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Abstract

Honeypots are deception systems used to emulate vulnerable services and collect threat
intelligence. In constrained environments, where network or computational resources
limit the number of deployable honeypots, security experts typically decide which assets
to expose statically or semi-automatically. Attackers’ tactics change quickly, and existing
rule-based deception systems cannot cope with this dynamism, reducing their ability to
capture valuable information about adversarial behavior.
Dynamic deception architectures, if properly tuned, can autonomously collect high-value
threat intelligence without constant human supervision. This thesis addresses the lack
of adaptivity and autonomy in current honeypot systems, investigating whether an AI-
driven agentic architecture can autonomously manage honeypot exposure to maximize
information gain from attackers. At the core of the proposed architecture, an AI agent
repeatedly processes Intrusion Detection System (IDS) alerts, network configuration state
and previous analyses. It infers the evolving attack steps, identifies compromised hosts
and exploited services, and predicts the attacker’s likely targets. Based on the attacker’s
progress, the agent autonomously adjusts the environment, shaping the attack surface to
sustain engagement and extract intelligence.
To systematically measure the agent’s ability to manage this environment, I developed
a simulator that iteratively launches attacks against a network of vulnerable containers,
followed by agent reasoning and deployment of defensive strategies. I reproduced attack-
ers’ behavior using Proofs of Concept (PoCs) exploiting known CVEs, creating traffic
patterns that simulate real intrusion attempts.
Results in a simulated environment show that the AI agent achieved up to 96% accuracy
in attack graph inference and 100% Exposure Efficiency, a custom metric to quantify
minimized exposure. The results demonstrate the agent’s ability to efficiently guide ex-
posure and exploitation dynamics while ensuring optimal management of resources. The
architecture has been deployed in a real honeynet environment hosting 15 web services.
Initial data collection is ongoing to quantify the benefits of the solution when compared
to static systems.
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Chapter 1

Introduction

1.1 Context and Motivation

In the rapidly evolving landscape of cybersecurity, defenders face a persistent challenge:
attackers continuously adapt their tactics, discover new vulnerabilities, and exploit weak-
nesses faster than defenses can evolve. Honeypots are designed to emulate vulnerable
services and collect threat intelligence, playing a crucial role in understanding adversarial
behavior. However, decisions about which assets to expose are often made statically or
through simple rule-based mechanisms. Such fixed exposure policies may fail to lever-
age the valuable information generated during ongoing attacks, reducing the system’s
ability to capture meaningful intelligence about attacker behavior. The importance of
this problem lies in the need to maximize the information gain from limited defensive
resources. A dynamic environment, in which asset exposure changes dynamically, may
help in sustaining attackers’ interest [45]. Adaptive deception systems capable of detect-
ing the progression of attacks and autonomously reshaping the exposed surface could
enable defenders to collect richer data while minimizing operational overhead.
However, designing such adaptive systems is not straightforward. Naive or rule-based
approaches typically fail because they cannot infer attack steps or take actions based on
incomplete and noisy evidence. Previous research has explored adaptive and AI assisted
honeypots. Architectures such as those by Kareem et al. [1] dynamically adjust honeypot
configurations based on Machine Learning guided adaptation, but do not perform behav-
ioral or attack steps inference. Systems such as HoneyGPT by Wang et al. [54], which
rely on LLMs to simulate service interactions, focus on interaction realism rather than
network management and behavioral analysis. As a result, they remain limited in their
ability to autonomously reason about intent of attacker or reshape the attack surface
during live engagements.
This thesis addresses the limitations cited by introducing an AI-driven adaptive cyber de-
ception architecture designed to autonomously manage honeypot exposure in constrained
environment based on the detected intent of the attackers.
The core idea is to enable the honeynet environment to observe, infer, and act periodi-
cally based on the understanding of traffic. The agent takes in input intrusion detection
system (IDS) alerts, network configuration data, and prior analyses to infer an evolving
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attack graph that maps attacker steps and exploited services. Based on the inferred in-
formation, it autonomously adjusts service exposure, thereby shaping the attack surface
to sustain engagement and extract valuable intelligence.

1.2 Methodology

To evaluate the architecture proposed, I developed a simulator in which scripted attacks
exploiting known CVEs target a set of vulnerable containerized services. Both the agent’s
reasoning process and the design of the attack simulation rely on the assumption that at-
tacker behavior can be decomposed into sequential stages aligned with the MITRE ATT&CK

framework, enabling structured inference of intent and progression. Each iteration alter-
nates between attacker activity and the agent’s execution, allowing measurement of its
ability to infer attack progression steps and apply appropriate asset exposure. Exper-
iments showed that the agent was able to correctly reconstruct the attacker’s path in
most cases, while also keeping unnecessary system exposure to a minimum, achieving
full efficiency by my evaluation metric. Lastly, The architecture has been deployed in a
real honeynet environment hosting 15 web services. Initial data collection is ongoing to
quantify the benefits of the solution when compared to static systems.

1.3 Thesis Organization

This thesis is structured in seven chapters:

• Chapter 2 – Background introduces the theoretical foundations of the work. It
reviews existing honeypot technologies, intrusion detection systems, generative arti-
ficial intelligence, and AI–agent frameworks, establishing the background necessary
to understand the system’s design.

• Chapter 3 – Related Work surveys related research, outlining how AI has
been applied in cybersecurity and examining prior efforts toward adaptive or au-
tonomously managed honeypots.

• Chapter 4 – Methodology details the proposed methodology. It presents the
overall multi agent system architecture and explains the function of each system
component

• Chapter 5 – Agent Testing Environment describes the testing environment
created to evaluate the system.

• Chapter 6 – Results reports the experimental results. It defines the evalua-
tion metrics, analyzes the system’s performance under different attack modes, and
discusses broader implications, including cost considerations.

• Chapter 7 – Conclusions summarizes the findings and discusses potential direc-
tions for future research.
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Chapter 2

Background

2.1 Honeypot Technologies and Architectures

A honeypot is a deliberately open system or asset that imitates valuable applications,
services, or data for the aim of adversaries deception. It is not designed to supply end users
with useful functionality but to induce security intelligence from unauthorized activity. In
defense-in-depth deployments, honeypots complement firewalls, endpoint defenses, threat
intelligence feeds, and intrusion detection and prevention systems (IDS/IPS) by providing
early indicators of compromise and by redirecting threats away from production resources.
A honeypot is thus both decoy and sensor, by definition: an area where attacks are
executed under observed scrutiny, and a mechanism to reduce pressure on operational
systems by redirecting hostile activity elsewhere. Canonical definitions emphasize this
decoy purpose: NIST specifies a honeypot as

”A system or system resource designed to be attractive to potential crackers
and intruders, just as honey is attractive to bears.” [28]

Vendor documentation emphasizes the placing of decoy severs alongside production to
measure reactions and deflect attackers away from real targets. [15] Because any legitimate
use of honeypots is, by definition, minimal or null, any traffic will tend to be suspicious.
This property allows honeypots to be extremely sensitive sensors for early warning: one
unwanted connection, credential probe, or command is reason enough for an alert to be
pursued. In addition to detection, honeypots enable systematic threat research. Finally,
by keeping attackers busy with realistic but fictitious targets, a honeypot introduces
friction and misdirection. These activities align with highly cited explanatory sources in
industry and academia that characterize honeypots as lure and learn mechanisms that
deflect, delay, and expose adversaries. Honeypots might not be sufficient on their own,
but they are absolutely vital when part of an overall cyber posture.

2.1.1 Type of Honeypots and Core Components

Honeypots can be classified based on the degree of interaction with the attackers or the
deployment goal. Honeypots are typically characterized by the level of interaction offered
and the deployment goal. Low-Interaction deployments mimic some protocol banners
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or application interfaces and are small, easy to manage, and fairly secure, but they cap-
ture little behavior. Medium-Interaction systems imitate more realistic application
logic without offering attackers full operating system control, striking a realistic balance
between risk of threats and realism. High-Interaction honeypots introduce actual op-
erating systems and vulnerable applications so that attackers can be allowed to launch
actual exploits, set up tooling, and attempt persistence or lateral movement, yielding the
most insight but needing rigorous isolation and observation to contain risk. The pur-
pose of deployment also shapes design considerations. Production honeypots are placed
near business systems and are generally low- to medium-interaction; reliability, ease of
maintenance, and tight integration with monitoring and response procedures are among
the factors considered in their design. Research honeypots tend to be high interaction
and are found in controlled or academic environments where maximization of data col-
lection and realism outweigh operational convenience. Combined together, use and level
of interaction define an effective design space through which defenders can trade realism
for security and operational cost. Under the hood, modern surveys analyze honeypots
into two fundamental parts: the decoy, the deliberately revealed asset, and the captor,
the monitoring and control mechanism that stealthily observes, captures, and steers the
interaction. Fan et al. formalize this as a decoy-captor (D-C) taxonomy and distin-
guish organizational designs wherein these elements are either tightly coupled or loosely
coupled/cooperative. Tight coupling simplifies deployment but limits scalability and mod-
ular evolution; loose coupling increases architectural complexity but permits larger more
adaptive deception fabrics and shared analytics. This conceptualization continues to hold
sway since it efficiently decouples the lure from the observatory, explaining how each can
be developed without undermining the other [14].

