Llh\ |Il||

w
yyl S

o
\\ 1859 s#
S w2

Politecnico di Torino

Cybersecurity
A.a. 2024/2025

Graduation Session December 2025

Predicting User Quality of
Experience to Identify Network
Issues in Live Streaming services:
An ISP Perspective

Supervisors: Candidate:
Marco Mellia Giuseppe Giordano
Danilo Giordano

To my parents. . .

Whithout you none of this would have been possible.
Thank you for all your sacrifices

which have allowed me to achieve this dream

Abstract

In today’s world, video streaming accounts for a significant share of Internet traffic.
Internet Service Providers (ISPs) strive to provide these services while ensuring the
best possible Quality of Experience (QoE) for users. One of the biggest challenges
for ISPs is that, unlike content providers who can directly access users’ QoE
metrics, they can only derive them from network measurements such as throughput,
latency and packet loss. This limitation is mainly due to end-to-end encryption,
which limits the possibility of deep packet inspection, by enhancing user privacy
while limiting insight into application-level metrics. The goal of this thesis is to
develop methods that allow ISPs to accurately estimate user QoE relying on passive
network traffic measurements that can be collected without breaking end-to-end
encryption. This approach also makes it possible to identify problematic users
with poor QoE while also allowing ISPs to determine whether service degradation
originates from their infrastructure or is limited to specific users. To this end, I use
machine learning techniques to predict the quality of video streaming and identify
stall events based solely on passive network traffic measurements. The models are
trained and evaluated on a dataset composed of traffic measurements describing
video streaming content collected in a controlled environment and then tested on
real-world traffic. In particular, this thesis analyses the streaming of DAZN videos,
a popular sports streaming service. The real-world traffic was collected from an
Italian Internet Service Provider. The personal data were properly anonymised
to protect the privacy of the users. To identify QoE problems, the aim of this
thesis is to predict changes in video resolution and stall events. For this purpose,
starting from network logs that describe the data flows exchanged between a user
and the content provider with passive measurements, I process millions of flows
to extract the features required for the classifiers. Predictions are performed in
10-second time windows, which enables the identification of users with a high rate
of resolution changes or rebuffering events, as well as users with consistently low
video quality. Users with low QoE are further investigated by analysing additional
network metrics such as RT'T, the number of open flows and the amount of data
exchanged to identify the main causes of QoE degradation. To visualise the results,
a dashboard was developed that provides both aggregated and detailed views
of QoE over time, while also allowing the examination of individual users and
the associated network metrics. The results show that the proposed method can
identify video resolution and stall events with high accuracy. After applying the
developed method to the ISP data, I identified several problematic users where the
ISP confirmed that they had connectivity issues.

Table of Contents

List of Tables

1

List of Figures

Introduction

1.1 Motivation

1.2 Proposed Methodology

1.3 Thesis Structure L

Background

2.1 Passive Measurements L.
211 Tstat

2.2 Active Measurements
2.2.1 Streambot

2.3 Related Work

Methodology

3.1 ISP data analysis
3.1.1 ISP data structure
3.1.2 Dazn protocol Identification
3.1.3 DAZN live flows analysis

3.2 Stall events classifier L.
3.2.1 Data collection L
3.2.2 Data Pre-processing
3.2.3 Models training, validation and test

3.3 ISP Data processing
331 Reading
3.3.2 Makewin
3.3.3 Classify
3.34 Merge

3.4 Dashboard development

VII

VIII

4 Experimental Results

4.1 Live Dazn Flow Identification
4.2 Identify Rebuffering Events
4.2.1 Data Collection
4.2.2 Data Preprocessing, Partitioning and labelling
4.2.3 Models Training and Validation

4.2.4 Models Testing

4.3 Models Results on ISP Data
4.3.1 Insights from the weekend of March 29-31, 2025
4.3.2 Matches analyses 0oL

4.3.3 Users analyses

4.4 Dashboard Deployment

44.1 Home
4.4.2 Daily analysis
4.4.3 User analysis

5 Conclusion
5.1 Future Work

A Matches analysed

Bibliography

VI

25
25
31
31
33
35
36
39
39
43
48
53
53
95
58

60
60

62

66

List of Tables

2.1

3.1
3.2
3.3
3.4

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

4.9

4.10
4.11
4.12

Example of log_reb_complete

List of features extracted from each window
Hyperparameters used for the GridSearch.
Quality features
Example of computing resolution changes within a 5-minute time

slot. In this example, three resolution changes occur.

TCP and UDP users in different days
TCP and UDP users in different days
Best hyperparameters found with GridSearch
Deterministic model performance on the validation set
Random model performance on the validation set
Deterministic model performance on the test set
Random model performance on the test set
Matches analyzed and number of active users during the streaming

SESSION L.
Quality classifier results during all the matches analyzed
Rebuffering classifier results during all the matches analyzed
Number of connections per user with a live DAZN server
Number of connections per user with a live DAZN server after

filtering flows with downloaded data < 1MB

VII

List of Figures

2.1

3.1

4.1

4.2

4.3

4.4
4.5
4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.14

General architecture of ML-based QoE/KPI estimation systems
Example of rebuffering simulation with randomicity

Amount of data downloaded by users that use TCP or UDP during
the day 23-05-2025o
Top 50 server per downloaded data on May 23rd, 2025, between
20:00 and 23:00o
akamaized.net downloaded data for Dazn and Rai on May 23rd,
2025, between 20:00 and 23:00
Quality model classification during a Serie A match
ECDF of the amount of downloaded data in a 10-seconds window

ECDF of the amount of downloaded data in a 10-seconds window
with more than 1 MB of downloaded data
Evolution of the video rate during a streaming session with deter-
ministic rebuffering events and full bandwidth
Evolution of the video rate during a streaming session with random
rebuffering events and limited bandwidth (1500 Kbps)
ECDF of the duration of rebuffering events in the dataset with
deterministic rebuffering events

ECDF of the duration of rebuffering events in the dataset with
random rebuffering eventso
Confusion matrix of the dataset with deterministic rebuffering events
for both training and validation set
Confusion matrix of the dataset with random rebuffering events for
both training and validationset
Confusion matrix of the model trained with deterministic rebuffering
events for thetest set oo

Confusion matrix of the model trained with random rebuffering
events for thetest set

4.15 Output of both models during the last matchday of Serie A 2024/2025. \
In red is highlighted a user with an high number of rebuffering events. 38
4.16 Prediction of the quality classifier during the Serie A matchday 29-31

March 2025: 0: 0.8%, 1: 24%, 2: 96.8% 39
4.17 Distribution of the quality classifier predictions during the Serie A
matchday 29-31 March 2025 40
4.18 Windows prediction during Napoli - Milan match on March 30, 2025
based on downloaded data volume 41
4.19 Prediction of the quality classifier during Napoli-Milan, user IPv4:ec60231010904e17badcS
0: 0%, 1: 38%, 2: 62% 42

4.20 Windows prediction during Napoli - Milan match on March 30,
2025 for user IPv4:ec60231010904e17badc954b7207bfdf based on
downloaded data volume 42
4.21 Time series of the downloaded data and quality prediction during
Napoli-Milan match on March 30, 2025 for user [Pv4:ec60231010904e17badc954b7207bfdf

4.22 ECDF of the average number of quality changes per user 45
4.23 ECDF of the probability of having a quality change during an active

slot . . o 45
4.24 Quality changes probability during differents time slots compared to

the number of active users 46

4.25 Quality changes experienced by each user that had at least one quality
changees during the analysed matches on 23/05/2035 between 20:00
and 23:00 47
4.26 Quality prediction for each user that had at least one quality changees
during the analysed matches on 23/05/2035 between 20:00 and 23:00 47
4.27 TPv4 and IPv6 download data from live DAZN servers during the

last Serie A matchday of 2024/2025 season 49
4.28 ECDF of downloaed data for IPv4 flows 50
4.29 ECDF of downloaed data for IPv6 flows 50
4.30 Scatterplot of downloaed data vs flow duration 50
4.31 Scatterplot of downloaed data vsrttavg 50
4.32 IPv4 and IPv6 download data from live DAZN servers after filtering

flows with downloaded data < 1MB 51
4.33 . 52
434 . 52
435 e 53
4.36 General statistics about the users streaming DAZN 54
4.37 General statistics about the number of quality changes during the

streaming sessions Lo 54
4.38 General statistics about the number of rebuffering during the stream-

INg SeSSIONS %)

4.39
4.40
4.41
4.42

4.43
4.44

Al

A2

A3

A4

A5

A6

Statistics on users and quality changes during May 23, 2025 56

Statistics on rebuffering events during May 23, 2025 56
Quality changes and users information on May 23, 2025 for each
5-minutes time slot L 57
Prediction of the stall event classifier for three different users on
May 23, 2025 o8
Example of ISP data for a specificuser 58

downloaded /uploaded data for TCP and UDP traffic for a specific user 59

Quality changes experienced by each user that had at least one quality
changees during the analysed matches on 30/03/2025 between 20:00
and 23:00 62
Quality prediction for each user that had at least one quality changees
during the analysed matches on 30/03/2025 between 20:00 and 23:00 63
Quality changes experienced by each user that had at least one quality
changees during the analysed matches on 27/04/2025 between 20:00
and 23:00 63
Quality prediction for each user that had at least one quality changees
during the analysed matches on 27/04/2025 between 20:00 and 23:00 64
Quality changes experienced by each user that had at least one quality
changees during the analysed matches on 18/05/2025 between 14:15
and 17:15 L 64
Quality prediction for each user that had at least one quality changees
during the analysed matches on 18/05/2025 between 14:15 and 17:15 65

Chapter 1

Introduction

In today’s world, video streaming accounts for a significant share of Internet traffic.
Internet Service Providers (ISPs) aims to deliver these services while ensuring the
best possible Quality of Experience (QoE) for their users. Guarantee an optimal
QoE means providing users a video streaming experience that is smooth, without
interruptions, and with high video quality.

In the past years, the consumption of live streaming content has grown exponentially.
Services such as Dazn, Amazon Prime and other live streaming platforms are now
part of everyday digital life, generating a significant portion of Internet traffic. In
particular, live streaming has gained increasing importance thanks to the growing
popularity of real-time events or sports broadcasts. This evolution has introduced
new challenges for ISPs, who must ensure stable connectivity and consistent
performances. The Quality of Experience (QoE) is a measure of the delight of
a customer’s experiences with a service. In the context of video streaming, QoE
is strongly influenced by factors such as video quality, playback stability, the
presence and duration of rebuffering events. Understanding and quantifying QoE is
fundamental to determine whether a user is experiencing a service in a satisfactory
manner. From an ISP perspective, being able to monitor and predict user QoE
is essential. It allows ISPs to proactively manage network resources, identify
potential issues, and optimize the delivery of streaming content. The idea behind
this thesis is to develop methods that allow ISPs to accurately estimate user QoE
for DAZN live streaming events by relying exclusively on passive network traffic
measurements, which can be collected without breaking end-to-end encryption.
Such an approach can enable ISPs to monitor the user-perceived quality, identify
potential network-related degradations, and improve the overall service quality
offered to end users.

