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Using Explainability Methods to Uncover Shortcuts in Language Models

Fabio Marmello

Abstract

The increasing use of Machine Learning (including Large Language Models)
in critical domains such as cybersecurity calls for stronger model reliability and
trustworthiness. A key challenge in these applications is the potential for models
to learn spurious correlations or shortcuts — patterns that yield high accuracy on
training data but fail to capture genuine relationships, leading to poor performance
in real-world deployments.

This thesis addresses the identification of shortcuts learned during end-to-end
supervised training of language models applied to cybersecurity tasks. The recognition
of these patterns is essential to validate the robustness of the model and ensure safe
deployment.

To approach this challenge, we conduct a comparative analysis of explainability
techniques across two paradigms: traditional feature-attribution methods (LIME
and SHAP) that analyze input-output correlations, and concept-based approaches
that probe the model’s internal representations. For the latter, we examine Testing
with Concept Activation Vectors (TCAVs), adapted from computer vision to allow
manual definition and measurement of concept influence on predictions, and Sparse
Autoencoders (SAEs), which automatically extract interpretable features from model
activations to reveal internal reasoning patterns.

We build a systematic methodology for shortcut identification and conduct a case
study with two RoBERTa-based classifiers trained on cybersecurity classification
tasks.

Our study reveals that feature-based explainability techniques effectively identify
keywords used by classifiers, which can also be exploited to alter predictions. In con-
trast, concept-based methods highlight semantically coherent tokens that contribute

to class decisions, offering deeper insight into model reasoning.
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Chapter 1

Introduction

Al is a term that is increasingly being introduced across a wide range of domains,
sometimes even in contexts where its utility is questionable. However, there are also
environments in which it is driving major advancements.

Among these, the adoption of transformer-based models has drastically increased:
the ability of these models (such as RoBERTa) to process and interpret textual data
brought unprecedented performance[1] on Natural Language Processing tasks, such
as sentiment analysis[2] or threat detection[3].

In Cybersecurity, language models can be particularly helpful: messages such as
network traffic log, alerts, or any type of textual report can contain nearly invisible
patterns that might reveal malicious activity. Misclassifying a packet, however, might
not mean just accuracy loss, but also severe breaches, financial losses, or compromised
infrastructures. Modern adversaries are increasingly exploiting the opacity of Al
models, launching adversarial attacks to bypass protections. This makes transparency
and interpretability essential for cybersecurity systems. Language models, however,
are notorious for their lack of transparency, and the research community moved to
solve this problem[4], further influenced by regulatory initiatives such as the European
Union AT Act[5], which mandates transparency, accountability, and trustworthiness
in Al systems.

That’s why the field of Explainable Artificial Intelligence (XAI) has emerged, pro-
viding methods and frameworks to allow researchers and practitioners to interpret the
model’s decisions and inner workings. Employing these techniques not only enhances
user confidence, but also enables the identification of biases, errors, vulnerabilities
and patterns that may compromise the model’s capabilities.

This thesis investigates four prominent XAI techniques, applied to RoBERTa-
based models, to capture such correlations: Local Interpretable Model-agnostic
Explanations[6] (LIME), Shapley Additive exPlanations[7] (SHAP), Testing with
Concept Activation Vectors[8] (TCAV), and Sparse Autoencoders[9] (SAE). Specifi-
cally:

o LIME: this technique generates local explanations by approximating the model
with a simpler interpretable mathematical surrogate in the locality of a given

input. In this way, it allows us to identify which features most influence a
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specific prediction.

e SHAP: this technique builds on cooperative game theory, assigning an impor-
tance score to the input features based on the Shapley values. It differentiates
from LIME due to the use of a theoretically grounded framework to define the

most relevant features.

e« TCAV: this technique introduces for the first time the term "concept" in the
XAI world. It enables the quantification of the importance of human-defined
concepts within model predictions by studying the relations between the model

representations and the outputs.

e SAE: this technique leverages sparse autoencoders to untangle model repre-
sentations and uncover patterns within the hidden layers. By discovering
those patterns, the models can highlight links between meaningful internal

representations.

Our objective is to evaluate each technique’s contribution in explaining the global
behavior of RoBERTa-based models, defining whether the models found meaningful
patterns or learned spurious correlations that degrade real-world performance or can
be exploited to trick the model.

To compare these techniques, we performed the analysis on two case studies
within a similar domain of text classification. The first case study focuses on code
classification, where the objective is to categorize source code snippets according
to predefined labels. Based on a high-accuracy model, this scenario serves as a
controlled setting to verify the functionalities of the methods and to gain proficiency
in handling RoBERTa-based models. The second case study addresses packet classifi-
cation, specifically the identification of threats within HT'TP packets. This scenario,
characterized by high training accuracy but low testing accuracy, investigates the
utility of the techniques in uncovering potential shortcuts and vulnerabilities, high-
lighting the challenges of applying language models to cybersecurity tasks where

misclassifications may have severe consequences.



Chapter 2

Background and Related Work

Transformer-based architectures have achieved remarkable success across a wide
range of natural language processing (NLP) tasks, but they also shown the ability
of learning shortcuts and superficial patterns that yield high accuracy on training
data but fail to generalize on unseen datasets[10]. In this chapter we introduce the
field of Explainable AI, highlighting the distinction between post-hoc techniques and
approaches that aim to uncover the actual computational mechanisms inside neural
network. We provide a literature overview of the recent most used explainability
techniques with particular attention to the applications on Language Models. Finally

we present the theoretical groundings of the selected approaches for this work.

2.1 Explainable AI

Explainable Artificial Intelligence (XAI) is a topic that sees its origin in more than
forty years ago[11], where a program that models an expert was explained using
its embedded rules. However, in recent years, it has caught the attention of the
research community as more complex models achieving astonishing results, such
as Transformer-based Language Models, are born. The problem is that a trend is
emerging: more accurate results mean less explainable results[12]. For this reason,
researchers are trying to decipher the black-box nature of Al systems by designing
tools for post-hoc explanations and creating more transparent models. The field of
Explainable Al aims at developing tools to help developers improve Al algorithm
by detecting data bias, discovering mistakes in the models, and remedying the
weaknesses.

In the recent years, a new branch of XAI, known as mechanistic interpretability[13],
is gaining wide attention. While traditional explainability methods often provide
post-hoc approximations of a model’s behavior, mechanistic interpretability aims to
uncover the actual computational mechanisms inside neural networks. The objective
is not merely to describe correlations between inputs and outputs, but to identify
how internal components such as neurons, attention heads, or latent representations

contribute to specific functions.
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2.2 Transformer Paradigm and BERT

Transformers were first introduced by Vaswani[14] and revolutionized natural lan-
guage processing by replacing recurrent and convolutional structures with attention

mechanisms, enabling efficient modeling of long-range dependencies. The transformer
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Figure 2.1: Transformer Model architecture[14]

models are based on an encoder-decoder architecture (Figure 2.1) and exploit the
mechanism of self-attention to capture semantic relations between elements of a
sequence. This was previously done through recurrent and convolutional structures,
while the new architecture allows a more efficient representation. The objective of the
encoder is to transform the input sequence into an internal representation capable of
identifying a context. The decoder uses this representation, together with previous
ones, to generate the output. The sequence information is maintained through the
use of a positional encoding since the model is not sequential. The mechanism of
self-attention allows the model to give different weights to each token, basically
embedding an importance metric. This process is done in parallel through the use of

multiple attention heads.
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2.2.1 BERT

BERT, Bidirectional Encoder Representations from Transformers, was presented in
2018[1], extending the transformer paradigm by learning bidirectional representations
of text. Previous models processed text on a left-to-right or right-to-left basis, while
BERT simultaneously exploits both directions in all layers, achieving state-of-the-art
results across multiple NLP benchmarks. BERT is a multi-layer bidirectional encoder-
only transformer, which means that its structure is composed of a stack of encoder
blocks, each integrating multi-head self-attention. The focus of this model is not
generating text, but instead Masked Language Modeling (MLM) or Next Sentence
Prediction (NSP). BERT training process is divided into two stages:

e Pre-training: the model is trained on a large amount of unlabeled text on mul-

tiple tasks, such as Masked Language Modeling and Next Sentence Prediction.

e Fine-tuning: the pre-trained parameters are adapted to a specific downstream
task using labeled data. For the classification task, a single classification layer
is added at the end of the model, with the representation of the special token
CLS as input.

The fine-tuning process allows each model to quickly and easily adapt to many
different situations, while sharply reducing training costs. By leveraging knowledge
acquired during large-scale pre-training, fine-tuning enables the model to specialize
in domain-specific tasks with relatively small datasets, ensuring high accuracy and
robustness without the need for extensive computational resources. This approach
not only accelerates deployment in practical applications, but also enhances flexibility,
as the same pre-trained backbone can be efficiently repurposed across diverse contexts

such as medicine, cybersecurity, or natural language understanding.

2.2.2 RoBERTa

RoBERTa (Robustly Optimized BERT Pre-training Approach) was introduced as
a refinement of BERT[15]. The authors argued that the original BERT model
was significantly under-trained, proposing several modifications to the pre-training
methodology aimed at improving efficiency and generalization. Specifically, the

changes introduced are:

o Removal of the Next Sentence Prediction (NSP) objective: BERT used this
task to learn inter-sentence relationships, but an in-depth analysis revealed

that NSP does not contribute much to downstream performance.

o Training on larger mini-batches and longer sequences: by increasing the batch
size and the maximum sequence length, RoBERTa showed to be capable of learn-
ing better dependencies a improve stability during optimization. Furthermore,
this modification allowed the model to learn better long-range dependencies in

text.
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e Use of significantly more training data: RoBERTa overall training dataset
included several text dataset more than BERT, such as Common Crawl News!
and OpenWebText?.

¢ Dynamic masking of tokens during pre-training: BERT training process involved
the use of fixed masking patterns, ROBERTa introduces dynamic patterns that
change across epochs. This prevents the model from memorizing specific masked

tokens, allowing a more robust contextual learning.

These adjustments led to substantial improvements across multiple benchmarks,
demonstrating that BERT’s original training regime was not fully exploiting the
potential of the architecture. RoBERTa thus established itself as one of the most
robust and widely adopted models in natural language processing, serving as the
foundation for numerous subsequent works and applications. Its design emphasizes the
importance of careful optimization and large-scale training, showing that performance
gains can be achieved not only through architectural innovations but also through

methodological refinements.

2.3 Tokenizer

In order for AT models to understand text, an important step is the tokenization.
This step divides a text sequence into smaller units, called tokens, which are then
mapped to numerical indices within a vocabulary. The method in which this task
is performed has a direct impact on the model’s capabilities to represent natural
language, influencing the robustness of the model across different domains, such as
different languages. It is important to understand that a single word may be split
into multiple tokens or into a single one.

BERT employs the WordPiece tokenizer[16], which segments words into frequent
subunits and utilizes prefixes (such as __) to indicate internal splits, with the addition
of 3 special tokens CLS, </s> and PAD (respectively with ID 0, 1 and 2). RoBERTa
instead introduced a Byte-Level BPE (Byte-Pair Encoding) tokenizer, which operates
at the byte level, providing greater flexibility in handling special characters and
multilingual text. It also introduced explicit encoding for whitespace through the
use ofG and G, enabling the model to distinguish between words with or without

preceding spaces.

2.4 Related Work

In recent years, the need for Explainable Al has risen exponentially due to the
growing adoption of machine learning models in critical environments, such as
medicine and computer science[17]. To address this challenge, research has moved

in two directions: developing new explanation techniques or designing inherently

! Available at: https://commoncrawl.org/
2 Available at https://github.com/jcpeterson/openwebtext
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interpretable models[18]. Nevertheless, the application of Language Models and Deep
Neural Networks has gained a predominant role in critical scenarios such as image
captioning or text classification. In this section we analyze the principal contributions
in the literature related to black-box models and post-hoc techniques.