2.1.2 Honeypots in Docker Containers

Virtualization and, in particular, containers have changed honeypot design towards quick,
reproducible, and more secure deployments. Containers allow defenders to package real,
intentionally exposed applications and their dependencies and run them with strong
namespace and resource containment. The net effect is that teams can deploy high
interaction targets with nearly full virtual machine realism but with lower overhead and
faster lifecycle operation. Boundary isolation reduces the likelihood that compromise of
the decoy poses danger to production infrastructure, if network segmentation and run-
time controls are applied with discipline. Containerization thus is a marriage of cloud
native design and honeypot architecture for modern times so that organizations can use
deception technology at scale without diminishing operational effectiveness.
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Aspect Concise Summary

Definition Decoy systems/resources that attract adversaries to detect, deflect,
and study attacks; value arises from unauthorized use rather than
serving end users [15,28].

Interaction Levels Low: lightweight emulation with limited insight;
Medium: richer app behavior without full OS control;
High: real OS/apps for maximal fidelity at higher risk/overhead.

Deployment
Purpose

Production: operational networks; emphasis on reliability, integra-
tion, and safety.
Research: controlled settings; emphasis on data richness and real-
ism.

Core Elements
(D–C)

Decoy (the bait) and Captor (the hidden monitoring/control). Or-
ganization may be tightly coupled for simplicity or loosely coupled/-
cooperative for scalability and modularity [14].

Operational
Benefits

Early, signal detection; TTPs and malware collection; attacker dis-
traction/misdirection; intelligence for patching and hardening.

Containerized
Honeypots

Cloud native packaging of vulnerable services enables reproducible,
scalable, high- nteraction deployments with strong isolation and
rapid rotation; suited to orchestration and SIEM/DFIR integration.

Table 2.1: Summary of honeypot architecture

2.2 Intrusion Detection System (IDS)

Intrusion Detection Systems can be categorized according to some architectural, method-
ological, or operational decisions. First, concerning monitoring scope, systems can be
deployed to monitor network traffic in general, Network-based IDS or NIDS, or to monitor
specific hosts, Host-based IDS or HIDS. NIDS are placed at network choke-points, gate-
ways, or switches and examine packet flows, commonly involving deep packet inspection,
protocol parsing, or application level metadata [24]. HIDS, instead, operate on individual
hosts (servers, work stations, or end devices) and track internal system activity: system
calls, log files, file integrity, process behavior. Since HIDS can monitor within the host
space, e.g., behavior blind to network sensors, they provide deep visibility at the expense
of having to be deployed on all assets, along with potentially greater per host overhead.
Second, IDS can be classified by detection method. Signature based IDS are based on
a database of attack patterns or known signatures; these are effective to identify threats
for which there are signatures, with a relatively low incidence of false positives if the sig-
natures are accurate, but are not able to identify new, zero day, or polymorphic attacks
for which no signature has yet been created [42]. Anomaly based IDS create a model of
”normal” behavior, possibly derived from network traffic volumes, protocol utilization,
resource access, or user activity, and mark deviations as potentially malicious. These
systems have the ability to detect novel, unpublicized attacks, and evolve with emerging
threat patterns, but are susceptible to greater false positives, particularly where ”nor-
mal behavior” is evolving or is ill defined [24]. Hybrid solutions meld these detection
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methods, signature and anomaly, to counter the weakness of one with the strength of the
other [6, 42]. A third categorization depends on the type of response enforced by the
system. Classic or ”passive” IDS produce alerts or logs when they detect suspicious or
known bad activity, and it is up to human operators to follow up or remediate. ”Ac-
tive” systems or modes, usually referred to as Intrusion Prevention Systems or IPS, have
the ability to block, contain, or otherwise immediately take automated action against
threats. These can discard packets from the network, reset the connections, block IP
addresses, or insert firewall rules in real time, based on the severity and confidence of the
detection [44]. In brief, for any deployment, one must consider where detection is taking
place, host or network, how detection is being performed, and what level of response is
desired or tolerated. Each dimension brings trade-offs in visibility, false positive rates,
maintenance effort, performance overhead, and risk.

Aspect Key Points

Classification by Scope Network-based IDS monitor network flows; Host-based IDS
run on individual hosts tracking local system behavior.

Classification by
Detection Method

Signature-based: known attack detection; Anomaly-based:
deviation from baseline; Specification-based: define allowed
behavior; Hybrid: combining techniques.

Classification by
Response Type

Passive IDS generate alerts; Active modes (IPS) enable
blocking or containment of threats in real time.

Table 2.2: IDS classification

2.3 Intrusion Detection Systems: Suricata

Suricata, created by the Open Information Security Foundation (OISF), is an example of
many of the qualities desired in modern IDS/IPS systems [29]. Suricata was built from the
ground up to support multi-threaded operation, allowing it to take advantage of multiple
CPU cores at once. This allows Suricata to consume and inspect large amounts of traffic
without suffering from decreased performance. It also includes a massive list of network
and application layer protocols it supports and can automatically detect many protocols,
parse them, log detailed transactions, and extract files traversing the network for later
analysis. Its output formats are myriad and range from structured JSON logs to classic
log formats, as well as SIEM, threat intelligence, and analytics pipeline support. Since
there is an increase in traffic encryption, IoT, cloud networks, and protocol heterogeneity,
Suricata’s protocol detection flexibility, anomaly detection alongside signature matching,
and scalability render it particularly suitable for production environments and research
alike. Besides the functionalities mentioned above, current research on IDS includes deep
learning and hybrid detection models. Deep learning approaches are being utilized in
network traffic stream analysis, detection of unknown threats, and enhancing correlation
and behavior modeling against evasive attack techniques. In this thesis, Suricata serves
as the foundation IDS component. Its robust alerts and event logs supply the empirical
basis for automated agent inference, allowing the system to monitor exploitation, deduce
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attack evolution, and manage honeypot exposure independently. Suricata’s open, mod-
ular architecture is particularly well adapted to research environments demanding close
integration with agentic and autonomous defense systems.

2.4 MITRE ATT&CK Framework

The MITRE ATT&CK framework is a publicly accessible knowledge base developed by
The MITRE Corporation that systematically categorises adversary behaviour in terms of
tactics, “why” an adversary acts, techniques, “how” the adversary achieves a tactic, and
techniques or procedures (specific implementations) across multiple technology domains.
Originally launched in 2013 to document post-compromise adversary activity in enter-
prise networks, the framework provides a structured way to model adversarial intent,
behaviour, and progression through different stages of an intrusion [49].
In this work, I adopt the assumption that an attacker’s actions can be mapped to the
phased progression of adversarial behaviour as described by the ATT&CK framework.
This alignment enables the agent to infer intent and exploit path progression by map-
ping observed indicators to known tactic/technique combinations, thereby constructing
an evolving attack graph in line with the framework’s taxonomy.

2.5 Generative Artificial Intelligence

Artificial Intelligence (AI) is a fundamental change in the way technology interacts with
society. AI is essentially computer systems replicating human learning, understanding,
problem solving, decision making, creativity, and autonomy [19]. As its possibility has
grown, AI has evolved from narrow automation to a collection of techniques that infuse
industry, medicine, entertainment, communications, and government management. More
than an individual technology, AI is a group of techniques that accept large amounts of
data, find patterns, and learn from additional data so that systems can make decisions
and get better over time (see Figure 2.1 [37]). These capabilities already drive innovations
in autonomous cars, precision medicine, and smart infrastructure. In the midst of this
changing landscape, Generative AI has become a clear and powerful field. Rather than
simply classifying or predicting from inputs, generative models discover the statistical
composition of data and generate new outputs, including text, images, sound, and video,
that are indistinguishable from human created content [17,18]

2.5.1 Large Language Models

Trained on massive corpora that frequently comprise billions of tokens, LLMs learn to
encode grammar, semantics, and context, facilitating robust performance on translation,
summarization, question answering, and creative writing [35]. Among the key architec-
tural innovations is the Transformer, whose self attention mechanism captures long range
dependencies free of recurrence or convolution, enabling parallelization across tokens and
enhancing contextual fidelity significantly [50]. Since models cannot handle raw text,
actual LLM pipelines start with tokenisation. It is the essential pre-processing step that
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Figure 2.1: AI Fields Map