Introduction

1.1 Motivation

End users expect to be able to enjoy video content smoothly and without interrup-
tions, regardless of the device used or the network they are connected to. Internet
Service Providers (ISPs), on the other hand, face the challenge of maintaining a high
quality of service even in the presence of increasing network traffic. Monitoring and
improving user Quality of Experience (QoE) is crucial for ISPs for both business
and technical reasons. From a business perspective, monitoring and improving
user Quality of Experience (QoE) is important because a poor viewing experi-
ence can lead to customer dissatisfaction with an increasing number of churn and
damage to brand reputation. From a technical point of view, being able to assess
QoE provides ISPs a deeper insights into network behavior and how it impacts
end users. Traditional Quality of Service (QoS) metrics — such as throughput,
latency and packet loss — are useful for evaluating the performance of the network
infrastructure but do not always correlate with the actual experience perceived by
the user. As a result, relying only on QoS measurements can lead to a misleading
understanding of user satisfaction. However, accurately measuring QoE poses
significant challenges, particularly in modern encrypted Internet environments.
The widespread adoption of end-to-end encryption, such as HT'TPS, has made it
increasingly difficult for ISPs to access application-layer information. As a results,
ISPs can no longer rely on Deep Packet Inspection (DPI) or other techniques to
analyze traffic at the application level. Given these limitations, ISPs must rely only
on passive network measurements to estimate user QoE so it is important to have
tools and methods that allow them to extract useful information from network
measurements to identify how the end user is experiencing the service. The idea
is to leverage machine learning techniques to infer QoE from observable network
traffic by extract indicators that can be correlated with user-perceived quality such
as video quality or rebuffering events. These methods would allow ISPs to monitor
QoE in a non-intrusive and privacy-preserving way, enabling continuous assessment
of user-perceived quality across millions of live sessions.

1.2 Proposed Methodology

In this this thesis, we propose methods that allow ISPs to estimate user QoE in
order to identify not only users with poor QoE but also the potential root causes
of it. The idea is to extract from millions of network logs, those related to DAZN
streaming traffic, in order to extract features needed as input for classifiers. These
classifiers are designed to predict both the video quality with which the user is
enjoying the service and the presence of stall events. The output of the model is
then used to identify users with poor QoE and, in general, also the overall network

2

Introduction

performances. Specifically the process is the following:

a)

b)

DAZN flows identification: live DAZN flows are identified from the net-
work logs provided by the ISP and separated from the rest of the traffic.

Feature extraction: live DAZN network flows are divided into a 10-second
windows from which statistical and temporal features are extracted. Those
windows will be used as input for the classifiers.

Adding user network info: other usefull metrics are added to the 10-second
quality windows, used to describe the user’s bheavior during those 10-second
interval, such as the number of opened connections or the amount of data

downloaded /upload for both TCP and UDP traffic.

Data classification and consolidation: 10-second windows are used as
input for two classifiers: one to estimate video quality and the other to identify
stall events. Classifiers’ result are then used also to coumpute the number of
resolution changes and the number of stall event in a 5 minutes interval for
each user.

To easily visualize the classification results, a dashboard has been developed. This
dashboard allows ISPs to monitor user QoE over time and identify potential issues
affecting the streaming experience. Thanks to this tool, ISPs can identify not only
users experiencing poor QoE, but also the eventual precence of network problems
that may be affecting the overall service quality.

1.3 Thesis Structure

The thesis is structured as follows:

Chapter 2 provides an overview of the background and related work in the
field of QoE estimation for video streaming services.

Chapter 3 presents the proposed methodology for estimating user QoE from
passive network measurements.

Chapter 4 discusses the results obtained from the experiments conducted to
evaluate the proposed approach.

Chapter 5 concludes the thesis and outlines potential future work.

Chapter 2

Background

When it comes to evaluating network performance and user QoE, different types
of measurement tools and protocols have been developed. However, they differ in
how they work. Solutions can be divided into two primary categories: active and
passive.

2.1 Passive Measurements

Passive measurement refers to the process of monitoring network traffic without
injecting new traffic or affecting the existing one [1]. They rely on collecting packet
traces or flow-level statistics directly from network interfaces, routers, or monitoring
probes. Typical use cases include traffic classification, anomaly detection, and
QoE estimation. In the context of video streaming, passive measurements can be
used to infer application-level metrics (e.g., bitrate, stall events, video quality) by
analyzing the characteristics of packet sequences and timing patterns. The main
advantage of this approach lies in its scalability and transparency. However, it
also presents challenges, such as the need for accurate labeling and difficulties in
obtaining ground truth, especially with encrypted traffic. For these reasons in this
thesis, we use tstat [2], a widely adopted passive network traffic analyzer, to collect
traffic traces and extract relevant features for our QoE estimation models.

2.1.1 Tstat

Tstat is a tool used to process .pcap files! and reconstruct the characteristics of
the internet traffic at the network, transport and application level. For the purpose
of this thesis, we are interest in the ability of Tstat to reconstruct the TCP/UDP

Ipcap (Packet Capture) is a common format for storing packet captures

4

Background

flows, specifically we are interested on the recostruction of TCP flows to develop
the classifier and on the reconstruction of both TCP and UDP flows to analyse the
users’ behavior. The output of tstat is a set of .txt files in a SSV format (Space
Separated Values), each row corresponds to a different flow and each column is
associated to a specific measure. If necessary the measures are provided for both
directions of the flow (C2S and S2C). The useful files generated by tstat are:

a) log_TCP_complete: it provides a complete set of all the opened connection
that ended correctly. A TCP connection is identified when the first SYN
segment is observed and ends when the RST or FIN/ACK segments are
observed. This log provides a wide range of volumetric and temporal metrics
like the total amount of downloaded/uploaded bytes, the duration of the
connection, the min, max and average rtt observed during the connection
lifetime.

b) log UDP_complete: reports every tracked UDP flow pair. Since UDP is a
connectionless protocol an UDP flow pair is identified when the first UDP
segment is observed for a UDP socket pair?, and is ended when no packet
has been observed in a specific time interval. In this case we can only have
volumetric metrics because there are no ACKs or other control messages that
can be used to compute temporal metrics.

c) log_{TCP/UDP} periodic: these logs capture the temporal evolution of the
connection by dividing it into bins of at most one second.

For both TCP and UDP flows tstat provide also, if able, the servername of the
service used.

2.2 Active Measurements

A broad set of passive solutions exist that collect different statistics from network
devices. These include network information such as traffic statistics like the amount
of download or uploaded data, round trip time or dropped packets. However, while
there is some relation to QoS, there is no possibility to use them alone to infer user’s
QoE. For this reason, active measurements are often used to complement passive
measurements. Active measurements involve injecting synthetic traffic into the
network to evaluate its performance. This method involves the active generation of
test traffic or probes by dedicated tools or software. Active monitoring typically
provides real-time insights into network availability, response times, and application

2a socket pair is the 4-tuple (src ip, dst ip, src prt, dst prt) that uniquely identify a network
connection

Background

performance. For the scope of this thesis, we use streambot [3] and throttle [4]-a
JavaScript library-to perform active measurements. Specifically we use streambot
to simulate video streaming sessions and collect application-level QoE metrics,
while throttle is used to emulate different network conditions (e.g., bandwidth
limitations) in order to simulate rebuffering events. These active measurements
are crucial for obtaining ground truth data, which is essential for training and
validating our QoE estimation models.

2.2.1 Streambot

Strembot is a lightweight JavaScript tool that automates browser actions to simulate
user behavior on video streaming platforms. It performs packet captures using
Whireshark and it also trace HT'TP messages at the application layer. Streambot
can be configured to simulate the streaming of a set of different streaming event
for a specific duration. Thanks to its ability to interact with the web page DOM,
Streambot can also retrieve the state of the video player. Once the execution is
completed, Streambot outputs:

a) log_net_complete: a .pcap packet trace.

b) log_har_complete: a HT'TP Archive (.har) file that contains all the HTTP
messages exchanged during the streaming session in a json format.

c) log_bot_complete: a .txt file that contains the start time and the end time
of the streaming session.

d) log_reb_complete: a .txt file that trace the state of the video player during
the streaming session at each second (Table 2.1).

t; state

1752936816868 live
1752936817868 dead
1752936818868 live

Table 2.1: Example of log_reb_complete

2.3 Related Work

Before the adoption of traffic encryption, network QoE monitoring solutions were
based on deep packet inspection (DPI) to extract information about video quality

6

Background

parameters such as streamed resolution, buffer state, and bitrate [5], [6]. With
the introduction of encryption, such approaches became unfeasible, this opened
up new research related to QoE estimation based on the analysis of encrypted
video traffic. Two main approaches have been proposed to address this challenge:
session-modeling-based (SM) and machine-learning-based (ML) methods.
SM solutions require knowledge of the underlying streaming protocol exploiting the
session reconstruction to obtain QoE-related Key Performance Indicators (KPIs).
One of this solution was eMIMIC [7]. The system reconstructs the chunk-based
delivery sequence of a video session from packet traces, which is used estimate
average bitrate, rebuffering ratio, bitrate switches, and startup time. However,
adapting this system to work with QUIC traffic may reduce the accuracy of chunk
detection, on which the system heavily depends. Other SM approaches instead,
do not attempt to estimate QoE directly but rather focus on predicting the client
buffer conditions [8]. However, given the problem dimensionality resulting from the
differents type devices, platforms, streaming services, apps from which the content
is accessed, finding analytical solutions for a wide range of cases becomes extremely
complex. For such reasons, recent studies have shifted towards ML techniques
for QoE/KPI estimation. This happened because this type of approaches are
potentially more flexible and sustainable in long term scenarios [9], [10], [11], [12],
[13]. In both SM and ML approaches, the ground-truth is required for model
training. While this is relatively easy for some platforms, such as YouTube, it can
be more challenging for others like DAZN or Prime due to the lack of publicly
available APIs. In SM-based approaches, collecting a smaller dataset is typically
sufficient to characterize the streaming protocol. In contrast, ML-based methods
require large and diverse datasets—both in terms of application-layer performance
and network conditions—to effectively train their models. The general structure of
ML-based QoE estimation systems proposed is quite the same in each architecture
(Figure 2.1). Once network traffic traces are collected, relevant traffic features are
extracted and paired with corresponding QoE metrics derived from application-level
data. The resulting dataset is then used to train ML models to estimate QoE/KPIs
solely based on network traffic features.

Background

Network

Network

traffic traffic Performa?nce
traces feature Evaluation
extraction extraction f
Algorithm
selection
Dataset + Model
’ Feature
selection

KPI/QoE
metric
extraction

Figure 2.1: General architecture of ML-based QoE/KPI estimation systems

Chapter 3

Methodology

As mentioned in section 1.2, the pipeline proposed to compute the users’” QoE and
the overall network performance consists of five main steps:

a)

b)

)

DAZN flows identification: live DAZN flows are identified from the net-
work logs provided by the ISP and separated from the rest of the traffic.

Feature extraction: live DAZN network flows are divided into a 10-second
windows from which statistical and temporal features are extracted. Those
windows will be used as input for the classifiers.

Adding user network info: other usefull metrics are added to the 10-second
quality windows, used to describe the user’s bheavior during those 10-second
interval, such as the number of opened connections or the amount of data
downloaded /upload for both TCP and UDP traffic.

Data classification and consolidation: 10-second windows are used as
input for two classifiers: one to estimate video quality and the other to identify
stall events. Classifiers’ result are then used also to coumpute the number of
resolution changes and the number of stall event in a 5 minutes interval for
each user.

Dashboard: results will be displayed in a dashboard that allows to visualize
the user QoE with different granularity (daily, hourly, per user).

In this section, all the steps carried out to develop the proposed pipeline are
described. Specifically, the chapter is organized as follows:

a)

Section 3.1 describes the analysis of the network logs provided by the ISP in
order to identify DAZN live flows and consolidate the regular expression used
for the filtering process.

Methodology

b) Section 3.2 presents the development process of the classifier designed to
identify stall events from network logs.

c¢) Section 3.3 describes the process of feature extraction and the retrieval of all
useful information regarding user behavior from the network logs provided by
the ISP, followed by the classification phase.

d) Section 3.4 illustrates the development of the dashboard that enables the
visualization of the obtained results.

