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Abstract

The steady increase of new software vulnerabilities puts growing pressure on current
cybersecurity systems. To improve detection and mitigation capabilities, security
experts seek to discover novel attack patterns and understand how new vulner-
abilities can be exploited. One way to do that, is to manually create in-vitro
scenarios (e.g., virtual environments) to safely observe and log attack data, without
exposing real systems to risks. However, making scenarios that accurately repro-
duce realistic conditions is a complex, time-consuming task that requires a wide
range of skills in virtualization technologies, cybersecurity, and service configuration.

Recent developments in the Artificial Intelligence (AI) field and the continuous
growth of Large Language Models (LLMs) have highlighted their potential to
automate complex tasks. Applying these technologies to streamline the creation of
in-vitro scenarios would enable security experts to save time and safely perform
penetration testing, patch development, collect attack data, and analyse data on
these environments.

Building on this idea, this thesis proposes an Al agent designed to automate the
generation of vulnerable virtual environments. The LLM-automated workflow
replicates the structured reasoning of a human expert and is divided into four
sequential steps: (1) CVE validation, (2) information retrieval, (3) generation
of the virtual environment, and (4) static vulnerability assessment. Particularly,
the agent receives as input the identifier of the vulnerability, namely the CVE-ID
(Common Vulnerabilities and Exposures Identifier); gathers the services required
to reproduce the virtual environment; iteratively builds the environment through a
build-and-test loop; and finally assesses whether the environment is vulnerable to
the input CVE.

I systematically evaluate several LLMs (GPT-40, GPT-5, and gpt-0ss:120B) to
automate the Al agent. Results on 100 CVEs show that the Al agent can develop
a working virtual environment for 63% of the tested vulnerabilities, with 27% of
them confirmed to be vulnerable to the input CVE. These preliminary results
demonstrate the potential of Al agent in the automation process to aid the work of
cybersecurity experts. Future works will need to improve the current architecture,
analyse a larger set of vulnerabilities, and explore the benefits of a multi-agent
framework.
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Chapter 1

Introduction, Background &
Related Works

1.1 Problem & Motivations

Tens of thousands of new vulnerabilities are discovered each year, with 40303
new vulnerabilities getting a Common Vulnerabilities and Exposures (CVE)
identifier in 2024 alone [1]. Understanding how vulnerabilities are exploited is a
complex task that requires to identify: which attack is being performed, how it is
carried out, who is performing it, and why. Answering these questions demands
exhaustive data collection for each attack.

Understanding attack patterns and how exploits are executed is essential to better
defend against future attacks. The data gathered from such analyses can be
used to train Artificial Intelligence (AI) models to recognize specific attack
patterns or exploit signatures, and to improve Intrusion Detection Systems
(IDS) and Intrusion Prevention Systems (IPS).

The problem lies in the quality of the gathered data. Few organizations are
willing to share details about how their systems were compromised, as unsanitized
data could expose sensitive information about the affected systems or users.
This means that, companies, public institutions, and other entities that collect
attack data are often reluctant to share it, leading to a lack of reliable and
representative attack datasets.

This raises the question: how can real-world attack data be gathered in a
controlled and reproducible way? Unfortunately, to fully understand the scope
and impact of an attack, it must be allowed to continue, as early stopping prevents
a complete analysis, which means that data gathering cannot be performed on

1



Introduction, Background & Related Works

any system. To address this challenge, security experts have developed several
approaches, such as honeypots and cyber ranges, that allow them to collect re-
alistic attack data safely. These solutions often rely on experimental scenarios (e.g.,
virtual environments) intentionally configured to be vulnerable to a well-know
set of vulnerabilities.

Virtual environments offer clear advantages: they can be easily monitored, safely
contained and quickly deployed depending on the type of attack data that
needs to be gathered. Having a rich and freely customisable collection of vul-
nerable virtual environments can enable researchers, or even autonomous systems,
to rapidly recreate complex experimental scenarios and study how threat actors
interact with them.

Creating virtual environments that accurately reproduce real vulnerabilities is a
non-trivial task. As demonstrated by Mu et. al in the paper ' Understanding the
Reproducibility of Crowd-reported Security Vulnerabilities" [2], performing these
tasks manually is very time-consuming and requires a wide range of skills
in virtualization technologies, cybersecurity, and in the service configuration, that
even security experts may lack. Relevant information must be gathered from
available public sources and weighted based on how reliable the source is. The
vulnerable service version must be identified, and the whole environment has to be
configured to ensure it is both vulnerable and isolated. Performing all these
activities wastes precious time that security experts could otherwise dedicate to
more important tasks like data analysis, penetration testing, and patch development.

Existing efforts address part of the problem but have limitations. Projects like
Vulhub [3] depend largely on manual effort to create Docker-based virtual envi-
ronments built around a specific CVE. More recent approaches, such as CVE-Genie
[4], leverage the growth of Large Language Models (LLM) and their potential
to automate complex tasks. CVE-Genie is an Al agent that utilizes the source
code of the vulnerable project linked to the CVE to generate both a vulnerable
environment and a corresponding exploit. However, the effectiveness of this solution
is limited by the availability of open-source code and the existence of a publicly
available exploit for validation - resources that are often inaccessible or proprietary.

This thesis combines elements from existing approaches to tackle the challenge
of automating the creation of vulnerable virtual environments using an
AT agent. The goal of the agent is to streamline the creation safe and reliable
experimental scenarios for the observation, collection, and analysis of attack
patterns. To achieve this, it leverages modern LLMs to automate tasks such as
data gathering, summarization, code generation, validation, and debugging.

2
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1.2 Methodology & Results

This project introduces an Agentic Workflow designated to automate the cre-
ation of a vulnerable virtual environment starting from a single CVE-ID. Taking
inspiration from how a human developer approach the problem, the workflow is
divided into four stages:

o LLM Setup & Input Validation: the agent verifies the existence of the
provided CVE-ID by using the MITRE’s CVE Service API [5], ensuring that
the given CVE is valid and that no unnecessary processing is performed.

o Information Gathering: the agent is tasked with collecting and summarizing
information about the CVE by combining the knowledge of the LLM with
the one extracted by analysing public web pages content. This data helps the
agent identify which services are causing the vulnerability, and which are
required to make the virtual environment work as intended.

e Virtual Environment Creation: the agent generates all files for to the
virtual environment, tests it to ensure it functions properly, and iteratively
fixes any detected errors.

» Vulnerability Assessment: the virtual environment undergoes static vul-
nerability assessment to check if it is vulnerable to the starting CVE.

Various Al Agent development frameworks were evaluated, and in the end, LangChain|
[6] was chosen. The workflow was tested using three LLMs:

e GPT-40 and GPT-5, hosted on OpenAl’s servers
e gpt-oss:120B, running on the local SmartData cluster

The agent communicates with the LLM using OpenAl’s API, while the Langfuse
[7] platform is used to monitor costs and token usage.

Following the ideas of Vulhub [3]|, Docker was chosen as the underlying virtu-
alization technology on which to base all the virtual environments that are
created by the agent. Docker Desktop is used to deploy and manage the virtual
environments generated by the agent, while Docker Scout is used to perform the
static vulnerability assessment on them.

The only mandatory piece of information for the agent is the CVE-ID string,
around which the virtual environments is built. The progress of each agent run
is tracked through a series of milestones, which ensure that the final virtual
environment is functional and accurately configured.

3
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1.3 Thesis Organization

This thesis is organized on five chapters and an appendix:

Chapter 1, Introduction, Background & Related Works: the first
chapter - i.e., the current one - continues by exploring the theory and research
behind the technicologies used in this project. Starting from presenting the
historical evolution of Artificial Intelligence (AI), to a conceptual overview
of Large Language Models (LLM), AT Agents and their applications in the
context of cybersecurity.

Chapter 2, Designing an AI Agent: provides a simple overview of the
thought process that lies behind the decisions made while developing the Al
agent, describing the main inspirations that greatly influenced its design.

Chapter 3, Implementation Details: focuses on the details that make up
the entire agentic workflow described in the previous chapter, providing also
an overview on the technologies and frameworks used to develop the Al agent.

Chapter 4, Results & Evaluation: analyses the results obtained while
testing the Al agent on a group of vulnerabilities. The goal is to evaluate
how well the agent performs when varying its initial parameters, analyse its
workflow and the final virtual environments produced.

Chapter 5, Conclusion: Limitations & Future Works: talks current
limitations that afflict the Al agent, potential improvements that can be made
to the counter these limitations and other future works such as integrating
the agent in multi-agent frameworks.

Appendix A, Function Definitions: contains the code of some of the most
important functions used by the Al agent to perform its tasks.
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1.4 From AI to LLM-driven Agents

Artificial Intelligence (AI) is one of the latest technological innovation of the
twenty-first century. The main goal of Al is to create advanced autonomous
systems that can emulate human intelligence, and take decisions indepen-
dently. Nowadays Al is used by practically everyone and it is integrated in a wide
range of research fields, spanning from the academic world and industrial sector, to
government agencies and military. Modern Al systems have achieved remarkable
performance in domains that were traditionally thought to require exclusively
human capabilities, like language comprehension, visual perception, reasoning, and
even creativity.

The term "artificial intelligence" was first conceived in 1956 during a conference
at Darthmouth College as part of a proposal for a research project [8]. The project
focused on studying whether it was possible to describe the aspects of learning and
the features of intelligence with a level of detail such that a machine could simulate
them. Moreover, concepts such as "Neuron Nets' (i.e., neural networks) and
'Self-Improvement’ (both of which are well-developed in modern research) are
already introduced by this proposal as part of the problem.

Just a year later, in 1957, Frank Rosenblatt developed the Perceptron as one
of the first attempts to create a machine capable of learning from data [9]. The
Perceptron can be seen an early form of neural network designed to perform
pattern recognition. Essentially, the Perceptron is the simplest unit of a neu-
ral network, it takes as input a set of features, applies an activation function
to the weighted sum of the features and produces an output. Although the type of
problems the Perceptron can solve is limited by its architecture, its development
was significant because it introduced key ideas, such as the use of adjustable
weights and learning from data, which became central in neural network
and machine learning research, and demonstrated that machines could, in
principle, learn from experience.

Machine Learning (ML) is a subset of the AI domain that focuses on algorithms
that can learn the patterns training data and make decisions on new data based only
on what it has seen in the past. The term "machine learning" was popularized by
Arthur Samuel, an american computer scientist that worked for IBM, best known
for its 1959 article "Some Studies in Machine Learning Using the Game of Checkers"
[10] which described a software mechanism that, starting from a parameters whose
exact weight are not well known, gradually adjusted those weights by comparing
the outcomes of all game of checkers the machine played, so that the next move
would be the most advantageous one.
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Neural Networks (NN) are structures composed by different layers, each con-
taining a set of nodes (or neurons), connected through links (or synapses). Their
architecture is strongly inspired by how the human brain is organized, which also
makes them highly versatile, meaning they can be used for a wide variety of tasks.

The breakthrough that lead to the popularization of NNs came in 1986, when David
Rumelhart, Geoffrey Hinton, and Ronald Williams published the paper "Learning
Representations by Back-Propagating Errors" [11], which applied the backpropa-
gation algorithm to the field of NNs. Backpropagation provides a systematic
way for neural networks to adjust their weights by propagating the error from the
output layer backward through the network. The main advantage this application
brought is that it allowed NNs to learn complex, non-linear relationships,
which had previously been difficult or impossible to capture since then. This makes
neural networks very effective for tasks where other ML algorithms struggle, such
as image recognition.

Deep Learning (DL) is a subset of neural networks characterised by many (at
least 4) interconnected neuron layers, also called hidden layers. By varying model
weights and biases between individual neurons in adjacent layers, the deep neural
network can be optimized to yield more accurate outputs. In 2006, Geoffrey
Hinton publishes "Learning Multiple Layers of Representation' [12] which summa-
rizes key breakthroughs in DL and outlines how, thanks to their highly flexible
structure, deep neural networks are capable of identifying complex data patterns,
giving them incredible performance and versatility.

DL models are most commonly trained through supervised learning on labelled
data to perform regression and classification tasks. However, this learning paradigm
is far from perfect:

o The model learns only from from the data it has already seen (i.e., the
training data). This means that, if new classes or data values appear, it may
not be labelled correctly.

e Classes can be underrepresented or overrepresented in the training data,
making it harder for the model to learn spot anomalies and to generalize.

The biggest downside of supervised learning is given by the prohibitive cost and
resources needed to acquire large datasets of labelled data (that has to be vali-
dated by a human), which are required by deep neural networks to reach their
performance cap.
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This has led to development of self-supervised learning (SSL), a learning
technique that imitates supervised learning tasks by generating a supervised
signal from the unlabelled data, allowing the model to learn from the structure
of the data (i.e., without the need of labels).

1.4.1 Large Language Models
Pre-trained LLMs

The first-wave of LLMs was based on the transformer architecture, first in-
troduced by Vaswani et al. in the paper "Attention Is All You Need" [13]. The
main innovation of the transformer architecture is the self-attention mechanism,
which allows to analyse long-term dependencies, and to solve the problem of gradi-
ent vanishing/explosion. Moreover, the architecture is parallelizable, which makes
training faster.

SSL is the fundamental training paradigm behind modern Large Language
Models (LLM), a category of DL models trained on enormous amounts of data,
comprising articles, entire web pages and code repositories. Natural Language
Processing (NLP) is what allows LLMs to manage and understand all these data,
thanks to a mechanism known as tokens. The process of absorbing knowledge
and learning reasoning patterns from this general-purpose unlabelled dataset is
named pre-training. It is a very expensive task, that requires requires thousands
of GPUs and large amounts of money. The most important advantage gained by
pre-training an LLM, is that it can be fine-tuned to perform well on a specific
task. Fine-tuning a model means to train it further (using the weight learned
during pre-training as a starting point), on a task-specific labelled dataset. This
is drastically different from previous training methods like end2end training,
which instead have to rely on impractically large labelled datasets, to achieve
the same results.

The flexibility of fine-tuning allowed researchers to introduce the concept of few-
shot learning and to study its influence on LLMs with various sizes. Few-shot
learning fixes the weights of the model and provides it with a number of
demonstration about how to solve a related tasks (e.g., the model might be
prompted to translate a sentence in English, while it is provided with a demon-
stration of how to translate other sentences in English). Brown et al. explain in
the paper "Language Models are Few-Shot Learners' [14] how few-shot learning
enables LLMs to perform well on new tasks which were not included in the
training corpus, just by providing a handful of demonstrations. When applied to
large LLMs (like GPT-3, with its 175 billion parameters), the accuracy of models
subject to few-shot learning is similar to the one achieved by fine-tuning the
model.
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Figure 1.1: Translation Task, BLUE Performance and LLM Size Correlation.
Source: Brown et al. [14]

The BLEU scale measures the performance of a model on task involving the
translation of sentences in various language. Figure 1.1 shows the results obtained
by training LLMs with varying parameter size trained with the few-shot learning
approach. These results show how few-shot translation performance increases with
the number of parameters of the model for all tasks. Unfortunately, it is not always
possible to provide the model with enough demonstration to perform few-shot
learning, which heavily limits its utility.

Instruction-tuning

Zero-shot is another learning methodology that works just like few-shot, expect
this time no demonstrations are given to the model (e.g., the model is tasked
with translating a sentence in English). This learning methodology is the most
convenient one, as it can be used even when providing a demonstration is impos-
sible, but it is also a much more challenging scenario for the model, causing a
drastic performance drop, with respect to few-shot learning.
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The paper 'Finetuned Language Models Are Zero-Shot Learners" [15], by Wei
et al., explores how the zero-shot performance of the LLM can be improved via
instruction-tuning, a learning methodology where the LLM is fine-tuned on a col-
lection of task-specific datasets that are described via instructions. As observed
by Ouyang et al. in the paper ' Training language models to follow instructions with
human feedback" [16], another way to improve the performance of a model, both
for zero-shot and few-shot tasks, is to incorporate human feedback into the
fine-tuning feedback loop. Models that are trained with this approach are better
at following instructions, show improved truthfulness and align better with user
goals. The paper also shows how making an LLM bigger does not automatically
makes it better at following the given tasks, as demonstrated by comparing the
outputs of the 1.3B parameters InstructionGPT model, with the outputs of the
175B parameters GPT-3 model.

LLM Limitations

AT models like GPT-3 and InstructionGPT can present misleading or even false
information as factual. These events, named hallucinations, happen when the
model detects non-existent patterns in its data. As of today there is not a clear way
to prevent hallucinations, therefore Al generated content must always be validated
before use.