[19] gives a comprehensive overview of current available techniques, highlighting
their characteristics and applicability. For our use case, we are interested only
in black-box compatible techniques, in particular those applicable to textual data.
Several techniques applicable to our use case have been presented in the literature
[20], but two stand out: LIME and SHAP. These two methods are among the most
widely used explainability techniques with broad applicability ([21], [22], [23]). LIME,
for example, has proven effective in generating local explanations by highlighting and
quantifying the contribution of individual input features to a model’s prediction [24].

However, those techniques fall short when it comes to capturing the model’s global
behavior or accounting for complex feature interactions—factors that are often crucial
in high-dimensional decision-making scenarios. For this reason, much of the literature
has turned to the analysis of attention mechanisms in transformer-based architectures
such as BERT: for instance, it was demonstrated that attention heads are capable
of capturing a considerable amount of syntactic information[25]. Yet, while these
techniques can reveal whether the model has learned structural relationships between
tokens or not, they offer limited insight on the actual reasoning behind the outputs.
This limitation is particularly noticeable in contexts where syntactic cues are sparse
or less informative and has motivated researchers to explore more invasive techniques,
focusing on internal activations and representations, particularly in domains like
computer vision.

The most common technique in this field is TCAV [8] which has received a lot of
considerable attention and development. For example, some studies have attempted
to combine TCAV with saliency maps (a technique to highlight the most relevant
pixels in images) to improve concept visualization [26]. TCAV saw application
also in the field of cybersecurity: one approach proposed a way to use SHAP to
define the concepts and then verify them by using TCAV[27], however this approach
doesn’t suit Language Models due to the input variability. A statistical adaptation
of TCAV, designed to be compatible with Language Models, has been successfully
implemented, though its focus remained on data augmentation efficiency rather than
interpretability [28]. The limitation of TCAV-derived techniques is that concepts
must be human-defined: for this reason, new approaches such as ACE[29] have been
proposed to automatically detect them.

Following this trend, mechanistic interpretability gained popularity. This subfield
saw interest from many of the big competitors in the Al race, from OpenAI[30] to
Antropic[31], that demonstrated how sparse autoencoders (SAEs) are capable of
disentangle neuron activations to help reach more understandable features.

Taken together, these contributions illustrate the evolution of XAl from local,
post-hoc explanations toward deeper investigations of model internals. This trajectory

frames the motivation of our work, which aims to analyze which technique is suited
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the best for determining overall global behavior and finding shortcuts.

2.5 Techniques

As previously outlined, we chose to assess the utility of four techniques: LIME, SHAP,
TCAV, and SAE. LIME and SHAP are designed to provide local explanations, with
their main strength lying in the identification of the most relevant input features for
a given prediction. They were chosen due to their ability to adapt to many models
(they consider the model a black-box) and due to their widespread use among all the
research community.

In contrast, TCAV and SAE operate on the internal representations of the model.
TCAV was selected due to its ability to evaluate the model sensitivity to human-
defined concepts, whose application is easy to realize from the structured nature of
internet protocol. SAE, instead, was selected due to the impressive results shown
from the main competitors in the Al scenario, along with its suitability in uncovering

patterns within the activations, which is our goal.

2.5.1 LIME

LIME is a tool that was first presented in 2016[6]. It was introduced as a general-
purpose framework capable of explaining any classifier by providing interpretable
and faithful explanations. Its primary goal is to help practitioners build trust in
individual predictions, and through repeated analysis, gain confidence in the model
as a whole. As highlighted in their work [6], these are two different challenges and
solving one, does not imply solving the other.

LIME is designed to generate local explanations for individual predictions by
approximating the model’s behavior in the vicinity of a specific input. This is
achieved by creating a set of perturbed samples around the original input and
analyzing the corresponding outputs. A simple and interpretable model—typically
a linear classifier—is then trained on this neighborhood to mimic the behavior of
the original model locally. This allows users to understand which input features
most influenced the prediction, without needing to inspect the model’s internal
mechanisms.

One of the key challenges in applying LIME to text classification lies in finding a
representation that is easily understandable by humans: Language Models transform
text into tokens which may not always correspond directly to words, as words can
be split into multiple tokens or include punctuation. To address this, the input is
mapped to a binary vector indicating the presence or absence of words. The original
representation of the instance to be explained is denoted as z € R%, while the binary
vector is represented as ' € {0,1}%.

The explanation is formally defined as a model ¢ € G, where G is a class of
potentially interpretable models. The domain of g is {0, 1}d/ since g operates over

the presence or absence of interpretable components. The explanation provided by
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LIME is obtained by solving;:

£(z) = argmin £(f, 9, 7,) + (9) (2.1)

geG
This formula consists of two components: the unfaithful parameter L(f, g, m,) and
the interpretability constraint £2(g). The objective of the technique is to minimize
L(f,g,m) while keeping Q(g) as low as possible to ensure both local fidelity and

human interpretability. The unfaithful parameter is defined as:

L(f,9,m2) =Y ma(2) - (f(2) — 9(2))? (2.2)
zEZ

where Z is the dataset of perturbed samples and 7, is a locality kernel. The perturbed
samples are generated around z’ by drawing uniformly at random nonzero elements
of 2/ and generating 2’ € {0, 1}d/, which is then reconstructed into the original
representation z € R?. This representation is then used as f (z) to obtain a label
for the explanation model. The locality kernel has the objective of measuring the
distance between any sample z € Z and the original instance x to properly define a

locality around x. It is computed as:

—D(z, 2)?
7z(z) = exp <D(2’)> (2.3)

g

where D is a distance metric, that, in the case of a text classifier, is the cosine
distance. The exponential ensures that samples closer to the original instance receive
higher weights, thereby focusing the explanation on the local behavior of the model.
It is important to note that, due to the randomness of this process, the perturbed
samples are not generated only in the proximity of x (with high weight from =), but
also far away (with low weight from 7).

The interpretability constraint parameter (2.4) has the objective of ensuring that
the explanation is interpretable: in the case of a text classifier this is performed by

setting a limit to the number of words that a user can sustain, by following
Q(g) = oo - 1| lwgllo > K] (2.4)

where w, is the weight vector of the linear model g, and K is a user-defined threshold
on the maximum number of non-zero coefficients. This constraint ensures that
the explanation uses at most K features, promoting sparse and human-readable
explanations. If the number of active features exceeds K, the penalty becomes
infinite, effectively making the model unusable.

In summary, LIME offers a powerful and flexible approach for interpreting black-
box models, providing locally faithful and interpretable explanations. This makes it

one of the most used tool for increasing transparency and trust in Al systems.
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2.5.2 SHAP

SHapley Addictive exPlanations was first presented in 2017 by [7] as a framework to
unite many explainability techniques by defining a class of additive feature attribution
methods. This class is identified by "any method that has an explanation model that
is a linear function of binary values". This means that the explanation follows the

formula. Specifically, any method whose explanation model follows the formula:

M
(') = o+ Y biz (2.5)
=1

Here, 2. € {0, 1}M represents a simplified binary input vector of M features. Any
method whose explanation model conforms to this function assigns an attribution
value ¢; to each feature, and the sum of these attributions provides an approximation
of the output of the original model f(x). To ensure a single unique solution within

this class, SHAP introduces three properties:

e Local accuracy: for a given input instance, the explanation model is required

10
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to match the output of the original model when applied to the corresponding

simplified representation.

M
fla) = g(z') = do + Y i} (2.6)

=1

o Missingness: features that are not present in the original input provide no
influence on the output.
r,=0=¢;=0 (2.7)

e Consistency: if the original model changes in such a way that some simplified
input’s contribution increases or stays the same regardless of any other inputs,

that input’s attribution should not decrease.
fo(?) = f2(Z\ 1) 2 ful2)) = fu(2'\ 1) (2.8)
for all inputs 2’ € {0, 1}M, then ¢;(f', ) > ¢i(f, ).

Combining the formula 2.5 and the properties (2.6, 2.7, 2.8) leads to the theorem on
which SHAP is based: only one possible explanation model g follows
|2/ [N(M — || — 1)! ,
sitfy= Y ERM L=y oy iy (2.9

2/ Ca’

where |Z/| is the number of non-zero entries in 2/, and 2’ C 2’ represents all 2’ vectors
where the non-zero entries are a subset of the non-zero entries in x’.

The solutions to equation 2.9 are known as Shapley values, named in this frame-
work SHAP values, where f;(z') = f(hs(2')) = E[f(2) | z5] and S represent the
expected model output influenced by the subset of nonzero features S in 2’. The
SHAP values provide a measure of the unique additive feature contribution. Due to
the computational cost of these values, the framework introduced several algorithmic
implementations tailored for specific cases. For instance, Kernel SHAP is capable of
adapting to any model but is computationally expensive, while Tree SHAP offers
efficient value computation but only for tree-based models. Our use case saw the
application of the Partition Explainer: one of the most recent additions to the
SHAP library 2. This explainer is model agnostic, like LIME, but to improve the
computational complexity uses an approximation of the SHAP values: the Owen
values.

The Owen values originate from cooperative game theory [32]: the objective is
to take into account that certain players (in our case, features) are more likely to
work together than others. These "coalitions" are defined by SHAP via hierarchical
partitioning of features, and then the Owen values are computed along the tree
recursively to determine each feature’s contribution within its coalition. While

the SHAP library does not explicitly provide the formula used for Owen value

3 Available at https://github.com/shap/shap
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computation, the relationship between Shapley and Owen values is theoretically
justified, as demonstrated in [33]. The selection of the Partition Explainer is performed
automatically by the library based on the model type and computational efficiency:
this method has a computational complexity of O(n?) with respect to O(2") of the

Kernel Explainer?, where n is the number of features.

2.5.3 TCAV

Testing with Concept Activation Vectors (TCAV) is a technique introduced in 2017
[8] for Computer Vision models which are typically trained to assign a text label to
an image. The objective of TCAV is to quantify how much human-defined concepts
influence the model’s classification.

To apply TCAV, a dataset of concept-related images is created and passed
through the model. The activations of a specific bottleneck layer are extracted for
each image and used to compute the Concept Activation Vectors (CAVs). These
vectors are obtained by training a linear classifier to differentiate between activations
from concept-related images and those from random images. The resulting CAV
corresponds to the weights of the linear classifier and is formally defined as the
normal vector to the hyperplane separating examples with a concept and without. It
is important to notice that the concept is human-defined and it is not limited to the
model’s labels, training data or existing features.

Once the CAV is computed, it is used to calculate the conceptual sensitivity,
by performing the directional derivative of the activations extracted from a general

image with respect to the CAV:

Sck,(r) = lim hii(fi(x) + evg) — hig(fi(@))

e—0 15

= Vhii(fi(z)) - vh (2.10)

This derivative takes inspiration from the saliency maps[34]: a more classical explain-
ability method that uses gradients of logit values with respect to individual input

features.

Testing with Concept Activation Vectors expands the conceptual sensitivity to

an entire class by analyzing multiple inputs of a specific label:

|{:C € X : SC}C,[(JU) > 0}|
TCAVQC,k,l = Xl

(2.11)

This allows to quantify the average conceptual sensitivity of a class k to a specific
concept C' (I refers to the layer from which the activations where extracted). However,
it is possible that the training of the linear classifier produces a meaningless CAV: to
ensure reliability, the test should be repeated multiple times and lead to consistent
TCAYV scores for meaningful concepts. It was also shown that complex concepts tend

to have higher scores within deeper layers of the model, while simpler ones gradually

4This is the explainer used by Kernel SHAP, the only other solution for our model
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fi: R? = R™ hip :R™ = R

=

]IMW = = = M K™ class

]
) 2o X m

2 Dy SO VD) S SR £ )

1 (B ;/U; B Sck,t (e )
A0 T =Vh i (fi(Re)) - v

Figure 2.4: TCAV functionality example[8]: a series of images representing the
human-defined concept "stripes" and a series of random images (a), are passed to
the model (c). The activations of layer m of the network are used to calculate the
CAV (d). Then, for the class of interest (as highlighted in b, zebras), the directional
derivative is used to compute the conceptual sensitivity (e)

lose importance, highlighting the hierarchical nature of learned representations. TCAV
provides a principled way to bridge human-defined concepts and model representation,
enabling quantification of how abstract notions influence prediction. It saw many
application in the computer vision scenario, while not many applied this technique to

Language Models: The varying input length adds a big challenge on its adaptation.

