N e § o .
{.Illn imiciminl 2 il TOrino
W \ 1859 ,}'

Politecnico di Torino

Master of Science in Cybersecurity
A.a. 2024/2025

Graduation Session December 2025

A NILE-to-VEREFOO Translator

for Intent-Based Network Security
Automation

Supervisors: Candidate:
Prof. Riccardo Sisto Mikhael Russo
Prof. Fulvio Valenza
Prof. Daniele Bringhenti

This thesis was done in collaboration with IMT Atlantique University, under
the supervision of professors Guillaume Doyen, Pierre Alain, and Fabien Autrel.

Abstract

The rapid evolution of network infrastructures, driven by paradigms such as
Software-Defined Networking (SDN), Network Function Virtualization (NFV),
cloud computing, and the Internet of Things (IoT), has significantly increased the
complexity of configuration and management tasks. In this context, Intent-Based
Networking (IBN) introduces a paradigm shift: it allows operators to express
high-level objectives, intents, without specifying their technical implementation.
However, a key challenge remains the correct and verifiable translation of these
intents into enforceable configurations, especially in the security domain.

This thesis investigates this translation problem by focusing on the interoperabil-
ity between NILE (Network Intent LanguagE), an intermediate and human-readable
intent language, and Verefoo, a framework developed at Politecnico di Torino for
the automation and formal verification of network security policies. After a com-
parative analysis of the semantics, input, and output models of the two systems, a
translation model is proposed to map NILE constructs into Verefoo’s XML-based
representation. A prototype translator has been implemented to automate this
process, enabling the conversion of NILE intents into valid Verefoo input files.
The tool has been validated through a series of case studies on different network
topologies.

The results confirm the feasibility of semantic translation as a bridge between
intent-based specification and automated verification frameworks. This work
represents a step toward the development of intent-driven network security systems
that are more accessible, reliable, and less dependent on specialized expertise,
paving the way for future research on Al-assisted intent interpretation and adaptive
security automation.

Acknowledgements

First of all, I would like to express my gratitude to my supervisors, Professor
Riccardo Sisto, Professor Fulvio Valenza, and Professor Daniele Bringhenti, for
their invaluable guidance, constructive advice, and constant support throughout
the development of this thesis. I am also grateful to Professors Guillaume Doyen,
Pierre Alain, and Fabien Autrel from IMT Atlantique for their support and valuable
advice.

A special thanks goes to Professor Andrea Nardin, who gave us the great
opportunity and support to write our first research paper, to me and my colleagues
Cristian Carallo and Riccardo Tommasi. Writing this paper was a fundamental
experience that allowed me to apply the knowledge I had acquired in a practical way
and to engage directly with the world of scientific research, learning the importance
of collaboration, critical review, and effective communication of results. Moreover,
Prof. Nardin not only gave me the chance to write the paper, but also allowed
me to present it and participate in an international conference, interacting with
experts in the field, an invaluable experience that greatly enriched my academic
growth.

I would also like to warmly thank my colleagues and friends from the mas-
ter’s program: Cristian Carallo, Carlo Cimino, Simone D’Addio, Simone Di Nucci,
Lorenzo Ferretti, Alessio Mantineo, Francesco Marrapodi, Alessio Palermo, Roberto
Previtali, Ming Su, and Riccardo Tommasi, for their collaboration, stimulating dis-
cussions, and practical help, which made this journey both enriching and inspiring.

I wish to express my deepest and most sincere gratitude to my family, who
have been my pillar throughout these years. In particular, I owe everything to my
mother: without her, I would not be here today. She has supported and tolerated
me through every challenge and every stage of my academic journey, offering
unconditional love, encouragement, and patience. Her guidance and belief in me
have been fundamental, and I am forever grateful. To my entire family, thank you
for sharing every moment of joy and difficulty with me; your presence made this
achievement possible.

A special thanks also goes to Alessandro Rossini and his sister Lucrezia Rossini
for their help and support: they stood by me through the highs and lows of this

I

journey, always lifting my spirits. Affectionate thoughts also go to long-time friends
such as Carlo Vergano, who, even when I had disappeared off the radar, never gave
up and kept inviting me out, keeping our friendship alive.

I am deeply grateful to the Politecnico, which demanded much but gave even
more in return: invaluable experiences, opportunities, and the chance to grow both
personally and professionally. Among these, joining the Politecnico Public Speaking
team was particularly meaningful. I would like to thank my teammates Martina
Mastroianni, Giuliano Agostini, Edoardo Bona, Lucy Luparelli, and Milica Djoric
for their collaboration, support, and for making this experience so memorable. I am
also grateful to all the other members of the team, whose presence and dedication
contributed greatly to a wonderful and enriching experience.

Finally, I would like to thank all the people who, in different ways, contributed
to the realization of this work: without their support and presence, reaching this
goal would not have been possible.

To myself, I would like to remember the words of Worf from Star Trek: The Next
Generation, in the episode "Coming of Age": "Thinking about what you can’t control
will only waste energy and create its own enemy." May this reminder inspire me to
focus on action rather than worry, to manage my mental and physical resources
wisely, and to accept uncertainty with courage and determination.

11

Table of Contents

List of Figures VII
1 Introduction 1
1.1 Thesis Objective 2
1.2 Thesis Structure 3

2 Intent-Based Networking: Concepts, Architecture, and Language

Solutions 4
2.1 Introduction 4
2.2 Intent based networking oo 6
2.2.1 Core Components 6
222 Roleof AIinIBN 7
2.2.3 Intent Translation. 7

2.3 Intent-Based Languages 9
231 NILE. 10

2.4 Case Studies: IBN Architectures and Tools 13
241 Indira 13
2.4.2 Inspire 15
24.3 Polanco 16

2.5 Conclusion 17
3 Network Automation 19
3.1 Automation for Network Security Configuration 19
3.2 VEREFOO 21
3.2.1 Purpose and Capabilities 21

3.3 Conclusion 23
4 Semantics, Inputs, and Outputs of NILE and VEREFOO 25
4.1 Overview e 25
4.2 NILE Semantics and Structure 25
4.2.1 Syntactic Definition of an Intent 26

v

6

4.3 Operations 26

4.3.1 Mandatory 27
4.3.2 Optional 27
4.3.3 Targets. 29
4.4 Considerations 30
4.5 VEREFOO Semantics and Architecture 30
4.5.1 Overview 30
452 Input. 31
453 Output. 34
4.5.4 Input-to-Output Processing in VEREFOO 36
4.6 Conclusion 37
NILE to VEREFOO Translation 38
5.1 Imtroduction 38
5.2 Analysis of the Translation Requirements 39
5.2.1 Structure of NILE Intents 39
5.2.2 Requirements of VEREFOO 40
5.3 Challenges of Translation 42
5.3.1 Conflict-free 42
5.3.2 Information Gap 43
5.3.3 Grammar Modifications 44
5.3.4 Translation Rules, 46
5.4 Translator Implementation 47
5.4.1 Translation Workflow 47
5.4.2 Themain.py Module, 48
5.4.3 The transformer.py Module 50
5.4.4 The grammar.py Module 50
5.4.5 The enrich.py Module, 51
5.4.6 The constructor.py Module 52
5.4.7 The topology_manager.py Module 52
5.4.8 The property.py Module 53
5.4.9 Theutils.py Module 54
5.4.10 The xml_converter.py Module 54
5.4.11 The create_db.py Module %)
5.5 Conclusions 56
Validation of the Translation between NILE and VEREFOO 57
6.1 Introduction 57
6.1.1 Network Topology 58
6.2 Use Case 1: Validation of the from/to Construct 59
6.3 Use Case 2: Validation of the for Construct 62

\Y%

6.4 Use Case 3: Validation with Multiple Intents Across Two Service

Graphs 68

6.5 Conclusions 71

7 Conclusions and Future Works 73
7.1 Future works 74
7.1.1 Extension of the supported NILE grammar 74

7.1.2 Automated enrichment and dynamic data retrieval 74

7.1.3 Integration with Al-based intent interpretation. 75

7.2 Final Remarks. 76
Bibliography 77

VI

List of Figures

5.1
5.2
5.3
5.4
2.5

6.1
6.2
6.3
6.4

Structure of a NILE intent 39
VEREFOO requirements schema 40
VEREFOO NSR 41
Mapping between NILE and VEREFOO requirements 44

Translator workflow from NILE intent to XML input for VEREFOO. 49

Network topology used for the first and second validation use cases. 58
Extended network topology used for the third validation use case. . 58
Excerpt of the recognized and enriched intent in JSON 60
Excerpt of the enriched NILE intents. 64

VII

Chapter 1
Introduction

Traditionally, network infrastructures were configured manually, with administrators
directly setting parameters on individual devices. While this approach could be
effective in small-scale environments, the emergence of modern technologies such as
network function virtualization (NFV), software-defined networking (SDN), cloud
computing, and the Internet of Things (IoT) has made it increasingly difficult.
These paradigms have introduced unprecedented flexibility but also a dramatic rise
in complexity, making manual configuration both error-prone and difficult to scale.
Administrators, confronted with large and sophisticated systems, often struggle to
maintain a complete overview of the network’s operational state, thereby increasing
the likelihood of misconfigurations that can lead to security vulnerabilities and
critical operational failures.

In response to these challenges, Intent-Based Networking (IBN) has emerged as a
promising paradigm. IBN shifts the focus from low-level, prescriptive configuration
protocols to higher-level declarative specifications, known as intents. An intent
represents the desired outcome of the network’s behavior, often expressed in natural
language or through domain-specific abstractions, without prescribing the exact
steps needed for implementation. By decoupling high-level goals from low-level
configurations, IBN simplifies network management, reduces configuration errors,
and improves policy enforcement, ultimately lowering administrative costs and
enhancing efficiency.

However, there are still several challenges. The first is the precise definition
of intents, especially seeing the heterogeneity of network operators with different
levels of experience. A second challenge is the conflict resolution among several,
possibly overlapping, intents. Finally, even when intents are well-formed and
consistent, automating their correct translation into enforceable configurations
remains difficult, particularly given the limitations of the existing topologies and
resources [1]. This last point is especially critical in the security domain, where
errors in policy translation or enforcement can have severe consequences.

1

Introduction

This thesis addresses one specific aspect of the broader IBN problem: the
translation of intents expressed in NILE, a domain-specific language for network
policy specification, into configurations enforceable by VEREFOO, a network
verification and enforcement mechanism. By analyzing the correspondence between
NILE’s abstractions and semantics and the operational constraints of VEREFOO,
this work identifies the mechanisms required to faithfully preserve the correctness
of intents during translation.

The study presented here represents a foundational step toward more accessible
and reliable intent-based security systems. While future research may explore the
integration of Al-assisted tools for automated intent specification and enforcement,
the current work establishes the groundwork by formalizing the NILE-to-VEREFOO
translation process. This provides a rigorous basis for future extensions aimed at
intelligent, scalable, and user-friendly intent-based security management.

1.1 Thesis Objective

The primary goal of this thesis is to address the problem of translating and
refining intents expressed through the NILE language into configurations that can
be applied and verified within VEREF0O, a framework for network policy automation
and validation.

NILE is designed as an intermediate language that combines ease of understand-
ing with expressiveness, aiming to serve as a tool usable both by network operators
with limited knowledge of policy management and by experienced users. However,
for an intent expressed in NILE to be effectively applied in a real network, an
additional step is required: translation into tools capable of enforcing and executing
these specifications. In this context, VEREFOO represents an advanced system
that, through formal verification and optimization techniques, can generate correct
and optimal configurations from declarative security requirements.

The objective of this thesis is therefore to define a structured method for mapping
the semantic constructs of NILE to the operational mechanisms of VEREFOO,
analyzing the similarities, differences, and potential ambiguities that arise during
the translation process. In particular, this involves:

 Investigating which syntactic and semantic elements of NILE can be directly
translated into equivalent constructs in VEREFOO;

o Identifying cases where such correspondence is not straightforward, requiring
a refinement or transformation process;

o Assessing the proposed model’s ability to preserve the semantic correctness of
the original intent, avoiding information loss or misleading interpretations;

2

Introduction

Considering the potential benefits this translation offers in terms of reducing
configuration errors, enhancing security, and simplifying network management
processes.

This work thus aims to bridge the gap between high-level intent languages and
network automation tools, laying the foundation for the development of intent-
driven management systems that are accessible, reliable, and less dependent on
advanced specialized expertise.

1.2 Thesis Structure

The structure of this thesis reflects a progressive path, starting from the analysis
of fundamental theoretical concepts and leading up to the experimentation and
validation of the proposed translation process.

Chapter 2 - Intent-Based Networking: Concepts, Architecture, and
Language Solutions: introduces Intent-Based Networking, its key compo-
nents, intent translation, intent languages, and reviews some of the solutions
used to study intent translation.

Chapter 3 - Network Automation: analyzes the role of automation tools
in the configuration and security management of modern networks. Special
attention is given to VEREFOO, exploring its capabilities, input/output
methods, and verification and allocation models.

Chapter 4 - Semantics, Input, and Output of NILE and VEREFOO:
compares the two systems, providing a detailed analysis of their semantic
structures, input requirements, and output results. This comparison highlights
the conceptual gap that must be addressed in the translation process.

Chapter 5 - NILE to VEREFOO Translation: describes the methodology
used to translate an intent defined in NILE into configurations interpretable by
VEREFOO. The translation implementation, conceptual mapping steps, and
main challenges encountered are illustrated, along with proposed solutions.

Chapter 6 - Validation of the Translation Process: presents the verifi-
cation and evaluation phase of the developed method. The objectives of the
validation, adopted methodology, test cases, and obtained results are discussed,
without neglecting limitations and prospects for future improvement.

Chapter 7 - Conclusions and Future Works: summarizes the final
considerations on the work carried out, highlighting the main contributions of
the thesis and outlining possible future developments.

3

Chapter 2

Intent-Based Networking:
Concepts, Architecture, and
Language Solutions

2.1 Introduction

Recently, as already mentioned in the introduction chapter, the world of computer
networks has undergone continuous transformation. The growing complexity of
infrastructures, the increase in data traffic, and the need to ensure flexibility,
security, and high performance have highlighted the inadequacy of traditional
manual configuration methods.

Several fundamental technological changes have contributed to this evolution.
Among them are Software-Defined Networking (SDN), which separates the control
plane from the data plane by introducing new levels of abstraction; Network Func-
tion Virtualization (NFV), which makes it possible to replace physical devices with
more agile and scalable virtualized functions; the paradigm of cloud computing,
which has revolutionized service delivery through on-demand access to distributed
resources; the concept of liquid computing, an emerging paradigm that enables dy-
namic and transparent resource sharing across different tenants and administrative
domains [2]. These innovations have made networks more dynamic and flexible,
but at the same time more complex to manage and secure.

Software-Defined Networking The paradigm of Software-Defined Networking
(SDN) represents one of the most significant innovations in the evolution of network
architectures. Its main feature consists in the separation of the control plane from
the data plane: traffic decisions are centralized in a logical controller, while network

4

Intent-Based Networking: Concepts, Architecture, and Language Solutions

devices are limited to forwarding packets according to the received rules. This
approach introduces a high level of programmability and abstraction, allowing
the network to be dynamically reconfigured in response to traffic variations or
specific service requirements. Thanks to SDN, networks become more flexible,
automatable, and adaptable, but at the same time they pose new challenges related
to the scalability and security of the centralized control infrastructure.

Network Function Virtualization Network Function Virtualization (NFV)
have introduced a radical change compared to the traditional model based on
dedicated hardware appliances. Network functions, such as firewalls, load balancers,
or intrusion detection systems, are implemented as software components running
on generic platforms, eliminating dependence on specialized devices. This approach
makes it possible to reduce infrastructure costs, accelerate service deployment,
and improve scalability, enabling operators to quickly adapt resources to traffic
demands. However, virtualization introduces new complexities related to orches-
tration, monitoring, and performance assurance, requiring advanced management
mechanisms.

Cloud computing and liquid computing Cloud computing has revolutionized
the way services and applications are delivered, based on the principle of on-demand
access to a shared pool of computing, networking, and storage resources. Thanks to
this paradigm, it is possible to build highly scalable and efficient distributed systems
capable of supporting applications at a global level. The consumption-based model
reduces initial investment costs and fosters high elasticity, enabling organizations
to quickly adapt to peaks or drops in demand. However, static allocation of cloud
resources can lead to inefficiencies, with significant portions of capacity remaining
unused, thus raising new challenges in terms of optimization and management.

To address such limitations, the concept of liquid computing has been recently
proposed, an emerging paradigm that enables dynamic and transparent resource
sharing across different tenants and administrative domains [2]. In this scenario,
resources are no longer rigidly bound to a single user or specific infrastructure, but
can be “lent” or “acquired” fluidly, creating a distributed computational continuum.
This approach ensures greater flexibility and cost optimization, but also introduces
new challenges, especially in terms of security and isolation. In multi-domain and
multi-tenant contexts, in fact, the same physical node can be shared by users
belonging to different administrative domains, expanding the attack surface and
making the management of security boundaries more complex, as they become
dynamic and adaptable [2].

Intent-Based Networking: Concepts, Architecture, and Language Solutions

2.2 Intent based networking

The technological developments discussed in the previous sections have increased
the programmability, elasticity, and automation potential of modern networks. At
the same time, however, they have introduced a growing level of complexity: infras-
tructures are now highly dynamic, heterogeneous, and continuously reconfigurable,
making manual management increasingly impractical.

In this context, Intent-Based Networking (IBN) has emerged as a paradigm
capable of bridging the gap between high-level operational goals and the low-level
configurations required to implement them. IBN is based on the idea that network
policies can be defined starting from a level of abstraction closer to human language,
rather than through low-level specific configurations. Thanks to this approach,
IBN makes it possible to reduce human errors, accelerate service provisioning, and
maintain constant alignment between business needs and the actual behavior of the
network. Moreover, the declarative setting facilitates integration with automation
and formal validation tools, ensuring that the generated configurations not only
meet the expressed intents, but are also consistent and secure with respect to the
operating conditions of the network.

2.2.1 Core Components

As indicated in the survey by Aris Leivadeas et al. [1], IBN is a relatively new
paradigm that has recently received considerable attention. Although still emerging,
several efforts have been made to properly define and standardize it. These efforts
have led to the identification of five fundamental components: Intent Profiling,
Intent Translation, Intent Resolution, Intent Activation, and Intent Assurance.
Based on the classification provided in the survey [1], these components can be
described as follows:

1. Intent Profiling (Intent Expression): The user expresses the intent
through natural language, a GUI, or other interfaces. The system may also
guide the user to ensure that the intent is meaningful and interpretable.

2. Intent Translation: Since the intent cannot be directly executed, it must
be translated into concrete network policies and low-level configurations that
network devices can understand.

3. Intent Resolution: This component detects and manages conflicts among
multiple intents (e.g., incompatible policies, users with different priorities). It
may propose solutions or notify the administrator.

4. Intent Activation: Once compatibility with other intents is verified, the

6

Intent-Based Networking: Concepts, Architecture, and Language Solutions

system activates the requested service by configuring the network according
to the user’s requirements.

5. Intent Assurance: Because network environments are dynamic, assurance
mechanisms ensure that the intent remains satisfied over time, intervening
proactively or reactively (self-healing and continuous adaptation).