The context window of an LLM is the amount of tokens that the model can
process and memorize at any given time. A larger the context window, allows the
model to evaluate longer inputs (e.g., longer conversations, extended documents,
more files, bigger images, etc.) and increases the amount of relevant details in the
output. If the context window of the model is too small to perform a task or to
analyse a specific input, various solutions are possible:

« tasks can be split into more specialised sub-tasks

« inputs can be either truncated or summarized

However, it is important to understand that simply enlarging the context window
of an LLM does not guarantee proportionally better results. Studies, such as the
ones conducted by Liu et al. in the paper "Lost in the Middle: How Language
Models Use Long Contexts" [17], show that positioning of relevant information in
the middle of the context window can significantly degrade the performance of the
model, emphasizing how LLMs can struggle to make use of relevant information
for long inputs.
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Figure 1.2: GPT-3.5-Turbo Accuracy Variation, Correlation with Information
Position in the Context Window. Source: Liu et al. [17]

Figure 1.2 shows that GPT-3.5-Turbo performs better when the relevant informa-
tion is placed at the very beginning of the context window (primacy bias), or
at its end (recency bias). As revealed by Huang et al. in the paper " TrustLLM:
Trustworthiness in Large Language Models" [18], in an attempt to solve, or at
least mitigate the lack of transparency and interpretability of LLMs, some
models (both open-source and especially proprietary ones) may be overly calibrated
towards exhibiting trustworthiness, to the extent that they mistakenly treat benign
prompts as harmful and consequently not respond, compromising their utility. This
is particularly relevant when applying LLMs to cybersecurity related tasks, as
prompts have to carefully crafted to bypass these configuration, and to trick the
LLM to perform tasks that it was not supposed to undertake.

LLM-as-a-Judge for Output Validation

Evaluation and validation of the output of an LLM is often a difficult and time-
consuming task, especially for a human. A clever way to validate Al content is to
use the LLM-as-a-Judge paradigm, which simply consist in prompting an LLM
to validate the output of another LLM. As revealed by studies such as Zheng et al.’s
in the paper "Judging LLM-as-a-Judge with MT-Bench and Chatbot Arena" [19],
LLMs like GPT-4 can achieve over 80% agreement with human preferences,
which is the same level of agreement between humans. The papers also highlights
how the LLM-as-a-Judge approach is easily scalable and explainable, but
when possible, it should be complemented with human evaluation.
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1.4.2 Raise of LLM-based AI Agents

Nowadays humans use LLMs as a tool that can augment its reasoning and help
decide which actions to perform. The idea is to replace the human-LLM interaction
with a software-LLM interaction loop which is named AI agent. Thanks to
their ability to interact with LLM, agents become entities capable of observing
the environment around them, use these observation to reason and decide which
action to take to influence the environment. This Perception-Thought-Action loop
is named Reinforcement Learning (RL) and it is learning paradigm on which
AT agents are based. These loops can be repeated multiple times, allowing the
agent to learn through trial-and-error, until it has reached its goal.

~©O-~ O~
R B 3
(y—~

-
- w—’r’r‘ B
(ction

Observat/on Act/on [Observat:o ] Action
Environment Environment

Figure 1.3: Replacement of the Human with an Al agent in the Perception-
Thought-Action loop. Source: Al and Cybersecurity Course, Politecnico di Torino
A.a. 2024/25 [20]
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Chain-of-Thought Prompting

Unfortunately LLMs are not smart enough to solve complex task on their own (i.e.,
without guidance by a human or Al agent). This is especially true for task that
require multiple reasoning steps to be answered directly.

Wei et al. try to mitigate this problem by exploring how to bring out the reasoning
abilities of LLMs by generating a series of intermediate steps - a Chain-of-Thought
(CoT) - that describes the ideal reasoning process required to solve a task. The
paper, named "Chain-of- Thought Prompting Elicits Reasoning in Large Language
Models" [21], describes how feeding multiple CoTs as examples to an LLM (i.e.,
following the few-shot paradigm) can improve its performance on wide range of
tasks, such as arithmetic, common-sense, and symbolic reasoning.

Standard Prompting

| Model Input

Chain-of-Thought Prompting
Model Input

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples

do they have?

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A Roger started with 5 balls. 2 cans of 3 tennis balls
each is 6 tennis balls. 5 + 6 = 11. The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples

do they have?

— J

A: The answer is 27. x J

Figure 1.4: Example of CoT Prompting on an arithmetic task. Source: Wei et
al. [21]

J

A The cafeteria had 23 apples originally. They used
20 to make lunch. So they had 23 - 20 = 3. They
bought 6 more apples, so they have 3 + 6 = 9. The
answer is 9. o

The main takeaway of CoT Prompting is that LLM performance can be strongly
enhanced by breaking down the problem into a set of specific goals, removing this
burden from the model.

Structured Output

When a user interacts with an LLM via its web interface or through an API, the
LLM will output text using whatever format it thinks it is best (e.g., Markdown,
JSON, etc.). However, in many cases it would be beneficial to have a predefined
output format, to allow for better control over the LLM responses, faster integration
of the LLM in the system, and the easier implementation of checks and validation
procedures.

12
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Some LLM, such as GPT-40 and GPT-5, support Structured Output, a mechanism
that ensures that LLM consistently produces outputs in the given format. This
means that unexpected data is less likely to appear, effectively reducing
hallucinations. Moreover, it also reduces variability, making it it easier to evaluate
overall LLM performance.

1.5 Al & Cybersecurity

Cybersecurity is the practice that deals with the protection of assets from an
intended or accidental action that could harm them. It has become a very
important issues, since nowadays almost every system is built with Information
and Communication Technologies (ICT).

An asset of an Information Technology (IT) system is a set of ICT resources,
data people and locations. Each asset has some intrinsic weaknesses, the ones
which can be exploited by an attacker to perform an attack are named vulnera-
bilities. Successful attacks can cause all kinds of damage, from financial loss to
reputational damage.

Among the numerous applications of Al, cybersecurity is one of the rising
ones. The main reason why cybersecurity The main advantages of applying Al to
cybersecurity are related to a drastic increase in adaptability and proactiveness,
thanks to three intrinsic characteristics of ML models:

o Automation allows ML models to perform time-consuming and redundant
tasks. This means faster responses to events seen as potential cyber threat,
speeding up human response times.

» Intelligence can be used to make simplify decision making when presented
with complex patterns, ideal for identifying novel cyber threats and intricate
attack patterns.

 Robustness keeps ML models effective under varying conditions, allowing
them to deal with noisy data, and mitigating the effects of decoy cyber attacks,
which are meant to divert the defender’s attention.

13
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LLMs are trained on huge heterogeneous datasets making them capable of identify-
ing intricate data patterns. It has been found that fine-tuning these deep learning
architectures with smaller, task-specific labelled dataset makes them perform
well specific tasks, even cybersecurity related one, such as intrusion detection,
malware classification, and anomaly detection. This happens because fine-tuning a
deep learning architecture makes it more capable of identifying complex data
patterns and more efficient at detecting novel cyber threats.

1.5.1 Common Vulnerability and Exposure

Common Vulnerability and Exposure (CVE) is a method for the classification
of publicly known vulnerabilities and exposures operated by MITRE. CVE works
as a vulnerability database that associates to each one:

« a unique identification number, named CVE Identifier (CVE-ID)
e a description of the vulnerability
o at least one public reference, each reporting on its exploitation

Every system will have its own set of vulnerabilities, CVE helps investigating these
vulnerabilities by sharing sharing information within the cybersecurity community
and enabling rapid data correlation across multiple information sources.

1.5.2 Virtualization Technologies in Cybersecurity

Virtualization is the process that allows for more efficient utilization of
physical computer hardware. It uses software to create an abstraction layer
over the computer hardware that allows its elements to be divided into multiple
instances named Virtual Machines (VM).

Lightweight Virtualization has the same nice properties of computer virtualiza-
tion, but manages to consume less resources. In the context of cybersecurity,
virtual environment have become both a training tool and a method of enhancing
the resilience and security of I'T infrastructure, since they provide:

e an isolated environment that can be quickly deployed, migrated and
disposed with little to no cost.

« a cost-effective, easily scalable solution.

» strong security and isolation guarantees that are easier to enforce.
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All these properties have lead to numerous applications of virtual environments:

o Cyberattack Simulation: virtual environments make it possible to simulate
real-world cyberattacks safely, without endangering actual systems. These
in-vitro scenarios can be easily configured to resemble real IT infrastructure,
allowing security expert to perform realistic testing and data gathering. This
can help Security Operations Centers (SOC) act quickly to contain and
recover from security incidents.

« Employee Training: virtual environments can also be used for cybersecurity
training. Everyone, even non-technical users, can experience simulated attacks
and practice real-time responses, gaining practical skills that traditional
approaches can’t offer.

o Live Malware Analysis: malware analysis is another key use of virtual
environments. Running a malware in an isolated setup allows researchers to
safely study how it behaves, gather information on which files it targets, how
it spreads, and what data it tries to steal. This knowledge is essential for
developing stronger security measures such as patches and antivirus tools.

1.6 Related Works

This section will explore systems that leverage virtual environments for cybersecurity
purposes (i.e., Metasploit [22], Cuckoo Sandbox [23], and Vulhub [3]) and relevant
research regarding the application of Al and leverage of LLM for cybersecurity
studies (e.g., CVE-Genie [4]).

1.6.1 Practical Uses of Virtualization in Cybersecurity
Metasploit

Metasploit is an open-source penetration testing framework that uses a
modular architecture where each module provides a functionality, such as exploits,
payloads and encoders [22].

Metasploit

Figure 1.5: Metasploit Logo
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The key advantage of Metasploit is that it provides a virtual environment designed
for testing and intentionally filled with common vulnerabilities and logging tools.
This allows security experts and researchers to leave their production systems
unharmed while they use a isolated in-vitro scenario to:

o develop new patches and check their functionality
o test an exploit and replicate real-world attack scenarios

« simulate entire networks of vulnerable machines, each with its own Metasploit
image

Cuckoo Sandbox

Cuckoo Sandbox is an open-source automated malware analysis system. It is
used to automatically run and analyse potentially malicious files inside an isolated
virtual environment, enabling the safe collection of data (e.g., process traces, file
operations, memory dumps, network traffic, screenshots, etc.) and a comprehensive
analysis of the results that outline what the software does while running [23].

Figure 1.6: Cuckoo Sandobox Logo

Malware often behaves differently depending on the system configuration (i.e., OS
version, installed software, network conditions, presence of certain files/cookies,
etc.). Virtual environments allow to simulate a realistic attack environment so that
the malware is more likely to "activate" and reveal (malicious) behaviour.

Vulhub

Vulhub is an open-source project that collects manually built Docker-based vulnera-
ble environments, each associated to a CVE or vulnerable service. It allows anyone
to quickly deploy an attack scenario that resembles a real-world one [3].
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Figure 1.7: Vulhub Logo

Each environment is built using a combination of Docker and Docker Compose,
which simplify the deployment and clean up operations of the environments. All
deployed Docker Containers are isolated and reproducible, which means that Vulhub
provides a safe and harmless alternative to the use of real systems for security testing
purposes. These environments easily allow users to: perform penetration testing
on the vulnerable environment; create and test new payloads for vulnerability
exploitation; and develop new attack chains.

1.6.2 Attack Datasets Limitations

One of the main goals of this thesis is to enable security experts to build more realis-
tic attack datasets. Such datasets are essential for benchmarking the performance of
different vulnerability detection techniques, like source code analysis tools using
rule-based methods [24, 25], approaches based on Graph Neural Networks
(GNN) [26, 27, 28], LLMs [29, 30], or even specialised multi-agent systems [31,
32] . These datasets are also critical for improving IDS and IPS systems [33, 34, 35].

The effectiveness of these practices depends heavily on the correct labelling of the
attack dataset, as they provide information about which CVE was exploited and
how the attack developed. Labelling is usually performed in two ways:

o Manual Labelling: datasets that rely on manual work [26, 36] are usually
small, require a lot of time to be built, and suffer labelling problems. For
example, Devign [26] - a GNN that performs vulnerability identification.
However, studies have shown that half the dataset used to train and test the
GNN has been mislabeled as a result of manual labelling (which took around
600 hours of work) [37].

e Autonomous Labelling: automation reduces time required to build the
dataset. This can be done by: analysing real-world data (e.g., patch commits
or vulnerability fixes) and assuming that all modified and removed code was
vulnerable [38, 39]; or by using static analysis tools [40, 41]. These approaches
increase the dataset size, but at the same time, increase the risk of introducing
false positives.
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Despite these efforts, existing approaches force researchers to strike a balance
between label accuracy and scalability. This thesis addresses this challenge
by providing a way to easily reproduce scenarios vulnerable to a specific CVE,
enabling researchers to expand and label their attack dataset reliably with both
real and synthetic data.

1.6.3 LLMs & Al Agents for Cybersecurity

As explored by Zhang et al. in their paper ' When LLMs meet cybersecurity: a
systematic literature review" [42], LLMs have demonstrated remarkable capabilities
and seen a wide range of applications in the fields of software engineering and
cybersecurity:

Cyber Threat Intelligence (CTI): exploiting the excellent analysis and
summarization capabilities of LLMs in NLP tasks, researchers managed to
use LLMs for CTI generation [43, 44], CTT information extraction [45, 46, 47],
and CTI report deduplication [48]. Others have even designed autonomous
AT agents to imitate the work of a qualified security experts [49].

Vulnerability Detection: studies that assessed the ability of LLMs to detect
vulnerabilities [50, 51] have shown great results. Some have also tried to
improve detection capabilities by providing the LLM with pre-processed data
[52, 53], in an attempt to enhance the reasoning process of the LLM.

Malware Detection: LLMs can assist with static analysis assistant (e.g., by
helping with reverse engineering [54]) and with dynamic debugging [55],
improving the malware detection process.

Anomaly Detection: studies have focused on using fine-tuned LLMs to
perform log analysis [56] and to assist in the detection of phishing and
spam in web content [57].

Digital Forensics: LLMs have been used to determine if malicious or suspect
actions have been performed on a computer system [58]. Others, such as
CyberSleuth [59], have designed an AT agent to autonomously investigate
realistic web application attacks. The goal is to analyse packet-level traces
and application logs to identify the targeted service, the exploited vulnerability,
and attack success.

Offensive Purposes: offensive security has seen numerous applications.
Some use LLM to solve fuzzing related challenges [60], others attempt
to automate the penetration testing process by leveraging the power of
LLMs [61] or by building autonomous/semi-autonomous Al agents [62].
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Critical analysis of all these applications highlights a clear imbalance between
offensive security applications (i.e., Read-team LLMs) and defensive security
applications (i.e., Blue-team LLMs). This imbalance as been observed also by
Potter et al. in the paper "Frontier AI’s Impact on the Cybersecurity Landscape:
Current Status and Future Directions" [63], which underlines how - at least in the
short term - AI will benefit attackers more than defenders.

One of the major challenges in developing defensive solutions is their reliance
on inefficient manual processes, which explains the imbalance. This thesis
addresses this issue by proposing an automated approach that allows security
experts to replicate vulnerable virtual environments. This automation saves time
and enables safe penetration testing, patch development, and the collection and
analysis of attack data.

1.6.4 CVE-Genie

CVE-Genie is a LLM-driven multi-agent framework that automates the end-to-end
reproduction process of a CVE, addressing nearly all of the same challenges tackled
in this thesis.
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Figure 1.8: CVE-Genie Architecture Overview. Source: Ullah et al.’s paper [4]
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The framework is divided into four modules:

o The Processor retrieves source code of the project linked to the CVE and
uses the gathered information to build a structured knowledge base.

e The Builder uses the structured knowledge base to generate a vulnerable
environment.

o The Exploiter uses the provided exploit or tries to create one to test if the
environment is vulnerable.

e The CTF Verifier assesses if the exploit was successful.
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CVE-Genie takes a different approach, with respect to my solution, by using a
multi-agent solution where each agent is specialised in subtask. This is par-
ticularly beneficial for CVE-Genie, given the wider scope of the overall project.
However, building a multi-agent framework was not considered necessary for the
purpose of this thesis, which instead focused "only" on automating the following
stages: CVE information-gathering phase; generation of the virtual environment;
and finally vulnerability assessment.

One of the main consequences of the CVE-Genie approach is the high costs and
long execution times - up to $4 and 35 minutes per CVE. Moreover, CVE-Genie
requires access to the source code of the vulnerable project associated to the
CVE. Since this code may not be always available, the range of reproducible CVEs
is significantly reduced.

Finally, it is worth noting that CVE-Genie uses the the Exploiter and CTF
Verifier modules to perform dynamic vulnerability assessment. Instead, my
approach relies exclusively on static vulnerability assessment using Docker Scout.
Future work will evaluate the integration of exploitation in the workflow to
further increase the robustness of the created virtual environments.
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Chapter 2

Designing an Al Agent

This chapter analyses and describes the methodology used to develop the main
goal of this thesis: building an Al agent to automate the generation of vulnerable
virtual environments. This chapter also provides a comprehensive understanding

of how the Al agent was designed.
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2.1 From the Security Expert to the AI Agent

During the design phase of the agentic workflow it was observed that creating
a virtual environment and ensuring that it is vulnerable to a specific CVE is
a well-defined process. The Al agent was therefore designed to follow the
ideal workflow of a real-world security expert tasked with building a virtual
environment that is intentionally vulnerable to a given CVE. This translated
into the definition of a sequential process which was divided into four tasks,
each identified by its own colour and shape.

