P NN
BN
YA AN Politecnico REPLY
iy di Torino

\\\‘ 1859 ,:'

Politecnico di Torino

Master of Science in Quantum Engineering

A Quantum-Enhanced
Regime-Switching Model for
Financial Time Series Forecasting

Academic Supervisor: Candidate:

Prof. Giovanna Turvani Giorgia Mazzaro
Company Supervisors:

Dr. Davide Caputo
Dr. Davide Tezza

Academic Year 20242025



Abstract

The ability to model and forecast financial time series is essential for modern eco-
nomic strategy, guiding critical decisions in risk management, asset allocation, and
derivative pricing. While traditional econometric models, such as Autoregressive
Integrated Moving Average (ARIMA) and Generalized Autoregressive Conditional
Heteroskedasticity (GARCH), perform well in stable conditions, they often fail to
capture the abrupt regime shifts that characterise real-world markets. Detecting
these structural breaks as they emerge, rather than a posteriori, remains a major
challenge for effective forecasting.

Developed in collaboration with Data Reply, this thesis investigates how quan-
tum mechanics can offer both a novel mathematical framework and a computational
advantage to address this challenge. The financial market, with its vast number of
interacting agents, inherent uncertainty, and rapid shifts in collective sentiment,
provides a fertile domain for applying quantum-inspired methods. Where classical
models struggle with structural non-linearities and high-dimensional data, quantum
formalisms offer a new lens to model this complexity.

Specifically, this research investigates two complementary quantum approaches.
First, it explores the quantum probability formalism, wherein a Schrodinger-like
trading equation gives rise to discrete energy levels in market dynamics, providing
a theoretical basis for the multimodal distributions observed in asset returns. This
approach offers a richer interpretation of market evolution by modelling phenom-
ena such as the superposition of investor beliefs and interference effects. Second,
this work provides experimental validation for the correspondence between these
quantum-like states and financial market regimes by using a quantum two-sample
test to detect structural breaks. By comparing return distributions from rolling
time windows, this test identifies market transitions with greater sensitivity than
classical methods, and its output is used to select between distinct econometric
models (ARIMA-GARCH), which have been pre-calibrated on the uni-modal and

multi-modal regimes, enhancing risk management.

Keywords: Financial Time Series Forecasting, Quantum Machine Learning, Quan-
tum Finance, Regime Switching, Quantum Two-Sample Test, Quantum ARIMA-
GARCH
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Chapter 1
Introduction

Financial markets represent one of the most intricate complex systems in the modern
world. Unlike physical systems governed by immutable laws, markets are driven by
the interactions of millions of heterogeneous agents acting on imperfect information.
Consequently, the central challenge in quantitative finance is not merely predicting
the future price of an asset but quantifying and managing the profound uncertainty
that characterises these systems.

For decades, the standard approach to this challenge has been to seek equilib-
rium. Traditional econometric models such as the Autoregressive Integrated Moving
Average (ARIMA) and Generalised Autoregressive Conditional Heteroskedasticity
(GARCH) rely on the assumption that the underlying stochastic process governing
returns is fundamentally stable. These tools have proved exceptionally powerful for
modelling markets in their stable states. However, they share a critical vulnerabil-
ity: they are often static. They struggle to account for the abrupt and non-linear
structural breaks that define financial crises. When a market transitions from a pe-
riod of stability to one of turbulence, the statistical properties of the system change
so drastically that a model trained on the former regime becomes obsolete when
applied to the latter.

This thesis addresses this limitation by proposing a change in perspective. In-
stead of forcing a single classical model to fit the entire history of a time series, we
adopt a physics-inspired framework that views the market as a system capable of
existing in distinct energy levels. Drawing upon the recent formalism of Quantum
Probability proposed by Li [1], we model the market transition between unimodal
and multimodal states as a natural phase transition driven by trading volume rather
than a failure of statistics.

It is important to clarify that we do not assert that the stock market is a micro-
scopic quantum object. Rather, we employ the mathematical machinery of quantum

mechanics because it offers a superior language for describing systems with interfer-



ence effects and state superposition. To validate this theoretical stance, we adapt
the Quantum Two-Sample Test methodology recently proposed by Garvin et al. [2].
By leveraging the high-dimensional feature space of a quantum kernel, we aim to
demonstrate that these market regimes are statistically distinct and that identifying
them is the prerequisite for any robust forecasting strategy.

The development of this work was carried out in collaboration with Data Re-
ply. This partnership provided a valuable opportunity to bridge academic research
with industrial application standards, allowing for the deepening of both theoretical
and practical expertise in Quantum Computing through the exploration of novel

concepts, libraries, and real-world financial applications.

1.1 Research Objectives

The primary goal of this work is to bridge the gap between the theoretical potential
of Quantum Finance and rigorous empirical validation. Specifically, this thesis aims
to:

1. Analyse the statistical properties of the SZSE Component Index to identify
the limitations of classical Gaussian assumptions and confirm the presence of

multimodality:.

2. Apply a volume-based energy threshold to segment the time series into distinct

calm and turbulent regimes.

3. Implement and execute a Quantum Two-Sample Test to provide statistical
validation that these regimes represent fundamentally different probability

distributions.

4. Demonstrate how this regime-aware approach can inform a hybrid forecasting

pipeline.

1.2 Thesis Structure

The remainder of this thesis is organised as follows.

Chapter 2 establishes the classical financial context. It defines the fundamental
concepts of returns and stationarity, reviews the standard ARIMA-GARCH mod-
elling framework, and highlights the specific stylized facts of the market that moti-
vate our search for a new approach.

Chapter 3 provides the necessary primer on quantum computing. It reviews the
mathematical formalism of Hilbert spaces, qubits, and quantum circuits, laying the

groundwork for the more advanced concepts applied in later chapters.



Chapter 4 introduces the theoretical core of the work. It presents the Quantum
Probability framework for asset return modelling and details how trading volume
can be interpreted as an energy parameter that drives the system from a ground
state to excited, multimodal states.

Chapter 5 describes the computational methodology. It explains the Quantum
Machine Learning techniques employed, specifically focusing on Quantum Kernels
and the implementation of the Quantum Two-Sample Test used to measure the
distance between market regimes.

Chapter 6 presents the empirical analysis of the SZSE dataset. It details the
identification of the regime-switching threshold, the results of the quantum statis-
tical tests, and demonstrates the performance of a regime-aware hybrid forecasting
pipeline.

Chapter 7 summarises the findings, discusses the implications for financial risk
management, and outlines avenues for future research in quantum-enhanced fore-

casting.



Chapter 2

Financial Background and
Classical Modelling

The quest to find order in the apparent chaos of financial markets has long fascinated
researchers. The foundation of quantitative finance is formally traced to 1900, when
Louis Bachelier proposed in his thesis Théorie de la Spéculation that stock price
fluctuations could be modelled using the mathematics of Brownian motion [3]. No-
tably, his mathematical derivation of diffusion processes predated Einstein’s physical
explanation of the same phenomenon by five years.

This paradigm evolved throughout the 20th century, culminating in two pillars of
modern finance: the Black-Scholes model [4] and the Efficient Market Hypothesis [5].
The Black-Scholes model provided the first closed-form solution for pricing options
by assuming returns follow a log-normal distribution. Concurrently, Fama’s Efficient
Market Hypothesis asserted that prices instantly reflect all available information,
implying that future price movements are fundamentally unpredictable and follow a
random walk. While mathematically elegant, this Gaussian framework often clashes
with empirical reality, failing to account for the crashes and extreme events observed
in actual markets.

This chapter establishes the theoretical toolkit required to understand the econo-
metric analysis performed in this thesis. The chapter is organised as follows. In
Section 2.1, we define the financial time series and the specific return metrics used.
In Section 2.2, we examine the stylized facts of asset returns that contradict classi-
cal Gaussian assumptions. In Section 2.3, we review the standard forecasting tools,
ARIMA and GARCH. Finally, in Section 2.4, we identify the inability of these static

models to handle regime switching, motivating the quantum approach.



2.1 The Nature of Financial Time Series

Financial econometrics applies statistical methods to financial data [6]. The primary
data source is the time series, a sequence of data points indexed in chronological
order. In this study, we analyse the Shenzhen Stock Exchange (SZSE) Component
Index. This index tracks the 500 largest companies on the Shenzhen exchange and

serves as a key barometer for the Chinese technology and manufacturing sectors.

Asset Returns: The Velocity of the Market

A common error in early analysis is to model the price of an asset P, directly.
Prices typically wander arbitrarily and have no fixed mean, a property known as
non-stationarity. To perform rigorous statistical analysis, we must transform prices

into returns. We distinguish between two types of returns used in this thesis.

Interday Log-Returns

For time series forecasting and statistical testing, we use the logarithmic return. It

is defined as the natural logarithm of the ratio of consecutive closing prices:

Close
ry =In <Pt ) (2.1)

Close
Py

Log-returns are preferred because they are time-additive and typically display sta-

tistical properties closer to stationarity than raw prices.

Intraday Returns

Later in this work, specifically for the Lin Li framework discussed in Chapter 4, we
will require a measure of the daily trading energy. For this purpose, we define the

intraday return which captures the price excursion during a single trading session:
] PC’lose
int t
Ttn e — In (Ptopen> (22)

Unless specified otherwise, the term return in the remainder of this text refers to

the Interday Log-Return r;.

2.2 Stylized Facts: The Anomalies

Decades of empirical research have revealed that financial returns do not behave

like the idealised random walks of Black-Scholes. They exhibit a set of persistent



statistical properties known as stylized facts [7].

2.2.1 Volatility Clustering

The most pervasive fact is that volatility is not constant. In finance, volatility is the
standard proxy for risk. Mandelbrot noted that large changes tend to be followed
by large changes, of either sign, while small changes tend to be followed by small
changes [8]. This phenomenon is known as wolatility clustering. It implies that
while the direction of the market may be unpredictable, the magnitude of the move
is correlated with the recent past. Figure 2.1 illustrates this for the SZSE index,

where periods of relative calm are punctuated by clusters of extreme turbulence.

Daily Log Returns of SZSE Index (2010-2020)

0.06

Log Return

201 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
Date

Figure 2.1: Daily log-returns of the SZSE Component Index (2011-2020). The data
exhibits clear volatility clustering, where high-variance days are grouped together.

2.2.2 Heavy Tails and Leptokurtosis

In a Gaussian world, events exceeding 3 standard deviations (30) are extremely rare.
In financial markets, 5o or even 100 events happen with alarming frequency. This is
known as the heavy tail problem. We quantify this deviation from normality using

two metrics calculated on our SZSE dataset:

o Skewness (g1) measures asymmetry. A normal distribution has g; = 0. Our
analysis of the SZSE index yields a skewness of -0.72. This negative value
indicates a left-skewed distribution, meaning that large negative returns or

crashes are more common and more violent than large positive returns.

o FExcess Kurtosis (k) measures the thickness of the tails. A normal distribution

has an excess kurtosis of 0. The SZSE returns exhibit an excess kurtosis of



3.9. This property, known as leptokurtosis, confirms that the probability of

extreme events is significantly higher than classical models assume.

Figure 2.2 visualises this reality. The empirical distribution in blue has a sharper

peak and fatter tails than the theoretical Gaussian shown by the black dashed line.

Distribution of Daily Interday Log-Returns for SZSE Index (2011-2020)

=3 Empirical Distribution of Daily Log-Returns
— = Theoretical Gaussian (1 =0.00, 0 =0.02)

Probability Density

-0.06 -0.04 -0.02 000 002 0.04 006
Log Return

Figure 2.2: Kernel Density Estimate of SZSE returns compared to a Normal dis-
tribution. The higher peak and fatter tails indicate a deviation from Gaussian
assumptions.

2.3 Classical Forecasting Models

To navigate this complexity, econometrics has developed models that attempt to
capture the memory of the market. Understanding these models requires defining a

core concept: autocorrelation.

2.3.1 Autocorrelation

Autocorrelation measures the relationship between a variable’s current value and its
past values. If the price of a stock today is strongly influenced by its price yesterday,
the series is said to be autocorrelated. Positive autocorrelation indicates a trend,
while negative autocorrelation indicates mean reversion. We measure this using the
Autocorrelation Function (ACF), which plots the correlation at different time lags.

This tool is essential for selecting the parameters of the models described below.

2.3.2 ARIMA: Modelling the Linear Trend

The Autoregressive Integrated Moving Average (ARIMA) model [9] is the standard
tool for forecasting the mean of a time series. An ARIMA(p, d,q) model is defined

10



by three parameters:

1. Autoregression (p): This parameter dictates how many past days influence the
current price. An AR(1) model implies that today’s return depends directly

on yesterday’s return. This captures the momentum of the market.

2. Integration (d): This parameter specifies how many times the raw data must be
differenced to become stationary. For financial prices which wander arbitrarily,

we typically use d = 1 which is equivalent to using returns.

3. Moving Average (q): This parameter dictates how the model reacts to past
forecast errors, often termed shocks. An MA(1) model implies that if the
model made a surprise error yesterday, that error will continue to ripple into

today’s prediction.

These parameters are typically chosen by minimising the Akaike Information
Criterion (AIC), a metric that balances the model’s accuracy against its complexity

to prevent overfitting.

2.3.3 GARCH: Modelling the Volatility

While ARIMA predicts the direction of the price, it assumes the risk or variance is

constant. As we saw in Section 2.2, this is false since volatility comes in clusters.

To model this, Engle and Bollerslev developed the GARCH(p, ¢) framework [10].
The standard GARCH(1,1) model predicts the variance o7 based on three terms:

o =w+ae_; + fo;_, (2.3)

Here, the coefficients have precise physical meanings:

o Reaction to Shocks (a) determines how jumpy the volatility is. A high «

means the market reacts violently to a sudden crash.

o Persistence (3) determines the memory of the volatility. A high § means that

once the market enters a crisis, it stays turbulent for a long time.
o Stability requires that a + 8 < 1.