2.2.2 Role of AI in IBN

In recent years, a research trend has emerged in which Artificial Intelligence is
increasingly used to fully automate the entire IBN pipeline. Several works [3,
4, 5, 6] propose Al-driven solutions capable of covering, to varying degrees, all
five components identified in [1]: from intent profiling through natural-language
understanding, to translation via supervised or reinforcement learning, to conflict
resolution and autonomous activation, and finally to predictive, self-correcting
assurance mechanisms. These Al-centric approaches hold the promise of highly
adaptive and self-optimizing networks. However, current Al-based solutions still
exhibit several limitations associated with the freshness of the technology and
the evolving state of the art; for these reasons, despite the growing interest in
end-to-end Al-based systems, this thesis adopts a more controlled and verifiable
approach based on a structured intent language.

2.2.3 Intent Translation

Among the core components of an Intent-Based Networking System, Intent Trans-
lation plays a pivotal role in bridging the gap between high-level operator intents
and low-level, deployable network configurations. In the context of this thesis,
which focuses on translating NILE intents into VEREFOO configurations, the
discussion naturally centers on this component. As highlighted in the survey by Aris
Leivadeas et al. [1], each IBNS component presents specific technical challenges;
the work presented here addresses two of the main challenges associated with Intent
Translation.

The first challenge is the intrinsic complexity of translating high-level intents into
concrete and device-understandable network policies. As highlighted in [1], even
simple intents may expand into multiple interdependent policies, and an incorrect
translation can lead to severe misconfigurations and degraded network performance.
Effective intent translation therefore requires a hierarchical refinement process
capable of progressively enriching the intent with the missing technical details
while identifying policy dependencies. The solution to this challenge follows the
approach outlined above and will be discussed in detail in the following chapters.

The second challenge instead concerns vendor agnosticism. An intent should

7

Intent-Based Networking: Concepts, Architecture, and Language Solutions

remain independent of vendor-specific technologies, implying the need for inter-
operable configuration languages or tools capable of managing heterogeneous
infrastructures. To address this issue, the approach adopted in this thesis relies on
the NILE intent language, designed to be vendor-neutral, and on the VEREFOO
framework, which can generate configurations for diverse network environments
without requiring the user to provide vendor-specific information.

Intent Translation mechanisms

Beyond the challenges described above, the survey [1] identifies several mechanisms
commonly employed to translate high-level intents into network policies:

« Template or Blueprint-Based Translation: Predefined configuration
blocks are selected according to the intent’s requirements. Simple and effective
for unambiguous intents, but relies on prior expertise to create templates.

o Mapping: The high-level intent is decomposed into semantically meaningful
components, which are associated with specific network services or techni-
cal requirements. Useful for abstract intents and detecting conflicts among
multiple intents.

» Refinement: Hierarchical, stepwise enrichment of the intent adds missing
technical details. Especially useful when mapping alone cannot fully capture
the intent.

« Network Service Descriptors (NSDs): Used in NFV scenarios such
as service chaining or network slicing. NSDs serve as deployment templates
containing VNFs, links, and forwarding graphs, either mapped from a catalogue
or inferred from the intent.

o Inference-Based Translation: Deduce implicit requirements or missing de-
tails by reasoning over correlations between intent elements or using knowledge
from past designs.

« Keyword-Based Translation: Keywords extracted from natural language
intents are associated with specific services or policies. Can be combined with
inference to resolve interdependencies and generate ECA rules.

The survey also discusses more advanced mechanisms, such as machine-learning-
based translation, which uses classification or reinforcement learning models to infer
suitable policies like [7], and semantic techniques leveraging RDF or OWL graphs to
formally represent relationships among requirements, services, and deployment rules.

8

Intent-Based Networking: Concepts, Architecture, and Language Solutions

Finally, state-machine-based approaches translate intents into Event-Condition-
Action policies by modeling intent elements as transitions in deterministic finite
automata.

Among the mechanisms presented in [1], the method adopted in this thesis
combines semantic analysis, mapping, and refinement techniques. By analyzing
the semantic structure of the NILE language and the requirements imposed by the
VEREFOO framework, it is possible to construct a precise correspondence between
the two representations. This mapping enables a clear and accurate translation
of NILE intents into the low-level, vendor-agnostic configurations required by
VEREFOO, as will be detailed in the following chapters.

2.3 Intent-Based Languages

As mentioned before the work presented in this thesis adopts the use of a structured
intent language, callled NILE, instead of Al. The intent-based languages are a key
element of IBN, they are formal languages that allow the description, in an abstract
and high-level manner, of what the network must achieve. They represent a middle
ground between natural language and machine language: on the one hand, they
maintain a level of expressiveness accessible to the user; on the other hand, they
provide a rigorous structure interpretable by orchestration systems. In this way,
the removal of the need to directly express technical specifications makes their use
simpler and more immediate, even for non-expert users, broadening the audience
of those who can interact effectively with the network. Introducing an intent
language as an intermediate representation also makes it possible to separate policy
extraction from its implementation and enforcement, ensuring greater flexibility
and facilitating human feedback before the deployment phase. The adoption of
such languages offers numerous advantages: reduction of configuration errors, faster
provisioning, dynamic adaptation to changing contexts, and greater alignment
between business objectives and technological capabilities.

Several intent-based languages have been proposed in the literature, such as
INTPOL [8], Nemo 9], Polanco [10], Lai [11] and NILE [12, 13]. However, languages
such as Nemo, Polanco, Lai, and INTPOL were not selected for this work due to
their intrinsic limitations with respect to the objectives of this thesis. In particular,
Nemo requires highly detailed and complex specifications, which reduces usability
and generality; Polanco is strongly oriented toward academic contexts and tailored
to translating policies from PWC-style structures, making it less flexible and overly
close to human language, with still several aspects to refine; Lai is designed mainly
for managing Alibaba’s ACLs and is therefore too technical and domain-specific;
and INTPOL, although formally rigorous, relies on a highly structured specification
approach that lacks accessibility for non-expert users. NILE was instead chosen

9

0O Ui Wi =

17
18
19
20

21
22

Intent-Based Networking: Concepts, Architecture, and Language Solutions

because it offers a more flexible, general, and user-friendly intent expression model,
capable of bridging natural-language inputs and network policies without being
tied to a specific domain or representation format.

2.3.1 NILE

NILE (Network Intent LanguagE) is an intent language proposed by Arthur S.
Jacobs et al. [13], with the goal of providing an intermediate level of abstraction
between the definition of network policies and their actual implementation. The
idea originates in the context of research on self-driving networks, where the need
for a tool capable of translating operator’s natural language expressions into precise
and verifiable configuration rules was observed.

In the work of Arthur S. Jacobs et al. [13], is possible to find an initial version of
NILE’s grammar (Listing 2.1); in this work, the authors introduce a process of intent
refinement based on machine learning and operator feedback. The key insight was
the introduction of an intermediate representation that, while resembling natural
language, is sufficiently structured to allow automatic translation into network rules
(for example for SDN or NFV). In this scenario, NILE acts as a bridge language:
on the one hand, it is readable and confirmable by the operator, while on the
other it ensures the precision required for compilation into formal policies and the
subsequent verification of conflicts or errors.

<intent> ::= ’define intent’intent_name’:’ <commands>

<commands> ::= <command> {’\n’ <command> }

<command> ::= (<middleboxes> | <qos> | <rules>)+[<optiomnal>]

<middleboxes> ::= ’add’ <middlebox> {(’,’]’,\n’) <middlebox> }

<middlebox> ::= ’middlebox(’middlebox_id’)’

<qos> ::= ’with’ <metrics>

<metrics> ::= <metric> {(’,’]’,\n’) <metric> }

<metric> ::= <metric_id> ’(’ <constraint> ’,’value’)’ | <metric_id
> ’(none)’

<metric_id> ::= latency | jitter | loss | throughput

<constraint> ::= ’less [or equall]’ | ’more [or equall’ | ’equal’ |

’different’
<rules> ::= <rule> {’\n’ <rule> }

10

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

41
42

— O © 00O Utk W+

—_ =

Intent-Based Networking: Concepts, Architecture, and Language Solutions

<rule> ::= (allow | block) <traffic>

<optional> ::= <targets> | <locations> | <interval>
<targets> ::= ’for’ <target> {(’,’|’,\n’) <target> }
<target> ::= ’client(’client_id’)’| <traffic>
<locations> ::= ’from’ <endpoint> ’to’ <endpoint>

<endpoint > ’endpoint (’endpoint_id ’)”’

<interval> ’start’ <date_time> ’\n’’end’ <date_time>

<traffic> ::= ’traffic(’traffic_id’)’ | ’flow(’[<five_tuple>]+’)°

<five_tuple> ::= ’protocol:’ v | ’src_port:’ v | ’src_ip:’ v |
dest_port:’ v | ’dest_ip:’ v

<date_time> ::= ’datetime(’datetime’)’ | ’date(’date’)’ | ’hour(’
hour)’

Listing 2.1: First grammar of NILE [13]

In the following years, the language was extended (Listing 2.2) and used as an
integral part of the LUMI chatbot system [12]. LUMI is a platform that allows
operators to converse in natural language directly with the network, expressing
intents, such as "Inspect the traffic for the dormitory". The system exploits Named
Entity Recognition (NER) algorithms and a chatbot interface to extract key entities,
build an intent in NILE, and present it to the operator for confirmation. Afterwards,
the intent is compiled into configuration languages such as Merlin and applied to
the network. In this context, NILE represents the fundamental abstraction between
natural inputs and low-level commands, extending the initial functionalities (for
example, beyond service chaining, it now supports QoS constraints, bandwidth
limits, usage quotas, and temporal constraints).

<intent> ::= ’define intent’ <term>’:’ <operations>
<operations> ::= <path> <operation> { ’> ’ <operation> }
<path> ::= [<from_to> | <targets>]

<from_to> ::= ’from’ <endpoint> ’to’ <endpoint>

<operation> ::= (<mboxes> | <qos> | <rules>)+ [<interval>]

11

12

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

41
42
43
44

45
46
47
48
49
50

51
52

Intent-Based Networking: Concepts, Architecture, and Language Solutions

<mboxes> ::= [’add’ | ’remove’] <middlebox> { (’,” | ’,\n’) <
middlebox> }

<middlebox> ::= ’middlebox(’<term>’)’

<qos> ::= [’set’ | ’unset’] <metrics>

<metrics> ::= <metric> { (’,” | ’, \n’) <metric>}

<metric> ::= [<bandwidth> | <quota>]

<rules> ::= [’allow’ | ’block’] <matches> [<matches>]

<targets> ::= ’for’ <target> { (’,” | ’, \n’) <target> }

<target> ::= [<group> | <service> | <endpoint> | <traffic>]

<matches> ::= [<service> | <traffic> | <protocol>]

<endpoint> ::= ’endpoint(’<term>’)’

<group> ::= ’group (’<term>’)’

<service> = ’service(’<term>’)’

<traffic> ‘traffic(’<term>’)’

<protocol> ::= ’protocol(’<term>’)’

<bandwidth> ::= ’bandwidth(’[’max’ | ’min’]°’, ’<term>’, <bw_unit
>)?

<bw_unit> = [’bps’ | ’kbps’ | ’mbps’ | ’gbps’]

<quota> ::= ’quota(’[’download’ | ’upload’ | ’any’]’, ’<term>’, <
q_unit>)”’

<q_unit> ::= [’mb/d’ | ’mb/wk’ | ’gb/d’ | ’gb/wk’ | ’gb/mth’]

<interval> ::= ’start’ <datetime> ’end’ <datetime>

<datetime > = ’datetime(’<term>’)’ | ’date(’<term>’)’ | ’hour(’<
term>’)”’

<term> ::= [a-z0-9]+

Listing 2.2: NILE grammar [12]

Thanks to this evolution, NILE has proven capable of balancing readability
12

=W N

Intent-Based Networking: Concepts, Architecture, and Language Solutions

and expressiveness; in fact it is understandable even by non-expert operators, who
can confirm or correct the generated intent, and also it provides formal constructs
able to describe complex network policies. This dual nature distinguishes it from
languages that are too close to natural language (often ambiguous) and from
excessively formal languages (hardly accessible). Moreover, these characteristics
have led to NILE being adopted in various research works, where its combination
of clarity and expressive power has been leveraged to support intent-based network
management and verification tasks [14, 15].

NILE was chosen as the reference language for the development of this thesis
precisely for these reasons. It allows the construction of powerful yet clear intent,
as shown in Listing 2.3, in which a complex policy is expressed in a readable and
structured form. In this way, the language serves both as an abstraction tool with
respect to the underlying policy mechanisms and as a concrete bridge between the
expressiveness of natural language and the precision required by execution in the
network.

define intent one:
from endpoint (NodeWS2) to endpoint(NodeWC5)
allow protocol (FTP)
block service (XBOXLive) protocol (POP3)

Listing 2.3: Example of a NILE intent

In the following chapters the characteristics of NILE will be analized in more
detail, focusing in particular on its semantics and on the challenges it poses to
be translated and integrated into automatic policy verification tools, such as
VEREFOO.

2.4 Case Studies: IBN Architectures and Tools

To gain an initial understanding of the starting point for the translation work in
this thesis, several solutions in the field of Intent-Based Networking (IBN), with
a specific focus on intent languages and mechanisms for translating high-level
specifications into operational configurations, were analyzed; among these were

Indira, INSpIRE, and Polanco.

2.4.1 Indira

In the work of Mariam Kiran et al. [16], Indira (Intelligent Network Deployment
Intent Renderer Application) is presented, a platform for enabling intent-based net-
working, designed to interact with the north-bound interfaces of the SDN networks
of the Energy Sciences Network (ESnet). The main goal of Indira is to provide a
simple, reliable, and technology-independent communication channel between users

13

Intent-Based Networking: Concepts, Architecture, and Language Solutions

and the network infrastructure, reducing operational complexity and making ad-
vanced features accessible even to non-expert operators. The system was developed
in the context of data-intensive scientific collaborations, where it is crucial to ensure
secure and efficient transfers of large datasets, latency management, and reliable
network performance. In scenarios such as high-energy physics or computational
climatology, users need to transfer massive datasets, comply with strict latency
constraints, and ensure service reliability; however, the manual management of
such requirements through traditional configuration tools proves to be complex
and poorly scalable.

To address these needs, Indira adopts the IBN paradigm, allowing requests to
be expressed through a high-level descriptive language (for example: connect site A
with site B), which is then automatically translated into prescriptive instructions up
to the generation of operational rules (for example OpenFlow), avoiding the need
for the user to specify technical parameters such as VLANSs, IP addresses, or routing
protocols. A distinctive aspect of the framework is the use of natural language
processing and ontological engineering techniques: user requests are interpreted
and converted into RDF semantic graphs, which formally represent the requested
services and associated conditions. These graphs allow Indira to maintain semantic
consistency, perform constraint checks (for example QoS or policy), and translate
intents into concrete commands for provisioning tools such as NSI (for multi-domain
circuit creation) and Globus (for secure file transfers).

The architecture of Indira therefore integrates four main phases: first, the intent
expressed by the user is acquired through a command-line interface or a dialogic
interaction in natural language. Subsequently, a parsing module extracts the key
information and converts it into an RDF graph, enriched with metadata from
external files containing user profiles and topology information. At this point,
the system performs a consistency check, resolving any conflicts and verifying the
availability of the requested resources. Finally, the validated intent is translated into
concrete commands, ready to be sent to provisioning tools such as NSI (Network
Service Interface) for the setup of multi-domain circuits or Globus for the secure and
reliable transfer of files. This pipeline makes it possible to automate the entire intent
lifecycle, from its abstract formulation to its practical execution, drastically reducing
the cognitive load on the user and increasing the responsiveness of the network. In
this way, the system automates the entire cycle, from the requirement expressed in
natural language to the operational configuration, ensuring interoperability between
heterogeneous tools and the possibility of automatic reasoning on application
requirements.

Indira represents a concrete case of application of the IBN paradigm in complex
scientific scenarios: thanks to the combination of semantic abstraction, linguistic
interaction, and provisioning automation, it demonstrates how semantic intelligence
can make Intent-Based Networking more accessible, flexible, and suitable for

14

Intent-Based Networking: Concepts, Architecture, and Language Solutions

contexts characterized by high heterogeneity and data intensity[16]. Although it
is not specifically focused on network security, its approach to intent translation
through ontologies provides useful insights and parallels with the objectives of this
thesis.

2.4.2 Inspire

INSpIRE (Integrated NFV-based Intent Refinement Environment), developed by
Eder J. Scheid et al. [17], represents one of the first solutions that integrates the
paradigm of Intent-Based Networks (IBN) with Network Function Virtualization
(NFV), proposing an intent refinement mechanism capable of generating concrete
configurations starting from high-level specifications.

The main objective of INSpIRE is to bridge the gap between the abstraction
offered by intents and the low-level configurations required for the operation of the
network. To this end, the system takes as input intents described through a Con-
trolled Natural Language (CNL) and translates them into Service Function Chains
(SFC). This process ensures that the requirements expressed by administrators are
met regardless of the complexity of the underlying infrastructure.

In particular, INSpIRE is characterized by three fundamental aspects:

o Identifies the Virtual Network Functions (VNF) necessary to satisfy the
specified intent;

o Concatenates the VNFs according to their logical and functional dependencies,
generating coherent service chains;

o Provides low-level information to the network devices, necessary for routing
the traffic through the selected functions.

A distinctive element of the solution is the extension of the VNF descriptor
defined in the ETSI MANO framework, which is enriched with metadata useful
to support the ordering of functions during the concatenation phase [17]. This
allows the system not only to respect functional constraints, but also to take into
account non-functional criteria, such as performance requirements and optimization
objectives (softgoals).

INSpIRE represents a significant step towards the automation of intent-based
network management, demonstrating how refinement can bridge the gap between
abstraction and implementation. Although its design focuses primarily on the
composition of service chains using VNFs and physical middleboxes, concentrating
on the management of network functions, INSpIRE has provided valuable inspiration
for the work presented in this thesis.

15

Intent-Based Networking: Concepts, Architecture, and Language Solutions

2.4.3 Polanco

Among the intent languages cited in this thesis there is Polanco, presented by
Sergio Rivera et al. [10] and developed to support Policy Writing Committees
(PWCs) in the specific context of university campus networks. Campus networks
represent complex and dynamic environments, characterized by a high heterogeneity
of devices, services, and access requirements, and for this reason, PWCs are formed
to discuss and decide their configuration. The members of PWCs are usually
administrators who have a clear understanding of network management needs, but
do not possess the technical skills typical of system engineers. These committees
generally draft documents in natural language, such as Acceptable Use Policies
(AUPs), which define security rules, usage constraints, and operational guidelines.
However, these documents must then be manually translated by network experts into
detailed technical configurations. This process largely depends on the experience of
the individual administrator and is therefore subject to ambiguous interpretations
and frequent errors, especially when network changes compromise policies that
were previously correctly enforced.