2.5.4 SAE

Sparse AutoEncoders are a novelty in the interpretability scenario. Initially introduced
by [9] to address the superposition problem, SAEs offer a mechanism to disentangle
neuron activations: many models, not only Language Models, have polysemantic
neurons that activate in similar way for tokens that are semantically unrelated,
meaning that the neuron is key for multiple tasks. Autoencoders are neural models
designed to approximate the input through an internal representation. While the
latent dimension is typically smaller than the input to enforce compression, increasing
it beyond the input size—combined with a sparsity-oriented loss function—enables
the disentanglement of complex activations and the discovery of hidden patterns.

What SAEs learn to represent are dictionary of words that can be manually or
automatically linked to a human-defined concept. Usually, to automate this process,
the gathered data is fed to an LLM for it to automatically generate the concept that
summarizes the results.

Our work was shaped following Antropic’s latest design [31]: the SAE is composed
by a single-layer encoder, linked to a single-layer decoder through the ReLU activation
function.

This architecture is standard across SAEs applications. Antropic’s key innovation
lies in the loss function: this is the core of the SAE and its objective is to incentivize
sparsity. The sparsity allows for disentangling activations by stimulating each input

to activate a small number of SAE’s neurons. The Antropic’s sparsity-regularized
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Internal SAE activations

Model's Activations Reconstructed Activations

Encoder

7\ Decoder

~—

Feature Directions

Figure 2.5: This image represent the SAE structure: you give in input the model’s
activations for a token and it tries to reconstruct them using few neurons as possible.

loss function is defined as follows[35]:

1
L= x=%[3+AY (2.12)
|X| xeX i

filx) [ wiee

2

where x are the model’s activations normalized so their average squared L2 norm is
the residual stream dimension D, \ is the sparsity coefficient, W%¢ are the decoder

weights and f; is the output of the encoder. The normalization follows this formula:

1 N d
MSN = — 2, 2.13
~ ;;% (2.13)

D -

The encoder’s and decoder’s outputs are defined as:

filw) = ReLU (W™ - x + bg™) (2.15)
F

% = Dbl + 3 fi(x) Wi (2.16)
i=1

where D is the model’s activations dimensions, F’ is the dimensionality of the SAE’s
hidden layer, Wene e RED jydec ¢ RPF pene ¢ RE and b?%c ¢ RP. From
W‘ffc ) and the

this formulation, the feature activations are computed as f;(x) - ‘

dec

corresponding feature directions will be | , directly extracted from the decoder

W
[wesell,
(as highlighted in figure 2.5). To clarify the feature activations are the SAE internal
activations of a specific neuron, relative to a specific token, while the feature direction
identifies on which tokens the neuron is more likely to activate.

The token activations for the training of the autoencoder are collected by feeding
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complete samples through the model, allowing each representation to maintain
contextual information. When passing those values to the SAE instead, the order of
the tokens is randomized to avoid biases. After training, by analyzing which tokens
activate the same feature, one can construct token dictionaries that, if semantically
coherent, can be mapped to a concept.

sparse AutoEncoders provide a scalable and unsupervised framework for un-
covering latent structure in neural representations, which could provide important

contribution in understanding a model.
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Chapter 3

Methodology

The methodology adopted in this thesis is designed to evaluate the ability of state of
the art explainability techniques to uncover meaningful patterns between the input
of a Language Model and its predicted output. Our goal is to investigate whether
these techniques are capable of providing reliable insights into the decision-making
process of the model, using our expert eye to evaluate the outcome. To this end, the
approach is divided into three pipelines’ (Figure 3.1) that aim at providing us the

most meaningful result possible:

e LIME and SHAP pipeline: being these two techniques really similar in both
the explanation type and output style, it is easy to run them in parallel. We
will compare their capability of explaining both single instances and global

model behavior.

e TCAYV pipeline: this pipeline aims at evaluating the correctness of the technique,
the relevance of every defined concept, and the visualization of the results to

proceed with a manual verification.

e SAE pipeline: this pipeline allows the training of multiple SAEs, the evaluation

of their metrics and feature filtering to ease the manual validation phase.

3.1 LIME and SHAP Pipeline

As previously mentioned2.5.1, LIME and SHAP try to establish a direct correlation
between input tokens (the features of a Language Model) and the predicted output

class. In this thesis, we chose two techniques based on two main factors:

o State of the art: both techniques are widely adopted and continuously supported

by the research community, ensuring methodological robustness

o Readiness: their ease of use makes them suitable as baselines and ground truth

references for the subsequent comparison with concept-based methods.

LAll the code related to this analysis is available at https://github.com/ChehSuccedeh/tesi
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Figure 3.1: Complete Methodology Pipeline

Both these techniques are model-agnostic, meaning that the internal architecture
and parameters of the model are not important, and thus making them compatible
with a wide range of architectures. Moreover, despite being developed many years
ago, they remain central in the interpretability landscape.

We employed these methods in their intended scope of local explanations, an-
alyzing the highlighted features to detect differences and identify potential biases.
Subsequently, we extended the evaluation to a large set of samples to assess their
ability of capturing the global model behavior. The resulting feature importance
distributions serve as a baseline for evaluating the added value of newer, more invasive
techniques.

LIME and SHAP are both available through open source Python libraries?. This
facilitated the implementation, however LIME required the implementation of a
model wrapper class that, once initialized with model and tokenizer, provides the
technique with a method capable of processing a string and returning the model
prediction probabilities for each class (the prediction probabilities are computed
through the SoftMax of model logits).

We provide each technique with some text samples and use the explanation to craft
some adversarial inputs to verify the effectiveness of the explanation. These examples
however are only valid in the locality of the text samples analyzed. To generalize, we
provide multiple samples of each class, and collect the average importance of each
identified word. We then compare the results of the local explanation to the latter

average importance to verify the consistency: if the global explanations do not match

2 Available at: https://github.com/marcotcr/lime and https://github.com/shap/shap
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the local ones, these techniques are not useful in finding overall shortcuts.

3.2 TCAYV Pipeline

As opposed to LIME and SHAP, TCAV exploits internal model representations to
identify whether human-defined concepts are encoded within the model. To correctly
obtain the representations we started by adapting a previous implementation®[28]
which uses PyTorch hooks to grab the token activations from a predefined layer.
Another hook is used to collect the gradients to compute the final TCAV score. Their
analysis however limited the training of the CAVs to the single CLS token, which
significantly impacts the utility in finding token relations. For this reason we decided
to consider all tokens fed through the model. This raised a challenge: the linear
classifier that is used to compute the CAV is not able to deal with varying length

inputs. We opted to design three strategies to overcome this:

e Truncating every sample to the maximum length of the concept samples: this
would allow to gather as much information as possible from the concepts, but
creates problems when calculating the derivative of samples. Those samples
have to be truncated to that same length, potentially discarding many tokens
that may be related to the concept, effectively lowering the TCAV score. We
identify this strategy with "Truncated".

o Padding to the maximum length supported by the model: by casting to the
maximum length, we would avoid the problem related to the truncation of the
tokens, however, the information related to the CAV would be concentrated on
the first tokens*, introducing a positional bias. We identify this strategy with
"Padded".

e Averaging model activations across concept samples: this solution would elimi-
nate all the problems related to the positioning of the tokens, but it is possible
that the average could lead to information loss, meaning that the CAV could

not be correctly represented. We identify this strategy with "Average".

3 Available at: https://github.com/IsarNejad/TCAV-for-Text-Classifiers
4Being the concepts usually short, a lot of space would be taken by meaningless padding
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Figure 3.3: Visual representation of TCAV pipeline

These implementation choices reflect the inherent tension between preserving semantic
fidelity and ensuring computational compatibility with TCAV. While each strategy
introduces its own limitations, their formulation was necessary to adapt the method
to the structural constraints of language models. It is important to consider for each
concept we trained a different CAV for each layer of the model to gather a complete
overview. The concept we defined can be characterized in two types: general concepts
and class-related concepts. The first category aims at defining concept that can be
found within any sample, despite the class they belong to. The second category
instead aims at defining class-specific concepts to define whether the technique is
capable of distinguishing them and if the model has learned more class-specific
patterns. To analyze the contribution of TCAV, we tested many concepts in parallel,
repeating each test 30 times. For each of them, we compared the three strategies by
examining their average TCAV score across the layers in search of patterns, such as
gradual score improvements, which may suggest that the concept is well captured
by the CAV and relevant for the classification, or conversely reveal that the CAV is
merely incidental and does not reflect a meaningful representation. This analysis also
considered the variability of the TCAV scores: more stable values suggest a reliable
CAV, whereas high variance may reveal excessive randomness and undermine its
trustworthiness. After performing the visual analysis, we validated our observations
through statistical t-tests (see Appendix A.1) to assess whether a defined concept
is significantly distinguishable from a random baseline. To ensure robustness, we
applied a stringent filter on the p-values (< 0.0001), following the language model
implementation of TCAV[28]. If a CAV passes this test, it is subsequently employed
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Figure 3.4: Visual representation of the SAE pipeline

to compute the conceptual sensitivity of each token and visualized in a format similar
to LIME and SHAP. This allows the verification of the correct concept representation:
tokens belonging to the concept are expected to exhibit higher conceptual sensitivity

compared to those that do not.

3.3 SAE Pipeline

SAE is another technique that employs internal representation: it tries to untangle
them to detect relationships between tokens that may have been learned by the model.
There is no available library that implements this technique for BERT-based models.
We proceeded with the definition of a class that allows the creation of any sparse
autoencoder following the structure defined in Section 2.5.4, by specifying the input
dimension and the hidden dimension. In our case the input dimension is 768: this is
the number of neurons, and so the number of activations per tokens, of a RoOBERTa
layer. For completeness purposes and we trained SAEs of sizes 768, 1536, 3072, 6144,
12288 and finally 24576: going higher is possible but the training time gets linearly
higher with the size, limiting our capabilities. Each SAE is trained on a single layer
of the original model, meaning that the token representations are extracted from
a specific layer and fed through the autoencoder in randomized fashion. Following
recent studies[36], we trained SAEs on the higher layers of the models, aiming to
capture a meaningful progression in the learned representations. Specifically, for the
code classification task, based on the RoBERTa-small architecture with 6 layers, we
focused on layers 3 to 6. For the packet inspection task, instead, which relies on the
RoBERTa-base architecture with 12 layers, we trained on layers 6 to 12, leading to
a total of 55 trained SAE. Specifically, the training of these SAEs was performed
over 200 epochs using the ADAM optimizer with these parameters (suggested by
Antropic’s implementation[35]): sparsity coefficient A = 5, learning rate Ir = 5- 1072,
B1 = 0.9 and [2 = 0.999. Once all the SAE have been trained we analyzed them
by first comparing them to define whether a better model was present and then we
proceeded to filter SAE features to detect meaningful one. The comparison across

configuration was based on two primary criteria:

e Sparsity, defined as the number of SAE features that are simultaneously active
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on the same token.

e Dead features, which are features whose activations remain consistently below
a predefined threshold.