1. ¥ Validation: the security expert first verifies that the provided CVE is
valid and actually exists.

2. @ Information Gathering: next, the security expert collects useful knowl-
edge about the CVE and identifies the services and components required to
create the appropriate virtual environment.

3. " Virtual Environment Creation: then, the security expert writes all the
files needed to create a functional virtual environment, ensuring it is properly
isolated and configured so that the specified CVE can be exploited.

4.~ Vulnerability Assessment: finally, before deploying the virtual environ-
ment, the security expert performs vulnerability scanning and penetration
testing to confirm that the environment is indeed vulnerable to the CVE.

The AT agent abstracts this reasoning process into an via an agentic workflow,
which can be represented via an acyclic graph (see Figure 2.1). This section will
illustrate this workflow is structured and how it manages to abstract the approach
of the security expert. It is worth noting that, during the implementation, it
became clear that allowing the agent to independently chose the execution flow, or
at least in most of it, was not the ideal, mainly due to the rigid structure of the
process described above.

As a result, most of the process is automated without granting agency to
the AI (i.e., without allowing the AI agent to make decisions or acting
independently). In practice, this means that, the Al agent rarely chooses how
and in which order the task should be accomplished. Instead, many decisions
rely on the outputs of the agent combined with additional predefined checks
and constraints that do not require an interaction with an LLM.
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« LLM Setup and Input Validation
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Figure 2.1: Graph Representation of the Entire Agentic Workflow
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2.2 LLM Setup & Input Validation

The first task of the agentic workflow - identified by the colour/shape - is
dedicated to handling and validating user inputs. It consists of two sequential

steps:

( Initialization }

I

[ CVE Assessment ]

Figure 2.2: Graph Representation of the First Task of the Agentic Workflow

2.2.1 Initialization

The first step initializes the appropriate LLM and prepares it for subsequent tasks.
Each model is set up with different parameters:

e GPT-4o0 is setup to balance creativity and consistency, allowing it to
undertake different tasks like coding and information gathering.

e GPT-5 has its reasoning capabilities constrained to reduce reasoning time
and overall workflow execution time, which can be significant for such a
large model.

e gpt-o0ss:120B is configured with enhanced reasoning capabilities to keep
execution times comparable to GPT-5, compensating for its smaller size.

2.2.2 CVE Assessment

The second step verifies whether the input CVE-ID actually exists by
checking the MITRE CVE database. This ensures that the agent does not waste
time and resources creating a virtual environment for a vulnerability that does
not actually exist.
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2.3 Information Gathering

The second major task - identified by the @ colour/shape - focuses on collecting
all necessary information about the specified vulnerability. Just like the previous
task, it is divided into two sequential steps:

Found
v

[Get CVE Services )

)

(Assess CVE Services ]

Figure 2.3: Graph Representation of the Second Task of the Agentic Workflow

2.3.1 Get CVE Services

In the first step, the agent gathers useful information by leveraging the
input CVE-ID. Specifically, it attempts to determine which services have to be
included in the Docker-based environment to ensure its correct functionality
and vulnerability.

Due to LLM knowledge cutoff limitations and the general-purpose nature
of training data, the domain specific knowledge of the LLM may be
insufficient to generate a working virtual environment vulnerable to any given
CVE. To mitigate this, the agent is equipped with the ability to perform web
searches to obtain up-to-date vulnerability information. The user can select one of
three different strategies that the agent will follow to perform the web search.

2.3.2 Assess CVE Services

The second step focuses on validating the information gathered the previously.
Validation is made by comparing the gathered information with a small, manually
curated dataset that contains, for each CVE, the list of services - and related
version - required to build a working vulnerable virtual environment. This
dataset was put together using both the official CVE documentation - namely the
NVD database [64] - and the working vulnerable virtual environment provided by
the Vulhub project [3].
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The information gathering task is considered successful only if the following
three objectives are achieved:

1. All services that are essential for reproducing the vulnerability are correctly

identified.
2. Each vulnerable service is paired with at least one vulnerable version.

3. All services required for the environment to function properly are identified.

2.4 Virtual Environment Creation

The third task - identified by the ' colour/shape - is the most critical, as it
requires the agent to generate the virtual environment and verify its functionality.
Depending on the test results, the agent can loop back to attempt to fix the
environment, effectively allowing it to dynamically adjust the workflow.

Ok
v
[ Generate Code J

Revi’se Code
b

Revise
Code

Figure 2.4: Graph Representation of the Third Task of the Agentic Workflow
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2.4.1 Generate Code

The first step of this task prompts the LLM to generate the code base of
the virtual environment using the information gathered in the last step and a
set of guidelines that tell the LLM how to use the information gathered and
enforce a naming convention for the generated files. Following the approach
used in the Vulhub project [3], the LLM is instructed to build a Docker-based
environment.

2.4.2 Save Code

All files generated by the LLM are then saved locally. This happens after the
first code generation as well as after every code revision.

2.4.3 Test Code

The major challenge in developing this Al agent was determining when an virtual
environment was working correctly. Ultimately, it was decided that, for a virtual
environment to be working correctly, it has to meet all four of the following
criteria:

1. All Docker Images complete the build process without errors.
2. All Docker Containers can run without errors and without unexpected crashes.

3. All services required to make the environment vulnerable are hosted by the
Docker Containers and vulnerable version of them is used.

4. All services hosted by the Docker are reachable from their default network
ports.

If all criteria are satisfied, the agent concludes that the generated virtual envi-
ronment is working correctly and proceeds with the vulnerability assessment
phase. Else, if any criterion fails, the agent attempts to fix the identified issues
leveraging the knowledge gathered during testing. To regulate the total workflow
execution time and reduce costs, the number of iterations the agent may perform
in the testing—revision loop is limited to 10.

2.4.4 Revise Code

Revision of the code-base of the environment is achieved by explaining to the LLM
why the virtual environment failed and by providing some guidelines that
help the it fix the existing environment.
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2.5 Vulnerability Assessment

The fourth and final task of the agentic workflow - identified by the  colour/shape
- examines the virtual environment generated in the last step to check if it is

vulnerable to the input CVE.

Stop Teéting
v

Vulnerability
Assessment

o

Figure 2.5: Graph Representation of the Fourth Task of the Agentic Workflow

Docker Scout [65] is the tool the is used to perform security analysis. It performs a
vulnerability scan that produces multiple lists of all detected vulnerabilities in
the Docker-based environment. If at least one of these lists contains the input CVE,
then it can be assumed® that the agent managed to create vulnerable virtual
environment.

!Static analysis tool, like Docker Scout, risk producing both false positives and false
negatives
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Chapter 3

Implementation Detalils

3.1 Choosing an Agent Development Framework

Just a couple of years ago, Al agents used to be built by stitching together a set
of scripts and prompts through a lengthy trial-and-error process. Today, a
variety open-source and proprietary frameworks have been designed to help
developers and companies streamline the process of creating Al agents.

One of the biggest challenges in developing an Al agent is finding a balance between
giving the agent the ability to handle the desired tasks autonomously and structure
its workflow to maintain reliability. A plethora of frameworks exists, each with its
different approach, from flexible chat-bot like agents to strict graph-based workflows.

Various frameworks were evaluated and their characteristics weighted against each
other to decide which one fitted best the goals of the thesis. Framework evaluation
was based on their compatibility with the other technologies used, such as the
various APIs used to communicate with LLMs (e.g., ChatCompletions for GPT-4o,
Responses for GPT-5), their popularity, their intrinsic complexity and the expected
learning curve.

e OpenAl Agent SDK is OpenAl’s own solution to the problem of having to
develop an Al agent. This framework provides developers with a specialized
agent runtime and a straightforward API for assigning roles, tools, and triggers.
This greatly simplifies multi-step/multi-agent orchestration, while providing
native integration with OpenAl’s model endpoints and built-in tools such as
the ones for web and file search [66].
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o AutoGen is Microsoft’s own open-source framework for agentic Al develop-
ment. Interactions in the workflow are seen as an asynchronous conversation
among specialized agents. Each agent can be a chat-bot like assistant or a
tool executor, and the developer has to orchestrate how they pass messages
between them. This asynchronous approach makes it ideal for longer tasks
or scenarios where an agent needs to wait on external events, like human
interactions [67].

Extensions Your Extensions

AgentChat

. DEVELOPERTOOLS ... .. _

Figure 3.1: AutoGen Ecosystem [67]

o CrewAl is a Python-based framework that allows developers to create au-
tonomous Al agents both with high-level simplicity and low-level control. It
revolves around building (with or without writing code) a crew of agents that
autonomously interacts and uses tools to automate workflows and tasks [68].
Each crew holds multiple agents, each with its own role or function. The
framework autonomously coordinates the agents’ workflow and allows them
to communicate and share resources.

30



Implementation Details

Crew

more agency

Final Outcome

Figure 3.2: CrewAl Framework Overview [69]

o LangChain & LangGraph: LangChain is an open-source framework specifi-
cally designed to develop LLM-driven software applications, like chatbots and
AT agents. Its API allows developers to seamlessly change and make calls to
models, allowing them to easily experiment and find the best choice for the
needs of their applications [6]. LangGraph extends the LangChain library into
a graph-based architecture that treats agent steps like nodes, each handling
a prompt or sub-tasks, and allowing developers to enforce order and control
[70]. These characteristics are the reasons why the LangChain/LangGraph
frameworks have been chosen to develop this project.

3.2 Lightweight Virtualization - Docker

Taking inspiration from the Vulhub project [71], Docker was chosen as the platform
to create the virtual environments. Docker is a software platform that allows to
easily create lightweight, portable and isolated containers. Unlike full virtualization,
containerization - or lightweight virtualization - uses OS-level virtualization
to isolate and constrain the execution environment of the application running inside
the container. This means that any application that is running inside the container
will see only the resources which are allocated to that container, making all other
resources of the host machine virtually invisible to it [72].
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e Docker Compose Docker Compose is one of the most famous Docker Con-
tainer orchestrators. Its main goal is to simplify the container management
in their whole life-cycle and to allow users to easily run multi-container ap-
plications on a single node. YAML files are used to configure the services of
the application, while the docker compose command is used to launch all
the configured services. Being this project strongly influenced by the Vulhub
project [71], Docker Compose was preferred over Docker Swarm [73] and
Kubernetes [74] as orchestrator to manage the virtual environments.

o Docker Desktop Docker uses a client-server architecture. The Docker Client
interacts with the Docker Daemon, which builds, runs, and distributes the
Docker Containers. Both of these services are essential to make Docker Con-
tainers work and are integrated in Docker Desktop (an application for Mac,
Linux, and Windows environments) whose GUI was used to manually assess
and manage every Docker Image and Container [75].

It is worth pointing out that the project was developed on a machine with
Windows 10 Home installed and limited local resources. Citing the official
Docker Desktop documentation [76]: "To run Windows containers, you need
Windows 10 or Windows 11 Professional or Enterprise edition. Windows Home
or Education editions only allow you to run Linuz containers." Therefore, to
start developing the project and to optimize resource usage, it was decided to
install WSL2 (Windows Subsystem for Linux), Microsoft’s own Linux
kernel that allows to run in Windows any Linux distribution without having
to manage VMs. Having Docker Desktop running on WSL2, means that the
agent had to be tasked with designing a Linux container, not a Windows one.
This is an important difference as the respective Docker Image formats are
not cross-compatible, while Linux containers are typically lighter and have
faster start-up times [77].

« Docker Scout Docker Scout [65] is a security-analysis tool that performs the
analysis Docker Image. By inspecting the Docker Image Layers, it builds
a Software Bill of Materials (SBOM) which lists all the packages and
dependencies used by the Docker Image. It uses this list to check against
various public datasets of vulnerabilities, finally producing a report that
indicates which are the vulnerabilities of the Docker Image.
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Effectively, Docker Scout performs static vulnerability assessment by
scanning the Docker Images once they are already built, rather than executing
the related Docker Container in a runtime environment to observe its be-
haviour or test for vulnerabilities dynamically. This is done with a white-box
approach, as it has visibility into the internal composition of the image (i.e.,
packages, dependencies, layers, SBOM, etc.) and uses that information to
identify vulnerabilities.

3.3 Prompt Design

Prompts are strings that contain a set of instructions and/or queries. These are
passed directly to the LLM, interpreted, and used to define the future task. To
better fit the goals of the Al agent, all prompts have been designed with a dynamic
approach, which means that the content of the prompt is never predefined, but
instead it is adjusted at runtime using the data currently available to the agent.
Moreover, strong constraints are imposed to the LLM by using specific words such
as "must", "always" or "never".

Prompts that are specifically designed to instruct an LLM evaluate the output
of another LLM (i.e., whenever the LLM-as-a-Judge concept is applied) explicitly
associate each check to the corresponding field, reinforcing its link the one defined
in the structured output.

o Structured Output: Pydantic is a Python library for data validation that
was used to define the structured data models to handle the outputs of LLMs
[78]. These data models are always defined starting from Pydantic’s BaseModel
class and ensure that, when the LLM returns a JSON output, it can be au-
tomatically validated against the defined data model. If the validation is
successful, the final output will therefore be a JSON with the expected fields
and types.

Depending on which LLM is being used to automate the agentic workflow,
there are two possible ways to configure the structured output:

— with_structured_output () is a LangChain method that is used to make
the LLM validate and output a object structured as the corresponding
Pydantic data model [79]. This method is linked to the agent just like any
other tool, but its invocation is always enforced whenever the LLM has to
provide an output to the user. The only restriction of this method is that
it can only be used by LLMs that provide native APIs for structuring
outputs.
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— PydanticOutputParser is a LangChain class that is used to parse JSON
given the output of an LLM [80]. Whenever an LLM shows compatibility
problems with the with_structured_output () method - as is the case
for all LLM running in the SmartData@Polito Research Group local
GPU cluster - this class is employed to grant to the LLM the same
functionalities.

e LangChain Messages: Messages are used in the LangChain framework
to identify both input and output messages of a conversation with a chat
model such as the ones used in this project [81]. The main advantage of these
Messages is that they are cross-compatible with different types of models and
APIs. This allowed to easily impose rules and restrictions to the LLM, and
also to build self-crafted conversations with a selected amount of data and a
predetermined format.

Each Message has two main components: the Role and the Content. Based
on the role, there are three possible types of messages:

— SystemMessage is used to set the personality of the LLM and provide
the LLM with the context in which it will be working. This essentially
replicates the personalization settings which are available in the typical
web interface of a chat model.

— HumanMessage represent the user’s inputs. It contains the description of
the task that the LLM will have to solve.

— AIMessage represent the outputs of the LLM. It can contain the answer
of the LLM to the previous latest user input or a request to invoke a
tool, containing both the name and (eventually) the parameters of the
tool, which are also generated by the LLM.

It is important to specify that the content of any of these messages is purely
textual. The LangChain framework allows these messages to contain also
audio, image and video data, but their usage was not deemed useful to reach
the goal of this project.
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3.4 The Memory of the Agent

The LangGraph API allows to define a State, a shared data structure that can be
seen as the short-term memory of the agent. It is considered as short-term
because it is initialized at the beginning of each run and stores user inputs that are
specific to that run. For this project, the State data structure was defined using
the BaseModel class of Pydantic, and it includes the following fields:

Field Name Type User Input? | Description
Name of the model chosen

model_name String v for the agent run
1lm ChatQpenAI X LLM used in the agent run
object
cve id String / CVE '1(.ientlﬁer of the vul-
nerability
Information gathering
web_search_tool String 4 strategy used while per-

forming the web search

If True, provides addi-
verbose_web_search Bool v tional data during the in-
formation gathering phase
Stores the final result of

web_search_result Pydqntzc X the information gathering
object
phase
Stores the all file names,
code Pydantic X code and directory tree as-
object sociated to the virtual en-
vironment
Detailed explanation of
fail_explanation String X why the virtual environ-

ment has failed testing
Type of revision that has
revision_type String X to be performed on the vir-
tual environment

How to fix the virtual envi-
revision_goal String X ronment to prevent it from
failing the test again
Stores information about

fixes List of X all previous fix attempts
strings performed by the agent in
the run

Table 3.1: Al Agent Short-term Memory Fields (Part 1)
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Field Name Type User Input? | Description
Tracks the relevant inter-
nessages List of X actions with the LLM per-
& Messages formed during the agent
run
Pydantic Stores various stats about
stats . X
object the agent run
Pudantic Stores the milestones used
milestones S X to track the progress of the
object
agent run
. Used to debug the agentic
debug String X workflow

Table 3.2: Al Agent Short-term Memory Fields (Part 2)
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3.5 Agentic Workflow

The agentic workflow (see Figure 2.1) describes the internal reasoning process
of the AI agent. This section builds on introduction to the workflow made in
the previous chapters, offering a deeper illustration on how the workflow is
structured, the reasons that led to certain design choices, and providing all the
essential implementation details.