To address this problem, Sergio Rivera et al. [10] proposed Polanco (POlicy
LANguage for Campus Operations), an intermediate language designed to bridge
the gap between the definition of network policies by PWCs, expressed in natural
language, and their technical implementation. Polanco approaches the language
used by the committees, simplifying the translation phase and reducing the risk of
errors compared to direct conversion into network configurations. While remaining
human-readable, it allows policies to be expressed with sufficient precision to be
automatically transformed into rules and actions for SDN networks or into low-level
configuration files, ensuring that defined policies are correctly enforced. Polanco
also integrates information about the network context (e.g., topology or device
variations), allowing configuration rules to adapt dynamically and ensuring that
policies remain correctly enforced even in the presence of infrastructural changes.

Polanco is based on several key principles [10]:

» Use of high-level identifiers: roles and attributes (e.g., device type, user
group, or traffic type) replace MAC or IP addresses, increasing abstraction
and readability.

« Common abstractions: concepts such as servers, firewalls, or secure channels
are expressed uniformly, while the generation of low-level configurations is
delegated to automatic translation mechanisms.

o Context awareness: policies can dynamically adapt to network changes,
such as the introduction of new equipment or emerging threats.

o Explicit exception management: the ability to clearly specify exceptions
simplifies automation processes and reduces the costs of manual management.

16

Intent-Based Networking: Concepts, Architecture, and Language Solutions

Regarding the collection of necessary information, Polanco combines two main
sources. On one hand, the alias file, which associates low-level identifiers (MAC,
IP, VLAN, port numbers) with more intuitive high-level labels for operators. On
the other hand, the topology discovery features provided by SDN controllers, which
use protocols such as LLDP, BDDP, and SNMP to detect routers and switches,
and packet inspection techniques (ARP, DHCP, ND) to identify end hosts. The
integration of these sources allows for the construction of an initial network map,
enriched with additional information from traditional management protocols or
dedicated discovery systems. This dataset forms the basis for defining Polanco
policies that are precise, readable, and automatically translatable into operational
configurations.

Polanco was specifically developed for Policy Writing Committees in the context
of university campus networks, thus being tied to a well-defined usage scenario.
For the objectives of this thesis, however, a more general-purpose intent language is
required, capable of adapting to different contexts and not limited to the academic
domain. Furthermore, the use of Polanco still assumes the intervention of a network
expert to translate policies written in natural language into the corresponding
Polanco specifications. All of these reasons have led to the choice of NILE over
Polanco. Nevertheless, Polanco provided valuable inspiration, especially in showing
how intents can be enriched with detailed specifications.

2.5 Conclusion

This chapter has provided an overview of the evolution of modern network archi-
tectures and the emergence of Intent-Based Networking as a paradigm capable
of addressing the increasing complexity of network management. Key enabling
technologies, such as SDN, NFV, cloud computing, and liquid computing, have
been examined, highlighting both their contributions to flexibility, scalability, and
automation, and the new challenges they introduce in terms of orchestration,
security, and operational complexity.

Intent-Based Networking has been presented as a solution that abstracts high-
level operational goals into concrete network configurations, structured around the
core components. The discussion then focused on Intent Translation, one of the
core components of IBN, analyzing its main challenges as well as the mechanisms
commonly used to perform this translation. Following this, intent-based languages
were introduced, with particular attention to NILE as a structured, readable, and
flexible tool for expressing network intents. Finally, several IBN solutions and
frameworks, including Indira, INSpIRE, and Polanco, were examined to illustrate
practical approaches and provide inspiration for the methodology adopted in this
thesis.

17

Intent-Based Networking: Concepts, Architecture, and Language Solutions

The next chapter will introduce VEREFOO, the framework used in this work
for verifying and generating low-level network configurations from high-level NILE
intents.

18

Chapter 3

Network Automation

Network automation is the use of software-driven approaches to configure, manage,
and optimize network devices and services with minimal human intervention. It
improves efficiency, reduces errors, and enables scalable management of complex
infrastructures.

This chapter focuses on Automation for Network Security Configuration, exam-
ining how automation can address the limitations of manual practices in security
functions. In this context, particular attention is given to VEREFOO, a framework
developed at Politecnico di Torino, which serves as the main case study of this
thesis.

3.1 Automation for Network Security Configura-
tion

The growing complexity of modern network infrastructures has made security
management an increasingly critical and difficult task to sustain with manual
approaches. In recent years, the emergence of paradigms such as the Internet of
Things, virtualization, and the massive adoption of cloud services has expanded
the attack surface and multiplied the number and variety of devices and protocols
to protect. In this scenario, the manual configuration of network security functions,
such as firewalls, intrusion detection and prevention systems, or VPN gateways, has
proven to be not only slow and burdensome, but also highly error-prone. Several
studies have highlighted how misconfigurations are among the main causes of
security incidents, making the development of tools capable of minimizing human
intervention urgent.

As reported by Daniele Bringhenti et al. [18] in the survey on the world
of Automation for Network Security Configuration, the management of network
security policies, in particular those of packet-filtering firewalls, has in recent

19

Network Automation

years become an increasingly complex and critical task. The evolution of modern
networks, characterized by growing size, heterogeneity, and variety of services,
makes traditional approaches based on manual configurations inadequate. In fact,
such practices prove to be error-prone, inefficient, and costly in terms of time,
contributing to a growing number of anomalies in security policies, which include
both conflicts and under-optimizations [18].

Confirming the issues related to the manual management of security config-
urations highlighted in Bringhenti et al. survey [18], Verizon’s Data Breach In-
vestigations Reports from 2013 to 2024 [19] show that errors classified under the
“miscellaneous” macro-category are among the main causes of security incidents,
with misconfigurations accounting for the majority of these cases. In recent years,
anomalies related to the configuration of Network Security Functions (NSF) have
steadily increased underlining that manual prevention and mitigation of misconfig-
urations is now unsustainable in complex networks, where even a single error can
lead to large-scale cyberattacks.

Although the 2025 Verizon report [19] shows an apparent decrease in incidents
attributed to the miscellaneous errors category, this is mainly due to a change
in the composition of the partners contributing to data collection and not to a
real reduction in human errors. Therefore, the probability that human errors will
continue to cause violations remains high, underlining the urgency of automated
tools for network security configuration and management. As the survey [18] and
the evidence suggest, only approaches based on automation and centralized controls
can significantly reduce the risk associated with configuration errors, improving
both operational efficiency and the overall resilience of networks.

The main reasons for this problem lie in structural and organizational fac-
tors, including the separation of roles between security managers and network
administrators, the growth in the size and complexity of infrastructures, the high
heterogeneity of network functions, and configuration practices based on trial and
error. In addition, the increasingly significant impact of breaches can cause not
only direct financial damage but also indirect consequences on user trust and the
overall stability of the system [18].

In this context, automation emerges as a key paradigm for addressing these
issues; in fact it makes possible to translate high-level security requirements into
concrete and optimized configurations of network functions, reducing the risks of
inconsistencies and improving the overall efficiency of the system. Two technological
factors have been decisive for this evolution: on the one hand, the softwarization
of networks, with the affirmation of Software-Defined Networking (SDN) and
Network Functions Virtualization (NFV), on the other, the development of Policy-
Based Management (PBM) models. SDN allows the separation of the control
plane from the data plane and the centralized orchestration of device behavior,
while NF'V allows replacing traditional hardware appliances with more agile and

20

Network Automation

easily reconfigurable virtualized functions. PBM, finally, provides a methodological
framework to automatically derive configurations starting from policies expressed
in high-level languages, progressively translating them into executable rules for
the various devices [18]. These innovations have made possible the development
of fully automated workflows for security configuration, which include phases of
policy specification, automatic composition of security services, and generation of
network function configurations.

Automation is not limited to replicating what was previously performed manually,
but introduces substantial benefits in terms of scalability, responsiveness, and
optimization. In a context in which cyber threats evolve rapidly, the ability to
reconfigure security services in near real time becomes essential to ensure adequate
resilience. Moreover, through formal verification and optimization techniques, it
is possible not only to avoid errors but also to reduce resource consumption and
improve the quality of the service provided.

Despite significant progress, the automation of network security remains a
lively and continuously evolving research field. Current solutions have already
demonstrated how it is possible to drastically reduce dependence on manual
operations, but challenges remain open related to the management of highly
heterogeneous networks, the need to adapt to dynamic conditions, and transparency
in human-machine interaction. In this perspective, several tools and frameworks
have been developed to systematically address the generation and verification of
configurations. Among these, one of the most significant contributions is represented
by VEREFOO, which stands out as an innovative tool to make network security
configuration automation concrete and effective in modern networks.

3.2 VEREFOO

VEREFOO [2, 20, 18, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30| is a network automation
tool, developed at the Politecnico di Torino by the NetGroup [31], which supports
the definition, analysis, and automated optimization of packet filtering firewall
policies. The goal of VEREFOO is to reduce the impact of human errors, improve
operational efficiency, and ensure a higher level of security, establishing itself as an
advanced solution in the context of modern network management [20].

3.2.1 Purpose and Capabilities

Nowadays, network protection is a highly relevant and, at the same time, challenging
issue to address. Thanks to the rapid spread of technologies such as Network
Function Virtualization (NFV), Software-Defined Networking (SDN), the Internet
of Things (IoT), and the cloud computing paradigm, the evolution of network
architectures has grown exponentially and, consequently, the complexity of the

21

Network Automation

architecture, the traffic, and the amount of data flowing through the infrastructures
have increased considerably. One of the defenses traditionally adopted is the
classic packet filtering firewall which, thanks to its versatility and simplicity of
implementation, makes it possible to keep the network safe from unwanted or
malicious traffic, both internal and external [20].

Packet filtering firewalls use a set of rules that specify which packets should be
discarded and which, instead, can proceed to the intended destination; this set is
called a policy and is usually configured manually by the network administrator.
However, as discussed previously, with the increasing complexity of networks, the
manual approach is no longer sustainable or, more precisely, no longer feasible in
large organizations such as companies or universities, which often have extensive
and complex networks. In such cases, the manual configuration of packet filtering
firewall policies can lead to configuration errors, which in turn generate security
flaws and incidents. In fact, it is easy for those who define policies to overlook
sub-optimizations or conflicts among the numerous rules; precisely to address this
problem, network automation tools have been developed, including VEREFOO
[20].

VEREFOO acts as an intermediary between high-level security policies and their
implementation with packet-filtering firewalls. Instead of requiring administrators to
manually configure each firewall or security function, VEREFOO takes as input the
network topology and the intended security objectives; it then analyzes the network,
interprets these objectives, and generates a consistent set of rules and configurations
for packet-filtering firewalls, optimally placing the new firewalls. This process is
driven by a formal MaxSMT-based methodology that guarantees correctness-by-
construction and optimization, ensuring that all security requirements are satisfied
while minimizing the number of firewalls and filtering rules [25, 26]. In this way,
VEREFOO, not only automates repetitive and error-prone tasks, but also ensures
that the resulting network behavior aligns with the specified policies. By abstracting
the complexity of individual devices and security functions, VEREFOO allows
network operators to focus on policy design rather than low-level configuration,
significantly reducing the risk of misconfigurations and enhancing overall network
security.

As can be seen in the work of Daniele Bringhenti et al. [21], VEREFOO is
not limited to the automatic configuration of firewalls, but represents a general
framework for the orchestration of various virtualized security functions. With the
introduction of the concept of projection, in fact, Network Security Policies (NSPs)
are translated into abstract operations independent of the type of Virtual Network
Function (VNF), allowing the inclusion in the process not only of traditional packet
filters, but also functions such as URL filters, HT'TP filters, VPN gateways, logging
systems, intrusion/anomaly detection, anti-virus, anti-malware, content filters,
monitoring, and anonymization proxies. In this way, VEREFOO establishes itself

22

Network Automation

as a flexible and comprehensive platform for the automatic configuration of security
in virtualized networks, going well beyond the sole scope of packet filtering firewalls.

The work of Daniele Bringhenti et al. [23] provides a concrete example of the
versatility of VEREFOO, showing how this tool can support the management of
VPN configurations and Communication Protection Systems (CPS). VPNs are now
fundamental in many contexts, as they ensure the protection of network traffic from
inspections and unwanted modifications. The traffic passing through a VPN is
normally encrypted and safeguarded by CPS; however, overall security depends on
the correct configuration of the latter, which, if set incorrectly, can pose significant
risks. The manual configuration of CPS is notoriously complex; in fact, it requires
deciding where to place them, selecting appropriate encryption algorithms from a
wide range of options, and correctly setting the device rules; with the increasing
complexity of modern networks, these tasks have become even more difficult. The
work [23] formalizes this problem as a MaxSMT problem, enabling VEREFOO to
automatically identify correct and optimal CPS configurations, also integrating
network efficiency objectives to provide secure and high-performing solutions.

VEREFOO has also been the foundation for the GreenShield project [22], in
which an innovative automation system for firewall configuration and optimization
is developed, designed to reduce environmental impact by lowering energy con-
sumption without compromising the security level. In fact, both cybersecurity and
computer networks represent a significant source of resource consumption: just
think of data centers, routers, switches, and security devices such as firewalls, which
require large amounts of energy to operate, resulting in higher maintenance costs
and a growing contribution to pollution. As reported in Daniele Bringhenti et al.
[22], GreenShield is one of the few projects addressing the issue of sustainability
related to the automatic configuration of distributed packet filtering firewalls and,
thanks to the use of VEREFOO, it is able to activate firewalls in a way that reduces
consumption and optimizes filtering, blocking communications as close as possible
to the source.

3.3 Conclusion

In this chapter, we have highlighted the growing complexity of modern networks and
the challenges associated with manual configuration of network security functions.
Automation emerges as a fundamental solution, enabling consistent, efficient, and
reliable management while reducing human error and improving resilience.

VEREFOO has been introduced as a representative tool for network security
automation. Its flexible framework, capable of managing not only packet filtering
firewalls but also a wide range of virtualized security functions, exemplifies the
benefits and potential of automated network management.

23

Network Automation

The next chapter will provide a detailed analysis of VEREFOO, focusing on
its semantic structures, input and output methods, and verification models, laying
the groundwork for the comparison and translation processes presented in the
subsequent chapters.

24

Chapter 4

Semantics, Inputs, and

Outputs of NILE and
VEREFOO

4.1 Overview

This chapter provides a comparative analysis of the semantics, inputs, and outputs
of the two core systems analyzed in this thesis: the NILE intent language and the
VEREFOO verification and deployment framework. Understanding their respective
information models is essential to bridge the abstraction gap between them.

4.2 NILE Semantics and Structure

Network Intent Language (NILE) is a near-natural language, designed to express
security intents in an intermediate form between human language and typical
network configuration language. In this way, the user can formulate comprehensible
security objectives without needing to learn specific languages, while NILE can be
automatically translated into the configurations required by the different policy
mechanisms.

Based on NILE’s requirements, Jacobs et al. [13] identified three fundamental
requirements for designing the grammar of the intent language:

o High comprehensibility: allows operators, even non-experts, to understand
and verify the correctness of an intent;

o Full expressiveness: enables faithful representation of the operator’s inten-
tion;

25

Semantics, Inputs, and Outputs of NILE and VEREFOO

 Writing efficiency: facilitates quick and easy modifications to generated
intents.

Based on these three fundamental requirements, Jacobs et al. [13] designed an
initial NILE grammar, expressed in EBNF notation, aimed at satisfying compre-
hensibility, expressiveness, and writability needs (Listing 2.1). The grammar shown
in Listing 2.2 represents the second version, improved from the original, presented
in the work for the Lumi chatbot [32] and adopted for the project of this thesis
and analyzed in this chapter.

4.2.1 Syntactic Definition of an Intent

An <intent> represents the user’s intent, i.e., the high-level goal to be achieved in
the network, as discussed in the previous chapter (Chapter 2). It constitutes an
abstraction that allows expressing what is to be achieved without directly specifying
how to implement it. From a syntactic point of view, an intent in NILE consists
of <operations>, which define the concrete actions that the network orchestrator
must translate into actual configurations.

The basic construction of an intent is defined as follows:

<intent> ::= ’define intent’ <term> ’:’ <operations>

Each intent is identified by a unique term (<term>), which can be any alphanu-
meric string. This term associates a name with the intent and links it to a sequence
of operations to apply. The choice of a declarative approach allows separating the
what from the how, enabling the network orchestrator to interpret the intent and
translate it into the necessary configurations.

4.3 Operations

As shown in [12, 32|, <operations> represent the semantic core of the grammar
and constitute the mechanisms through which a NILE intent expresses the user’s
objective. They are organized into two main categories: mandatory, required to
delimit the scope of the intent, and optional, which enrich the expressiveness of
the language with access constraints, quality of service parameters, middlebox
management, and temporal conditions.

The mandatory operations consist of from/to, which define the involved end-
points, and for, which defines the target of the intent, that can be a group, an
endpoint, a service, and a traffic; these mandatory operations apply to all network
policy types.

One of the optional operations is allow/block, which operates on traffic, services,
and protocols and is for ACL. Another optional operation is set/unset which

26

Semantics, Inputs, and Outputs of NILE and VEREFOO

manages the quotas or bandwidth limits for Quality-of-service (QoS). Also the
management of service chaining via add/remove, which allows the insertion or
deletion of middleboxes is an optional operation. The last optional operation is
start/end, which accepts hours, dates, or full datetime specifications and allows the
definition of time-bounded intents.

4.3.1 Mandatory
Path Definition

The operands from/to and for are mandatory, as they define the fundamental
elements of the intent’s application domain. In particular, from/to indicates the
path on which the policy will be applied, identifying the relationship between two
specific endpoints; for defines the policy’s targets, allowing reference to broader
categories such as groups, services, or traffic types. It is possible to use either
from/to or for within an intent, depending on the desired level of specificity, but
both operands must never appear together in the same intent.

<from_to> ::= ’from’ <endpoint> ’to’ <endpoint>
<targets> ::= ’for’ <target> { (’,” | ’,\n’) <target> }
Examples:

from endpoint(a) to endpoint(b)
for group(admin), service(http)

4.3.2 Optional
ACL

Operands of type allow and block correspond to control policies aimed at permit-
ting or denying specific traffic, service, or protocol.

<rules> ::= [’allow’ | ’block’] <matches> [<matches>]
<matches> ::= [<service> | <traffic> | <protocol>]
Example:

block service(ssh) protocol(tcp)
27

Semantics, Inputs, and Outputs of NILE and VEREFOO

Middlebox Management (Service Chaining)

Middlebox chaining, expressed through the operands add and remove, allows
dynamically modifying the network topology by inserting functional devices such
as firewalls, proxies, or intrusion detection systems. Importantly, the grammar
does not impose constraints on the type of middlebox that can be used.

<mboxes>::=[’add’ | ’remove’]<middlebox>{(’,’|’,\n’)<middlebox>}
<middlebox> ::= ’middlebox(’<term>’)’
<term> ::= [a-z0-9]+

Example:

add middlebox(firewall), middlebox(ids)

From this definition, a middlebox is characterized solely by a <term>, i.e., an
alphanumeric string, and can therefore represent any device (e.g., firewall, nat,
etc.), also devices that are not commonly defined as middleboxes.

QoS

Operands set and unset allow defining Quality of Service (QoS) parameters.
Metrics include bandwidth, specified as minimum or maximum, and traffic quotas,
defined with respect to direction (upload/download) and temporal granularity.