3.1 ISP data analysis

The first step in implementing the proposed pipeline is the analysis of the data
provided by the ISP

3.1.1 ISP data structure

The network logs provided by the ISP are processed using tstat. The output of

tstat is organized in a directory tree as shown in the following figure:
/ISP Folder

| 2024/

| 2025/

| 01-Jan/

| 02-Feb/

| 2025_02_01_00_24.out/

log_tcp_complete.gz

log tcp_periodic.gz

log_udp_complete.gz

log_udp_periodic.gz

| 2025_02_01 01 _24.out/
| 2025 02 01 02 24.out/
../

L/

| 12-Dec/

. __rrd/

Each *.out file contains the data collected in a 1 hour interval and is named
as YYYY MM DD_HH mm.out where YYYY is the year, MM is the month, DD is the day,
HH is the hour and mm is the minutes when the logging started. In each *.out
folder there are several compressed files, each one containing informations about
the network flows observed during that hour.

10

Methodology

3.1.2 Dazn flows Identification

Thanks to previous experiments [14] we know that there is the possibility to identify
DAZN live flows by filtering them using the regular expression

(?=.%x1ive) (?=.xdazn). The first step is to use this regular expression to filter
DAZN live flows from the ISP data, in order to understand the transport protocol
used (TCP or UDP) by DAZN to stream video content. To do this we analyse
the log tcp and udp provided by the ISP in different days (those corresponding to
some important Serie A matchday). For each day we:

o Select all the Dazn live flows from the log tcp and udp complete.

o Count the number of users that used tcp or udp and the total amount of data
downloaded.

Doing this analysis on different days we can understand if DAZN uses a specific
protocol to stream video content.

3.1.3 DAZN live flows analysis

Once the transport protocol used by DAZN to stream video content is identified,
we can proceed with the analysis of DAZN live flows.

Regular expression consolidation

The second step is to consolidate the regular expression (?=.*1ive) (?=.*dazn)
used to filter DAZN live flows. We want to understand if the regular expression is
able to capture all the DAZN live flows or if there are other flows related to DAZN
streaming that are not captured by this regular expression. In this case the idea is
to concentrate the analysis on the time range when the event is played. In order
to perform this analysis we select all the traffic from users that we know that are
watching the event (we select these users by using our regular expression) from the
ISP data. Once we have all the traffic from those users, we analyse all the opened
connection, specifically we observe the server domain name to understand if there
are other flows that can potentially be related to DAZN streaming.

Noise windows identification

Once all the Dazn live flows are identified, the next step is to identify and remove
noise windows from the dataset. To do this we extract all the 10-second windows
from all the DAZN live flows identified in the previous step and we analyse the
distribution of the amount of data downloaded during those windows. The idea
is to identify windows with a very low amount of data downloaded that can be

11

Methodology

considered as noise windows (e.g., windows where the user has paused the video
player or windows where the user has the dazn app opened in background). The
identification of those windows is performed by setting a threshold on the amount
of data downloaded during the window. All the windows with an amount of data
downloaded below that threshold are considered as noise windows and removed
from the dataset.

3.2 Stall events classifier

In order to estimate the user QoE, a classifier that is able to identify rebuffering
events from network logs has been developed. The model was devoled using a
supervised machine learning approach. It was developed by simulating DAZN
streaming event in a controlled testbed, in order to be able to obtain the ground
truth of rebuffering events.

3.2.1 Data collection

The data used to train, validate and test the models were collected using stream-
bot. We collected several streaming sessions with differents bandwidth condition.
Experiments with differents bendwidth values were performed to ensure that the
classifier generalizes properly (i.e., it does not confuse low video quality caused by
limited bandwidth with actual rebuffering events).

During the streaming session, we simulate rebuffering events and streambot
trace the state of the video player every second in order to obtain the groundtruth
for the model. Thanks to its ability to interact with the DOM, streambot is able
to extract the HI'ML Media Element corresponding to the video player and read
its properties. Specifically it is able to read the readyState properties of the
HTML Media Element, when the video player is working correctly the readyState
property is set to 4 (HAVE_ENOUGH__DATA), when a rebuffering event occurs
the readyState property takes differents values depending on the amount of data
available in the buffer.

Forcing Rebuffering event

Rebuffering events are forced by using throttle a JavaScript library that allows to
limit the bandwidth. To collect data two differents modes of throttling were used:

e Without randomicity: during playback, at regular intervals of time, the
bandwidth is throttled to a specific value for a specific duration.

12

Methodology

e With randomicity: during playpack three differents values are randomly
chosen:

— wait: time before a rebuffering event
— reb: duration of a rebuffering event

— throttle: value of the bandwidth

reb, reb, reb,

b
—
—
—
—
o
—
v

t, s, e, s, e, S3 e; t

wait, wait; wait,

Figure 3.1: Example of rebuffering simulation with randomicity

When the connection is throttled and the buffer is emptied, a rebuffering event
starts. When the connection is restored, the buffer starts to fill up and therefore
streaming resumes.

3.2.2 Data Pre-processing

As said in Section 2.2.1 when streambot ends the streaming session, it generates
several log files, one for each session:

» log net_complete: a .pcap packet trace.

e log_har_complete: a HTTP Archive (.har) file that contains all the HTTP
messages exchanged during the streaming session in a json format.

e log bot_complete: a .txt file that contains the start time and the end time
of the streaming session.

e log reb_complete: a .txt file that trace the state of the video player during
the streaming session at each second (Table 2.1).

All these files are processed in order to extract the features required for training
the model. The following steps are carried out for each streaming session:

1. log_net_complete processing: using tstat the .pcap file is processed to
obtain the logs complete and periodic of all the TCP and UDP connection
opened during the streaming session.

2. Flows filtering: the regular expression (?=.x1live) (?7=.%*dazn) is used to
filter from the log complete file all the flows related to the DAZN streaming.

13

Methodology

3. Bins filtering: all the bins reletad to the DAZN streaming in the log periodid
are identified by using the socket pair that uniquely identify an opened connec-
tion, so for each opened connection in the log complete all the corresponding
bins in the log periodic are selected.

4. windows extraction: considering tga and tenq (from the
log_bot_complete file) as the timestamp when the event start and end, all
bins are divided using a sliding-window technique with dimension winsize
and step step_size. Considering the interval [¢;,¢;] as the time range covered
by a window, all the bins are selected in the following way:

tj Z ts and tl S te

For each window all the feature in Table 3.1 are extracted. For temporal
features the inactivity time within the window and the statistics (max, min,
avg, std) of the space occupied by each bins within the window are computed.
For volumetric features the percentage of space occupied by the bins within
the window is first computed as:

max(ts,t;) — min(t;, t.)
te — s

f=

Then this factor is multiplied by the value of the feature. Finally for each
window the sum of all contributions is computed:

n
Z T * fi
i=1

where n is the number of bins within the window, z; is the value of the feature
for the bin ¢ and f; is the factor computed for the bin 2.

For each window, from the log reb_complete file, the number of seconds
spent in each state (playing, rebuffering) is computed.

14

Methodology

feature description

win__idle Estimation of the period of inactivity within the window
avg_ span Avg duration of all bins in a windows

std_ span Std of the duretion of all bins in a windows

max_ span Max duration of all bins in a windows

min_ span Min duration of all bins in a windows

c_bytes all Bytes sent from the client

¢ _ack cnt Packets from client with the ACK flag set

c_ack cnt_p Packets from server with the ACK flag set with no payload
¢ pkts_all Packets sent from the client

c_pkts_ data Packets from client with payload

c_bytes retx Bytes retrasmitted from the client

s_bytes all Bytes sent from the server

s ack cnt Packets from server with the ACK flag set

s _ack cnt_p Packets from server with the ACK flag set with no payload
s_pkts_all Packets sent from the client

s_pkts data Packets from server with payload

s_bytes retx Bytes retrasmitted from the server

Table 3.1: List of features extracted from each window

3.2.3 Models training, validation and test

To develop the model we use the scikit-learn library in Python. It is a widely
used library that provides several tools for the development of classification models.
The model chosen for the classification task is a Random Forest classifier. This
algorithm combines the output of multiple decision trees to reach a single result.
Each decision tree is built using a different subset of the training data with a
random subset of features, then each tree makes a prediction based on the input
data. The results of all these trees are then combined to make a final prediction
(usually by majority voting for classification tasks).

Data Processing

Once all the windows are extracted from all the streaming sessions, data are divided
and combined into three datasets: training, validation and test set. The division
in performed by maintaining all the windows extracted from a single streaming
session in the same dataset. This approach is adopted because dividing all the
samples randomly there is the possibility to give some «bias» to the model. For
example we can divide a buffering event sending in the training set the end and

15

Methodology

the start of it, instead the central part of the event can go on the test set. In
this case the model can maybe understand that this specific sample is a buffering
event because it «knows» that a buffering event start and end. When the data are
divided two other step are performed:

e Labelling: each window is labelled as rebuffering if
Ngtal = threshold

where ngyy is the number of seconds spent in rebuffering state during the
window and threshold is a parameter. Otherwise the window is labelled as

playing.

e Standardization: all the features are standardized using the StandardScaler
from scikit-learn. This scaler standardize the features by removing the
mean and scaling to unit variance. The standard score of a sample x is

calculated as
(z —u)

Z =
S
where u is the mean of the training samples and s is the standard deviation
of the training samples.

Models optimization and validation

The model is trained using the training set and then validated using the validation
set. The validation set is used to evaluate the model during the training phase
and to tune hyperparameters. To fine-tune the hyperparameters GridSearch is
applied. The grid search systematically explores a predefined set of hyperparameter
combinations to identify the best configuration for the model. The hyperparameters
considered for the optimization are listed in Table 3.2. The chosen macro to
evaluate the model performance during the validation phase is the Fi1-score for
the rebuffering class. The best model obtained with the grid search is then
evaluated using the test set.

Hyperparameter Values
n_estimators [5, 10, 15, ... 45]
max_depth 6, 8, 10, 12, 14]
min_samples_leaf [5, 10, 20, 40, 80, 120]
citerion [gini, entropy]

Table 3.2: Hyperparameters used for the GridSearch.

16

Methodology

3.3 ISP Data processing

In this section is described how the data provided by the ISP are processed in
order to extract the features required for the classifications task and all the usefull
information about the user behavior during the streaming. The data processing is
divided into four main steps:

1. Reading: The ISP data are read and filtered.

2. Make Win: Data are processed to extract the features required for the classifi-
cation task and other usefull information about the user behavior.

3. Classify: Windows extracted in the previous step are classified using two
different classifiers: one for the video quality and one for the rebuffering events.

4. Merge: The classification results of the day are merged in a single file and
some general statistics are computed.

At the end of this process, we will have a set of file that describe the users behavior
during the streaming session.

3.3.1 Reading

The first step of data processing is to read and filter the data provided by the ISP.
Given the large volume of data to be processed, the reading and filtering process is
performed by using PySpark !. Spark speeds up computation by caching data in
memory, allowing it to be reused across multiple parallel operations. The reading
module allows to select a specific day and a time interval within that day and
perform the following steps:

o Select files: from the ISP data are selected all the log_tcp and log_udp
files where

start — 1 < HH <end +1

where start and end are the start and end hour of the selected time interval.

o Read complete and periodic: all the selected log_tcp_complete,
log_tcp_periodic, log_udp_complete and log_udp_periodic files are read
and stored in a Spark DatakFrame. For each entry of the DatakFrame, all [Pv6
addresses are converted to IPv4 addresses.

!PySpark: PythonAPI for Apache Spark, an open-source analytics engine designed for Big
Data workloads

17

Methodology

e Select live DAZN flows and bins: using the regular expression
(7=.%x1ive) (?=.%*dazn) all the flows related to DAZN streaming are filtered
and using the socket pair that uniquely identify an opened connection all the
corresponding bins are selected.

e Filter periodic TCP and UDP bins: considering all the users with a live
DAZN flow during the selected time interval, all the TCP and UDP bins
not related to those users are removed. All the bins are also filtered in the
following way:

For each user u let tsf;?n,dm and tsfgg&dam the minimum and maximum

timestamp of the live DAZN flows related to that user.