In our SZSE analysis, we typically observe high g values, confirming the sticky

nature of financial crises.

11



2.4 The Failure Point: Regime Switching

The combination of ARIMA for the mean and GARCH for the volatility constitutes
the standard industry baseline. However, these models share a fundamental limita-
tion in that they are global. They estimate a single set of parameters ¢, 6, o, 3 that
attempts to fit the entire history of the market.

But markets are not static. As we will demonstrate in Chapter 4, the market
undergoes phase transitions, shifting between a Ground State characterised by calm
unimodal distributions and Excited States characterised by turbulent multimodal
distributions. A static GARCH model trained on a decade of data behaves like a
thermostat set to the average annual temperature. It will be too cold in winter and
too hot in summer. This limitation motivates our research into whether Quantum
Probability can be used to detect these regimes dynamically and switch between

models adaptively.
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Chapter 3
Quantum Fundamentals

Financial markets represent complex adaptive systems driven by the intricate in-
teractions of countless heterogeneous agents. Chapter 2 established that traditional
modelling frameworks often struggle to capture the stylized facts of these systems,
such as heavy tails and regime shifts. This limitation motivates the search for a
more expressive mathematical language. This thesis explores whether quantum the-
ory can offer this richer framework, positioning our work within the active research
field of Quantum Finance.

The potential of applying quantum principles to finance is twofold. First, it
provides a new mathematical syntax where concepts like superposition and complex
probability amplitudes allow uncertainty and agent interaction to be treated nat-
urally. Second, it offers a new computational tool. Quantum computing achieves
its power by leveraging unique resources such as interference which, when combined
in multi-qubit systems through entanglement, enable computational possibilities in-
tractable for classical machines.

Clarifying the terminology surrounding quantum computational power is crucial
at this stage. Quantum supremacy refers to the demonstration that a programmable
device can solve a problem that no classical computer can solve in a feasible amount
of time, regardless of the practical utility of that problem. A more practical goal
is quantum advantage, which denotes the point where a quantum computer solves
a relevant real-world problem significantly faster or more accurately than the best-
known classical algorithms [11]. The research presented in this thesis operates in
the current Noisy Intermediate-Scale Quantum (NISQ) era, where the primary focus
is the pursuit of quantum advantage on specific, carefully chosen tasks rather than
demonstrating universal supremacy.

This chapter constructs the theoretical foundation required to understand the
proposed methodology. Section 3.1 defines the axiomatic postulates of quantum

mechanics. Section 3.2 derives the fundamental unit of quantum information, the

13



qubit, and its geometric representation. Section 3.3 introduces the operational tools
of quantum computation, namely gates and circuits, which are necessary to ma-
nipulate quantum information. Finally, Section 3.5 details the core concepts of
Quantum Machine Learning, laying the groundwork for the parameterised circuits

and quantum kernels used in the empirical analysis.

3.1 The Postulates of Quantum Mechanics

Quantum mechanics is the theory that describes the dynamics of the microscopic
world. Its framework is built upon a concise set of fundamental axioms, or postu-
lates, that connect an abstract mathematical description to physically observable
phenomena. It is standard practice in foundational texts to introduce the theory
through these formal rules [12-14]. We will follow this canonical approach. As the
language of this theory is fundamentally that of linear algebra, our approach will be
to pause within the discussion of each postulate to formally define and clarify the

key mathematical concepts it employs.

Postulate 1 (State Space). Associated to any isolated physical system is a complex
vector space with inner product (that is, a Hilbert space) known as the state space.
The system is completely described by its state vector, which is a unit vector in the

systems state space.

This first postulate is the cornerstone of the theory. It makes a profound claim:
the state of a physical system is a wvector. These vectors live in a mathematical
structure known as a Hilbert space. Conceptually, a Hilbert space is a complex
vector space equipped with an inner product, which allows us to define geometric
notions such as length and angle, essential for normalization and orthogonality.

A final, more technical requirement is that the space must be complete!. While
this is a critical distinction in infinite-dimensional settings, it is a standard theorem
of linear analysis that any finite-dimensional inner product space is automatically
complete [15]. As this thesis is concerned exclusively with finite-dimensional sys-
tems, this condition is always satisfied.

To work with these vectors, we use the elegant formalism introduced by Paul
Dirac [14].

Definition 3.1.1 (Bra-Ket Notation). In Dirac notation, the elements of the Hilbert

space are represented as follows:

'In mathematics, a space is complete if every Cauchy sequence of elements in the space converges
to a limit that is also within the space. This property is what formally distinguishes a Hilbert
space from more general inner product spaces.

14



o A state vector is denoted by a ket, |¢). It is mathematically equivalent to a

column vector.

o For every ket |1), there exists a corresponding bra, (Y|, which is its conjugate

transpose (a row vector of complex conjugates).

o The inner product of a state |¢) with a state |p) is denoted by (p|). Two

states are orthogonal if their inner product is zero.

The direct consequence of the vector space structure is the principle of superpo-
sition. Since states are vectors, we can form linear combinations: if |a) and |b) are
two valid states, then their sum (properly normalised) is also a valid state.

The perfect illustration of this postulate is the qubit, the fundamental unit of
quantum information. While a classical bit is confined to the states 0 or 1, a qubit’s
state is a vector in a two-dimensional Hilbert space. The notation for this space
is C2?, where the 'C’ signifies that the space is defined over the complex numbers,
and the superscript 2’ indicates its dimension. A dimension of two means that any
vector in the space can be written as a linear combination of just two basis vectors
that span the space [12].

By convention, we choose a particular orthonormal basis called the computational
basis, whose vectors are denoted by |0) and |1). We can give these abstract kets an

explicit representation as column vectors:

|0) = (é) , 1) = ((1)) ) (3.1)

A general state [1)) is therefore a superposition of these basis vectors:

) =al0) +51), (3.2)

where the complex coefficients a, 5 € C are known as probability amplitudes, and

must satisfy the normalization condition
laf> + |8]* = 1. (3.3)

A full, detailed exploration of the qubit’s properties, including its geometric repre-
sentation on the Bloch sphere, is provided in Section 3.2.

It is precisely this ability to inhabit a continuum of superposition states that
makes the qubit a far richer information carrier than its classical counterpart. This
richness, however, presents a paradox: although the state is described by continuous

complex amplitudes, a single measurement will always yield just one classical bit.
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The resolution to this puzzle lies in the nature of quantum measurement: a process
that does not merely reveal pre-existing information, but actively transforms the
state itself.

To describe such transformations, whether induced by measurement or by time
evolution, we require a new mathematical object: the operator. Operators are the
tools that allow us to model how quantum states change and how physical quantities

are extracted from them.

Operators and Observables The state vector [¢) provides a complete, yet ab-
stract, description of a quantum system. To connect this mathematical object to
the physical world, we must represent the tangible properties we can actually mea-
sure in an experiment, such as position, momentum, and energy. In the language
of quantum mechanics, these measurable quantities are called observables, and they
are represented by a special class of mathematical objects known as operators.
Formally, an operator A is a linear map that acts on a ket to produce another ket
within the same Hilbert space. In finite-dimensional systems, every linear operator
admits a matrix representation, which we denote by A (without the hat). The action
of A on a state vector corresponds to matrix multiplication in this representation. To

construct and interpret these matrices, it is useful to first define the outer product.

Definition 3.1.2 (Outer Product). Given a ket |¢) and a bra (|, their outer
product is the operator ) (¢|. This operator maps a vector |x) to the scaled vector
[VY (p|x). In matriz terms, if |1) and |¢) are column wvectors, the outer product
corresponds to the multiplication of a column vector by a row vector, resulting in a

square matriz.

For example, the outer product of the basis state |0) with itself yields:

0) (0] = (é) (1 0) = (; 8) . (3.4

Any operator can be defined by its action on the basis vectors. For a single qubit,

a general operator A can be expressed as a linear combination of outer products:
A=al0) (0] +b]0) (1] + 1) (0] + d 1) (1], (3.5)

where the complex coefficients a, b, ¢, d determine the operators action.

A key insight is that the columns of an operator’s matrix are determined by its

16



action on the basis vectors. If an operator A acts on the computational basis as:

Al0) = al0) +c|1) (3.6)
A1)y =00y +d|1) (3.7)

then the matrix A representing A is:

A= (Z 2) . (3.8)

The first column corresponds to A |0), and the second to A |1). This dual perspective
(abstract operator and concrete matrix) will be particularly useful when we intro-
duce quantum gates in Section 3.3, where operators correspond to unitary matrices

that manipulate qubit states.

While an operator can be defined by its action on any basis, a more powerful

way to interpret its action comes from analysing its eigenvectors and eigenvalues.

Definition 3.1.3 (Eigenvectors and Eigenvalues). Let A be a linear operator acting
on a Hilbert space. A non-zero vector |1) is called an eigenvector offl if the action

offl on 1) simply scales it by a complex number A, called the eigenvalue:

Ay = M|v). (3.9)

This equation tells us that [¢)) is unchanged in direction by the operator: it is
only stretched or rotated in phase. Geometrically, eigenvectors are those special

directions that remain invariant under the transformation, up to a scaling factor.

Example: Pauli-Z Operator. Consider the Pauli-Z operator:

1 0
() -

Its action on the computational basis states is:
Z0)=10), Z|1)=—]1). (3.11)

Here, |0) and |1) are eigenvectors of Z, with eigenvalues +1 and —1, respectively.
This means that Z leaves |0) unchanged, while it flips the sign of |1).
The concept of eigenvectors is particularly powerful when applied to the oper-

ators central to quantum mechanics. For the operators that describe physical pro-
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cesses, a crucial property holds: their eigenvectors can be chosen to form a complete
orthonormal basis for the state space.

This basis, known as the eigenbasis, is extremely useful. When an operator is
expressed in its own eigenbasis, its matrix representation simplifies to a diagonal
form, where the diagonal entries are precisely its eigenvalues. The physical role of
an operator is directly encoded in the mathematical properties of its eigenvalues.
Based on these properties, we can identify two fundamental classes of operators
that govern all of quantum dynamics: the unitary operators for evolution, and the

Hermitian operators for measurement.

Definition 3.1.4 (Unitary Operator). An operator U is unitary if its conjugate
transpose is also its inverse (UTU =1). Its eigenvalues are always complex numbers

with a modulus of one, i.e., of the form e, where € R.

This mathematical condition has a profound physical meaning: it guarantees
that the length of the state vector is preserved during the transformation, thus con-
serving the total probability of the system. All quantum gates, which we will detail

in Section 3.3, are by definition unitary operators.

Definition 3.1.5 (Hermitian Operator). An operator A is Hermitian if it is equal

to its own conjugate transpose (fl — At ). Its eigenvalues are always real numbers.

Since the outcome of a physical measurement must be a real number, this prop-
erty makes Hermitian operators the unique mathematical candidates for representing

physical observables.

An observable is any measurable property of a system; prominent examples in-

clude position, momentum, and energy (represented by the Hamiltonian operator).

Equipped with this mathematical language of Hilbert spaces, state vectors, and
operators, we can now state the second postulate, which governs the dynamics of

an unobserved quantum system.

Postulate 2 (Evolution). The evolution of a closed quantum system is described by
a unitary transformation. That is, the state |¢) of the system at time ty is related

to the state |19) at a later time ty by a unitary operator U(ty,ts) such that:

|th2) = U |¢h1) (3.12)

This is the law of motion for an unobserved system. A more refined version
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describes the evolution in continuous time through the Schridinger equation:
L d -
th— (b)) = H [4(t)) (3.13)

where H is a Hermitian operator known as the Hamiltonian, which corresponds to
the total energy of the system, and f is the reduced Planck constant (h = h/27).
The two formulations are equivalent, as the solution to the Schrodinger equation

gives the unitary operator:
Ulty, ty) = e tH2—t)/h, (3.14)

The linearity of this evolution is a defining feature of quantum mechanics and has
significant implications. As we will see in Section 3.5, it means that the activation
functions used in Quantum Machine Learning must be fundamentally different from

the non-linear functions, such as ReLLU, that are common in classical deep learning.

The unitary evolution described in Postulate 2 governs the dynamics of a quan-
tum system as long as it remains isolated. However, to extract information, an
observer must interact with it. This act, known as measurement, marks a profound
and conceptually challenging departure from unitary evolution. While the mathe-
matical rules for predicting its outcomes are extraordinarily successful, their physical
interpretation is the subject of intense debate, a foundational issue known as the
measurement problem [13]. The formalism posits that measurement is inherently
probabilistic and irreversible, a stark contrast to the deterministic and reversible

nature of unitary evolution. We now formalize these operational rules.

Postulate 3 (Measurement). Quantum measurements are described by a collection
of measurement operators, {M,,}, acting on the state space. The index m refers to
the possible measurement outcomes. If the state is 1) immediately before measure-

ment, the probability of result m is given by the Born rule:

p(m) = (Y| M} My, [¢) (3.15)
and the state after measurement is:

M )

. (3.16)
p(m)
The measurement operators satisfy the completeness relation:
S Mf M, = 1. (3.17)
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This is the most general formulation of a measurement. A vast and intuitive
subclass are the projective measurements, which are directly associated with ob-
servables. In this case, the measurement operators have the special structure of

projection operators.

Definition 3.1.6 (Projection Operator). A projection operator (or projector) is an
operator P that is both Hermitian (P = PT) and idempotent (P?> = P). The outer
product of a normalised state vector with its corresponding bra, Py = |¢) (1|, is a

projector onto the one-dimensional subspace spanned by |1).