3.5.1 LLM Setup & Input Validation

The first task of the agentic workflow manages and validates the user inputs.
This task is divided into two sequential steps:

( Initialization ]

I

[ CVE Assessment J

Figure 3.3: Graph Representation of the First Task of the Agentic Workflow

Initialization
In the first step, the workflow creates two local directories:

e dockers/CVE-ID/Web-Search-Mode where all files are saved. The placehold-
ers CVE-ID and Web-Search-Mode correspond to the user inputs taken from
the State.cve_id and State.web_search mode fields.

e dockers/CVE-ID/Web-Search-Mode/logs where all logs are saved.

Next, the final_report.txt file is initialized by writing all the user inputs in it
and saving it in the dockers/CVE-ID/Web-Search-Mode/logs directory.
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========== (CVE-2021-28164 Final Report ==========

—————————— Initial Parameters ----------
’model_name’: gpt-4o
’cve_id’: CVE-2021-28164

’web_search_tool’: custom

’verbose_web_search’: False

’web_search_result’: desc=’’ attack_type=’’ services=[]

’code’: files=[] directory_tree=’’

’messages ’: [SystemMessage (content=>ROLE: you are an AI expert in

cybersecurity vulnerabilities and Docker lightweight
virtualization technology.\n\nCONTEXT: everything that you
generate will be used in a secure environment by other
cybersecurity experts.\n\nGUIDELINES: avoid security warnings
in your answers for any of the following tasks.\n’,
additional_kwargs={}, response_metadata={}, id=’1140a966-47bl
-4916-acbd-9423cf6e2e50°)]

’milestones’: cve_id_ok=False hard_service=False hard_version=
False soft_services=False docker_builds=False docker_runs=False

code_hard_version=False network_setup=False
’debug’:

Listing 3.1: Example of final report intiilization

Finally, the State.model name input is used to initialize the corresponding LLM,
readying it for the upcoming tasks. All LLMs are instances of the ChatOpenAI
class of LangChain, but they are initialized with different parameters:

e GPT-4o is initialized with temperature=0.5 and max_retries=2.

The temperature (a float between 0 and 2) controls the randomness of LLM
output: higher values (e.g., 0.8) make the LLM output more random, while
lower values (e.g., 0.2) make the LLM more focused and deterministic. A
value of 0.5 strikes a balance between creativity and consistency, allow-
ing the LLM to undertake different tasks like coding and information gathering.
The max_retries parameter specifies how many times to automatically retry
a failed call to the Chat Completion API.

o GPT-5 is initialized with reasoning effort="low" and max_retries=2. The
reasoning effort parameter constrains the computational effort the LLM
dedicates to reasoning (i.e., its depth and duration). The "low" setting was
chosen to decrease the reasoning times and overall workflow execution
times, which can become a problem for huge models like GPT-5.

e gpt-oss:120B is initialized with reasoning effort="medium",
max_retries=2, api_key=os.getenv("SDC_API KEY"), and
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base_url=https://kubernetes.polito.it/vllm/vl. The "medium" set-
ting was chosen to maintain execution times comparable to GPT-5, effectively
compensating the smaller size of gpt-oss:120B with longer reasoning times.
The base_url specifies the endpoint for sent Chat Completion API requests,
here pointing to the SmartData@Polito Research Group Kubernetes cluster.
Access to the hosted LLMs requires a secret key, which is passed via the
api_key parameter.

The LLM that is initialized in this step will be used in all following tasks.

CVE Assessment

The second step verifies whether the CVE-ID provided by the user ac-
tually exists. This verification is performed by querying the MITRE CVE
database using the CVE Services API [5]. This API enables the retrieval of
the CVE record of a specific CVE-ID by sending an HTTP GET request to https:
//cveawg.mitre.org/api/cve/CVE-ID (CVE-ID is just a placeholder).

To facilitate progress tracking, a set of eight milestones is distributed across the
four task of the workflow. The first of of these milestone is named cve_id_ok, and
tracks the outcome of this step:

o If the HTTP status code is 200, the input CVE-ID exists, and the workflow
proceeds (cve_id_ok=True).

o If the HTTP status code is 404, the input CVE-ID does not exist and
the workflow immediately stops (cve_id_ok=False).
o For any other status code, no valid information about the CVE-ID was

retrieved, therefore the workflow also terminates (cve_id_ok=False).

This check ensures that the agent does not waste time and resources creating a
virtual environment for a vulnerability that does not actually exist.

This step primarily performs input validation, which is necessary to handle cases of
vulnerability mislabelling which may confuse the user. It is possible for different
vulnerability databases — such as National Vulnerability Database (NVD) [64],
EUVD (European Union Vulnerability Database) [82], CNNVD (China National
Vulnerability Database) [83], and WooYun [84] — to:

o use the same ID for different vulnerabilities, or

o agsign different IDs to the same vulnerability.

For instance, EUVD-2021-0877 [85] and CVE-2021-28164 [86] refer to the same
vulnerability, while EUVD-2021-28164 [87] and CVE-2021-28164 [86] do not.
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3.5.2 Information Gathering

The second task focuses on collecting information about the vulnerability specified
by the user. The workflow proceeds to this task only if cve_id_ok=True. Just
like the first task, this one is also divided into two sequential steps:

Found
v

[Get CVE Services )

I

(Assess CVE Services ]

Figure 3.4: Graph Representation of the Second Task of the Agentic Workflow

Get CVE Services

In the first step the agent gathers useful information by leveraging the
CVE-ID provided by the user. Specifically, it attempts to determine which
services have to be included in the Docker-based environment to ensure
its correct functionality and vulnerability.

However, due to the knowledge cutoff and the limitations of the training data
- often based on large, generic corpus rather than a domain-specific one - the
knowledge-base of the LLM may be insufficient to generate a working virtual
environment vulnerable to any given CVE. Therefore, to ensure that the agent can
make decisions based on the latest information about the vulnerability, it
was deemed necessary to equip the agent with the ability to retrieve information
from the Internet, i.e., to perform web searches.

The information gathering process differs based on the strategy - or Web Search
Mode - chosen by the user. To explore the information gathering capabilities of the
agent, three different strategies were defined:

« OpenAl Search ("openai'): this strategy leverages the web-search-preview
built-in tool of OpenAI [88], which enables the model to search the web
for the latest information before generating a response. Because of current
framework limitations, this tool can be used only by GPT-40 and GPT-5.

— Non-reasoning models like GPT-40 do not plan a search lookup strategy,
instead they simply return a response based on top results, making non-
reasoning models fast and ideal for quick lookups.
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— Reasoning models follow an agentic approach where the model actively

manages the search process by performing web searches as part of a
CoT. If the results are not satisfactory, the model keeps searching. This
flexibility makes reasoning models well suited for complex workflows,
but it also increases the web search time.

The use of the built-in tool is forced by requesting its use with a HumanMessage
containing the OPENAI WEB_SEARCH_PROMPT:

p
CONTEXT: search the web and summarize all the information available
GOAL: identify the services needed to create a Docker system vulnerable

GUIDELINES:

about {cve_id}

to {cve_id}

The description of {cve_id} must be extensive
The attack type must be spelled out without acronyms or abbreviations
(i.e., do not use DoS, RCE, etc.)
ABOUT SERVICES:
- Specify the minimum set of services needed to create a working
and testable Docker system vulnerable to {cve_id}
- Avoid including services that are there just to test a PoC or to
exploit the vulnerability
- Service names must match the official names listed on Docker Hub,
do not use aliases
ABOUT SERVICE DEPENDENCY TYPES: each service must be associated to a
dependency type that must be one of two:
- ’HARD’ if the service is the essential to make the system
vulnerable to {cve_id}
- ’SOFT’ if the service is needed just to make the Docker work
- ’SOFT’ service that play a specific role must be associated to a
role (format ’SOFT-<role>’). Examples of ’SOFT-<role>’ are:
- ’SOFT-DB’ for relational databases (e.g., MySQL, MariaDB,
PostgreSQL, MariaDB, Oracle)
- ’SOFT-WEB’ for web servers (e.g., Nginx, Apache, PHP, Tomcat)
- ’SOFT-CACHE’ for caching/key-value store/coordination
services (e.g., Redis, etcd, ZooKeeper, RabbitMQ, Kafka)
ABOUT SERVICE VERSIONS:
- Service version must specified and valid for Docker Hub, do not
be vague by citing just ’any compatible version’
- For ’HARD’ services you must list all vulnerable versions cited
by the most reliable sources such as MITRE and NIST. Do not use
ranges, you must be very specific with version name and list all
versions vulnerable to {cve_id}
- For ’SOFT’ services choose a versions compatible with the ’HARD’
services
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No

Using a built-in tool breaks the Structured Output capabilities of the
model. Therefore, a subsequent call to the LLM is required to ensure
that the response is formatted correctly. This is achieved with the simple
WEB_SEARCH_FORMAT_PROMPT:

(GDAL: convert the following text in the provided structured output { ]
L web_search_result}

matter which strategy is used, the final LLM response will always be an

instance of the WebSearch class. The response together with the auxiliary
data gathered during the web search process - i.e., the number of input and
output tokens, and, for the "custom" and "custom_no_tool" modes, the query
parameter - are saved in the web_search_results. json file inside the dockers/
CVE-ID/Web-Search-Mode/logs directory. The web search results are also stored:

as an AIMessage inside the State.messages field, to be easily reused in the
future LLM interactions.

as instance of the WebSearch class in the State.web_search result field, to
simplify the checks performed in the next step.

for logging purposes, inside the final report.txt file.

CVE description: CVE-2021-28164 is a vulnerability in the
Eclipse Jetty web server, specifically affecting versions
9.4.37.v20210219 to 9.4.38.v20210224, as well as versions
10.0.1 to 10.0.5 and 11.0.1 to 11.0.5. The vulnerability
arises from improper URI decoding, which allows attackers
to craft URIs with encoded characters to access the
protected WEB-INF directory. The issue occurs because URIs
containing segments like %2e or encoded null characters are

not properly normalized, allowing unauthorized access to
protected resources. It has a CVSS score of 5.3, indicating
moderate severity.

Attack Type: Remote Code Execution

Services (format: [SERVICE-DEPENDENCY-TYPE][SERVICE-NAME][
SERVICE-VERSIONS] SERVICE-DESCRIPTION):

- [HARD][eclipse-jettyl[[’9.4.37.v20210219°, ’9.4.38.v20210224
>, 79.4.39.v20210325’, ’9.4.40.v20210413’, ’9.4.41.
v20210516°, ’9.4.42.v20210604°’, ’10.0.1°, ’10.0.27,
’10.0.3’, ’10.0.4°’, ’10.0.5’, ’11.0.1°, ’11.0.2°, ’11.0.3°,

’11.0.4°, °11.0.5’]] Eclipse Jetty is the web server that
contains the vulnerability in its URI handling, allowing
unauthorized access to protected files.

- [SOFT][openjdk][[’11-jre-slim’]] Java runtime environment
required to run the Eclipse Jetty server.

Listing 3.2: Example of web search results in the final report.txt file
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o Custom Search ("custom"): this strategy is implemented as an agent tool.
A tool is a function that is given to the LLM that allows it to complement its
knowledge by retrieving information which was not included in its training
data (e.g, because the CVE is a recent one). Although the agent can normally
decide whether to use the given tools, in this case, obtaining the latest
information about the CVE is the priority, so the agent is forced to use the
tool via the CUSTOM_WEB_SEARCH_PROMPT:

N\

p
GOAL: search the web and summarize all the information available about
{cve_id}.

GUIDELINES: use the ’web_search’ tool by generating the following
parameters:

- "query": the query to retrieve the CVE-related information.

- "cve_id": the ID of the CVE.

- J

The prompt cites the two parameters which must be produced by the
LLM to execute the function associated to the tool:

—'query’: a string representing the search query

—’cve_id’: a unique string identifying the vulnerability

The tool relies on Google’s Custom Search JSON API [89] to retrieve data
from the web. Specifically, it sends a request to a specific endpoint® using as
parameters the 'query’, the developer key (used to authenticate the request)
(provided by Google by subscribing to the free tier of the service), and the
search engine (in this case, it is always the default one). The API returns
up to 10 URLs per query, each processed as follows:

1. The agent sends an HTTP GET request to the URL and checks that the
status code is 200. Else, the URL is skipped

2. The retrieved content is parsed with the BeautifulSoup Python library
[90] to verify that is HTML.

3. The <script> and <style> tags are removed from the page, as these do
not contribute to the main textual content.

4. The text is extracted from the page to ensure if:

— it contains enough data. For testing purposes it was decided to ignore
anything less than 50 characters.

— it contains valid UTF-8 encoded content by trying to encode and
decode it.

https://www.googleapis.com/customsearch/vi
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To reduce execution time, costs, and to mitigate the introduction of irrelevant
information, the analysis stops after 5 pages are correctly analysed.

Because tests revealed that HTTP GET requests always failed to retrieve
information from NIST’s NVD repository [64], a dedicated function? was
defined to query the repository using the CVE APT [91].

Next, the agent is tasked with summarizing the content extracted from
each web page. This is done by leveraging the LLM which is initialized with
two Messages:

— A SystemMessage containing the LLM_SUMMARIZE_WEBPAGE_PROMPT °:

s )\
GOAL: summarize in {character_limit} characters or less the user

provided content relevant to {cve_id}.

GUIDELINES:

- Focus on the original services that present the vulnerability and
those necessary to exploit it, ignore other services that rely
on the original services.

- The most important information is usually contained in the
Description" section of the content.

(. J

The guidelines provide generic indications that have can help the LLM
find relevant information more easily.

— A HumanMessage containing the content of the web page.

The response of the LLM - together with information about the number of
input and output tokens used to summarize the text - is stored as-is,
without further post-processing.

Finally, all summaries are concatenated and used to make another call to the
LLM. This time the LLM is tasked with extracting information relevant
to the CVE-ID. Just like before, this is achieved by invoking the LLM using

two Messages:

2See implementation details of the get_cve_from_nist_api function in Appendix A

3For testing purposes character_1imit=1000 characters
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— A SystemMessage containing the GET_DOCKER_SERVICES PROMPT:

CONTEXT: you are provided with some information about {cve_id}

GOAL: identify the services needed to create a Docker system
vulnerable to {cve_id}

GUIDELINES:
- The description of {cve_id} must be extensive
- The attack type must be spelled out without acronyms or
abbreviations (i.e., do not use DoS, RCE, etc.)
- ABOUT SERVICES:
- Specify the minimum set of services needed to create a
working and testable Docker system vulnerable to {cve_id}
- Avoid including services that are there just to test a PoC or
to exploit the vulnerability
- Service names must match the official names listed on Docker
Hub, do not use aliases
- ABOUT SERVICE DEPENDENCY TYPES: each service must be associated
to a dependency type that must be one of two:
- ’HARD’ if the service is the essential to make the system
vulnerable to {cve_id}
- ’SOFT’ if the service is needed just to make the Docker work
- ’SOFT’ service that play a specific role must be associated
to a role (format ’SOFT-<role>’). Examples of ’SOFT-<role>’ are:
- ’SOFT-DB’ for relational databases (e.g., MySQL, MariaDB,
PostgreSQL, MariaDB, Oracle)
- ’SOFT-WEB’ for web servers (e.g., Nginx, Apache, PHP,
Tomcat)
- ’SOFT-CACHE’ for caching/key-value store/coordination
services (e.g., Redis, etcd, ZooKeeper, RabbitMQ, Kafka)
- ABOUT SERVICE VERSIONS:
- Service version must specified and valid for Docker Hub, do
not be vague by citing just ’any compatible version’
- For ’HARD’ services you must list all vulnerable versions
cited by the most reliable sources such as MITRE and NIST. Do
not use ranges, you must be very specific with version name and
list all versions vulnerable to {cve_id}
- For ’SOFT’ services choose a versions compatible with the ’
HARD’ services

(. J

The guidelines of the prompt have been carefully chosen during the
development of the Al agent to help the LLM in providing an ideal
response to the information gathering phase.

— A HumanMessage containing the concatenated summaries.
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During the evaluation of the LLM responses, it became necessary to understand
more clearly why some services were included in the web search results,
or in other words, why the LLM deemed a service relevant for the
virtual environment. To clarify this, two dependency types were defined:

— Hard Dependency (HARD): refers to those services that are essential
for making the virtual environment actually vulnerable.