A bin i is considered if s € [ts(u) tst]

min,dazn’ max,dazn

which is: #s0) > #s\ L & tsl) < s\
e Save filtered data: All the filtered data are saved in a folder named
YYYY MM _DD_xx_yy

At the end of this process we will have the following output structure:
/output Folder
| Yyyy mM_DD_xx_yy/
| _tcp_periodic/
| ip1l/
filel.csv
./
| ip2/
../
| _udp_periodic/
| _ip1l/
filel.csv
./
| ip2/
Y4
| live_complete.csv
| live_periodic.csv
Where YYYY MM DD is the selected day, xx is the start hour and yy is the end
hour of the selected time interval 2. In the tcp_periodic and udp_periodic

2the time interval goes from xx:00 to yy:59

18

Methodology

directory there is a folder for each IP address that has at least one DAZN live flow
during the selected time interval with all the TCP and UDP bins related to that
[P address. In the live_complete.csv and live_periodic.csv files there are all
the live DAZN flows and bins observed during the selected time interval.

3.3.2 Make win

The second step of data processing is to extract the features required for the
classification task (Table 3.3) and other usefull information about the user behavior
during the streaming. This process is performed by using Pandas. During this step
two types of windows are extracted:

e Quality windows: 10-second non overlapping windows that contains all the
features required as input for the video quality classifier and other usefull
information about the user behavior during those 10 seconds.

o Rebuffering windows: 10-second overlapping window with a step of 5 second
that contains all the features required as input for the rebuffering classifier.

For each user finded in the previous step, all the bins related to that user are read
and processed in the same way described in Section 3.2.2 step 4. The difference is
that in this case, for quality windows are extracted not only the features required
for the classification task but also:

e The number of opened TCP and UDP connections during the window identified
by the number of unique socket pairs.

o The total amount of data downloaded/uploaded during the window for both
TCP and UDP

o (28 and S2C average Round Trip Time for live DAZN connections and TCP
connections during the window.

Once all the windows are extracted for each user, they are saved in the same output
folder of the previous step.

/output Folder

L YYyy MM _DD_xx_yy/

quality_windows.csv
rebuffering windows.csv

19

Methodology

feature description

win__idle Estimation of the period of inactivity within the window
avg span Avg duration of all bins in a windows

std_ span Std of the duretion of all bins in a windows

max_ span Max duration of all bins in a windows

min_ span Min duration of all bins in a windows

¢_bytes all Bytes sent from the client

s bytes all Bytes sent from the server

Table 3.3: Quality features

3.3.3 Classify

This module is the last step of data processing. It takes as input the quality and
rebuffering windows extracted in the previous step and classifies them using two
different classifiers: one for the video quality and one for the rebuffering events.

e Quality classification: each quality window is classified in one of the
following classes: 0 for LQ video, 1 for MQ video, 2 for HQ video.

e Rebuffering classification: each rebuffering window is classified as: 1 if
there is a rebuffering event within the window, 0 otherwise.

The output of the classifiers is concatenated to the input windows and saved in the
same output folder of the previous steps. Once the classification phase is completed
the results are merged in time slot of time_interval in order to compute the
total number of resolution changes and the number of rebuffering events for each
user during that interval. In this case we consider a time slot valid for a specific
user if he has at least N_WINDOWS during that interval. The number of rebuffering
events and resolution changes for each slots are computed in the following way:

o Rebuffering events: considering all the rebuffering windows classified during
the time slot, the number of rebuffering events is computed as the sum of all
the windows classified as 1.

e Resolution changes: considering all the quality windows classified during
the time slot, we count the number of changes in the predicted quality per
time-slot (two consecutive prediction with different predicted quality), in case
of a missing prediction, we consider the last available one.

At the end of this process both the windows labelled with the predicted quality
and rebuffering events and the the number of resolution changes and rebuffering
events per time slot are saved in the same output folder of the previous steps.

20

Methodology

Window 0 1 2 |3 4 5 | ... 28 | 29
Predicted Quality | HQ | HQ | MQ | - | HQ | MQ | ... | HQ | HQ
Change - | NO| Yes | - | Yes | Yes | ... | NO | NO

Table 3.4: Example of computing resolution changes within a 5-minute time slot.
In this example, three resolution changes occur.

/output Folder
| YYYY MM DD_xx_yy/

quality_windows_labeled.csv
rebuffering windows_labeled.csv
quality_changes.csv

rebuffering events.csv

3.3.4 Merge

This module takes as input all the classification results obtained in the previous
step and merges them in a single file. This module is used to merge the results of
a single day and to compute some general statistics. By selecting a specific day
this module performs the following steps:

« read the output folder of the previous step for the selected day (YYYY_MM_DD_xx_yy)
and find the minimum xx and the maximum yy available.

o read all the files quality_windows_labeled.csv,
rebuffering windows_labeled.csv and concatenate them in a single file.

o read all the files quality_changes.csv and rebuffering events.csv and
merge them in a single file and, if necessary, fill the missing time slots.

« compute some general statistics for the selected day:
— total number of users that streamed DAZN during the day.
|unique(X)]|

where X is the list of ips in the quality_windows_labeled.csv file.

— average number of active users who streamed DAZN per time slot.

1 #slots / N
#slots Z (Z UM)

j=1 \i=1

where N is the total number of users and U, ; is 1 if the user 7 is active
during the slot 7, 0 otherwise.

21

Methodology

— average number of quality changes and rebuffering event per slot.

1 f#slots /s N
Fslots > (ZEventiJ)

j=1 \i=1
where N is the total number of users and Event; ; is the number of quality

changes/rebuffering events for the user ¢ during the slot j.

— average number of users that experienced at least one rebuffering even-
t/quality change per slot.

1 F#slots / N
#slots Z (Z Ui’j>

j=1 \i=1

where N is the total number of users and Uj ; is 1 if the user ¢ experienced
at least one rebuffering event /quality change during the slot j, 0 otherwise.

» save all the merged files in a new directory, those files will be used as input
for the dashboard.

As example, if we have the following output folders from the previous step:
/output Folder

2025 03 29 12 15/

2025 _03_29 16 19/

2025 _03_29 20 23/

and we select the day 2025-03-29, the module will read all the files in the three
folders, merge them and save them in a new directory. The output will be divided
in two parts:
/merged Folder
| days/
| 2025 03 29 12 23/
isp_data.csv
quality windows_labeled.csv
rebuffering windows_labeled.csv
quality_changes.csv
rebuffering events.csv
| _general_info/
| 2025 03 29.json
If available, this module save also some user information provided by the ISP
(e.g., the number of connected device, presence of saturation,. ..).

22

Methodology

3.4 Dashboard development

The final step of the proposed pipeline consists in the development of an interactive
dashboard designed to visualize the results obtained in the previous stages. The
dashboard has been developed using Streamlit® All the data processed are stored
in a remote server, in order to handle a large amount of data. To access these data
from the dashboard a SSH Tunnel is used. The idea is to create a secure connection
between the machine hosting the dashboard and the server and download only data
required for the visualization to reduce the amount of data transferred and speed
up the loading time of the dashboard.

The dashboard is organized in three different pages, each one with a specific
purpose:

o Home: it is the main page of the dashboard, it summarize the overall network
performance and users’ Quality of Experience (QoE) during days. Specifically,
it displays the results of the general statistics computed in the Merge step
(Section 3.3.4) for each day available.

e Daily analysis: this page allows to visualize the network condition and
users’ Quality of Experience (QoE) during a specific day by showing the
information aggregated per time slot.

o User analysis: this page allows to visualize the QoE during a specific day
for a specific user with also some information about the user behavior during
the streaming session and, if available, some information provided by the ISP.

When the dashboard is opened, an SSH connection is established with the server
and all the *. json files are downloaded using rsync:

rsync -avz --progress user@server:.../general info/*.json local path

rsync 4 allows to synchronize files and directories between two locations over a
secure shell (SSH) connection, it is used because it transfers only the differences
between the source and the destination, reducing the amount of data transferred and
speeding up the synchronization process. Once all the *. json files are downloaded
the Home page is displayed and the available days are saved in the streamlit session
state 5.

3Streamlit is a Python framework for building interactive web applications.

4rsync: is a command for transferring and synchronizing files between a computer and a
remote server

5Session State is a way to share variables between reruns, for each user session. In addition
session state also persists across apps inside a multipage app

23

Methodology

This solution allow the user to open the dashboard and visualize the Home page
in a few seconds, and then, if he wants to visualize the data of a specific day or
user he can select it from a dropdown menu, in this case only the required data
are downloaded from the server using:

rsync -avz --progress user@server:.../days_file/{root}* local_path

Where root is the selected day.

24

Chapter 4
Experimental Results

In this chapter the experimental results obtained are showed. Specifically in the
first part we discuss the outcome obtained by studing the ISP data, while in the
second part we present the results obtained by the classifiers developed in this
thesis.

4.1 Live Dazn Flow Identification

We know that there is the possibility to identify DAZN live flows by filtering them
using the regular expression (7=.%*1ive) (?=.%*dazn). The idea is to use this regular
expression to filter DAZN live flows from the ISP data, in order to understand
the transport protocol used by DAZN to stream video content. The analysis is
performed by selecting the traffic related to the last two serie A matchdays of the
2024/2025 season, specifically 5 differents days are analyzed:

o 18-05-2025

17-05-2025

23-05-2025

24-05-2025

25-05-2025

For each day we select all the traffic from 12:00 to 23:59, in order to cover all the
time range when the matches are played. For each day all the live DAZN flows are
selected and the number of users that used TCP or UDP to stream video content
is computed. The results are reported in Table 4.1.

25

Experimental Results

DAY TCP Users UDP users TCP and UDP Users
18-05-2025 138 19 19
17-05-2025 377 32 32
23-05-2025 339 39 39
24-05-2025 197 66 66
24-05-2025 259 17 17

Table 4.1: TCP and UDP users in different days

Observing the results we can see that the majority of users use TCP to stream
video content, while only a small percentage of users use UDP. We also observe that
all the users that use UDP also open TCP connections to stream video content.
We report in Table 4.2 the percentage of traffic downloaded using TCP or UDP,
we can see that the amount of data downloaded using UDP is negligible compared
to the amount of data downloaded using TCP.

DAY % TCP Traffic % UDP Traffic
18-05-2025 92 8
17-05-2025 90 10
23-05-2025 94 6
24-05-2025 91 9
24-05-2025 92 8

Table 4.2: TCP and UDP users in different days

Looking at the amount of data downloaded by users that use TCP and UDP
in Figure 4.1 we can see that, for users who use both protocols, TCP is the
predominantly used protocol in almost all cases.

26

Experimental Results

. TCP
mmm UDP

17500

15000

12500 H
10000 I

MB

7500 A

5000 4

2500 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
User ID

Figure 4.1: Amount of data downloaded by users that use TCP or UDP during
the day 23-05-2025

Given that most users rely on TCP for video streaming, and that UDP traffic is
negligible compared to TCP, we have decided to focus on TCP for the subsequent
analyses.

Regular expression consolidation

To further validate the effectiveness of the regular expression

(?7=.*1live) (?=.*dazn) in identifying DAZN live flows, we conduct an additional
analysis. From the ISP data, we select from log_tcp_complete all opened TCP
connection by users that watched DAZN live content (those users are identified
using the regular expression). For each selected TCP connection, we select all the
traffic that matches our regular expression, and we compute the amount of data
downloaded during those connections. For the remaining traffic, we extract the
Top Domain Level (TDL) and we compute the amount of data downloaded for
each TDL. The figure 4.2 shows the amount of data downloaded for each TDL on
May 23rd, 2025, between 20:00 and 23:00 — a period during which the matches
Napoli—Cagliari and Como—Inter are played.