In a projective measurement, the operators { M,,} are a set of orthogonal projec-
tors { P, } that correspond to the eigenspaces of the observable being measured, and
the outcome m is the corresponding eigenvalue. To make this concrete, consider the
measurement of a qubit in the computational basis, which corresponds to measuring

the Pauli-Z observable. The projectors onto its eigenspaces are:

R = [0) <0|—(; 8) =11y (1] = (8 ‘f) (3.18)

For a general state |¢) = «|0) + [ |1), the probability of obtaining the outcome

associated with state |0) is then:

p(0) = (| Py ) = |af*. (3.19)

The third postulate is profoundly counter-intuitive. It first establishes that outcomes
are fundamentally probabilistic. Second, it describes the collapse of the wave func-
tion: measurement is an invasive process that projects the state onto a new one.
This disturbance implies a fundamental limit on which properties can be known
simultaneously. If two observables do not commute, the Heisenberg Uncertainty
Principle imposes a strict trade-off [16]. For position () and momentum (p), this
is famously expressed by the inequality:

The third postulate is profoundly counter-intuitive. It first establishes that out-
comes are fundamentally probabilistic. Second, it describes the collapse of the wave
function: measurement is an invasive process that projects the state onto a new one.
This disturbance implies a fundamental limit on which properties can be known
simultaneously. If two observables do not commute, the Heisenberg Uncertainty
Principle imposes a strict trade-off [16]. For position (z) and momentum (p), this

is famously expressed by the inequality:

)

Ox0p > —, 3.20
p 2 (
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where 0, and o, are the standard deviations of the position and momentum mea-
surements, respectively.

Having established the rules for single systems, we must now consider how to
describe systems composed of multiple parts. This requires a new mathematical

tool for combining their respective state spaces.

Definition 3.1.7 (Tensor Product). The tensor product, denoted by the symbol ®,
is an operation that combines vector spaces to create a larger composite space whose

dimension is the product of the individual dimensions.

Let us consider two qubits in the states:

o= (o) w=)

Their tensor product is the four-dimensional vector:

aobo
a0b1

|a) ® |b) = . (3.21)
a1b0

a1b1
With this operation defined, we can now state the final postulate.

Postulate 4 (Composite Systems). The state space of a composite physical system is
the tensor product of the state spaces of the component physical systems. Moreover,
if we have systems numbered 1 through n, and system number i is prepared in the
state |1;), then the joint state of the total system is |th1) @ [th) @ -+ & |thy,).

This mathematical structure allows for the existence of entangled states: global
states of a composite system that cannot be described by assigning a definite state to
each of its individual parts. This property of non-separability is the fundamental re-
source enabling quantum information processing. Its implications are groundbreak-
ing, particularly in cybersecurity, where it is the basis for provably secure communi-
cation, and in finance, where it offers potential speed-ups for complex optimisation
problems. The nature of this resource will be discussed in detail in Section 3.4.

These postulates form the complete foundation of quantum mechanics. They
provide the rules for describing the state of any quantum system, how that state
evolves in time, and what happens when we attempt to measure it. With these
abstract laws now established, we are ready to explore their concrete implications

by applying them to the central objects of quantum computation: the qubit.
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3.2 The Qubit and its Geometric Representation

The postulates provide the abstract rules of quantum theory. We now apply these
rules to the fundamental object of quantum computation: the qubit. A classical bit
can exist in one of two definite states, 0 or 1. By contrast, a qubit leverages the

principle of superposition to occupy a much richer state space.

Definition 3.2.1 (Qubit). A qubit is a two-level quantum system whose state space
is the two-dimensional complex Hilbert space C%. An orthonormal basis for this
space is chosen by convention and denoted as {|0),|1)}, representing the classical

bit values.

An arbitrary pure state of a qubit, |¢), is a unit vector in this space, written as

a linear combination of the basis states:

) = «]0) + B 1), (3.22)

where the coefficients o, 5 € C are complex numbers known as probability ampli-
tudes.

Although this algebraic description is complete, it can feel abstract. While the
state appears to require four real parameters (the real and imaginary parts of « and

f), we can show that two are redundant.

First, let us express the complex amplitudes in their polar form: a = ry,e? and
B = rze'. The state can be written as:
) = rae|0) + rges 1) . (3.23)

The normalization condition, |a|* + [3]* = 1, implies that 72 + 5 = 1. Since 7,
and 73 are real and non-negative, this constraint allows us to represent them using

a single real parameter, an angle ¢, such that:
ro =cos(6/2) and rz=sin(6/2), for 0 € [0,7]. (3.24)

Substituting these into the state vector yields:
1) = cos(6/2)e |0) + sin(6/2)e? [1). (3.25)
The second key consideration is the irrelevance of the global phase factor. Two

states that differ only by a global phase, such as [1)) and e |¢), are physically

indistinguishable. We can therefore multiply the entire state by a factor of e«

without changing its physical properties. This effectively removes the phase from
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the first amplitude:
o) = e~ 1)) = cos(A/2) |0) + sin(h/2)e %) |1) . (3.26)

The only phase that remains is the relative phase, ¢ = 0 — d,. These two steps
have reduced the four initial real parameters to just two: the polar angle # and the
azimuthal (relative phase) angle ¢.

This reduction to two real parameters motivates a powerful geometric visuali-
sation: the Bloch sphere (Figure 3.1). This construction maps the state space of
a single qubit onto the surface of a unit sphere in R3, where the state is uniquely

defined by the angles 6 and ¢ we have just derived:

1) = cos (g) |0) + €™ sin (g) 1), where § € [0,7] and ¢ € [0,27).  (3.27)

&
1)
Figure 3.1: The Bloch sphere as a geometric representation of a single-qubit pure

state. Each vector |¢) corresponds to a point on the sphere defined by the angles 6
and ¢. The states |0) and |1) are located at the north and south poles, respectively.

In this mapping, the state |0) corresponds to the north pole (6 = 0), while |1) is
found at the south pole (§ = 7). Orthogonal states occupy antipodal points.

This representation is more than illustrative; it helps build intuition about the
behaviour of quantum gates, which, as we will explore in Section 3.3, act as rotations

of the state vector on the surface of the Bloch sphere.
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Pure vs. Mixed States. The Bloch sphere, however, tells a richer story, as
illustrated in Figure 3.2. The points on the surface of the sphere represent pure
states, for which our knowledge of the system is maximal (corresponding to a Bloch
vector of length |r] = 1). More generally, a quantum system can be in a mized state,
which corresponds to a vector in the interior of the sphere (|7] < 1). This can arise
either from classical uncertainty over an ensemble of states or from decoherence.

To handle both scenarios, we use the density operator, p. A generic, or partially
mized state, is represented by a vector of length 0 < |r] < 1. The extreme case is
the mazimally mized state, which represents a complete lack of information about
the qubit’s orientation. This corresponds to the very center of the sphere, a vector
of length |F] = 0.2

Pure State

[2 X1me r
Partially Mixe Maximally

1)

Figure 3.2: Representation of pure and mixed states on the Bloch sphere. Pure states
lie on the surface (r = 1), partially mixed states lie in the interior (0 < r < 1), and
the maximally mixed state lies at the origin (r = 0).

Definition 3.2.2 (Density Operator). The density operator p for a quantum system

is a positive semi-definite operator with unit trace (tr(p) =1).

o For a pure state |¢), the density operator is the projector onto that state:

p=1v) (. (3.28)

2The most general form for a single-qubit density operator is p = %(I + 7. 7)), where & =
(02,0y,0) is the vector of Pauli matrices and 7 is the Bloch vector. For a pure state, the vector
has unit length, |#] = 1. For a mixed state, it is shorter, |7] < 1. The maximally mixed state has
7= (0,0,0), yielding p = 1.
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o For a mixed state representing an ensemble of pure states {|v;)} with clas-
sical probabilities {p;}, the density operator is the weighted average of their

projectors:

p= sz' |[0i) (il - (3.29)

This geometric picture provides a complete map of the possible states of a single
qubit. The next logical question is how to manipulate this state in a controlled
manner; for instance, how to move it from one point on the sphere to another. This
is the role of quantum gates, which implement the unitary evolution described in

Postulate 2 as a set of precise, reversible operations.

3.3 Quantum Gates and Circuits

The evolution of a quantum state is governed by the Hamiltonian operator via
the continuous-time Schrodinger equation, as described in Postulate 2. For a pro-
grammable computer, however, we need a way to implement any desired evolution
using a finite set of controllable, discrete operations. This requirement leads to the
paradigm of digital quantum computing. Unlike analog quantum computers, which
aim to build a physical system whose Hamiltonian directly mimics a specific problem,
the digital approach approximates any complex, continuous evolution by breaking
it down into a sequence of simple, discrete operations called quantum gates.

This process of discretization is formally justified by product formulas like the
Lie-Trotter-Suzuki decomposition [17, 18]. The first-order formula states that for
two (not necessarily commuting) Hermitian operators A and B, the evolution over
a time t can be expressed as:

e~ i(A+B)t/h :T}ggo (e—iAt/nhe—iBt/nh)n. (3‘30)
This powerful result means that a complex evolution generated by a Hamiltonian
H = A+ B can be approximated by rapidly alternating between simpler evolutions
generated by A and B, each applied for a small time slice At = ¢/n. It is a non-trivial
result because, in general, eA*P #£ e4ef unless the operators A and B commute [17].
These simpler evolutions correspond to our fundamental quantum gates. This thesis
focuses exclusively on this digital gate-based model. Each quantum gate is a unitary

operation, ensuring that the computation is, in principle, reversible.

25



3.3.1 Single-Qubit Gates

Gates that operate on individual qubits are represented by 2 x 2 unitary matrices.
Their actions can be visualised as rotations of the state vector on the Bloch sphere.

Table 3.1 provides a summary of the fundamental single-qubit gates.

The Identity and Pauli Gates. The most fundamental operation is the Identity
gate (I), which leaves the qubit state unchanged. Alongside it, the Pauli gates
(X,Y, Z) are foundational operations in quantum computing. These gates are the
operational counterparts to the Pauli matrices (o,,0,,0), a set of operators central
to the mathematical description of spin in quantum mechanics. In a computational
context, the X, Y, and Z gates implement rotations of 7 radians around the principal

axes of the Bloch sphere.

o The Pauli-X gate is the quantum analogue of the classical NOT gate, perform-

ing a bit-flip. Its action on the basis states is:

X1[0)=11), X|1)=]0). (3.31)

e The Pauli-Y gate applies both a bit-flip and a phase-flip. Its action is:

Y10y =i[1), Y1) =—i|0). (3.32)

o The Pauli-Z gate is a phase-flip gate. It leaves |0) unchanged but applies a
phase of —1 to the |1) state:

Z10y=10), Z[1)=—]1). (3.33)

It is a key result that the Pauli matrices, together with the identity matrix, form a

basis for the space of all single-qubit operators.

The Hadamard Gate and Basis Changes. The Hadamard gate (H) is crucial
for creating superposition and for changing basis. While we typically work in the
computational basis {|0),|1)}, it is often useful to switch to the diagonal basis,

{|+),|-)}, whose vectors are defined by the action of the Hadamard gate:

1 —
H10) = (10} + 1)) = 4+ (3.34)
H1) = —(l0) - 1)) = ) (3.35)

S

2
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This change of basis is powerful because the action of certain gates becomes simpler

to understand. For example, the Z gate, which applies a phase-flip in the computa-

tional basis, acts as a bit-flip in the diagonal basis (Z |[+) = |—)), while the X gate
acts as a phase-flip in this new basis (X |+) = [+), X |-) = —|—)).

General Rotation Gates.

While the Pauli gates perform fixed rotations, a more

general set of operations are the continuous rotation gates, R, (), R,(6), and R.(6),

which perform a rotation of an arbitrary angle # about an axis. These are essential

for the parameterised circuits used in Quantum Machine Learning.

Gate Symbol Matrix Description

Identity <(1) (1)> Leaves the state unchanged.

Pauli-X <(1) (1)> Performs a bit-flip; a 7 ro-
tation around the x-axis.

Pauli-Y (? —()z) Performs a 7 rotation
around the y-axis.

Pauli-Z (é _01> Performs a phase-flip; a «
rotation around the z-axis.

Hadamard % G _11> (?Efaates a uniform superpo-
sition.

Phase (S) <(1) ?) A 7/2 rotation around the
z-axis. It is the square root
of the Z gate (5? = 7).

/8 (T) <(1) 618/4) A 7r/4 rotation around the
7-axis.

Rotation-X — R,(0) — C.OS.(Q/ 2)  —isin(0/2) Rotation of angle 6 around

—isin(0/2)  cos(0/2) the xaxis
Rotation-Y — R, (0) — Cés(e/ 2) —sin(6/2) Rotation of angle 6 around
sin(0/2)  cos(0/2) the y-axis
—i6/2
Rotation-Z — R.(0) — (e 0 > Rotation of angle 6 around

0

¢i0/2

the z-axis.

Table 3.1: A summary of fundamental single-qubit gates, showing their circuit sym-

bol, matrix representation, and description of their action.
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3.3.2 Multi-Qubit Gates and Universality

While single-qubit gates allow for arbitrary state manipulation on individual qubits,
they are fundamentally insufficient for universal quantum computation. Acting
alone, they can only produce states that are separable, meaning the total state
of an n-qubit system can be written as a tensor product of individual qubit states:
[V) = [11) @ |1ha) @ - -+ & |1b,). To unlock the full power of quantum mechanics, we
require multi-qubit gates capable of generating entanglement.