As an additional step, we performed a manual validation of the SAE feature with
the highest average activation to get an overview of the interpretability of the results
across layers. We then moved to identifying within a SAE the most relevant features,
to assess its capability to find meaningful relations that could be exploited by the

model to perform its classification. We performed three comparisons:
e Clustering
e Class level TF-IDF filtering

e Token level TF-IDF filtering

The clustering was employed to identify groups of similar concepts and applied on
the SAE feature directions (see Section 2.5.4). First, we reduced the dimensionality
using UMAP to 10 dimensions, using as parameters 15 neighbors, minimum distance
0.1 and cosine similarity as metric. Then, on top of this representation, we applied
HDBSCAN with a minimum cluster size of 10 to automatically detect clusters. The
resulting clusters are then manually inspected to verify whether they correspond to
similar tokens or classes.

The class-level TF-IDF (see Appendix A.2) was defined to highlight concepts
(SAE features) relevant to specific classes. For each feature, the Term Frequency (TF)
was defined as the frequency of its activation within a sample, while the Document
Frequency (DF) was defined as the number of samples in which the feature was active
for at least one token. This allows to down-weight concepts that are always active
across samples and highlight rarer concepts that may be more specific for individual
classes.

The token level variant of the TF-IDF has the Term Frequency defined as the
activation for each concept across all tokens, aggregating all samples together. The
Document Frequency is defined as the number of tokens in which a feature is active.
For duplicated tokens the average TF-IDF score is computed to avoid bias. This
approach allows to filter concepts based on token-level specificity, reducing the
influence of ubiquitous or uninformative tokens such as whitespace.

To reference a specific feature, we introduced a compact acronym that enables
quick identification: use case / layer of reference / feature identifier / SAE hidden
dimension. For instance, the notation P/8/145/768 denotes feature 145 of the SAE
model with hidden dimension 768, trained on layer 8 within the packet inspec-
tion scenario (where P indicates packet inspection, while C will be used for code
classification).

Finally, for each identified important concept, we validated its influence on the
model by removing the tokens that most strongly activated it and observing the

resulting variation in performance. As a baseline, we compared these results with the

21



Methodology

removal of randomly selected tokens. This procedure allowed us to assess whether
the identified concepts had a measurable and interpretable impact on the model’s

behavior.

3.4 Visualization Tool

To assist TCAV and SAE, and achieve a more comparable visualization with the
feature-based, we designed a web application using React and TypeScript. It is
composed by two pages, each related to one technique, and allows the user to load a
JSON file to visualize for each sample the token’s impact. For the TCAV it allows to
easily cycle through each layer, concept and sample, highlighting at the top the top
5 tokens with highest and lowest conceptual sensitivity within all samples.

To capture the relationship between concepts and model activations, we employ
a JSON structure specifically designed for token sensitivities (Table 3.1). Each entry
associates a concept (e.g., random) with the corresponding layer identifier, which
can be expressed either as a string or a numerical index. The entry also records the
"'sample_index", an integer that uniquely identifies the analyzed sample. Finally, the
"token_ sensitivities" field contains an array of pairs, where each pair links a token to
its sensitivity value. This representation provides a compact yet expressive format
for quantifying how individual tokens contribute to the activation of a given concept

across different layers, thereby facilitating interpretability analyses such as TCAV.

Field Description

concept String, the concept associated (e.g., “random”)
layer String/number, identifier of the layer (e.g., “17)
sample__index Integer, index of the analyzed sample (e.g., 42)

token__sensitivities Array of pairs [token, value]

Table 3.1: Example of JSON structure for token sensitivities

The page dedicated to the SAE analysis allows to load a single SAE’s data, due
to size limitation (files above 100 MB tend to crash the client’s browser. In order to
systematically represent the activations associated with code samples, we adopted a
hierarchical JSON structure.

Field Description

sample_index Integer, index of the analyzed sample (e.g., 42)
tokens Array of token objects (see Table 3.3)

class String, category (e.g., “python”)

Table 3.2: Structure of the JSON entry for code activations

At the highest level (Table 3.2), each entry corresponds to a single analyzed
sample, identified by an integer index and annotated with its categorical class (e.g.,
python). The entry also contains an array of token objects, which encapsulate the

finer-grained information.
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Field Description

token_idx Integer, position of the token in the sequence (e.g.,“42” )
token_str  String, the token itself (e.g., “CLS”, “def”, “cursor”)
activations Array of pairs [feature_id, activation_ value]

Table 3.3: Structure of each token object

The internal organization of each token (Table 3.3) specifies its sequential position,
textual representation, and the corresponding activation values. Activations are stored
as pairs of feature identifiers and numerical values, thereby enabling a direct mapping
between individual tokens and the features they trigger. This design ensures both
readability and extensibility, allowing the data to be efficiently parsed, analyzed, and
visualized in subsequent stages of the study.

23



Chapter 4

Use cases and Datasets

In this thesis we focus on two use cases that employ fine-tuned RoBERTa model with

a classification head:

e Code Classification: this model serves as reference. It corresponds to the
CodeBERTa-small-v1 model, originally trained for next token prediction across
multiple programming languages, and extended with a classification layer to
assign language labels. The possible labels are: Go, Java, JavaScript, PHP,
Python, and Ruby.

o Packet Inspection: this is the main model analyzed in our work. It is a
standard CodeBERTa-base architecture, extended with a classification layer
to assign a label to HTTP packets. The label is referred to the attack
type within the packet, choosing between: Adware, Backdoor, Botnet, CGI,
Code-execution, DDos, Dir-Traversal, Dos, Info-Disclosure, Injection,
Other, Overflow, Ransonware, Remote-file-Inclusion, Scanner, Spyware,
Trojan, Virus, Webshell, Worm, XSS

The first model® achieves very high performance, with testing accuracy and F1 score
above 0.999. It is the "small" version of RoOBERTa, comprising only six transformer
layers, which are sufficient for the relatively simple task of code classification. The
second model, instead, is a RoBERTa-base model with twelve layers. It achieves a
poor accuracy and very limited information is available beyond the set of outputs,

since it was trained on a confidential dataset.

4.1 Datasets

Datasets play a crucial role not only in the training of the model but also in the
application of explainability techniques. For the code classification use case, we
employed the same testing dataset used to evaluate the model performance: Code-

Search-Net?. This dataset was constructed by crawling GitHub repositories and

! Available through the HuggingFace Python library transformers: https://huggingface.co/
huggingface/CodeBERTa-language-id
2 Available at: https://huggingface.co/datasets/code-search-net/code_search_net
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Use cases and Datasets

’ Class ‘ Elements
Go 14,291
Java 26,909

JavaScript 6,483
PHP 28,391
Python 22,176
Ruby 2,279

| Total | 100,529 |

Table 4.1: Distribution of samples within Code-Search-Net dataset

’ Class ‘ Elements ‘
Backdoor 586
Botnet 978
CGI 192
Code-execution 166,359
Dir-traversal 90,636
DoS 610
Info-Disclosure 113,851
Injection 143,112
Overflow 718
Remote-File-Inclusion 5,015
Scanner 14,654
Trojan 72
Webshell 10,684
Worm 290
XSS 53,261
Total 601,518

Table 4.2: Distribution of the private training dataset

gathering code functions across the six programming languages supported by the
model. The distribution of the dataset is shown in Table 4.1.

For the packet inspection use case, instead, the training was performed on a
private dataset with samples composed by an IP address followed by a standard

HTTP request, for example:

203.0.113.10

GET /cgi-bin/test.cgi?input=foo&&cat¥%20/etc/shadow HTTP/1.1
Host: submit2.com

User-Agent: Mozilla/5.0

Accept: text/html

Accept-Encoding: gzip, deflate, br

Accept-Charset: UTF-8

Accept-Language: en-US

Connection: keep-alive

In Table 4.2 are shown the dataset distribution which highlight a clear imbalance

25



Use cases and Datasets

Class Elements
Dir-Traversal 31
Adware 30
Injection 30
Code-execution 30
Info-Disclosure 26
XSS 20
Remote-file-Inclusion 20
Overflow 17
Spyware 10
Trojan 10
CGI 10
Scanner 7
Ransomware 7
Botnet 6
Backdoor 4
Total 258

Table 4.3: Distribution of samples within the LLM generated dataset

between classes (e.g. CGI: 192; XSS: 53,261). These categories were defined by the
private author reflecting its practices, and, not having access to it, the classes may
not reflect correctly commonly accepted standards. On this note, we highlight the
presence of partially overlapping categories which may hinder our considerations: for
example the class Injection can comprehend Code-Execution and XSS. To obtain a
dataset to use for testing purposes we prompted LLMs (specifically Gemini 2.5 Flash,
GPT-5 and Claude Sonnet 4) with the classes and packet structure to generate new,
hypothetic HT'TP request, manually verifying each label. This procedure yielded a
total of 258 samples: attempts to generate additional data resulted in either repeated
entries or incorrectly formatted outputs. As shown in Table 4.3, the classes Other,
DoS, DDoS are not present within the dataset. Their exclusion stems from the lack
of clear definitions: Other is overly generic, while DoS and DDoS are difficult to
characterize within a single HT'TP Request as they often resemble legitimate traffic.

As an additional resource for the second use case, specifically to improve the
concept datasets and to train the SAEs on more tokens, we employed the CSIC
2010 Web Application Attacks®. This dataset contains HTTP packets (without IP
information), divided in protocol fields, classified either as Normal or Anomalous.
For our purpose, we restricted usage only to the Anomalous samples, automatically
assigning each a random IP. Although the true labels are not directly useful for
SAE training—which requires model activations rather than class labels—we allowed
the classifier to assign labels in order to obtain a general overview of the dataset
distribution (Table 4.5).

3Available at: https://www.kaggle.com/datasets/ispangler/csic-2010-web-application-
attacks
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’ Class ‘ Elements ‘
Normal 36000
Anomalous 25065

| Total | 61.065 |

Table 4.4: CSIC 2010 Web Application Attacks dataset distribution

’ Class ‘ Elements ‘
Info-Disclosure 13618
Other 7983
Injection 1551
Code-Execution 1185
XSS 674
Dir-Traversal 26
Scanner 23
Remote-file-Inclusion 5
| Total | 25065 |

Table 4.5: Distribution of predicted labels within the CSIC 2010 Web Application
Attacks

4.1.1 Concept Datasets for TCAV

To apply the TCAV technique, we first defined a set of concepts and created small
datasets for each of them, which were then used to train the linear classifier. Each
concept was represented by a collection of samples, allowing the model to learn a
direction in the activation space corresponding to that concept.

In the code classification scenario, the defined concepts included:
o comments: containing comments in every language (e.g. “//this is a comment”)

e function declarations: containing function declarations for each language
(e.g. “def Example():”)

 language-specific function declarations (e.g., “Python function declaration”,

“Java function declaration”): containing a filtered version of the function

declarations dataset.

All details about each concept distribution are shown in Table 4.6: each class specific
concept contains the same entries as of the function declarations dataset belonging
to the class. During training we sampled 300 entries for each concept.

In the packet inspection scenario, the concepts were:
e IP: containing IP addresses
e Methods: containing HTTP methods (like “GET”, “POST”, ...)
o Host: containing the strings representing the host (like “api.example.org”)

o Path-Traversal: containing patterns to attempt traversal (e.g. “./”)
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Function Declarations Comments

Class Elements Class Elements

PHP 982 JavaScript 1,902

Python 972 Python 1,690

Java 955 Ruby 1,607

JavaScript 817 Java 1,054

Ruby 653 Go 1,017

Go 337 PHP 899
| Total | 4716 | | Total [ 8,169

Table 4.6: General Concepts dataset distribution

e Injection: containing SQL injections, command injections, XSS and other

injection example

These datasets were created by extracting information from LLM-generated samples,
manually augmented to reach 50 samples each (IP, Method and Host concepts did not
require such augmentation). The concepts Injection and Path-Traversal required
manual augmentation to ensure sufficient coverage and representativeness, for this
reason their size is significantly smaller than the code classification concepts, attesting

at around 50 samples per concept.
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Chapter 5

LIME and SHAP Pipeline
Results

The analysis follows a structured workflow designed to progressively uncover the
behavior of the model under study. First, we examine the local explanations provided
by feature-based techniques, which allow us to highlight the contribution of individual
features to specific predictions. Building on these local insights, we attempt to exploit

such techniques to derive a broader overview of the model’s global behavior.