— Soft Dependency (SOFT): refers to those services that are necessary
for the virtual environment to function correctly. In this case, the
LLM may also specify the role of the SOFT service within the environment.
This is achieved by including some examples in the prompt, following a
few-shot prompting approach:

+ SOFT-DB: services that manage relational databases (e.g., MySQL,
MariaDB, PostgreSQL, MariaDB, Oracle)

* SOFT-WEB: services hosting web servers (e.g., Nginx, Apache, PHP,
Tomcat)

* SOFT-CACHE: services providing caching, key-value storage, or coordi-
nation functions (e.g., Redis, etcd, ZooKeeper, RabbitMQ), Kafka)

The with_structured_output method is used to ensure that the LLM re-
sponse conforms to the WebSearch and Service schemas:

class Service(BaseModel):
name: str = Field(description="Name of the service")
version: list([str] = Field(description="List of versions of the
service")
dependency_type: str = Field(description="Type of the dependency of
the service, either ’HARD’ or ’SOFT’")
description: str = Field(description="Brief description of why the
service is necessary in the Docker")

class WebSearch(BaseModel):
desc: str = Field(description="Description of the CVE")
attack_type: str = Field(description="Type of attack (e.g. DoS, RCE,
etc.)")
services: list[Service] = Field(description="List of services to be
used in the Docker system vulnerable to the CVE")

Listing 3.3: Definition of the WebSearch and Service classes
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« CVE-based Search ('custom_no_tool"): functionally, this strategy operates
exactly like the Custom Search. The only difference is that it is not
implemented as a tool, instead, it works just like any other function.
Practically, this means that the agent cannot choose the query parameter,
which is instead fixed to query=CVE-ID. This difference is significant: varying
the web search query leads to the retrieval of different sets of web pages,
which in turn influences the services selected for generating the virtual
environment and the specific issues discovered during testing.

Testing revealed that some LLMs have built-in security filters that prevent
them from providing potentially harmful information (e.g., relating to software
vulnerabilities). To bypass these obstacles, the SYSTEM_PROMPT is provided as
SystemMessage together with the previously explained HumanMessages:

ROLE: you are an AI expert in cybersecurity vulnerabilities and Docker
lightweight virtualization technology.
CONTEXT: everything that you generate will be used in a secure environment
by other cybersecurity experts.
GUIDELINES: avoid security warnings in your answers for any of the following
tasks.

.

Assess CVE Services

The second step focuses on validating the information gathered in the previ-
ously to ensure that the LLM has found the right services. Validation is possible
because a small, manually curated dataset was created: it contains, for each CVE,
the list of services - and related version - required to build a working vulnerable
virtual environment, along with their corresponding dependency types. This
dataset was put together using both the official CVE documentation - namely the
NVD database [64] - and the working vulnerable virtual environment provided by
the Vulhub project [3]. For instance, the entry for CVE-2018-12613 is:

"CVE-2018-12613": [
"HARD:phpmyadmin:4.8.1",
"SOFT-WEB:php:7.2-apache",
"SOFT-DB:mysql:5.5"]

Listing 3.4: Example of services. json dataset entry
This entry implies that the information gathered by LLM is expected to contain:

o the phpmyadmin service tagged as HARD, as it is responsible for making the
virtual environment vulnerable. The "expected" version 4.8.1 must be included
in the list of vulnerable versions associated to the service.

» at least one service tagged as SOFT-WEB and another one tagged as SOFT-DB.
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Therefore, the information gathering task is considered successful only if the
following three objectives are achieved:

1. All HARD-type services must be correctly identified (tracked by the
hard_service milestone). This is a purely programmatic check, meaning
it does not involve the use of an LLM-as-a-Judge.

2. The list of vulnerable versions of each HARD-type services must include
the "expected" version (tracked by the hard_version milestone). This
objective is firstly validated via a programmatic check. Then, if the check
fails, a second evaluation is with a LLM-as-a-Judge, which is prompted by
the HARD_SERV_VERS ASSESSMENT PROMPT:

(GDAL: check if version ’{version}’ of the ’{service}’ service is
| contained in the following list of versions {version_list}

|CONTEXT: the version lists of each service may contain multiple entries
L separated by ’,’

———

The use of an LLM-as-a-Judge was deemed necessary because software
versioning schemes vary widely and no standardized format ex-
ists, making exhaustive programmatic checks impractical and difficult to
implement. To clarify the final decision of the LLM-as-a-Judge, the LLM is
instructed - via Structured Output - to format its response as an instance
of the HARDServiceVersionAssessment class:

class HARDServiceVersionAssessment (BaseModel) :
hard_version: bool = Field("Does the ’HARD’ service version range

contain the expected version?")

Listing 3.5: Definition of the HARDServiceVersionAssessment class

If both checks fail for any of the HARD-type services, then hard service=False

3. For each "expected" SOFT-<role> at least one service must be sug-
gested (tracked by the soft_services milestone). Just like the first objective,
this is a purely programmatic check.

Failure to reach any of the objectives is documented in the final report.txt file.
These checks are performed only if the input CVE has a corresponding entry in
services. json.
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3.5.3 Virtual Environment - Generation & Testing

The third task is the most important one, as it involves the agent generating the
virtual environment and testing its correct functionality. Depending on the
test results, the agent can loop back to attempt to fix the environment, effectively
allowing it to dynamically adjust the workflow.

0k
v
[ Generate Code J

Revi’se Code
a

Revise
Code

Figure 3.5: Graph Representation of the Third Task of the Agentic Workflow

Generate Code

The first step of this task prompts the LLM to generate the code base of
the virtual environment. This is done by providing the LLM with a list of
Messages containing: the SYSTEM_PROMPT; the information gathered in the last
step; and the CODING_PROMPT (included as a HumanMessage):
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GOAL: starting from a "docker-compose.yml" file, you must create a Docker
system vulnerable to {cve_id}.

GUIDELINES:

- Use the data that you provided in the message about {cve_id} and its
services to build the Docker
- You must use all and only the services that are listed in the message
that describes {cve_id}
- If a service requires a dedicated container write the code for it
- You must not use versions of ’HARD’ services that are not listed in
the message about {cve_id} and its services

- If a DB is needed, it must be properly setup and populated with some test
data

- The system must be immediately deployable using the "docker compose up"
command

- Ensure that no service has to be setup manually by the user

- All services and related containers must be properly configured on order
to be immediately accessible from the default network ports of the
service

- Always write enough files to make the all services work and to ensure that

{cve_id} is exploitable for testing purposes

- All file names must indicate the file path which must start with "./../../
dockers/{cve_id}/{mode}"

- There is no need to specify the file name in the file content

& J

The guidelines of this prompt tell the LLM how to use the information gath-
ered and enforce a naming convention for the generated files. Following the
approach used in the Vulhub project, the LLM is instructed to build a Docker-based
environment starting from a docker-compose.yml file. A Structured Output
schema is bonded to the LLM to enforce a common response format using the Code
and File classes:

class File(BaseModel):
location: str = Field(description="Location of the file")
content: str = Field(description="Content of the file")

class Code(BaseModel) :
files: list[File] = Field(description="Name and code of the various files
needed to reproduce the CVE")
directory_tree: str = Field(description="Directory tree where the files
will be stored, rooted in the CVE-ID folder")

Listing 3.6: Definition of the Code and File classes
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The formatted response is always an instance of the Code class. It saved in the
code. json file inside the dockers/CVE-ID/Web-Search-Mode/logs directory, as
instance of the Code class in the State.code field, and in the final_ report.txt
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file for logging purposes.

This is the first version of the generated code:

Directory tree:
CVE-2021-28164/

|-- custom
| -- docker-compose.yml
‘-- webapps
| -- ROOT
| ¢-- index. jsp
‘-- WEB-INF
|-- web.xml
‘-- secret.txt
—————————— dockers/CVE-2021-28164/custom/docker -compose.yml
version: ’3’
services:
jetty:
image: jetty:9.4.38-jre8
volumes:
- ./webapps:/var/lib/jetty/webapps
ports:
- "8080:8080"
environment:
- JETTY_BASE=/var/lib/jetty
command: ["java", "-jar", "/usr/local/jetty/start.jar"]
—————————— dockers/CVE-2021-28164/custom/webapps/RO0T/index. jsp
<html>
<head><title>Vulnerable Jetty Server</title></head>
<body>

<hl1>Welcome to the Vulnerable Jetty Server</hi>

<p>This server is intentionally vulnerable to CVE-2021-28164 for
testing purposes.</p>

</body>

</html>

<web-app xmlns="http://xmlns.jcp.org/xml/ns/javaee"
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xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://xmlns. jcp.org/xml/ns/javaee
http://xmlns. jcp.org/xml/ns/javaee/web-app_3_1.xsd"
version="3.1">

<display-name>Vulnerable Web Application</display-name>

<servlet>
<servlet -name>ExampleServlet </servlet -name>
<jsp-file>/index.jsp</jsp-file>

</servlet>

<servlet -mapping>
<servlet -name>ExampleServlet </servlet -name>
<url-pattern>/example</url-pattern>
</servlet -mapping>

</web-app>

txt - - ———————-
This is a secret file that should not be accessible.

Listing 3.7: Example of code generation results in the final report.txt file

Save Code

The second step is quite simple: it saves all the files generated by the LLM in
the dockers/CVE-ID/Web-Search-Mode directory. This is done by looping through
the list of File instances of the State.code field. Each file is associated to a
location in the file system - representing the absolute path where the file is stored
- and to its content.

Test Code

The hardest challenge that was faced while developing this Al agent was under-
standing when an virtual environment was working correctly. In the end, it was
decided that for a virtual environment to be working correctly, it has to reach all
of the following four goals:

1. All Docker Images complete the build process without errors (tracked
by the docker_builds milestones)

2. All Docker Containers can run without errors and without unex-
pected crashes (tracked by the docker_runs milestones)
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3. All HARD-type services are hosted by the Docker Containers and
vulnerable version of them is used (tracked by the code_hard_version
milestones)

4. The services hosted by the Docker are reachable from their default
network ports (tracked by the network_setup milestones)

Testing starts by launching the Docker Compose environment with following
command®:

1. The first goal is validated by passing a programmatic check of the build
process of the Docker Compose environment. Leveraging the run method of
the subprocess Python library [92], the agent captures the output logs and
checks if returncode==0, which means that all Docker Images have been
built or pulled successfully. The output logs of the entire build process are
saved in the logX.txt® file inside the dockers/CVE-ID/Web-Search-Mode/
logs directory. If this check is passed, then docker_builds=True. Else
(docker_builds=False) there was an error in the build process of the Docker
Compose environment. Consequently, testing is terminated and the workflow
is redirected to the revision step with the following failure explanation and
revision goal:

o Failure Explanation: the Docker Compose environment terminates its
execution because of an error while building/pulling at least one of
its Docker Images.

e Revision Goal: fix the Docker Compose environment by modifying its
code. To understand what went wrong, the LLM has to analyse the
output logs of the image build process. To prevent context window
saturation, only the last 100 lines of the output logs are passed, as they
typically contain the most relevant error information.

4See the launch_docker function in Appendix A for details

5The X is just a placeholder that identifies the current iteration of the testing-revision loop of
the virtual environment
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2. To validate the second goal, the following information about each Docker
Container is gathered:

o Container Startup Logs, which are obtained with the command®:

« Container Inspect Details, which are obtained with the command”:

The outputs of both commands are stored entirely in the logX.txt file. Vali-
dation is achieved by having each Docker Container undergo a programmatic
check and an LLM-as-a-Judge evaluation:

e Programmatic Check: uses the Container Inspect Details to check if it
is running. Else, testing is terminated and the workflow is redirected to
the revision step with the following failure explanation and revision goal:

— Failure Explanation: one of the Docker Containers of the Docker
Compose environment is not running correctly.

— Revision Goal: fix the Docker Compose environment by modifying
its code. To understand what went wrong, the LLM has to analyse
the output logs of the container startup process. To prevent
context window saturation, only the last 100 lines of both stdout
and stderr are passed, as they typically contain the most relevant
error information.

o LLM-as-a-Judge: if the programmatic check has not revealed any issues,
an LLM-as-a-Judge is tasked with evaluating the stability of the container.
This is done with the CHECK_CONTAINER_PROMPT which provides the LLM
with both the Container Startup Logs and Container Inspect Details:

( )
GOAL: check the following outputs and tell me if it the Docker
container is running correctly (’container_ok’ milestone)

- Output of the ’docker logs [CONTAINER ID] --details’ command: {
container_log}

- Output of the ’docker inspect [CONTAINED-ID]’ command: {
inspect_container_log}

A

6See the function get_container_logs in Appendix A for details

"See the function inspect_container in Appendix A for details
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The Structured Output of the LLM-as-a-Judge is defined with the
ContainerLogsAssessment class.

class ContainerLogsAssessment (BaseModel) :
container_ok: bool = Field(description="Is the Docker container
running correctly?")
fail_explanation: Optional[str] = Field(description="Detailed
explanation of the error presented by the logs")

Listing 3.8: Definition of the ContainerLogsAssessment class

If the field container_ok=False, testing is terminated and the workflow
is redirected to the revision step with the following failure explanation
and revision goal:

— Failure Explanation: the fail explanation field of the LLM re-
sponse provided a detailed explanation of why the LLM thinks the
container is not working properly. This explanation is stored inside
the final report.txt file for logging purposes.

1 |CONTAINER FAILURE (LLM-as-a-Judge Check): The Docker
container is running, as indicated by the ’running’
status and ’healthy’ health check in the ’docker
inspect’ output. However , there are repeated ’Access
denied for user ’root’@’localhost’ (using password:
NO)’ errors in both the logs and the health check
outputs. This suggests that the root user is trying
to connect without a password, which is failing.
This is a configuration issue that needs to be
addressed for proper operation.

Listing 3.9: Example of LLM-as-a-Judge container failure explanation in the
final_report.txt file

— Revision Goal: fix the Docker Compose environment by modifying
its code. There is no need to understand what went wrong because
the failure explanation is already given by the LLM-as-a-Judge.

3. The third goal is evaluated only using a LLM-as-a-Judge. To understand if the
Docker Compose environment is using the right HARD-type services and that
a vulnerable version is used, the LLM is provided with: the SYSTEM_PROMPT;
the Image Inspect Details; the entire code-base of the environment; and
the CHECK_SERVICES VERSIONS_ PROMPT:
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(GOALS: analyse the output of the command ’docker inspect [IMAGE-ID]’
and the code of the Docker Compose environment (all contained in the
previous messages) to assert if

- the following services are using one of the versions listed to their
side (’code_hard_version’ milestone):{hard_service_versions}

- the Docker uses the following services: {service_list} (’services_ok’
milestone)

CONTEXT: the version lists of each service may contain multiple entries
separated by ’,’

GUIDELINES: if any of the milestones is not achieved, you must explain
why the Docker fails to achieve them and set to false the
corresponding flag

This prompt leverages the data stored in the State.web_search _results
field to provide the LLM with the list of HARD-type services and their vulnerable
versions. Additionally, it also asks the LLM to check if all the services suggested
in the information gathering phase - i.e., both HARD-type and SOFT-type ones
- are actually present in the environment. The Image Inspect Details are
given to the LLM because they provide relevant information about which
services and versions are used by the environment. These are obtained with
the command®:

The final evaluation of the LLM-as-a-Judge is always an instance of the
ServiceAssessment class, which is linked via Structured Output.

class ServiceAssessment (BaseModel):

2 code_hard_version: bool = Field(description="Does the generated code
use vulnerable version of the ’HARD’ services?")

3 services_ok: bool = Field(description="Does the generated code contain
the services provided by the web search?")

4 fail_explanation: Optional[str] = Field(description="Detailed
explanation of why one or more milestones have failed")

Listing 3.10: Definition of the ServiceAssessment class

If the field code_hard _version=False, testing is terminated and the workflow
is redirected to the revision step with the following failure explanation and
revision goal:

8See the function inspect_image in Appendix A for details
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o Failure Explanation: the fail_explanation field of the LLM response
explains which HARD-type service is not using a vulnerable version. This
explanation is stored inside the final report.txt file for logging pur-
poses.

NOT VULNERABLE VERSION (LLM-as-a-Judge Check): The Docker

setup uses CouchDB version 3.2.2, which is not in the
list of vulnerable versions specified for the °’
code_hard_version’ milestone. Therefore, the ’
code_hard_version’ milestone is not achieved.

Listing 3.11: Example of LLM-as-a-Judge non-vulnerable version failure
explanation in the final report.txt file

« Revision Goal: fix the Docker Compose environment by modifying its
code. There is no need to understand what went wrong because the failure
explanation is already given by the LLM-as-a-Judge.

4. Finally, the fourth goal is also evaluated exclusively via LLM-as-a-Judge. To
understand if each service of the Docker Compose environment is exposing
the right network ports, the LLM is provided with: the SYSTEM_PROMPT; the
Container Inspect Details of all containers; the entire code-base of the
environment; and the CHECK_NETWORK_PROMPT.

.