<qos> ::= [’set’ | ’unset’] <metrics>

<metrics> ::= <metric> { (’,’ | ’, \n’) <metric>}

<metric> ::= [<bandwidth> | <quota>]

<bandwidth>: :=’bandwidth(’ [’max’|’min’]’,’<term>’,<bw_unit>)’

<bw_unit> ::= [’bps’ | ’kbps’ | ’mbps’ | ’gbps’]

<quota>::=’quota(’ [’download’|’upload’|’any’]’,’<term>’,<q_unit>)’

<g_unit> ::= [’mb/d’ | ’mb/wk’ | ’gb/d’ | ’gb/wk’ | ’gb/mth’]
Examples:

set bandwidth(min, 100, mbps)
unset quota(download, 500, mb/wk)

Temporal Aspects

Operands start and end introduce a temporal constraint, allowing an intent’s
validity to be limited to specific time windows. This functionality is crucial in
dynamic resource allocation scenarios.

28

Semantics, Inputs, and Outputs of NILE and VEREFOO

<interval> ::= ’start’ <datetime> ’end’ <datetime>
<datetime>::=’datetime (’<term>’)’|’date(’<term>’)’|’hour(’<term>’)’
Example:

start date(2025-01-01) end date(2025-01-31)

4.3.3 Targets

A central aspect of the grammar is the ability to abstract network entities as targets
of the intent. Targets represent the logical objects to which policies are applied
and constitute, together with the path defined by from/to, the semantic domain
of the intent.

The syntactic rule describing targets is as follows:

<target> [<group> | <service> | <endpoint> | <traffic>]
<endpoint> ::= ’endpoint(’<term>’)’

<group> = ’group(’<term>’)’
<service> = ’gservice(’<term>’)’
<traffic> = ’traffic(’<term>’)’

From this definition, a target can refer to different types of abstractions:

o Endpoint: represents a single network entity, such as a virtual machine,
server, or identified host. Example: endpoint (db01).

o Group: identifies a set of homogeneous entities grouped according to logical
or organizational criteria. Useful for applying common policies to multiple
users or services, e.g., group (admin).

» Service: allows reference to a specific application service (e.g., HT'TP, DNS,
SSH). This abstraction is crucial for application-level policies. Example:
service(http).

o Traffic: describes a flow or type of traffic, distinguishing, for instance, between
video, VoIP, or bulk data traffic. Example: traffic(voip).

This modeling offers a dual advantage: it allows expressing very granular policies,
such as those concerning a single endpoint or service, and it allows extending the
scope to broader categories, such as groups of users or traffic types.

Finally, the use of the generic construct <term>, defined as an alphanumeric
string, provides the language with a high degree of extensibility. In this way, the
set of targets is not constrained by a predefined taxonomy but can be expanded
and adapted based on specific operational needs and application contexts.

29

Semantics, Inputs, and Outputs of NILE and VEREFOO

4.4 Considerations

The proposed grammar defines a declarative language capable of expressing high-
level network management policies. Specifically, it allows to:

 specify paths or sets of targets;

« modify the network topology by adding or removing devices;
e impose Quality of Service constraints;

o apply filtering rules;

 associate temporal conditions with operations.

The strength of the formalism proposed by the NILE grammar lies in its ability
to represent network intents clearly and unambiguously, thus facilitating automatic
translation into concrete configurations. In this sense, the grammar constitutes
an intermediate layer between the abstract expression of user policies and their
technical realization on underlying network devices.

4.5 VEREFOO Semantics and Architecture

In the previous chapter 3, VEREFOO was introduced as a representative framework
for the automation of network security policies, emphasizing its capacity to translate
high-level objectives into concrete configurations and to support a wide range
of security functions beyond traditional packet filtering. Having outlined its
motivations, scope, and practical applications, it is now necessary to examine in
detail the internal mechanisms that enable such functionality.

4.5.1 Overview

The particularity of VEREFOO is that it does not operate according to an em-
pirical approach (based on trial and error), but is founded on formal models and
propositional logic, ensuring that the solutions identified are correct by construction
[26]. To ensure that the solutions are correct by construction, all data must be
precise and structured; for this purpose, a set of .XSD files is provided, which
rigorously define the format of VEREFOQO’s inputs [27]. The problem of firewall
allocation and the related rules is mathematically modeled as a partially weighted
Mazimum Satisfiability Modulo Theories (MaxSMT) problem. This model includes
both hard constraints, which must always be satisfied (e.g., security requirements),
and optimization criteria, such as minimizing the number of distributed firewalls
and the overall number of rules [26]. VEREFOO'’s algorithm automatically finds

30

Semantics, Inputs, and Outputs of NILE and VEREFOO

the solution that respects the constraints while simultaneously optimizing the
criteria; in this way, the correctness of the configuration is formally guaranteed,
without the need for manual testing or empirical adjustments [26].

The approach not only satisfies security requirements but also minimizes the
number of firewalls and rules configured on each of them, bringing benefits in
terms of network performance and resource costs [26]. Furthermore, the method
allows for the automatic enrichment of a Service Graph defined by the service
designer: the SG can include different network functions (not only firewalls, but
also NAT), load balancers, etc.) [26]. VEREFOO calculates the minimum number
of firewalls required and determines the optimal set of rules for each of them, while
simultaneously ensuring security and optimization.

This chapter focuses on the semantics and architecture of VEREFOO, providing
a formal description of how security requirements are expressed, processed, and
enforced within the system. Particular attention is devoted to the representation
of inputs and outputs that guide the interpretation of network security policies,
and the architectural modules that realize the automation process. By presenting
these foundations, we establish the theoretical and structural basis upon which the
subsequent analyses and translations are built.

4.5.2 Input

In VEREFOO, the automated analysis and optimization of packet-filtering fire-
wall policies require a .xsd file, containing an NFV schema with the following
information:

o Full service graph (SG) of the network
o Configurations of the various nodes

e Security requirements

Service Graph

The starting point of VEREFOO’s processing is the Service Graph (SG), which is
a logical representation of how a virtual network is built. An SG is defined by the
designer as a set of network functions (Network Functions, NF) and nodes, connected
by edges, to provide an end-to-end service. The SG represents a general and complex
structure, which can include parallel or branched paths, thus supporting real-world
scenarios where traffic may follow multiple alternative routes. “Low-level” functions
(such as switches and routers) are not explicitly included in the SG, although
they exist in reality: the SG is an abstraction highlighting only the more complex
functions [26].

31

Semantics, Inputs, and Outputs of NILE and VEREFOO

The definition and characteristics of the Service Graph are contained in the
verigraph.xsd file [27]:

o graph: the main element that encloses the topology.

« node: nodes of the graph, which can represent endpoints or Network Functions
(e.g., firewall, DPI, etc.).

» neighbour: specifies adjacencies and thus the connections between nodes.
« configuration: describes parameters and properties associated with nodes.
« paths and path: identify allowed traffic paths.

« attributes such as source, destination, protocol, src_port, dst_port
allow modeling network flows in terms of IP 5-tuples.

Graphs

Root element containing one or more graphs (graph), each identifiable by a unique
id attribute. Represents a network graph. It contains nodes (node) and can be
marked as a Service Graph using the serviceGraph attribute.

<graphs>
<graph id="1" serviceGraph="true"> ... </graph>
</graphs>

Node

Represents a network node, which can be an endpoint or end host (ENDHOST,
MAILCLIENT, WEBCLIENT, etc.) or a service function (FIREWALL, DPI,
LOADBALANCER, etc.). Each node can have:

e a unique id and name;

a functional type (functional_type);

neighbours (neighbour), i.e., adjacent nodes;

a specific configuration (configuration) detailing the behavior of the network
function.

32

Semantics, Inputs, and Outputs of NILE and VEREFOO

Main data types

Within the XSD schema, several data types are defined to limit and standardize
the values allowed in specific fields. This ensures semantic consistency in the graph
description and facilitates validation checks on XML files.

functionalTypes: node types such as FIREWALL, DPI; ENDHOST, WEB-
SERVER, etc.

» protocolTypes: supported protocols (HTTP REQUEST, POP3 RESPONSE,
ete.).

 ActionTypes: security actions (ALLOW, DENY, ALLOW__COND).

o L4ProtocolTypes: layer 4 protocols (TCP, UDP, ANY, OTHER).

FunctionalTypes Defines the functional types that a node (node) can assume.
Each value represents a different network function or end role. Some examples are:

e WEBCLIENT, WEBSERVER, MAILCLIENT, MAILSERVER: endpoints generating or
receiving application traffic.

o LOADBALANCER: node distributing traffic to a set of servers.

ProtocolTypes This type defines the allowed application protocols for traffic
generation. Possible values are:

o HTTP_REQUEST, HTTP_RESPONSE

« POP3_REQUEST, POP3_RESPONSE

ActionTypes This enumeration is used by security nodes (e.g., firewalls) to
define the action to apply to a flow. Possible values are:

o ALLOW: traffic is permitted.
o DENY: traffic is blocked.

o ALLOW_COND: traffic is allowed only under certain conditions.
33

Semantics, Inputs, and Outputs of NILE and VEREFOO

L4ProtocolTypes This category specifies layer 4 (transport) protocols:
e ANY: any protocol.
o TCP, UDP: main protocols in the IP stack.

o QOTHER: for protocols not standardized in the schema.

In summary, these categories serve as a common vocabulary to describe nodes
and security policies within the Service Graph unambiguously. Thanks to them,
an XML file conforming to the schema can be uniquely interpreted by verification
and simulation tools.

Network Security Requirements

In the NFV schema, Property elements declare what should be blocked or permitted
in the network, i.e., the network security requirements (NSR) to be implemented

and optimized through VEREFOO.
A Property is characterized by the following main attributes:

« name: indicates the type of property and can take one of the values defined
in the P-Name type:

— IsolationProperty: specify that a flow between two nodes is blocked.

— ReachabilityProperty: specify that at least a flow between two nodes
is permitted.

— CompleteReachabilityProperty: specify that at all flow between two
nodes is permitted.

o graph: reference to the service graph where the property is defined.
e src, dst: identify the source and destination nodes involved.
e lvdproto: layer 4 protocol (TCP, UDP, or ANY).

e src__port, dst_ port: optional ports to refine the conditions.

4.5.3 Output

Successful Outcome

If, after receiving the SG and the NSRs, the problem of automatic security applica-
tion is solved, VEREFOO generates:

« Firewall allocation scheme
o the Filtering Policy (FP) for each allocated firewall.
34

Semantics, Inputs, and Outputs of NILE and VEREFOO

Firewall Allocation Scheme In VEREFOO, the firewall allocation scheme
serves to define where, within the logical network (Service Graph, SG), the instances
of virtual firewalls should be placed in order to satisfy the security requirements
(NSRs), using the minimum number of firewalls necessary to reduce resource
consumption. The scheme is logical: it does not specify how to physically place the
firewall on the physical infrastructure (physical servers, VMs, NICs, data centers).
That task is handled by Virtual Network Embedding (VNE), which VEREFOO
does not manage but is delegated to further refinement steps performed after using

VEREFOO.

Filtering Policy A Filtering Policy (FP) is the set of filtering rules associated
with each firewall allocated in the scheme computed by VEREFOO. In other words,
it is the logical configuration of the firewall, automatically generated from the
NSRs. It is written in an abstract and readable language, independent of the
specific languages of different firewalls;

composed of:

e a default action:

— whitelisting: everything is blocked except what is explicitly allowed;
— blacklisting: everything is allowed except what is explicitly blocked.

o Set of filtering rules:

— Rules auto-generated from the NSRs.
— Free from anomalies (e.g., no conflicts, duplicates, shadowing).

— Specify how to handle specific types of traffic (for example, based on
source/destination address, protocol, port, etc.).

The Filtering Policy is created by VEREFOO with the minimum number of
rules, to reduce memory usage and make the firewall faster; as in the allocation
scheme, FPs are expressed in a generic and user-friendly language, independent of
real firewalls (Cisco, iptables, Palo Alto, etc.), so the translation of the abstract
FP into concrete rules must be done later, but not by VEREFOO.

In this way, the solution produced by VEREFOO can be automatically deployed
in the virtual network using existing technologies. If a new configuration is
needed (e.g., after an attack), it is sufficient to define new NSRs, and VEREFOO
automatically computes the new configuration.

35

Semantics, Inputs, and Outputs of NILE and VEREFOO

Negative Outcome

In case of a negative solvability result, VEREFOO generates a non-applicability
report, which explains to the user why it was not possible to satisfy the requirements.
A typical reason is that the defined Service Graph does not provide suitable APs
where firewalls can be placed, due to overly strict constraints.

4.5.4 Input-to-Output Processing in VEREFOO

VEREFOO takes the SG provided as input and automatically transforms it into
an Allocation Graph (AG), which serves as an internal representation. In this AG,
for each connection between nodes/functions, an Allocation Place (AP) is created,
i.e., a “potential” point where the system can decide to place a firewall. The
system automatically positions the firewalls to obtain an optimal configuration and
calculates the optimized FP, formulating and solving a weighted partial MaxSMT
problem [26]. A security-skilled user can enforce the presence of a firewall in a
specific AP, preventing its removal, or forbid a firewall from being placed in a
certain AP. This could increase flexibility and reduce computation time, but if the
user imposes overly strict constraints, the system might not find a solution, or may
find only non-optimal solutions [26].

Traffic that the packet filter firewallls will filter is modeled as classes of packets
defined by predicates over the standard IP 5-tuple. Each network function (VNF)
in the AG is abstractly represented by two functions: a forwarding function, which
determines which packets are denied, and a transformer function, which specifies
how packets are modified. For example, firewalls may only filter traffic (denying or
allowing packets), whereas NATs or load balancers may alter addresses or redirect
flows [26].

VEREFOO computes maximal flows through the network by propagating these
transformations along all paths relevant to each network security requirement
(NSR). Maximal flows group together packets that traverse the same sequence of
nodes and are affected in the same way, reducing the number of cases the solver
must consider. This precomputation ensures that the variables representing flows
are partially instantiated before optimization, improving efficiency [26].

Finally, the framework formulates a weighted partial MaxSMT problem, where
hard clauses enforce strict security requirements and soft clauses encode optimiza-
tion goals, such as minimizing the number of allocated firewalls and the number of
firewall rules. The solver automatically determines which APs should host firewalls,
the default actions of each firewall, and the minimal set of additional rules needed
to satisfy all NSRs. The result is a correct-by-construction configuration in which
every allocated firewall and rule is guaranteed to respect the specified network
security policies while optimizing operational objectives [26].

36

Semantics, Inputs, and Outputs of NILE and VEREFOO

4.6 Conclusion

NILE and VEREFOO serve fundamentally different purposes. NILE allows users
to express what they want the network to do, while VEREFOO verifies whether
specific configurations satisfy those goals. This mismatch in abstraction and data
requirements is at the core of the translation problem discussed in the next chapter.

37

Chapter 5

NILE to VEREFOO
Translation

5.1 Introduction

This chapter analyzes the translation process proposed to bridge the NILE intent-
based language with the VEREFOO framework, enabling the automatic generation
of valid VEREFOO XML input files from NILE intents. The goal is to ensure that
high-level intents, expressed in the NILE language, can be correctly transformed
into the low-level specifications required by VEREFOO, preserving their semantics
and goals.

The translation between NILE and VEREFOO poses several challenges due to
the conceptual gap between the two models. For example, while NILE focuses on
abstract and human-readable intent expressions, VEREFOO requires a complete
and concrete service graph description, including all nodes, their interconnections,
and the associated NSRs represented through IP quintuples (ip_src, ip_ dst, pro-
tocol, src_port, dst_port). Moreover, VEREFOO operates under a closed-world
assumption, meaning that all entities and addresses involved in an NSR must
belong to the defined service graph.

Additional challenges are that VEREFOO requires the NSRs of the input to
be conflict-free and that some constructs available in NILE do not have a direct
counterpart in VEREFOO, and vice versa, certain VEREFOO constructs cannot
be expressed in NILE.

This chapter presents also the solutions for the challenges, and it also outlines
the implementation of the translation tool, which automates the entire workflow,
from parsing NILE intents, through data enrichment, to generating the final XML
configuration.

38

NILE to VEREFOO Translation

5.2 Analysis of the Translation Requirements

As previously mentioned, the translation process between NILE and VEREFOO
presents several challenges, such as the gap in information accuracy or that some
constructs available in NILE are not represented in VEREFOO, and vice versa,
certain VEREFOO constructs have no equivalent in NILE. To better understand
both the translation process and these challenges, it is first necessary to analyze
the information provided by NILE and identify the additional data required for
VEREFOO.

5.2.1 Structure of NILE Intents

The Figure 5.1 illustrates the structural composition of a NILE intent. As discussed
in the previous chapter, NILE intents are composed of two main parts: the path and
the operations. The path defines the communication scope of the intent through the
constructs from/to, and for, which specify the network elements involved. The
operations section instead expresses the set of actions or policies associated with
the intent, such as add or remove middleboxes, the definition of QoS parameters,
specific rules, and potential time intervals governing their applicability.

From/to

NILE Intent Add/remove

Operations

Interval

Figure 5.1: Structure of a NILE intent

Building on these theoretical foundations, Listing 5.1 presents a concrete example
of an intent expressed in the NILE language. This example demonstrates how
communication policies between two network nodes can be declaratively specified:

39

= W N

NILE to VEREFOO Translation

define intent one:
from endpoint(NodeWS2) to endpoint(NodeWC5)
allow protocol (FTP)
block service (XBOXLive) protocol (POP3)

Listing 5.1: Example of an intent expressed in NILE

As shown in the example above, a NILE intent specifies only the names of the
two nodes or groups according to the path construct. It also uses only names to
define the services, protocols, traffic types, of the policies that must be enforced.

From this example, it is clear that the intents expressed in NILE are highly
abstract and do not include the technical details, such as IP addresses or topology
information, required by VEREFOO, which expects input files rich in precise
configuration data. It is to bridge this gap that the translation process introduces
a dedicated information enrichment phase. This phase leverages a database
containing all the necessary technical data, provided by the user through the
create_db.py module, which will be described in detail later in this chapter. It
is also possible to notice from the example that the actions of NILE rules are
only allow and deny, which can only map two of the three VEREFOO properties
mentioned earlier.

5.2.2 Requirements of VEREFOO

The core requirements of the XML input file of VEREFOO, as illustrated in
Figure 5.2, are the Service Graph and the Network Security Requirements (NSRs).
These two elements together define the logical and functional scope of the verification
process carried out by the framework.

Service Graph
Topology
IP’S Qumtuple
Network
Security
Requirements -
Property

Figure 5.2: VEREFOO requirements schema

Service Graph

The Service Graph represents the entire network topology under analysis. It models
all the nodes, such as hosts, routers, firewalls, and other network functions, together

40

NILE to VEREFOO Translation

with their configurations and interconnections. Each node can be associated with
specific attributes, including its type, assigned IP addresses, and operational
parameters. The Service Graph is therefore a formal abstraction of the network,
capturing both its structure and behavior.

VEREFOO operates under the Closed-World Assumption (CWA), according
to which all TP addresses and entities that are not explicitly represented within
the graph are considered non-existent or unreachable. This assumption ensures
a well-defined analysis domain and prevents ambiguity in the verification process.
Consequently, every entity referenced in an NSR must be explicitly represented as
a node in the Service Graph.