27

Experimental Results

Live Dazn
googlevideo.com
playstation.net
nflxvideo.net
dssott.com
tiktokcdn-eu.com
cssott02.com

skycdn.it

apple.com
mediaset.net
skycdp.com
googleapis.com
aiv-cdn.net

pv-cdn.net
cdn-apple.com
gvtl.com
microsoft.com
cloudflarestorage.com
akamaized.net
indazn.com
tiktokcdn.com
google.com
cgloud.com
akamaihd.net

= vimeocdn.com
cloudfront.net
hihenorcdn.com
epicgames.com
whatsapp.net
ttvnw.net
9pec.com

h264.i0
twimg.com
media-amazon.com
daznedge.net
fbcdn.net
100.233:6969
xvideos-cdn.com
ota-cloudfront.net
sky.it

phncdn.com
applovin.com
adobe.com
spotifycdn.com
samsungapps.com
office.net
Iswedn.net
pndsn.com
alphonso.tv
icloud-content.com

SN

T
1 10 100 1000
GB

Figure 4.2: Top 50 server per downloaded data on May 23rd, 2025, between 20:00
and 23:00

Observing the results, we can see that no servers are downloading a significant
amount of data other than those identified by our regular expression that can
be associated with DAZN video streams, except for indazn.com, daznedge.net,
and akamaized.net. Regarding indazn.com and daznedge.net, these domains
are part of DAZN’s content delivery infrastructure (CDN). By analyzing the full
domain names rather than just the top-level domains, we can see that flows from
these domains are captured by our regular expression when they include the word
“live” (e.g., dcb-deit-livedazn.daznedge.net). Streams from these domains

28

Experimental Results

that do not contain the word “live” download a negligible amount of data compared
to those that do, indicating that they correspond to content other than live video
streaming, which is necessary for the proper functioning of the DAZN service.
Looking at the results for the akamaized.net domain in Figure 4.3, two main
categories of flows can be identified: those related to DAZN, which contain the
words “dazn” and “live” in the domain name, and those referring to other types of
video streams, specifically Rai video streams.

300 4

100

GB

10 4

|

Total Akamaized Live Dazn Rai

Figure 4.3: akamaized.net downloaded data for Dazn and Rai on May 23rd, 2025,
between 20:00 and 23:00

In conclusion, we can confirm that the regular expression (?=.*1live) (7=.*dazn)|
is effective in identifying DAZN live flows, as it captures the majority of data down-
loaded for live video streaming on DAZN.

Identify noise windows

Once all the DAZN live flows are identified, the next step is to identify and remove
noise windows from the dataset. Once all the 10-second windows are extracted from
all the DAZN live flows identified in the previous step, we observe the prediction
of the quality classifier. Observing the results in Figure 4.4 we can see that 47% of
the windows are predicted as low quality.

29

Experimental Results

120000 A

100000

80000 -

60000

40000

20000 ~

0 -

LO MO HQ
Class

Figure 4.4: Quality model classification during a Serie A match

This is an unexpectedly high value, given that during a live streaming session
the video quality should be generally good. This behavior can be explained by the
presence of noise windows in the dataset. To identify those windows, we analyse the
distribution of the amount of data downloaded during those windows, the results
are reported in Figure 4.5.

1.0

O.U LR DL BLLLLLLAL DL LA IR
10KBE 100KE 1MB 10ME 100MB
Figure 4.5: ECDF of the amount of downloaded data in a 10-seconds window

Observing the results, we can see that 50% of the 10-second windows have
a downloaded data volume lower than 1 MB. Such a low amount of data is not
compatible with video streaming, so it probably corresponds to non-video streaming
activities, such as background traffic or idle periods. Since these windows cannot
be associated with actual video streaming, we decided to introduce a threshold at

30

Experimental Results

1MB to filter them. After removing those windows from the dataset, we observe
that the percentage of windows classified as low quality drops to 1%, as shown
in Figure 4.6.

120000 A

100000

80000 ~

60000

40000

20000 ~

0 .
LO MO
Class

Figure 4.6: ECDF of the amount of downloaded data in a 10-seconds window
with more than 1 MB of downloaded data

The obtained results appear to be more realistic, confirming the necessity of
removing noisy windows in order to achieve more accurate and reliable outcomes.

4.2 Identify Rebuffering Events

4.2.1 Data Collection

To collect data we used Streambot to record 20-minutes playback sessions in order
to build a dataset of realistic events. Since DAZN relies mainly on TCP as seen
in Section 4.1, we decide to force the use of TCP during the streaming session by
blocking UDP traffic on the machine running Streambot. Data were collected with
two different network conditions:

e Full bandwidth: no limitation on the network bandwidth.

e Limited bandwidth: the network bandwidth was limited to 1500 Kbps for
both download and upload.

Specifically, we collected 40 events — 20 minutes each:

31

Experimental Results

e 20 with a network with full bandwidth

20 with a network with download/upload bandwidth limited to 1500 Kbps

Rebuffering Simulation

We decided to train the model in a supervised way, therefore we need to simulate
rebuffering events during the streaming session in order to have the ground truth.
As said in section 3.2.1 two differents modes were used to simulate rebuffering
events:

e Without randomicity: during playback, every 120 seconds, the connection
is throttled to 128 Kbps for a duration of 25 seconds.

e With randomicity: during playpack three differents values are randomly
chosen:
— wait [60-120] s: time before a rebuffering event
— reb [15-25] s: duration of a rebuffering event

— throttle [128,256,512] Kbps: value of the bandwidth

8000

6000

videorate
£
(=]
[=]
[=]

2000

—— videorate

T T T T T T T
0 200 400 600 800 1000 1200
5

Figure 4.7: Evolution of the video rate during a streaming session with determin-
istic rebuffering events and full bandwidth

32

Experimental Results

1250 - —— videorate

1000

750

videorate

500

2501

T T T T T T T
0 200 400 600 800 1000 1200
5

Figure 4.8: Evolution of the video rate during a streaming session with random
rebuffering events and limited bandwidth (1500 Kbps)

The images 4.7 and 4.8 show the evolution of the video rate during a streaming
session with deterministic and random rebuffering events respectively. In red are
highlighted the rebuffering events.

4.2.2 Data Preprocessing, Partitioning and labelling

We apply the operational steps discussed in Section 3.2.2, setting the parameter
winsize to 10 seconds and step_size to 5 seconds for both dataset. Once all the
windows are extracted for each session we split them in training, validation and
test set in the following way:

o Training set: 60% of the dataset

— 12 streaming session at normal condition

— 12 streaming session with the bandwidth limited to 1500 kbps
o Validation set: 20% of the dataset

— 4 streaming session at normal condition

— 4 streaming session with the bandwidth limited to 1500 kbps
o Test set: 20% of the dataset

— 4 streaming session at normal condition

— 4 streaming session with the bandwidth limited to 1500 kbps

In order to label the windows extracted we decide to put the threashold value
to 2, it means that if in a window there are at least than 2 seconds of rebufferig,
the window is labelled as 1 (rebuffering event), otherwise it is labelled as 0 (no
rebuffering event).

33

Experimental Results

Distribution of rebuffering time in a 10s window

1.0
0.8
0.6 —— Train
é —— validation
0.4 — Test
0.2
0.0 1 1 1 1 1 1 1 1

2 3 4 5 6 7 8 9 10
rebuffering time

Figure 4.9: ECDF of the duration of rebuffering events in the dataset with
deterministic rebuffering events

Distribution of rebuffering time in a 10s window

1.0
0.8
o6r — Train
é —— validation
0.4 — Test
0.2}
0.0 1 1 1 1 1 1 1 1

2 3 4 5 6 7 8 9 10
rebuffering time

Figure 4.10: ECDF of the duration of rebuffering events in the dataset with
random rebuffering events

At the end of the labelling process the data are standardized using the
StandardScaler from sklearn library.

34

Experimental Results

4.2.3 Models Training and Validation

The model was trained using both dataset, the one with deterministic rebuffering
events and the one with random rebuffering events, in order to compare their
performance and choose the most suitable one for the purpose. As discussed in
Section 3.2.3 the model’s hyperparameters were optimized using a GridSearch
approach, the best model was chosen based on the F1-score metric for the rebufferig
class evaluated on the validation set. The best hyperparameters for both dataset
are reported in Table 4.3.

Hyperparameter Deterministic model Random model

n_estimators 35 30
max_ depth 12 14
min_ samples leaf 5 10
criterion entropy gini

Table 4.3: Best hyperparameters found with GridSearch

The performance of both models on the validation set are reported in Table 4.4
and Table 4.5.

Class Precision Recall fl-score
Normal 0.97 0.97 0.97
Rebuffering 0.80 0.81 0.80
accuracy 0.94
macro avg 0.88 0.89 0.89
weighted avg 0.94 0.94 0.94

Table 4.4: Deterministic model performance on the validation set

Class Precision Recall F1-score
Normal 0.96 0.97 0.96
Rebuffering 0.83 0.76 0.79
accuracy 0.94
mMacro avg 0.89 0.87 0.88
weighted avg 0.94 0.94 0.94

Table 4.5: Random model performance on the validation set

The Figures 4.11 and 4.12 show the confusion matrix for both models evaluated
on the training and on the validation set.

35

Experimental Results

Train set Validation set

100 100

80

Normal
Normal

60

True
Percentage (%)
True
Percentage (%)

- 40

-20

Rebuffering
Rebuffering

-0

'
Normal Rebuffering
Prediction Prediction

!
Normal Rebuffering

Figure 4.11: Confusion matrix of the dataset with deterministic rebuffering events
for both training and validation set

Train set Validation set
100 100
= 80 = 80
E £ 2.9
(=} o
= =
60 & 60 £
o 5 o)
=l m =2 Il
= S €
@ o
o o
-40 § -40 g
a a
o o
€ £
£ fo 23.8
3 -20 3 -20
& &
| -0 | -0
Normal Rebuffering Normal Rebuffering
Prediction Prediction

Figure 4.12: Confusion matrix of the dataset with random rebuffering events for
both training and validation set

4.2.4 Model Testing

The last step of the process is to test the two models on unseen data, in order
to evaluate their performance. On the table 4.6 and Table 4.7 are reported the
performance of both models on the test set.

36

Experimental Results

Class Precision Recall F1l-score
Normal 0.98 0.97 0.97
Rebuffering 0.84 0.89 0.86
accuracy 0.95
macro avg 0.91 0.93 0.92
weighted avg 0.95 0.95 0.95

Table 4.6: Deterministic model performance on the test set

Class Precision Recall F1l-score
Normal 0.96 0.97 0.96
Rebuffering 0.76 0.70 0.73
accuracy 0.94
macro avg 0.86 0.84 0.85
weighted avg 0.94 0.94 0.94

Table 4.7: Random model performance on the test set

In figure 4.13 and figure 4.14 are reported the confusion matrix for both models
evaluated on the test set.

test set test set
100 100
I I
g 80 g 20 80
2 g 2 &
60 w 60 o
S g g g
= £ = g
=) -40 Y =) -40 3
= sl = =
3 = 3 29.5 2
E £ 1 -
2 -20 2 -20
& &
i -0 i -0
Normal Rebuffering Normal Rebuffering
Prediction Prediction
Figure 4.13: Confusion matrix of Figure 4.14: Confusion matrix of
the model trained with deterministic the model trained with random re-
rebuffering events for the test set buffering events for the test set

37

Experimental Results

Models Evaluation

Observing the results obtained on the test set on Section 4.2.4, we can see that
the first model, trained with deterministic rebuffering events, achieves higher
performance on the test set compared to the validation set. Specifically, the
model achieves an F1l-score for the rebufferig class of 0.86 on the test set, while
it is 0.80 on the validation set. This behavior can be explained by the limited
variability within the dataset, which might have led the training and test sets to
share similar patterns, producing results that are more optimistic than in reality.
When randomness is introduced in the data, the performance slightly drops. In
this case, the model achieves an F1-score of 0.79 on the validation set and 0.73
on the test set for the rebuffering class. Even if the test performance are slightly
worse than in the first model, in this case the model appear to be more robust.
The introduction of randomicity ensures greater variability in data, providing a
more realistic representation of real-world scenarios.