5.1 Explaining Singular Samples

We proceeded with the analysis of the model for the code classification scenario,
conducting a basic functionality testing with two hand made samples: an example
python function and its equivalent in java.

Both techniques provide a visualization interface that allows to highlight the most
important features for a specific class. Analyzing the LIME results, the technique
shows that the model relies primarily on language-specific keywords to perform its
classification: the Python example (presented in Figure 2.2 in Section 2.5.1 shows
“def” as the most relevant word for the Python class, while the Java example exhibits
(in Figure 5.1) “println”, “void” and “public” as the most relevant for the Java class.
The only outsider is the word “example”.

SHAP shows similar results: in red are the features that contribute positively
for the selected class, and in blue the ones that contribute negatively. For the same
samples analyzed, the Python one (shown as the Lime figure in Figure 2.3 in Section
2.5.2) shows “def” within the most contributing words, while the Java example in
Figure 5.2 highlights “System” which is also a keyword of the language. One of the
differences between LIME and SHAP is that the latter is capable of analyzing the
contribution of punctuation and whitespace: this is important since in the Python
example it shows “():” as one of the main contributors, while in the Java examples
identifies “\n” (located at the end of the sample) and “!")”. To verify whether the
model actually relies on keywords to perform its classification, we attempted to design

adversarial inputs by embedding keywords from other languages, with the goal of
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LIME and SHAP Pipeline Results

Prediction probabilities NOT java _ java

java ] 1.00
Javascript
python
php
Other

NOT javascript javascript ) o
Text with highlighted words

publi
0.03
vou public static void example() |
0 System.out.println("Hello World!");
0.02 return;
static }
0.02
example
0.02
out
0.01
System
0.01
Hello
0.00
return
0.00
World
0.00

Figure 5.1: LIME Java example

outputs

go.javascript php python ruby

hase value _, |nputs
-1.11022e-1€ 0.124134 0.2 0 99997

el ——

inputs

public static void example. -.out-("Hello Worlc. retu m:l}

Figure 5.2: SHAP force plot for the Java example
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Prediction probabilities NOT ruby ruby

ruby | 0.86
python
javascript
go
Other

NOT python python

end

Text with highlighted words

074
016 def tmp():
ofinc Bl = ofunc() + "return”
0.14 return

Figure 5.3: LIME explanation for the Python crafted sample
outputs
go java javascript php python .

base value fr_g__[inputs)
0.1 0.00282509 0.1 0.3 0.5 0.7 09  0.99904 1.1

e ) ) e —(((

inputs

def tmp(): Bndl= gfunc() + “return” return .

Figure 5.4: SHAP explanation for the Python crafted sample

misleading the model. Among the six supported languages, Ruby shows the greatest
similarity to Python. This observation is primarily based on the syntax of function
declarations: while Python uses a colon (“:”) to introduce the function body, Ruby
employs the keyword “end” to mark its termination. In both languages, the keyword
return is used to explicitly return values, although in Ruby the function structure is
always enclosed between “def” and “end”. Java, on the other hand, exhibits superficial
syntactic similarities with JavaScript, since the latter was originally designed with a

Java-like syntax to ease adoption. Based on these analogies, we crafted two examples:

o For Python we use “end” as a variable name and insert the word “return” as a

string;

”

o For Java, we use “let” as a variable name and use “function_” as function

name.

The results in Figure 5.6 confirm our assumption that the model heavily relies
on keywords, yet fails to gather the global structure of the code. In particular, for
the Python sample, LIME tells us that the keyword “end” is the only one important
for the class Ruby. SHAP gives us the same explanation, however highlighting a

second difference with LIME: it is capable of differentiating between two equal words,
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Prediction probabilities NOT ] avascrip t J avascr. ip t

javascript [ |0.95
jave
go
php
Other

java

Text with highlighted words

public int function_(){

int(] I {1.2.3}:
return 8. length

Figure 5.5: LIME explanation for the Java crafted sample

outputs
go java - php python ruby

base \falue _(inputs)
08361 O 940109

T T (.

inputs

public int -_O{ ini-{1,2,3}; return letlength }

Figure 5.6: SHAP explanation for the Java crafted sample
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LIME and SHAP Pipeline Results

analyzing the contribution of each one separately. It is important to notice how SHAP
marks “():” as against the Ruby classification meaning the model might have learned
some code structure, however its contribution is too weak compared to the words
“end”. For the Java and JavaScript examples, in Figure 5.2, the explanation shows
little difference from LIME: SHAP identifies “[]” as one of the main contributors for
the label Java, which is to be expected since that construct in JavaScript is used
in a very different context. Following these observation, the overall explanation for
both Python and Java matches: we expect the model to use the keywords of each
respective language to perform its decision. To verify this assertion,

These results show that the model could have a too heavy dependence on the
keywords, or it is possible that such small examples are not suitable for the model,
since it might not be able to extract the context. We tested some examples taken
from the dataset and the results are similar: the keywords are the most contributing
factors; however, their contribution is not higher as before, being slightly above the
other parameters. During testing we also observed another behavior: the model
is unexpectedly sensible to the indentation. In some cases, using four spaces as
indentation instead of the “\t” character substantially varies the prediction and,
consequently, the LIME values. This is not expected since the training data varies
between the two types of indentation between samples.

We then moved to the packet inspection scenario and, similarly to the code
classification case, we began with the analysis of basic samples. Among the manually
inspected cases, the most prominent case involved the Dir-Traversal class: LIME
reveals an important influence over content containing the word “filename” (as shown
in Figure 5.7), despite the fact that the ground-truth label of the sample corresponds
to Remote-file-Inclusion.

Removing the word from the packet content completely shifts the classification
towards the Other class (second in position in Figure 5.7). This behavior is con-
sistent across other samples: for instance, analyzing an example from the class
Code-Execution, the LIME results indicates that the classification relies almost only
on the word “php”. While this feature highlights the presence of a PHP file or script,
it does not necessarily imply an actual code-execution attempt.

Figure 5.8 reports the SHAP explanation for the same sample analyzed previously.
The results are highly consistent with LIME: the tokens “filename”, “=" and “txt”
emerge as the most influential features, confirming the local importance of specific
content elements in driving the classification.

We see that this behavior of exploiting key words is consistent among the most
relevant classes for the model: as mentioned in Section 4.1, from the analysis of our
testing dataset, 96% of the samples is classified within only five classes. For the less
important ones instead it is difficult to identify clear relevant words. These results
are encouraging, showing in full the capabilities of the current techniques for local
explanation. However we cannot be sure that the keywords are always what is used

in the decision making process.
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Prediction probabilities NOT Dir-Traversal Dir-Traversal

Dir-Traversal [N 1.00
Other
Info-Disclosure
Code-execution
Other

0.03
NOT Other Other Text with highlighted words

10.20.30.40

POST /upload.php HTTP/1.1

Host: webserver.example.com

User-Agent: Mozilla/5.0

Accept: text/html

Accept-Encoding: gzip, deflate

Accept-Charset: ISO-8859-1,utf-8:q=0.7.%,q=0.7
Accept-Language: en-US. en:q=0.9

Connection: keep-alive

Content-Type: application/x-www-form-urlencoded
Content-Length: 60

IBEERE 1 tp: //attacker.com/malicious. txt

Figure 5.7: LIME explanation of a Remote file inclusion sample.

outputs
Adware Backdoor Botnet CGI Code-execution DDos _ Dos Info-Disclosure Injection Other Overflow Ransonware Remote-file-Inclusion Scanner Spyware
Trojan Virus Webshell Worm XSS

e e C—_

inputs
10.20.30.40 POST /fupload.php HTTP/1.1 Host: webserver.example.com User-Agent: Mozilla/5.0 Accept: text/html Accept-Encoding: gzip, deflate Accept-Charset: 1SO-
8859-1,utf-8:9=0.7,%,9=0.7 Accept-Language: en-US,en;q=0.9 Connection: keep-alive Content-Type: application/x-www-form-urlencoded Content-Length: 60
-:http://aﬁacker.com/ma\icious.b(t

Figure 5.8: LIME explanation of a Remote file inclusion sample.
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Go Java JavaScript
Word Value Word Value Word ‘ Value
"MockTracer" 0.1343 "rgbs' 0.2370 "var" 0.0690
"matchers" 0.0860 "double" 0.2299 || "newSlots" | 0.0510
"UnixNano" 0.0762 "Configuration" | 0.1632 || "function" | 0.0476
"GomegaMatcher" | 0.0727 "mapLabel..." 0.1549 || "watcher" | 0.0414
"mem" 0.0707 || "DEFAULT_C..." | 0.1533 || "useDom" | 0.0398
PHP Python Ruby
Word Value Word ‘ Value Word ‘ Value
"string_arr..." | 0.0166 "scores" 0.0841 "md" 0.2082
"alpha" 0.0132 "score" 0.0554 "to_ 1" 0.0498
"beta' 0.0074 "Stop" 0.0166 "nonce" 0.0441
"backButton..." | 0.0072 || "stopDistance" | 0.0164 || "ciphertext" | 0.0421
"server" 0.0063 || "package dir" | 0.0136 "I to s" 0.0404

Table 5.1: LIME most important words for each class in the code classification use
case.

5.2 Explaining Multiple Samples

In order to gather information on the global behavior of the models we analyze
multiple entries computing the average value of "words". This allows us to compare
the elements that appear many time against the sporadic ones, to define if the model
has a bias for specific words: if the model consistently exploit keywords, we expect
them to be between the highest average values. For the first use case we feed through
both LIME and SHAP a series of 360 samples, with 60 samples per class, to obtain
the average value for the words. The LIME results are available in Table 5.1, we can
clearly see how our previous considerations were indeed dependent on our crafted
samples. The general overview highlights how keywords are not as important: we
see keyword in the top 5 words only in two classes. In JavaScript we see “var” and
“function”, but their LIME value is really small and not that much bigger than casual
terms like “newSlot”, and in Java we see only double”, which is actually used only
one time within the test samples analyzed. These LIME results, despite correcting
our previous consideration, fail to help us to understand better the global behavior:
all of the classes have similar average values meaning there is not a prevalent one and
the most important words are in all cases situational. In the SHAP results (Table
5.2) we see a similar condition to LIME: the most influential features correspond to
casual words that are present in very few examples. We see however that there are
two exceptions: the class Go and the class Ruby. Those two present “func” and “end”
respectively in the first positions highlighting a possible bias of the model: their
value however is not significantly higher than the other words.

Moving to the packet inspection use case, we analyze the average word values of
the LLM generated dataset. The results we obtain are quite different: the values of

the most important features among classes are very imbalanced.
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Go Java JavaScript
Word Value Word Value Word Value
"funcMap" 0.27 "StrokeStringAt" 0.27 "noinfo" 0.21
"func" 0.23 || "RegisterExtractor" | 0.25 || "UsabillaBridge" | 0.19
"gc' 0.20 "GomegaMatcher" 0.22 "cloneDeep' 0.19
"updateVal" | 0.18 "Format" 0.19 "(/4#/]." 0.12
"SetContext" | 0.16 "potentialMatch" 0.18 "repeat’ 0.12
PHP Python Ruby

Word ‘ Value Word ‘ Value Word ‘ Value

"listCampaigns | 0.15 AN 0.09 "end" 0.14

D 0.10 A\ 0.08 | "« [ 012

g 0.09 "def" 0.08 "puts" 0.10

"ucwords..." 0.09 "Compatibility" | 0.06 || "textile" | 0.09

"PAGE" 0.08 T\T\ T\ 0.05 “//#{" | 0.08

Table 5.2: SHAP most important words for each class in the code classification use
case.