(GOALS: analyse the output of the command ’docker inspect [CONTAINED-ID]
> and the code-base of the Docker Compose environment (all contained
in the previous messages) to assert if all services are using their
default network port (’network_setup’ milestone)

GUIDELINES: if the milestones is not achieved, you must explain why the
Docker fails to achieve them and set to false the corresponding
flag

~

J

The prompt provides the LLM with the Container Inspect Details because it
contains relevant information about which the actual networking setup of a
running container. The final evaluation of the LLM-as-a-Judge is an instance
of the NetworkAssessment class, which is linked to the LLM via Structured

Output.
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class NetworkAssessment(BaseModel):
network_setup: bool = Field(description="Are all services/containers
setup to be accessible from the right network ports?")
fail_explanation: Optional[str] = Field(description="Detailed
explanation of why one or more milestones have failed")

Listing 3.12: Definition of the NetworkAssessment class

If the field network_setup=False, testing is terminated and the workflow
is redirected to the revision step with the following failure explanation and
revision goal:

e Failure Explanation: the fail explanation field of the LLM re-
sponse explains why it thinks the network configuration of the Docker
Compose environment is wrong. This explanation is stored inside the
final report.txt file for logging purposes.

1 | WRONG NETWORK SETUP (LLM-as-a-Judge Check): The Docker
container is exposing the Apache service on port 8080
instead of the default port 80. This is evident in the
>docker-compose.yml’ file where the port mapping is
defined as ’8080:80’, indicating that the container’s
port 80 is being mapped to host port 8080.

Listing 3.13: Example of LLM-as-a-Judge network misconfiguration failure
explanation in the final report.txt file

e Revision Goal: fix the Docker Compose environment by modifying its
code. There is no need to understand what went wrong because the failure
explanation is already given by the LLM-as-a-Judge.

If all the goals are met, the agent concludes that the generated virtual environ-
ment is working correctly, and the workflow continues with the vulnerability
assessment phase. Else, if any goal fails, the agent tries to fix the identified
issues using the knowledge gathered during testing. To regulate the total workflow
execution time and reduce costs, the number of iterations the agent may perform
in the testing—revision loop is limited to 10.
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Revise Code

Revision of the environment code-base starts by shutting down the running Docker
Compose environment and by removing all the related Docker Containers and
Docker Volumes. This is done with the down_docker function® to free up memory
and to sanitize the entire Docker Desktop environment.

A 10 second sleep timer is started at the end of the function to ensure the complete
cleanup of the system and the correct shutdown of all Docker Containers.
Additionally, if the test failed because a non-vulnerable version of a HARD-type
service was used, all Docker Images are also removed from the system using the
remove_all images function!'®. This is done to prevent Docker from reusing them
instead of building/pulling fresh ones.

Due to some problems in the implementation of the Structured Output and
intrinsic limitations of the models, the revision process changes based on
which LLM is used:

o For GPT-40 and GPT-5, the revision process is performed with a single prompt
named TEST_FAIL_PROMPT, which is very similar to the one used in the code
generation step:

J

B
CONTEXT: {fail_explanation}
GOALS: {revision_goall.

GUIDELINES:
- Any DB must are properly setup and populated with some test data
- The system must be immediately deployable using the "docker compose
up" command
- Ensure that no service has to be setup manually by the user
- All services and related containers must be properly configured on
order to be immediately accessible from the default network ports of
the service
- Your answer must include all files (updated ones, unchanged ones and
new ones)
All file names must indicate the file path which must start with "
./../../dockers/{cve_id}/{mode}"
- There is no need to specify the file name in the file content

9See the function down_docker in Appendix A for details

10Gee the function remove_all_images in Appendix A for details
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- The Docker code was generated using the data in the message about {
cve_id} and its services
- You must use all and only the services that are listed in the
message that describes {cve_id}
- If a service requires a dedicated container write the code for it
- You must not use versions of ’HARD’ services that are not listed
in the message about {cve_id} and its services

- Here is the list of previous fixes that you attempted but did not

work, my suggestion is to try something different from: {fixes}
- J

Differently from the CODING_PROMPT, this prompt contains also: which goal
the virtual environment has failed the reach - i.e., fail_explanation; what
the LLM has to do to understand what went wrong and fix the issue - i.e.,
revision_goal; and a list containing all previous fix attempts made by the
agent - i.e., fixes.

Before the invocation, the LLM is provided with the SYSTEM_PROMPT, the
information gathered in the previous task, the entire code-base of the virtual
environment - where the LLM is instructed to operate in order to fix the issue,
and a HumanMessage containing the TEST_FAIL_ PROMPT.

To solve performance issues and mitigate the frequent hallucinations that
plagued gpt-oss:120B, it was decided to split the revision step into two:

1. Revision: the LLM is asked to explain how to fix the problem by
modifying the given code. To do this, the LLM is provided with the
SYSTEM_PROMPT, the information gathered in the previous task, the entire
code-base of the virtual environment, and a HumanMessage containing the
REVISION_PROMPT:

[CDNTEXT: {fail_explanation} ]
| GOALS: explain how you would fix this problem by modifying the code |
in a few sentences, do not use bullet points. J

This prompt is used to asks the LLM to look at the code and explain
how it can be fixed knowing what is wrong with the Docker Compose
environment it is trying to create.
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2. Code Correction: the LLM is asked to apply the fix produced in the last
phase. To do this, the LLM is provided with the same data, expect for the
final HumanMessage, which holds instead the CODE_CORRECTION_ PROMPT:

N

CONTEXT: {fail_explanation}
GOALS: {revision_goall}. {fix}.

GUIDELINES:

- Any DB must are properly setup and populated with some test data

- The system must be immediately deployable using the "docker
compose up" command

- Ensure that no service has to be setup manually by the user

- All services and related containers must be properly configured
on order to be immediately accessible from the default network
ports of the service

- Your answer must include all files (updated ones, unchanged ones
and new ones)

- All file names must indicate the file path which must start with
"./../../dockers/{cve_id}/{mode}"

- There is no need to specify the file name in the file content

- The Docker code was generated using the data in the message about
{cve _id} and its services
- You must use all and only the services that are listed in the
message that describes {cve_id}
- If a service requires a dedicated container write the code
for it
- You must not use versions of ’HARD’ services that are not
listed in the message about {cve_id} and its services

- Here is the list of previous fixes that you attempted but did not
work, my suggestion is to try something different from {fixes}

. J

Differently from the TEST_FAIL PROMPT, the CODE_CORRECTION PROMPT
explicitly tells the LLM how to modify the code to fix the problem.
The fix suggestion is contained in the fix field and it contains the answer
that the LLM provided at the end of the Revision phase.

Whichever model is used, the final LLM output will always be an instance of the
CodeRevision class, which also contains the fixed code.

class CodeRevision(BaseModel):
error: str = Field(description="Detailed description of the error presented
by the logs")
fix: str = Field(description="Detailed description of fix applied to the
code to solve the error")
fixed_code: Code = Field(description="File location, content and associated
directory tree")

Listing 3.14: Definition of the CodeRevision class
61




[\

Implementation Details

The fixed code replaces the one stored in the State.code field and it will be
saved at the beginning of the next iteration in the local directory, replacing
the current files. The suggested fix will be appended to the State.fixes and will
contribute to the short-term memory of the agent, hopefully stopping it from
suggesting a fix that has not worked previously. Meanwhile, the error
and fix fields are saved inside the final report.txt file to help traceback the
testing error pattern:

Test iteration #0 failed! See ’log0.txt’ for details.
- IMAGE BUILDING FAILURE (Manual Check)
- ERROR: The error in the logs indicates that there is a problem
pulling the Jetty image from Docker Hub. The message ’pull
access denied for eclipse/jetty, repository does not exist or
may require ’docker login’’ suggests that either the image
version is incorrect or authentication is needed.

- FIX: To resolve this issue, change the Jetty image version to
one that is publicly available and does not require
authentication. According to the CVE description, we should use

’eclipse/jetty:9.4.38.v20210224’°, which is a valid and
accessible version. Additionally, remove the obsolete ’version’
attribute from the docker-compose.yml file.

Listing 3.15: Example of failed test and code revision results in the
final_report.txt file
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3.5.4 Vulnerability Assessment

The fourth and final task of the agentic workflow examines the virtual environment
generated in the last step to check if it is vulnerable to the input CVE.

Test Code

Stop Teéting
v

Vulnerability
Assessment

—

Figure 3.6: Graph Representation of the Fourth Task of the Agentic Workflow

Docker Scout [65] is the tool the is used to perform security analysis. It performs a
vulnerability scan!! that produces, for each Docker Image used by the Docker
Compose environment, a list of all vulnerabilities which the Docker Image introduces
in the environment. This is achieved by running the command:

The output is saved the cvesX.json'? which is stored in the dockers/CVE-ID/
Web-Search-Mode/logs directory. If at least one of these lists contains the input
CVE, then it can be assumed'® that the agent managed to create vulnerable
virtual environment.

Since Docker Scout only requires a correctly built Docker Image to start a vulnera-
bility scan, it was decided to allow the workflow to proceed to the vulnerability
assessment phase as long as the docker builds milestone is satisfied - i.e.,
regardless of whether other milestones are completed.

HGee the function run_docker_scout in Appendix A for details

12The X is just a placeholder that identifies the a Docker Image - e.g., if the Docker Compose
environment uses 2 Docker Images, the directory will contain cves0. json and cvesl. json

13Static analysis tool, like Docker Scout, risk producing both false positives and false
negatives
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Results & Evaluation

This chapter will explore relevant results that were discovered while testing the Al
agent described in the previous chapter.

4.1 Experiment Setup

To initiate a run, the Al agent has to be provided with four user inputs:

o The CVE-ID identifies the vulnerability around which the virtual environment
has to be built.

e The information gathering strategy determines how the agent will acquire
information about which services have to be included in the virtual environment.
There are three possible strategies: OpenAl Search, Custom Search, and
CVE-based Search. OpenAl Search and Custom Search give the agent
a limited degree of freedom in how it conducts information gathering; therefore,
in the following analyses they are categorized as Autonomous Strategies.
In contrast, CVE-based Search is classified as a Fixed Strategy because
the agent must perform information gathering using a predetermined approach
and predefined parameters.

e The name of the LLM identifies the LLM that will be used to automate
the virtual environment creation process.

 (Optional) The verbosity parameter can be set to True to provide additional
data during the information gathering phase.!

LAll experiments were performed with verbose_web_search=False
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4.1.1 Agent Development Dataset

Much of the development of the Al agent was supported by the use of the Agent
Development Dataset, a small dataset of 20 CVEs taken from the private VDaaS
repository? of the SmartData@Polito Research Group.

CVE Attack Type Service Version
2012-1823 Remote Code Execution PHP CGI 5.4.1-cgi
2016-5734 Remote Code Execution phpMyAdmin 4.4.15.6
2018-12613 Remote File Inclusion phpMyAdmin 4.8.1
2020-7247 Remote Code Execution OpenSMTPD 6.6.1
2020-11651 Remote Code Execution SaltStack 2019.2.3
2020-11652 Remote Code Execution SaltStack 2019.2.3
2021-3129 Remote Code Execution Laravel 8.4.1
2021-28164 Information Disclosure Jetty 9.4.37
2021-34429 Sensitive File Disclosure Jetty 9.4.40
2021-41773 Remote Code Execution HTTPD 2.4.49
2021-42013 Remote Code Execution HTTPD 2.4.50
2021-43798 | Directory Traversal & File Read Grafana 8.2.6
2021-44228 Remote Code Execution Log4j 2.0-beta9
2022-22947 Remote Code Execution Spring Cloud Gateway 3.1.0
2022-22963 Remote Code Execution Spring Cloud 3.2.2
2022-24706 Remote Code Execution CouchDB 3.2.1
2022-46169 Remote Code Execution Cacti 1.2.22
2023-23752 Remote Command Execution Joomla 4.2.7
2023-42793 | Remote Command Execution JetBrains TeamCity | 2023.05.3
2024-23897 Local File Inclusion Jenkins 13.10.0

Table 4.1: Agent Development Dataset CVE List

These 20 CVEs had a crucial role, as they were used to estimate the performance
of the Al agent and to guide its design.

4.1.2 Models Tested

These are the OpenAI’'s Generative Pretrained Transformer (GPT) models
that were tested during the development of the Al agent:

e GPT-40 is a multimodal GPT model with a context window of 128k tokens
and maximum output size capped at 16384 tokens. The "o" in GPT-40 stands

2This is a private Github repository, authorization is required to view its contents
(https://github.com/SmartData-Polito/VDaaS /tree/main)
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for omni and highlights the multimodal capabilities of the model. Being
"multimodal" means that the model inputs containing a mixture of text, audio,
image and video data. This model was used during the whole development
process of the Al agent, therefore, its behaviour and outputs were responsible
for much of the current prompt configuration. A key for OpenAl’s API was
provided by the SmartData@Polito Research Group to use this model. Here
is reported the pricing per 1M tokens [93] (prices may have been subject
to variations):

— Per 1M Input Tokens: $2.50
— Per 1M Output Tokens: $10.00

The GPT-40 model does not support reasoning tokens and its knowledge
cutoff date is October 1st, 2023.

e GPT-5 is the latest GPT model of OpenAl, with a context window of 400k
tokens and maximum output size of 128k tokens. The same key for OpenAl’s
API provided by the SmartData@Polito Research Group was used to interact
with this model. Here is reported the pricing per 1M tokens [93] (prices
may have been subject to variations):

— Per 1M Input Tokens: $1.25
— Per 1M Output Tokens: $10.00

The GPT-5 model support reasoning tokens and its knowledge cutoff
date is September 30th, 2024.

o gpt-o0ss:120B is a text-to-text open-weight model composed of 117B parame-
ters with 5.1B of them being active parameters. Both context window and
maximum output size are capped at 131072 tokens. This model was running
on the local Graphics Processing Unit (GPU) of the SmartData@Polito
Research Group. The gpt-oss:120B model support reasoning tokens and
its knowledge cutoff date is June 1st, 2024.

Interactions with these models were accomplished with OpenAI’s Chat Completion
API, which is supported by all models.

LLM # Parameter | Knowledge Cutoff | Reasoning | Location

GPT-4o0 200B October 1st, 2023 X Remote

GPT-5 Undisclosed September 30th, 2024 v Remote
gpt-oss:120B 117B June 1st, 2024 4 Local

Table 4.2: Relevant Information about the Tested LLMs
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4.2 Evaluation Criteria

4.2.1 Milestones

This set of eight milestones is distributed across the four main tasks that
characterise the agentic workflow. Their goal is to help keep track of the progress

of a run.
Milestone Workflow Location | Description
If True, the CVE identifier provided
cve_id_ok CVE Assessment by the user corresponds to an entry

in the NVD dataset [64]

hard_service

Assess CVE Services

If True, all HARD-type services have
been correctly identified

hard_version

Assess CVE Services

If True, the "expected" vulnerable
version of all HARD-type services
have been correctly identified

soft_services

Assess CVE Services

If True, at least one service has
been suggested for each "expected"
SOFT-<role>

docker_builds

Test Code

If True, all Docker Images have
completed the build process with-
out errors

docker_runs

Test Code

If True, all Docker Containers are
running without errors or unex-
pected crashes

code_hard_version

Test Code

If True, all HARD-type services are
hosted by the Docker Compose en-
vironment and vulnerable version is
used

network_setup

Test Code

If True, all the services hosted by
the Docker Compose environment
are reachable from their default net-
work ports

Table 4.3: Agentic Workflow Milestones

o Information Gathering: if all the milestones located in @ Assess CVE
Services are completed successfully during a run, the agent managed to
collect the expected information about the input CVE.

¢« Environment Generation: if all the milestones located in [ Test Code
are completed successfully during a run, the agent managed to create a
functional virtual environment.

67



Results & Evaluation

4.2.2 Data Gathered

This is all the data that the AI agent is currently capable of gathering during one
of its runs:

Name Type Description
test_iteration Integer | Number of iterations of the test loop
startine image builds Boolean If True, the docker_builds milestone is
& 1mage_ passed at the first iteration
N f ti he dock build ile-
image_build_failures Integer umber of times the docker_builds mile

stone fails

If True, the docker_runs milestone is
passed at the first iteration

Number of times the docker runs mile-

starting_container_runs | Boolean

container_run_failures Integer .
stone fails
. . Number of times the code_hard_version
not_vuln_version_fail Integer . )
milestone fails
N f ti h twork_set ile-
docker_misconfigured Integer umber.o times the network_setup mile
stone fails
) Number of Docker Containers used by the
num_containers Integer

working Docker Compose environment

If True, Docker Scout confirmed that the
docker_scout_vulnerable | Boolean | Docker Compose environment is vulnera-
ble to the input CVE

If True, the exploit was successfully exe-
cuted on the Docker Compose environment
If True, the Docker Compose environment
services_ok Boolean | uses all the services suggested during the
information gathering phase

If True, one of the services of the Docker
requires_manual_setup Boolean | Compose environment require some sort
of manual operation to work properly

exploitable Boolean

Table 4.4: Agentic Workflow Statistics
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4.3 Agent Performance Analysis

4.3.1 Information Gathering Performance

This first analysis compares the three information gathering strategies to determine
which one delivers the best performance in the information gathering task.
The performance of a strategy is measured by counting how many runs successfully
retrieved the exzpected® information about each input CVE. To assess this, it was
decided to perform one run per CVE — across all 20 CVEs of the Agent
Development Dataset — for each strategy. The entire experiment was repeated
using GPT-40, GPT-5, and gpt-oss:120B*. Detailed logs of all runs are available
in the Github repository of the project.’