Network Security Requirements (NSRs)

The second requirement concerns the definition of the Network Security Require-
ments (NSRs) (Figure 5.3), which describe the set of properties that must hold
for specific packet flows in the network. NSRs specify how a precise packet flow
between a source and a destination should behave according to given policies, such
as reachability and isolation constraints.

ip_source and
ip_destination
IP’s Quintuple
src por‘t
dst_port, and

transport protocol

Service Graph ID
Isolation property
Reachability

Complete

reachability
property

Figure 5.3: VEREFOO NSR

Each NSR is composed of three main parts: the identifier of the Service Graph
to which it belongs, the property that must be verified for the corresponding packet
flow, and the IP five-tuple, which consists of the following fields: ip_source,
ip_destination, source_port, destination_port, and lvl4proto. The five-
tuple unambiguously identifies a specific class of packets in the network.

VEREFOO assumes that all NSRs provided as input are consistent with one
another, meaning that they do not define contradictory requirements. For example,

41

NILE to VEREFOO Translation

two NSRs should not impose conflicting reachability and isolation properties over
the same flow [25]. Furthermore, all IP addresses mentioned within an NSR must
refer to nodes contained in the same Service Graph; NSRs cannot span across
multiple graphs.

An example of a NSR definition is shown in Listing 5.2. In this case, two
reachability properties are specified, indicating that HTTP traffic (TCP on port 80)
from the source 130.10.0.1 must be able to reach two different destination nodes
within the same Service Graph.

<Property name="ReachabilityProperty" graph="1" src="130.10.0.1"
dst="40.40.41.1" 1lv4proto="TCP" dst_port="80"/>

<Property name="ReachabilityProperty" graph="1" src="130.10.0.1"
dst="40.40.42.1" 1lv4proto="TCP" dst_port="80"/>

Listing 5.2: Example of NSRs

As it is possible to notice from the image and the example VEREFOO requires a
high level of technical detail in its input, including the complete network topology,
the configuration of each node, and all relevant IP addresses. This level of specificity
ensures that the verification process can accurately reason about the network
behavior and enforce the desired security and functional properties. As highlighted,
such detailed information is not provided by NILE, which operates at a higher
level of abstraction. Furthermore it is also possible to notice that VEREFOO
requirements cannot express some of the operations of NILE like the QoS, middlebox
management and temporal management.

5.3 Challenges of Translation

After having analyzed the NILE intents and VEREFOO requirements it is possible
to adress the previously mentioned translation’s challenges and their solutions.

5.3.1 Conflict-free

One of the challenges of the translation concerns the requirement for conflict-free
NSRs[25], in fact as previously said VEREFOO assumes that all NSRs provided as
input are consistent with one another, meaning that they do not define contradictory
requirements. To ensure this, the translator relies on the fact that intents themselves
are formulated in a conflict-free manner, therefore delegating the conflict detection
to the intent creation phase. In other words, the intents do not express conflicting
requirements, so any NSR derived from them will inherently be conflict-free. This
design choice is motivated by the interactive nature of NILE, where the system
can guide users in identifying potential conflicts or inconsistencies and prompt
corrective actions before the translation stage. This approach not only reduces the

42

NILE to VEREFOO Translation

risk of translation failures but also improves the overall reliability and robustness
of the automated translation pipeline.

5.3.2 Information Gap

Another challenge is the fact that intents expressed in NILE are typically highly
abstract and often lack the technical details required by VEREFOO, which instead
expects input files rich in precise configuration parameters, like for example, the IP
addresses associated with the endpoint names specified in the intents. To bridge
this information gap, the translation process introduces a dedicated information
enrichment phase. This phase leverages a database provided by the user through
the create_db.py module, which will be described in detail later in this chapter.

The database stores all the information related to the network topology and
configuration. It includes the definitions of nodes (such as their names, types, iden-
tifiers, IP addresses, id of their service graph, and configurations), the descriptions
of all available services, protocols, and traffic types, as well as the details of the
logical and physical connections between nodes. It also contains the information
related to groups, specifying whether a group corresponds to an IP range or to a
set of nodes.

During the enrichment phase, both the path and operations constructs of each
intent are enhanced with concrete information derived from the database.

For the path constructs, the symbolic names used for endpoints and groups are
replaced with their corresponding IP addresses. In the case of groups defined as
collections of nodes rather than IP ranges, the enrichment process retrieves and
lists the TP addresses of all nodes belonging to that group. During this phase,
the translator also retrieves the identifier of the service graph to which the nodes
involved in the intent belong. This identifier is then inserted into the corresponding
field of the generated NSRs, ensuring that each requirement is explicitly associated
with the correct service graph within the VEREFOO configuration.

For the operations constructs, the names of services, protocols, and traffic
types are replaced with their detailed technical descriptions. Through the database,
it is possible to determine the Layer 4 protocol and the corresponding source and
destination ports associated with each service, protocol, or traffic label specified in
the intent. This ensures that each NSR generated by the translator contains the
full set of parameters required by VEREFOO.

The database therefore allows intents to be translated accurately without re-
quiring the user to manually specify all missing technical details. Moreover, an
experienced user can populate the database in advance, ensuring that even high-
level intents can be correctly and consistently translated, while maintaining a clear
separation of expertise between intent definition and network configuration.

43

NILE to VEREFOO Translation

In summary, the combination of pre-populated technical information and conflict-
aware intent formulation enables accurate and efficient translation from NILE to
VEREFOO. It minimizes the user’s workload while preserving the expressiveness
and abstraction level that characterize high-level intent-based network descriptions.

5.3.3 Grammar Modifications

After analyzing the structure of intents in NILE and the input requirements of
VEREFOQO, it is possible to define and implement a translation method based on
the semantic mapping between the two, which can also address the challenge of
the different constructs in NILE and VEREFOOQO. This thesis is based on a specific
use case, the automatic configuration of firewall packet filters through VEREFOO.
Consequently, it is clear that the translation must exclude certain NILE constructs
related to QoS, intervals, and the addition or removal of middleboxes, as these are
neither handled nor required by VEREFOO for the intended use case.

Figure 5.4 shows the correspondence between NILE’s constructs and VERE-
FOOQO’s requirements after reducing the NILE’s constructs. It is possible to notice
that the path elements of NILE intents correspond to the source and destination
fields of the VEREFOQO’s NSRs, while the rules defined within the operations of
NILE intents are translated into the properties of the NSRs. As mentioned before,
the rules’s construct of NILE can only address two out of the three properties of
VEREFOOQ’s NSRs; to facilitate the mapping, a third action, complete_allow,
has been added to the rules’s actions of NILE to match the remaining property of
VEREFOQO’s NSRs.

Service Graph
Topology
. VEREFOO input
Operations g ———

Network
Service Graph ID Security
cath <m

Requirements
IP’S Quintuple

Figure 5.4: Mapping between NILE and VEREFOO requirements

Some modifications have been made to the original NILE grammar presented
in [12] and discussed in the previous chapter. These adjustments were neces-
sary because, as mentioned before, the translator is designed for a specific use
case, the automatic configuration of firewall packet filters through VEREFOO,

44

0 O Uik Wi

NILE to VEREFOO Translation

and therefore does not support all constructs of the full NILE grammar. Conse-
quently, the translator excludes NILE’s constructs related to QoS, intervals, and
the addition or removal of middleboxes, as these are neither handled nor required
by VEREFOO for the intended use case. Listing 5.3 shows the version of the
NILE grammar used by the translator. All operations related to QoS, intervals,
and middlebox management have been removed. Additionally, the for construct
is restricted to use only with group or endpoint, the middlebox construct is
eliminated, and a new action construct is introduced to group the possible opera-
tions. Within action, complete_allow is added to enable mapping to VEREFOOQO’s
CompleteReachability property.

<start> ::= <intent>

<intent> ::= "define" "intent" <TERM> ":" <operations>
<operations> ::= <path> <operation>+

<path> ::= <from_to> | <targets>

<from_to> ::= "from" <endpoint> "to" <endpoint>
<operation> ::= <rules>

<rules> ::= <ACTION> <matches>+

<ACTION> = "allow" | "block" | "complete_allow"
<targets> ::= "for" <target> ("," <target>)=x
<target> ::= <group> | <endpoint>

<matches> ::= <service> | <traffic> | <protocol>
<endpoint> ::= "endpoint (" <TERM> ")"

<group> = "group (" <TERM> ")"

<service> ::= "service (" <TERM> ")"

<traffic> ::= "traffic(" <TERM> ")"

<protocol> ::= "protocol(" <TERM> ")"

<TERM> ::= /[a-zA-Z0-9_.-1+/

Listing 5.3: Updated NILE grammar supported by the translator

45

NILE to VEREFOO Translation

5.3.4 Translation Rules

Based on the mapping shown in Figure 5.4 and the adapted grammar, the translation
process interprets each NILE’s construct as follows.

Path Translation The from/to construct accepts only the endpoint construct
and expresses the directionality of the intent. Therefore, the endpoint in from is
translated as the source, and the endpoint in to as the destination.

In contrast, the for construct accepts only group and endpoint constructs,
and since it does not express directionality, it is translated bidirectionally. This
means that two NSRs are created with the same action but with the source and
destination inverted. An endpoint is interpreted as a single arbitrary node in the
network.

A group, on the other hand, can be interpreted in two different ways depending
on its definition in the database. A group can be defined either through an IP
address range or through a name. In the latter case, the individual nodes indicate
whether they belong to that group in the databse for the enrichment phase. In the
case of an IP range, the group is translated using VEREFOO’s -1 wildcard, which
indicates that the NSR applies to all nodes with IP addresses within that range, as
shown in Listing 5.4.

<Property name="ReachabilityProperty" graph="1" src="130.10.0.-1"
dst="40.40.41.1" 1lvé4proto="TCP" dst_port="3074"/>

Listing 5.4: Generated NSR showing the use of the -1 wildcard for the IP range.

In the other case, when a group is defined by name, NSRs are created for each
node that belongs to the group.

Operations Translation The operations defined within a NILE intent determine
the specific properties of the NSRs generated during translation. Each rule’s action
(allow, block, or complete_allow) guides the selection of the corresponding
VEREFOO property.

The constructs service, protocol, and traffic specify the technical parame-
ters that characterize the communication flow. They are used to populate the IP
five-tuple fields (Layer 4 protocol, source port, and destination port) thanks to the
enrichment phase that is explained in the next part. Services and protocols are
intended to represent the classical high level services and protocols. Traffic, instead,
is used to identify packet flows that do not have the standard source/destination
ports associated with services or protocols.

46

NILE to VEREFOO Translation

5.4 Translator Implementation

This section presents the implementation of the translator that bridges the NILE
intent language with the VEREFOO verification framework. As introduced in
the previous section, the goal of this component is to transform high-level NILE
intents, representing user requirements in an abstract and technology-independent
form, into concrete NFV XML input files suitable for formal network verification
in VEREFOO.

The implementation was developed in Python following a modular architecture
to ensure clarity, maintainability, and extensibility. Each module is responsible for
a specific aspect of the translation workflow, from syntactic parsing to database
enrichment and XML generation, thereby enabling independent testing and future
integration of additional functionalities.

The translator is composed of the following main modules:

e main.py

e grammar.py

« transformer.py

e enrich.py

e constructor.py

« utils.py

» topology manager.py
e property.py

e xml_converter.py

o create db.py

The following subsections describe the workflow of the translator and detail the
role of each module within the overall architecture.

5.4.1 Translation Workflow

As can be inferred from the previous section, the translation from NILE intents to
VEREFOO input files involves a series of well-defined steps designed to ensure both
accuracy and consistency. The workflow orchestrates parsing, enrichment, property
generation, and XML file creation, integrating information from the user-provided

47

NILE to VEREFOO Translation

database to supply technical details that are not explicitly specified in high-level
intents.

Figure 5.5 provides a compact overview of this process, illustrating how each
stage contributes to the generation of fully specified NSRs that are ready for
verification by VEREFOO.

As illustrated by the workflow, the translation process proceeds as follows: first,
the intent is read from the text file and parsed. During parsing, any extraneous
information is removed, and the intent is converted into a Python object. The
translator then enriches this object by retrieving the technical details required by
VEREFOO from the database, including the IP addresses of the nodes, the source
and destination ports, and the Layer 4 protocols.

Next, the enriched intent is used to extract the relevant information for generating
the NSR properties. Simultaneously, the service graph to which the intent belongs
is reconstructed using the database.

Finally, the generated NSRs and the associated service graph are converted

into XML format and written into a single output file, which serves as input for
VEREFOO.

The translator is also capable of handling multiple intents in a single session.
Each intent follows the same workflow independently; however, all converted outputs
are aggregated into a single XML file. Importantly, each NSR is associated with
its corresponding service graph, ensuring that NSRs do not span multiple service
graphs but remain correctly linked to the intended one.

5.4.2 The main.py Module

The main. py module serves as the entry point of the NILE-to-VEREFOO translator.
Its primary responsibility is to orchestrate the complete translation workflow,
coordinating the various submodules and ensuring that the input intents are
correctly processed and converted into a final XML file suitable for VEREFOO.

The module provides a function, process_multiple_intents(), which handles
the processing of one or more NILE intent files.

The module also includes a __main__ block to allow direct execution, which
invokes process_multiple_intents() on a specified input file and prints a sum-
mary of the enriched intents, generated properties, and associated network service
graph IDs.

Overall, main.py abstracts the orchestration of parsing, enrichment, property
construction, and XML generation, providing a single entry point for the translation
process and ensuring a modular and maintainable structure.

48

NILE to VEREFOO Translation

Translator Workflow Nile-Verefoo

Intent Nile (.nile)

Y

Parsing
Lark + NileTransformer

tables lookup
(nodes, groups, services, ...)

Y

Structure cleaning Database
nile.db

clean()

A\
Enrichment | _
enrich())

Y

Property construction <
build_properties_from_enriched ()

A\

Extraction of Service Graph IDs -
extract_service_graph_ids_from_enriched()

Y

Generation of XML NFV

properties_to_nfv_xml() |«-------------- .
+ write_nfv_file()

Final XML file
nfv_output.xml

Figure 5.5: Translator workflow from NILE intent to XML input for VEREFOO.

49

NILE to VEREFOO Translation

5.4.3 The transformer.py Module

The transformer.py module defines the NileTransformer class, which is a custom
transformer used by the Lark parser to convert the abstract syntax tree (AST) of
a NILE intent into structured Python data.

NileTransformer inherits from lark.Transformer and implements methods
corresponding to the grammar rules defined in grammar.py. Each method receives
nodes from the parse tree and returns a Python dictionary or list representing the
semantic structure of the intent.

The transformer ensures that the hierarchical structure of the NILE intent is
preserved while converting it into a form that can be easily processed by subse-
quent modules such as enrich.py and property.py. This abstraction allows the
translator to work directly with Python-native structures rather than raw parse
trees, simplifying cleaning, enrichment, and property extraction steps.

In essence, transformer.py provides the semantic bridge between syntactic
parsing and the higher-level processing stages of the translator, making it a central
component in the workflow from NILE intents to VEREFOO-compatible XML.

5.4.4 The grammar.py Module

The grammar.py module defines the updated formal grammar of NILE used by
the translator, seen previously. It contains a single variable, nile_grammar, which
specifies the syntax rules in Lark’s EBNF notation.

The grammar describes the structure of NILE intents, including:

o Intents: Defined using the keyword define intent, each intent has a name
and a set of operations.

» Operations: Sequences of rules applied either along a path from a source
endpoint to a destination endpoint (from ... to ...) or targeting specific
nodes/groups.

« Rules: Each operation specifies an action (allow, block, or complete_allow)
and associated match criteria, such as services, traffic types, or protocols.

o Targets and endpoints: Grammar elements for endpoints, groups, and
service identifiers.

Compared to the NILE grammar presented in the previuos section, the version
used in this translator has been slightly modified to simplify parsing and accommo-
date multi-line target lists. For example, the handling of comma-separated targets
allows optional newlines to improve readability in intent files.

50

NILE to VEREFOO Translation

The defined grammar is then used by main.py in conjunction with the trans-
former to parse the raw NILE input files into structured Python objects, forming
the foundation for the subsequent cleaning, enrichment, and property construction
steps.

In summary, grammar . py establishes the syntactic rules of the NILE language in
a format directly usable by the parser, ensuring a robust and extendable translation
workflow.

5.4.5 The enrich.py Module

The enrich.py module is responsible for enriching the parsed NILE intents with

detailed information retrieved from the local database (nile.db). Its main function,

enrich(), takes a dictionary representing a parsed intent and recursively populates

it with complete data about endpoints, groups, services, traffic, and protocols.
The enrichment process relies on several key mechanisms:

« Database lookups: For each entity (endpoint, group, service, traffic, proto-
col), the module queries the corresponding database table to retrieve attributes
such as IDs, service graph associations, ports, protocols, and other configura-
tion data.

o Type-specific construction: Using the constructors dictionary from
constructor.py, the module instantiates objects representing the enriched
entities, allowing uniform representation for subsequent processing.

« Node enrichment: Endpoints are resolved into specific node types (e.g.,
FIREWALL, ENDHOST, CACHE, MAILCLIENT) by consulting additional
tables for type-specific configuration details. This ensures that the enriched
data captures the functional behavior of each network element.

e Recursive enrichment: The enrich() function applies a recursive procedure
to traverse all operations and nested structures of the intent. This allows
context propagation (e.g., source, destination, targets) across multiple levels
of the operations hierarchy.

By the end of the enrichment process, each intent is transformed into a fully anno-
tated representation containing all necessary information for property construction
and eventual conversion into NF'V XML. This module thus serves as the semantic
bridge between the syntactic representation produced by NileTransformer and
the formal network properties required by VEREFOO.

In summary, enrich.py ensures that every element in a NILE intent is accurately
contextualized with real network and service information, providing the foundation
for reliable automated verification.

51

NILE to VEREFOO Translation

5.4.6 The constructor.py Module

The constructor.py module provides a collection of functions to build standard-
ized Python objects representing network elements, groups, services, traffic patterns,
protocols, and properties. These constructor functions are used throughout the
translator to create enriched, structured representations of entities extracted from
NILE intents and the database.

Key features of the module include:

o Element constructors: Functions such as build_firewall() generate ob-
jects representing specific types of network nodes, with all necessary attributes.

« Service and traffic constructors: Functions that produce standardized
representations for network services, traffic flows, and protocol definitions.

» Group and service graph constructors: Functions such as build_group()
and build_serviceg() create structured objects representing groups of nodes
and their associated service graphs.

o Property construction: The function build_property() constructs a
formal NSR object in line with the XSD schema expected by VEREFOO,
including source, destination, protocol, ports, and other optional fields.

o Centralized registry: All constructor functions are collected in the con-
structors dictionary, enabling the enrich.py module to dynamically build
any object type based on its entity type.

By using constructor.py, the translator ensures consistency in object creation,
simplifies the enrichment process, and provides a clear separation between database
retrieval and structured object generation. This design promotes modularity and
maintainability while supporting a wide variety of network element types and
properties.

In summary, constructor.py acts as a factory layer that standardizes the
creation of all entities required by the translator, forming the backbone for building
enriched intents and generating NF'V-compatible XML outputs.