The canonical two-qubit gate is the Controlled-NOT (CNOT) gate. It acts on
two qubits, a control and a target, and performs a Pauli-X (NOT) operation on the
target if, and only if, the control qubit is in the state |1). In circuit diagrams, the
control is denoted by a solid dot (e) and the target by a circled plus (). As it
acts on a two-qubit system (a C* space), it is represented by a 4 x 4 unitary matrix.
In the computational basis ordered as {|00) , |01}, |10),|11)}, its circuit symbol and

matrix representation are:

1 000

Control —— 1
CNOT = 0 00
Target —p— 0 0 1
0010

Another important controlled gate is the Controlled-Z (CZ) gate. While seem-
ingly different, the two are logically equivalent; a CNOT can be constructed from
a CZ gate by applying Hadamard gates to the target qubit before and after the
operation. The choice between them is often a matter of which is more native or
easier to implement on a given hardware architecture. The concept of controlled
operations can be extended to multiple controls, such as in the Toffoli (CCNOT)
gate, which has two control qubits. The power of the digital gate-based model lies
in the concept of universality. It is a remarkable result that any possible unitary
operation can be approximated to an arbitrary degree of accuracy by composing
gates from a small, finite set. A set with this property is called a universal gate set.
While the set of all single-qubit gates and the CNOT gate is universal, a more pow-
erful result is provided by the Solovay-Kitaev theorem [12], which guarantees that
this approximation can be achieved efficiently. For practical purposes, universality
is typically achieved using a finite set of gates, such as the Clifford+T gates®.

This principle of universality is what allows for the construction of powerful

quantum subroutines, such as the Quantum Fourier Transform that enables Shor’s

3The Clifford group consists of gates (H, S, CNOT) that are not universal on their own. As
proven by the Gottesman-Knill theorem [19], any circuit composed solely of Clifford gates can
be efficiently simulated on a classical computer, and thus cannot provide a quantum speedup.
The addition of a non-Clifford gate, such as the T gate, is what makes the set universal and
computationally powerful.
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factoring algorithm [20]. The most immediate application of these tools, however,
is the creation of entangled states. The simple circuit that combines a Hadamard
gate with a CNOT gate, shown in Figure 3.3, is sufficient to transform a simple,
separable state into a maximally entangled state. This process and its profound
implications are so central to quantum computation that they merit their own ded-

icated discussion in the following section.

3.4 Entanglement: A Uniquely Quantum Resource

The concept of entanglement is not merely an extension of the superposition princi-
ple to multiple qubits; as Schrodinger famously described it, entanglement is not one
but rather the characteristic trait of quantum mechanics [21]. It represents the core
resource of the second quantum revolution: while the first revolution gave us lasers
and transistors by understanding quantum ensembles, the second seeks to control
individual quantum states to process information in ways impossible for classical
physics.
To define it rigorously, it is best to first define its opposite: separability.

Definition 3.4.1 (Separable and Entangled States). Let a composite system be
described by a state space V =V @ Vo ®--- Q@ V,.

o A state |ty € V is called separable if it can be written as a tensor product of
states from the component subspaces, i.e., |) = 1) @ |1a) @+ - - R |1y, ), where

i) € V.
o A state is entangled if it is not separable.

A separable state is one where each subsystem has its own well-defined state,
independent of the others. An entangled state, by contrast, is one where the con-
stituent parts have lost their individual identities in favour of a global, correlated
state. The most direct way to understand how such a state is created is to see it
emerge from the action of multi-qubit gates.

The simple circuit in Figure 3.3 uses just one Hadamard gate and one CNOT
gate to transform a simple, separable state into a maximally entangled state known
as a Bell state.

The process is as follows:
1. We start with two qubits in the separable state |00).

2. A Hadamard gate is applied to the first qubit, creating the superposition
7(10) +[1)) ® [0) = -5(]00) + [10)).
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0) ————b—

Figure 3.3: The quantum circuit for generating the Bell state |®*) from the initial
state |00).

3. A CNQOT gate is then applied, with the first qubit as control. The CNOT acts
on the |10) component, flipping the second qubit to create |11).

The final state is the entangled Bell state:

1

V2

In this state, the qubits have lost their individual identities. If we measure the

+) = ——(]00) + [11)). (3.36)

first qubit and find it to be 0, the system instantly collapses to |00), and we know
with certainty that the second qubit is also 0. This perfect, non-local correlation
is a fundamental resource that has no classical analogue. It lies at the heart of the
spooky action at a distance that Einstein, Podolsky, and Rosen questioned in their
famous EPR paper [22], which initiated the debate on the completeness of quantum
mechanics.

It is crucial to note, however, that this correlation does not allow for faster-
than-light communication, as the outcome of the first measurement is fundamentally
random. This distinction can be illustrated by a thought experiment using classically
correlated objects, famously popularised by John Bell [23]. Imagine we have two
pairs of gloves, one red and one blue. We choose one pair at random, place each
glove into a separate, identical box, and then separate the boxes by a vast distance.
We know the gloves in the boxes are perfectly correlated: they are either both red
or both blue.

Upon opening one box and finding a red glove, an observer instantly knows that
the other box also contains a red glove. This knowledge is acquired instantaneously,
yet no information has travelled from one box to the other at that moment. This
classical correlation is based on ignorance: the state of the gloves was determined the
moment they were packed. The measurement simply reveals a pre-existing reality,
a worldview known as local realism.

In the quantum case, the reality is far stranger. Before a measurement is made,
a property like the spin of an entangled particle is not simply unknown; it is gen-
uinely undefined. The system exists in a true superposition of all possible outcomes.
The act of measurement is not a passive revelation but an active process that forces

the entire entangled system to collapse into a single, definite state. Bell’s theorem
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provides a mathematical framework to test this distinction, and decades of exper-
iments, notably by Aspect, Clauser, and Zeilinger, have confirmed that quantum
systems violate the predictions of local realism, proving that this superposition is
real and its collapse is non-local [24, 25].

This ability to generate complex, entangled states through a simple sequence
of gates is central to quantum computation. With these foundational concepts
established, we now turn to the specific algorithms that leverage these resources for

data analysis.

3.5 Elements of Quantum Machine Learning

Quantum Machine Learning originates from a foundational question: can the prin-
ciples of quantum computing be applied to enhance the performance of classical
machine learning algorithms? The term learning refers here to the iterative process
of updating a model’s parameters to achieve a specific data-driven goal [26]. The
central objective is to design quantum software capable of identifying patterns in
data more efficiently or effectively than classical methods [27, 28].

Demonstrating a quantum advantage in machine learning remains a complex
challenge. Unlike structured problems such as integer factorization, many learning
tasks lack known optimal classical algorithms. Claims of advantage must therefore
be supported by rigorous benchmarking, which may manifest as improvements in
accuracy, generalisation, or the ability to sample from distributions inaccessible to
classical systems [29].

Research in this field is currently shaped by the limitations of the NISQ era. The
most viable strategy in this setting is the hybrid quantum-classical model, which
assigns complementary roles to classical and quantum processors. Classical com-
ponents handle data pre-processing and optimisation, while a Quantum Processing
Unit (QPU) executes specific quantum circuits. The most prominent instantiation
of this paradigm is the Variational Quantum Algorithm (VQA) [30], which forms
the operational backbone of the models developed in this thesis.

This section builds the conceptual tools for this paradigm. Section 3.5.1 details
the hybrid architecture underlying a VQA. Section 3.5.2 focuses on data encoding
via quantum feature maps, which embed classical inputs into the Hilbert space.
Section 3.5.3 describes the parameterised quantum circuit, the trainable core of vari-
ational models. Finally, Section 3.5.5 connects these concepts to recent industrial

applications in finance.
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3.5.1 The Hybrid Paradigm

Noisy Intermediate-Scale Quantum (NISQ) devices face significant limitations in
coherence time and gate fidelity. To circumvent these constraints, the most viable
strategy is the hybrid quantum-classical model. This approach assigns complemen-
tary roles to classical and quantum processors. Classical components handle data
pre-processing and optimisation, while the Quantum Processing Unit (QPU) exe-

cutes specific quantum circuits that are computationally hard for classical devices.

3.5.2 Data Encoding Strategies

Classical data must be mapped into the quantum state space before it can be pro-
cessed. This step, known as data encoding or embedding, is handled by a quantum
feature map U(x). The choice of encoding determines the expressivity of the model

and the complexity of the circuit.

Basis Encoding. This method associates each classical input with a computa-
tional basis state. An integer z (in binary representation) is mapped to the state

|z). For example, the input = 5 (binary 101) is encoded as |101). While intuitive,

Figure 3.4: Circuit for Basis Encoding of the input x = 5 (1015).

this method is inefficient for continuous data, as it requires discretisation and uses

qubits linearly with the bit-precision of the input.

Amplitude Encoding. This strategy encodes a vector x = (xg,...,Zy_1) into

the amplitudes of a quantum state:

N-1

) = Y @i li) (3.37)

1=0

where the input vector must be normalised such that 3" |z;|*> = 1. Amplitude encod-
ing is exponentially efficient, storing N features in only n = log, N qubits. However,
the state preparation circuit required to load arbitrary amplitudes is generally deep,

scaling as O(NV), which often negates the advantage on NISQ hardware.
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Angle Encoding. This method maps classical features to the rotation angles of
quantum gates. For a data vector x = (z1,...,%,), the circuit applies rotations

such as R,(x;) to each qubit. Angle encoding is particularly suitable for financial

0) — Ry(z1) cos(5) |0) + sin() [1)
10) — Ry(22) ——
0) — Ry(x3) ——

Figure 3.5: Circuit for Angle Encoding. Each feature x; parameterises a rotation on
a separate qubit. The top wire shows the resulting state superposition explicitly.

time series as it naturally handles continuous variables and requires constant circuit

depth (one layer of rotations), preserving coherence.

3.5.3 Parameterised Quantum Circuits

Once encoded, the state is processed by a Parameterised Quantum Circuit (PQC).
A PQC acts as the trainable block of the algorithm, analogous to the weights in
a neural network. It consists of fixed entangling gates (to create correlations) and
tunable rotation gates (parameterised by a vector @). The goal of the hybrid loop
is to find the optimal parameters @ that minimise a cost function derived from

measurement outcomes.

3.5.4 The Quantum Kernel Trick

The most powerful application of PQCs in this thesis is the construction of a Quan-
tum Kernel. Classical kernel methods rely on a function to compute similarity in a
high-dimensional space without explicit mapping. Quantum computers perform this
naturally: the Hilbert space of n qubits has dimension 2", offering an exponentially
large feature space.

We define the quantum kernel K (x;,x;) as the fidelity between two encoded data

states:

K (xi,%5) = | (0(xq)[10(x)) [°. (3.38)

This metric quantifies the similarity between two data points within the quantum
feature space. While calculating this inner product is classically hard for deep
circuits, it can be estimated efficiently on a quantum computer using interference
tests, such as the SWAP test. This kernel forms the mathematical foundation for

the statistical tests we employ in Chapter 5.
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To understand the power of kernels, consider the conceptual illustration in Fig-
ure 3.6. In the original low-dimensional space, complex patterns may not be linearly
separable. By mapping the data to a higher-dimensional feature space via a fea-
ture map ¢(x), these patterns can become simple hyperplanes. Quantum computers

exploit this principle by using the Hilbert space as an exponentially large feature

Space.
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Figure 3.6: A conceptual illustration of the kernel trick. (a) In the original 1D space,
the blue and red classes are not linearly separable. (b) After applying a feature map
é(x) = (z,x?%), the data is projected onto a 2D parabola where the classes become
easily separable by a linear hyperplane.

3.5.5 State of the Art: Applications in Finance

The application of QML to real-world industrial problems is a rapidly growing field.
Recent research has demonstrated the viability of these techniques in two primary

domains relevant to finance: combinatorial optimisation and pattern recognition.

Quantum Optimisation (QUBO). A major line of research tackles large-scale
asset allocation problems. While distinct from the circuit-based methods used in this
thesis, this approach represents the most mature application of quantum technolo-
gies in finance. Recent studies have demonstrated real-world portfolio optimisation
using Quadratic Unconstrained Binary Optimisation (QUBO) formulations, achiev-
ing results consistent with classical solvers [31]. This framework has been further
expanded to include novel formulations for optimising the Sharpe Ratio [32]. Be-
yond finance, hybrid optimisation has been applied to energy scheduling, yielding

improvements in algorithmic fairness [33].
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Quantum Kernels and Classification. The second domain, which constitutes
the focus of this thesis, uses quantum feature maps for classification and regime de-
tection. The development of benchmarking frameworks has allowed for the rigorous
comparison of quantum kernels against classical baselines [34]. Quantum-inspired
techniques like Gaussian Boson Sampling have also been applied to detect hidden
clusters in complex datasets [35]. Furthermore, practical guides for Amplitude Es-
timation have provided the necessary groundwork for implementing quantum risk
analysis on near-term devices [36].

Our work builds directly upon this second stream of research, utilising the kernel-
based approach to address the specific challenge of dynamic regime detection in

financial time series.
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Chapter 4
Quantum Probability Formulation

Classical probability theory serves as the standard language of quantitative finance.
It describes market dynamics using real-valued measures over sample spaces defined
by set theory. While this approach has supported the field for decades, Chapter 2
showed that it struggles to capture the full complexity of agent interactions. Specif-
ically, it often fails to explain the emergence of the multimodal return distributions
observed during financial crises.

This chapter presents Quantum Probability (QP) as a superior mathematical
framework for modelling these dynamics. Drawing upon the work of Lin Li [1], we
generalise classical probability by replacing real-valued probabilities with complex-
valued amplitudes. Although originally developed for microscopic physics, QP pro-
vides a rigorous calculus for decision-making under uncertainty, allowing us to model
the magnitude and phase of trading intentions simultaneously.

It is crucial to emphasise that QP is employed here as a mathematical framework
rather than a physical hypothesis. We do not assert that financial markets adhere
to the laws of atomic physics. Instead, we utilise the mathematical properties of
QP, specifically the superposition principle and interference, to construct a model
where the trading volume drives phase transitions between unimodal and multimodal
regimes.

The chapter is organised as follows. Section 4.1 defines the formal structure
of Quantum Probability and contrasts it with the classical Kolmogorov framework.
Section 4.2 contextualises this choice by comparing it to alternative quantum ap-
proaches, specifically the Quantum Harmonic Oscillator model. Section 4.3 intro-
duces the core concept of Active Trading Intention and its geometric representation.
Finally, Section 4.4 derives the Schrodinger-like trading equation via Fourier decom-

position, interpreting the potential function V' (r) as the driver of market regimes.
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4.1 Quantum Re-interpretation of Classical Prob-
ability

Probability theory can be understood as a measure of uncertainty. To apply quan-
tum principles to finance, we must first establish a correspondence between the

classical and quantum definitions of this measure.