transforms raw text into a sequence of discrete symbols that the model can process. Since
LLMs don’t process strings directly, text needs to be broken up into units, or tokens, first.
The selection of token inventory and segmentation rules has significant implications: they
dictate how economically a model represents morphology, how well it generalizes to rare
or misspelled words, how concisely it represents multilingual input, and ultimately how
many tokens it takes to represent a passage of a given length. A number of paradigms
exist for the definition of tokens, differing in the granularity with which text is segmented.
Word level methods, prevalent in older systems, allocate a distinct token to each word
type but are plagued by out of vocabulary (OOV) explosions and unmanageable vocabu-
laries when faced with morphologically rich or multilingual environments. Character level
models remove OOV at the cost of extremely long sequences and requiring large range
dependencies to be learned across far more positions. Subword models are in between
these two extremes and are the default for contemporary LLMs since they trade off vo-
cabulary size and expressiveness. Tokenizer design has a direct influence on the effective
capacity of an LLM since contemporary architectures take fixed length token windows
as input. A model’s token window is the maximum number of tokens it can attend over
at a time; all inputs and intermediate prompts need to be expressible within this limit.
Because self attention scales linearly with the number of tokens instead of characters
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or words, a tokenizer that produces fewer tokens per passage effectively ”stretches” the
usable context for the same architectural limit [50]. This interplay between tokenisation
and context window size creates real trade offs in system design and model behavior.
Larger vocabularies will shorten average sequence length but at potential cost in train-
ing expense and memory load; smaller vocabularies are easier to model but inflate toke
counts. Lastly, since prompts, system instructions, few shot examples, and retrieved
passages all compete for the same limited context, token budgeting becomes a premier
issue in applied LLM workflows. Recent years have witnessed heightened development
that expands both modality and capability. OpenAI’s GPT-5, released on August 7,
2025, is specialized in coding, agentic tasks, long context reasoning, and dynamic rout-
ing between fast and ”deep thinking” behavior [33]. The GPT 4.1 series, released on
April 14, 2025, built out coding and instruction following capability while accommo-
dating very large context windows, on the order of hundreds of thousands to around
a million tokens, depending on variant [32]. GPT-4o introduced real-time multi modal
reasoning over text, vision, and audio, with additional efficiency improvements [30, 31].
Meta’s Llama 4 series (Scout/Maverick) combined mixture-of-experts architectures with
industry leading long context capability (Scout on the order of ∼10 million tokens; Mav-
erick in the million token range) and multi-modal inputs [26, 27]. Anthropic’s Claude
Opus 4.1 specialized in longer reasoning and multi-file code refactoring, with strong re-
ported scores on SWE-Bench Verified [4, 5]. Google’s Gemini 2.4 families built native,
long-context window, multi-modality for the Pro version, and tiered offerings to balance
latency and ability [10,11]. xAI’s Grok 4 Heavy investigated parallel hypothesis in multi-
agent inference for better complex planning and reasoning with competitive benchmark
performance on code and STEM tasks [9, 57]. Together, these families are pushing to-
ward unified, multi-modal systems with more agentic behavior and long-term memory.
Despite progress in pretraining and alignment, model behavior remains extremely sensi-
tive to how tasks are formulated. Prompt design has therefore been added as a regular
procedure. Zero-shot and few-shot prompting leverage pretraining priors and small ex-
emplars for output structure and style guidance [35]. Chain-of-thought prompting and
similar techniques can draw out intermediate reasoning steps to enhance performance
on symbolic or multi-step problems [55]. Retrieval-Augmented generation (RAG) also
anchors responses in external sources, enhancing factuality and enabling provenance by
incorporating retrieved evidence into the generation loop [21]. These approaches are com-
plementary to alignment methods like instruction tuning in that they stabilize behavior,
eliminate failure modes, and maintain models’ general usefulness [35].
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Model Family Main Characteristics Key Citations

OpenAI GPT-5 Announced in August 2025; emphasizes coding, agen-
tic tasks, long-context reasoning, and dynamic routing
between fast and deep-thinking behaviors.

[33]

OpenAI GPT-4.1 Released in April 2025; family includes GPT-4.1, 4.1
mini, and 4.1 nano; improved coding and instruction-
following; supports very long context windows (up to
∼1M tokens).

[32]

OpenAI GPT-4o Multimodal “omni” model; integrates text, vision, and
audio; real-time reasoning; improved efficiency relative
to earlier GPT-4 variants.

[30, 31]

Meta Llama 4
(Scout / Maverick)

Mixture-of-experts architecture; long context capacity
(Scout up to ∼10M tokens, Maverick ∼1M tokens);
multimodal inputs (text + images).

[26, 27]

Claude Opus 4.1 Released in 2025; excels at extended reasoning and
multi-file code refactoring; achieves ∼74.5% on SWE-
Bench Verified; strong agentic search.

[4, 5]

Google Gemini 2.5
(Pro / Flash /
Flash-Lite)

Native multimodality (text, image, audio, video,
PDFs); long context (Pro: ∼1M tokens input, ∼65k
tokens output); includes built-in reasoning; variants
optimized for latency or power.

[10,11]

xAI Grok 4 Heavy Employs multi-agent inference with parallel hypothe-
ses for complex reasoning; strong benchmark results
in code, STEM, and long-horizon planning; premium
model with higher compute demands.

[9, 57]

Table 2.3: Representative LLM families (2024–2025) and their defining capabilities.

2.6 AI Agents: Definitions and Frameworks

The revival of interest in big language models (LLMs) has brought about a resurgence in
the interest in autonomous agents, defined as computer programs that perceive the envi-
ronment, act autonomously to accomplish tasks, and can adapt the performance through
machine learning or the acquisition of knowledge [56]. Especially in modern architectures,
an agent is endowed with an internal memory, decision logic, and the capacity to invoke
external tools. But contemporary agent systems frequently embed a large language model
(LLM) as their reasoning core, making the LLM the ”brain” of the agent. An AI Agent
can be understood as a mapping from percept sequences to actions, but enriched by inter-
nal state, planning, and deliberation. In practical systems, an agent continuously loops
through a cycle: it perceives inputs, updates internal memory or context, reasons about
which action to take next, executes that action, and then integrates feedback to revise

14



2.6 – AI Agents: Definitions and Frameworks

beliefs or plans. This cycle distinguishes the agent from a simple reactive system: it pro-
vides persistence of context and the ability to plan across multiple steps. When modern
agents incorporate an LLM, the model plays the role of the reasoning engine. That is,
instead of encoding rules of handcrafted heuristics, the LLM is used to interpret context,
generate hypothesis, plan sub-goals, or synthesize tool calls. The synergy is powerful:
the LLM handles language-based reasoning, abstraction, and flexible planning, while the
agent infrastructure ensures robustness, state management, and safe tool execution. Sur-
veys of LLM-based agent systems highlight this synergy as central to the current growth
in agent research. For instance, Wang et al. describe how LLMs have recently enabled au-
tonomous agents that combine perception, planning, and action in real-world settings, by
leveraging the model’s reasoning capabilities while embedding them into agent loops [53].
Correspondingly, the survey of methodology and applications of LLM agents insists that
current agent systems are actually LLM-drive agents, wherein the LLM is queried over
and over as part of some action-selection procedure and not as a pure static language
oracle [25]. Such kind of architectures need to address various challenges. One needs to
handle prompt engineering with great care, the limits of the memory context window,
hallucinations or incorrect outputs from the LLM, and synchronization across multiple
agents or components. Guaranteeing deterministic behavior, or at the very least, repro-
ducible traces of reasoning require the control of randomness within the LLM, definition
of structured interfaces. Additionally, the overhead of repeated invocation of the LLM
can cause latency as well as cost. However, in spite of such challenges, the combination
of agent scaffolding with LLM reasoning is the state-of-the-art in the construction of
flexible, goal-directed, and explainable autonomous agents.
An LLM is not enough on its own to deploy an agent: one also needs to inject an or-
chestration level to control state, schedule the execution of reasoning steps, broker tool
invocation, coordinate the execution of multiple agents if required, and facilitate intro-
spection as well as explainability. There have been numerous frameworks developed over
the past years to address these issues that present abstractions to facilitate easy construc-
tion of agentic systems. In the remainder of this section, the most pertinent frameworks
are reviewed, followed by the argument to use LangGraph as the basis of the orchestration
stack developed in this research. One of the most widely used frameworks is LangChain.
It offers modular abstractions to chain together prompts, memory, retrieval modules, and
tool calls. The core concept of the framework is the chain, where the outcome of one step
serves as input to the next, thus supporting workflows such as retrieval-augmented gen-
eration, question answering, or multi-step reasoning [39,40]. Since LangChain presents a
standard interface to integrate models, tools, and vector stores, it became de facto base-
line to build applications based on LLMs. However, its chain-like design automatically
enforces a linear or sequential sequence of reasoning steps, which becomes restrictive
when issues require branching, concurrent execution, feedback loops, or strongly cou-
pled interaction between specialized agents. To go beyond these constraints, more recent
frameworks allow for multi-agent interaction. An example is Autogen, that lets multiple
agents be instanced that broker their interaction with conversational protocols until a
goal is attained. Such a paradigm offers extensibility and semantic expressiveness, yet
the control flow remains mostly implicit: the order of reasoning, the dependency between
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them, as well as the branching semantics all cohabit in the dialogue between the agents.
This implies that achieving determinism, tracing internal reasoning, or enforcing strict
dependency between the agent outputs becomes challenging in rugged systems. Lang-
Graph presents a graph based orchestration paradigm. The reasoning system within
LangGraph is represented as a directed reasoning graph: the vertices represent discrete
reasoning units, the edges define the data or control dependency between them. That
is, the information flow is made explicit in the graph structure, as opposed to implicit
within conversational protocols. This enables deterministic scheduling: each vertex is
executed whenever its inputs are available, producing structured outputs that propa-
gate downstream. LangGraph is also runnable with the components of LangChain but
complements them with a state propagation mechanism along with graph execution se-
mantics [38, 48]. Since node level dependencies are explicit, LangGraph is suitable for
developing multi agent systems with rich interactions. Agents can be represented as be-
ing mapped to nodes, taking structured inputs from predecessors to producing structured
outputs to successors. The overall state changes as the agents execute, recording both the
system perception of the world as well as the order of decisions implemented. Addition-
ally, LangGraph accommodates loops, conditional branches as well as reactive activation
of the nodes, crucial in representing feedback driven reasoning with dynamic worlds. In
applications such as cybersecurity, where perception, inference as well as control need to
be highly integrated as well as traceable, the directed graph abstraction offers vital clarity
as well as accountability. From a software engineering standpoint, the graph based model
yields several benefits. Considering the thesis goals, the LangGraph paradigm aligns nat-
urally. In this work, agents are specialized in perception, and control. Using LangGraph
enables specification of this reasoning graph concretely, inference over agents’ internal
state updates, and logging of reasoning at each node. Broadly speaking, the trajectory
from chain based frameworks and conversational agent systems toward graph based or-
chestrators such as LangGraph reflects an evolution in AI agent design: from loosely
coordinated modules toward structured, deterministic, and explainable systems. In con-
clusion, LangGraph’s directed reasoning graph approach offers a robust way to maintain
autonomy, yet enforce traceability and accountability. It is thus both a practical and
conceptually coherent choice for this thesis’s agent orchestration layer.
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2.6 – AI Agents: Definitions and Frameworks