Autonomous Strategies Fixed Strategies
= OpenAl B8 Custom 7 CVE-based
100%

90%

80%
70%
60%
50%
40%
30%
20%
10%

0% -

Successful Information Gathering Runs (%)

GPT-4o0 GPT-5 gpt-0ss-120b

Figure 4.1: Information Gathering Task, Model Performance Across Strategies

3See Table 4.3 to understand which milestones must be satisfied for the information gathering
task to be deemed successful

4gpt-oss:120B has no data for the OpenAl Search strategy because it is not compatible

Shttps://github.com/glsan/Agents-for-Vulnerable-Dockers-and-related-Benchmarks
See the GPT-40 5th benchmark session, GPT-5 3rd benchmark session, and gpt-oss-120b 2nd
benchmark session
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Figure 4.1 clearly shows that GPT-4o0 delivers the best performance across all
strategies. It also shows that - regardless of the model - the agent performs best
when using the CVE-based Search strategy. This indicates that the agent
does not benefit from the freedom of choosing the query parameter granted by the
Custom Search. In fact, this additional flexibility may lead to lower-quality
information sources by encouraging the generation of overly complex search
queries.

It was observed that smaller LLMs, like GPT-40 and gpt-oss:120B, tend to
generate simpler search queries - e.g., by adding the word "details" and/or
"vulnerability" to the CVE-ID - whereas larger LLMs, such as GPT-5, often
generate much longer and convoluted queries.

CVE-2020-11652 SaltStack Salt directory traversal unauthenticated
RCE wheel client\_acl tokens root key disclosure mitre

CVE-2021-42013 Apache HTTP Server 2.4.49 2.4.50 path traversal RCE
details exploit mitigation timeline

CVE-2023-42793 TeamCity authentication bypass RCE details
exploited JetBrains advisory mitigation versions fixed
exploitation groups timeline indicators of compromise PoC

Listing 4.1: Example of search queries generated by GPT-5 whose runs did not
manage to satisfy any of the milestones

This is especially evident in the queries of GPT-5, which frequently target Proof-
of-Concept (PoC) material or exploits, rather than focusing on which services
should be included in the Docker-based environment.

This tendency of GPT-5 to overcomplicate its queries likely also explain its poor
performance with OpenAlI Search, where it achieves only 50%, the lowest score
among all models. In comparison, GPT-4o0 achieves 75% with OpenAlI Search,
suggesting that this lack of performance is due solely to the way reasoning
models perform web searches with the web-search-preview built-in tool. In other
words, the use of an agentic approach while performing the web search is not well
suited to successfully complete tasks as simple as this one.

Ultimately, these results reinforce the notion that the information gathering
task does not benefit from providing the AI agent with agency - i.e.,
the freedom of choosings how to structure the web search (OpenAI Search) or
even just the query parameter (Custom Search) - and that local models like
gpt-oss:120B can serve as viable alternatives to proprietary models for this

type of task, encouraging a more streamlined use of the agent.
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4.3.2 Environment Generation Performance

The second analysis closely follows the first one by comparing how information
gathered with a different strategy influences the performance of the agent in
the environment generation task. Using the same experiments® performed
with GPT-40, GPT-5, and gpt-oss:120B", the performance of the agent in the envi-
ronment generation task is measured by counting how many runs successfully
generated a functional® virtual environment.

Autonomous Strategies Fixed Strategies
= OpenAl NN Custom 71 CVE-based
100%

90%

80%
70%
60%
50%
40%
30%
20%
10%

0%

Successful Environment Generation Buns (%)

GPT-40 GPT-5 gpt-0ss-120b

Figure 4.2: Environment Generation Task, Model Performance Across Strategies.
Only the Runs where the Environment Generation Task Started are Considered

It is important to remember that the Al agent is programmed to terminate its run
whenever it fails to gather the ezpected information in the information gathering
task. Accounting for the failed information gathering runs would have made the
environment generation task look harder then it actually is.

Shttps://github.com/glsan/Agents-for-Vulnerable-Dockers-and-related-Benchmarks
See the GPT-40 Hth benchmark session, GPT-5 3rd benchmark session, and gpt-oss-120b 2nd
benchmark session

"gpt-oss:120B has no data for the OpenAlI Search strategy because it is not compatible

8See Table 4.3 to understand which milestones must be satisfied for the environment
generation task to be deemed successful
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Results show that GPT-5 has the strongest performance for all strategies: 90% for
OpenAl Search, 83% for Custom Search, and 92% for CVE-based Search
(best overall). The main explanation for these results is given by the fact that
GPT-5 underperformed in the information gathering task, especially when
compared to GPT-4o, consequently reducing the number of runs that actually
started the environment generation task.

The performance of GPT-4o0 is also very good, especially considering the high
number of runs that started the environment generation task: 73% for OpenAl
Search, 75% for Custom Search, and 61% for CVE-based Search. What
stands out the most here is the performance inversion of the CVE-based
Search strategy when compared to the information gathering task: CVE-based
Search was the best strategy for GPT-40 (90%), but when considering the runs
where the environment generation started, CVE-based Search becomes the worst
one (61%). This indicates that the CVE-based Search strategy can lead to
struggles in the environment generation task.

Meanwhile, gpt-0ss-120B clearly lags behind both proprietary models: 57%
for Custom Search, and 59% for CVE-based Search. Its smaller size and
other limiting factors given by the fact that the model is running locally may
explain its lack of performance.

Model Strategy Overall Success % | Condit. Success %
55% 73%
GPT-40 60% 75%
55% 61%
45% 90%
GPT-5 50% 83%
60% 92%
gpt-oss:120B 40% 57%
50% 59%

Table 4.5: Environment Generation Task, Model Overall and Conditional Success
Rates Across Strategies

« Overall Success Rate (%): computed by considering all runs performed by
the agent, even those where the environment generation task did not start.

» Conditional Success Rate (%): computed by considering only the runs
where the environment generation task actually starts.
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4.3.3 Vulnerability Assessment Results

This is the closing step of the analysis of the same experiments® performed with
GPT-40, GPT-5, and gpt-oss:120B', which wants to highlight how different models
and strategies can influence the ability of the agent to generate a vulnerable
environment. Vulnerability assessment data is obtained using the Docker Scout
tool [65] to assess if a virtual environment generated by the Al agent is also
vulnerable. An attempt to perform manual exploitation on each generated
environment was also made. Some exploit succeeded even when the environment
was not identified as vulnerable by Docker Scout. However, it was decided to not
merge the exploitation results with the ones of Docker Scout. Therefore, these
results underestimate the actual performance of the agent.

Autonomous Strategies Fixed Strategies
= OpenAl NN Custom 71 CVE-based
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Figure 4.3: Vulnerability Assessment Task, Model Performance Across Strategies.
Only the Runs where the Environment Generation Task Started are Considered

Vulnerable Environments Generated (%)

SN

7
AN

Yhttps://github.com/glsan/Agents-for-Vulnerable-Dockers-and-related-Benchmarks
See the GPT-40 5th benchmark session, GPT-5 3rd benchmark session, and gpt-oss-120b 2nd
benchmark session

0gpt-0ss:120B has no data for the OpenAl Search strategy because it is not compatible
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Figure 4.3 matches the previous results by showing that GPT-5 is clearly the best
model at reproducing vulnerable virtual environments, reaching its highest
performance (40%) when considering the environments generated with the Ope-
nAl Search strategy.

Both GPT-40 and gpt-oss-120B achieve similar results. The vulnerability rate of
their environments sits around 22—-29%, meaning that only about a quarter of
them ended were confirmed as vulnerable. Overall, when compared to GPT-5, these
models appear to struggle more in ensuring that the generated environments are
vulnerable.

Model Strategy Inf. Gat. Env. Gen. Vuln. Ass.
75% 73% 27%
GPT-4o0 80% 75% 25%
90% 61% 22%
50% 90% 40%
GPT-5 60% 83% 25%
65% 92% 38%
gpt-oss:120B 70% 57% 29%
85% 59% 24%

Table 4.6: Agentic Workflow Tasks, Model Performance Across Strategies
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4.4 Agent Consistency Assessment

Consistency helps understanding how reliably the agent produces similar results
across multiple runs, executed at different times and but under the same condi-
tions - i.e., using the same input data. To better understand this characteristic of
the agent, it was decided to perform one run per CVE of the Agent Development
Dataset - for each strategy - totalling 60 runs per experiment. The experiment was
conducted three times, exclusively with GPT-4o, as it was the best performer
in the information gathering task. Detailed logs of all runs are available in the
Github repository of the project.!

4.4.1 Information Gathering Consistency

““1st Test — 2nd Test /. 3rd Test
100%

90% A
80% A
70% A
60% -
50% A
40% A
30% A
20% A
10% A

Successful Information Gathering Runs (%)

0% -
OpenAl Search Custom Search CVE-based Search
Figure 4.4: Information Gathering Task, GPT-40 Performance Consistency Across

Strategies

Figure 4.4 shows that, with OpenAlI Search, the agent always manages to
successfully perform the information gathering task in 75% of the runs. This
makes OpenAl Search look perfectly consistent, but at the cost of having a
lower performance ceiling, showing its clear inferiority when compared to the
other two strategies.

Hhttps://github.com/glsan/Agents-for-Vulnerable-Dockers-and-related-Benchmarks
See the GPT-40 5th benchmark session (1st Test), GPT-40 6th benchmark session (2nd Test), and
GPT-40 7th benchmark session (3rd Test)
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The same cannot be said about the Custom Search strategy, which instead
shows better but inconsistent performance, going from 80% in the first test,
to 95% in the following ones, averaging a total of 90%. This reinforces the notion
that the agent does not benefit from the freedom of choosing the query parameter
granted by the Custom Search strategy. The main takeaway of Figure 4.4 is
that CVE-based Search is clearly the best performing strategy - averaging
~91.7% successful runs - and almost perfectly consistent, given its minimal
performance variance (90-95%).
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Successful Runs per CVE
Figure 4.5: Information Gathering Task, GPT-40 Successful Runs per CVE,
Cumulative Distribution Function Across Strategies

A deeper analysis on the consistency of each strategy can be made by combining
the runs of all the three tests and counting, for each CVE, how many times the
information gathering task was successful. By combining these data - shown
in Figure 4.5 - with the logs generated during each agent run, it can be clearly iden-
tified that the main issue of the CVE-based Search occurs with CVE-2021-28164
[86]. The results show that the agent fails the information gathering task because
the LLM-as-a-Judge incorrectly evaluates the proposed version of the
HARD-type service — in this case, Jetty — across all three runs performed with
the CVE-based Search, and not because it cannot find the expected information.
This evaluation problem is caused by versioning convention of Jetty: the ex-
pected version is 9.4.37, but the agent consistently proposes 9.4.37.v20210219.
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The LLM does not recognize these as equivalent, which leads to the failure of
the hard_version milestone. If this simplistic evaluation error is taken into
account, the performance of the CVE-based Search increases to an average of
~96.7%.

Figure 4.5 also shows some interesting insights on the performance on the OpenAl
Search strategy. Only 13 CVEs have 3 out of 3 successful runs in the information
gathering task, which means that the true consistent performance of the
OpenAl Search strategy sits at around 65%. The remaining 10% is actually
provided by a different subset of CVEs in each test.

4.4.2 Environment Generation Consistency

Following the same analysis approach taken previously, it is now time to analyse the
performance of the three test in the environment generation task by considering
only those runs where the task started.

\N1st Test — 2nd Test /7. 3rd Test
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Figure 4.6: Environment Generation Task, GPT-4o0 Performance Consistency
Across Strategies

Figure 4.6 shows that environment generation is significantly more challeng-
ing than information gathering. Even the best-performing approaches achieve
only 72—75% success, whereas for the information gathering task success rate
can reach perfect performance — if we account for occasional LLM-as-a-judge
evaluation errors.
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What stands out most in Figure 4.6 is how the performance of all strategies
fluctuates over the three different tests. In the first evaluation, GPT-40 performs
best with OpenAI Search (73%) and Custom Search (75%). In the two
subsequent tests, however, the performance of these two strategies drops, while
the CVE-based Search matches their previous results with a 74% success rate.
Custom Search exhibits the least stability, dropping from 75% to 42%, while
the CVE-based Search proves to be the most consistent, maintaining results
between 61% and 74%. This reinforces the earlier observation that variability in
the query parameter can degrade the quality of information gathered by
the agent — a pattern now clearly visible in the results.

4.4.3 Vulnerability Assessment Results

Finally, the agent consistency analysis concludes with the vulnerability assessment
results of the three test runs, which indicate how many of the successfully
generated environments are actually vulnerable. Just like in the performance
analysis, the data shown underestimates the actual performance of the agent
because the manual exploitation results are not included.
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100%
90% A
80% -
T0% A
60% -
50% A
40% A

30% A

N -

0%

/s

, 2 N\=4%

OpenAl Search Custom Search CVE-based Search

Vulnerable Environments Generated (%)

Y

Figure 4.7: Vulnerability Assessment Task, GPT-40 Performance Consistency
Across Strategies

Overall, Figure 4.7 shows that the vulnerability stays low across all strate-
gies and tests,consistently falling within the 20-32% range. Among the three
strategies, CVE-based Search appears the most promising, as it achieves the
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highest vulnerability rate (32%) and leads two out of three tests. Moreover,
as shown in Figure 4.6, CVE-based Search also has the highest success rate for
the environment generation task in tests 2 and 3. Together, these findings indicate
that CVE-based Search is not only good at generating virtual environments, but
also yields a relatively large proportion of vulnerable ones, making CVE-based
Search the most effective strategy for the overall goal of the agent.
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Figure 4.8: Vulnerability Assessment Task, GPT-40 Successful Runs per CVE,
Cumulative Distribution Function Across Strategies

Grouping the results by CVE reveals that GPT-40 successfully created a functional
vulnerable environment for 7 out of 20 CVEs of the Agent Development Dataset.
Combining this knowledge with the data shown by Figure 4.8 points out that:

» when using CVE-based Search, GPT-40 generated vulnerable environments
for 6 CVEs. Two of these — the ones for CVE-2021-3129 and CVE-2021-44228
— were produced exclusively with this strategy.

e when using Custom Search and OpenAI Search, GPT-40 generated vul-
nerable environments for the same 5 CVEs. Only one of these — the one
for CVE-2021-28164 — was not generated with CVE-based Search.

79



Results & Evaluation

Test Strategy Inf. Gat. Env. Gen. Vuln. Ass.
75% 73% 27%

1st Test 80% 75% 25%
90% 61% 22%
75% 53% 20%

2nd Test 95% 53% 21%
95% 74% 32%
75% 53% 20%

3rd Test 95% 42% 21%
90% 2% 28%

Table 4.7: Agentic Workflow Tasks, GPT-4o0 Performance Consistency Across
Strategies. Best results in bold

4.5 Ablation Study - Information Gathering

During the development of the agentic workflow it was decided that the agent would
progress to the environment generation task only if all the milestones located in
Assess CVE Services step were successfully validated, effectively applying an early
stop to the run. This ablation study examines the potential benefits of removing
the early stop imposed by these milestones, enabling the agent to attempt
environment generation even with wrong or incomplete information about the input
CVE. The primary motivation for this study was to address evaluation errors
produced by the continuous use of LLM-as-a-Judge while validating the milestones.
A second objective was to determine whether it is necessary to validate the
information collected by the agent against a manually constructed dataset -
which requires constant updates and dedication.

The ablation study repurposes the three experiments conducted with GPT-4o0 in
Section 4.4 by forcing the agent to start the environment generation task for
the runs that failed the information gathering task. Detailed logs of all runs
are available in the Github repository of the project.'?. Analysis of the actual
benefits of the ablation study on the environment generation task are conducted
by considering all runs performed by the agents, not only the ones that
actually started. Looking at the conditional success rate of the agent would be
misleading since the ablation study - by construction - allows the agent to start
the environment generation task in any case.

2https://github.com/glsan/Agents-for-Vulnerable-Dockers-and-related-Benchmarks
See the GPT-40 5th benchmark session (1st Test), GPT-4o0 6th benchmark session (2nd Test), and
GPT-40 Tth benchmark session (3rd Test)
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Figure 4.9: Environment Generation Task, GPT-40 Ablation Performance Vari-
ation Across Strategies. Performance Benefits of Disabling Early Stopping Use
Brighter Colours

Data in Figure 4.9 shows that the OpenAl Search strategy benefits the most
from removing the early stop, achieving a 10-15% performance gain across all
tests. This suggests that the strategy used by GPT-4o when operating with the
web-search-preview tool does not reliably produce easily verifiable information,
even when supported by Structured Output controls and an LLM-as-a-Judge.
On the other hand, both the Custom Search and CVE-based Search strategies
show only marginal improvements — at most 5% — once the early stop is removed.
This indicates that the validation of the performed on the information gathered
with these strategies is a reliable indicator of good progress in the environ-
ment generation task, and that the three identified goals'® correctly predict the
knowledge requirements for successfully automating the environment
generation task.