5.4.7 The topology_manager.py Module

The topology_manager.py module provides functions to retrieve and construct
network node objects based on service graphs defined in the database. Its pri-
mary purpose is to bridge the gap between abstract service graphs and concrete
node configurations, enabling the translator to handle network topology details
accurately.

52

NILE to VEREFOO Translation

The main function, get_nodes_by_servicegraph(), takes a service graph 1D
and queries the database to retrieve all nodes belonging to that service graph. For
each node, the function performs the following steps:

» Node type detection: Determines the node’s functional type (e.g., FIRE-
WALL, ENDHOST, etc.).

o Configuration retrieval: For each node type, the function fetches the
corresponding configuration data from the appropriate table in the SQLite
database (e.g., firewall rules, endhost settings etc.).

o Object construction: Using the constructors dictionary, the function builds
a structured object representing the node, fully populated with its configuration
data.

 Node aggregation: Each node object is collected into a list, along with
metadata such as node ID, name, IP, and functional type, ready for use in
enrichment and nsr generation.

Additionally, the module provides utility functions such as get_name_config(),
which maps functional types to their corresponding configuration tables and retrieves
configuration names for nodes.

This module encapsulates the logic for transforming database-stored service
graph information into fully enriched node objects. This enables the translator to
maintain consistency between NILE intents and the actual network topology, pro-
viding accurate inputs for NF'V property generation and verification in VEREFOO.

5.4.8 The property.py Module

The property.py module is responsible for generating the PROPERTY objects that
represent the NSRs of VEREFOO. The module provides two main functions:

e build_properties_for_targets(): Given two targets (either endpoints or
groups), this function resolves their IP addresses and service graph IDs by
querying the SQLite database. It then constructs a list of bidirectional NSR
for all combinations of source and destination addresses. Optional parameters
allow specifying the Layer 4 protocol and source/destination ports.

e build_properties_from_enriched(): This function processes an enriched
NILE intent dictionary and extracts all rules defined in the intent. It handles
both simple paths (from/to endpoints) and target lists (for groups or endpoints).
For each rule, it determines the type of property (e.g., Reachability, Isolation,
CompleteReachability), converts any range IPs into wildcard format, and

53

NILE to VEREFOO Translation

uses constructors ["PROPERTY"] to generate the corresponding objects. The
function also performs validation to ensure that targets belong to the same
service graph.

Overall, property.py encapsulates the logic for translating NILE operations
into formal NSRs compatible with VEREFOO. It combines database lookups,
IP resolution, and rule interpretation to produce a set of verifiable objects that
represent the intended network policies.

5.4.9 The utils.py Module

The utils.py module provides utility functions that support the parsing, trans-
formation, and data extraction processes required to translate NILE intents into
enriched objects and properties. Its main responsibilities include:

e clean(): Recursively transforms a Lark parse tree into a nested dictionary,
list, or string structure. This conversion allows subsequent processing steps
to work with standard Python data types instead of Lark objects (Tree or
Token).

o get_group_node_ips(): Given a group ID, this function queries the database
to obtain all IP addresses of the nodes belonging to that group. Any CIDR
addresses are converted to wildcard notation using cidr_to_wildcard().

e cidr_to_wildcard(): Converts IP addresses expressed in CIDR format (e.g.,
192.168.1.0/24) into a wildcard notation by replacing the last octet with -1
(e.g., 192.168.1.-1). This is used to normalize IPs for property generation.

o extract_service_graph_ids_from_enriched(): Extracts all unique ser-
vice graph IDs from an enriched NILE intent. It recursively traverses paths in
the intent, handling both from/to endpoints and for targets, and retrieves
the corresponding service graph IDs from the database. The result is a list of
all service graphs involved in the intent.

Overall, utils.py abstracts recurring operations such as tree-to-dictionary
conversion, IP normalization, and database lookups, allowing the other modules
(e.g., enrich.py and property.py) to focus on higher-level intent processing and
property generation.

5.4.10 The xml_converter.py Module

The xml_converter.py module is responsible for transforming the internal Python
representations of nodes and properties into XML files that comply with the NFV
schema.

o4

NILE to VEREFOO Translation

Its main components are:

e nodes_to_xml(): Converts a list of nodes for a given service graph into an
XML representation. Each node element includes its IP, functional type, and
configuration details. Neighbors are also retrieved from the database and rep-
resented in the XML. Configurations for firewalls, endhosts, endpoints, caches,
mail clients/servers, NAT, web clients/servers, field modifiers, forwarders, and
load balancers are handled, ensuring that all relevant attributes are properly
included.

o properties_to_nfv_xml(): Transforms a list of PROPERTY objects into
XML according to the NFV schema.

o write_nfv_file(): Integrates the nodes and NSRs into a complete NFV
XML file. For each service graph ID, it retrieves the corresponding nodes,
converts them into XML, and appends them under the <graphs> section. It
also appends the NSRs under <PropertyDefinition> and creates placeholders
for constraints and parsing information.

Overall, xm1_converter.py acts as the final step in the translation pipeline,
producing a structured NFV XML file that represents both the enriched network
configuration and the derived NSRs, ready for VEREFOO.

5.4.11 The create_db.py Module

The create_db.py module is responsible for initializing and populating the SQLite
database (nile.db) used throughout the translation pipeline. It defines the schema
for all network-related entities and inserts initial data to support subsequent
processing.

Key components of the module include:

« Database Schema Creation: The script creates tables for:

— ServiceGraphs: defines logical network graphs.
— groups: node groups associated with each service graph.

— services, traffics, protocols: metadata about network services and
traffic types.

— nodes: network nodes including functional types and IPs.
— neighbours: node connectivity relationships.

— [functional typel] config: specific configuration tables for functional
nodes such as firewalls, endhosts, endpoints, caches, mail clients/servers,
NAT, web clients/servers, field modifiers, forwarders, and load balancers.

59

NILE to VEREFOO Translation

o Data Population: After creating the tables, the module populates them
with example data:

— Service graphs and groups with IP ranges and descriptions.

— Nodes with functional types (e.g., webserver, webclient, loadbalancer,
NAT) and their IPs.

— Neighbor relationships to define the network topology.

— Configuration data for functional nodes, such as NAT sources, web clien-
t/server settings, forwarder names, and load balancer pools.

The database serves as the foundational repository for all the processing steps.
Thanks to its structure, the enrichment phase can effectively access and manipulate
the required data. Moreover, since it is implemented as an independent module, it
can be easily extended and improved in future iterations of the framework.

5.5 Conclusions

The implementation of the NILE-to-VEREFOO translator confirms the feasibility
of bridging high-level, intent-based network specifications with formal verification
frameworks. Throughout the development, several challenges emerged from the
conceptual and syntactic gap between the two models. While NILE emphasizes
human-readable abstractions, VEREFOO requires a precise and technically com-
plete representation of network topologies and their associated security requirements.
This gap was effectively mitigated through the introduction of an enrichment phase,
supported by a dedicated database providing the contextual information necessary
for accurate translation.

Although the current version of the translator has proven effective for the tar-
geted use case, it still supports only a subset of the NILE grammar. Constructs
related to Quality of Service (QoS), time intervals, and dynamic middlebox man-
agement remain outside the current implementation, as they are not yet handled
by VEREFOO. Nevertheless, the translator has been designed with extensibility in
mind, enabling future integration of additional intent constructs and automated
data retrieval mechanisms.

The next chapter focuses on the validation of this implementation, assessing the
correctness, reliability, and practical applicability of the translator through a set of
experimental evaluations.

56

Chapter 6

Validation of the Translation
between NILE and
VEREFOO

6.1 Introduction

This chapter presents the validation of the translator developed to convert intents
expressed in the NILE language into XML input files compatible with VEREFOO.
The objective of the validation is to assess the correctness, flexibility, and robustness
of the translation process across a representative set of use cases.

Three distinct scenarios were designed and tested for this purpose. The first
use case concerns a simple example illustrating the translation of intents expressed
through the from construct. The second use case focuses on the translation of the
for construct, the different ways of expressing group, and the handling of multiple
intents within the same specification. Both use cases employ the same network
topology, which allows a direct comparison between different linguistic forms and
their corresponding XML representations. The third validation scenario builds
on this structure but introduces a more complex network configuration, enabling
the simultaneous processing of multiple intents expressed through both from/to
and for constructs across multiple service graphs. This final test demonstrates
the translator’s ability to manage multi-graph inputs and to generate consistent
VEREFOO XML configurations even in the presence of multiple heterogeneous
and interdependent intent specifications.

57

Validation of the Translation between NILE and VEREFOO

6.1.1 Network Topology

The network topology adopted in the first two validation scenarios is shown in
Figure 6.1. It models a multi-segment infrastructure comprising several functional
components: web servers, web clients, load balancers, forwarders, and a NAT
device.

m O
= S~ =
C T 7
M ~ e
=) . —
/j}:}z{ \\\\ D —
/ -
L —
P

Figure 6.1: Network topology used for the first and second validation use cases.

Three web servers (NodeWS1-3) reside in the subnet 130.10.0.0/24, behind
a load balancer (NodeLB1, IP 130.10.0.4). Client traffic directed to the servers
traverses two chained forwarding domains, implemented through nodes NodeFWD1
and NodeFWD2.

On the client side, five web clients (NodeWC1-5) are distributed across three
subnets: 40.40.0.0/16, which hosts clients WC1 and WC2; 88.80.84.0/24, which
hosts client WC3; and 192.168.0.0/16, which hosts clients WC4 and WC5.

Each connection between nodes is explicitly defined in the topology through a
list of neighbor relations, ensuring that the generated XML graph maintains both
connectivity and node semantics.

The third validation scenario builds on this structure and extends it with a
more complex network configuration, shown in Figure 6.2. This extended topology
includes additional subnets and forwarding paths.

Figure 6.2: Extended network topology used for the third validation use case.

Overall, the validation process aims to demonstrate that the translator accurately

58

Validation of the Translation between NILE and VEREFOO

captures the semantics of NILE intents and generates coherent VEREFOO XML
configurations across different network setups, from simple to complex.

6.2 Use Case 1: Validation of the from/to Con-
struct

The first validation scenario focuses on verifying the correct translation of intents
defined through the from/to construct. This construct specifies the directionality
of the intent by identifying a source and a destination endpoint, each corresponding
to a single node in the network topology. In this use case, the intent defines traffic
rules between two endpoints, namely NodeWS2 and NodeWC5.

define intent one:
from endpoint(NodeWS2) to endpoint(NodeWC5)
complete_allow service(WebSecService)
allow protocol(FTP) traffic(Trafficl)
block service(XBOXLive) protocol(POP3) traffic(Traffic2)

The intent defines three distinct policies. The first one allows all packet flows
involving the WebSecService service and is translated into a CompleteReachabil-
ityProperty. The second policy permits at least one packet flow using the FTP
protocol and one packet’s flow using the traffic profile Traffic1, translating it
into the ReachabilityProperty. Finally, the third policy denies all packet flows
related to the XBOXLive service, the POP3 protocol, and the traffic profile Traffic?2
translating it into the IsolationProperty.

Before translation, the semantic enrichment step retrieves the definitions of all
referenced elements from the database, as summarised below:

e Service WebSecService is defined as (id = 2, name = ’WebSecService’,
protocol = ’TCP’, dst_port = ’443’), representing a secure web service
accessible through TCP port 443.

e Service XBOXLive is defined as (id = 4, name = ’XBOXLive’, protocol
= ’TCP’, dst_port = ’3074’), corresponding to the XBOXLive service.

» Protocol POP3 is defined as (id = 8, name = ’POP3’, protocol = ’TCP’,
dst_port = ’110’), representing the protocol used for email retrieval.

e Protocol FTP is defined as (id = 9, name = ’FTP’, protocol = ’ANY’,
dst_port = ’21°), representing the File Transfer Protocol.

59

Validation of the Translation between NILE and VEREFOO

Traffic Trafficl is defined as (id = 1, name = ’Trafficl’, protocol =
>TCP’, src_port = ’83’, dst_port = ’850’), describing a specific flow
allowed by the intent.

Traffic Traffic2 is defined as (id = 2, name = ’Traffic2’, protocol
= ’TCP’, src_port = ’25’, dst_port = ’215°), describing the specific
traffic blocked by the intent.

Node: NodeWS2 (id=12, IP 130.10.0.2, is a web server)

Node: NodeWC5 (id=12, IP 192.168.2.1, is a web client)

The network topology used in this use case is shown in Figure 6.1. The
translator correctly identified the semantics of the from/to intent, enriched it
with the information stored in the database, and produced the corresponding nsr
(network service request) elements that reflect the complete_allow, the allow and
block rules defined in the intent. The recognized and enriched intent is shown in
Figure 6.3, while the generated nsr elements are reported in Listing 6.1.

{*path': [{'from': {'endpoint': {

Figure 6.3: Excerpt of the recognized and enriched intent in JSON

<PropertyDefinition>

<Property name="CompleteReachabilityProperty" graph="1" src="

130.10.0.2" dst="192.168.2.1" lv4proto="TCP" dst_port="443"/>

60

Validation of the Translation between NILE and VEREFOO

<Property name="ReachabilityProperty" graph="1" src="

130.10.0.2" dst="192.168.2.1" 1lv4proto="ANY" dst_port="21"/>

<Property name="ReachabilityProperty" graph="1" src="

130.10.0.2" dst="192.168.2.1" 1lv4proto="TCP" src_port="83"

dst_port="850"/>

<Property name="IsolationProperty" graph="1" src="130.10.0.2"

dst="192.168.2.1" 1lv4proto="TCP" dst_port="3074"/>

<Property name="IsolationProperty" graph="1" src="130.10.0.2"

dst="192.168.2.1" 1lv4proto="TCP" dst_port="110"/>

<Property name="IsolationProperty" graph="1" src="130.10.0.2"

dst="192.168.2.1" lv4proto="TCP" src_port="25" dst_port="215"/>
</PropertyDefinition>

Listing 6.1: Generated NSR elements reflecting the intent rules

As shown in Listing 6.2, the translator successfully generated the correct VERE-
FOO XML configuration. Each rule derived from the NILE intent is mapped to
an nsr entry, representing the corresponding complete_allow, allow, or block
operation. This confirms that the from/to construct is correctly interpreted, end-
points are correctly associated with individual network nodes, and the translation
preserves both the directionality and semantics of the original intent.

<?7xml version="1.0" 7>
<NFV xmlns:xsi="http://www.w3.o0org/2001/XMLSchema-instance"
xsi:noNamespaceSchemalocation="../xsd/nfvSchema.xsd">
<graphs>
<graph id="1">
<node name="130.10.0.1" functional_type="WEBSERVER">
<neighbour id="4" name="60.0.0.1"/>
<configuration id="1" name="confB">
<webserver>
<name>130.10.0.1</name>
</webserver>
</configuration>
</node>

<node name="192.168.2.1" functional_type="WEBCLIENT">
<neighbour id="21" name="60.0.0.13"/>
<configuration id="23" name="confB">
<webclient nameWebServer="130.10.0.1"/>
</configuration>
</node>
</graph>
</graphs>
<Constraints>
<NodeConstraints/>
<LinkConstraints/>
</Constraints>
<PropertyDefinition>

61

27

28

29

30
31
32
33

34
35

Validation of the Translation between NILE and VEREFOO

<Property name="CompleteReachabilityProperty" graph="1" src="
130.10.0.2" dst="192.168.2.1" 1lv4proto="TCP" dst_port="443"/>
<Property name="ReachabilityProperty" graph="1" src="
130.10.0.2" dst="192.168.2.1" 1lv4proto="ANY" dst_port="21"/>
<Property name="ReachabilityProperty" graph="1" src="
130.10.0.2" dst="192.168.2.1" 1lv4proto="TCP" src_port="83"
dst_port="850"/>
<Property name="IsolationProperty" graph="1" src="130.10.0.2"
dst="192.168.2.1" 1lv4proto="TCP" dst_port="3074"/>
<Property name="IsolationProperty" graph="1" src="130.10.0.2"
dst="192.168.2.1" 1lv4proto="TCP" dst_port="110"/>
<Property name="IsolationProperty" graph="1" src="130.10.0.2"
dst="192.168.2.1" lv4proto="TCP" src_port="25" dst_port="215"/>

</PropertyDefinition>

<ParsingString/>

</NFV>

Listing 6.2: Generated VEREFOO XML configuration for the first use case

The results obtained in this first validation scenario confirm that the translator
correctly processes intents expressed through the from/to construct, preserving
their directional semantics and accurately reflecting the relationships between
source and destination endpoints.

Each of the three operations defined in the intent, complete_allow, allow, and
block,was successfully mapped to the corresponding VEREFOO properties, demon-
strating a one-to-one correspondence between NILE semantics and VEREFOO
XML representation.

Furthermore, the enrichment step proved to be effective: all references to
services, protocols, and traffic profiles were correctly resolved through the database,
confirming the translator’s ability to integrate external semantic information into
the final XML configuration.

Overall, this scenario validates the translator’s handling of directional commu-
nication intents in simple network contexts, establishing a solid foundation for
the following validation scenarios, which introduce non-directional constructs and
multi-intent specifications.

6.3 Use Case 2: Validation of the for Construct

The second validation scenario focuses on the translation of intents defined using
the for construct. Unlike from/to, this construct does not define a directionality;
therefore, each intent is translated into two nsr entries to represent bidirectional
communication. The for construct accepts exactly two arguments, which can
be either an endpoint or a group. Groups represent sets of nodes, which can be

62

0 O Uik Wi

Validation of the Translation between NILE and VEREFOO

defined either by an IP range or by associating individual nodes to the group in
the database. The network topology used in this use case is shown in Figure 6.1.
Three intents were considered in this scenario:

define intent one:
for endpoint (NodeWS1), group (Group3)
allow service(WebService)
block service (WHOIS)

define intent two:
for group(Groupl), endpoint (NodeWC1)
allow service (XBO0XLive)
block service (AppleTalk)

define intent three:
for group(Groupl), group(Group3)
allow traffic(Traffici)
block service(Steam)

Listing 6.3: NILE intents using the for construct.

The first intent illustrates the use of for with an endpoint and a group defined
by explicitly associating nodes in the database. The second intent uses a group
defined via an IP range, while the third intent combines two groups, covering both
types of group definitions

Before translation, the semantic enrichment step retrieves the definitions of all
referenced elements from the database, as summarised below:

o Service: WebService (id=1, TCP, dst_port=80)

o Service: WHOIS (id=10, TCP, dst_port=43)

e Service: XBOXLive (id=6, TCP, dst_port=3074)

e Service: AppleTalk (id=11, TCP, dst_port=201)

e Service: Steam (id=4, TCP, dst_port=445)

o Traffic: Trafficl (id=1, TCP, src_port=83, dst_port=850)

e Group: Groupl (id=1, IP range 130.10.0.0/24, group web server)
e Group: Group3 (id=3, group web client)

e Node: NodeWC1 (id=12, IP 40.40.41.1)
63

Validation of the Translation between NILE and VEREFOO

Figure 6.4 shows the enriched representation of the three intents after the
translator processed the for constructs, including all endpoints, groups, and the
corresponding allow/block rules.

[{*path': [{'targets’': [{'endpoint

scription

{'start': [{“intent three

Figure 6.4: Excerpt of the enriched NILE intents.