LangChain AutoGen LangGraph

Core paradigm Sequential “chains” of
reasoning and tool calls

Multi-agent conver-
sational coordination
between agents

Directed reasoning
graph with explicit
dependencies and state
propagation

Agent
coordination

Limited; mostly single
agent chains or simple
branching

Agents communicate
via dialogues, exchange
messages, collaborate

Agents correspond to
graph nodes; dependen-
cies explicit via edges

State
management

Memory abstractions
external to the chain
logic

Agents may maintain
local memory; global
coordination less formal

Built in state prop-
agation across nodes,
global state evolves

Control /
determinism

Execution order is lin-
ear and relatively pre-
dictable

Conversational order
can inject nondetermin-
ism in turn taking

Deterministic schedul-
ing of nodes when in-
puts are ready

Branching / loops
/ dependencies

Possible but must be
managed manually or
via ad hoc constructs

Possible via conversa-
tion logic, but implicit

First class support for
conditional branches,
loops and reactive node
activations

Explainability /
traceability

Trace is chain of steps;
internal reasoning can
be opaque

Trace is inter agent di-
alogue; harder to recon-
struct causal flow

Trace corresponds to
graph execution path;
internal states logged
per node

Integration with
LLMs / tools

Very mature and broad
integrations with mod-
els, API, memory

Supports tool invo-
cation, agent roles,
human-in-loop

Built atop LangChain’s
tooling with graph se-
mantics & statefulness

Ideal use cases Simple to moderate
pipelines, RAG, se-
quential workflows

Collaborative dialog
systems, human-in-loop
multi agent workflows

Complex workflows
with dependencies,
feedback loops, security
critical orchestration

Challenges /
tradeoffs

Less suited for complex
branching or feedback
loops

May face nondetermin-
ism, harder to guaran-
tee reproducibility

Learning curve; more
architecture overhead
— complexity in graph
design

Table 2.4: Comparison of agent-framework paradigms: LangChain, AutoGen, and Lang-
Graph
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Chapter 3

Related Work

3.1 AI in Cybersecurity

AI is being applied throughout the entire defense lifecycle in cybersecurity practice, from
threat detection, analysis, and response to risk management. In intrusion detection, for
example, graph neural networks and deep learning have extended the ability of conven-
tional network and host based systems through traffic anomaly modeling and modeling
structural attributes of flows. This has lowered false positives and enhanced the detec-
tion of new attack behaviors [2, 59]. AI techniques are also leading malware analysis
and detection. There, models carry out static and dynamic analysis of code sequence or
binary, along with behavioral analysis of execution traces. Though accuracy has been
enhanced, the introduction of explainable AI methods enables analysts to interpret de-
cisions, thus augmenting accountability and trust in automatic detectors [7,16]. Natural
language models and machine learning in social engineering and phishing detection ex-
amine URLs, email content, and visual attributes to detect attempts to defraud. These
techniques are now being incorporated into Security Operations Center (SOC) workflows,
where they not only detect but also trigger responses automatically, such as proactive
blocking or selective alerts to users [12,41].

Another important use case is vulnerability discovery. Deep learning pipelines iden-
tify recurring patterns of vulnerability in source code or binaries, informing prioritization
when patching is postponed. Such findings are essential to agentic exposure management,
determining which services can be safely exposed as honeypots and which need defend-
ing [23, 60]. In addition to detection and analysis, AI improves Security Orchestration,
Automation, and Response (SOAR). These platforms combine enrichment, correlation,
and automated workflow, minimizing response time and analyst effort [20].

Within agentic contexts, SOAR offers a control plane, overseeing permissions and
guaranteeing autonomous action—like rotating honeypots or modifying firewall rules—is
within operational guardrails. At a more inferential level of inference, attack graph in-
ference and risk modeling offer a structured understanding of multi step adversary cam-
paigns. Bayesian attack graphs and graph learning methods provide probabilistic infer-
ence over evidence, in support of dynamic defenses that predict attacker action [3,22,58].
Lastly, advances in deep reinforcement learning (RL) have encouraged the investigation of
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Related Work

Dimension Advantages Challenges

Real-time
operations

Agents act at machine speed, re-
ducing attacker dwell time and
enabling immediate responses.

Risk of unsafe or uncontrolled au-
tonomous actions if governance con-
straints are not enforced.

Scalability Orchestration coordinates het-
erogeneous assets, integrating
multiple tools and defense layers.

Coordination failures can cause re-
dundant, inconsistent, or conflicting
actions among agents.

Adaptivity Learning-based policies improve
detection and response under
evolving threats and concept
drift.

Adaptivity complicates explainabil-
ity; SOCs require transparency and
traceable rationales for trust.

Governance Orchestration layers enforce per-
missions, guardrails, and human-
in-the-loop oversight.

Maintaining compliance with invari-
ants requires rigorous validation and
constant monitoring.

Table 3.1: Comparison of advantages and challenges in deploying multi-agent orchestra-
tion for cybersecurity.

fully autonomous cyber defense. RL and multi agent RL methods train defenders to act
within adversarial environments, trading off adaptability with constraints to avert unsafe
or conflicting actions [13, 36, 46]. There are a number of advantages to the use of multi
agent systems and orchestration layers for cybersecurity. By supporting automation at
machine speed, agents provide real time automation that drastically minimizes attacker
dwell time. As they are scalable, they can coordinate behavior over heterogeneous assets
and tools, and their adaptivity via learning means that they can continue to be effective
under concept drift, enhancing resilience over static rule-based systems [20,36]. These ad-
vantages are accompanied by substantial challenges. Autonomous behavior needs to meet
rigorous safety and governance criteria, adhering to guardrails and system invariants [13].
Secondly, there are coordination risks when agents’ goals are partially misaligned, which
causes redundant or even contradictory defense mechanisms. Lastly, explainability is an
issue: in security operations with high stakes, analysts need insight into decision making.
This need drives explainable AI overlays on malware and intrusion detection systems,
along with thorough decision logs for orchestrators of autonomous actions [16].

3.2 Prior Work on AI-Driven Honeypots

Classic honeypots, although effective for threat intelligence gathering and adversarial en-
gagement, have for some time now been limited in static configuration. Their inflexibility
in changing behaviors or responses exposes them to fingerprinting, thus reducing their
effectiveness against sophisticated adversaries. Conversely, the advent of artificial intelli-
gence (AI) has dramatically improved honeypot systems in the sense of the potential for
realism, adaptability, and deeper attacker interaction levels. Recent work shows how this
AI and machine learning (ML) functionality has changed the design of honeypots from
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3.3 – Generative Honeypots

static reactive traps to intelligent dynamic agents that have the capability to deceive,
mimic behavior, and make context-dependent decisions.

3.3 Generative Honeypots

A key change has been the advent of large language model (LLM) enabled honeypots.
Generative models, as extended to terminal or shell contexts, have demonstrated signifi-
cant potential for generating realistic, contextually relevant, and adaptive system output.
HoneyGPT, for example, presents an LLM-based terminal honeypot that employs sophis-
ticated prompt engineering methods to sustain long-term deceptive interaction. Its field
tests report significant gains over attacker engagement, in both duration and behavioral
variety [54]. Also, the LLM Honeypot system trains language models on actual attack
logs to produce realistic SSH activity, along with providing automated summarization
to aid analyst workflows [34]. Rounding out these developments, ShelLM shows that
LLM-augmented shell interfaces can effectively mimic UNIX like responses. Empirical
user testing validates these systems’ realism and fools human attackers at high rates of
success [43]. Together, these endeavors point to a shift towards generative realism and
static deception, wherein the conversational and interactive honeypot activity dynami-
cally changes.

3.4 Dynamic Honeypot Exposure

Alongside these generative developments, multi agent and reinforcement learning systems
have emerged as strategic frameworks for honeypot orchestration. Wang et al. propose
AARF (Autonomous Attack Response Framework), which models attacker-defender in-
teractions through coupled reinforcement learning and Hidden Markov Models [52]. By
simulating multi step attack chains using DQN agents, AARF learns optimal deception
policies that maximize engagement time and information capture. The comprehensive
survey by Abdul Kareem et al. [1] provides a unifying architectural framework for AI-
driven adaptive honeypots, emphasizing the transition from static traps to dynamic,
context aware defense systems. This work aligns closely with integrated management
approaches by highlighting requirements for real-time adaptation to emerging threat vec-
tors. In blockchain-IoT environments, Commey et al. [8] introduce an architecture where
nodes are dynamically transformed into honeypots on demand. Using Bayesian game
theory and an AI-powered IDS integrated with smart contracts, their approach optimizes
deployment strategies to maximize adversarial uncertainty while balancing resource con-
straints. Tang et al. [47] present a deep learning enabled firewall system that uses 1D-
CNN for low level traffic classification to trigger TCP-level switching mechanisms. Their
TCP REPAIR based approach reroutes malicious flows to matching honeypots with min-
imal latency, dynamically balancing concealment and resource utilization by filtering only
relevant attack sessions to decoy environments.
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3.5 Positioning of the Work

The surveyed corpus demonstrates AI-driven innovations across traffic classification, agent
simulation, and game theoretic deployment. However, these contributions remain func-
tionally specialized, addressing isolated aspects such as traffic steering, policy optimiza-
tion, or deployment strategy, without semantic integration of threat context. This thesis
introduces a critical architectural distinction: an LLM-driven orchestration agent that op-
erates at the semantic layer to unify defense components through contextual reasoning:
Key Differentiators:

• Beyond Statistical Classification (vs. Tang et al. [47]): While 1D-CNN systems
classify traffic using low level statistical features to trigger deterministic routing, the
proposed LLM agent interprets IDS alerts semantically, translating textual threat
indicators (TTPs) into proportional, context aware honeypot configurations that
adapt to attack sophistication.

