := {A ∈ L(H) : A positive semidefinite}. (2.4)

6



Introduction to Quantum Information Theory

Throughout this thesis, we adopt a comprehensive perspective on quantum states
from the viewpoint of operators. Unless otherwise specified, the term quantum
state refers to a density operator.

Definition 2.1.8 (Density operator). The set of density operators D(H) on H is
defined as the following

D(H) := {ρ ∈ PSD(H) : trρ = 1}. (2.5)

D(H) is called the state space on H.

Proposition 2.1.9. D(H) is a convex set, i.e.

ρ =
Ø
i

piρi ∈ D(H),∀ρi ∈ D(H), ∀pi ∈ [0,1] s.t.
Ø
i

pi = 1. (2.6)

An operational interpretation meaning of the mixed states originates from the
fact that, in practice, because of the decoherence one can not prepare a number of
identical quantum states but an ensemble {pi, ρi} of quantum states obeying some
probability distribution pi. To describe the average of such an ensemble, we should
take ρ = q

i piρi. It can be readily verified that ρ ∈ D(H). To describe the average
behavior of such an ensemble, the state is represented as

ρ =
Ø
i

piρi. (2.7)

Definition 2.1.10 (Pure and mixed states). A quantum state ρ is called pure
if it can be represented in the form of ρ = |ψ⟩ ⟨ψ| for some unit vector |ψ⟩ ∈ H,
equivalent to the criterion ρ = ρ2 (or trρ2 = 1).
A quantum state ρ is called mixed if it’s not pure.

2.2 Quantum State Distance
In this section, we provide a comprehensive introduction to the geometric measures
in an (linear) operator space L(HA,HB), and in a state space D(H). A linear
matric space naturally defines a distance function based on inner product.

Definition 2.2.1 (Distance Function and Metric Space). A metric space is a set
M with a real-valued distance function (or matric) d(·, ·) on M ×M ,

d : M ×M → R (2.8)
d : (x, y) → d(x, y), (2.9)

which satisfies the following properties

7



Introduction to Quantum Information Theory

1. d(x, y) ≥ 0;

2. d(x, y) = 0 ⇐⇒ x = y;

3. d(x, y) = d(y, x);

4. (triangle inequality) d(x, z) ≤ d(x, y) + d(y, z).

Generally we denote the metric space by ⟨M,d⟩.

Throughout the following discussion, we use the term norm to refer generally to
the distance function defined on a linear metric space, such as a Hilbert space, a
state space, or an operator space.

Definition 2.2.2 (lp-Norm). In linear algebra, the lp-norm of a vector x =
(x1, . . . , xn)T ∈ Cn is defined by

∥x∥p :=
(qn

i=1 |xi|p)1/p , ifp ∈ [1,∞)
maxi{|xi|}, ifp = ∞

(2.10)

Definition 2.2.3 (Norm of Operator). Given an operator M ∈ L(HA,HB) whose
singular values are s1, . . . , sr > 0, we define

• the Schatten p-norm by ∥M∥p := ∥s∥p, where s = (s1, . . . , sr)T ;

• the trace norm ∥M∥1 = tr(
√
M †M) as the Schatten 1-norm;

• the Frobenius norm ∥M∥2 as the Schatten 2-norm;

• the operator norm ∥M∥∞ as the Schatten ∞-norm.

In quantum information processing, we often encounter the task of comparing a
received quantum state with a target state. This motivates us to define distance
measures (or pseudo distance measures) between two density matrices, known as
the trace distance and the fidelity.

Definition 2.2.4 (Trace Distance). The (normalized) trace distance T (ρ, σ) between
two state ρ, σ ∈ D(H) is defined as a half of the trace norm of ρ− σ,

T (ρ, σ) := 1
2∥ρ− σ∥1 (2.11)

Clearly, the trace distance is a matric on D(H).

8
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Definition 2.2.5 (Fidelity). The fidelity between two states ρ, σ ∈ D(H) is defined
as

F (ρ, σ) := ∥√
ρ
√
σ∥1 = tr

3ñ√
σρ

√
σ
4

= tr
3ñ√

ρσ
√
ρ
4
. (2.12)

Fidelity dosen not fulfill the definition of distance measures. Indeed, it’s maxi-
mized when ρ = σ.

2.3 Composite Systems
In this section, we introduce the mathematical formalism for a composite quantum
system comprising multiple subsystems. This framework is essential in quantum
information theory, as one often needs to analyze the global system from an
information-theoretic perspective while having only partial information about its
local constituents. A further motivation stems from the fact that any quantum
system is inevitably coupled to its environment. Therefore, a detailed investigation
of the system’s evolution and decoherence requires us to consider the entire, joint
system.

Axiom 2.3.1 (Composite Hilbert Space). The composite (or global) Hilbert space
of a quantum system composed by n subsystems is given by

H = H1 ⊗ · · · ⊗ Hn. (2.13)

Definition 2.3.2 (Product States, Separable States, and Entangled States). The
global state ρ ∈ D(H1 ⊗ · · · ⊗ Hn) is called a

• product state if ρ = ρ1 ⊗ · · · ⊗ ρn, ρi ∈ D(Hi);

• separable state if ρ = q
k pkρ1k ⊗ · · · ⊗ ρnk, where ρik ∈ D(Hi), pk ∈ [0,1] andq

k pk = 1;

• entangled state if ρ is not separable.

One of the most fundamental distinctions between quantum and classical mechan-
ics lies in the quantum superposition principle, commonly referred to as quantum
coherence. This principle originates from the interference (or coherence) phenomena
of light. Given a density matrix ρ ∈ H, represented in some orthonormal basis

9
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{|i⟩}:

ρ =



a0n

a1n

an0 an1

a00

a11

ann


, (2.14)

the diagonal entries can be distinctly extracted by performing projective operators
of basis vector |i⟩s (also called projective measurement, as will be discussed soon).
In contrast, the off-diagonal terms encode the coherence properites of ρ, which
determime the interference between the outcomes of projective measurements cor-
responding to diffenrent orthonormal basis vectors.

As expected, orthogonal projective operators represent the most ubiquitous
measurement scheme in quantum theory. This is especially true in quantum com-
puting, where projective measurement is employed in the final step to sample an
algorithm’s output state. Moreover, the notion of projective measurement can be
generalized to describe the foundational principles governing information extraction
from a quantum system.

Definition 2.3.3 (Generalized Measurement (POVM)). A generalized measure-
ment, also called positive-operator valued measure, on a Hilbert space H assotiated
to the outcome set Ω (generally real) is a function

E : Ω → PSD(H)s.t.
Ø
x∈Ω

E(x) = I. (2.15)

Sometimes we use the notation Ex = Ex. Every Ex takes the form of Ex = M †
xMx

s.t. qxM
†
xMx = I.

When Ex spans a orthognal set of operators, the function E reduces to the projective
operator.

Axiom 2.3.4 (Born’s Rule). Performing a POVM, denoted by E, on a quantum
state ρ ∈ D(H), then the probability of observing outcome x ∈ Ω is

px = tr(Exρ). (2.16)

The post-measured state of Ex = M †
xMx is

ρpm = 1
px
MxρM

†
x. (2.17)

10
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Definition 2.3.5 (Coherent State[10]). A coherent state |ψ⟩ in a Hilbert space H
is the superposition of one basis {|0⟩ , . . . , |d− 1⟩}

|ψ⟩ =
d−1Ø
i=0

pi |i⟩ , (2.18)

where d = dim(H), pi ≤ 0 and qi pi = 1.

Definition 2.3.5 can be generalized to an arbitrary finite-dimensional multipartite
system consisting of n subsystems A0, . . . , An−1 with respect to the reference prod-
uct basis {|i0,...,n−1⟩ := |i1⟩ ⊗ · · · ⊗ |in⟩}d0...dn−1

i=0 , where d0, . . . , dn−1 are dimensions
of subsystems [10, 11, 12].

Definition 2.3.6 (Incoherent States and Incoherent Set [10]). For an n-party
composite quantum system A0 . . . An−1, in the reference product basis {|i0,...,n−1⟩ :=
|i1⟩ ⊗ · · · ⊗ |in⟩}d0...dn−1

i=0 , an incoherent state σA0,...,An−1 takes the form

σA0,...,An−1 =
Ø

i0,...,n−1

pi0,...,n−1 |i0,...,n−1⟩ ⟨i0,...,n−1| , (2.19)

where pi0,...,n−1 ≥ 0 and qi0,...,n−1 pi0,...,n−1 = 1.
All the possible incoherent states of the quantum system A0 . . . An−1 form an inco-
herent set IA0...An−1.

Note that the definitions of coherent and incoherent states are basis-dependent.
Indeed, since any density matrix is Hermitian, it admits a spectral decomposition
with respect to some orthonormal basis. This implies that any quantum state can,
in principle, be represented as an incoherent state in its own eigenbasis.

Definition 2.3.7 (Incoherent Operation [10]). An incoherent operation OIC is an
operation mapping incoherent states to incoherent states

OIC : IA0...An−1 → IA0...An−1 . (2.20)

Definition 2.3.8 (Classical-quantum States). Let HX = CΣ and HQ = Cn, a state
ρXQ ∈ D(HX ⊗ HQ) is called a classical-quantum (cq) state, if it can be written in
the form

ρXQ =
Ø
x∈Σ

p(x) |x⟩ ⟨x| ⊗ ρQ,x, (2.21)

corresponding to the ensemble {p(x), |x⟩ ⟨x| ⊗ ρQ,x} on D(HXQ).