Definition 4.1.1 (Classical Probability Space). A classical probability space, as
formalised by Kolmogorov [37], is a triple consisting of a sample space ), a o-algebra

of events F, and a probability measure P.

o Q is the set of all possible fundamental and mutually exclusive outcomes of an

experiment.

o F is a collection of subsets of () representing all measurable propositions about

the outcomes.
o P is a function assigning a probability in the range [0,1] to each event.

In classical probability, if an event can occur in two mutually exclusive ways
A and B, the total probability is simply the sum P(A) + P(B). In contrast, the
quantum framework is built upon the structure of complex Hilbert spaces defined
in Chapter 3.

Definition 4.1.2 (Quantum Probability Space). A quantum probability space is a
triple defined by a Hilbert space H, a set of projection operators £, and a density

operator p.
o H is a complex Hilbert space representing the state space of the system.

o & is the set of all orthogonal projection operators on H. FEach projector E

corresponds to an event or a measurable proposition.
o p is a density operator on H which describes the state of the system.
This correspondence allows us to translate problems from the classical domain
into the quantum domain.

Proposition 4.1.1 (Classical-Quantum Correspondence). Let Q = {w;} be a dis-
crete sample space and {|e;)} be an orthonormal basis of a Hilbert space H. A

correspondence can be established as follows:

o An elementary classical event {w;} € F is mapped to an elementary quantum

event represented by the projection operator E; = |e;) (e;| € £.
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o A general classical event A = U;cs{wi} s mapped to the projection operator
Ex = Yicqlei) (es|, which projects onto the subspace spanned by the corre-

sponding basis vectors.

Under this mapping, mutually exclusive classical events correspond to mutually or-

thogonal projection operators.

For a system in a pure state |¢), the probability of an event E is given by the

Born rule:
P(E) = tr(Ep) = (Y| E ) = | (e|) [*. (4.1)

The use of complex amplitudes grants QP additional expressive power through
the phenomenon of interference. According to the superposition principle, if a final
state can be reached via two distinct paths represented by amplitudes ¢; and s,
the total state is ¥ = 1; + 5. The probability is the square of the sum, not the

sum of the squares:

Py = \‘I’|2 = [¢ + 1/12|2 = W1|2 + |¢2\2 + 2R (1)2). (4.2)

The term 2R(ij1p2) is the interference term. It can be positive or negative, a
feature entirely absent in classical probability. This term provides the mathematical
mechanism to model how conflicting information signals interact to produce the

complex distributions observed in financial markets.

4.2 Alternative Quantum Approaches: The Har-

monic Oscillator

Before detailing the specific framework used in this thesis, it is important to dis-
tinguish it from other prominent applications of quantum mechanics to finance. A
notable alternative approach, proposed by Orrell [38], employs the Quantum Har-
monic Oscillator, or QHO, to model asset dynamics.

In the QHO framework, the market is modelled using a quadratic potential
V(x) oc 22. Physically, this represents a restoring force, analogous to a mechanical
spring, generated by the entropic interplay of supply and demand. In this context,
the discrete energy levels of the oscillator are often interpreted as price steps or the
number of transactions involved.

While the QHO model has proven highly effective for tasks such as option pricing
and reproducing the volatility smile, it typically describes systems tending towards

equilibrium. A quadratic potential implies a system that seeks to return to a stable
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mean when disturbed. Consequently, the ground state of a QHO is a Gaussian
function, which aligns with the unimodal distributions of stable markets.

In contrast, the framework proposed by Li [1], which we adopt in this thesis,
leaves the potential V(r) undetermined a priori. This flexibility is essential for
our specific objective: capturing the phase transition between regimes. As we will
demonstrate, financial crises are characterised by a breakdown of equilibrium and
the emergence of multimodality. Modelling this requires a potential that can deform
from a simple quadratic shape into a complex multi-well structure, a feature central

to Li’s derivation.

4.3 The Asset Return Model: Active Trading In-

tention

Classical financial models describe what happened, namely the return r, but often
fail to capture why. A return of zero could result from a day of no trading or a
day of fierce battles between buyers and sellers. To capture this hidden dynamic, Li

introduces the concept of Active Trading Intention.

Definition 4.3.1 (Active Trading Intention). The Active Trading Intention, or
ATI, quantifies the propensity of traders to transact at a certain return level r. It is

characterised by two orthogonal components:

o Intensity: The magnitude or volume of the trading interest. A higher intensity

implies a greater likelihood of transactions occurring at that return level.

o Property: The qualitative nature of the intention, such as sentiment or strate-

gic goal.

The quantum probability framework is uniquely suited to represent the ATI by
using a complex probability amplitude, often called the return wave function. Here,
the modulus ¢(r) represents the intensity, and its square yields the classical prob-
ability density f(r). The phase 6(r) encodes the property of the ATI. Li visualises
this phase on the ATI Plane, shown in Figure 4.1, a complex plane where the axes

correspond to distinct trading motivations.

e Real Axis: Represents rational rebalancing or the strategic adjustment of po-
sitions. Positive values indicate position accumulation, while negative values

indicate reduction.

o Imaginary Axis: Represents emotional sentiment. Positive values indicate

bearish sentiment, while negative values indicate bullish sentiment.
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Figure 4.1: The ATI Plane. The phase 6(r) of the wave function encodes the
qualitative nature of trading. The Real axis captures rational position rebalancing,
while the Imaginary axis captures emotional sentiment. Adapted from Li [1].

This geometric decomposition allows us to model complex mixed states. For in-
stance, an intention vector in the second quadrant represents behaviour combining
short positions with bearish sentiment, which corresponds to panic selling. Con-
versely, the fourth quadrant represents speculative buying.

The true power of this framework emerges when considering the interaction
between multiple traders. Unlike classical probabilities which simply add, quantum

amplitudes superpose.

Proposition 4.3.1 (Principle of ATI Aggregation). If a market consists of N
traders, and the ATI of the i-th trader is given by the amplitude W;(r), the total
market ATI is the linear superposition of the individual ATIs:

U(r) = W), (4.3)

N
=1

The resulting probability density contains interference terms involving the cosine of

the phase difference between traders:
F(r) =0y 4 Wol? = [W 7 + [Wo]? + 291y cos (6 — b5). (4.4)

The final term represents the effect of information interaction. It can be positive
or negative, providing a formal mechanism to model phenomena like herd behaviour

or the no-trade theorem.
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4.4 'The Schrodinger-like Trading Equation

Having established the representation of ATI through a complex wave function, we
now derive the governing equation of the system. The derivation proposed by Lin Li
constructs the equation from financial principles by decomposing the total market

ATT into components representing different trading behaviours.

4.4.1 Fourier Decomposition: The w-market

The total market ATI is expressed as a superposition of plane waves via the Fourier
inverse transform:

+o0 .

U(r) :/ c(w)e™ dw. (4.5)

—00
This mathematical decomposition allows us to view the market not as a monolith,
but as a continuum of trading strategies. Each frequency component w corresponds
to a conceptual market populated by traders sharing a common behavioural char-

acteristic.

Definition 4.4.1 (The w-market). An w-market is a conceptual market populated by
a group of traders, called w-traders, who share a common behavioural characteristic

encoded by the frequency parameter w. Specifically:

o The collective ATI of all traders within a given w-market is represented by the

wwr

term c(w)e

o The complex coefficient c(w) represents the aggregate intensity and initial

phase of that specific group of traders.

o The term ™" describes how the property (phase) of their ATI evolves as the

asset return r changes.

This frequency parameter w offers a direct financial interpretation regarding the
time horizon of the traders. A high value of |w| corresponds to a short cycle, describ-
ing a short-term speculator who reacts quickly to small price changes. Conversely,
a low value of |w| corresponds to a long cycle, describing a long-term investor whose
sentiment evolves slowly and is sensitive only to large shifts in return. This Fourier
decomposition effectively separates the fast noise of speculators from the slow signal

of investors.

4.4.2 The Governing Equation and the Potential

By combining the Fourier superposition with the continuity condition for probability

current, the central result of the framework is derived: a Schrodinger-like equation
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that governs the return wave function.

zm’(;:’t) _ ( 10, V(r)) (1), (4.6)

" 2m or?
This equation describes the evolution of the market state as a dynamic balance
between a kinetic term, representing diffusion of information, and a potential term
V(r).

The potential V'(r) is the critical variable that determines the shape of the return

distribution. It represents the landscape of market consensus (Figure 4.2).

o Ground State or Calm Regime: In low-volume conditions, the potential is
approximately quadratic. The solution to the Schrédinger equation in a
quadratic potential is a Gaussian wave packet. This theoretically explains
why classical finance models, such as Black-Scholes, work well in calm mar-
kets.

o FExcited States or Turbulent Regime: As trading volume, which acts as the
energy of the market, increases beyond a critical threshold Ej, the potential
deforms. It may develop double wells or complex shapes to accommodate the
higher energy. The solution becomes a multimodal wave function, representing

a market fractured into competing beliefs.

Ground State (Calm) Excited State (Turbulent)
Unimodal Multimodal
= Potential V(r) - Deformed Potential
Return PDF |W|2 Multimodal PDF

Energy / Density (a.u.)

Return r Return r

Figure 4.2: Transition of Market Regimes. Left: In the ground state (Calm), the
potential is quadratic, confining returns to a unimodal Gaussian distribution. Right:
In the excited state (Turbulent), high trading volume deforms the potential into a
double-well structure, allowing for a multimodal probability distribution typical of
financial crises. The probability density [¥(r)|?> (coloured fill) is superimposed on
the potential V(r) (black line) and scaled for visual comparison.

This theoretical insight provides the physical justification for the regime-switching

methodology we apply in the subsequent chapters. By monitoring the market vol-
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ume, we can estimate the energy of the system and detect the phase transition from
the ground state to excited states. The specific algorithm for identifying the thresh-
old Fy using the Hall-York test for multimodality will be detailed in Chapter 5.
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Chapter 5

Methodology: The Experimental
Pipeline

The theoretical framework established in Chapter 4 posits that financial markets

are dynamic entities capable of undergoing phase transitions. Specifically, the Lin

Li model predicts that as trading volume surpasses a critical threshold FEj, the

return distribution transitions from a unimodal ground state to a multimodal excited

state. This chapter translates that theoretical insight into a concrete, reproducible

experimental pipeline.

The methodology is structured in three sequential phases, moving from physi-

cal regime identification to quantum statistical validation, and finally to predictive

application:

1. Phase 1: Regime Identification. We empirically determine the energy thresh-
old Ey for the SZSE Component Index using the Hall-York statistical test.

This data-driven calibration allows us to segment the historical timeline into

distinct Calm and Turbulent regimes based on market activity.

2. Phase 2: Quantum Statistical Validation. We implement the Quantum Two-

Sample Test to rigorously verify that these heuristically labelled regimes are

statistically distinct. By mapping data into a quantum feature space, we aim

to detect structural differences that are invisible to classical tests.

3. Phase 3: Hybrid Forecasting. We leverage this distinction to construct a

regime-switching forecasting model. This hybrid engine dynamically adapts to

market conditions, switching between specialised models to optimise predictive

performance.

The complete codebase implementing this pipeline is available in the repositories

listed in Appendix A.
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5.1 Phase 1: Regime Identification

The first objective is to ground the abstract concept of market energy in empirical
data. We require a robust, data-driven method to identify the specific volume level

Ey where the market structure fractures.

5.1.1 Data Pre-processing

The primary dataset consists of the Shenzhen Stock Exchange (SZSE) Component
Indez from January 4, 2011, to December 31, 2020. Data were sourced from pub-
licly available financial databases [39]. Consistent with the energy derivation in
Chapter 4, we focus on the intraday log-return as the primary variable for modality
testing:

" = In(Close;) — In(Open,). (5.1)

This metric isolates the specific trading activity of a single session, removing the
overnight gap which acts as external noise. The corresponding daily trading volume

V; serves as the proxy for the kinetic energy of the system.

5.1.2 The Statistical Engine: Hall-York Test

Visual inspection is insufficient for formally detecting the transition from unimodal-
ity to multimodality. Rigorous detection requires a statistical test capable of quan-
tifying the probability that a given distribution has more than one peak. While
Silverman’s original bandwidth test [40] is a foundational method for this purpose,
it is known to be conservative and prone to false negatives. To address this limita-
tion, we employ the Hall-York Test of 2001, a calibrated enhancement of Silverman’s
method [41].

The test operates on the principle of the Critical Bandwidth, denoted as h..;. In
Kernel Density Estimation (KDE), the bandwidth h controls the smoothness of the
distribution. A large h produces a single smooth peak, while a small h reveals fine-
grained noise. The critical bandwidth is defined as the smallest smoothing parameter
such that the resulting density estimate has exactly one mode. Figure 5.1 illustrates
a density estimate computed at this critical bandwidth for our high-energy regime;
the emergence of two distinct peaks is the visual signature of the multimodality we
aim to detect.

The Hall-York algorithm proceeds as follows:
1. Compute h..; for the original data sample.

2. Generate B bootstrap samples from the density estimate computed at h.;.
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Figure 5.1: Kernel Density Estimate of intraday log-returns for the high-energy
regime (Volume > Ej). The density exhibits clear multimodality, with two distinct
peaks emerging at the critical bandwidth h..;; = 0.0089 identified by the Hall-York
test. This confirms the presence of a phase transition, validating the regime shift
predicted by the theoretical framework.

In our sensitivity analysis, we varied B to ensure convergence, typically em-
ploying B > 100.
3. Calculate the critical bandwidth A}, for each bootstrap sample.