• Semantic vs. Numerical Optimization (vs. AARF [52]): AARF employs
numerical policy optimization through DQN within predefined action spaces and
state representations. The LLM agent performs semantic optimization—reasoning
over natural language threat descriptions to generate adaptive deception policies
without numerical constraints or fixed action spaces.

• From Deployment to Configuration (vs. Commey et al. [8]): Game theoretic
models optimize where and when to deploy honeypots based on rational agent as-
sumptions. The LLM agent determines what deception content to present—dynamically
adjusting honeypot fidelity, vulnerability profiles, and service configurations based
on interpreted attack sequences.

• Contextual Integration (vs. AI-Honeypot Surveys [1]): General adaptive frame-
works separate perception (CNN-based classification), reasoning (RL based
adaptation), and actuation into distinct modules. This architecture centralizes con-
textual analysis within the LLM, enabling it to jointly interpret IDS alerts, infer
attack graph progression, and orchestrate firewall rules as a unified decision making
agent.

This thesis unifies three synergistic components:

• Intrusion Detection System (IDS)-driven perception for situational awareness

• Attack graph inference for structure understanding of multi step exploitation

• Autonomous firewall orchestration for dynamic exposure of vulnerable containers

Combined, these modules optimize exploitation visibility under safety constraints, en-
hancing both attack graph inference accuracy and defensive decision quality. This inte-
gration represents a synthesis of adaptive deception, strategic reasoning through natural
language understanding, and automated control—advancing AI-driven honeypots toward
fully autonomous cyber defense systems.
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Research Focus Key Method Description Representative
Works

Adaptive Honeypots ML-based behavior
analysis

Dynamic adjustment of services, banners,
and responses based on attacker TTPs
through behavior clustering and novelty
detection

[1]

Generative LLM Honey-
pots

Large Language Mod-
els for interaction syn-
thesis

Realistic shell and terminal interactions
using LLMs to enhance engagement real-
ism and believability

[54], [34], [43]

Multi-Agent RL-Based De-
ception

Reinforcement Learn-
ing + HMMs

Simulation of attacker-defender dynamics
with sequential policy learning for optimal
response strategies

[52]

Game-Theoretic Deploy-
ment

Bayesian game theory
+ blockchain

Strategic honeypot node transformation
and placement optimization to maximize
adversarial uncertainty

[8]

Deep Learning Traffic
Classification

1D-CNN +
TCP REPAIR

Low-level statistical traffic analysis for
rapid rerouting of malicious flows to
matching honeypots

[47]

LLM-Driven Semantic
Orchestration

LLM agent for con-
textual reasoning

Semantic interpretation of IDS alerts
to generate adaptive deception poli-
cies; unified orchestration of IDS
perception, attack-graph inference,
and firewall control

This Thesis

Table 3.2: Summary of Prior Work on AI-Driven Honeypots and Positioning of This
Research
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Chapter 4

Methodology

This chapter presents the design of the proposed multi-agent architecture. The goal is to
address a fundamental limitation in current deception systems: in resource constrained
environments, defenders must decide which vulnerable assets to expose to maximize en-
gagement with attackers. Traditional honeynet deployments rely on static exposure poli-
cies or rule based mechanisms, which fail to leverage the continuous stream of evidence
generated during an attack. As a result, valuable intelligence may be lost when irrelevant
services remain exposed or when active targets are concealed prematurely.

4.1 Problem Statement and Research Questions

In modern cyber operations, attackers progress through multi step intrusions, which typ-
ically encompass phases such as reconnaissance, exploitation, privilege escalation, and
data exfiltration. When honeypots remain statically exposed throughout these phases,
defenders risk to not efficiently engage adversaries, especially when only a limited number
of services can be deployed simultaneously. They may fail to sufficiently engage sophis-
ticated adversaries by sustaining exposure to irrelevant services. Moreover, the static
exposure of honeypot make them easily recognizable as decoy systems, since they do not
provide useful services and or data, causing a lost of interest from malicious actors. A
dynamic environment is essential to sustain attacker interest [45], necessitating a system
that can adapt based on real-time network observations.
To enable this adaptivity, the system architecture incorporates an Intrusion Detection
System (IDS) as a critical pre-processing layer. Direct processing of raw network traffic
by an LLM is unfeasible due to the constraint of finite context windows; the sheer volume
of raw packet data (PCAP) would immediately saturate the model’s input capacity and
drive up latency. The IDS addresses this scalability bottleneck by distilling high-volume
network traffic into discrete, semantically meaningful alerts. This architecture ensures
that the agent receives the minimum amount of efficient data necessary to reconstruct
context, transforming an insurmountable data processing challenge into a manageable
reasoning task.
However, relying on IDS alerts introduces its own set of complexities. The design of an
autonomous agent capable of managing honeynet exposure becomes a complex control
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problem characterized by two main challenges:

1. Partial Observability and Ambiguity: While the IDS solves the volume prob-
lem, it introduces noise. The agent never has a perfect view of the attacker’s state.
Alerts are often fragmented, low-level, or false positives. The challenge lies in map-
ping these distinct, often ambiguous technical indicators to a high-level strategic
intent without human intervention.

2. Temporal Dependency and Timing: Deception is time-sensitive. Engaging
an attacker is not just about showing the right asset, but showing it at the right
time. Exposing a service too late results in a missed opportunity. The agent must
understand the temporal flow of an intrusion to maintain causal consistency.

To address these gaps, this thesis investigates whether an AI-driven agentic architecture
can autonomously manage honeypot exposure. The design of the proposed methodol-
ogy is guided by the need to answer three fundamental questions regarding the agent’s
capabilities:

• RQ1 (Understanding): Can the agent correctly understand the attacker’s ex-
ploitation phase within the intrusion chain based solely on fragmented network
evidence?

• RQ2 (Engagement): Can the agent maximize the depth of the intrusion by
dynamically adapting the attack surface, even when the adversary behaves proba-
bilistically?

• RQ3 (Efficiency): Can the agent maintain this engagement efficiently, exposing
assets only when necessary, thus optimizing resource usage?

To satisfactorily answer these questions, the system must meet specific functional and
performance requirements. These requirements directly correspond to the evaluation
metrics used later in this work.
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4.1 – Problem Statement and Research Questions

Requirement Description Introduced Metric

Contextual
Awareness

The agent must accurately re-
construct the chronological and
causal order of the attack
phases from raw logs.

Graph Inference Accuracy

Sustained
Engagement

The agent must ensure the at-
tacker is not blocked by a lack
of targets. It must maximize
the progression of the attack to
gather intelligence.

Exploitation Percentage

Resource
Optimization

The agent must minimize un-
necessary exposures. It should
guide the attacker to the objec-
tive using the minimum neces-
sary visibility steps.

Exposure Efficiency

Table 4.1: System Requirements for AI Agent. This table summarizes the core func-
tional requirements that the proposed AI-driven agent must satisfy: contextual aware-
ness, sustained engagement, and resource optimization. Each of them are linked to the
corresponding evaluation metric used to assess the agent’s ability to manage honeypot
exposure throughout multi-step intrusions.
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4.2 Multi-Agent System Architecture

Figure 4.1: Transition from Static to AI-Driven Honeynet Exposure. The up-
per row illustrates a traditional deployment, where attackers interacts with a honeynet
through a firewall that applies static, rule based policies. The lower row shows the pro-
posed architecture: Suricata generates IDS events that are sent to an AI agent, which
interprets the observed activity and returns rule updates and exposure decisions to the
firewall. As a result, only a selected honeypot is actively exposed while the others are
hidden, enabling dynamically adapted deception.

The proposed architecture’s primary objective is the optimization of attackers’ engage-
ment, through proper asset exposure within a resource constrained environment, along
with malicious activity analysis. The agent design rely on the assumption that mali-
cious actors behavior can be decomposed into sequential stages aligned with the MITRE

ATT&CK framework. The System architecture is guided by three fundamental principles.
First, all adaptive behavior must be evidence-based: any inference in terms of ex-
ploitation or attack graph progress must rely on confirmed intrusion detection system
(IDS) alerts. This constraint ensures that the inference process is grounded in observable
data and avoids speculative or unverifiable assumptions. Second, the system emphasizes
autonomous planning and enforcement through exposure strategies and firewall config-
uration updates without human intervention. Lastly, the principle of justifiability and
transparency is inherent in the operation of every agent: each node output is recorded to
enable full traceability and analysis.
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4.2 – Multi-Agent System Architecture

The multi-agent architecture consists of five nodes, each corresponding to a distinct op-
erational role:

1. Network Aggregation Node fetches the IDS alerts, container status, and the active
rules of the firewall.

2. Attack Inference Node the interprets aggregated alerts, previous exploitation states
and attack graph to infer the evolving attack steps and determine the exploitation
state of each container.

3. The Exposure Manager Node determines which container to expose to the attacker
in the next iteration.

4. Firewall Manager Node enforces the chosen exposure strategy into concrete network
configurations through iptables rule management over a REST API.

5. Persistence Node saves the global state into memory for subsequent iterations in-
formation retrieval and benchmark analysis.

Together, the components form a cohesive decision loop that each iteration adapts the
service exposure strategy based on verified attacker behavior.