11
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The classical-quantum (cq) state captures the most general quantum communi-
cation scenario: Alice encodes the classical message X ∼ px, with x ∈ Σ, into a
quantum state ρQ,x ∈ D(HQ) which is then sent to Bob. Bob attempts to extract
the information form the encoded ensemble E = {px, ρQ,x} by performing a POVM
on the received system, yielding a measurement outcome Z ∼ pz. The overall
communication channel is therefore described by a classical-quantum state.

Proposition 2.3.9. For any bipartity system AB satisfying dA ≥ dB, its incoherent
states σAB can be represented w.r.t. {|i⟩A}

σAB =
Ø
i

pi |i⟩ ⟨i|A ⊗ ρB|i, (2.22)

where {|i⟩A} is an orthonormal basis of system A and ρB|i is the density matrix of
B in {|i⟩A}. Incoherent states σAB ∈ IB|A in such a form is called A-incoherent
states. Maps ΛB|A

IC : IB|A → IB|A are called A-incoherent operations.

A-incoherent states [10, 12] can be viewed as a generalization of classical-quantum
states. The underlying idea stems from the fact that, in quantum information
processing, we are often interested in how a quantum channel influences the cor-
relations between a measured qubit and a prepared ancillary qubit, whose initial
state can be engineered in a specific basis. After the evolution of the quantum
channel, the measurement is likewise performed in the basis of the ancillary qubit.
The final state of the ancilla thus encodes the information about both the quantum
channel and the monitored qubit.

Definition 2.3.10 (Coherence Measure). A measure of coherence fC(ρ) is a
nonnegative function which fulfills the following properties:

• fC(ρ) = 0 if ρ is an incoherent state;

• fC(ρ) is a non-increasing monotone function under incoherent operations, i.e.

∀ΛIC(ρ), fC(ρ) ≥ fC(ΛIC(ρ)). (2.23)

2.4 Quatnum Entropy
Analogous to classical Shannon entropy (Definition 1.1.1), the information content
of a quantum state is associated with the uncertainty in the outcomes of quantum
measurements. To quantify the intrinsic information of a density operator, Von
Neumann introduced a basis-independent entropy function [13], which depends
solely on the eigenvalues of the density matrix.

12



Introduction to Quantum Information Theory

Definition 2.4.1 (Von Neumann Entropy). The Von Neumann entropy S(ρ) of a
quantum state ρ ∈ D(H) is defined by

S(ρ) := −tr(ρ log ρ) (2.24)

= −
dØ
i

λi log λi, (2.25)

where {λi} is the set of the normalized eigenvalues of ρ and d = dimH.

Proposition 2.4.2 (Properties of Von Neumann Entropy).

1. Nonegativity. S(ρ) ≤ 0. S(ρ) = 0 iff ρ is pure.

2. Upper bound. S(ρ) ≤ log rank(ρ) ≤ log dim(H). S(ρ) = log dim(H) iff ρ is
maximally mixed, i.e. ρ = I

dimH .

3. Invariance under isometries: S(V ρV † = S(ρ)) for any isometry V .

4. Contnuity. S(ρ) is continuous.

5. Concavity. S(ρ) is a strictly concave function of ρ ∈ D(D), i.e. S(qi piρi) ≤q
i piS(ρi) for any ρi ∈ D(H) and a discrete probability distribution {pi}.

Definition 2.4.3 (Purity and Linear Entropy). The purity of a quantum state
ρ ∈ D(H) is defined as

γ(ρ) := tr(ρ2). (2.26)
The linear entropy of ρ is defined as

Sl(ρ) := d

d− 1 (1 − γ(ρ)) . (2.27)

Proposition 2.4.4.

1. 1
d

≤ γ ≤ 1.

2. 0 ≤ Sl(ρ) ≤ 1.

3. ρ is pure ⇐⇒ γ(ρ) = 1 ⇐⇒ Sl(ρ) = 0.

Definition 2.4.5 (Entropy of Subsystems). Given a bipartite quantum system
ρAB ∈ D(HA ⊗ HB), the Von Neumann entropies of the global system and subsys-
tems are defined by

S(AB) := S(ρAB), S(A) := S(ρA), S(B) := S(ρB), (2.28)

where ρA = trBρAB and ρB = trAρAB are reduced states of subsystems A and B
respectively.

13
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Proposition 2.4.6 (Properties of Entropy of Subsystems).

1. Sunadditivity.
S(A) + S(B) ≥ S(AB). (2.29)

2. Non-monotinicity. Generally,

S(AB) ≱ S(A), S(AB) ≱ S(B). (2.30)

3. Araki-Lieb (triangle) inequality.

S(AB) ≥ |S(A) − S(B)|. (2.31)

4. Strong subadditivity. For a tripartite system ρABC, we have

S(AC) + S(BC) ≥ S(ABC) + S(C). (2.32)

5. Weak monotinicity. For a tripartite system ρABC, we have

S(AC) + S(BC) ≥ S(A) + S(B). (2.33)

Definition 2.4.7 (Quantum Conditional Entropy). For a quantum system ρAB,
the conditional entropies are defined as

S(A|B) := S(AB) − S(B), (2.34)
S(B|A) := S(AB) − S(A). (2.35)

It is important to note that, in contrast to its classical counterpart, the quan-
tum conditional entropy is not necessarily non-negative. A prominent exam-
ple is the Bell state |Φ⟩+

AB = 1√
2(|00⟩ + |11⟩). For this state, the calculation

S(A|B) = S(AB) − S(B) = −S(B) ≤ 0 demonstrates this fact.

To measure the shared correlation between two quantum subsystems, we intro-
duce the quantum mutual information.

Definition 2.4.8 (Quantum Mutual Information). The quantum mutual informa-
tion of a bipartite state ρAB is defined as

I(A : B) := S(A) + S(B) − S(AB) (2.36)
= S(A) − S(A|B) (2.37)
= S(B) − S(B|A). (2.38)

14
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Proposition 2.4.9 (Properties of Mutual Information).

1. Nonnegativity. I(A : B) ≥ 0. I(A : B) = 0 iff. ρAB = ρA ⊗ ρB.

2. Upper bounds. I(A : B) ≤ 2 min{S(A), S(B)}.

3. Invariance under isometries. For any local isometries VA→A′, WB→B′, the
mutual information dosen’t change, i.e. I(A : B) = I(A′ : B′).

4. If ρAB is pure, then I(A : B) = 2S(A) = 2S(B).

5. Monotonicity. For any tripartite quantum state ρABC, it holds that I(A :
BC) ≤ I(A : B).

Theorem 2.4.10. Given a bipartite quantum system ρAB, the correlations between
observables MA, MB are upper bounded by the quantum mutual information between
subsystems A and B. Formally,

I(A : B) ≥ C2(MA,MB)
2∥MA∥2∥MB∥2 , (2.39)

where C(MA, CB) = ⟨MA ⊗ MB⟩ − ⟨MA⟩⟨MB⟩ is the correlation function of MA,
MB.

Theorem 2.4.10 [14] provides an upper bound for the total correlations between
two local observables MA and MB. A crucial clarification is needed: despite its
prevalence in protocols for quantifying transmitted information, quantum mutual
information remains a measure of correlation, not causation.

Another fundamental question in quantum information theory concerns the
influence of prior knowledge about a third subsystem C on the quantum mutual
information between A and B. To formalize this, we introduce the concept of
conditional quantum mutual information.

Definition 2.4.11 (Conditional Quantum Mutual Information). Given a tripartite
quantum state ρABC ∈ D(HA ⊗ HB ⊗ HC), we define the conditional quantum
mutual information between A and B (conditioned by C) through the follwoing way:

I(A : B|C) := S(A|C) + S(B|C) − S(AB|C) (2.40)
= S(AC) + S(BC) − S(ABC) − S(C). (2.41)

Proposition 2.4.12 (Properites of Conditional Mutual Information).

1. Nonnegativity. I(A : B|C) ≤ 0. The nonegativity of conditional quantum
information is equivalent to the strong subadditivity of entropies of subsystems.

15
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2. Upper bound (the dimension bound). For any tripartite quantum state ρABC ∈
D(HA ⊗ HB) ⊗ HC, it holds that

I(A : B|C) ≤ 2 log[min{dim(HA), dim(HB)}]. (2.42)

Theorem 2.4.13 (Carlen-Lieb Extension of Strong Subadditivity [15]). It holds
for any tripartite quantum state ρABC that

I(A : B|C) ≥ 2 max{−S(B|A),−S(A|B), 0}. (2.43)

Definition 2.4.14 (Quantum Relative Entropy). Given two states ρ, σ ∈ D(H),
the relative entropy of ρ with respect to σ is defined by

S(ρ||σ) :=
tr(ρ log ρ) − tr(ρ log σ), if ker σ ⊆ ker ρ;

∞, otherwise.
(2.44)

Quantum relative entropy is a kind of pseudodistance in the state space, which
doesn’t fulfill all the properties of a distance function, but still provides a comparison
quantity between two states. Becaus of its simplicity in calculation, there’s a wide
range of applications of quantum relative entropy. We will employ relative entropy
to generalize the definition of quantum discord of multipartite systems in Chapter 3.

2.5 Holevo Bound
Definition 2.5.1 (Holevo Quantity). The Holevo quantity of an ensemble E =
{px, ρQ,x} is defined as

χ(E) := I(X : Q) = S(
Ø
x

pxρQ,x) −
Ø
x

pxS(ρQ,x), (2.45)

where the mutual information is computed in the cq-state ρXQ = q
x px |x⟩ ⟨x|⊗ρQ,x.