The aggregated results, limited only to the first three words for readability
purposes, are summarized in Table 5.3.

This table reports the average contribution values defined by LIME of words
across all test samples’. We can see how classes such as CGI, Adware, Virus, and
Backdoor, although present in the test dataset, are never considered by the model,
achieving very low average importance. Looking at the most relevant classes we see
that the values are much higher: the most evident being the Injection class, with
the most important words actually relatable to the label: even if promising, these
results probably depend from the poor size and distribution of the testing dataset.

The results of SHAP (in Table 5.4) are really similar, many classes see average
feature importance close to zero, while the top 5 classes see relevant values. In
general we have a more clearer explanation with SHAP since the words are better
represented, for example without including numbers with them, but at the same time

we see some fixation on the "word" “’)”; which makes results harder to interpret.

5.3 Conclusions regarding LIME and SHAP

The analysis of LIME and SHAP across multiple samples highlights a fundamental
limitation of feature-based explanation techniques: while they are effective in provid-
ing local insights on individual predictions, they fail to capture the global behavior of
the models. Both methods tend to emphasize sporadic or context-dependent words,
which prevents the identification of systematic biases or structural shortcuts. Only
in the packet inspection scenario we see sporadic meaningful words, but these results

are attributable to the poor testing dataset. The results obtained with the local

Tt is important to remember that due to the small dimension of the dataset, some words represent
really the average, while other appear to sporadically: eliminating those sporadic words would not
improve the results since in many case, their presence highly influence the classification.
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Info-Disclosure Dir-Traversal Scanner
Word ‘ Value Word ‘ Value Word ‘ Value
"ne" 0.7525 "filename" 0.4609 || "callback" | 0.1214
"2fboot" 0.6081 || "resize_image" | 0.4306 || "overflow" | 0.0958
"new_ads" | 0.5209 "'26file2" 0.4020 "js2" 0.0299
Code-execution XSS Remote-file-Inclusion
Word ‘ Value Word ‘ Value Word ‘ Value
"module" | 0.6090 "alert" 0.5103 || "hacker" 0.1638
"debug" | 0.5821 "3Ealert" 0.2841 "http" 0.0648
"echo" 0.4004 || "document" | 0.2747 "rfi" 0.0644
Botnet Overflow Backdoor
Word Value Word ‘ Value Word Value
"Nikto" 0.0198 || "20hacker" | 0.0256 "body" 0.0085
"mysite2" 0.0188 "eval" 0.0164 || "onmouseover" | 0.0074
"Googlebot" | 0.0077 "76" 0.0141 "onload" 0.0069
Webshell Worm Trojan
Word | Value Word Value Word Value
"shell" | 0.1320 "search" | 0.0232 "search" 0.0004
"evil" | 0.0654 "25" 0.0132 || "20hacker" | 0.0004
"20192" | 0.0483 || "webmail" | 0.0121 "20sudo" | 0.0003

CGI Adware Ransonware
Word \ Value Word \ Value Word Value
"20hacker" | 0.0012 || "20hacker" | 0.0002 "search" 0.0002
"apisite2" | 0.0011 "search" | 0.0002 || "20hacker" | 0.0002
"20sudo" | 0.0008 "20sudo" | 0.0001 "20sudo" | 0.0001

Spyware Virus Injection
Word Value Word Value Word ‘ Value
"search" 0.0002 "search" 0.0002 || "27whoami" | 0.8423
"20hacker" | 0.0002 || "20hacker" | 0.0001 || "execSync" | 0.7588
"61" 0.0001 "shell" 0.0001 || "expression" | 0.5076

Table 5.3: LIME most important words for each class in the packet inspection use
case.
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Code-execution

Info-Disclosure

Dir-Traversal

Scanner

Word ‘ Value

Word ‘ Value

Word

"conf" 0.43

‘ Value

"sql" 0.40

"path" | 0.21

"callback"

0.21

"words" | 0.38

"J" | 0.16

llcookll

0.16

"size" 0.13

"click"

XSS

0.11

Word

\ Value

Remote-file-Inclusion

|ldebug"

0.49

Word

"alert"

\ Value

‘Word ‘

Value

It 0.44

0.39

"module"

0.37

"document"

0.18

"jection"

0.05
0.03

0.18

llndﬂ

0.02

Botnet
Word Value

Overflow

Backdoor

Word ‘ Value

Word ‘ Value

"body" | 0.08

n__smn 0.01

|lloadl|

0.01

"query" | O.

"param" | 0.07

l|7).l|

0.01 "'

0.00

07 "Attack"

0.01 nn

0.00

‘Webshell

Word

Value

Worm

Trojan

Word \ Value

"shell" 0.1

1 "search"

Word \ Value

"uploads"

0.01

Il))l!

0.00

"render"

0.11

l|b0dyll

0.00

"search" | 0.

0.02

|IGET"

0.00

"query" | O.

00
00

CGI

Adware

Ransomware

Word ‘ Value

Word ‘ Valu

e Word ‘ Value

"' 0.00

"search"

0.00

||7)|l

0.00

")." 0.00
"search" | 0.00

" 0.00

"search"

0.00

. 0.00

l|7).ll

Spyware

0.00

Virus

Injection

Word ‘ Value
n 7) n 000

Word ‘ Value

Word

‘ Value

"search" | 0.00

"search" | 0.00

"expression"

"null" 0.00

|l7)ll OOO

"assert"

0.69
0.56

"query" | 0.00

n SynC“

0.25

Table 5.4: SHAP most important words for each class in the packet inspection use
case.
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explanations are situational, offering little guidance on how the model organizes its
decision boundaries at a global scale. Their local capabilities instead proved effective
in highlighting important tokens, this method can be used to support end users in

trusting the model, but does not help in gaining insights on model reasoning.
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Chapter 6

TCAYV Pipeline Results

The methodological adaptations described in Section 3.2 provide the foundation for
evaluating the effectiveness of TCAV in capturing human-defined concepts within
language models. In particular, the introduction of three distinct strategies (Trun-
cated, Padded, and Average) was necessary to overcome the structural constraints
imposed by variable-length token sequences, ensuring that concept activation vectors
could be consistently trained across layers. The following results illustrate how
these strategies behave when applied to both general and class-related concepts,
highlighting differences in score progression, stability, and statistical significance.
By systematically comparing the average TCAV scores, their variability, and the
outcomes of rigorous statistical testing, we aim to assess whether the concepts are
meaningfully represented within the models or whether the derived CAVs reflect

incidental correlations.

6.1 Comparing TCAV adaptations

To compare the three strategies, we trained the CAVs multiple times across all
defined concepts and monitored the average TCAV scores across the layers of both
models. The results shows that the "Truncated" and the "Padded" strategy behave in
similar manner, while "Average' remains close, but consistently separated. Moreover,
"Padded" and "Truncated" exhibit greater variability across layers, with scores fluctu-
ating more significantly, whereas "Average" shows a more linear trend. This behavior
is illustrated in Figure 6.1, reporting the average score for the concept "comments"
in the code classification use case, and in Figure 6.2, which shows the corresponding
results for the packet inspection scenario: the behavior is particularly evident on the
class Java.

Looking globally at all the trained concepts, it becomes evident that none of them
exhibit a clear directional trend across layers, as originally suggested by [8]. In our
experiments, TCAV scores neither consistently increase nor decrease in deeper layers,
making it difficult to infer where — or if — the model internalizes specific concepts.

When examining each individual strategy more closely, a different perspective

emerges: "Truncated" and "Padded" show lower variability and more stable scores

40



TCAV Pipeline Results

Comparison of average TCAV per concept: comments

Class: go Class: java Class: javascript
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Figure 6.1: Average TCAV score for the concept "comment" on the code classification
model

between test runs, while "Average" proves to be more inconsistent. This behavior
is observed across most concepts in the code classification use case, whereas in the
packet inspection scenario it appears less pronounced. Through the box-plot in
Figures 6.3 and 6.4 we can see that within the "Padded" strategy, 50% of the results
tend to hover within a range of 0.25 from the median, while if we consider the
"Average" strategy, 50% of the samples are almost always in a range of 0.5 around the
median. This highlights that "Padded" and "Truncated" might be better suited even
if their average value varies a lot between the layers. Nonetheless, the variability of
TCAV values remains high, suggesting that the CAVs might not be fully compatible

with the internal representations of Language Models.

6.2 Analyzing differences between general and class-

specific concepts

To explore all possible concept scenarios we opted to define two types of concepts:
general and class-specific. The general concepts contain examples extracted from
multiple classes inserted together. Their objective is to understand if the model
recognizes structures similar to the one humans use. The class-specific concepts
instead contain examples extracted only from one single class. Their objective is to
define whether a model is exploiting that concept to perform its classification. In
the results of the code classification scenario, we observe that class-specific concepts
yield TCAV scores approaching 1 within their corresponding classes. Figure 6.5,
showing the "PHP function declaration" concept with "Padded" strategy, exemplifies
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Comparison of average TCAV per concept: ip
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Figure 6.2: Average TCAV score for the concept "[P" on the packet inspection

model
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Boxplot for concept: php_function_declarations
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Figure 6.5: TCAV scores for the "PHP function declarations" concept with "Padded"
strategy

this behavior for the PHP class, where the TCAV score remains consistently high
across all layers in every run. This behavior is consistent also for the "Average"
strategy: this outcome may indicate either that the concept is genuinely meaningful
and well-represented for that class, or that the CAV has simply learned to distinguish
samples of that class from all others, without capturing a truly semantic pattern.
Analyzing the general concepts reveals a more nuanced scenario. The concept
Comment, as illustrated in Figure 6.3, shows a consistent tendency toward the Python
class, but only under the "Padded" and "Truncated" strategies. In contrast, the
concept Function Declaration does not exhibit any noticeable class-specific bias.
These observations may hint at a preference of the model for associating comments
with Python code; however, this hypothesis remains speculative and needs statistical
support to be considered conclusive.

The situation in the packet inspection scenario is different: we see no big difference
between general and class-specific concepts, and in the latter case, the TCAV scores
do not indicate a particular tendency towards the related class. For example, in
Figure 6.6 the class-specific concept "Path-Traversal" for the class Dir-Traversal
does not show any significant influence for its class. The same behavior belongs to
the generic concepts such as "IP" and "Methods". This could suggest that either the
class specific concept is not used to perform the prediction, meaning the model needs
to be trained better, or, as suggested in the previous results (Section 6.1), the CAVs
does not suit the Language Models.

To verify if the learned CAVs are meaning less, we used the t-test and measured
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Boxplot for concept: path_traversal
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Token Sensitivities

Gwent Gwrong . GFail Gthe Gbuild . € GGGGGGS Gif ( error Count G> Ge ) G{ ¢

Ggrunt Gtask . ¢ GGGGGGG G} Gelse G{ ¢ GGGGGGGGE Gdone (" Co ffe ified G" G+

Gsource Report . count G+ G": G" G+ Gsource Report . locations ); ¢ GGGGGGG

6} ¢ GGGGG 6} </s>

Figure 6.7: TCAV validation for the concept "Python function declaration" in a
JavaScript sample

Token Sensitivities

<s>172 . 16 . © . 3 CGET G/ ../ ../ ../ ../ ../ ../ ../ ../ etc / issue
GHTTP / 1 . 1 € Host : Gcorp . com € User - Agent : GWget /1 .21 .1¢C
Accept : Gtext / html € Accept - Enc oding : Gg zip € Accept - Ch ars et :

GUTF - 8 € Accept - Language : Git - IT € Connection : Gkeep - al ive € </s>

Figure 6.8: TCAYV validation for the concept "Path Traversal" in a Dir-Traversal
sample

which ones obtain a p-value < 0.0001. The results suggests that no CAV is actually
meaningful for any class, in both use cases. We see that only in the "Average" strategy
we obtain some meaningful concept, but the high variability of them highlighted in

Section 6.1 suggests the need of further validation.