Both models are tested on real traffic data provided by the ISP, in order to evaluate
their performance in a real-world scenario. The Figure 4.15 shows an example of
the output obtained by the models during a three hours streaming session.

Com-Int_Nap-Cag_23-05 - Without randomicity Com-Int_Nap-Cag_23-05 - With randomicity

oK
* Rebuffering

20

a0

60

20:30
21:00
21:30
22:00
22:30
23:00
21:00
21:30
22:00
22:30
23:00

20:30

Date Date

Figure 4.15: Output of both models during the last matchday of Serie A 2024,/2025.
In red is highlighted a user with an high number of rebuffering events.

Observing the output of both models out of 200 active users:

o The deterministic model identifies 59 users experiencing rebuffering events.

o The random model identifies 38 users experiencing rebuffering events.

38

Experimental Results

Observing this results we can say that the model trained with random rebuffering
events is more conservative in identifying rebuffering events, however it was able to
identify a particlarly problematic user, experiencing a high number of rebuffering
events during the streaming session. Once the problematic user is identified, the
results are verified with the ISP, confirming the presence of issues during the
streaming session.

4.3 Models Results on ISP Data

4.3.1 Insights from the weekend of March 29-31, 2025

To test the validity of the developed models, we first applied the video quality
classification model to the ISP data collected during the 30th matchday of the
2024/2025 Serie A season, held over the weekend of March 29-31, 2025. First,
10-second windows were extracted from all live DAZN streams identified in the ISP
data, retaining only those with a downloaded data volume greater than 1 MB, as
discussed in Section 4.1, since these are compatible with an actual video stream.
Additionally, all users who watched DAZN for less than 10 minutes were excluded
from the analysis, as they are not sufficient to carry out a meaningful analysis.

1051

Count

104_

0 1
Prediction

Figure 4.16: Prediction of the quality classifier during the Serie A matchday
29-31 March 2025: 0: 0.8%, 1: 2.4%, 2: 96.8%

39

Experimental Results

® Low quality
Medium quality
® High quality

User Counter
= [N
o [9)] o
o o o

wu
o

Figure 4.17: Distribution of the quality classifier predictions during the Serie A
matchday 29-31 March 2025

Looking at the classifier’s predictions over the entire weekend, we can see that,
as expected, the prediction for most windows is 2 («High quality»). Almost all
users show consistently high-quality prediction. To better understand the model’s
behavior, special attention was given to the most relevant match of the weekend,
Napoli — Milan, played on 30 March 2025. The goal was to analyze the conditions
leading to low-quality predictions and to assess the overall performance of the
model. To this end, all 10-second time windows analyzed during the entire duration
of the match were considered. The focus was in particular on the total volume of
data downloaded, identified as the most relevant feature among those used by the
model. To simplify analysis, the download volume has been rounded to the nearest
integer value.

40

Experimental Results

I Low Quality
Medium Quality

f I B High Quality
1000 ; I III
1001
104 I||I|| I|

12345678 91011121314151617181920

10000

Count

Figure 4.18: Windows prediction during Napoli - Milan match on March 30, 2025
based on downloaded data volume

Observing the results, it turned out that all low quality predictions correspond
to downloaded data volumes of less than 3 MB. On the other hand, as the download
volume increases, the probability that the video has a high resolution increases,
a sign that the amount of data downloaded is linked to the quality of the video
stream. However, these outcomes suggest that the behaviour of the model cannot
be explained exclusively using the volume of the downloaded data. Although this
variable represents a key indicator, the model uses a more complex combination
of factors to make the predictions. In summary, low video quality is generally
associated with a small volume of downloaded data, but the model’s decision-
making mechanism involves additional elements that enrich its predictive capacity.
Let’s now look at the behavior of the model applied to a specific user during the
match.

41

Experimental Results

0 1 2
Prediction

Figure 4.19: Prediction of the quality classifier during Napoli-Milan, user
[Pv4:ec60231010904e17badc954b7207bfdf: 0: 0%, 1: 38%, 2: 62%

Bl Low Quality
2 15- l Medium Quality
5 . .
8 10- B High Quality

3 4 5 6 7 8 9 10 11 12 13
MB

Figure 4.20: Windows prediction during Napoli - Milan match on March 30,
2025 for user IPv4:ec60231010904e17badc954b7207bfdf based on downloaded data

volume

For the selected user, 38% of the windows were predicted as medium quality,
and by observing the amount of downloaded data, it can be seen that these windows
fall within a range of 3 to 7 MB. When analyzing the temporal evolution of the
predictions and comparing it with the user’s behavior over time, as shown in Figure
4.21, it can be observed that windows classified as high quality correspond to
moments where the traffic is less intense. When the traffic becomes more intense,
the network may become congested, which can lead to a decrease in video quality.
By observing the user’s traffic, we can notice a correlation between traffic spikes
and a drop in the predicted quality.

42

Experimental Results

—— livedazn semm——
—— ('nflxvideo.net', 'TCP')
('skycdp.com’, 'TCP')
(‘cloudflarestorage.com', 'TCP')
—— other_tcp
(‘fbcdn.net’, 'UDP')
(‘gpcloudservice.com', 'UDP')

Prediction
X Low Quality
Medium Quality
X High Quality

N
o

MB
N w
S o

10 (-, 'UDP")
—— other_udp N L
A /m oo MMMWW,’/ M[W”
n o n o n
= 2 o n =
o — — — —
~N o~ o~ o~ o~
o o =} o o
m m m m m
o 0 0 0)
o o ‘O o o
time

Figure 4.21: Time series of the downloaded data and quality
prediction during Napoli-Milan match on March 30, 2025 for wuser
[Pv4:ec60231010904e17badc954b7207btdf

This highlights the model’s ability to capture the dynamic nature of video
streaming quality, which can fluctuate based on network conditions and user
behavior.

4.3.2 Matches analyses

We decided to extend the analysis to four three hour time interval corresponding
to important matches of the 2024,/2025 Serie A season.

Day Hour Match Active users
30/03/2025 20:00-23:00 Napoli-Milan 130
27/04/2025 14:15-17:15 Inter-Roma 113
18/05/2025 20:00-23:00 All matches (No Genoa-Atalanta) 232
23/05/2005 20:00-23:00 Napoli-Calgiari and Como-Inter 200

Table 4.8: Matches analyzed and number of active users during the streaming
session

As described in Section 3.3 we extracted all the 10-seconds windows from all
the live DAZN streams identified in the ISP data, retaining only those with a
downloaded data volume greater than 1 MB. From all identified useres, we decided
to focus the analysis on those who watched DAZN for at least 10 minutes during
the analyzed time interval. In table 4.8 are reported the matches analyzed and the
related active users during the streaming session. Considering all the active users
during all the streaming sessions, we identify in total 334 differents active users.
Observing the results obtained by the quality classifier during all the matches
analyzed in Table 4.9, we can see that the vast majority of windows are classified
as high quality as expected.

43

Experimental Results

Quality Windows %

Low (LQ) 1975 0.5
Medium (MQ) 10269 2.6
High (HQ) 382702 96.9

Table 4.9: Quality classifier results during all the matches analyzed

Prediction Windows %
Ok 661594 99.8
Rebuffering 1025 0.2

Table 4.10: Rebuffering classifier results during all the matches analyzed

In table 4.10 are reported the results obtained by the rebuffering classifier during
all the matches analyzed, we can see that only 0.2% of the windows are classified
as rebuffering. As described in Section 3.3.3 we extract also the amount of quality
changes experienced by each user during the streaming session by dividing the
original 3-hour time interval into smaller intervals of 5 minutes. For each 5-minutes
interval we consider an user active if he has at leat 15 10-seconds windows during
that interval. To study the user QoE during the different matches we compute the
average number of quality changes and the probability of having a quality change
during an active slot as follows:

> Quality__changes

Average user quality changes = -
User_ active slots

> Slot_user__quality changes

lity ch bability =
Quality changes probability Slot_predicted__windows

Figures 4.22 and 4.23 show the ECDF of the average number of quality changes
per user and the probability of having a quality change during an active slot
respectively.

44

Experimental Results

1.00
0.95¢
0.90¢
L.
0 0.85¢
@) —— Nap-Mil_30-03
0.80F —— Int-Rom_27-04
075! —— All matches_18-05
Com-Int_Nap-Cag_23-05
0.70 ' ' :

0 2 4 6 8 10 12
avg user quality change

Figure 4.22: ECDF of the average number of quality changes per user

1.0 J—,_r,_,_4
0.8}
0.6
L
a
&)
0.4r —— Nap-Mil_30-03
— Int-Rom_27-04
0.2r —— All matches_18-05
— Com-Int_Nap-Cag _23-05
0.0 '

0.00 0.01 0.02 0.03 0.04 0.05 0.06
quality changes probability

Figure 4.23: ECDF of the probability of having a quality change during an active
slot

As we can see from the results All 4 3-hours time-slots show similar distribution
with low probability in quality changes, however there are a small percentage
of users that had more than 10 quality changes per slot. Observing Figure 4.24
the highest probability of quality changes is when we have a few active users.
Specifically, we start the analysis about 30 to 45 minutes before the match starts.

45

Experimental Results

During this period, the number of active users is relatively low and we have the
higher probability of quality changes.

0.06}
0.05

0.04

0.03} .
A
.02} —— Nap-Mil_30-03

o
o
N

— Int-Rom_27-04
—— All matches_18-05
Com-Int_Nap-Cag_23-05

quality changes probability
S
2

.

o

S
-

175¢

150+

125¢

100+
75¢

50}

25} 1

~

Active users

0 5 10 15 20 25 30 35
Time Slot

Figure 4.24: Quality changes probability during differents time slots compared
to the number of active users

During the analysed matches, we observe that 81 of the 334 active users ex-
perienced at least one quality change during their streaming session. In Figures
4.25,4.26, are reported the number of quality changes experienced by each user
during the matches of the last Serie A matchday. The results of the other matches
analyzed are reported in the Appendix A. Reported results show only the users
that experienced at least one quality change during the streaming session in at
least one of the matches analyzed.

46

Experimental Results

10

User Id
Pl
NO
i |
L
”

v
i
:
1
1
1
1
II
j
i |

20:00 -
20:05 -
20:10

20:15
20:20 -

20:25 -
20:30 -
20:35 -
20:40 -
20:45 -
20:50 -
20:55 -
21:00 -
21:05 -
21:10 -
21:15 -
21:20 -
21:25 -
21:30 -
21:35 4
21:40 -
21:45 -
21:50 -
21:55 -
22:00 -
22:05 -
22:10 -
22:15 -
22:20 -
22:25

22:30 -
22:35
22:40 -
22:45 -
22:50 -
22:55 -

Figure 4.25: Quality changes experienced by each user that had at least one

quality changees during the analysed matches on 23/05/2035 between 20:00 and
23:00

* Low quality
— * Medium quality
* High quality

20

30

User Id

50 _——

60

70

80 _— - p

20:30
21:00
21:30
22:00
22:30
23:00

Figure 4.26: Quality prediction for each user that had at least one quality
changees during the analysed matches on 23/05/2035 between 20:00 and 23:00

47

Experimental Results

4.3.3 Users analyses

From the Matches analyzed in Section 4.3.2, we decided to focus the attention to
5 differents users that experienced different quality levels during the 23/05/2005
during Napoli-Calgiari and Como-Inter matches (is reported also the user id showed
in Figures 4.25):

1. User with stable HQ predictions (normal__user)

o IPv6:0e6b4d39a11b1f0840ef115feb044dae:622eb2{849ab5087901970ec55b109e3

e user id: 45

2. User with frequent HQ = MQ quality switches (high__medium)

o IPv4:5017£835dfd9668fcdb94a7e936fd541

e user id: 29

3. User with frequent MQ = LQ quality switches (medium__low)

o [Pv6:c2389a8cedceedf7a46631825a70c1e2:Ted4a19a9b23e43¢377776d4955d1a7

e user id: 66

4. User with persistent LQ predictions (always__low)

o IPv4:9ftbd87b55c32c76b06bfdda3aatdd857

e user id: 56

5. User with multiple rebuffering events (rebuffering)

o IPv6:1076b330718df1e0b903715778cbfdla:f1bd6d11dc3703eafeftefa2fa5b9659

e user id: 5

48

Experimental Results

10 GB
5 GB-

1 GB;
500 MB

bytes downloaded

100 MB

always_low
rebuffering

| -
@
0
>
©
&
i
o
c

high_medium
medium low

Figure 4.27: IPv4 and IPv6 download data from live DAZN servers during the
last Serie A matchday of 2024/2025 season

We start the analysis by looking at the downloaded data from DAZN live servers
during the matches, divided by IPv4 and IPv6 traffic as shown in Figure 4.27. We
also look at the number of different connections opened by each user during the
streaming session as shown in table 4.11.