Proposition 2.5.2. For any ensemble E = {px, ρQ,x} of ρQ,x ∈ D(HXQ), the
follwoing holds

0 ≤ χ(E) ≤ S(
Ø
x

pxρx) ≤ log dim HQ. (2.46)
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A natural question that arises is: what is the maximum amount of information
Bob can obtain using an optimal measurement strategy? To quantify thesis, we
employ the notation of accessible information, denoted Iacc(E), which measures the
maximum mutual information Bob can gain by performing an optimal POVM µ
on his received quantum system Q [4, 9]. It is defined as

Iacc(E) := max
µ

I(X : Z). (2.47)

Theorem 2.5.3 (Holevo Bound). I(X : Z) ≤ I(X : Q) = χ(E) for any ensemble
{px, ρx} and POVM µ.

2.6 Entanglement and Quantum Discord
In this section, we first summarize the family of the measures of quantum entangle-
ment for bipartite systems.

Table 2.1: Measures of entanglement for a bipartite state ρAB.

Name Definition State Criterion of separability
Entanglement Entropy SE := S(A) = S(B) pure S(A) = 0
Linear Entropy Sl(ρ) := d

d−1 (1 − tr(ρ2)) pure Sl(ρAB) = 0
Concurrence C(ρ) := max{0, 2λmax(ρ̂− trρ̂)} mixed C(ρAB) = 0
Squashed Entanglement Esq(ρAB) := 1

2 infρABC
I(A : B|C) mixed Esq(ρAB) = 0

Entanglement of Formation Ef (ρ) := min{pi,|ψi⟩}
q
i piE(|ψi⟩) mixed Ef (ρAB) = 0

Definition 2.6.1 (Entanglement Entropy[4]). If ρAB is pure, then S(A) = S(B)
is called the entanglement entropy.

The entanglement entropy quantifies the number of Bell pairs needed to create
the entangled state via LOCC in the asymptotic limit. This procedure is known as
entanglement dilution.

Definition 2.6.2 (Concurrence). The concurrence of a quantum state ρ is defined
by

C(ρ) := max{0, 2λmax(ρ̂− trρ̂)}. (2.48)
λmax is the maximum eigenvalue of ρ̂ =

ñ√
ρρ̃

√
ρ with ρ̃ denoting the complex

conjugate of ρ.

The squashed entanglement, an intrinsic measure of entanglement for bipartite
quantum systems, is defined using the conditional quantum mutual information
[16, 17].

17
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Definition 2.6.3 (Squashed Entanglement). The squashed entanglement of a
bipartite quantum state ρAB, is defined by

Esq(ρAB) := 1
2 inf
ρABC

I(A : B|C), (2.49)

where the infimum is over all extensions ρABC s.t. ρAB is the reduced state of ρABC ,
i.e. ρAB = trC(ρABC).

Definition 2.6.4 (Entanglement of Formation). If a quantum state ρ admits a
decomposition into pure states:

ρ =
Ø
i

pi |ψi⟩ ⟨ψi| , (2.50)

then the entanglement of formation of ρ is defined as the minimum (normalized)
average entanglement taken all such pure-state ensembles:

Ef (ρ) := min
{pi,|ψi⟩}

Ø
i

piE(|ψi⟩). (2.51)

For any mixed bipartite state with no more than two nonzero eigenvalues, S. Hill
and W. K. Wootters [18, 19] proved a functional relation between the entanglement
of formation and the concurrence.

Theorem 2.6.5. Let ρ be any density matrix of a bipartite quantum system having
no more than two nonzero eigenvalues. Then the entanglement of formation of ρ is
the following function of concurrence of ρ:

Ef (ρ) = E(C(ρ)), (2.52)

where the function E(x) is given by

E := H(1
2 + 1

2
√

1 − x2), (2.53)

with H(·) the entropy function.

There exist other measures of bipartite entanglement—such as the distillable
entanglement—which are useful in different operational contexts. Quantifying
multipartite entanglement with a single measure is substantially more difficult.
Indeed, detecting and characterizing global entanglement remains a challenging
problem in quantum information theory, with many open questions still unresolved.
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In the following, we turn to quantum discord, which characterizes quantum
correlations beyond entanglement.

Tracing back to the definition of quantum mutual information, we can identify
two natural interpretations. In the following, we illustrate these interpretations for
a bipartite quantum system AB:

• I(AB) = S(ρAB||ρA ⊗ ρB) = S(A) + S(B) − S(AB) that quantifies the
statistical distance between the joint state and the product of its marginals
(independence assumption), representing their total correlations.

• JA(ρAB) = S(B) − S(ρB|A) that is the mutual information left after a prior
complete knowledge on A (in practice through state tomography).

Defining a quantum version of J is not straightforward. The primary difficulty
lies in interpreting the prior complete knowledge of subsystem A. In practice, we
generally do not know the exact density matrix of a quantum system; we can
only gain partial information about it through measurement. Therefore, a useful
and natural approach is to extend the conditional entropy S(B|A) as the linear
combination of the entropy of B conditioned by a projective measurement on A.
This gives

S(B|{ΠA
i }) =

Ø
i

piS(ρB|ΠA
i
), (2.54)

where pi = Tr[(ΠA
i ⊗ IB)ρAB] is the probability for obtaining the ith outcome

and ρAi = TrB[(ΠA
i ⊗ IB)ρAB(ΠA

i ⊗ IB)/pi] is the correponding post-measurement
state of system A. (Note that the state of B after measurement ΠA

i is ρB|ΠA
i

=
trA(ΠA

i ⊗ IB)ρAB(ΠA
i ⊗ IB)/pAi , and S(ρB|ΠA

i
) ≡ S(B|ρiA)) [20, 21].

So the expression of J can now be extended as

J{ΠA
i }(ρAB) := S(ρB) − S(B|{ΠA

i }). (2.55)

JA(ρAB) depends on both ρAB and the measurement {ΠA
i }dA−1

i=0 . Usually, we are
interested in the maximum over the set of all possible pojective measrements {ΠA

i }
to keep the value of J measurement independent:

max
{ΠA

i }∈PM(ρA)
J{ΠA

i }(ρAB) = S(ρAB) − min
{ΠA

i }∈PM(ρA)
S(ρB|{ΠA

i }), (2.56)

where PM(ρA) denotes the set of all possible projective measurements on system A.

We can thus define the quantum discord to quantify the discrepancy between
these two nonequivalent expressions of the quantum mutual information.
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Definition 2.6.6 (Quantum Discord [20]). For a bipartite quantum system ρAB,
its quantum discord DA w.r.t. subsystem A is defined as

DA := I(ρAB) − max
{ΠA

i }
J{ΠA

i }(ρAB)

= min
{ΠA

i }
[I(ρAB) − J{ΠA

i }(ρAB)]

= S(ρA) − S(ρAB) + min
{ΠA

i }
S(ρB|{Πi

A})

= min
{ΠA

i }
S(ρB|{Πi

A}) − S(ρB|ρA). (2.57)

Notations

• Quantum discord is asymmetric, meaning that DA can differ from DB.

• In practice, minimizing the difference between I(ρAB) and JΠA
i
(ρAB) is chal-

lenging because it requires optimizing over projective measurements defined
by a specific reference basis. This implies that the chosen reference basis must
be specified when discussing quantum discord.

• Zero discord states are equivalent to pure classical correlated states whose
joint statistics can be completely explained by a local hidden variable model.

Definition 2.6.7 (Discord Measure with Pseudodistance). The coherence measure
Dδ(ρ) with a pseudodistance δ of a state ρ to the zero-discord state set C is defined
as

Dδ(ρ) := min
σ∈C

δ(ρ, δ). (2.58)

The relative entropy S(ρ||σ) is one of the most widely used pseudo-distances
in quantum information theory. The coherence measure, defined via this pseudo-
distance, is given by C(ρ) = S(ρ||Φi(ρ)), where Φi(ρ) = q

i pi |i⟩ ⟨i| and pi = ⟨i| ρ |i⟩
dephases the state in the reference basis {|i⟩}. By analogy, we define the discord
measure in terms of relative entropy as D(ρ) = minσ∈C S(ρ||σ), where C denotes the
set of classical states. Thus, the quantity Dδ(ρ) follows the same formal definition
as Cδ(ρ).

Theorem 2.6.8 (Entanglement Monogamy [22, 23]). For a pure quantum state
ρABC, the monogamy of entanglement holds in the form of

Ef (ρAB) + J(A : Č) = S(A), (2.59)

where Ef(ρAB) is the entanglement of formation of AB, and J(A : Č) is the
maximum Holevo quantity corresponding to the projective measurement on C.
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2.7 Quantum Channels Theory
In classical communication, a channel is a function that maps one random variable
to another. Analogously, in quantum information theory, a quantum channel is a
superoperator that transforms one density matrix into another. Note that in both
classical and quantum contexts, the dimensions of input and output states are not
necessarily equal.

Definition 2.7.1 (Quantum Channel). A quantum channel from Hilbert L(HA) to
L(HB) is a CPTP linear superoperator

ΦA→B :L(HA) → L(HB), (2.60)
ρA → ρB. (2.61)

Definition 2.7.2 (Choi Operator). The Choi operator associated with a superoper-
ator ΦA→B is defined by

JΦ
AB :=

Ø
i,j

|i⟩ ⟨j| ⊗ ΦA→B(|x⟩ ⟨y|) ∈ L(HA,HB), (2.62)

where {|i⟩} is an arbitrary orthonormal basis of HA.