13See the milestones associated to the @ Assess CVE Services step of the agentic workflow in
Table 4.3 to understand which are these goals.
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Figure 4.10: Vulnerability Assessment Task, GPT-40 Ablation Performance Vari-
ation Across Strategies. Performance Benefits of Disabling Early Stopping Use
Brighter Colours

Figure 4.10 shows that 6 out of the 11 environments generated thanks to
the ablation were confirmed as vulnerable by Docker Scout. Inspecting the
corresponding final report.txt files revealed that information validation always
failed because the right HARD-type services were proposed with the wrong service
name'. For example, all 4 successful runs associated to either CVE-2020-11651
or CVE-2020-11652 failed to progress to the environment generation task because
the proposed HARD-type service was named salt-master instead of salt.

Here "wrong" simply means different from the ezpected one
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If we consider that only a single successful run is required to make a working
vulnerable environment, then the ablation does not really add value to the
overall performance of the agent:

o 1st Test: before ablation, the agent successfully generated a working vul-
nerable environments for 5 CVEs. Ablation allowed the agent to successfully
produce a working vulnerable environment for CVE-2020-11652, but this CVE

was already among the original 5.

o 2nd Test: before ablation, the agent successfully generated a working vul-
nerable environments for 6 CVEs. Ablation allowed the agent to successfully
produce a working vulnerable environment for CVE-2020-11651 and CVE-
2021-3129, but both were already included in the initial 6.

o 3rd Test: before ablation, the agent successfully generated a working vul-
nerable environments for 6 CVEs. Ablation allowed the agent to successfully
produce a working vulnerable environment for CVE-2020-11651, CVE-2020-
11652 and CVE-2021-28164. However, just like for the other tests, all three
were already part of the same original set of 6.

Nonetheless, the ablation study revealed that the agent can still construct a
functional vulnerable environment even without the expected data. Thus,
it was concluded that removing the early stop from the workflow should
become be a permanent change. This eliminates the need to manually
maintain a dataset for validating the information collected by the agent, though
it may result in greater resource usage and longer execution times when the
agent must build environments using inaccurate or incomplete CVE data.

Test Strategy Env. Gen. Vuln. Ass.
55% — 70% 20% — 25%
1st Test 60% — 60% 20% — 20%
55% — 60% 20% — 20%
40% — 55% 15% — 25%
2nd Test 50% — 50% 20% — 20%
70% — 70% 30% — 30%
40% — 50% 15% — 25%
3rd Test 40% — 45% 20% — 20%
65% — T0% 25% — 30%

Table 4.8: Agentic Workflow Tasks, GPT-40 Ablation Performance Variation (—)

Across Strategies. Improvements in bold
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4.6 Performance of the Agent in the Wild

The performance of the agent on CVEs that are not part of the Agent Development
Dataset was measured by performing three separate runs for each CVE of the Test
Dataset, which consists of 100 CVEs selected from those available on Vulhub [3].
The same experiment was performed with GPT-40 and gpt-oss:120B'>. Following
the consistency assessment results and the findings of the ablation study, all
runs were conducted exclusively with the CVE-based Search strategy and
without early stop.

Agentic Workflow Tasks
E Information Gathering Task
[EJ Environment Generation Task (Validated Information Runs)
E Vulnerability Assessment Task (Validated Information Runs)
F_AEnvironment Generation Task (Incorrect Information Runs)

. Vulnerability Assessment Task (Incorrect Information Runs)
100%

90% A

80% A

70% A

60% A

50% A

40% A

7N\

Success Rate (%)

30% A

20% A

N

% \%

GPT-40 gpt-o0ss:120B

Figure 4.11: Agentic Workflow Tasks, Model Performance on the Test Dataset
(Best Run Only). Data is Separated in Validated/Incorrect Information Runs
Because the Agent Performs Information Validation Even With Early Stop Disabled

10% A

VN

0%

Figure 4.11 reports the success rate of the models for each task. For every task,
the success rate is computed by aggregating all runs across the three experiments
and selecting only the best performing run for each CVE.

5https://github.com/glsan/Agents-for-Vulnerable-Dockers-and-related-Benchmarks
For GPT-40 and gpt-oss:120B, see the corresponding 1st, 2nd and 3rd test set results
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o Information Gathering Results Analysis: data displayed in Figure 4.11
shows a slight advantage of gpt-oss:120B (79%) over GPT-40 (75%) in the
information gathering task. When combining the results of both models to
obtain a comprehensive view of agent performance, the information gathering
task succeeds for 83% of the CVEs. Of these, 4 CVEs succeed only with
GPT-40, while 8 succeed only with gpt-oss:120B.

o Environment Generation Results Analysis: as expected, the success
rate of this task is lower than the information gathering one, even accounting
for ablation. GPT-4o0 achieves 64% success rate (against 75% in information
gathering), and gpt-oss:120B achieves 63% (against 79%). Notably, three
quarters of the successfully generated environment originate from runs that
also passed the information gathering task, while the remaining quarter
was succeeds thanks to ablation. Similarly, this 3 to 1 ratio appears in
the information gathering results: for GPT-40, 75% of the runs have valid
information, the remaining quarter does not, while a comparable pattern
manifests also for gpt-oss:120B. Combination of the best runs of both models
reveals that the agent successfully generates a working environment for 78%
of the Test Dataset. Fifteen CVEs succeed only with GPT-40, while 14
succeed only with gpt-oss:120B.

e Vulnerability Assessment Results Analysis: the trends above are con-
firmed by the vulnerability assessment results. For both models, roughly
one quarter of the successfully generated environments are also confirmed
to be vulnerable, and approximately three quarters of these vulnerable
environments are generated using validated information. Specifically, consid-
ering all successfully generated environments, GPT-40 produces a vulnerable
environment 25% of the times, whereas gpt-oss:120B does so 27% of the
times. Finally, combination of the best runs of both models shows that the
agent generates a functional and vulnerable environment for 22% of the Test
Dataset. Of these, 5 succeed only with GPT-40, and 6 succeed only with
gpt-oss:120B. If we consider only the CVEs for which the agent managed to
generate a functional environment, for 28% of them the environment was also
confirmed to be vulnerable.

On average, when paired with GPT-4o0, data collected from these last experiments
shows that each run of the agent costed 0.20$ and took 8-9 minutes to complete.
Similar execution times are found when the agent is paired with gpt-oss:120B,
while costs are nullified by the fact that the model is running locally. Overall,
the two models exhibit very similar performance despite differences in size and
reasoning ability. This reinforces the conclusion that the performance of the
agent is primarily constrained by its workflow, not by the LLM itself.
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However, it is also important to note that performance is measured by checking
the milestones'® of each run, and the model powering the agent also acts as an
LLM-as-a-Judge in many of these validation steps. Evaluations made by the LLM-
as-a-Judge heavily influence milestone outcomes. It has been observed that
GPT-4o0 tends to apply stricter self-evaluation criteria — sometimes being overly
critical of their own work — which can lower success rates. Conversely,
gpt-oss:120B seems to apply more lenient judgments, increasing success rates but
at the cost of accepting incorrect information or flawed environments,
thus introducing false negatives into the results.

A fully transparent performance assessment of the agent would require manual
review of every run. This is infeasible due to the significant time required
and because it would undermine the purpose of the agent, which is to automate
environment generation and perform self-validation.

4.7 Other Relevant Findings & Insights

Analysis of the logs related to Agent Development Dataset highlights CVE-2012-
1823 as a good example of how the same problem can be tackled in different
ways by the agent when paired with a different LLM.

o When paired with GPT-4o0, the agent attempted to create a Docker environment
vulnerable to CVE-2012-1823 [94] by pulling an outdated php image directly
from Docker Hub. The vulnerability affects php versions prior to 5.3.12 and
5.4.2; and although corresponding images exist on Docker Hub (see here)
attempts to pull them fail. This happens because some older images uses a
deprecated manifest format - version 1 or version 2, schema 1 - that
modern Docker versions can no longer load [95]. Unable to reason about
this limitation, the agent repeatedly cycles through different vulnerable php
versions, wasting its testing-revision loop iterations.

e In contrast, when paired with GPT-5, the agents adopts a completely differ-
ent strategy. Rather than pulling a php image from Docker Hub, it gener-
ates a Dockerfile containing a sequence of shell commands. One of
these commands downloads a vulnerable legacy php release directly from
museum. php.net, bypassing the deprecated Docker Hub manifests entirely
and enabling the successful creation of a functional vulnerable Docker envi-
ronment.

16See Table 4.3 for an overview of the agentic workflow milestones
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https://hub.docker.com/layers/library/php/5.4-apache/images/sha256-298f2295509309262b0daaa27e15e3682437d0210128f66d482381255b907582
museum.php.net

Chapter 5

Conclusion: Limitations &
Future Works

Information Gathering Limitations: the information available to the agent
about the CVE is limited by the quality and reliability of the knowledge base
of the LLM and by the data gathered from a few online sources. Increasing
the number of analysed sources risks saturating the LLM context window and
introducing useless information.

Context Window Saturation: to mitigate the probability of saturating
the context window of the LLM, some tests analyse just the last 100 lines of
logs. This may leave out important information that may have otherwise
helped the LLM determine what went wrong. Therefore, future work will
evaluate increasing this arbitrary value to check if it can improve the ability
of the LLM to correctly fix the detected issues.

Agent Memory: there is only a short-term memory system - the State
- which helps the agent keep track of what is going on during a single run.
Future studies will implement a long-term memory solution and study
how it can improve that agentic workflow by learning from previous runs.

Vulnerability Assessment: the vulnerability assessment phase is performed
purely at the static level using a third party tool - i.e., Docker Scout. Taking
inspiration from what CVE-Genie [4] has done, future work will expand the
current vulnerability assessment phase to enable the agent to autonomously
perform dynamic vulnerability assessment by using a given exploit, or
by trying to generate one.

Multi-agent Framework: by exploiting the work of my colleagues which
created other Al agents, future studies will also focus on integrating this agent
into a multi-agent framework.
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o« Number of Iterations: all tests and results were obtained by limiting the
number of iterations the agent may perform in the testing—revision
loop to 10. This was done to regulate the total workflow execution time and
reduce costs, but future studies will study the ability of the agent to generate
virtual environments with a higher number of iterations, effectively testing its
ability to learn from previous error.

o Timeouts & System Limitations: some of the functions that support the
testing process are have a timeout:

— The launch_docker function has an arbitrary timeout of 600 seconds
which was chosen to accommodate the build process of a Docker
Compose environment. This large amount of time is necessary es-
pecially when images need to be built from scratch or pulled from
remote repositories. Consequently, this value is strongly influenced
by factors such as image size and network speed, and it may be
changed depending on the performance of the system that is using the
agent. Testing on my own system revealed that a ten minutes timeout
is a reasonable limit that prevents the build process from hanging
indefinitely in cases of misconfiguration or stalled containers.

— The run_docker_scout function has an arbitrary timeout of 60 seconds
which was chosen to accommodate the vulnerability assessment
process of a Docker Image. Unfortunately, testing on my own system
revealed that this activity is very memory intensive, and proper
automation can be achieved only with a large amounts of RAM
(>16GB). The one minutes timeout is a reasonable limit that allows
most Docker Images to get analysed without troubles. The main reason
why this timeout is imposed is to prevent the scan process from saturating
the memory of the system and causing crashes.

o Vulnerability Reproduction Range: testing results include only 100 CVEs
against the over 300k publicly available CVE records [96]. This limited scope
constrains the generalizability of the results, as the selected CVEs may not fully
represent the diversity and complexity of real-world scenarios. Consequently,
future work will also focus on widening the range of reproduced CVEs. The
range of CVEs that can be reproduced in a virtual environment is limited
by virtualization technologies used, as some services (or even just some
versions) may not be virtualizable.

o Manual Service Setup: some services can require to be manually setup
and configured by a human user, especially those involving web interfaces
or similar. In some cases the agent is capable of coming up with a solution
that bypasses the service setup phase.
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Appendix A

Function Definitions

This appendix contains some relevant function code. Visit the Github page! of the
project to see the latest version of these functions.

def get_cve_from_nist_api(self, cve_id):
url = f"https://services.nvd.nist.gov/rest/json/cves/2.07cveld={cve_id}"
try:
response = requests.get(url, timeout=10)
response.raise_for_status()
data = response.json()
vuln = data.get("vulnerabilities", [1)[0]["cve"]
description = vuln["descriptions"] [0] ["value"]
return (url, description)
except Exception as e:
return f"Failed to retrieve CVE data from NIST: {str(e)}"

Listing A.1: Function used to retrieve CVE data from the NVD repository using
the official API [91]

Thttps://github.com/glsan/Agents-for-Vulnerable-Dockers-and-related-Benchmarks.git
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def launch_docker(code_dir_path, log_file):
try:
result = subprocess.run(
["sudo", "docker", "compose",
cwd=code_dir_path,
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT,
text=True,
timeout=600)
logs = result.stdout
success = (result.returncode == 0)
with builtins.open(log_file, "w") as f:
f.write(logs)
return success, logs
except subprocess.TimeoutExpired as e:

print (£"\t{e}")
return False, e.output if e.output is not None else "No logs available"

"up", "--build", "--detach"],

Listing A.2: Function used to launch a Docker starting from a

docker-compose.yml file

def get_image_ids():
result = subprocess.run(
["sudo", "docker", "images", "-q"],
stdout=subprocess.PIPE,
stderr=subprocess.DEVNULL,
text=True)
return result.stdout.splitlines()

Listing A.3: Function used to get a list of the identifiers of all Docker Images

currently running in the system

def get_container_ids(code_dir_path):
result = subprocess.run(
["sudo", "docker", "compose", "ps", "-a", "--quiet"],
cwd=code_dir_path,
capture_output=True,
text=True)
return result.stdout.strip().splitlines()

Listing A.4: Function used to get a list of all Docker Containers currently running

in the system
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def get_container_logs(cid, log_file):
result = subprocess.run(
["sudo", "docker", "logs", cid, "--details"],
capture_output=True,
text=True)
log = f"\n\nsudo docker logs {cid} --details\nSTDOUT: {result.stdoutl}\
nSTDERR: {result.stderr}\n\n"
with builtins.open(log_file, "a") as f:
f.write(log)
log = f"\n\nsudo docker logs {cid} --details\nSTDOUT: {result.stdout.

splitlines() [-100:]1}\nSTDERR: {result.stderr.splitlines() [-100:]}\n\n"
return log

Listing A.5: Function used to get the output logs of a single Docker Container

def inspect_image(iid, log_file):
result = subprocess.run(
["sudo", "docker", "inspect", iid],
capture_output=True,
text=True)
try:
log = json.loads(result.stdout)
with builtins.open(log_file, "a") as f:
f.write(f"\n\nsudo docker inspect {iid}")
json.dump(log, f, indent=4)
except json.JSONDecodeError:
raise ValueError(f"Failed to parse JSON for container {iid}")

return log[O0]

Listing A.6: Function used to get detailed information about a single Docker
Image

def inspect_container(cid, log_file):
result = subprocess.run(
["sudo", "docker", "inspect", cid],
capture_output=True,
text=True)
try:
log = json.loads(result.stdout)
with builtins.open(log_file, "a") as f:
f.write(f"\n\nsudo docker inspect {cid}")
json.dump(log, f, indent=4)
except json.JSONDecodeError:
raise ValueError(f"Failed to parse JSON for container {cid}")

return logl[0]

Listing A.7: Function used to get detailed information about a single Docker
Container
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def down_docker(code_dir_path):
subprocess. run(
["sudo", "docker", "compose", "down", "--volumes"],
cwd=code_dir_path,
stdout=subprocess.DEVNULL,
stderr=subprocess.DEVNULL)

time.sleep(10)

Listing A.8: Function used to stop a currently running Docker Container

def remove_all_images():

image_ids = subprocess.check_output(["docker", "images", "-aq"]).decode().

split ()

if image_ids:

subprocess.run(

["docker", "rmi", "-f"] + image_ids,
stdout=subprocess.DEVNULL,
stderr=subprocess.DEVNULL,
check=True)

Listing A.9: Function used to remove all Docker Images currently stored in the

system

def run_docker_scout(code_dir_path, index, iid):

try:
with builtins.open(f"{code_dir_path}/logs/cves{index}.json", "w") as f:

subprocess.run(

["docker", "scout", "cves", iid, "--format", "gitlab"],
cwd=code_dir_path,
stdout=f,

stderr=subprocess.DEVNULL,
text=True,
timeout=60)
print (f"\tCVE List file saved to: {code_dir_path}/logs/cves{index}.
json")
return True
except subprocess.TimeoutExpired:
print (f"\tDocker Scout timed out after 60 seconds for image {iid}")

return False

Listing A.10: Function used to perform a vulnerability scan of a single Docker
Image using Docker Scout
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