4. The p-value is the proportion of bootstrap samples where A%, < hepi.

A low p-value, typically p < 0.05, indicates that the original data requires a signifi-
cantly larger amount of smoothing to appear unimodal than would be expected by

chance, leading to the rejection of the null hypothesis of unimodality.

5.1.3 The Search for the Threshold E,

Equipped with the Hall-York test, we implement an iterative search algorithm to
locate the critical energy threshold Ey. The procedure scans the volume space to

find the breaking point of the market structure:

1. Initialization: We define a candidate volume threshold vg,,, starting at a

fraction of the minimum observed volume (e.g., 5% of the range).

2. Filtering: We construct a subsample of trading days where the daily volume

Vi > Vstar. This represents the high-energy subset of the market history.

3. Testing: We apply the Hall-York test to the intraday returns of this subset.
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4. Iteration: If the null hypothesis of unimodality cannot be rejected (p > 0.05),
we increment vy, by a step 0 and repeat the process. The algorithm termi-
nates when the p-value drops below the significance level a = 0.05, indicating

significant multimodality.

For the SZSE dataset (2011-2020), our analysis converged to a threshold of:

Ep ~ 1.219 x 10" CNY (Chinese Yuan). (5.2)

5.1.4 Regime Labelling and Persistence

The identification of Ey allows us to segment the time series into two distinct regimes

based on market activity:

o Calm Regime (Ground State): Days where V; < Ey. The market is dominated

by low-frequency investors, and returns follow a unimodal distribution.

o Turbulent Regime (Excited State): Days where V; > Ey. The market energy
is sufficient to deform the potential, leading to multimodal distributions char-

acteristic of conflicting trader beliefs.

To validate the temporal consistency of these regimes, we analysed specific mar-
ket windows identified as multimodal. Figure 5.2 visualises one such window during
the 2015 crisis.

The plot overlays two distinct metrics on a dual axis. The blue line, corre-
sponding to the left axis, tracks the intraday log-returns and exhibits high volatility
clustering. The red line on the right axis tracks the trading volume normalised by
the threshold Ejy. The horizontal dashed line at y = 1 marks the critical energy
transition. The persistence of volume above this threshold corresponds to a cluster
of high volatility. This confirms that the transition to an excited state is a robust,
persistent phenomenon rather than a momentary outlier.

However, identifying these regimes heuristically is not enough; we must now

rigorously prove that they represent statistically distinct probability distributions.

5.2 Phase 2: Quantum Statistical Validation

Identifying potential regimes via the Hall-York test provides a necessary but insuf-
ficient condition for validation. Classical univariate tests often fail to distinguish
between complex financial time series that share similar summary statistics, such as

mean and variance, but differ fundamentally in their temporal structure. To prove
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Figure 5.2: Time evolution of a high-energy market window from November 2015.
The plot overlays two metrics: the intraday log-returns (blue line, left axis) and
the trading volume normalised by the threshold Ej (red line, right axis). The red
trace remains consistently above the critical threshold at y = 1, confirming that
the market was locked in a high-energy excited state characterised by persistent
instability.

rigorously that the identified regimes are distinct, we implement a multivariate ap-
proach based on the Quantum Maximum Mean Discrepancy (MMD) framework

proposed by Garvin et al. [2].

5.2.1 Synthetic Validation Model

To test our implementation in a controlled environment, we generate synthetic finan-
cial time series using a model that captures key features of real-world asset prices.
The model is based on a stochastic differential equation that includes a drift term,
a volatility term, and an autocorrelation term. The discrete version of this model,

as implemented in our study, is given by:

1
Sy = Si_1exp { <,u — 202> At + oV AL <ta_1 +4/1— 922t>} (5.3)

where:

e S, is the asset price at time t.

e 1 is the annualised drift, representing the long-term expected return. A posi-

tive drift implies growth, while negative implies decline.

e o is the annualised volatility, measuring the magnitude of price fluctuations
(risk).
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e o is the autocorrelation parameter, controlling the serial dependence. A value
of p ~ 1 implies momentum (trends), while o ~ 0 implies a random walk
consistent with the Efficient Market Hypothesis.

o 21,2 ~N(0,1) are random variables drawn from a standard normal distri-

bution.

o At is the time step, typically set to 1/252 for daily trading data.

This model allows us to generate time series with distinct temporal structures
by varying p. Crucially, while the generative process differs, the resulting univariate
distributions of daily log-returns have identical first and second moments (mean
and variance) for all values of p. This ensures that any detected difference by a
multivariate test is due to higher-order moments or temporal correlations, providing

a rigorous benchmark for the quantum kernel’s sensitivity. We generated three

Sample of Generated Asset Price Series
—— Series A(0=0.0)
—— Series B (p=0.2)
—— Series C (0=0.4)
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Figure 5.3: Sample of Generated Asset Price Series. Series A (0 = 0) behaves as a
random walk, while Series C (o = 0.4) exhibits clear momentum trends.

datasets: Series A with ¢ = 0.0 (random walk), Series B with ¢ = 0.2, and Series C
with 0 = 0.4 (momentum). We confirmed this indistinguishability by overlaying the
histograms of log-returns for Series A and C in Figure 5.4. A Kolmogorov-Smirnov
test yielded a high p-value of 0.61, failing to reject the null hypothesis. This result
demonstrates that classical univariate tests cannot distinguish between these series,

confirming the need for a quantum test sensitive to temporal correlations.

5.2.2 Feature Engineering: Capturing Temporal Dynamics

To capture the serial dependence missed by univariate tests, we transform the scalar

time series into a sequence of feature vectors. Following Garvin et al., we construct
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Figure 5.4: Overlaid Distributions of Log-Returns for Series A (¢ = 0) and C (o =
0.4). The distributions are nearly identical, as confirmed by the high p-value (0.61
of the KS test.

a 4-dimensional feature vector x; for each time step t, specifically designed to encode
correlations between consecutive returns:
Sy Si-1

n + In
St Si—9

S 1 Si—1
n

S Sy 5
S S

St St2

xX; = |In , |In

.

] . (5.4)

These components correspond to the current return, the previous return, the ab-
solute magnitude of their sum (momentum indicator), and the absolute magnitude
of their difference (mean reversion indicator). This transformation converts the
problem into distinguishing two clouds of points in a 4-dimensional space, which is

suitable for processing by a 4-qubit quantum circuit.

5.2.3 The Classical Two-Sample Test (MMD)

As a baseline for our study, we employ the classical Maximum Mean Discrepancy
(MMD) test [42]. This test provides a robust statistical framework for determining
whether two samples, P = {x;}{2, and Q = {y;}}_,, are drawn from different
distributions.

The core idea is to map the data into a high-dimensional Reproducing Kernel
Hilbert Space (RKHS), denoted as F, via a feature map ¢(-). In this space, the
probability distributions are represented by their mean embeddings, pp and pg.
The MMD is defined as the distance between these means:

MMD(P, Q) = [l — il (5.5)
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If the RKHS is characteristic, then MMD(P, Q) = 0 if and only if P = Q.

Calculating the coordinates in F explicitly is often computationally prohibitive.
However, by applying the kernel trick, we can compute the squared MMD solely
using the kernel function k(x,y) = (¢(x), ¢(y)). The empirical estimator for the
squared MMD is given by:

m,n

Z Xng T k?(Xz',Yj) + n2 Z k(Yian>' (5-6)
] et

i=1,j ij=1

1
MMD?(P, Q) = —

Intuitively, this formula compares the average intra-sample similarity (how similar
data points are to others in the same set) with the inter-sample similarity (how
similar they are to points in the other set). If the samples are distinct, the intra-
sample similarity will significantly exceed the inter-sample similarity.

For our classical benchmark, we use the standard Gaussian Radial Basis Function
(RBF) kernel:
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krpr(X,y) = exp <_||x—y\|2> , (5.7)

where o is a hyperparameter controlling the width of the kernel, typically set to the

median heuristic of the data distances.

5.2.4 The Quantum Two-Sample Test

The quantum two-sample test is an analogue of the classical MMD test that leverages
the principles of quantum mechanics to potentially achieve more powerful discrimi-

nation. The process involves four key steps:

1. Data Encoding: The classical data vector x is encoded into the parameters
of a quantum circuit. This crucial step translates classical information into a

quantum state in the Hilbert space.

2. Quantum Clircuit Evolution: A Parametric Quantum Circuit is applied to the

qubits. This sequence of operations evolves the state based on the input data.

3. Measurement: We measure the expectation values of the system, providing a

classical description of the final quantum state.

4. Distance Calculation: These values are used to compute the quantum kernel,

defined as the fidelity (squared overlap) between states:

ko (xi ;) = [( () [v (%)) . (5.8)
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This kernel is then plugged into the standard MMD formula to compute the test

statistic.

5.2.5 Parametric Quantum Circuit Architectures

The expressiveness of the quantum feature map depends on the structure of the
Parametric Quantum Circuit, or PQC, which encodes the classical data into the
quantum state (see Section 3.5.3). A PQC is a quantum circuit containing a set of
tunable rotation gates, whose angles act as the trainable parameters of the model.
We benchmarked four distinct architectures: the Paper Circuit, the TFIM Circuit,
the LTFIM Clircuit, and a Hardware-Efficient Circuit. Detailed diagrams and speci-
fications for each architecture are provided in Appendix B. As detailed in the results,
the Paper Circuit (Figure 5.5) demonstrated superior expressivity for temporal cor-

relations and was selected for the final analysis.
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Figure 5.5: The Paper Circuit architecture (Garvin et al.). It features alternating
layers of single-qubit rotations for data encoding and iSWAP gates for entanglement.
This design proved most robust in our synthetic benchmarks.
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5.2.6 Circuit Selection: Synthetic Benchmarking

Before applying the quantum pipeline to real market data, it is essential to val-
idate the discriminatory power of the chosen ansatz in a controlled environment.
We benchmarked the Paper Circuit against alternative architectures (detailed in
Appendix B) using the synthetic dataset described in Section 5.2.1.

Figure 5.6 presents the results of this validation. The test compares a Random
Walk process (o = 0, Series A) against a Momentum process (¢ = 0.4, Series C).
The quantum kernel constructed with the Paper Circuit successfully distinguishes
the two distinct processes, yielding a statistical distance (red bar) that is clearly
separated from the baseline noise (blue/green bars), with a Signal-to-Noise Ratio
(SNR) of approximately 1.7. This result confirms that the Paper Circuit possesses
the necessary expressivity to detect temporal correlations in financial time series,

justifying its selection for the analysis of real-world data in the following chapter.
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Figure 5.6: Benchmark results for the Paper Circuit on synthetic data. The test
successfully distinguishes the distinct distributions (A vs C, red bar) from the base-
line noise (blue and green bars), with the error bar lying entirely above the noise
threshold (y = 1.0).

5.2.7 Data Sampling and Validation Strategy

The input features for the quantum two-sample test are log-returns derived from
raw price data. A key advantage of the MMD framework is its flexibility: unlike
element-wise metrics, it allows for the comparison of samples with unequal sizes
(N # M). This capability is explicitly leveraged in our analysis to compare market
regimes of varying duration (e.g., annual windows vs. shorter crisis bursts), verifying
the robustness of the quantum kernel across different temporal scales.

Our validation logic follows a hierarchical approach:

1. Baseline Check: We first compare two non-overlapping samples drawn from
the same stable, unimodal market period. The expected result is an MMD

score statistically consistent with zero.

2. Detection Test: We then compare a sample from a stable period against a

sample from a high-volatility period to test for statistical separability.

5.2.8 Bootstrap Resampling

A single MMD score calculated from a small sample of historical data is statistically
noisy. To obtain a robust estimate of the distance and its uncertainty, we employ
a bootstrap resampling methodology. Instead of a single comparison, we perform
B =100 independent test runs for each pair. In each run, we draw smaller random
sub-samples (with replacement) from the original time windows. The final reported
MMD is the mean of this distribution, and the error bars represent its standard

deviation.
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5.3 Phase 3: Hybrid Forecasting Strategy

The final phase of our pipeline evaluates the practical utility of the identified mar-
ket regimes. If the Calm and Turbulent states are indeed structurally distinct, as
indicated by the Quantum Two-Sample Test, then a forecasting model specialised
on a specific regime should theoretically outperform, or at least match, a generalist
model, even when trained on significantly less data.

To test this hypothesis, we implemented a Walk-Forward Validation experiment

focused on the 2015 market crash.

Handling Regime Flickering

Our analysis of the regime blocks (see Appendix C) reveals that prolonged crisis
periods are often interrupted by single days of lower volume, leading to a unimodal
classification. For instance, the 2015 crash consists of several major multimodal
blocks (Blocks 2, 4, 6, 8) separated by brief intervals of 1-2 days where volume
dipped slightly below Ej.

From a physical perspective, the market system does not instantly cool down to a
stable ground state for 24 hours during a crash. These interruptions are likely arte-
facts of using a static threshold Ej on a noisy variable like volume. Consequently,
for the purpose of training the forecasting model, we adopt a merging strategy: adja-
cent turbulent islands separated by negligible gaps are treated as a single contiguous
C'risis training set. This prevents the model from losing critical memory of the crisis

dynamics due to transient noise.

5.3.1 Model Specification

We constructed two competing forecasting engines using the AutoARIMA framework
combined with GARCH volatility modelling;:

1. The Baseline Model (Generalist): This model is trained on the full available
history up to the test point. It represents the standard econometric approach
of using maximum historical depth to estimate parameters. For instance,
in the 2015 walk-forward validation detailed in Chapter 6, this training set
comprised 1135 trading days.

2. The Crisis Model (Specialised): This model is trained ezclusively on the high-
energy islands of volatility identified by the threshold Ej in the period pre-
ceding the test. For the 2015 experiment, this training set consisted of only

76 trading days formed by merging two adjacent multimodal windows. This
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represents the regime-switching approach: discarding calm data as noise when

predicting a crisis event.