A quantum channel is completely characterized by its Choi operator. This
leads to a one-to-one correspondence between quantum channels and Choi states,
a concept generally referred to as Channel-State Duality.

Theorem 2.7.3 (Choi-Jamiolkowski Isomorphism). The following map is an
isomorphism,

L(L(HA), L(HB)) → L(HA ⊗ HB),ΦA→B → JΦ
AB, (2.63)

whose inverse is

ΦA→B[MA] = trA[(MT
A ⊗ IB)JΦ

AB],∀MA ∈ L(HA). (2.64)

Theorem 2.7.4. When a superoperator ΦA→B is complete positive, its Choi operator
JΦ
AB is positive semidefinite.

ΦAB[M ], ∀M ∈ L(HA) can be represented by

ΦA→B[M ] =
rØ
i=1

XiMX†
i , (2.65)

X1, . . . , Xr ∈ L(HA,HB). This representation is called the Kraus representation.

21



Introduction to Quantum Information Theory

The preceding discussion provides a mathematical description of quantum chan-
nels. Crucially, these representations correspond to physical processes, extending
beyond mere formalism. Furthermore, a complete description of a quantum channel
is essential for modeling quantum causal structures. This is because the functional
relation between two nodes in such a structure is equivalent to a Choi matrix,
which ultimately governs the probabilities of measurement outcomes at quantum
nodes.
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Chapter 3

Measure of One-way
Quantum Information

One might be interested in identifying the quantum counterpart of classical transfer
entropy. However, due to the no-cloning theorem, a generic quantum state cannot
be copied without disturbing the original. A natural way to "capture" the past
state of a quantum system is to introduce an ancilla qubit that becomes entangled
with the original qubit. This approach effectively maps the temporal correlations
of a single qubit at different times onto the spatial entanglement between two qubits.

3.1 Quantum Transfer Entropy
Formally, we introduce the following protocol to define quantum transfer entropy
[24], as depicted in Figure 3.1.

Protocol 3.1.1.

• Initial state ρinA ⊗ ρinB with two alcilla qubits ρinA′ = ρinB′ = |0⟩ ⟨0|, where ρinA =q
ik ρik |i⟩ ⟨k| and ρinB = q

jl σjl |j⟩ ⟨l|.

• STEP 1 Apply CNOT on AA′ and BB′ respectively, let A and B control
qubits and A′ and B′ target qubits. We obtain ρ1

A′ABB′ = ρ1
A′A ⊗ ρ1

BB′ with
ρ1
A′A = q

ik ρik |ii⟩ ⟨kk|A′A and ρ1
BB′ = q

jl σjl |jj⟩ ⟨ll|BB′.

• STEP 2 System AB evolves with the unknown channel UAB, after the evolution
the quantum state is

ρ2
A′ABB′ = (IA′ ⊗ UAB ⊗ IB′)ρ1

A′ABB′(IA′ ⊗ U †
AB ⊗ IB′) (3.1)
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A′

A
UAB

B

B′

Figure 3.1: Protocol for defining quantum transfer entropy.

• STEP 3 Apply CNOTA′A and CNOTB′B independently, the final state of the
global system is

ρfA′ABB′ = ρ3
A′ABB′

= (CNOTA′A ⊗ CNOTB′B)ρ2
A′ABB′(CNOTA′A ⊗ CNOTB′B). (3.2)

Definition 3.1.2 (Quantum Transfer Entropy). Let the Protocol 3.1.1 yields
the final global state ρfA′B′AB, the quantum transfer entropy (QTE), denoted by
C(A → B) is defined as:

C(A → B) = I(B : A′A|B′) (3.3)
= S(B|B′) + S(A′A|B′) − S(A′AB|B′) (3.4)
= S(BB′) + S(A′AB′) − S(A′ABB′) − S(B′) (3.5)
≥ S(BB′) + S(A′AB′) − (S(A′AB′) + S(BB′) − S(B′)) − S(B′)
= 0.

Given an unknow quantum channel UAB, one can detect the one-way information
flow between two nodes connected by the channel. The quantum transfer entropy
(QTE), which is fully determined by the output state of Protocol 3.1.1, can be
regarded as a characterization of U without performing the full channel tomography.

A nonzero QTE indicates a directional causal influence between the two quan-
tum nodes, and its magnitude quantifies the strength of this causal relation. It’s
important to note that QTE is basis-dependent. This arises from the fact that
the roles of the control and target qubits may be interchanged under a change
to a maximally biased basis. For example, the gate C0,1→0,1

A→B in computational
basis {|0⟩ , |1⟩} is equivalent to C+,−→+,−

A→B in the Hardmard basis {|+⟩ , |−⟩}. One
may argue that the generation of quantum entanglement is a symmetric process;
however, it remains essential to examine the behavior of information flow in a
specified basis. We also remark that, as in the classical case, the causal structure
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(DAG) associated with a given set of random variables is not unique. Nevertheless,
the causal structures obtained under different choices of basis must be isomorphic.

3.2 Quantum-Classical Information Splitting of
Controlled Rotation Channels

Lemma 3.2.1. In the computational basis, the value of C(A → B) for a CNOT
channel only depends on the input state of system A, and C(A,B) = I(A′ : B).

Proof. The input quantum states of system A and B are ρinA = q
ik ρik |i⟩ ⟨k| and

ρinB = q
jl σjl |j⟩ ⟨l|.

After step 1, the global state is

ρ1
A′ABB′ =

Ø
jkjl

ρikσjl |ii⟩ ⟨kk|A′A ⊗ |jj⟩ ⟨ll|BB′Ø
ikjl

ρikσjl |iijj⟩ ⟨kkll|A′ABB′ . (3.6)

If in step 2 UAB = CNOTAB, then after the evolution of the quantum channel and
step 3, we have

ρ1
A′ABB′

step2→ ρ2
A′ABB′ =

Ø
ikjl

ρikσjl |i, i, i⊕ j, j⟩ ⟨k, k, k ⊕ l, l|

step3→ ρfA′ABB′ =
Ø
ikjl

ρikσjl |i0ij⟩ ⟨k0kl|

=
Ø
ik

ρik |ii⟩ ⟨kk|A′B ⊗ |0⟩ ⟨0|A ⊗
Ø
jl

σjl |j⟩ ⟨l| . (3.7)

The final state of A′ABB′ is the product state of subsystems A′B, A and B′, so

C(A → B) = S(B) + S(A′) − S(A′B) = I(A′ : B) (3.8)

Moreover ρA′B = q
ik ρik |ii⟩ ⟨kk|, ρB = TrA′ρA′B = q

i ρii |i⟩ ⟨i|, ρA′ = TrBρA′B =q
i ρii |i⟩ ⟨i|. Thus the value of I(A′ : B) only depends on the matrix elements ρik

of initial state of A.

Theorem 3.2.2 (Classical-Quantum Splitting of Information Flow). For a CNOT
quantum channel, the transfer entropy C(A → B) can be split into the classical and
quantum information flows, i.e.

C(A → B) = h+ c, (3.9)
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where h = S(Φ(ρinA )) is the entropy of the diagonalized input state of A and
c = h− S(ρinA ) is the coherence of the input state of A.

Proof.
C(A → B) = I(A′ : B) = S(A′) + S(B) − S(A′B)

= H(A′) −D(A′) +H(B) −D(B) −H(A′B) +D(A′B)
= (H(A′) +H(B) −H(A′B)) − (D(A′) +D(B) −D(A′B))
= h+ h− h+D(AB)
= h+ h− S(ρinA ) (3.10)
= h+ c. (3.11)

Comments For a controlled gate CR(θ), if θ /= π, i.e. CR(θ) /= CNOT , D(A)
and D(B) may not equal to 0, the quantum information flow is D(A′B) −D(A) −
D(B).

In the following, we demonstrate the equivalence of transfer entropy splitting
based on the quantum discord defined by the measurement.

According to the expression of ρfA′B, to define the quantum discord based on
measurement, we just need measurements on A′. In the following, we consider the
projective measurement ΠA′ = {|0⟩ ⟨0| , |1⟩ ⟨1|} in computational basis on A′.

After implementing ΠA′ , the post-measurement global state is
ρpmA′ABB′ =

Ø
i

ρii |ii⟩ ⟨ii|A′B ⊗ |0⟩ ⟨0| ⊗
Ø
jl

σjl |j⟩ ⟨l| , (3.12)

and ρpmA′B = q
i ρii |ii⟩ ⟨ii|, ρpmA′ = ρpmB = q

i ρii |i⟩ ⟨i|.

Then we can compute the quantum discord from ρfA′B and ρpmA′B.

I(A′ : B) = S(ρfA′) + S(ρfB) − S(ρfA′B)
= 2h− S(ρinA ). (3.13)

J(A′ : B) = S(ρpmA′ ) + S(ρpmB ) − S(ρpmA′B)
= h+ h− h

= h. (3.14)
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Thus the quantum discord is

D(A′ : B) = I(A′ : B) − J(A′ : B) = h− S(ρinA ) = C(ρinA ), (3.15)

which coincides with the definition based on distance.

The simulation results, as shown in Figure 3.2 shows that a CNOT channel
transfers the full information, i.e. both the incoherence and coherence of the con-
troled qubit A to the target qubit B. Particularly, a pure control qubit possesses
only the relative enrtopy of coherence and a classical control qubit possesses only
the entropy of the diagonal entries.