User IPv4 IPv6 Total
normal user 5 7 12
high medium 9 0 9
medium_ low 325 649 974
always_ low 5h) 0 95

rebuffering 6186 11 6197

Table 4.11: Number of connections per user with a live DAZN server

By examining the obtained results, users identified as normal_user and high _medium
download a significant amount of data while maintaining a relatively small number
of active flows. This behavior is typical of an efficient and stable use of the service,
where data transfer occurs through a few persistent, high-volume connections.
On the other hand, users medium_low and rebuffering display an anomalous
behavior. Even if their traffic volume is not negligible, they generate a very high

49

Experimental Results

number of active flows, indicating a fragmentation of the connections. To further
investigate this behavior, we analyzed the characteristics of the flows opened by
these users by examining them directly from the log_tcp_complete.

1.0

—— normal_user
—— high_medium
0.8 —— medium_low
always_low

I

—— rebuffering

ECDF

0.4
0.2

0.0

1
TKB 100KB 1MB 10MB 100MB 1GB
Downloaded bytes

Figure 4.28: ECDF of downloaed
data for IPv4 flows

104 + normal_user

« high_medium
« medium_low

103 always_low

« rebuffering

I ——

flow duration (s)

1KB 100KB 1MB 10MB 100MB 1GB
downloaded bytes

Figure 4.30: Scatterplot of down-
loaed data vs flow duration

1.0

0.8

0.6

ECDF

0.4

0.2

0.0

TKB T00KB 1MB 10MB 100 MB 1GB
Downloaded bytes

Figure 4.29: ECDF of downloaed
data for IPv6 flows

0.8

rtt avg (s)
o
o

IS
IS

o
N

00 SR .

|
1KB 100 KB 1MB 10MB 100 MB 1GB
downloaded bytes

Figure 4.31: Scatterplot of down-
loaed data vs rtt avg

Figures 4.28 and 4.29 show that most of the flows opened by problematic users
(medium_low and rebuffering) download only a small amount of data. More
than 50% of the flows generated by these users transfer less than 100 KB per flow.
Moreover, by examining the behavior of the rebuffering user, it can be observed
that almost all flows download less than 1 MB of data. Figures 4.30 and 4.31 that
shows respectively the relationship between downloaded data with flow duration
and average RTT, highlight further anomalies. Specifically, most flows associated
with the rebuffering user have a very short duration (less than 10 seconds), while
those of the medium_low user exhibit a high average RTT (above 200 ms). These
results indicate that the developed models are able to correctly identify problematic

Experimental Results

users who display anomalous behaviors during streaming sessions. After consulting
the ISP, it was also confirmed that the user experiencing numerous rebuffering
events had encountered issues while watching the match and contacted them to
have technical support.

After this analysis we decide to apply a filter to the log_tcp_complete, selecting
only flows with more than 1 MB of downloaded data, in order to remove low-volume
flows that may have been generated by activities other than video streaming. After
applying this filter, we repeated the analysis.

User IPv4 1IPv6 # flows after filter # flows before filter
normal user 2 4 6 12

high medium 6 0 6 9

medium_ low 52 252 304 974

always_ low 19 0 19 95
rebuffering 9 4 13 6197

Table 4.12: Number of connections per user with a live DAZN server after filtering
flows with downloaded data < 1MB

-0.00%

10 GB
5 GB

1 GBA
500 MB

BIITH 51,

on
= 2
—I '5
u
> =
-
© e

bytes downloaded

100 MB

normal_user
high_medium
medium_low

Figure 4.32: IPv4 and IPv6 download data from live DAZN servers after filtering
flows with downloaded data < 1MB

51

Experimental Results

As shown in Table 4.12, as expected, the filtering process has a significant
impact on the number of considered flows, particularly for the problematic users.
Observing the amount of download data for IPv4 and IPv6 flows in Figure 4.32 we
can notice that the filtering process has an important effect also on the total volume
of data downloaded from DAZN live servers by the problematic users, instead it
has no effect for the normal users. Figure 4.32 shows that the filtering process
significantly affects the total volume of data downloaded from DAZN live servers by
problematic users (For the rebuffering user, IPv4 flows show an 87.37% decrease
in the amount of downloaded data), instead it has a negligible impact on normal
users. After applying the filter, the corresponding bins were selected from the
log_tcp_periodic file, and 10-second windows were extracted again. Comparing
the results before (Figure 4.33) and after filtering (Figure 4.34) shows that, for the
rebuffering user, the number of valid windows is drastically reduced, causing the
user to be identified as non-problematic by the model.

rebuffering e Low quality

always_low - - - Medium quality
e High quality

m ed | u m_l oW - ———————— St

Users

normal_user

o o OI o o o
m o m o m o
o — — (o] o m
o o o oN o o
Figure 4.33
rebuffering 1 - — — « Low quality
always_low - .- - Medium quality
o . * High quality
g med|um_low 4 S
2. .
normal_user .
o o o o o o
m o m o ™ o
o — — o~ o~ m
o oN o oN o o
Figure 4.34

By observing the results of the rebuffering classifier in Figure 4.35, it is clear that
applying the filter results in the loss of all windows where the model had predicted

52

Experimental Results

a rebuffering event. Since the ISP confirmed that the user had indeed experienced
issues during the match, this indicates that the filter is overly restrictive and leads
to the loss of important information. Therefore, it was decided not to apply it
when extracting windows from the ISP dataset.

o
0 OK
;filtered wins- « Rebuffering
[
‘=
7]
S Initial wi
nitial wins 1

3 Initial wins
Q
o T :

Te] o nN o n o n o

< Q by m < Q ol m

o — — — — (o] (o] N

N (gl N o N N N N

Figure 4.35

4.4 Dashboard Deployment

This section presents the final deployment of the dashboard developed in Section 3.4
showing its structure and functionalities. As said in Section 3.4, the dashboard is
organized in three different pages: Home (Section 4.4.1), Daily analysis (Section
4.4.2) and User analysis (Section 4.4.3). The goal is to monitor quality changes
and rebuffering events to identify potential network congestion or anomalous users.

4.4.1 Home

This page is the main page of the dashboard. It collects and displays aggregated
analyses across multiple days. The goal is to provide an overview of the data,
highlighting trends, variations, and key insights. Specifically this page displays the
results of the general statistics computed in the Merge step in Section 3.3.4 for
each day available. The Figures 4.36, 4.37 and 4.38 shows respectively:

o The total number of users that streamed DAZN during the day and the average
number of active users who streamed DAZN in a 5-minutes time slot.

o The average numebr of quality changes and the average number of users
experiencing at least 1 quality change in a 5-minutes time slot.

o The average numebr of rebuffering event and the average number of users
experiencing at least 1 rebuffering event in a 5-minutes time slot.

53

Experimental Results

—e— Total Users Mean of Active Users per slot

#Users

Figure 4.36: General statistics about the users streaming DAZN

—e— Mean of quality changes per slot —— Mean of users with at least 1 quality change per slot

2
16
18
1
B
< 16
g 12
a
o
g 14
& 10
H 0
S 12 3
E s 3
3
g 1
5 6
c
g os
= 4
06
2
0.4
o

Figure 4.37: General statistics about the number of quality changes during the
streaming sessions

54

Experimental Results

—e— Mean of rebuffering event per siot —e— Mean of users with at least 1 rebuffering event per slot

Mean of rebuffering event per slot
Users

NNNNNNNNNN

025_03_29

Figure 4.38: General statistics about the number of rebuffering during the
streaming sessions

4.4.2 Daily analysis

This page provides a detailed analysis of a specific day, allowing users to explore
data and insights for that particular day. It is divided into three main section.
After selecting a specific day and a time interval, the first section shows some
aggregated statistics about users, changes in resolution and stall events during that
time interval. The second and the third section show respectively information about
resolution changes and rebuffering events with a 5-minutes granularity. Specifically
we have:

1. Aggregated statistics:

e User Information: Total number of users that streamed during the
selected time interval, average and maximum number of users that simul-
taneously stremed during a 5-minutes time slot®.

e Quality changes information: Maximum and average number of users
that experienced at least one resolution change and the average number
of users that experienced up to 10 resolution changes during a 5-minutes
time slot simultaneously.

Lthe original interval is divided into n different interval of 5-minutes

59

Experimental Results

Active users Avg active users per slot Max active users per slot

Avg number of users with at least 1 quality change per... Max number of users with at least 1 quality change per ...
=1quality =2quality =3quality =4quality] =5quality =6quality =7quality =8quality =9quality =10quality
changes changes changes changes changes changes changes changes changes changes
Avg users
8 7 5 4 3 3 2 2 2 2

per slot

Figure 4.39: Statistics on users and quality changes during May 23, 2025

e Stall events information: Total number of users that had up to ten
rebuffering event, the maximum and average number of users that had at
least one rebuffering event in a 5-minutes time slot simultaneously.

Users with at least 1 rebuffering event Avg number of users with at least 1 rebuffering eventp... Max number of users with at least 1 rebuffering eventi...

21 =2 =23 24 25 26 =27 =28 =9 =10
rebuffering rebuffering rebuffering | rebuffering | rebuffering | rebuffering | rebuffering | rebuffering = rebuffering rebuffering
event event event event event event event event event event
Avg users
17 9 7 5 4 2 2 1 1 1

per slot

Figure 4.40: Statistics on rebuffering events during May 23, 2025

» Classifiers results: for both classifiers (quality and rebuffering) the
percentage of windows classified in each class considering all the users.

2. Resolution changes:

o Heatmap: It shows for each user and for each 5-minutes time slot the
number of resolution changes experienced by that user in that time slot
with the possibility to hilight bad users (users with at least n quality
changes in more than 50% of the time slots where the users are active).

e Time evolution: for each 5-minutes time slot it shows the number of
active users, the number of users that experienced at least one resolution
change and the average number of resolution changes per user (ratio
between the total number of quality changes and the number of active
users).

56

Experimental Results

—e— quality change mean Active Users ==+ Users with at least 1 quality change

quality change mean

Figure 4.41: Quality changes and users information on May 23, 2025 for each
5-minutes time slot

e Quality change probability: The probability of having a resolution
change in a 5-minutes time slot comuted as the ratio between the number
of quality changes and the number of predicted windows in that time slot.

e Users prediction: there is the possibility to select one or more users and
visualize for each of them all the prediction made by the video quality
classifier during the selected time interval.

3. Rebuffering events:

o Heatmap: It shows for each user and for each 5-minutes time slot the
number of stall events experienced by that user in that time slot with the
possibility to hilight bad users (users with at least n stall events during
the specified interval).

e Time evolution: for each 5-minutes time slot it shows the number of
active users, the number of users that experienced at least one resolution
change and the average number of rebuffering event per user (ratio between
the total number of quality changes and the number of active users).

e Users prediction: there is the possibility to select one or more users
and visualize for each of them all the prediction made by the rebuffering
classifier during the selected time interval.