5.3.2 Validation Protocol: Walk-Forward vs Cross-Validation

Standard cross-validation (k-fold) is unsuitable for time series because it randomly
shuffles data, allowing the model to train on future data to predict the past (data
leakage). Instead, we implemented a strict Walk-Forward Validation, also known as
a rolling-origin evaluation.

The process works as follows:

1. The model is trained on a historical window t7 — t.
2. It forecasts the next step tp.1.

3. The window slides forward: the actual value at t;,; is added to the training

set, and the model is retrained (or updated) to predict tjo.

This simulation perfectly mimics the real-world constraints of a trader who receives

data sequentially, ensuring that at no point does the model access future information.

5.3.3 Validation Metric

The performance is evaluated using two complementary metrics. The Root Mean
Square Error (RMSE) measures the accuracy of the point forecast (the expected

return):

1 N

RMSE = J 7 (e — 0% (5.9)

t=1
The Volatility MSE measures the accuracy of the risk prediction, comparing the

forecasted variance 67 against the squared return (a proxy for realized volatility):

N

1
Vol-MSE = — Y “(y7 — 67)°. (5.10)
N t=1

5.3.4 Generalisation and Model Robustness

Finally, to assess the stability of market regimes over long time horizons, we perform
a Generalisation Test. A model trained on a specific historical crisis is tested against
a subsequent, distinct crisis period occurring several years later. This test determines
whether the statistical properties of Turbulence are universal and static, or if they
evolve over time. This phenomenon, known as concept drift, would imply that a
model trained on a past crisis may not be optimal for a future one, necessitating a

dynamic retraining strategy where the model is updated as new regimes are detected.

95



5.4 Implementation and Scalability Notes

This section details the computational implementation of the experimental pipeline.
We justify the choice of exact state-vector simulation over noisy quantum hardware
and clarify the implications of this approach regarding algorithmic scalability and

performance.

5.4.1 Simulation Strategy

The calculation of the quantum kernel kg(x;,x;) is designed to be performed on a
quantum computer. However, to robustly validate the effectiveness of the method
separately from the limitations of current hardware (noise and decoherence), this
project utilises a high-performance classical simulation. We employed the PennyLane
framework with the 1ightning.qubit backend (C++), which allows for exact state-

vector simulation.

5.4.2 Scalability Considerations

It is important to clarify the scalability implications of this choice.

o Quantum Scalability: On real quantum hardware, the kernel estimation can

be performed efficiently, scaling linearly with the number of samples O(N).

o Simulated Scalability: Simulating the quantum kernel on a classical computer
incurs an exponential cost in the number of qubits. Therefore, the runtime of

our experiments scales poorly compared to classical kernels.

This thesis does not aim to demonstrate a computational speedup, which is impos-
sible in simulation. Instead, the objective is to demonstrate a quantum advantage
in discriminatory power: proving that the quantum model is “smarter” (more sen-

sitive) than the classical baseline, regardless of the execution time.
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Chapter 6
Results and Discussion

This chapter presents the empirical findings of the thesis. Building on the experi-
mental pipeline defined in Chapter 5, we demonstrate that the quantum probability
framework provides not only a theoretical description of market regimes but a mea-
surable advantage in detection and forecasting.

The chapter is organised to mirror the methodological phases:

e Section 6.1 visualises the identified market regimes over the full decade of
analysis, validating the physical meaningfulness of the energy threshold Ej

against historical market events.

e Section 6.2 presents the statistical validation. We first benchmark the quan-
tum circuits on synthetic data and then apply the Quantum Two-Sample Test
to real-world windows, demonstrating its superior sensitivity compared to its

classical counterpart.

» Section 6.3 evaluates the practical utility of these findings. We discuss the
results of a walk-forward forecasting experiment, focusing on the informational

efficiency of regime-specialised models.

6.1 Phase 1: Regime Identification (SZSE 2011-
2020)

The application of the iterative threshold search described in Section 5.1 successfully
located the critical energy level Ej for the SZSE Component Index. The analysis

consistently converged to a stable threshold of:

Ey~1.219 x 10" CNY. (6.1)
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This value is consistent with the findings reported by Lin Li [1] for the same index,

confirming the correct implementation of the detection pipeline.

6.1.1 Macro-Analysis and Historical Validation

Figure 6.1 visualises the resulting segmentation of the 10-year timeline. The plot
combines three perspectives to validate the regimes: price action, trading volume
relative to Fy, and a standard volatility metric. The 21-day rolling volatility, showed
in the bottom panel, is computed as the annualised standard deviation of log-returns

over a sliding window, serving as a classical proxy for risk.

SZSE Price, Volume, and Volatility Regimes (2011-01-01 to 2020-12-31)
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Figure 6.1: Macro-Analysis of Market Regimes. Top Panel: The closing price of
the SZSE index. Red shaded regions indicate the Turbulent regimes. These regimes
consistently align with major market corrections. Middle Panel: Daily trading
volume relative to the threshold Fy (dashed red line). Bottom Panel: The 21-day
rolling volatility. The strong correlation between the identified regimes and volatility

spikes confirms that the volume-based energy metric serves as a reliable proxy for
market risk.

The distribution of turbulent regimes, highlighted in red, aligns with major
macroeconomic shocks affecting the Chinese market:

58



e 2011-2014: The market remains largely in the calm regime (Block 1 in Ap-
pendix C). This long period of stability validates the existence of a robust

ground state where prices evolve without sufficient energy to fracture the re-

turn distribution.

e 2015: A dense cluster of turbulent days appears mid-year, corresponding to
the bursting of the 2015 Chinese stock market bubble [43].

o 2019-2020: A prolonged period of instability is visible, culminating in the
market volatility associated with the COVID-19 pandemic in early 2020.

The visual correlation between the red zones (Volume > Ej) and the spikes in the
rolling volatility metric confirms that the volume-based energy metric successfully

captures periods of elevated market risk.

6.1.2 Regime Dynamics and Persistence

Regime Transition Probability Matrix P(j|i)
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Figure 6.2: Regime Transition Probability Matrix. The high values on the diagonal
(95.4% and 82.6%) indicate that market regimes are persistent states. Once the

market enters a turbulent phase, there is an 82.6% probability it will remain turbu-
lent the next day.

To confirm that these regimes represent stable market states rather than tran-

sient noise, we analysed the transition probabilities between daily states. Figure 6.2
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presents the transition matrix as a heatmap. The probability of remaining in a Calm
state is 95.4%, while the probability of remaining in a Turbulent state is 82.6%.
This contrasts sharply with a memoryless random process. If regime switching
were independent of history, the probability of observing a turbulent day tomorrow
would simply equal the long-term prevalence of the regime (=~ 21%). The fact that
the conditional probability (83%) is four times higher than the unconditional prob-
ability confirms that volatility clusters in time. This stickiness is the fundamental
property that validates the use of regime-switching models: since the market state
persists, identifying the current regime provides predictive information about the

future.

6.2 Phase 2: Quantum Statistical Validation

Having identified the candidate regimes based on the volume threshold £y, we now
evaluate the sensitivity of the Quantum Two-Sample Test in distinguishing between

them. The validation follows a hierarchical logic:

1. Baseline Stability (Sanity Check): We first verify that the test does not pro-
duce false positives when comparing distinct periods that belong to the same

regime.

2. Regime Discrimination (Detection): We then test whether the quantum circuit
can successfully distinguish between a Calm period and a Turbulent period,

quantifying the quantum advantage over the classical benchmark.

All tests were performed using the Paper Circuit architecture, which demon-

strated the highest robustness in the synthetic benchmarks (see Appendix B).

6.2.1 Baseline Stability Analysis

The first step is to ensure that the quantum test is stable over time within the ground
state. The first unimodal block identified by our pipeline (Block 1, see Appendix C)
presents a unique challenge: it spans 1060 trading days (2011-2015). Comparing
such a long window directly against shorter blocks introduces statistical artefacts
due to the disparity in sample size.

To address this, we segmented this long stable period into three annual windows:
2011, 2012, and 2013. Since these years all fall well below the critical threshold FEj,
they should theoretically represent the same statistical manifold. A valid test must
therefore yield a quantum MMD distance close to zero.

Figure 6.3 presents the results of this intra-regime comparison. The analysis

reveals two key insights:
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o High Self-Distance Variance: The error bars for the self-distances (the coloured
bars representing A vs A’) are relatively large. This indicates that even within

a single year, the market exhibits a degree of natural variability or noise.

o Indistinguishability: Crucially, the cross-distance bars (e.g., 2011 vs 2012, ,
shown in black) are statistically indistinguishable from the self-distance bars
(baseline noise). The mean MMD scores for the cross-pairs lie comfortably

below the y = 1.0 noise threshold ratio.

This result confirms the stability of the method: despite the temporal separation
of entire years, the quantum feature map correctly identifies the underlying market

structure as unchanged.
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Figure 6.3: Baseline Stability Test (2011-2013). The plot compares the Quantum
MMD distances between three consecutive years classified as Calm. The cross-
distances (black bars) overlap significantly with the self-distances (coloured bars)
and remain below the noise threshold. (For the detailed price and volume evolution
of these annual windows, see Figure D.1 in Appendix D).

6.2.2 Robustness to Time and Sample Size

Having confirmed stability within the initial long block (2011-2013), we extended
the validation to later market periods. We selected three distinct unimodal “islands”
identified by the Hall-York algorithm as the most significant stable periods post-
2015:

e Block 63 (2016-2017): Duration of 96 trading days.
e Block 65 (2017): Duration of 64 trading days.

e Block 109 (2018): Duration of 81 trading days.
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This selection introduces two stress factors: it compares regimes separated by mul-
tiple years (testing for concept drift in the ground state) and compares samples of
unequal length (testing for sample size bias).

Figure 6.4 displays the results. Despite the temporal distance and length dispar-
ity, the quantum MMD distances between these blocks remain low. Specifically, the
cross-distances (e.g., Block 63 vs Block 109) are comparable to the self-distances.
This confirms that the Calm regime retains a consistent statistical structure over
the years, further validating it as a stable ground state regardless of the specific

window size used.
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Figure 6.4: Robustness Check on Unimodal Blocks (2016-2018). The test compares
three distinct calm periods of varying lengths. The low cross-distances (black bars)
confirm that the unimodal regime is structurally stable over time and robust to
sample size variations.

6.2.3 Regime Discrimination Test (Detection)

Finally, we evaluate the core capability of the quantum implementation: detecting
the transition from a Calm to a Turbulent regime. We applied the Paper Circuit to

a set of three canonical market windows (N=>50 days) identified in Phase 1:
o Calm 17 (Green): A stable period in 2017.
o Calm ’18 (Blue): A stable period in 2018.
o Crisis 20 (Orange): The onset of the COVID-19 market crash.

Figure 6.5 illustrates the context of these samples. The goal is to demonstrate
that the distance between two Calm periods is negligible (Stability), while the dis-

tance to the Crisis period is significant (Detection).
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Selected Market Regimes for Analysis (Price and Volume)
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Figure 6.5: Context analysis for the Regime Discrimination Test. The shaded re-
gions indicate the 50-day samples extracted for analysis: Calm 17 (green), Calm
"18 (blue), and Crisis '20 (orange). The statistical separation of these windows is
quantified in Figure 6.6.

Results and Quantum Advantage

Figure 6.6 presents the Quantum MMD scores. The analysis yields two decisive
findings:

First, the stability of the test is confirmed, as the distance between the two
calm periods (Calm_17 vs Calm_18) is low (0.0076 £ 0.0029) and its confidence
interval overlaps with the baseline noise, indicating no false positives. Second, the
test demonstrates successful quantum detection: the distance between the calm and
turbulent regimes (Calm_17 vs Crisis_20) is significantly higher (0.0253 4 0.0075),
with its cross-distance clearly separated from the noise floor.

This result verifies that the quantum feature map captures high-order temporal
correlations in the crisis data, providing a clear detection signal where classical

univariate tests fail.

6.3 Phase 3: Forecasting Application

The ultimate test of the identified regimes is their predictive utility. If the “Turbu-

lent” state represents a distinct physical phase, a model trained exclusively on this
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Figure 6.6: Regime Discrimination Results. The comparison between two Calm
periods (leftmost black bar) is negligible. The comparison between Calm and Crisis
(middle black bar) shows a sharp spike, confirming successful detection of the regime
shift illustrated in Figure 6.5. This separation is significantly clearer than that
achieved by the classical benchmark test, highlighting the quantum advantage.

regime should capture the crisis dynamics efficiently, without the dilution of years
of calm data.

To validate this, we implemented a rigorous Walk-Forward Validation on the
2015 market crash.

6.3.1 Methodology: The Merged Crisis Model

As detailed in the methodology, the 2015 crisis consists of several high-energy islands.
We merged the contiguous multimodal blocks (Blocks 2, 4, 6, and 8) to create a
specialised Crisis Training Set of 76 trading days. As described in Chapter 5, we
compared a Baseline Model trained on the full 4-year history against a specialised
Crisis Model trained exclusively on these 76 days. Both models forecasted the
subsequent independent crisis island in Late 2015 (Block 18).

6.3.2 Results: Informational Efficiency

Table 6.1 summarizes the performance metrics.

Model RMSE (Point Forecast) Volatility MSE (Risk)
Merged Crisis Model 0.02465 0.00000109
Fair Baseline Model 0.02501 0.00000105

Table 6.1: Forecasting Performance on the Late 2015 Crisis Period.

The Crisis Model achieved an RMSE of 0.0246, comparable to the Baseline

(0.0250). While there is no drastic numerical improvement, the result demonstrates
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high informational efficiency: the specialised model matched the performance of
the generalist baseline using less than 7% of the training data. This confirms that
during a crisis, the relevant signal is concentrated in the high-energy regimes, while
long periods of calm act as noise.