More generally, there exists the linear relation between the input information
and the transfer entropy for the controlled X-gates.

To examine the linear relationship between the input information and the re-
sulting information flow, we performed a linear regression analysis. The results are
summarized in Tables 3.1-3.3. We note that, except for the CNOT channel, the
transfer entropy is not an exact functional dependence on the input information
for the other controlled gates; rather, the two quantities exhibit a strong linear
correlation.

Comments

• We did not minimize the quantum discord in the preceding computations,
which implies that the decomposition of the QTE remains basis-dependent.
This observation is consistent with our intuition: the reconstruction of an
unknown quantum channel must be described with respect to a chosen ba-
sis—namely, the preferred reference frame of the observer (or observers).

• One may argue that if two observers choose different reference bases, they
may arrive at different interpretations of the information flow. Hence, a prior
agreement on the reference basis among observers must be ensured. This can
be accomplished within the LOCC framework, where the measurement setup
can be coordinated through classical communication.

3.3 Bounds for Quantum Transfer Entropy
The quantum transfer entropy is defined in terms of the quantum conditional mutual
information, which is associated with several subsystem-dependent bounds. In this
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(a) (b)

(c)

Figure 3.2: Information flow of arbitrary input states, pure states, and classical
states of A.
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Table 3.1: Linear Regression Results of Arbitrary input states of A

Channel Slope r value p value
CNOT 1.0 1.0 0
CR

1
π
2

2
0.588 0.9993 0

CR
1
π
4

2
0.217 0.9944 0

CR
1
π
8

2
0.067 0.9852 0

Table 3.2: Linear Regression Results of pure input states of A

Channel Slope r value p value
CNOT 2.0 1.0 0
CR

1
π
2

2
1.216 0.99995 0

CR
1
π
4

2
0.481 0.99966 0

CR
1
π
8

2
0.163 0.99921 0

work, we adopt the result presented in [17].

Theorem 3.3.1. For every tripartite finite-dimensional state ρABE,

I(A : B|E) ≥ 1
2 ln 2∥ρAB − SA:B∥2

1−LOCC , (3.16)

where ∥ρAB − SA:B∥ := minσ∈SA;B ∥ρAB − σ∥ is the distance between ρAB and the
set SA:B of separable states on A : B [17].

The computation of ∥ρAB − SA:B∥ is not straightforward. In fact, evaluating
this trace distance requires solving an optimization problem over positive semidefi-
nite operators, which naturally takes the form of a semidefinite program (SDP).
Consequently, obtaining the exact value typically involves numerical optimization
rather than a closed-form analytical expression.

Theorem 3.3.2. For a tripartite quantum system ρABC, there exists an explicit
lower bound of conditional mutual information I(A : B|C) represented only in
terms of ρA and ρB

I(A : B|C) ≥ C2(MA,MB)
2∥MA∥2∥MB∥2 + f(d, γ). (3.17)

Here MA and MB are local observables on A and B respectively. f(d, γ) is the
function of the dimension d = dimHAB and the purity γ of ρAB, specifically.
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Table 3.3: Linear Regression Results of classical input states of A

Channel Slope r value p value
CNOT 1.0 1.0 0
CR

1
π
2

2
0.608 0.99995 0

CR
1
π
4

2
0.240 0.99965 0

CR
1
π
8

2
0.082 0.99921 0

f(d, γ) =
1 − 1

d
−
ó

(1 − 1
d

)(γ − 1
d

)
 log

1 − 1
d

−
ó

(1 − 1
d

)(γ − 1
d

)


+
1
d

+
ó

(1 − 1
d

)(γ − 1
d

)
 log

1
d

+
ó

(1 − 1
d

)(γ − 1
d

)
 (3.18)

3.4 Causality Interpretation
Is causality epistemological or realistic? We leave this fundamental question open,
as resolving it lies beyond the scope of this work. Instead, we adopt an operational
perspective to examine the definition of QTE and the corresponding mechanisms of
information transmission. This approach allows us to highlight how quantum trans-
fer entropy differs from its classical counterpart in both interpretation and behavior.

In analogy with the classical case, a quantum causal structure can also be
represented by a directed acyclic graph (DAG), which specifies the allowed di-
rections of influence among the relevant quantum systems. In this framework,
each node of the DAG is associated with a density matrix describing the state of
the corresponding quantum subsystem. When a measurement is performed on a
given subsystem, the quantum state at that node gives rise to a classical random
variable, thereby linking the quantum causal structure to observable statistical data.

Definition 3.4.1 (Quatnum Causal Structure [8, 7, 25, 26]). A quantum causal
structure CQ, is a DAG where each observed node has a corresponding (classical)
random variable, and each unobserved node is associated with a quantum system.

Considering two correlated binary time series Xt and Yt, where the state of Yt is
a deterministic function of the previous states Xt−1 and Yt−1. In this setting, the
classical transfer entropy from Xt−1 to Yt is upper bounded by H(Xt−1), formally

T E(Xt−1 → Yt) := I(Xt−1 : Yt|Yt−1) ≤ H(Xt−1) ≤ 1. (3.19)
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Theorem 3.2.2 provides a novel measure beyond the classical causal model. The
quantum entanglement between two interacting qubits can violate the upper bound
of the classical transfer entropy. It’s crucial to point out that this violation depends
on the operations of observers. Again, the choice of reference basis determines
how an observer "reads" or "represents" the quantum states, in turn decides the
quantities of classical-quantum information splitting.

We use the example of input state |+0⟩ to illustrate how the choice of reference
bases influences the value of C(A → B):

1. The entire protocol is implemented in computational basis {|0⟩ , |1⟩}. One can
directly verify that C(A → B) = 2 and C(B → A) = 0.

2. The entire protocol is implemented in Hardmard basis {|+⟩ , |−⟩}. The value of
quantum transfer entropy of different directions is inverse, i.e. C(A → B) = 0
and C(B → A) = 2.

3. SystemA′A is operated and measured in the Hardmard basis, while systemBB′

is in the computational basis. One can calculate that C(A → B) = C(B → A).

This example illustrates that the interpretation of quantum transfer entropy
can vary depending on the choice of reference bases. In other words, what an
observer infers as "information flow" is influenced by how the underlying quantum
states are represented. The basis dependence revealed here suggests that such
an interpretation is not absolute but may depend on the operational framework
adopted by the observers.
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Chapter 4

Quantum Causal Discovery
Algorithm

Although many quantum causal discovery and quantum causal inference algorithms
have emerged recently [27, 28, 29, 30], there’s stll a lack of model-free scenario with
the prespective of quantifying the information flows in a quantum network.

In this chapter, we introduce a causal discovery algorithm that is formulated
on the basis of the quantum transfer entropy defined in the previous sections.
This algorithm provides an operational procedure for inferring directional influence
between quantum subsystems, extending classical causal discovery methods into
the quantum domain.

4.1 Bipartite Systems
Assume that two observers, Alice and Bob, each possess a spatially separated
qubit, which may in general be entangled. Alice and Bob independently perform
measurements on their respective qubits in chosen local bases. The measurement
outcomes are represented by two binary random variables X, Y ∈ {0, 1} which
obey the marginal distributions pX and pY respectively. These outcomes form the
observable data from which the underlying causal or informational relationships
between the two quantum systems may be inferred.

We study the case that pX and pY are encoded to two pure quantum states
that serve as the input to the QTE protocol described in Protocol 3.1.1. Given
an interaction channel UAB, we can explicitly compute the quantum transfer
entropy induced by this channel. This allows us to analyze how the chosen unitary
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interaction mediates information flow between the two subsystems within the QTE
framework. The procedure is outlined as following, assuming all steps are preformed
in the computational basis:

1. The probabilities are encoded by pure quantum states

px → |ψinA ⟩ =
Ø
x

√
px |x⟩ ,

py → |ψinB ⟩ =
Ø
y

√
py |y⟩ . (4.1)

Employ ancilla qubits |ψA′⟩ = |ψB′⟩ = |0⟩. The global state is then ρ1
A′ABB′ =

|ψ1⟩ ⟨ψ1|, |ψ1⟩A′ABB′ = q
xy

√
pxpy |0xy0⟩.

2. Apply C0,1→0.1
A→A′ and C0,1→0.1

B→B′ , obtaining |ψ2⟩A′ABB′ = q
xy

√
pxpy |xxyy⟩.

3. Perform the unitary evolution UAB on the system AB. The density matrix
after evolution is ρ3

A′ABB′ = UABρ
2
A′ABB′U

†
AB.

4. Disentangle A′A, BB′ with C0,1→0.1
A′→A and C0,1→0.1

B′→B , resulting in ρ4
A′ABB′ .

5. Dephase the state ρ4
A′ABB′ , denote the final state by ρfA′ABB′ = Φ(ρ4

A′ABB′).

Lemma 4.1.1. For a bipartite product state ρAB = ρA ⊗ ρB, the dephasing on ρAB
is equivalent to the local independent dephasing on the subsystems

Φ(ρAB) ≡ Φ(ρA) ⊗ Φ(ρB). (4.2)

Proof. Let {|ij⟩}1
i,j=0 be a basis on Hilbert space C4.