57

Experimental Results

Select one or more ips

IPv4:1076b3307... x [IPv4:403ef3677d... x [IPv4:0548bf7524... x o v

& IPva:1076b330718d1e0b9037157T8cbid1a ¢ = emmmm e mese te momm cwem oo

Figure 4.42: Prediction of the stall event classifier for three different users on
May 23, 2025

4.4.3 User analysis

This page allows to select a specific user for a specific day and visualize some usefull
information to understend the behavior of that user during that day. It is divided
in two main sections:

1. ISP data: This section shows some information provided by the ISP for the
selected user during that day:.

ISP provider data

ong Chametid
961013/12 mi-caracciolo-bg102 6

Outer VLAN SVLANID Link Type

nan nan nan

Family Device Count Main Diag

nan nan nan

Max RTT AVgRTT Avg Traffic BH

15.24 7.90 4291188.00
0.01 0.00 49294000.00
Saturation

No

Figure 4.43: Example of ISP data for a specific user

2. Overview: this section shows classifiers results by displaying the total amount
of stall events and quality changes during the day. It also shows a timeline
where all the prediction made by both classifiers are reported.

3. Volumetric metrics: this section shows some volumetric metrics about both
TCP and UDP traffic generated by that user during that day. Specifically it

58

Experimental Results

shows the total amount of downloaded/uploaded bytes, the number of opened
connection and the average RT'T in both directions (¢2s/s2c) for TCP and
UDP traffic.

Downloaded bytes over time

Label

e s
2o -
— e
o
& 10M
o “
0
2030 2100 230 200 230
iy 23,2025
Time
Uploaded bytes over time
Label
ok e s
— e
500k — P
aonk
& ame
a0k
| |
100k u J | i ' \
. ALY AU AR AN AL
2030 2100 210 200 230
oy 23,2025

Figure 4.44: downloaded/uploaded data for TCP and UDP traffic for a specific
user

59

Chapter 5

Conclusion

This thesis has developed a way to estimate users’ Quality of Experience (QoE)
in live video streaming services, relying exclusively on passive network traffic
measurements. The proposed method addresses the challenge posed by end-to-end
encryption, which prevents Internet Service Providers (ISPs) from directly accessing
application-level QoE parameters. The main objective was to design a system
that was able to identify DAZN streaming flows and predicting users’ QoE, with
a particular focus on rebuffering events and the video quality experienced during
content playback. Starting from the classifiers’ results, the idea was to correlate
their predictions with network metrics in order to infer possible causes of low QoE.
The experiments conducted validated the effectiveness of the developed models.
The rebuffering model, trained on controlled data, achieved an F1l-score of 73% for
class 1 (rebuffering events). The models were then successfully applied to real-world
data provided by an ISP. In conclusion, this work demonstrates that ISPs can
be equipped with effective tools for monitoring QoE in video streaming services.
The analysis of passive network data, when properly processed through machine
learning techniques, proved capable of accurately identifying users experiencing
degraded service quality and correlating such degradation with measurable network
parameters.

5.1 Future Work

This work presents some limitations that open several directions for future research.
First, the developed models were trained on DAZN live streaming flows; therefore,
their generalization to different streaming services and networks with varying
characteristics remains to be evaluated. An ongoing effort aims to extend the
analysis to other services, such as Amazon Prime Video, which employs different
network protocols (e.g., SYE). In particular, current research focuses on identifying

60

Conclusion

SYE flows and correlating them with QoE metrics to perform an analysis similar to
the one presented in this work. Further work is also being carried out to enhance
the dashboard functionalities by automating the anomaly detection process. This
would enable the system to automatically identify users experiencing low QoE and
provide insights into possible root causes, thus improving the overall monitoring of
service quality. Additional developments could include the design of new models
capable of predicting rebuffering events or video quality, moving from traditional
machine learning methods to deep learning approaches such as Recurrent Neural
Networks (RNNs), which are particularly suitable for time-series analysis.

61

Appendix A

Matches analysed

| ——— 10

User Id
=y
N
”

20:00 -
20:05 -
20:10

20:15 4
20:20 -+

20:25 -
20:30 -

20:35 -
20:40 -
20:45 -
20:50 -
20:55 -
21:00 -
21:05 -
21:10 -
21:15 -
21:20 -
21:25 -
21:30 -
21:35 4
21:40 -
21:45 -
21:50 -
21:55 -
22:00 -+
22:05 -
22:10 -
22:15 -
22:20 -
22:25 -
22:30 4
22:35 -
22:40 -
22:45 -
22:50 -
22:55 -

Figure A.1: Quality changes experienced by each user that had at least one

quality changees during the analysed matches on 30/03/2025 between 20:00 and
23:00

62

Matches analysed

0 * Low quality
— _ + Medium quality
- * High quality
10 R—
20 —_
30
k=4
@ 40 -
) — JE—
= — —_
50 = ——————
60
70 - [— [
80
(=3 =3 i=3 (=3 o o [=3
38 a 3 @ 3 a <1
S S o o & & o
& I N N I N &

Figure A.2: Quality prediction for each user that had at least one quality changees
during the analysed matches on 30/03/2025 between 20:00 and 23:00

1 10

User Id
Pl
N
”

14:15 -
14:20 -
14:25 -
14:30 -
14:35 -
14:40 -
14:45 -
14:50 -
14:55 -
15:00 -
15:05 -
15:10 -
15:15 -
15:20 -
15:25 -
15:30 -
15:35 -
15:40 -
15:45 -
15:50 -
15:55 -
16:00 -+
16:05 -
16:10 -
16:15 -
16:20 -
16:25 -
16:30 -
16:35 -
16:40 -
16:45 -
16:50 -
16:55 -
17:00 -
17:05 -
17:10 -

Figure A.3: Quality changes experienced by each user that had at least one
quality changees during the analysed matches on 27/04/2025 between 20:00 and
23:00

63

Matches analysed

* Low quality
Medium quality
¢ High quality

10

20

30

User Id
&

50 - - - T ————

60

80

14:30
15:00
15:30
16:00

16:30
17:00

Figure A.4: Quality prediction for each user that had at least one quality changees
during the analysed matches on 27/04/2025 between 20:00 and 23:00

10

User Id
=y
N
”

=]
o
.
l
o

21:05

21:10
21:15
21:20 -
21:25

21:30

21:35

21:40 -
21:45

21:50

21:55 -
22:00 -
22:05 -
22:10 -
22:15 -
22:20 -
22:25 4
22:30 -
22:35
22:40 -
22:45 -
22:50 -
22:55 -

20:00 -
20:05
20:10

20:15 4
20:20 -+

20:25 -
20:30 -
20:35 -
20:40
20:45 4
20:50 -
20:55 -
21:00

Figure A.5: Quality changes experienced by each user that had at least one

quality changees during the analysed matches on 18/05/2025 between 14:15 and
17:15

64

Matches analysed

20:00
20:30
21:00
21:30
22:00

22:30

23:00

* Low quality
* Medium quality
¢ High quality

Figure A.6: Quality prediction for each user that had at least one quality changees
during the analysed matches on 18/05/2025 between 14:15 and 17:15

65

Bibliography

Mario Freire and Manuela Pereira. Encyclopedia of Internet Technologies and
Applications. Information Science Reference, Oct. 2007 (cit. on p. 4).

Telecommunication Networks Group - Politecnico di Torino. Tstat: Network
monitoring tool. 2008. URL: http://tstat.polito.it (cit. on p. 4).

Giorgio Daniele Luppina. Streambot. 2025 (cit. on p. 6).

sitespeed.io. throttle. URL: https://github.com/sitespeedio/throttle
(cit. on p. 6).

R. Schatz P. Casas and T. Hossfeld. «Monitoring YouTube QoE: Is your
mobile network delivering the right experience to your customers?» In: Proc.
IEEE Wireless Commun. Netw. Conf. (WCNC). Apr. 2013, pp. 1609-1614
(cit. on p. 7).

T. Hossfeld R. Schatz and P. Casas. «Passive YouTube QoE monitoring for
ISPs». In: Proc. 6th Int. Conf. Innov. Mobile Internet Services Ubiquitous
Comput. July 2012, pp. 358-364 (cit. on p. 7).

M. Ammar T. Mangla E. Halepovic and E. Zegura. «Using session modeling to
estimate HTTP-based video QoE metrics from encrypted network trafficy. In:
IEEE Transactions on Network and Service Management 16.3 (Sept. 2019),
pp. 1086-1099 (cit. on p. 7).

E. Halepovic V. Krishnamoorthi N. Carlsson and E. Petajan. « BUFFEST:
Predicting buffer conditions and real-time requirements of HTTP(S) adaptive
streaming clients». In: Proc. 8th ACM Multimedia Syst. Conf. June 2017,
pp. 76-87 (cit. on p. 7).

Irena Orsolic, Dario Pevec, Mirko Suznjevic, and Lea Skorin-Kapov. « A ma-
chine learning approach to classifying YouTube QoE based on encrypted net-
work trafficy. In: Multimedia Tools and Applications 76.21 (2017), pp. 22267
22301 (cit. on p. 7).

66

http://tstat.polito.it
https://github.com/sitespeedio/throttle

BIBLIOGRAPHY

[10]

[11]

[12]

[13]

[14]

Francesco Bronzino, Paul Schmitt, Sara Ayoubi, Guilherme Martins, Renata
Teixeira, and Nick Feamster. «Inferring Streaming Video Quality from En-
crypted Traffic: Practical Models and Deployment Experience». In: Proc.
ACM Meas. Anal. Comput. Syst. 3.3 (Dec. 2019) (cit. on p. 7).

Michael Seufert, Pedro Casas, Nikolas Wehner, Li Gang, and Kuang Li.
«Stream-based machine learning for real-time QoE analysis of encrypted
video streaming trafficy. In: 2019 22nd Conference on Innovation in Clouds,
Internet and Networks and Workshops (ICIN). Feb. 2019 (cit. on p. 7).

M. Hammad Mazhar and Zubair Shafiq. «Real-time Video Quality of Experi-
ence Monitoring for HT'TPS and QUIC». In: IEEE INFOCOM 2018 - IEEE
Conference on Computer Communications. 2018, pp. 1331-1339 (cit. on p. 7).

Vaneet Aggarwal, Emir Halepovic, Jeffrey Pang, Shobha Venkataraman, and
He Yan. «Prometheus: toward quality-of-experience estimation for mobile apps
from passive network measurementsy. In: Proceedings of the 15th Workshop
on Mobile Computing Systems and Applications. Feb. 2014 (cit. on p. 7).

Giorgio Daniele Luppina. Inferring Video Quality in Live Streaming Flows
Using Network Passive Metrics. Apr. 2025. URL: http://webthesis.biblio.
polito.it/id/eprint/35249 (cit. on p. 11).

67

http://webthesis.biblio.polito.it/id/eprint/35249
http://webthesis.biblio.polito.it/id/eprint/35249

	List of Tables
	List of Figures
	Introduction
	Motivation
	Proposed Methodology
	Thesis Structure

	Background
	Passive Measurements
	Tstat

	Active Measurements
	Streambot

	Related Work

	Methodology
	ISP data analysis
	ISP data structure
	Dazn protocol Identification
	DAZN live flows analysis

	Stall events classifier
	Data collection
	Data Pre-processing
	Models training, validation and test

	ISP Data processing
	Reading
	Make win
	Classify
	Merge

	Dashboard development

	Experimental Results
	Live Dazn Flow Identification
	Identify Rebuffering Events
	Data Collection
	Data Preprocessing, Partitioning and labelling
	Models Training and Validation
	Models Testing

	Models Results on ISP Data
	Insights from the weekend of March 29–31, 2025
	Matches analyses
	Users analyses

	Dashboard Deployment
	Home
	Daily analysis
	User analysis

	Conclusion
	Future Work

	Matches analysed
	Bibliography