The first intent illustrates how the for construct operates when one of the
operands is a single node, while the other is a group composed of multiple nodes.
In this case, the single node is NodeWS1 (IP 130.10.0.1) and the group is Group3,
which contains the following web clients explicitly defined in the database:

o NodeWC1: IP 40.40.41.1

o NodeWC2: IP 40.40.42.1
64

Validation of the Translation between NILE and VEREFOO

o NodeWC4: IP 192.168.1.1

e NodeWC5: IP 192.168.2.1

Unlike groups defined via an IP range, this group explicitly lists its members
in the database. Listing 6.4 shows how the translator recognizes the group and
enumerates its member nodes:

Recognised PATH with FOR

Target 1 = {’endpoint’: {’type’: ’WEBSERVER’, ’name’: [{’name’:
’130.10.0.1°3}], ’raw_name’: ’NodeWS1’}}

Target 2 = {’group’: {’type’: °GROUP’, ’id’: 3, ’serviceG_is’:
1, ’name’: ’Group3’, ’ip_range’: None, ’description’: ’group
web clients’}}

IP addresses of nodes for group_id 3: [’40.40.41.1°, ’40.40.42.1
>, ’88.80.84.1°, °192.168.1.1°, ’192.168.2.17]

Listing 6.4: Translator output showing recognition of Group3 and its member
nodes.

As shown in Listing 6.5 he translator systematically expands Group3, generating
one nsr entry for each individual IP in the group. Moreover, since the for
construct is inherently bidirectional, for every policy the translator produces two
complementary rules: one for traffic from the group member to the other endpoint,
and another in the opposite direction.

<Property name="ReachabilityProperty" graph="1" src="
130.10.0.1" dst="40.40.41.1" lv4proto="TCP" dst_port="80"/>
<Property name="ReachabilityProperty" graph="1" src="
40.40.41.1" dst="130.10.0.1" 1lv4proto="TCP" dst_port="80"/>
<Property name="ReachabilityProperty" graph="1" src="
130.10.0.1" dst="40.40.42.1" lv4proto="TCP" dst_port="80"/>
<Property name="ReachabilityProperty" graph="1" src="
40.40.42.1" dst="130.10.0.1" 1lv4proto="TCP" dst_port="80"/>
<Property name="ReachabilityProperty" graph="1" src="
130.10.0.1" dst="192.168.1.1" lvé4proto="TCP" dst_port="80"/>

Listing 6.5: Excerpt of the generated VEREFOO XML configuration for Intent
One. Each pair of entries represents bidirectional communication between NodeWS1
and a node in Group3.

The second intent illustrates how the for construct operates when one of the
operands is a group defined through an IP range. In this case, Groupl represents
all the web servers of the network, identified by the IP range 130.10.0.0/24.

The Listing 6.6 clearly shows how the translator recognises that Groupl corre-
sponds to an IP range rather than a set of discrete endpoints.

65

[\

Validation of the Translation between NILE and VEREFOO

=== Processing intent #2 ===
Recognised PATH with FOR

Target 1 = {’group’: {’type’: °GROUP’, ’id’: 1, ’serviceG_is’:
1, ’name’: ’Groupl’, ’ip_range’: ’130.10.0.0/24°, ’description’
’web server group’l}}
Target 2 = {’endpoint’: {’type’: ’WEBCLIENT’, ’nameWebServer’: °’
130.10.0.1°, ’raw_name’: ’NodeWC1’1}}

Converted IP CIDR 130.10.0.0/24 -> 130.10.0.-1

Listing 6.6: Translator output showing recognition of the IP range and conversion
to wildcard notation.

Unlike a group defined as a set of discrete endpoints, the translator recognizes
that Groupl corresponds to a contiguous IP range. Instead of generating a separate
nsr entry for each individual IP, it uses VEREFOOQO’s -1 wildcard notation to
represent the entire range in a single entry. Moreover, since the for construct is
inherently bidirectional, the translator produces two complementary nsr entries
for each policy: one for traffic from the group to the other endpoint, and another
for traffic in the opposite direction.

This behavior, including the use of the wildcard notation and the bidirectional
nsr entries, can be observed in Listing 6.7.

<Property name="ReachabilityProperty" graph="1" src="130.10.0.-1"
dst="40.40.41.1" 1lv4proto="TCP" dst_port="3074"/>

<Property name="ReachabilityProperty" graph="1" src="40.40.41.1"
dst="130.10.0.-1" 1lvé4proto="TCP" dst_port="3074"/>

<Property name="IsolationProperty" graph="1" src="130.10.0.-1" dst
="40.40.41.1" 1lv4proto="TCP" dst_port="201"/>

<Property name="IsolationProperty" graph="1" src="40.40.41.1" dst=
"130.10.0.-1" 1lvé4proto="TCP" dst_port="201"/>

Listing 6.7: Generated nsr for Intent Two showing the use of the -1 wildcard for
the IP range.

Finally, the third intent combines two groups, demonstrating the translator’s
capability to handle the most complex expansion case, where both operands
represent multiple entities. As seen in Listing 6.8, the translator systematically
generates all possible combinations between the members of Groupl and Group3,
producing the full set of bidirectional nsr entries for each allowed and blocked
element.

<Property name="ReachabilityProperty" graph="1" src="130.10.0.-1"
dst="40.40.41.1" 1lv4proto="TCP" src_port="83" dst_port="850"/>

<Property name="ReachabilityProperty" graph="1" src="40.40.41.1"
dst="130.10.0.-1" lv4proto="TCP" src_port="83" dst_port="850"/>

<Property name="ReachabilityProperty" graph="1" src="130.10.0.-1"
dst="40.40.42.1" 1lv4proto="TCP" src_port="83" dst_port="850"/>

66

Validation of the Translation between NILE and VEREFOO

4 |<Property name="ReachabilityProperty" graph="1" src="40.40.42.1"

5

15

16

17
18
19
20

dst="130.10.0.-1" 1vé4proto="TCP" src_port="83" dst_port="850"/>

Listing 6.8: Excerpt of the generated nsr for Intent Three.

As shown in the listings, the translator correctly interprets the for construct in
all cases, automatically expanding groups and generating the full bidirectional set
of nsr rules consistent with the semantics of the original NILE intents.

Overall, the translator correctly interprets each for intent, enriching it with
database information and generating the corresponding bidirectional nsr entries,
preserving the semantics of the original specification. This use case also demon-
strates that multiple intents within the same network can be handled together by
the translator and inserted in a single VEREFOO XML input file.

The service graph associated with the intents is reconstructed, and all constructs
are properly interpreted, ensuring that the translation captures the intended
policies for both endpoints and groups. The resulting XML accurately represents
the interaction of multiple intents and the correct enforcement of services and
traffic policies. Listing 6.9 shows the complete VEREFOO XML file generated
after processing all three intents. This file includes all nsr entries for bidirectional
enforcement of allowed and blocked services/traffic.

<?xml version="1.0" 7>
<NFV xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalocation="../../../xsd/nfvSchema.xsd">
<graphs>
<graph id="1">
<node name="130.10.0.1" functional_type="WEBSERVER">
</graph>
</graphs>
<Constraints>
<NodeConstraints/>
<LinkConstraints/>
</Constraints>
<PropertyDefinition>
<Property name="ReachabilityProperty" graph="1" src="
130.10.0.1" dst="40.40.41.1" lv4proto="TCP" dst_port="80"/>
<Property name="ReachabilityProperty" graph="1" src="
40.40.41.1" dst="130.10.0.1" 1lv4proto="TCP" dst_port="80"/>
<Property name="ReachabilityProperty" graph="1" src="
130.10.0.1" dst="40.40.42.1" lv4proto="TCP" dst_port="80"/>

</PropertyDefinition>
<ParsingString/>
</NFV>

67

Validation of the Translation between NILE and VEREFOO

1

Listing 6.9: Complete generated VEREFOO XML file for all intents in Use Case
2.

Overall, this second validation scenario demonstrates the translator’s capability
to correctly process non-directional intents expressed through the for construct.
The tests confirmed that both forms of group definition, via explicit membership
and via IP range, are properly expanded and represented in the VEREFOO XML
output. The translator systematically generates the full set of bidirectional nsr
entries, ensuring that the semantics of the original NILE intents are preserved across
all cases. Additionally, this use case highlights the flexibility of the translation
process, showing that the translator can handle multiple intents at once.

These results provide a solid basis for the next validation scenario, which
introduces more complex network topologies and mixed use of from/to and for
constructs.

6.4 Use Case 3: Validation with Multiple Intents
Across Two Service Graphs

The third validation scenario demonstrates the translator’s capability to handle
multiple intents simultaneously, combining both from/to and for constructs, and
involving two distinct network graphs. Ten intents were defined in total, with five
intents corresponding to each service graph.

define intent one:
for endpoint(NodeWS1), group(Group3)
allow protocol(DNS) traffic(Traffic3)
block service(WHOIS) traffic(Traffic4)

define intent two:
for group(Groupl), endpoint(NodeWC1)
allow service(XBOXLive) traffic(Traffich)
block protocol(SMTP) traffic(Traffic6)

define intent three:
for group(Groupl), group(Group3)
allow traffic(Trafficl)
block protocol (SMB)

define intent four:
from endpoint(NodeWS1) to endpoint(NodeWC4)

68

Validation of the Translation between NILE and VEREFOO

block protocol(FTP)

define intent five:
from endpoint(NodeWS3) to endpoint(NodeWC1)
block protocol(NetBIOS-Session)

define intent six:
from endpoint(Node2WS1) to endpoint(Node2WC4)
block protocol(FTP)

define intent seven:
for group(Group4), endpoint(Node2WC1)
allow service(XBOXLive) traffic(Traffich)
block protocol (SMTP) traffic(Traffic6)

define intent eight:
for group(Group4), group(Group5)
allow traffic(Trafficl)
block protocol(SMB)

define intent nine:
for endpoint(Node2WS1), group(Group5)
allow protocol(DNS) traffic(Traffic3)
block service(WHOIS) traffic(Traffic4)

define intent ten:
from endpoint(Node2WS3) to endpoint(Node2WC1)
block protocol(NetBIOS-Session)

The first service graph corresponds to the previously described network in
Figure 6.1, while the second service graph represents an extended version of the
same network with additional nodes and groups, as shown in Figure 6.2.

Each intent is enriched with details from the database, including services,
protocols, traffic profiles, endpoints, and group membership, as in the previous use
cases.

As can be seen in Listing 6.10, which shows an excerpt of the nsr entries
generated by the translator, the translator correctly recognized that intents five
and six belong to two different service graphs. Accordingly, the nsr elements were
created with the correct graph attribute, reflecting the distinction between the two
topologies and preserving the mapping of intents to network graphs.

69

Validation of the Translation between NILE and VEREFOO

2 |<Property name="IsolationProperty" graph="1" src="130.10.0.3" dst=
"40.40.41.1" 1lvé4proto="TCP" dst_port="139"/>

3 |<Property name="IsolationProperty" graph="2" src="130.10.0.1" dst=
"192.168.1.1" lvdproto="ANY" dst_port="21"/>

4

Listing 6.10: Excerpt of nsr elements showing how intents belonging to different
graphs are distinguished.

The translator successfully processed all ten intents, generating a single XML
input file for VEREFOO that contains nsr entries for both service graphs. The file
clearly distinguishes which nsr elements belong to each service graph, preserving the
correct mapping between intents and the underlying network topology. Bidirectional
policies, directional policies, and the combination of multiple intent types are
correctly represented, demonstrating the translator’s ability to manage complex
and heterogeneous configurations (see Listing 6.11).

1 |<?7xml version="1.0" 7>

2 |<NFV xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalocation="../../../xsd/nfvSchema.xsd">

3 <graphs>

4 <graph id="1">

) <node name="130.10.0.1" functional_type="WEBSERVER">

6 Ce

7 </graph>

8 <graph id="2">

9 <node name="130.10.0.1" functional_type="WEBSERVER">

10 R

11 </graph>

12 </graphs>

13 <Constraints>

14 <NodeConstraints/>

15 <LinkConstraints/>

16 </Constraints>

17 <PropertyDefinition>

18 <Property name="ReachabilityProperty" graph="1" src="
130.10.0.1" dst="40.40.41.1" lv4proto="UDP" dst_port="53"/>

19 <Property name="ReachabilityProperty" graph="1" src="
40.40.41.1" dst="130.10.0.1" 1lv4proto="UDP" dst_port="53"/>

20 <Property name="ReachabilityProperty" graph="1" src="
130.10.0.1" dst="40.40.42.1" lv4proto="UDP" dst_port="53"/>

21 c.

22 <Property name="IsolationProperty" graph="2" src="130.10.0.1"
dst="85.80.84.2" 1lv4proto="UDP" src_port="94" dst_port="78"/>

23 <Property name="IsolationProperty" graph="2" src="85.80.84.2"
dst="130.10.0.1" 1lv4proto="UDP" src_port="94" dst_port="78"/>

24 <Property name="IsolationProperty" graph="2" src="130.10.0.3"
dst="40.40.41.1" 1lv4proto="TCP" dst_port="139"/>

25 </PropertyDefinition>

70

Validation of the Translation between NILE and VEREFOO

26 <ParsingString/>
27 | </NFV>

Listing 6.11: Complete XML input file generated by the translator for VEREFOO.

This use case confirms that the translation workflow is capable of handling multi-
ple intents within different network graphs, maintaining both semantic correctness
and structural consistency in the resulting XML input.

Overall, this validation scenario demonstrates the completeness of the translation
process across heterogeneous configurations. The translator not only preserves
the logical consistency between intents and network graphs but also ensures in-
teroperability between different intent constructs (from/to and for) within a
unified VEREFOO input. The results confirm the robustness and scalability of the
translation mechanism, which can manage multiple, concurrent intent definitions
across distinct topologies without loss of semantic fidelity.

6.5 Conclusions

The validation activities presented in this chapter provide a comprehensive assess-
ment of the translator developed to convert NILE intents into VEREFOO XML
configurations. Through the three use cases, the translator was systematically
tested across a range of scenarios, from simple directional intents to complex
multi-intent specifications involving multiple service graphs.

The first use case demonstrated that intents expressed through the from/to
construct are correctly interpreted, with all directional semantics preserved and
accurately reflected in the generated XML. The enrichment process successfully
resolved references to services, protocols, and traffic profiles, ensuring that the
final configuration was both complete and semantically faithful to the original
specification.

The second use case focused on the for construct, highlighting the translator’s
ability to handle bidirectional intents and group expansions. Both types of group
definitions, explicit membership and IP range, were correctly processed, generating
the full set of corresponding nsr entries in the XML output. This scenario also
confirmed that multiple intents can be managed simultaneously within a single
network, preserving the intended interaction of policies across endpoints and groups.

Finally, the third use case confirmed the translator’s robustness in handling
complex configurations with multiple intents across distinct service graphs. The
translation process maintained clear separation between graphs while correctly inte-
grating different intent constructs and bidirectional rules. The results demonstrate
that the translator scales effectively and preserves semantic correctness even in
heterogeneous and multi-graph scenarios.

71

Validation of the Translation between NILE and VEREFOO

Overall, the validation confirms that the developed translator reliably converts
NILE intents into coherent VEREFOO input files, accurately reflecting the seman-
tics of both directional and non-directional constructs. These outcomes establish
a solid foundation for the practical deployment of the translator in more exten-
sive and realistic network settings, supporting automated policy enforcement and
verification in NFV environments.

72

Chapter 7

Conclusions and Future
Works

This thesis addressed the problem of translating high-level, human-readable net-
work intents expressed in the NILE language into the concrete XML input files
required by the VEREFOO framework. To overcome the abstraction gap between
intent-based specifications and VEREFOQ’s input files requirements, a structured
translation process was defined and a prototype tool was implemented to auto-
mate the conversion from NILE intents to the requirements for the VEREFOO
framework.

The comparative analysis of NILE and VEREFOO highlighted several challenges
of the translation arising from their different roles. One of these challenges, for
example, is that while NILE allows users to describe what the network should
achieve without knowing the technical details, VEREFOO focuses on verifying the
feasibility and means of achieving those goals, but based on technical requirements.
This mismatch in abstraction demanded the introduction of an enrichment phase,
supported by a dedicated database, to provide all technical details that are not
explicitly defined in high-level intents. The resulting pipeline, composed of parsing,
enrichment, NSR generation, and XML construction, proved effective in bridging
the two systems.

The decision to adopt a modular architecture facilitated clarity and extensibility,
and supporting future evolution of the framework. Validation across three use cases
further confirmed the reliability and scalability of the translation process. The tool
handled simple and complex intents alike, including scenarios involving multiple
service graphs and heterogeneous constructs, consistently producing coherent
VEREFOO configurations that faithfully represented the original specifications.

Overall, the outcomes of this work confirm the feasibility of semantic translation
as a bridge between intent-based network management and automated verification

73

Conclusions and Future Works

frameworks. The developed translator constitutes a step toward making network
security configuration more accessible, reducing the need for specialized expertise,
and moving closer to fully intent-driven security automation.

7.1 Future works

Although the translator provides a functional and validated solution to the inter-
operability between NILE and VEREFOO, several avenues for improvement and
expansion remain open.

7.1.1 Extension of the supported NILE grammar

Currently, the translator handles only a subset of NILE’s expressiveness, focusing
on constructs directly compatible with VEREFOO. Features such as Quality of
Service (QoS) constraints, time-based rules, or add /remove middleboxes operations
remain unsupported, primarily due to limitations in the current VEREFOO model.
As discussed in the following subsection, one promising direction involves extending
the accepted NILE grammar to explicitly include middlebox-related operations (e.g.,
add and remove), which could then be delegated to an automated orchestration
component capable of managing these actions at runtime. Such an extension would
allow intents to describe at the same time not only traffic requirements but also
structural modifications to the service graph.

Regarding time-based rules, an intermediate approach could be employed even
without native support in VEREFOO. Specifically, time constraints could be
handled externally by executing the translation pipeline in advance and scheduling
the application of the resulting output only at the times specified by the intent.
This mechanism would preserve the semantics of temporal activation while relying
entirely on existing components, making it a feasible short-term enhancement
before integrating full temporal reasoning directly within the translator or the
VEREFOO framework itself.

Future extensions of VEREFOO may enable the native integration of these
constructs, thus further enlarging the scope and expressiveness of the translator.

7.1.2 Automated enrichment and dynamic data retrieval

The current enrichment phase relies on a manually populated database that contains
technical details about nodes, services, protocols, and topologies. However, the
modular design of the enrichment component, combined with its database-centric
architecture, opens the door to more advanced future scenarios. In particular in
one possible scenario, an external component could be automatically populate
the database through intelligent data-collection mechanisms, allowing the user

74

Conclusions and Future Works

expressing the intent to operate without any knowledge of the underlying network.
Automated discovery of topologies, services, and middleboxes could be performed
through SDN controllers, orchestration platforms, or even OSINT techniques applied
to network analysis. This intelligent module would gather real-time data about the
network, dynamically updating the database and ensuring that the system always
has the most up-to-date information.

In addition to this, the component could make it possible to integrate the
live handling of intent with operations on middleboxes, such as add and remove,
allowing the accepted NILE grammar to be expanded.