Φ(ρ) =
Ø
ij

⟨ij| ρAB |ij⟩ |ij⟩ ⟨ij|AB (4.3)

=
Ø
ij

⟨ij| ρA ⊗ ρB |ij⟩ |ij⟩ ⟨ij|AB (4.4)

=
Ø
ij

(⟨i| ρA |i⟩ ⊗ ⟨j| ρB |j⟩) |ij⟩ ⟨ij| (4.5)

=
AØ

i

⟨i| ρA |i⟩ |i⟩ ⟨i|
B

⊗

Ø
j

⟨j| ρB |j⟩ |j⟩ ⟨j|

 (4.6)

= Φ(ρA) ⊗ Φ(ρB). (4.7)
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By applying Lemma 4.1.1, one can verify that if in step 3 of the protocol, the
channel satisfies UAB = UA ⊗ UB-that is, the operation is strictly local-then the
resulting density matrix factorizes into a product state across the bipartition A′A
and BB′

ρfA′ABB′ = ρfA′A ⊗ ρfBB′ . (4.8)
Hence the quantum transfer entropy

C(A → B) = I(A′A : B|B′) (4.9)
= S(A′AB′) + S(BB′) − S(A′ABB′) − S(B′) (4.10)
= S(A′A) + S(B′) + S(BB′) − S(A′A) − S(BB′) − S(B′) (4.11)
= 0. (4.12)

Analogously, we also have C(B → A) = 0.

When taking the interaction channel to be the controlled-NOT gate UAB =
CNOTAB in step 3, we can explicitly compute the quantum transfer entropy
associated with the update rule Yt = Xt−1 ⊗Yt−1. From Proposition 3.2.1 we obtain
the global state after step 4 takes the form of the following product state:

ρ4
A′ABB′ = ρ4

A′B ⊗ |0⟩ ⟨0|A ⊗ ρfB′ . (4.13)

Therefore, the final global state after the dephasing operation is given by

ρfA′ABB′ = Φ(ρ4
A′ABB′) (4.14)

= Φ(ρ4
A′B) ⊗ |0⟩ ⟨0|A ⊗ Φ(ρfB′) (4.15)

=
Ø
x

px |xx⟩ ⟨xx|A′B ⊗ |0⟩ ⟨0|A ⊗ ρfB′ . (4.16)

Notice ρfA′B = q
x px |xx⟩ ⟨xx|A′B and ρA′ = ρB = q

x px |x⟩ ⟨x|, the transfer
entropy (from A to B) is thus

C(A → B) = I(ρfA′ : ρfB) (4.17)
= S(ρfA′) + S(ρfB) − S(ρfA′B) (4.18)
= H(X), (4.19)

where H(X) = q
x px log px is the Shannon entropy of random variable X. And

C(B → A) = 0.

The case is similar for the inverse UAB = CNOTB→A:

C(B → A) = H(Y ), (4.20)
C(A → B) = 0. (4.21)
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Figure 4.1 illustrates the comparison between the classical transfer entropy and
quantum transfer entropy for binary, stationary, first-order Markov process, where
the update rule for the random variable Y is given by

Yt = Xt−1 ⊕ Yt−1. (4.22)

As shown in Figure 4.1a, when all the input data are encoded in the compu-
tational basis, QTE C(X → Y ) and CTE TE(X → Y ) exhibit nearly identical
behavior. However, when the probability distributions px and py are instead en-
coded in the maximally biased bases, as illustrated in Figure 4.1b, the presence of
additional quantum coherence produces a significantly more robust information-flow
measure. In particular, we observe that C(A → B) stabilizes at the constant value
1, effectively elevating the quantum transfer entropy for any input distribution px
to match that of the case with maximal Shannon entropy.

This enhanced robustness, arising from coherence-assisted information flow,
suggests a potentially valuable feature for future applications in quantum causal
discovery, where stable and basis-sensitive indicators of directional influence are of
practical importance.

(a) (b)

Figure 4.1: Comparison between quantum and classical transfer entropy for a
binary stable 1st-order Markov time series, whose generator is Yt = Yt−1 ⊕Xt−1.
From left to right, the result for data encoded in the coincident basis and in the
maximum biased basis (|ψinA ⟩ and |ψinA′⟩ in the Hardmard basis, (|ψinB ⟩ and |ψinB′⟩ in
the computational basis).
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Finally, we examine the causal influence exhibited by other double-qubit chan-
nels, summarized in Table 4.1. This comparison highlights how different choices
of controlled operations modify the magnitude of information flow between the
subsystems.

Channel C(A → B) C(B → A)
CX(0) 0 0
CX(π/8) 0.156 0
CX(π/4) 0.467 0
CX(3π/8) 0.834 0
CX(π/2) 1.201 0
CXB→A(π/2) 0 1.201
IA ⊗ IB 0 0
IA ⊗XB 0 0

Table 4.1: The numerical results of the causal influence C(A → B), C(B → A) for
several two-qubit channels. Both of the input states of A and B are 1√

2(|0⟩ + |1⟩).
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E ′

A′

B′

E

UEABA

B

Figure 4.2: QTE protocol when considering the influence of environment E with
ancilla environmental qubit E ′.

4.2 Tripartite Systems
In practice, when attempting to diagnose the information flow between two quantum
systems A and B, one must inevitably take into account the presence of noise arising
from their interaction with an external environment E. The degree of decoherence
in the joint state ρAB is directly related to the strength of the coupling between
the composite system AB and its environment. Various theoretical frameworks
have been developed to model the dynamics of open quantum systems, such as
linear response theory for weak environmental perturbations.

In this section, we introduce an information-theoretic method based on quan-
tum transfer entropy to quantitatively analyze the information flow between two
quantum systems while explicitly incorporating environmental effects. By the
purification theorem, any mixed state ρAB can be represented as the reduced state
of a pure tripartite state |ψ⟩ABE. Motivated by this perspective, we consider a
model in which the evolution of the tripartite system EAB is governed by a Toffoli
gate, CCNOTEA→B. In this setup, the monitored qubit A and the environment E
exert symmetric and equivalent control over the target qubit B.

Table 4.2: Truth Table of CCNOTzx→y

z · x y output
0 0 0
0 1 1
1 0 1
1 1 0
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Analogous to the procedure described in the previous section, independent local
measurements performed on systems A, B, and E yield binary random vairables
X, Y and Z, respectively. These variables are associated with the corresponding
marginal probability distributions px, py and pz. These measurement outcomes con-
stitute the observable data from which we analyze how information is distributed
and transferred among the three subsystems in the presence of environmental
interactions. For simplicity, we can model the environment as a single qubit, which
allows us to clearly illustrate the fundamental mechanisms by which environmental
interactions influence the observed information flow.

If one can completely control the third subsystem E, the quantum transfer
entropy can be defined similarly in an operational way. Employ the following
protocol:

Protocol 4.2.1.

1. We encode the distributions through pure states:

px → |ψinA ⟩ =
Ø
x

√
px |x⟩ , (4.23)

py → |ψinB ⟩ =
Ø
y

√
py |y⟩ , (4.24)

pz → |ψinE ⟩ =
Ø
z

√
pz |z⟩ . (4.25)

Each qubit is associated to an ancilla qubit at state |0⟩, the initial global state
is

ρ1
E′A′B′EAB = |ψ1⟩ ⟨ψ1|E′A′B′EAB , (4.26)

where |ψ1⟩E′A′B′EAB = q
zxy

√
pzpxpy |000zxy⟩.

2. Entangle each qubit to its own ancilla qubit, we obtain

|ψ2⟩E′A′B′EAB =
Ø
zxy

√
pzpxpy |zxyzxy⟩E′A′B′EAB . (4.27)

3. Apply UEAB, the global state turns to

|ψ3⟩E′A′B′EAB = IE′A′B′ ⊗ UEAB |ψ2⟩E′A′B′EAB (4.28)

.

4. Disentangle A′A, B′B and E ′E,

|ψ4⟩E′A′B′EAB = C0,1→0,1
E′→E ⊗ C0,1→0,1

A′→A ⊗ C0,1→0,1
B′→B |ψ3⟩E′A′B′EAB . (4.29)
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Proposition 4.2.2.

C(A → B|E) = C(EA → B) − C(E → B). (4.30)

Proof.

C(A → B|E) = I(A′A : B|E ′B′E) (4.31)
= S(E ′A′B′EA) + S(E ′B′EB) − S(E ′B′E) − S(E ′A′B′EAB)
= [S(E ′A′B′EA) + S(B′B) − S(B′) − S(E ′A′B′EAB)]
− [S(E ′B′E) + S(B′B) − S(B′) − S(E ′B′EB)]
= I(E ′A′EA : B|B′) − I(E ′E : B|B′). (4.32)

Proposition 4.2.3 (Lieb Lower Bound). If UEAB = CCNOTEA→B, the following
inequalities hold

2 max{0,−Sf (B|A′A),−Sf (A′A|B)} ≤ C(A → B|E), (4.33)
2 max{0,−Sf (B|E ′E),−Sf (E ′E|B)} ≤ C(E → B|A). (4.34)

Proof. These inequalities hold directly form the Carlen-Lieb inequality 2.4.13.