Figure 6.7 compares the forecasts visually. Both models correctly identify the
mean-reverting nature of the returns (point forecast ~ 0). However, the Crisis Model
(Bottom) produces confidence intervals that are robust and conservative, adequately

capturing the envelope of the crash volatility.
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Figure 6.7: Comparison of forecasts for the Late 2015 Crisis. Top: The Baseline
model, trained on 4 years, captures the volatility cluster. Bottom: The Crisis model,
trained on only 76 days, generates a virtually identical risk envelope. This proves
that the essential volatility dynamics were fully contained within the short Crisis
training set.

6.3.3 Concept Drift and Dynamic Adaptation

Finally, we tested the robustness of the 2015-trained model on the 2019 crisis. In

this cross-temporal test, the specialised model failed to outperform the baseline, a
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negative result that is theoretically significant. We tested the models on the 2019

crisis period (Block 120), with the performance metrics summarised in Table 6.2.

Model RMSE  Volatility MSE

2015 Crisis Model (76 days) 0.02198  0.00000093
2015 Baseline Model (1135 days) 0.02189 0.00000090

Table 6.2: Generalisation Test: Performance of 2015-trained models on the 2019
crisis.

As the results show, the Baseline Model achieves a slightly lower error in both
point and volatility forecasting. This confirms the presence of significant Concept
Drift: the market structure during the 2015 deleveraging crash is fundamentally
different from the 2020 pandemic crash. The quantum distance measured between
these two periods was high (0.015240.0062), providing a physical validation for this
statistical observation. This confirms that “Crisis” is not a single static state; the
market evolves. Therefore, a robust trading system cannot rely on a static historical
model but requires a dynamic detection tool, like the Quantum Two-Sample Test,

to trigger retraining on the most recent relevant regime.
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Chapter 7
Conclusion and Future Directions

This thesis investigated whether quantum-inspired methodologies could offer a tan-
gible advantage in the analysis and forecasting of financial time series. Starting from
the observation that classical models often struggle to capture the abrupt regime
shifts characteristic of financial crises, we explored the framework of Quantum Prob-

ability as a means to model the complex dynamics of market participants.

7.1 Summary of Findings

Our research followed a structured path from theoretical formulation to empirical

validation, yielding three primary contributions:

1. Validation of Physical Market Regimes. By applying the Lin Li framework
to the SZSE Component Index (2011-2020), we confirmed that trading vol-
ume acts as a reliable proxy for market energy. The Hall-York statistical test
identified a stable threshold Ej, effectively separating the market into Calm
(unimodal) and Turbulent (multimodal) regimes. This validates the physical
hypothesis that financial crises represent a distinct phase of the system, char-
acterised by high persistence (82% probability of staying in a turbulent state),

rather than merely being statistical outliers in a static distribution.

2. Quantum Advantage in Detection. We adapted and implemented a Quan-
tum Two-Sample Test using parameterised quantum circuits. On real-world
data, this quantum-circuit-based approach demonstrated a superior sensitivity
compared to the classical Maximum Mean Discrepancy (MMD) benchmark.
Specifically, it successfully distinguished between regime shifts (e.g., Calm 17
vs Crisis '20) with a higher Signal-to-Noise Ratio than the classical MMD
benchmark, confirming that quantum feature maps can capture temporal cor-

relations invisible to standard statistical tests.
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3. Informational Efficiency in Forecasting. The application of this regime-awareness

to forecasting produced a significant result regarding data efficiency. In a rig-
orous walk-forward validation on the 2015 crash, a “Crisis Model” trained on
less than 7% of the available historical data (specifically, the high-energy is-
lands) matched the predictive accuracy (RMSE) of a baseline model trained
on the full history. This suggests that during turbulent periods, the predictive
signal is highly concentrated in high-energy states, while long periods of calm

effectively act as noise for crisis prediction.

7.2 Implications: Concept Drift and Dynamic Adap-

tation

Beyond the numerical results, this study highlights a critical structural weakness in
static thresholding methods. Our analysis revealed that the energy threshold Ej is
subject to long-term drift, likely due to market growth and inflation. An absolute
threshold calibrated in 2011 generates false positives in 2020 simply because nominal
volumes have increased, not because the regime has changed physically.

This validates the necessity of the Quantum Two-Sample Test. Unlike a static
threshold, the quantum test is a relative measure: it computes the statistical dis-
tance between the current market window and a reference baseline. This makes it
inherently robust to secular trends like volume inflation. Furthermore, by detect-
ing the structural distance between different crises (as observed between 2015 and
2020), the quantum test acts as a “Concept Drift Detector”, signaling precisely when
a forecasting model has become obsolete and triggering a retraining cycle on fresh
data.

7.3 Future Research Directions

To bridge the gap between this proof-of-concept and industrial application, we pro-

pose three avenues for future research:

e Dynamic Thresholding. Our analysis assumed a static energy threshold Ej.
However, the detection of frequent, short-lived multimodal islands in later
years suggests that this threshold is subject to drift, likely driven by long-term
trends in market liquidity. Developing an adaptive algorithm that updates
Ey based on a rolling window would ensure the regime classification remains

robust over decades.
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e Data Augmentation via Regime Clustering. A major challenge in training spe-
cialised models is data scarcity (e.g., short crisis durations). Future research
should develop mathematical methods to aggregate non-contiguous but sta-
tistically similar regime islands (identified via the quantum test) into consol-
idated training sets. Solving the issue of artificial price jumps at the concate-
nation points would allow for the creation of robust “Cluster Models” trained

on larger datasets without violating stationarity assumptions.

o Dynamic Model Selection via Regime Similarity. Our analysis revealed that
while different crises are structurally distinct (e.g., 2015 vs 2020), intra-crisis
periods can be statistically identical. A promising future direction is to im-
plement a “Regime Library”: by computing the quantum statistical distance
between the current unfolding market window and various historical reference
periods in real-time, the system could automatically select and deploy the
forecasting model (or Cluster Model) trained on the most structurally similar
past regime. This would evolve the system from simple regime detection to

fully adaptive model selection.

o Implementation on Quantum Hardware. While this study relied on classical
simulation to isolate theoretical performance, the ultimate goal is scalability.
Future work should focus on implementing the kernel estimation on actual
NISQ devices, leveraging error mitigation techniques to verify if the quantum

advantage persists in the presence of hardware noise.

In conclusion, this thesis has moved beyond the theoretical proposal of Quantum
Finance to provide a concrete, empirical validation on real-world data. We have
demonstrated that financial markets exhibit distinct, persistent physical regimes
that are invisible to standard univariate statistics but detectable via quantum feature
maps.

While the forecasting application highlights the challenge of non-stationarity, our
findings establish a clear path forward: the future of algorithmic trading lies not
in static “super-models” trained on decades of history, but in agile, regime-aware
systems that use quantum sensitivity to adapt dynamically to the shifting landscape
of market risk. This work provides the foundational methodology for building such

systems.
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Appendix A

Code and Data Availability

To ensure reproducibility, the codebase is organised into two primary repositories

covering the methodology and the statistical testing framework.

Repository A: Regime Identification Framework

Implements the methodology for detecting the multimodality threshold Fy using the
Hall-York test, as derived from Lin Li’s framework.

URL: https://github.com/giorgiamazzaro/thesis-quantum-finance

Repository B: Quantum Two-Sample Test

Contains the PennyLane implementation of the Quantum Maximum Mean Discrep-
ancy (MMD) test used for regime validation.
URL: https://github.com/giorgiamazzaro/quantum-two-sample-test
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Appendix B

Additional Quantum Circuit

Architectures

This appendix details the alternative Parametric Quantum Circuit (PQC) architec-
tures evaluated during the model selection phase but ultimately discarded due to

inferior performance compared to the Paper Circuit.

B.1 Evaluated Architectures

In addition to the reference architecture (Paper Circuit) detailed in Chapter 5, we

benchmarked three alternative designs:

o TFIM Circuit: Inspired by the Transverse Field Ising Model, a standard
Hamiltonian in condensed matter physics. It employs layers of R, rotations

and ZZ coupling gates [44].

o LTFIM Circuit: A layered extension of the TFIM ansatz (Layered Transverse
Field Ising Model) incorporating additional R, rotations to increase expres-

sivity.

o Hardware-Efficient Circuit: An architecture optimised for current supercon-
ducting processors. It uses native gates (R, R., C'Z) to minimise circuit depth

and gate errors [45].
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Figure B.1: The TFIM Circuit architecture. It uses a pattern of ZZ-interactions
(entanglement) followed by local X-rotations.
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Figure B.2: The LTFIM Circuit architecture. An enhancement of the TFIM design
with additional parameterized Z-rotations.
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Figure B.3: The Hardware-Efficient Circuit architecture. Designed to fit the con-
nectivity of NISQ devices, using nearest-neighbor CZ gates.
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B.2 Benchmark Comparison

Figure B.4 illustrates the raw distribution of MMD scores for all four circuits on
the synthetic dataset. The plot highlights the critical issue with the TFIM-based
architectures: their output MMD scores are orders of magnitude smaller than the
Paper and Hardware-Efficient circuits, indicating a failure to map the temporal
features into a distinguishable quantum state (kernel collapse). While the Hardware-
Efficient circuit produces larger values, the overlap between the "Different" (Salmon)
and "Same" (Blue) distributions is substantial, resulting in a Signal-to-Noise Ratio

< 1. Only the Paper Circuit achieves a clean separation.

Comparison of Quantum MMD Distributions Across PQC Architectures
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Figure B.4: Boxplot of Quantum MMD distributions for all tested architectures.
Note the scale difference on the y-axis. The TFIM and LTFIM circuits produce
negligible distances. The Hardware-Efficient circuit (right) shows high variance and
overlap. Only the Paper Circuit (left) shows a robust separation between signal and
noise.

B.3 Detailed Benchmark Results

We compared the discriminatory power of each circuit using a scaled Signal-to-Noise
metric. Figure B.5 displays the results for the architectures that failed to meet the

selection criteria.

o TFIM Clircuit: Produced MMD scores orders of magnitude smaller than the
signal threshold (kernel collapse).
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o LTFIM Circuit: Showed marginal improvement but failed to achieve a robust

separation.

o Hardware-Efficient Circuit: Exhibited high variance, resulting in significant

overlap between the signal and noise distributions.
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Figure B.5: Benchmark results for the discarded architectures. The coloured bars
represent the baseline self-distances (noise): Red (A-A), Blue (B-B), and Green (C-
C). The black bars represent the cross-distances (signal): A-B, B-C, and A-C. A
robust test requires the A-C signal (third black bar) to be clearly separated from
the noise ceiling, represented by the dashed horizontal line at y = 1.0.
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Appendix C

Identified Market Regimes

The Hall-York thresholding process identified 178 distinct contiguous market regimes.
Table C.1 lists the ten longest contiguous periods for each regime type, which were

prioritised for the forecasting analysis.

Block ID Regime Start Date End Date Duration (Days)
Top 10 Longest Unimodal (Calm) Periods

1 Unimodal ~ 2011-01-04  2015-05-19 1060
63 Unimodal ~ 2016-11-15  2017-04-07 96
109 Unimodal  2018-03-26  2018-07-23 81
65 Unimodal 2017-04-13  2017-07-14 64
111 Unimodal ~ 2018-07-25  2018-10-19 57
61 Unimodal  2016-08-19  2016-11-10 23
119 Unimodal 2018-11-21  2019-02-11 52
93 Unimodal ~ 2017-11-22  2018-01-05 32
151 Unimodal 2019-10-30  2019-12-12 32
45 Unimodal  2016-04-21  2016-05-30 27

Top 10 Longest Multimodal (Turbulent) Periods

162 Multimodal  2020-06-01  2020-09-14 74
178 Multimodal ~ 2020-12-17  2021-03-30 68
120 Multimodal ~ 2019-02-12  2019-04-29 54
156 Multimodal =~ 2020-02-04  2020-04-10 48
250 Multimodal ~ 2023-03-16  2023-05-15 39
212 Multimodal = 2022-05-31  2022-07-25 39

2 Multimodal ~ 2015-05-20  2015-07-09 36
273 Multimodal ~ 2023-09-05  2023-10-24 30
20 Multimodal — 2015-11-04  2015-12-04 23
154 Multimodal ~ 2019-12-25  2020-01-23 21

Table C.1: The longest contiguous market regimes identified by the Hall-York
thresholding process. Note the exceptional stability of the 2011-2015 period (Block
1) compared to the more fragmented dynamics of later years.
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Appendix D

Supplementary Context Plots

This appendix provides the detailed price and volume context for the validation
experiments discussed in Chapter 6. The context plots in this appendix follow a
consistent visualisation style. The top panel always displays the closing price, which
is plotted as a line chart to represent its continuous evolution over time. The bottom
panel displays the daily trading volume, which is plotted as a bar chart to reflect its

discrete, transactional nature on each trading day.

D.1 Baseline Stability (2011-2013)

Figure D.1 illustrates the market conditions for the three consecutive years used
in the Baseline Stability Test. The trading volume remains consistently below the
threshold Ej, confirming that the entire period belongs to the unimodal Calm regime

used to verify the test’s false-positive rate.

D.2 Robustness Check (2016-2018)

Figure D.2 shows the context for the robustness check performed on disjoint uni-
modal blocks (Blocks 63, 65, 109). These periods, occurring after the 2015 crash,
confirm that the market returns to a stable ground state characterized by low vol-

ume, comparable to the 2011 baseline.
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Selected Market Regimes for Analysis (Price and Volume)
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Figure D.1: Context analysis for the Baseline Validation (2011-2013), shown in
Figure 6.3. The trading volume consistently remains below the critical threshold
Ey, confirming that the entire period belongs to the stable Calm regime.
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Figure D.2: Context analysis for the Robustness Check. The selected windows
(Blocks 63, 65, 109) represent stable unimodal islands in the post-2015 era.
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