Figure 4.2: Overview of the Agentic Architecture. The figure illustrates the pro-
posed AI-driven agent that reasons over network observations and interacts with a mod-
ular control pipeline composed of network aggregation, attack inference, exposure man-
agement, firewall orchestration, and persistence components. The agent and these com-
ponents share a common memory and state store, enabling the system to track ongoing
intrusions and dynamically adjust honeypot exposure over time.
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The multi-agent architecture is structured as a directed graph where each node ac-
complishes one dedicated task. Each of the nodes takes structured inputs received from
the previous node, processes them following its designated role and provides structured
outputs which modify the global state of the system. Due to its clearly defined steps,
I decided to rely on LangGraph as development framework, since it has been built to
develop graph structured multi-agent systems. Its architecture is naturally matching the
desired orchestration model allowing the specification of the pipeline steps in terms of the
graph nodes and the coordination logic in terms of directed edges. This choice guaranteed
scalable and transparent implementation of the pipeline, allowing the entire output trace
of every agent remains entirely observable and reproducible.

Node Primary
Function

Key Inputs Key Outputs Role in Sys-
tem

Type

Network
Gathering
Node

Collects recent
IDS, firewall,
and honeypot
data

IDS logs,
Docker con-
tainers network
information,
firewall rules

IDS security
events, con-
tainer and
firewall state

Provides struc-
tured alerts and
network config-
uration

Tool Node

Graph and
Exploitation
Inference
Node

Updates attack
graph and ex-
ploitation states

Summarized
events, prior
graph, prior
exploitation

Updated attack
graph, exploita-
tion levels, rea-
soning log

Infers attacker
progression

LLM + Prompt

Exposure
Manager
Node

Chooses honey-
pots to expose
based on evi-
dence

Honeypot con-
figuration,
exploitation
levels, exposure
history

Selected honey-
pot, reasoning
log, lockdown
indicator

Plans adaptive
exposure strate-
gies

LLM + Prompt

Firewall
Manager
Node

Enforces expo-
sure strategy
via rule updates

Selected hon-
eypot, current
firewall and
container con-
figs

Rule changes
and reasoning
trace

Executes expo-
sure decisions

LLM + Tools

Persistence
Node

Stores iteration
outputs and up-
dates exposure
registry

All node out-
puts

Memory snap-
shot and up-
dated exposure
registry

Ensures repro-
ducibility and
benchmarking
consistency

Tool Node

Table 4.2: Summary of Agent Nodes and Interactions
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4.2.1 Shared State

All nodes operate over a single shared state, AgentState, which consists in a data struc-
ture that is shared between nodes at each iteration. Each component receives the current
AgentState, performs its computation, and returns data structures that updates the
relevant fields.

Field Description Produced by Consumed by

security events IDS alerts Network Aggregation Attack Inference
firewall config Firewall rules Network Aggregation Firewall Manager
vulnerable containers Deployed vulnerable contain-

ers metadata
Network Aggregation Attack Inference,

Exposure Manager
inferred attack graph Current attacker progression

graph
Attack Inference Exposure Manager

containers exploitation Per container exploitation
state

Attack Inference Exposure Manager

selected container Selected container to expose in
the next epoch

Exposure Manager Firewall Manager

lockdown status Boolean status indicating an
enforced containment mode

Exposure Manager –

Table 4.3: Shared AgentState fields and data flow among agents. This table sum-
marizes the key fields stored in the shared AgentState object. For each field, it indicates
its purpose, which agent or system component produces it, and which agents consume it.
This clarifies how information flows between the Network Aggregation, Attack Inference,
Exposure Management, and Firewall Manager agents to coordinate attack detection, hon-
eypot exposure decisions, and containment actions.

4.2.2 Episodic Memory

The system incorporates an Episodic Memory to provide the agent with a short-term
operational context and a foundation for future longitudinal learning. This memory
component, implemented by the EpisodicMemory class, operates independently of the
real-time state flow and serves as an immutable log of the system’s execution history.
The key mechanisms of the class are:

• State Logging: At the conclusion of each operational loop, a snapshot of the
state data is tagged with a unique iteration ID and a precise timestamp. This
transformation moves the data from a mutable state to a persistent, indexed record
using an InMemoryStore.

• Context Retrieval: The memory allows nodes, particularly the Attack Inference
and Exposure Manager, to access a limited window of the most recent iterations.
This short term recall is crucial for contextualizing sequential events.

This episodic memory architecture establishes a baseline on which future works can build
the necessary infrastructure for implementing a Retrieval Augmented Generation (RAG)
approach in future work. By persistently logging historical interactions, the memory be-
comes the foundational knowledge base that a RAG mechanism can query to transition
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the system from a stateless to a dynamic, experience-based learner. However, the inte-
gration of a full RAG pipeline leveraging this memory as a queryable knowledge base is
left as future work and has not yet been implemented in the current prototype.

4.2.3 Network Gathering Node

Figure 4.3: Network Gathering Node: Tool Node and Shared State Update.
This diagram illustrates the Tool Node responsible for collecting real time network and
system information to update the agent’s shared state. The Network Gathering Node
queries multiple APIs servers such as Suricata, for IDS alerts, the firewall, for firewall rules
and Docker for container availability. It then produces an updated shared state containing
security events, vulnerable containers, and firewall config, enabling downstream agents to
reason about the environment.

The operational sequence begins with the Network Aggregation Node, whose primary
objective is to collect the most recent environmental data from the monitored network.
This node serves as the system’s perceptual layer, ensuring that every subsequent rea-
soning step operates with the most up to date situational awareness.
It queries three key components: the intrusion detection system (IDS), the Docker en-
vironment, and the programmable firewall. From the IDS, it retrieves structured alerts
within a defined time window, providing a snapshot of ongoing or recent malicious ac-
tivity. Then, the alerts are grouped for each honeypot and the duplicates are compacted
in a count number avoid information redundancy. Subsequently, the node interacts with
the Docker API to enumerate active honeypot containers, gathering metadata such as
container name, IP addresses, and listening ports. Finally, it communicates with the
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firewall’s REST API to extract the current set of active rules. IDS alerts, container
configurations, and firewall policies forms the comprehensive perception package that is
injected into the shared state and subsequently used as inputs by following agents to
analyze threats and plan defensive actions. The relative code is present in appendix A.

4.2.4 Attack Inference Node

Figure 4.4: Attack Inference Node: LLM + Prompt Node and Shared State
Update. The node receives previous context together with fresh network data. Using
this information, it reasons about ongoing activity and produces both an updated attack
graph and container exploitation levels, which are added to the updated shared state. A
reasoning log is also generated, documenting the model’s thought process for auditing.

The next component, the Attack Inference Node, is responsible for interpreting the
summarized events in light of previous iterations context. It is responsible to infer the
current structure of the attack graph and assess the exploitation level of each container,
in other words reconstructing the adversary’s evolving trajectory through the systems.
The node consumes the latest event summary and merges it with previously inferred
attack graph and exploitation states. This information is necessary to interpret new
alerts to update the previous inferred attack steps. During the execution, the node re-
trieves the latest stored inference results from the episodic memory, namely previous
exploitation levels and attack graph. In cases where no prior data are available,
such as the first iteration, the node initializes a baseline graph and assigns to each vul-
nerable container an exploitation level data structure with default values. This baseline
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ensures operational resilience, even in the absence of historical context, and allows the
node to construct an evolving model of the attack scenario over successive epochs. Once
initialization is complete, the node proceeds to iterate over each vulnerable container
defined in the system state.
The security events are processed separately for each container. If no matching events
are found, further processing for that container is skipped, preserving computational effi-
ciency and avoiding unnecessary LLM’s calls. Conversely, the node invokes the LLM and
obtains in output the updates to add to the state attack graph representation. Further-
more, the response contains a ”reasoning” log providing textual justification for each
inferred modification.
Before integrating the LLM output in the state attack graph, the node applies a sequence
consistency check through the enfore backfill on deltas function. This mechanism
ensures that inferred changes are coherent with the temporal progression of previously
observed events. In particular, it inserts any missing precondition node necessary for
logical completeness. Then, for each container, the corresponding exploitation record
deducted from the attack steps is updated with new levels and supporting evidence quo-
tations from IDS alerts. After all containers have been processed, the node assembles the
complete updated attack graph and exploitation levels. The relative code is present in
appendix B.
Example Output:

Inferred Attack Graph: {’edges’: [{’from’: ’192.168.100.2’, ’to’:

’172.20.0.5’, ’phases’: [{’phase’: ’scan’, ’evidence_quotes’: [’ET SCAN

Suspicious inbound to MSSQL port 1433’, ’ET SCAN Suspicious inbound to

mySQL port 3306’, ’POSSBL PORT SCAN (NMAP -sS)’]}], ’current_phase’:

’scan’, ’vector’: ’scan’}], ’interesting’: []}

Containers’ Exploitaiton: [{’ip’: ’172.20.0.5’, ’service’:

’cve-2014-6271-web-1’, ’level_prev’: 0, ’level_new’: 25, ’changed’:

True, ’evidence_quotes’: [’ET SCAN Suspicious inbound to MSSQL port

1433’]}, {’ip’: ’172.20.0.4’, ’service’: ’cve-2015-5254-activemq-1’,

’level_prev’: 0, ’level_new’: 0, ’changed’: False, ’evidence_quotes’:

[]}, {’ip’: ’172.20.0.3’, ’service’: ’s2-057-struts2-1’, ’level_prev’:

0, ’level_new’: 0, ’changed’: False, ’evidence_quotes’: []}, {’ip’:

’172.20.0.10’, ’service’: ’cve-2021-22205-gitlab-1-proxy’,

’level_prev’: 0, ’level_new’: 0, ’changed’: False, ’evidence_quotes’:

[]}]

LLM is instructed with the directives defined in appendix F:
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4.2.5 Exposure Manager Node

Figure 4.5: Exposure Manager Node: LLM + Prompt Node and Shared State
Update. The node consumes both memory retrieved fields and the current shared state.
Using this information, it decides which container should be exposed next or whether
the system should enter a lockdown state. These decisions are written into the updated
shared state, along with a generated reasoning log that records the model’s decision
process auditing.