6.3 Validating TCAV average strategy

To validate the meaningful CAVs found with the "Average" strategy, we used our
visualization tool, allowing us to follow the style of LIME and SHAP. We used the
gradient of each singular token to obtain a TCAV score specific for each tokens and
the web application allowed us to clearly identify the most meaningful ones. If the
concept is correctly represented we expect to see tokens belonging to the concept
highlighted positively, while others not belonging negatively. Proceeding with the
evaluation we notice that every CAV trained on the last layer of the model provide
values only to the special “CLS” token: this is due to the fact that the model is trained
to concentrate all information on that to perform classification tasks. This assure us
of the correct implementation of the technique, but does not provide information on
which tokens represent the concept. In Table 6.1, we can see an example: the CAV
seems to have learned some relations thanks to the most important tokens belonging
to JavaScript, but we cannot extract any information about a potential shortcut.

When examining the lower layers, the situation changes: the highlighted tokens
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] Token ‘ Sensitivity \ Class ‘

"CLS" 0.00475 JavaScript
"CLS" 0.00124 | JavaScript
"CLS" 0.00015 JavaScript
"CLS" 0.00011 JavaScript
"CLS" 0.00002 | JavaScript

Table 6.1: Top 5 most activating tokens for the concept "JavaScript function
declaration", in layer 6

’ Token ‘Sensitivity‘ Class ‘

" 0.00043 JavaScript
"G} 0.00035 Ruby
"'Gfinalize" 0.00032 | JavaScript
"G 0.00032 Python
"< s>" 0.00031 | JavaScript

Table 6.2: Top 5 most activating tokens for the concept "Comment", in layer 4

generally fail to align with the intended concept. For instance, Table 6.2 reports the
most activating tokens for the concept Comments, yet none of them correspond to
actual comment tokens. Interestingly, a token such as “GThe”!, which does belong
to a comment, emerges with a negative sensitivity of -0.0002, indicating that it is
incorrectly treated as unrelated to the concept. This situation persists across both use
cases: in Figures 6.7 and 6.8 we report two examples regarding the packet inspection
scenario. In the first image (6.7) the concept Python function declaration is
shown to activate positively on the starting token of a JavaScript sample, while
in the second one (6.8) we see that the concept Path Traversal, specific for the

Dir-Traversal class, doesn’t activate in a sample clearly containing that concept.

6.4 Conclusions regarding TCAV

These result clearly shows that Testing with Concept Activation Vectors does not
suit well the Natural Language Processing scenario. Neither of our implementation
strategy proved effective in highlighting meaningful information that could be used

to enlighten the decision making process of the models.

!The special character G indicate a space before the word, as mentioned in Section 2.3
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Chapter 7

SAE Pipeline Results

Finally, we extend the investigation to SAEs. By training multiple autoencoders and
analyzing the learned features, we aim to evaluate the capabilities of this technique
to uncover latent structures within the activations. The results are organized around
three complementary perspectives. First, we compare SAE configurations in terms of
sparsity and dead features, to evaluate their efficiency and the presence of redundant
or inactive directions. Second, we analyze the interpretability of individual features,
both through manual inspection and through automated filtering techniques such
as clustering and TF-IDF. These approaches highlight whether certain features
correspond to coherent token groups or class-specific concepts. Finally, we validate
the relevance of selected features by measuring the impact of their removal on

downstream performance, contrasting these results with random baselines.

7.1 Comparison of SAE Trained with Different Dimen-

sions and on Different Layers

In this preliminary analysis we compared Sparse Autoencoders trained on different
layers and with varying hidden dimensions, in order to identify the most effective
configuration. Our first objective was to define when a feature identified by the SAE
is to be considered active. For that we computed the average activation of each
feature and selected a value that preserved approximately 25% of the features. This
threshold allows to filter low activations that might draw the attention away from
the meaningful ones. The choice led to a threshold of 0.02 for the code classification
use case, and 0.01 for the packet inspection use case (Figures 7.1 and 7.2). The
difference in the value is caused by the first scenario having higher average feature
activations than the second one. In both cases no dead features (features that never
reach the threshold) were observed, unless the threshold was set to unrealistically
high values. This might be due to insufficient feature decomposition, requiring higher
SAE dimensionality.

When comparing SAEs of different dimensions trained on the same layer, we
expected to observe feature splitting, meaning that a feature in a smaller SAE is

decomposed into multiple features in a larger one. However, this phenomenon was not
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Layer: 3 - 6144

Threshold sweep — Features with mean activations > t

1.0+

0.9

0.8

0.7

0.6

0.5

0.4 4

Fraction of features (mean activation = t)

0.3

—

0.2

T T T T T T
0.00 0.01 0.02 0.03 0.04 0.05
Threshold

Figure 7.1: Code classification use case: fraction of SAE features with mean
activations above the threshold

Layer: 7 - 3072

Threshold sweep — Features with mean activations > t

1.0+

0.8

0.6

0.4

0.2

Fraction of features (mean activation = t)

T T
0.00 0.01 0.02 0.03 0.04 0.05
Threshold

Figure 7.2: Code classification use case: fraction of SAE features with mean
activations above the threshold
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Go Java JavaScript
Feature | Value || Feature | Value || Feature | Value
9010 0.2471 6377 0.1390 10275 | 0.5415
6676 0.1888 1883 0.1281 7744 0.1136
4505 0.1717 8359 0.1024 9664 0.0954
PHP Python Ruby
Feature | Value || Feature | Value || Feature | Value
7233 0.1363 10349 | 0.1213 10480 | 1.3054
668 0.1219 1262 0.1197 3629 0.2300
4903 0.1142 668 0.1166 4253 0.2154

Table 7.1: Code classification use case: features with highest average value for each
predicted class (classes that are not predicted are not shown) for SAE trained on
layer 4 of the model and 12288 parameters

directly observed in our experiment. Instead we saw larger SAE have features more
specialized for some classes: two different features may activate on the same lexical
token, but in different context, suggesting that the model in that layer may have
already take the decision. For this reason we tried to identify meaningful features
filtering on the highest average activation per class, excluding general features that
were active across all classes.

Only a limited number of them exhibited significantly higher activations than the
rest. For example in Table 7.1 we see the feature C/4/10480/12288' having a high
value for the class Ruby and in Table 7.2 feature P/8/9570/12288. We can also see
how in the packet inspection scenario, the same feature appears in multiple classes,
suggesting the RoBERTa classifier is not finding patterns for specific classes, with
some exception like the previously mentioned XSS. We visualized the two features
with our tool obtaining Figures 7.3 and 7.4.

For the feature of the packet inspection scenario, we have a clear identification of
tokens related to XSS, while the feature of the code classification tends to highlight
many tokens, making the interpretability harder. This situation is present for the
majority of our SAEs. This behavior highlight the main challenge of interpreting
SAE’s results, as only a subset of features can be linked to a human understandable
result.

These results suggest that SAEs are capable of capturing BERT’s layers activation
patterns without producing dead features, even with relatively strict threshold.
Moreover larger dimensions increase the representational richness but do not guarantee
interpretable features. The identification of significant features is limited, but these

results motivate further investigation.

'"Notation: *use case* / *layer of reference* / *feature identifier* / *SAE hidden dimension*.

50



SAFE Pipeline Results

Info-Disclosure Dir-Traversal Scanner
Feature ‘ Value || Feature ‘ Value || Feature ‘ Value

6652 0.1393 2126 0.1386 2126 | 0.2475
2126 0.1341 6652 0.1274 5763 | 0.1418
6311 0.0945 9733 0.0909 4505 | 0.1344

Code-execution XSS Remote-file-Inclusion
Feature ‘ Value || Feature ‘ Value || Feature ‘ Value
2126 0.1260 9570 0.4285 3233 0.1598
11595 | 0.1007 7262 0.3171 2126 0.1439
6652 0.1002 3616 0.2534 6311 0.1368
Webshell DoS Other Injection

Feature | Value Feature‘ Value Feature‘ Value || Feature | Value

2126 0.1424 2126 0.1469 11294 | 0.2986 2126 0.1200
6652 0.1038 6652 0.1455 6814 0.2960 6652 0.1005
3233 0.0866 5820 0.1201 4545 0.2717 597 0.0924

Table 7.2: Packet inspection use case: features with highest average value for each
predicted class (classes that are not predicted are not shown) for SAE trained on
layer 8 of the model and 12288 parameters

Sample 79
Class: True: ruby / Pred: ruby

CLs |def | Gapi _ request _  raw ( url , Gmedia _ type G= G'') € € GGGGG
Gbegin ¢ GGGGGGGE  Gstart _ time G= GTime . now € € GGGGGGG  Geontents G=  Gdo
request ( url , Gmedia _ type ) € GGGGGGG Gtotal G= GTime . now . to _
ms G- Gstart _  time . to _ ms € GGGGGGE  Ginfo G"  Successful  Grequest . GURL

G#{ url }, GRemaining : G#{@ remaining }, GTotal : G#{ total } Gms " ¢ ¢
GGGGGGG  Geontents ¢ GGGGG Grescue  GOpen  WURI ::  HTTPError G=> Ge € GGGGGGG  G@
remaining G= Ge . dio . meta [' x - vrat elimit - remaining ']. to _ i ¢
GGGGGGE  G@  reset G= Ge . io . meta [' x - rat elimit - oreset ']. to _ i
¢ ¢ GGGGGGG Gease Ge . dio . status [ e 1. to _ i € GGGGGGGGE G#  GThe

Figure 7.3: Feature C/4/10480,/12288
Sample 35
Class: True: Scanner / Pred: XSS

cLs 18 . 20 . 3@ . 48 C POST G/ «comment GHTTP / 1 . 1 € Host : Guebs
erver . example . com ¢ User - Agent : GOW AS P - Z AP F 2 . 18 ¢
Accept : Gtext / html € Accept - Enc oding : Gg zip , (Gdef late ¢ Accept

ch ars et : GISO - 38 58 - 1 N utf - 3 H q = @ . 7 N * ; q
= @ . 7 € ABccept - Language : Gem - US , en ; g = B8 . 9 ¢
Connection : Gkeep - al ive € Content - Type : fGapplication / x -  wmw
form - url enc oded ¢ Content - Length : Ge8 € € comment = % 3 C  script
% 3 E |alert ( @ document 2 cookie ) % 3 ¢ /  seript % 3 E €

Figure 7.4: Feature P/8/9570/12288
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2 components UMAP - Layer: 8 - 1536

.
©ENO U R WN O,

UMAP 2nd dimention

T T T T T
-5 0 5 10 15
UMAP 1st dimention

Figure 7.5: Clustering example with HDBSCAN of SAE feature directions

7.2 Identifying important concepts with SAEs

In order to find more meaningful concepts we experimented with several techniques
(see Section 3.3). We began by applying clustering to the feature directions using
HDBSCAN, sampling representative features from each cluster. To make the cluster-
ing tractable, the input data was first reduced to 10 components with UMAP, while
for visualization purposes we further projected it into two dimensions. We provide an
example in Figure 7.5 related to the SAE trained on Layer 8 with hidden dimension
of 1536 related to the packet inspection scenario.

After validating the tokens identified by clustered features, in neither setting did
clustering prove effective in consistently identifying similar features. although certain
clusters grouped together features that highlighted semantically related tokens, no
systematic approach emerged that could reliably detect them. while some clusters
effectively grouped feature that highlight semantically related tokens, no systematic
method was found to reliably detected them. This does not implies that the clusters
are invalid, but rather that two similar features may be specialized for different
tokens.