Lemma 4.2.4. For CCNOTEA→B channel,

C(A → E) ≡ 0, (4.35)
C(A → B|E) ≡ C(A → BE). (4.36)

Proof. If UEAB = CCNOTEA→B, the output state in Protocol 4.2.1 is
|ψ4⟩E′A′B′EAB =

Ø
zxy

√
pzpxpy |z, x, y,0,0, zx⟩E′A′B′EAB

=
AØ
zx

√
pzpx |z, x, zx⟩E′A′B

B
⊗
AØ

y

√
py |y⟩B′

B
⊗ |00⟩EA (4.37)

= |ψE′A′B⟩ ⊗ |ψB′⟩ ⊗ |ψE⟩ ⊗ |ψA⟩ . (4.38)
Thus we have

C(A → E) = I(A′A : E|E ′) (4.39)
= S(E ′A′A) + S(E ′E) − S(E ′) − S(E ′A′EA)
= S(E ′A′) + S(A) + S(E ′) + S(E)
− S(E ′) − S(E ′A′) − S(E) − S(A)
= 0. (4.40)
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C(A → B|E) = I(A′A : B|E ′B′E) (4.41)
= S(E ′A′B′EA) + S(E ′B′EB)
− S(E ′B′E) − S(E ′A′B′EAB)
= S(E ′A′B′A) + S(E ′B′EB)
− S(E ′B′) − 0 − S(E ′A′B′EAB)
= I(A′A : EB : E ′B′)
= C(A → BE). (4.42)

Proposition 4.2.5 (Observable Lower Bound). If UEAB = CCNOTEA→B, the
observable lower bound of C(A → B | E) reduces to

C(A → B | E) = I(A′B | E ′) ≥ C2(MA′ ,MB)
2∥MA′∥2∥MB∥2 + f(d, γ). (4.43)

Here MA′ and MB are local observables on A′ and B respectively. f(d, γ) is the
function of the dimension d = dimHA′B and the purity γ of ρA′B, specifically.

f(d, γ) =
1 − 1

d
−
ó

(1 − 1
d

)(γ − 1
d

)
 log

1 − 1
d

−
ó

(1 − 1
d

)(γ − 1
d

)


+
1
d

+
ó

(1 − 1
d

)(γ − 1
d

)
 log

1
d

+
ó

(1 − 1
d

)(γ − 1
d

)
 (4.44)

Proposition 4.2.6 (Upper Bound). If UEAB = CCNOTEA→B, the following
inequalities hold

C(A → B|E) ≤ hA + cA, (4.45)
C(E → B|A) ≤ hE + cE. (4.46)

Proof. We illustrate the proof of the first inequality.
By observabing the final state corresponding to CCNOTEA→B chennel, we have

C(A → B|E) = I(A′A : B|E ′B′E) (4.47)
= S(E ′A′B′EA) + S(E ′B′EB)
− S(E ′B′E) − S(E ′A′B′EAB)
= S(E ′A′) + S(E ′B) − S(E ′) (4.48)
= S(A′|E ′) + S(B|E ′) (4.49)
≤ hA + cA. (4.50)

The proof of C(E → B|A) follwos the same procedure.
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However, in realistic scenarios it is impossible to fully control the environment.
For this reason, we do not employ an ancilla qubit E ′, since in practice one cannot
coherently entangle such an ancilla with the actual environment. Furthermore,
to ensure that the output of the protocol becomes effectively classical, we intro-
duce a dephasing operation. This step is operationally equivalent to performing a
projective measurement on the system and serves to eliminate residual quantum
coherence that would otherwise obscure the classical information extracted from
the process.

To simplify the discussion, we focus on the specific channel

UEAB = CCNOTEA→B

in the following.

Protocol 4.2.7 (QTE protocol considering single third party qubit and projective
measurement).

1. We encode the distributions through pure states:

px → |ψinA ⟩ =
Ø
x

√
px |x⟩ , (4.51)

py → |ψinB ⟩ =
Ø
y

√
py |y⟩ , (4.52)

pz → |ψinE ⟩ =
Ø
z

√
pz |z⟩ . (4.53)

Each monitored qubit is associated to an ancilla qubit at state |0⟩, the initial
global state is

ρ1
A′B′EAB = |ψ1⟩ ⟨ψ1|A′B′EAB , (4.54)

where |ψ1⟩A′B′EAB = q
zxy

√
pzpxpy |00zxy⟩.

2. Entangle two monitored qubits to their own ancilla qubit, we obtain

|ψ2⟩A′B′EAB =
Ø
zxy

√
pzpxpy |xyzxy⟩A′B′EAB . (4.55)

3. Apply UEAB = CCNOTEA→B, from the truth table of CCNOT gate (Table
4.2) the global state turns to

|ψ3⟩A′B′EAB =
Ø
zxy

|x, y, z, x, zx⊗ y⟩A′B′EAB . (4.56)

.
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4. Disentangle A′A, B′B, resulting

|ψ4⟩A′B′EAB =
Ø
zxy

√
pzpxpy |x, y, z,0, zx⟩A′B′EAB . (4.57)

5. Dephase ρ4
A′B′EAB = |ψ4⟩ ⟨ψ4|A′B′EAB, we obtain the final density matrix (a

classical state)

ρfA′B′EAB = Φ(ρ4
A′B′EAB)

=
Ø
zxy

pzpxpy |x, y, z,0, zx⟩ ⟨x, y, z,0, zx|A′B′EAB

=
AØ
zx

pzpx |x, z, zx⟩ ⟨x, z, zx|A′EB

B
⊗ |0⟩ ⟨0|A

⊗
AØ

y

py |y⟩ ⟨y|B′

B
= ρfA′E′B ⊗ ρfE ⊗ ρfA ⊗ ρfB′ . (4.58)

In the following, we illustrate some results of conditional quantum transfer
entropy C(A → B|E). These examples demonstrate how the presence of the envi-
ronment modifies the effective information flow from A to B once the influence of
E id completely taken into account.

Proposition 4.2.8.
C(A → B|E) = α− hz, (4.59)

where hz = −q
z px log pz denotes the classical Shannon entropy of the environ-

mental input state |ψinE ⟩ and α = H(X ′Z ′) represents the joint Shannon entropy of
the distribution summarized in Table 4.3. Consequently, the conditional quantum
transfer entropy reduces to the conditional Shannon entropy associated with the
distribution given in Table 4.3:

C(A → B|E) ≡ H(X ′|Z ′). (4.60)

Similarly, we obtain

C(E → B|A) = H(Z ′′|X ′′), (4.61)

where the conditional Shannon entropy H(Z ′′ : X ′′) is computed with respect to
the probability distribution summarized in Table 4.4. This expression quantifies
the effective information flow from the environment E to the target qubit B once
the influence of control qubit A has been accounted for.
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Table 4.3: Probability Distribution for C(A → B|E)

X ′
Z ′

0 1

0 pz=0 px=0pz=1
1 0 px=1pz=1

Table 4.4: Probability Distribution for C(E → B|A)

X ′′
Z ′′

0 1

0 px=0 0
1 px=1pz=0 px=1pz=1

Proposition 4.2.9. For the dephased final state the following inequalities hold

0 = 2 max{0,−Sf (B|A′A),−Sf (A′A|B)} ≤ C(A → B|E) ≤ hx, (4.62)
0 = 2 max{0,−Sf (B|E ′E),−Sf (E ′E|B)} ≤ C(E → B|A) ≤ hz. (4.63)

Proof. We give the proof of C(A → B|E) in the following. For C(E → B|A), it
takes the same procedure.
According to Proposition 4.2.6, the left inequality holds.
By observing the final state of the Protocol 4.2.7, we obtain:

Sf (B|A′A) = S(A′AB) − S(A′A) (4.64)
= S(A′B) + S(A) − S(A′) − S(A) (4.65)
= S(A′B) − S(A′) (4.66)
≥ 0, (4.67)

Sf (A′A|B) ≥ 0. (4.68)

In addition, after the dephasing, only the classical information left, i.e. hA = 0 and
cA = hx, yielding the right inequality.

Figure 4.3 shows the range of C(A → B|E) when the final diagonalization step
is omitted. By comparing Figures 4.3a and 4.3b, we observe that the choice of
data-encoding basis again does not alter the attainable range of the conditional
transfer entropy. Furthermore, Figure 4.3c indicates that when the input state
of the environment E is fixed to |1⟩, the channel CCNOTEA→B becomes opera-
tionally equivalent to CNOTA→B. In this situation, C(A → B|E) saturates its
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upper bound, as the environmental subsystem no longer introduces additional
influence or ambiguity in the flow of information from A to B.

The numerical results corresponding to Proposition 4.2.9 are presented in Figure
4.4, where the Leib lower bound of the conditional QTE is observed to be exactly
zero.

(a) (b)

(c)

Figure 4.3: C(A → B|E) without diagonalization. 4.3a The result of random
input density matrices. 4.3b The result of pure input states. 4.3c The results of
random input ρinA and ρinE = |1⟩ ⟨1|.

44



Quantum Causal Discovery Algorithm

(a) (b)

(c)

Figure 4.4: C(A → B|E) with diagonalization. 4.4a The result of random input
density matrices. 4.4b The result of pure input states. 4.4c The results of random
input ρinA and ρinE = |1⟩ ⟨1|.
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In contrast to the behavior of CNOTA→B acting on a closed bipartite quantum
system, acting on a closed bipartite quantum system, once the strong influence
of the environment is taken into account, the information flow from A to B is no
longer an explicit linear (or even quasi-linear) function of the quantum informa-
tion initially encoded in subsystem A. Instead, the maximum amount of definite
knowledge that an observer can reliably infer is quantified by the transfer entropy
conditioned on the total information available about the environmental states ρinE
and ρfE.

This conditioned transfer entropy lies within the same causal cone determined
by the tripartite dynamics, as illustrated in Figures 4.3 and 4.4.