The Exposure Manager Node implements the decision logic that determines which
single honeypot container is exposed to the attacker at each epoch.
Its behavior is driven by three inputs: the current inventory of vulnerable containers, the
per-container exploitation assessment produced by the preceding node, and a persistent
exposure registry. This registry records how long each service has been exposed to
check if the number of exposure epochs is compliant with system policies. The prompt
instructs the LLM to expose exactly one container each epoch, selecting it based on ex-
ploitation progress, prior exposure history, and overall coverage.
Containers that have shown exploitation progress remain exposed for at least two consec-
utive epochs, while those that reach full exploitation or repeatedly show no progress are
marked as exhausted and excluded from future selections. Priority is given to containers
that have not yet been exposed, ensuring that all potential targets are eventually tested.
When all containers become either fully exploited or exhausted, the policy enforces a
lockdown mode, isolating all containers from the attacker. The final output of the LLM
includes the selected honeypot, the reasoning chain behind the decision, and an explicit
indicator of whether lockdown should be enforced.
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The relative code is present in appendix C.
Example Output:

Reasoning: The container 172.20.0.5 (cve-2014-6271-web-1) was exposed

last epoch and showed progress (exploitation level increased from 0 to

25). According to policy, we must continue exposing it for at least two

consecutive epochs after progress. Other containers have not been

exposed yet but minimum exposure window and extension on progress take

priority. Therefore, continue exposing 172.20.0.5 this epoch.

Selected Container: {’ip’: ’172.20.0.5’, ’service’: ’cve-2014-6271-

web-1’, ’current_level’: 25}

Lockdown: False

LLM is instructed with the directives defined in appendix G:

4.2.6 Firewall Manager Node

Figure 4.6: Firewall Node: LLM + Prompt Node and Shared State Update. he
node reads the current shared state and decides what firewall modifications are required.
It then issues API calls to add or remove firewall rules in real time. The resulting action
is stored in the updated shared state, and a reasoning log is produced to document the
decision-making process for auditing.
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Once the exposure plan has been established, the Firewall Manager Node transforms
it into enforceable network rules. This component receives the selected container to
expose from the Exposure Manager, along with the latest firewall and active vulnerable
containers configuration. This information enables the output of a precise set of actions to
update iptables rules, determining which connections should be allowed or blocked. The
translation process is guided by an LLM prompt that ensures decisions remain consistent
with the overall exposure strategy.
The node outputs both the list of rule changes and an explanation of the reasoning behind
each action. This approach maintains transparency and ensures that every firewall update
can be traced back to an explicit logical justification.
The relative code is present in appendix D.
Example Output:

Reasoning:Verified that the container 172.20.0.5 exists in the

available containers list.

Current firewall rules already include bidirectional allow rules

between attacker subnet 192.168.100.0/24 and container 172.20.0.5 on

tcp protocol (rules 1 and 2).

No additional changes are necessary as the exposure is already enforced

exactly as requested.

Action: []

LLM is instructed with the directives defined in appendix H:
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4.2.7 Persistence Node

Figure 4.7: Persistence Node: Tool Node and Memory Update
Persistence Node is responsible for converting the final shared state of each iteration into
memory for the agent’s next iterations. After receiving the complete shared state, the
node processes this information to build or update the exposure registry. It then flushes
the consolidated state into memory, ensuring that future reasoning steps have access to
historical context and past exposure decisions.

The final stage in the agent cycle is handled by the Persistence Node, which records all
relevant outputs into the system’s episodic memory. This component ensures that each
iteration is stored as a complete snapshot, including event summaries, inferred graphs,
exposure decisions, and applied firewall rules. By preserving these states, the system
enables reproducibility, analysis, and benchmarking of agentic performance over time.
Furthermore, the persistence mechanism updates the exposure registry to maintain ac-
curate records of how frequently and for how long each honeypot has been visible to the
attacker. This cumulative record not only supports explainability and traceability but
also enables future iterations of the system to make decisions based on rich temporal
context. The relative code is present in appendix E.
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Chapter 5

Agent Testing Environment

Figure 5.1: Testing Environment Network Topology. This diagram provides an
overview of the full experimental environment, showing how an attacker interacts with
the honeynet through a controlled gateway monitored by an AI agent. The attacker sends
traffic toward the gateway, where Suricata IDS alerts and firewall controls are exposed
via APIs. The AI agent monitors these APIs, analyzes traffic patterns, and adjusts
firewall rules or exposure strategies accordingly. Traffic then reaches the honeynet, which
hosts both vulnerable services and decoy services, allowing the agent to study attacker
behavior.
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To evaluate the Multi-Agent System in a controlled yet realistic setting, I designed a
containerized network simulation environment. This setup emulates a network where
vulnerable services are deliberately deployed to attract and record attacker activity. The
environment is instantiated through dedicated docker-compose files and initialization
scripts that define the topology, deploy containers, and configure network routing. Fig-
ure 5.1 illustrates the logical topology of this network. The environment is logically
divided into two main zones. The Attacker Subnet hosts malicious activity sources
and simulates an untrusted external network from which all intrusions originate. For
agent evaluation purposes, the external network has only one active IP address, referred
as attacker. The Honeynet, by contrast, contains all deployed containers and is strictly
accessible only through the gateway. This configuration ensures full visibility of at-
tacker interactions, while maintaining the ability to selectively expose or conceal services.
Within the honeynet, several vulnerable containers have been deployed to represent a
heterogeneous set of attack surfaces commonly exploited in real world scenarios. The
containers were chosen among a set of vulnerable configuration from the Vulhub reposi-
tory [51].
A gateway container, which operates as the entry point between the external network
and the internal honeynet, integrates both a programmable firewall and an Intrusion De-
tection System, specifically Suricata. The configuration ensures that every packet flow is
monitored and subject to dynamic access control. Moreover, it exposes APIs for firewall
rule management and IDS alerts retrieval accessible only from the AI agent. All traffic
in both directions is routed through Suricata such that the IDS captures each malicious
attempt and generates structured alerts in a specific file format, eve.json. There is a
dedicated Suricata API server which parses such logs and provides endpoints for obtain-
ing latest alerts.
In each iteration of the orchestration loop, the agents query this API to harvest new
evidence, infer exploitation progress, and adapt the exposure strategy accordingly. Once
decisions are taken, execution happens through REST calls to the firewall API, which
dynamically manages service exposure.

5.1 Attacker Behavior and Graph Modeling

In parallel with the defensive architecture, a simulated adversary was implemented to
provide a reproducible and measurable source of attacks. The attacker operates through
a multi stage script, manager exploit.py, which embodies a structured intrusion process
aligned with a formal attack graph. To ensure behavioural realism and analytical consis-
tency, the simulated attacker’s workflow is aligned with the MITRE ATT&CK framework.
Each phase of the scripted kill chain corresponds to a specific ATT&CK tactic:

1. Service Scan → Reconnaissance

2. Initial Access (RCE) → Initial Access / Execution

3. Data Exfiltration (user-level) → Collection / Exfiltration

4. Privilege Escalation → Privilege Escalation
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5. Root-Level Data Exfiltration → Exfiltration (privileged)

MITRE ATT&CK framework does not explicitly define a distinct technique corresponding
exclusively to “data exfiltration at root or SYSTEM privilege level”. In our simulation
we introduce this explicit phase in order to enable the agent to discriminate between
exfiltration occurring at user privilege versus elevated privilege, thus capturing a higher
threat severity scenario for modelling and inference. The attacker’s progress is modeled
through a directed, edge labeled hypergraph G = (V,E,Λ), where nodes V represent the
attacker A and the set of asset nodes H ⊆ IP × S corresponding to honeypot services.
Each directed edge e ∈ E encodes a tactic executed against a target, labeled by λ ∈ Λ,
defined as:

λ = (vector, δ, ϕ)

where vector ∈ {scan, rce, exfil, privesc, root-exfil} identifies the MITRE ATT&CK
phase, δ ∈ P+ is the ordered sequence of phases observed on the edge, and ϕ ∈ P denotes
the current phase of that edge. Phases are executed in a strictly increasing order:

scan < initial-access/rce < data-exfil-user < priv-esc < data-exfil-root

The attacker process begins with scanning and recon, with open ports and active services
revealed by Nmap scanning. Protocol specific fingerprinting procedures determine ser-
vice type and version for each discovered endpoint such as GitLab instances by HTTP
header analysis or scanning Struts paths for vulnerable endpoints. Exploitation is syn-
chronized based on the notion of epochs such that each vulnerable service has a local
epoch counter tracking its time of exposure. This ensures the attacker progresses grad-
ually with the sole action authorized at this phase being executed, from initial access to
post-exploitation. The exploit modules all run in parallel and are synchronized with the
assistance of a thread pool that collects results asynchronously. Successful compromises
generate synthetic flag tokens, which serve as ground truth indicators of the efficacy of
exploitation. These outcomes are stored in structured JSON files such that the resul-
tant data become the standard against which the efficacy of the agent’s inferences may
be measured. By incorporating autonomous orchestration, containerized deployments,
programmability during enforcement, and the deterministic attacker model, the whole
framework also experiences excellent experimental controllability and reproducibility.
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For each vulnerable container, a custom exploit script was developed following a
structured kill chain composed of five phases:

1. service scan

2. initial access

3. data exfiltration

4. privilege escalation

5. root-level data exfiltration

The table below summarizes which phases were implemented for each service in the testing
environment.