We then attempted to filter concepts to identify those relevant for specific classes
using the class-level TF-IDF: we define the Term Frequency as the frequency of the
features activation within a sample and the Document Frequency as the number
of samples in which the feature is active in at least one token. This allows us to
filter the features that are always active and find features that are more rare and
potentially activate only in specific classes of samples. This was successful in the

code classification scenario since the dataset was extensive enough, but in the packet
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TF-IDF | Layer: 6 - Hidden Dimention: 3072
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Figure 7.6: Code classification scenario: token-level TF-IDF heatmap of top 1%
tokens

inspection use case the only features with high scores where the ones related to the
Overflow class, which having many repeated tokens obscured other features.
Finally we applied the token level TF-IDF, having as Term Frequency the feature
activations of each token (merging all the samples together) and as Document
Frequency he number of tokens in which a feature was active. For duplicated tokens,
we averaged the TF-IDF score (Figure 7.6). This approach lead to surprising results:
in the code classification scenario we expected to obtain a heatmap containing
random tokens due to the big variability of the dataset. Instead, we see how in
Figure 7.6 many tokens emerged as immediately recognizable. We sorted the tokens
based on their highest TF-IDF score, and selected the top 1% to allow an easier
visualization. Several domain-relevant keywords consistently appeared among the
top-ranked positions across all SAE models trained on this task. Examples include
“func”, “def”, “protected”, “public”, and many others, which were repeatedly observed

as in the example provided (Figure 7.6). In the packet inspection scenario, we observe
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TF-IDF | Layer: 8 - Hidden Dimention: 3072

compatible -70
product
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Figure 7.7: Packet inspection scenario: token-level TF-IDF heatmap of top 5%
tokens
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a comparable outcome: the only difference is that due to the smaller dataset size,
we were allowed to visualize the top 5% of the tokens (instead of only 1% as in the
code classification scenario). The most frequent tokens across layers and hidden
dimensions exhibit strong similarities: starting from layer 8, tokens related to SQL
injections begin to emerge consistently, whereas they are absent in layers 6 and 7.
This suggest that the model could have learned between those layers the relevance
of SQL related tokens. Across all layers, numerical values and hexadecimal strings
appear recurrently, with certain features seemingly activating over specific ranges
of these tokens. These two patterns, numbers and SQL injection related tokens,
indicate that for the RoOBERTa model these series carry similar information, however

we cannot affirm their importance on the classification.

7.3 Verifying Concepts’ Impact

Building on the observation of Section 7.2, we proceeded try verify the impact on
model predictions by removing the most important tokens related with specific

concepts. From Figures 7.6 and 7.2 we analyze the effect of:

C/6/1992/3072 for affecting “protected”, “public” and “private”.

C/6/2952/3072 for affecting “throw” and “raise”.

P/8/657/3072 for affecting numbers from “01” to “08”.

P/8/1315/3072 for affecting SQL injection related tokens.

We compared the results of the classification with and without removing any tokens
identified by a feature, by confronting the average impact of removing random tokens
(Figure 7.8 and 7.9) We choose to remove a fixed number of 50 tokens: SAE features
are capable of identifying many different tokens, but to filter the most semantically
related we chose to take the 50 most relevant tokens for each analyzed feature. If the
feature identifies less tokens we use all of them. In Figure 7.8 and 7.9 we provide
the obtained baseline by removing random tokens: in blue, named "Incoming", are
shown the average number of predictions that changed from other classes to the
one highlighted, while in orange, named "Outgoing", are shown the predictions that
changed from the highlighted class to any other shown in the graph.

The results for each SAE feature are shown in Figure 7.10. An important
observation is that the tokens identified by the features are not limited to those
highlighted in the heatmap, they extend to include many others. Due to the filtering
of the token-level TF-IDF, common tokens may not be shown in the first position even
with strong activations. In fact we see that feature C/6/2952/3072 includes the tokens
“end” and “def”, significantly impacting the classification of the class Ruby. Similarly
P/8/657/3072 activates strongly also for tokens related to Code-Execution, such as
“boot”, “echo”, “src”, thereby influencing classification outcomes. Moreover, the class

Info-Disclosure appears to function as a "safe-zone' for the packet inspection model,
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Figure 7.8: Code classification scenario: average impact of random token removal.
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Influence Metrics: SAE feature C/6/1992/3072
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Figure 7.10: Impact of concept-related token removal across selected SAE features.
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since even removing random tokens leads to severe degradation in its classification

performance.

7.4 Conclusions regarding SAEs

The experiments conducted with Sparse Autoencoders (SAEs) demonstrate both the
potential and the limitations of this technique in uncovering latent structures within
model activations. Across different layers and hidden dimensions, SAEs avoided
producing dead features, even under relatively strict thresholds, leading to consistent
results. Larger hidden dimensions increased representational richness, but did not
guarantee interpretability, as only a subset of features could be reliably linked to
human-understandable concepts.

Attempts to identify meaningful features through clustering revealed that, while
some clusters grouped semantically related tokens, no systematic method emerged
to consistently detect similar features. This suggests that features may specialize
in subtle ways that are not easily captured by unsupervised grouping. In contrast,
TF-IDF proved more effective: at both the class and token level, it highlighted
domain-relevant tokens such as programming keywords in the code classification
scenario and SQL-related tokens in the packet inspection scenario. These findings
indicate that TF-IDF filtering can surface interpretable signals, although dataset size
and token distribution strongly influence its success.

Finally, the removal experiments confirmed that features identified by SAEs can
have measurable impact on downstream classification. Certain features were shown to
activate over coherent sets of tokens, and their removal altered predictions in ways that
exceeded random baselines. However, the identified features tend to be polysemantic,
underlying that the base parameters used, such as the sparsity coefficient of the loss

function and the hidden dimensions, might need further exploration.
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Chapter 8

Conclusions

This thesis investigated the potential of feature-based techniques and concept-based
techniques in uncovering global pattern behavior in Transformer-based language
models. The objective was to assess whether existing local explainability methods
could provide insights beyond single explanations and compare the outcome against
newer more in-depth strategies. Our analysis showed that feature-based explanations
such as LIME and SHAP allowed to easily explain single instances allowing to easily
impact the model classification by manipulating relevant tokens. Their utility instead
proved very limited when exploring a broad range of samples to gather a model
overview: in a balanced model, such as in the code classification scenario, the results
showed no bias, while, in an unbalanced model, such as in the packet inspection
scenario, the technique proved capable of at least finding class biases. TCAV, even
if the technique exploits internal representation, proved to be ineffective, failing to
correctly learn meaningful CAVs capable of correctly representing human-defined
concepts and thus, providing us with relevant information about the models. This
could be due to the high variability of Transformer inputs or to the possible absence
of human-like concepts. In contrast, SAE proved capable of uncovering relations
between tokens and internal activations: it not only was able to highlight important
tokens as feature-based techniques, but also revealed structural relations exploited
by the model. We discovered through its use that in the code classification scenario,
the model presented clearer concepts, with features related to key tokens impacting
significantly the classification, while other less important features hindered less the
outcome. The outcome on the packet inspection model is instead more complex:
we found features with poly-semantic tokens, making it hard to define whether it
should be relevant or not for the model, nevertheless the groups of token found
revealed high impact on the outcome, confirming the capabilities of the technique.
Even if the SAE technique proved proficient, significant limitations emerged: the
computational cost of training multiple SAE models is substantial, requiring several
days on our systems, while the analysis of a single feature demanded several minutes.
Although automation of the pipeline would allow analyzing many features together,
it remains computationally expensive and may hinder scalability. In conclusion,

feature-based techniques fall short in explaining global behaviors of Transformer
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models, and TCAV proved unsuitable for this task. SAE instead proved capable of

providing interpretable results to advance the understanding of model reasoning.

Technique Strengths Limitations Overall Outcome
Clear’ local lelteq for global Useful for local
LIME & explanations; easy overview; only insichts. not elobal
SHAP identification of detects bias in & beilaviof
influential tokens unbalanced models
. Failed to learn
Exploits meaningful concepts; | Ineffective for global
TCAV human-defined ) & ) P, . &
concents did not identify behavior
p relevant tokens
Highlights
important tokens; . . .
reveals structural High computational Most effective for
SAE relations: cost; scalability interpretable results
supports issues despite complexity
visualization

Table 8.1: Compact comparison of explainability techniques applied to Transformer
models.

8.1 Future Work

The discovery of Sparse Autoencoders (SAEs) opens several promising research
directions. The patterns found through SAE analysis can be used to improve model
training by differentiating the datasets, generating new entries that specifically
avoid unwanted patterns, or by uncovering biases arising from dataset distributions.
Moreover, the ability of feature activations to link tokens with internal representations
suggests a path toward model manipulation, where unwanted behavior could be
eliminated by directly interfering with the model activation, or conversely, also
amplified in case the shortcut are considered valid but with insufficient impact. At
the same time, there remain many opportunities for improvement in SAE training
itself. In particular, the design of the loss function is still evolving, with multiple
variations proposed in recent literature. It is likely that each model architecture will
require a tailored loss function to maximize interpretability and efficiency. Further
research should therefore investigate adaptive or architecture-specific objectives, as

well as strategies to reduce the computational cost of SAE training and inference.
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Appendix A

Mathematical Aspects of the
Applied Techniques

A.1 T-test

The Student’s t-test is a statistical method used to determine whether the means of
two groups are significantly different from each other. It is also useful with small
sample sizes and when the standard deviation is unknown: for these reasons, it

applies perfectly to our case. Formally, the t-statistic is defined as:

T1— X2

Sp . \/n*l + na
where:
e I1,To are the sample means,

e n1,no are the sample sizes,

» 5y is the pooled standard deviation, computed as

¢ (n1 — 1)s2 + (ng — 1)s2
Sp =

ny+mng — 2
with s?, s2 being the sample variances.

To verify our results we use the p-value, which is calculated as:

p=2-(1-F q(t]) (A.2)
where:

e t is the observed test statistic,

o df is the number of degrees of freedom (typically ni + ny — 2 for independent

samples),
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Mathematical Aspects of the Applied Techniques

o F, 4 is the CDF of the ¢ distribution with df degrees of freedom,
e the factor 2 accounts for the two-tailed nature of the test.

A small p-value means that the difference between the two datasets is unlikely to
be attributable to chance, meaning in our case that the concept under analysis
is meaningful with respect to the random baseline. We choose 0.001 as threshold

following the previous text implementation of TCAV|[28].

A.2 TF-IDF

The Term Frequency—Inverse Document Frequency (TF-IDF) is a statistical measure
used to evaluate the importance of a term within a collection of documents. It is
widely applied in information retrieval and text mining, as it balances the frequency
of a term in a document with its rarity across the entire corpus.

Formally, the TF-IDF score of a term ¢ in a document d is defined as:

TF-IDF(t,d) = TF(t,d) - IDF(t)
where:

o Term Frequency (TF) measures how often a term occurs in a document. A

common definition is:

f.d
__Jtd_ A.
TR(rd) = = (A.3)

with f; 4 being the raw count of term ¢ in document d.

o Inverse Document Frequency (IDF) measures how rare a term is across the

corpus:

IDF(t) = log <1 i\r nt) (A4)

where N is the total number of documents and n; is the number of documents

containing term ft.

The idea behind TF-IDF is that terms which are frequent in a specific document
but are rare across the corpus, are more meaningful, while terms that appear in
many documents (such as stopwords) receive lower scores.

In our scenario is difficult to define a document and a corpus, for this reason we
implemented slightly modified versions. We also modified the IDF function to avoid

edge cases:

N+1
IDF(#) = log (1 :n) +1 (A.5)
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