These advancements would enable the translator to function in live, continuously
evolving network environments. This would significantly reduce the need for manual
preparation, streamline operations, and improve the system’s ability to adapt to
changes on the fly. As a result, the system would become more autonomous and
scalable, providing a highly adaptable solution for real-world network management
and optimization.

7.1.3 Integration with Al-based intent interpretation

Although the proposed tool effectively translates well-defined NILE intents into
the corresponding VEREFOO configuration, it still relies on the assumption that
intents are already clear, consistent, and free of conflicts. A possible direction for
future development is to introduce a preliminary phase with an Al chatbot capable
of guiding the user in the transition from human language to NILE language,
as in [12]. In this way, conflicts and problems could be resolved more easily and
intuitively, as the Al could interact directly with the user, for example, by asking for
clarification or suggesting alternatives when conflicts arise that cannot be resolved
automatically. Moreover, the use of an Al interface would make the system more
accessible even to less experienced users, thanks to the AI’s ability to explain
problems at a level appropriate to the user’s expertise.

Also in this preliminary phase from human language to the NILE language, the
component proposed in the previous section could also be integrated to support
the creation of optimal intents. This component could provide critical information
from the database to resolve issues such as the presence of two endpoints belonging
to different service graphs but included in the same intent, which would lead to
errors.

Integrating Al-based intent interpretation represents a promising evolution of the
current work. By enabling an interactive dialogue between the user and the system,
AT can support the creation of precise, consistent, and conflict-free intents, reducing
the cognitive effort required from the operator. This can lay the foundation for a
future pipeline capable of handling increasingly complex scenarios with minimal
human intervention.

75

Conclusions and Future Works

7.2 Final Remarks

The work presented in this thesis demonstrates the practicality and effectiveness of
linking the IBN concept intent-based with automated verification security mecha-
nisms. By establishing a structured translation pipeline and validating it in multiple
scenarios, this research contributes to the broader vision of intent-driven, verifiable,
and automated network security management.

76

Bibliography

Aris Leivadeas and Matthias Falkner. « A Survey on Intent-Based Networking».
In: IEEE Communications Surveys & Tutorials 25.1 (2023), pp. 625-655. DOL:
10.1109/COMST.2022.3215919 (Cit. on pp. 1, 679).

Francesco Pizzato, Daniele Bringhenti, Riccardo Sisto, and Fulvio Valenza.
«An intent-based solution for network isolation in Kubernetes». In: 202/
IEEFE 10th International Conference on Network Softwarization (NetSoft).
2024, pp. 381-386. DOI: 10.1109/NetSoft60951 .2024.10588939 (cit. on
pp- 4, 5, 21).

Yosra Njah, Aris Leivadeas, and Matthias Falkner. « An AI-Driven Intent-
Based Network Architecture». In: IEFE Communications Magazine 63.4
(2025), pp. 146-153. pOI: 10.1109/MCOM.001.2400143 (cit. on p. 7).

Ahlam Fuad, Azza H. Ahmed, Michael A. Riegler, and Tarik Ci¢i¢. «An Intent-
based Networks Framework based on Large Language Models». In: 2024 IEFEE
10th International Conference on Network Softwarization (NetSoft). 2024,
pp. 7-12. DOI: 10.1109/NetSoft60951.2024.10588879 (cit. on p. 7).

Md. Kamrul Hossain and Walid Aljoby. «NetIntent: Leveraging Large Lan-
guage Models for End-to-End Intent-Based SDN Automation». In: ArXiv
abs/2507.14398 (2025). URL: https://api.semanticscholar.org/CorpusI
D:280270329 (cit. on p. 7).

Yassin Abouelseoud and Minar El-Aasser. « Practical Implementation of Intent-
Based Networking Using OpenDaylight and Rasa». In: 2025 International
Conference on Machine Intelligence and Smart Innovation (ICMISI). 2025,
pp. 100-105. pOoI: 10.1109/ICMISI65108.2025.11115828 (cit. on p. 7).

Nguyen Tu, Sukhyun Nam, and James Won-Ki Hong. «Intent-Based Network
Configuration Using Large Language Models». In: International Journal
of Network Management 35.1 (2025). €2313 nem.2313, €2313. DOI: https:
//doi.org/10.1002/nem.2313. eprint: https://onlinelibrary.wiley.
com/doi/pdf/10.1002/nem.2313. URL: https://onlinelibrary.wiley.
com/doi/abs/10.1002/nem.2313 (cit. on p. 8).

7

https://doi.org/10.1109/COMST.2022.3215919
https://doi.org/10.1109/NetSoft60951.2024.10588939
https://doi.org/10.1109/MCOM.001.2400143
https://doi.org/10.1109/NetSoft60951.2024.10588879
https://api.semanticscholar.org/CorpusID:280270329
https://api.semanticscholar.org/CorpusID:280270329
https://doi.org/10.1109/ICMISI65108.2025.11115828
https://doi.org/https://doi.org/10.1002/nem.2313
https://doi.org/https://doi.org/10.1002/nem.2313
https://onlinelibrary.wiley.com/doi/pdf/10.1002/nem.2313
https://onlinelibrary.wiley.com/doi/pdf/10.1002/nem.2313
https://onlinelibrary.wiley.com/doi/abs/10.1002/nem.2313
https://onlinelibrary.wiley.com/doi/abs/10.1002/nem.2313

BIBLIOGRAPHY

[10]

[11]

[12]

Ankur Chowdhary, Abdulhakim Sabur, Neha Vadnere, and Dijiang Huang.
«Intent-Driven Security Policy Management for Software-Defined Systems».
In: IEEE Transactions on Network and Service Management 19.4 (2022),
pp. 5208-5223. DOI: 10.1109/TNSM. 2022.3183591 (cit. on p. 9).

Yoshiharu Tsuzaki and Yasuo Okabe. «Reactive configuration updating for
Intent-Based Networking». In: 2017 International Conference on Information
Networking (ICOIN). 2017, pp. 97-102. por: 10.1109/IC0OIN.2017.7899484
(cit. on p. 9).

Sergio Rivera, Zongming Fei, and James Griffioen. «POLANCO: Enforcing
Natural Language Network Policies». In: 2020 29th International Conference
on Computer Communications and Networks (ICCCN). 2020, pp. 1-9. DOI:
10.1109/ICCCN49398.2020.9209748 (cit. on pp. 9, 16).

Bingchuan Tian et al. «Safely and automatically updating in-network ACL
configurations with intent language». In: Proceedings of the ACM Special
Interest Group on Data Communication. SIGCOMM ’19. Beijing, China: As-
sociation for Computing Machinery, 2019, pp. 214-226. 1SBN: 9781450359566.
DOI: 10.1145/3341302 . 3342088. URL: https://doi.org/10. 1145/
3341302.3342088 (cit. on p. 9).

Arthur S. Jacobs, Ricardo J. Pfitscher, Rafael H. Ribeiro, Ronaldo A. Ferreira,
Lisandro Z. Granville, Walter Willinger, and Sanjay G. Rao. «Hey, Lumi! Using
Natural Language for Intent-Based Network Management». In: 2021 USENIX
Annual Technical Conference (USENIX ATC 21). USENIX Association, July
2021, pp. 625-639. 1SBN: 978-1-939133-23-6. URL: https://www.usenix.org/
conference/atc21/presentation/jacobs (cit. on pp. 9, 11, 12, 26, 44, 75).

Arthur Selle Jacobs, Ricardo José Pfitscher, Ronaldo Alves Ferreira, and
Lisandro Zambenedetti Granville. «Refining Network Intents for Self-Driving
Networks». In: Proceedings of the Afternoon Workshop on Self-Driving Net-
works. Self DN 2018. Budapest, Hungary: Association for Computing Machin-
ery, 2018, pp. 15-21. 1SBN: 9781450359146. DOI: 10.1145/3229584 .3229590.
URL: https://doi.org/10.1145/3229584 .3229590 (cit. on pp. 9-11, 25,
26).

Mohammad Riftadi and Fernando Kuipers. «P41/0: Intent-Based Networking
with P4». In: 2019 IEEE Conference on Network Softwarization (NetSoft).
2019, pp. 438-443. DOI: 10.1109/NETSOFT.2019.8806662 (cit. on p. 13).

Rafael Hengen Ribeiro, Arthur Selle Jacobs, Luciano Zembruzki, Ricardo
Parizotto, Eder John Scheid, Alberto Egon Schaeffer-Filho, Lisandro Zam-
benedetti Granville, and Burkhard Stiller. « A deterministic approach for
extracting network security intentsy». In: Computer Networks 214 (2022),
p. 109109. 18SN: 1389-1286. DOI: https://doi.org/10.1016/j . comnet.

78

https://doi.org/10.1109/TNSM.2022.3183591
https://doi.org/10.1109/ICOIN.2017.7899484
https://doi.org/10.1109/ICCCN49398.2020.9209748
https://doi.org/10.1145/3341302.3342088
https://doi.org/10.1145/3341302.3342088
https://doi.org/10.1145/3341302.3342088
https://www.usenix.org/conference/atc21/presentation/jacobs
https://www.usenix.org/conference/atc21/presentation/jacobs
https://doi.org/10.1145/3229584.3229590
https://doi.org/10.1145/3229584.3229590
https://doi.org/10.1109/NETSOFT.2019.8806662
https://doi.org/https://doi.org/10.1016/j.comnet.2022.109109
https://doi.org/https://doi.org/10.1016/j.comnet.2022.109109

BIBLIOGRAPHY

[16]

[17]

[18]

[19]

[20]

[21]

22]

23]

2022.109109. URL: https://www.sciencedirect.com/science/article/
pii/S1389128622002389 (cit. on p. 13).

Mariam Kiran, Eric Pouyoul, Anu Mercian, Brian Tierney, Chin Guok,
and Inder Monga. «Enabling intent to configure scientific networks for high
performance demandsy. In: Future Generation Computer Systems 79 (2018),
pp- 205-214. 18SN: 0167-739X. DOIL: https://doi.org/10.1016/j.future.
2017.04.020. URL: https://www.sciencedirect.com/science/article/
pii/S0167739X1730626X (cit. on pp. 13, 15).

Eder J. Scheid, Cristian C. Machado, Muriel F. Franco, Ricardo L. dos Santos,
Ricardo P. Pfitscher, Alberto E. Schaeffer-Filho, and Lisandro Z. Granville.
«INSpIRE: Integrated NFV-based Intent Refinement Environment». In: 2017
IFIP/IEEE Symposium on Integrated Network and Service Management (IM).
2017, pp. 186-194. DOI: 10.23919/INM.2017.7987279 (cit. on p. 15).

Daniele Bringhenti, Guido Marchetto, Riccardo Sisto, and Fulvio Valenza.
«Automation for Network Security Configuration: State of the Art and Re-
search Trends». In: ACM Comput. Surv. 56.3 (Oct. 2023). 1SSN: 0360-0300.
DOI: 10.1145/3616401. URL: https://doi.org/10.1145/3616401 (cit. on
pp. 19-21).

Verizon Business. 2025 Data Breach Investigations Report. https://www.
verizon.com/business/resources/reports/dbir/. Accessed: 2025-09-07.
2025 (cit. on p. 20).

Daniele Bringhenti, Simone Bussa, Riccardo Sisto, and Fulvio Valenza. « At-
omizing Firewall Policies for Anomaly Analysis and Resolution». In: IEEE
Transactions on Dependable and Secure Computing 22.3 (2025), pp. 2308-2325.
DOT: 10.1109/TDSC. 20243495230 (cit. on pp. 21, 22).

Daniele Bringhenti, Riccardo Sisto, and Fulvio Valenza. «A novel abstraction
for security configuration in virtual networks». In: Computer Networks 228
(2023), p. 109745. poOI: 10. 1016/ j . comnet . 2023 . 109745. URL: https:
//www.sciencedirect.com/science/article/pii/S1389128623001901
(cit. on pp. 21, 22).

Daniele Bringhenti and Fulvio Valenza. « GreenShield: Optimizing Firewall
Configuration for Sustainable Networks». In: IEEE Transactions on Network
and Service Management 21.6 (2024), pp. 6909-6923. DOI: 10.1109/TNSM.
2024.3452150 (cit. on pp. 21, 23).

Daniele Bringhenti, Riccardo Sisto, and Fulvio Valenza. « Automating VPN
Configuration in Computer Networks». In: IEEE Transactions on Dependable
and Secure Computing 22.1 (2025), pp. 561-578. DOI: 10.1109/TDSC.2024.
3409073 (cit. on pp. 21, 23).

79

https://doi.org/https://doi.org/10.1016/j.comnet.2022.109109
https://doi.org/https://doi.org/10.1016/j.comnet.2022.109109
https://doi.org/https://doi.org/10.1016/j.comnet.2022.109109
https://www.sciencedirect.com/science/article/pii/S1389128622002389
https://www.sciencedirect.com/science/article/pii/S1389128622002389
https://doi.org/https://doi.org/10.1016/j.future.2017.04.020
https://doi.org/https://doi.org/10.1016/j.future.2017.04.020
https://www.sciencedirect.com/science/article/pii/S0167739X1730626X
https://www.sciencedirect.com/science/article/pii/S0167739X1730626X
https://doi.org/10.23919/INM.2017.7987279
https://doi.org/10.1145/3616401
https://doi.org/10.1145/3616401
https://www.verizon.com/business/resources/reports/dbir/
https://www.verizon.com/business/resources/reports/dbir/
https://doi.org/10.1109/TDSC.2024.3495230
https://doi.org/10.1016/j.comnet.2023.109745
https://www.sciencedirect.com/science/article/pii/S1389128623001901
https://www.sciencedirect.com/science/article/pii/S1389128623001901
https://doi.org/10.1109/TNSM.2024.3452150
https://doi.org/10.1109/TNSM.2024.3452150
https://doi.org/10.1109/TDSC.2024.3409073
https://doi.org/10.1109/TDSC.2024.3409073

BIBLIOGRAPHY

[24]

[26]

[27]

28]

[29]

[30]

Daniele Bringhenti, Simone Bussa, Riccardo Sisto, and Fulvio Valenza. «A
Two-Fold Traffic Flow Model for Network Security Management». In: IEEE
Transactions on Network and Service Management 21.4 (2024), pp. 3740-3758.
DOI: 10.1109/TNSM. 2024 .3407159 (cit. on p. 21).

Daniele Bringhenti, Guido Marchetto, Riccardo Sisto, Fulvio Valenza, and
Jalolliddin Yusupov. «Automated optimal firewall orchestration and configu-
ration in virtualized networksy. In: NOMS 2020 - 2020 IEEE/IFIP Network
Operations and Management Symposium. 2020, pp. 1-7. DOI: 10 . 1109/
NOMS47738.2020.9110402 (cit. on pp. 21, 22, 42).

Daniele Bringhenti, Guido Marchetto, Riccardo Sisto, Fulvio Valenza, and
Jalolliddin Yusupov. « Automated Firewall Configuration in Virtual Networks».
In: IEEE Transactions on Dependable and Secure Computing 20.2 (2023),
pp. 1559-1576. DOT: 10.1109/TDSC.2022.3160293 (cit. on pp. 21, 22, 30, 31,
36).

Netgroup. VEREFOO: VErified REFinement and Optimized Orchestrator.
Accessed: Sep. 13, 2025. 2025. URL: https://github. com/netgroup-polito/
verefoo (cit. on pp. 21, 30, 32).

Daniele Bringhenti, Francesco Pizzato, Riccardo Sisto, and Fulvio Valenza.
«A Looping Process for Cyberattack Mitigation». In: 202/ IEEFE International
Conference on Cyber Security and Resilience (CSR). 2024, pp. 276-281. DOI:
10.1109/CSR61664.2024.10679501 (Cit. on p. 21).

Francesco Pizzato, Daniele Bringhenti, Riccardo Sisto, and Fulvio Valenza.
«Automatic and optimized firewall reconfiguration». In: NOMS 202/-202/
IEEE Network Operations and Management Symposium. 2024, pp. 1-9. DOI:
10.1109/N0MS59830.2024.10575212 (Cit. on p. 21).

Daniele Bringhenti, Francesco Pizzato, Riccardo Sisto, and Fulvio Valenza.
«Autonomous Attack Mitigation Through Firewall Reconfiguration». In: Int.
J. Netw. Manag. 35.1 (Dec. 2024). DOI: 10.1002/nem.2307. URL: https:
//doi.org/10.1002/nem.2307 (cit. on p. 21).

NetGroup. NetGroup - Politecnico di Torino. Accesso: 10 settembre 2025.
2025. URL: https://netgroup.polito.it/ (cit. on p. 21).

Lumi Chatbot. Lumi Chatbot. https://lumichatbot.github.io/#/. Ac-
cesso il 2 settembre 2025. 2025 (cit. on p. 26).

80

https://doi.org/10.1109/TNSM.2024.3407159
https://doi.org/10.1109/NOMS47738.2020.9110402
https://doi.org/10.1109/NOMS47738.2020.9110402
https://doi.org/10.1109/TDSC.2022.3160293
https://github.com/netgroup-polito/verefoo
https://github.com/netgroup-polito/verefoo
https://doi.org/10.1109/CSR61664.2024.10679501
https://doi.org/10.1109/NOMS59830.2024.10575212
https://doi.org/10.1002/nem.2307
https://doi.org/10.1002/nem.2307
https://doi.org/10.1002/nem.2307
https://netgroup.polito.it/
https://lumichatbot.github.io/#/

	List of Figures
	Introduction
	Thesis Objective
	Thesis Structure

	Intent-Based Networking: Concepts, Architecture, and Language Solutions
	Introduction
	Intent based networking
	Core Components
	Role of AI in IBN
	Intent Translation

	Intent-Based Languages
	NILE

	Case Studies: IBN Architectures and Tools
	Indira
	Inspire
	Polanco

	Conclusion

	Network Automation
	Automation for Network Security Configuration
	VEREFOO
	Purpose and Capabilities

	Conclusion

	Semantics, Inputs, and Outputs of NILE and VEREFOO
	Overview
	NILE Semantics and Structure
	Syntactic Definition of an Intent

	Operations
	Mandatory
	Optional
	Targets

	Considerations
	VEREFOO Semantics and Architecture
	Overview
	Input
	Output
	Input-to-Output Processing in VEREFOO

	Conclusion

	NILE to VEREFOO Translation
	Introduction
	Analysis of the Translation Requirements
	Structure of NILE Intents
	Requirements of VEREFOO

	Challenges of Translation
	Conflict-free
	Information Gap
	Grammar Modifications
	Translation Rules

	Translator Implementation
	Translation Workflow
	The main.py Module
	The transformer.py Module
	The grammar.py Module
	The enrich.py Module
	The constructor.py Module
	The topology_manager.py Module
	The property.py Module
	The utils.py Module
	The xml_converter.py Module
	The create_db.py Module

	Conclusions

	Validation of the Translation between NILE and VEREFOO
	Introduction
	Network Topology

	Use Case 1: Validation of the from/to Construct
	Use Case 2: Validation of the for Construct
	Use Case 3: Validation with Multiple Intents Across Two Service Graphs
	Conclusions

	Conclusions and Future Works
	Future works
	Extension of the supported NILE grammar
	Automated enrichment and dynamic data retrieval
	Integration with AI-based intent interpretation

	Final Remarks

	Bibliography