The observable lower bound of C(A → B|E) for a CCNOT channel is always
nonpositive when the final state is diagonalized. A representative example is
depicted in Figure 4.5, where we consider a classical joint state

ρAB =
Ø
ij

pij |ij⟩ ⟨ij| (4.69)

in the Hilbert space C2 ⊗C2, together with local observables MA = MB = σZ . One
can verify in this observable configuration, the observable lower bound is alway
negative.

Without applying dephasing to the final states, it becomes possible to obtain
a positive observable lower bound, as illustrated in Figure 4.6. In this scenario,
the Lieb lower bound is always non-negative, reflecting the fact that coherence is
preserved throughout the protocol. As summarized in Tables 4.5 and 4.6, both
the Lieb bound and the observable lower bound attain their maximal values when
the environmental input state is |E⟩in = |1⟩, for which the action of CCNOTEA→B

effectively reduces to CNOTA→B.

Moreover, the use of pure input states in Protocol 4.2.1 significantly increases
the frequency with which the observable lower bound takes positive values. This
highlights the role of input-state coherence in enhancing the detectability of condi-
tional quantum transfer entropy in open-system settings.

Table 4.5: Frequencies of positive Lieb lower bounds for non-diag final states.

random input pure input ρinE = |1⟩ ⟨1|
0.157 0.633 1
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(a) (b)

(c)

Figure 4.5: Observable lower bounds of C(A → B|E) for the CCNOT channel,
when the final state is diagonalized. The observables are chosen to be MA = MB =
σZ . From 4.5a to 4.5c: lower bounds of random input states, pure input states,
and ρinE = |1⟩ ⟨1|.
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(a) (b)

(c)

Figure 4.6: Leib and observable lower bounds of C(A → B|E) for the CCNOT
channel, and non-diagonalized final state. The observables are chosen to be
MA = MB = σZ . From 4.6a to 4.6c: lower bounds of random input states, pure
input states, and ρinE = |1⟩ ⟨1|.
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Table 4.6: Frequencies of positive observable lower bounds for non-diag final
states, with MA = MB = σZ .

random input pure input ρinE = |1⟩ ⟨1|
0.014 0.098 0.476

Indeed, for a tripartite quantum system ρABC , we can split the conditional
mutual information in the following way:

I(A : B|C) = I(A : BC) − I(A : C) (4.70)
= D(Ǎ : B̌Č) −D(Ǎ; Č) + J(Ǎ : B̌Č) − J(Ǎ : Č). (4.71)

Since we know that the quantum part is upper bounded by

D(Ǎ : B̌Č), D(Ǎ; Č) ≤ S(A), (4.72)

then I(A : B|C) > S(A) implies

I(Ǎ : B̌|Č) = J(Ǎ : B̌Č) − J(Ǎ : Č) > 0. (4.73)

This fact means it’s sufficient to conclude a positive classical part of conditional
mutual information when condition I(A : B|C) > S(A) holds. So in order to select
the state corresponding to positive Lieb lower bounds of C(A → B|E), we just take
those fulfilling the following inequality

2 max{0,−S(B|A′A),−S(A′A|B)} − min{S(A′A), S(B)} > 0. (4.74)

Definition 4.2.10 (Classical Causation Inference Quantity). The classical csusa-
tion inference quantity based the local (total) correlation of subsystems is defined
as

IC := 2 max{0,−S(B|A′A),−S(A′A|B)} − min{S(A′A), S(B)}. (4.75)

Theorem 4.2.11.
IC > 0 =⇒ CΦ(A → B|E) > 0, (4.76)

where CΦ(A → B|E) is the conditional quantum transfer entropy computed from
the dephased final state.

Theorem 4.2.11 provides a method for identifying the purely classical causal
influence between subsystems A and B induced by UEAB, without requiring any
prior knowledge of the environment E. This makes the criterion particularly useful
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Table 4.7: Frequencies of positive IC for non-diag final state.

random input pure input ρinE = |1⟩ ⟨1|
0.011 0.187 0.396

for open-system scenarios, where direct access to environmental degrees of freedom
is typically unavailable. The frequencies with which IC takes positive values under
different input settings are summarized in Table 4.7.

We conclude this chapter by comparing several representative tripartite channels.
As summarized in Table 4.8, both C(A → B | E) and its Lieb lower bound exhibit
a clear increase as the rotation angle of the controlled operation becomes larger.
This trend reflects the enhanced ability of stronger controlled rotations to mediate
directional information flow from A to B when considering the environment E.
Furthermore, when the dynamics consist solely of independent local operations on
the three subsystems, the conditional quantum transfer entropy C(A → B | E)
necessarily vanishes. This confirms that no causal influence can be generated
without genuine interactions coupling A, B and E.

Channel C(EA → B) C(E → B) C(A → B | E) Lieb bound obs. bound IC
CCX(0) 0 0 0 0 0 0
CCX(π/8) 0.123 0.062 0.062 0.035 -0.03 -0.009
CCX(π/4) 0.371 0.186 0.186 0.099 -0.091 -0.037
CCX(3π/8) 0.668 0.334 0.334 0.164 -0.161 -0.088
CCX(π/2) 0.968 0.484 0.484 0.211 -0.226 -0.166
IE ⊗ IA ⊗ IB 0 0 0 0 0 0
IE ⊗ IA ⊗XB 0 0 0 0 0 0

Table 4.8: The numerical results of quantum conditional transfer entropy C(A →
B | E) for several three-qubit channels. All the input states of A, B and E are

1√
2(|0⟩ + |1⟩).
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Chapter 5

Conclusion and Outlook

In this work, we develop an operational measure of one-way information flow
induced by quantum channels, which we refer to as quantum transfer entropy
(QTE). QTE is defined in terms of conditional mutual information, where temporal
correlations in a quantum process are mapped to spatial correlations by introducing
ancilla qubits that record past system states through entanglement. This construc-
tion allows us to treat the history of a quantum system as an explicit quantum
memory. Analogous to its classical counterpart, QTE is a model-free quantity
and is therefore capable of capturing non-linear causal relationships in quantum
processes with a finite time lag. A nonzero value of QTE indicates the presence of
directed quantum causation, while its magnitude provides a quantitative measure
of the corresponding causal strength.

An important feature of QTE is its basis dependence, which reflects the necessity
for observers to agree upon a reference basis prior to any causal analysis. Although
different choices of reference basis may lead to different numerical values of QTE,
the resulting quantum causal structures remain isomorphic, thereby preserving
the essential pattern of directional influence among the underlying quantum systems.

We investigate the quantum-classical splitting of QTE in bipartite channels. Our
analysis shows that a CNOTA→B quantum channel transfers the entire information
content of the control qubit - including both its classical information and quantum
coherence - to the target qubit. In particular, we obtain

C(A → B) = hA + cA, (5.1)

where hA denotes the classical Shannon entropy of the control qubit A and cA
characterizes its coherence.
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For a general controlled-Z channel, the quantum transfer entropy is highly
linearly correlated with the total information of the control qubit. The slope of this
linear relation is determined by the rotation angle of the controlled-Z operation,
indicating that the extent of phase rotation directly modulates the strength of the
induced information flow.

We futhre investigate the exact QTE and the associated entropy bounds in
tripartite systems.When the influence of a third subsystem (or an external environ-
ment) is taken into account, the purely directional causation between qubits A and
B is captured by the conditional mutual information

C(A → B | E). (5.2)

We analyze the extreme case of CCNOTEA→B channel, and derive two lower
bounds of C(A → B | E), in terms of only local subsystems. The first one, called
Lieb lower bound, is

2 max{0,−Sf (B|A′A),−Sf (A′A|B)} ≤ C(A → B|E). (5.3)

For CCNOTEA→B channel, we have another the lower bound in terms of local
observables MA′ and MB on subsystems A and B respectively:

C(A → B | E) = I(A′B | E ′) ≥ C2(MA′ ,MB)
2∥MA′∥2∥MB∥2 + f(d, γ). (5.4)

The Lieb lower bound is always non-negative for diagonalized final state of QTE
defining protocol, reflecting the fact that coherence is preserved throughout the
protocol.

Finally, we introduce a quantity that serves as a criterion for classical causation
inference, defined on the local composite system A′AB. The classical causation
inference quantity is defined by

IC := 2 max{0,−S(B|A′A),−S(A′A|B)} − min{S(A′A), S(B)}. (5.5)

A positive IC indicates a positive pure classical correlation between A and B after
the evolution of a three-qubit channel UEAB, in the presence of environmental qubit
E.

Although quantum transfer entropy performs well for a variety of controlled
channels, significant challenges arise when attempting to extend it to more complex
quantum processes due to its nonadditivity. As a consequence, the current technique
is applicable only to relatively small channel fragments, where the informational
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contributions can still be meaningfully isolated.

Furthermore, because our framework relies on entanglement and coherence
resources to enhance the capability of causal discovery in quantum processes, quan-
tum channels that strongly disturb or extensively reshape coherence may lead to
spurious or misleading causal structures. In such cases, the apparent information
flow inferred from QTE may not faithfully represent the underlying dynamical
causation but instead reflect coherence manipulation introduced by the channel
itself.

Beyond the above discussion, further development of quantum causal discovery
algorithms within this framework is both natural and desirable. An important
direction for future work is to systematically characterize the class of quantum
causal structures that can be reliably resolved by the present method. Such a
classification would clarify the scope of applicability of QTE-based inference and
help identify which structural features of quantum processes remain accessible or
become ambiguous under this approach.
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