5.2 Discrete Event Simulation Environment

Figure 5.2: Discrete-Event Simulator. Launch Probability P depends on test case:
Deterministic Attacker always launches the exploit if a vulnerable service is exposed
(P = 1). Consecutive Attacker launches or continues the exploit only if the same vul-
nerable service was exposed in the previous epoch (P = 1 if condition met else P = 0).
Probabilistic Attacker’s exploit execution probability decreases if the vulnerable service
is not consecutively exposed (0 < P < 1)

The evaluation proceeds as a sequence of discrete epochs. Each epoch consists of a cycle
of adversarial activity followed by the agent’s reasoning and adaptation. The benchmark
cycle is managed by an automatic script, which has the role of an orchestrator, allowing
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to test the agent in different conditions autonomously. Each epoch follows the same
ordered stages:

1. Attack execution
The attacker container runs the attack script (manager exploit.py), which per-
forms discovery and then decides whether to attempt exploitation of each discovered
service according to its configured attack simulation:

(a) Deterministic Mode: the attacker always attempts exploitation whenever
it detects a vulnerable service, hence with a probability P = 1/

(b) Consecutive Mode: the attacker will only attempt an exploit if the same
vulnerable service was exposed in the previous epoch; otherwise the attacker
does not attempt exploitation. The probability results to be P = 1 if the
service was exposed last epoch, P = 0 otherwise.

(c) Probabilistic Mode: lastly, the attacker’s attempt probability decays with
the umber of epochs since the service was last exposed. Intuitively, a service
that has been hidden for several epochs is less likely to be targeted on the next
attempt.
Let g be the number of epochs for which the service has not been exposed after
the a first selection. Let d the per epoch decay factor, DECAY PER MISSING EPOCH.
Let pmin be the minimum attempt probability floor MIN ATTEMPT PROB. The
attempt probability P is computed as:

P =

{
1, if g ≤ 0

max(pmin, 1 − d · g), if g > 0

The attacker performs a single probabilistic draw sampling from a uniform
random r ∈ [0,1] and attempts the exploit iff r ≤ P .

2. Agent Analysis and Container Selection
The multi-agent system ingests IDS alerts, current firewall configuration, and episodic
memory data to reconstruct the evolving attack graph, estimate the exploitation
level for each container, select the next container to expose and properly change
the firewall rule.

3. Container Exposure
A brief waiting period is configured to ensure the firewall rule executed by the agent
have been applied before the next epoch begins.

4. Epoch Continuation and Termination Condition
The orchestrator evaluates the stopping conditions which can be:

(a) lockdown phase instructed by the agent

(b) the maximum epoch number configured at the beginning of the benchmark
run.
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If the benchmark continues, it waits a configurable inter epoch delay and start the
next run.

Attacker outputs Agent outputs

services detected: list of discovered ser-
vices (e.g., IP + service identifiers).

firewall rules added: list of rules the
agent requested to add (strings or rule ob-
jects).

exploits attempted: exploited paths/tech-
niques the attacker tried.

firewall rules removed: list of rules re-
moved by the agent (if any).

services successfully exploited: ser-
vices actually compromised by the attacker.

honeypots exposed: which honeypots/ser-
vices the agent chose to expose (ip, service,
level, epoch).

flags captured: synthetic flags retrieved
by attacker (ground truth of compromise).

honeypots exploitation: per-honeypot
exploitation estimates (previous/new level,
evidence quotes, changed boolean).

attack success rate: scalar summarizing
attacker success for the epoch.

inferred attack graph: agent’s recon-
structed graph (nodes/edges, vectors,
phases, evidence).

- service epoch context: agent-collected
context per service (empty in the example
but reserved for agent annotations).

Table 5.1: Attacker vs Agent outputs recorded in the epoch JSON

5.3 Vulnerable Containers Deployed

The services chosen represent common application layer services that may be exposed in
a real deployment. Containers are affected by reported vulnerabilities that are exploited
through custom scripts to mimic an attacker behavior. There are in total 8 containers
available in the testing environment. For half of them, I implemented a staged attack
script aiming to capture some flags placed inside the containers’ file system. The other
four containers are only scanned by the simulated attacker, emulating services not valu-
able for malicious activity.

Docker

An exposed Docker daemon API can lead to remote code execution (RCE). When the dae-
mon allows unauthenticated access to the Docker API, an attacker can execute container
commands, spawn privileged containers, and gain root-level access. Because containers
often run with elevated privileges or host/kernel access, a successful Docker API exploit
typically results in full host compromise, making this vector particularly dangerous in
cloud or orchestrated environments.
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Apache Struts

CVE-2018-11776 allows a remote code execution vulnerability in Apache Struts. The
flow begins with identifying a Struts-based web application, then performing directory
traversal/path enumeration to discover vulnerable endpoints, followed by execution of the
exploit. This attack pathway emphasizes the risk of classic enterprise web frameworks:
a single vulnerable Struts endpoint can lead to full system takeover due to inadequate
input sanitization and insecure default configurations. Because many legacy systems still
run Struts, this remains a significant concern.

Gitlab

This diagram illustrates the exploitation path for CVE-2021-22205 in GitLab CE/EE.
An issue has been discovered in GitLab CE/EE affecting the versions starting from 11.9.
GitLab was not properly validating image files that is passed to a file parser which resulted
in an unauthenticated remote command execution. Once initial access is obtained, the
attacker may exfiltrate data and potentially escalate privileges, leading to full system
compromise of the GitLab instance. This flow highlights why GitLab represents a high
risk target in DevOps environments: its central role in code repositories and CI/CD
pipelines amplifies the impact of compromise.

Xdebug

This diagram outlines a typical attack sequence against the PHP debugging extension
Xdebug when misconfigured for remote debugging. XDebug is a PHP extension used for
debugging PHP code. When remote debugging mode is enabled with appropriate set-
tings, an attacker can execute arbitrary PHP code on the target server by exploiting the
debug protocol (DBGp). An unauthenticated HTTP request triggers Xdebug’s DBGp
session, the server connects back to the attacker’s host, and the attacker sends debug
commands to execute arbitrary PHP code. From there, the attacker may perform data
exfiltration, privilege escalation, if web-server privileges are weak, and ultimately system
compromise. Because Xdebug is meant for development environments, its presence on
production systems significantly increases exposure and often correlates with poor de-
ployment hygiene.
The figure 5.3 shows all the possible attacker paths in the benchmark environment con-
cerning the deployed containers whether they result exploitable or not.

45



Agent Testing Environment

Service Scan Initial Access Data Exfil Priv. Esc. Root Exfil

GitLab
Xdebug
Apache Struts -
Docker API - -
Others - - - -

Table 5.2: Implemented Attack Phases per Deployed Service. The table sum-
marizes, for each containerized service in the honeynet, which stages of the simulated
intrusion chain are implemented: scanning, initial access, data exfiltration, privilege es-
calation, and root-level exfiltration. Green checkmarks denote that a given phase is
available for that service in the experiment, while red dashes indicate that the corre-
sponding phase is not modeled. The Others row refers to decoy vulnerable containers for
which no exploit is implemented; they are therefore only subject to the scanning phase.
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Figure 5.3: Simulated Attack Paths The figure illustrates the attack tree underpinning
the experimental setup, starting from network service enumeration and branching into
four assessments: Docker API, Apache Struts, GitLab, and Xdebug. For each service,
it shows the ordered sequence of attacker actions—such as version or service detection,
directory traversal, remote code execution via specific vulnerabilities, data exfiltration,
privilege escalation, and root-level exfiltration—culminating in full system compromise
and defining the ground-truth intrusion chains used in the simulation.
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Chapter 6

Results

6.1 Evaluation Parameters

Evaluation is conducted under a diverse set of controlled scenarios, increasing the level of
realism, to evaluate the system’s ability to efficiently manage the honeynet. The experi-
ments differ in container configurations, the analytical resources available to the defending
agent and attacker behavior.
Two principal container setups are considered. In the mixed deployment scenario, some
containers are deliberately exploitable from the attacker script, while the others serve as
decoys. This configuration tests the system’s ability to distinguish genuine compromises
from background reconnaissance noise, a key capability for avoiding false positives and
overexposure of non critical services. The second case, named fully exploitable deploy-
ment, subjects the agent to a maximal stress test where all containers can be compro-
mised. In this case, every discovered service poses a legitimate risk, allowing the system’s
inference mechanisms and exposure strategy to be tested under extreme adversarial con-
ditions.
Beyond container composition, several experimental variations are introduced to assess
the reasoning process under different operational constraints. The first variation concerns
language model evaluation, in which the agent is tested using multiple LLM configura-
tions to analyze the impact of model size and version on reasoning quality.
Three different LLMs are used:

1. GPT-4.1: proprietary solution, state of the art model up to August 2025

2. GPT-4.1-mini: proprietary solution, smaller and cheaper option

3. GPT-OSS:120b: open-weights, can be hosted locally

A second experimental axis focuses on attack simulation. Three different simulation
are implemented: deterministic, where the attacker executes attack and escalates the
attack stages on vulnerable containers whenever the service is exposed. This scenario,
although naive, is used to assess the inference accuracy of the agent and its ability to
understand what is ”happening” in the network. Second scenario, name consecutive,
where the attacker executes the attack only if the vulnerable container is exposed for
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consecutive epochs. This time, the evaluation has a focus on the optimal exposure of the
vulnerable containers resulting in an optimal use of resources. Third, probabilistic,
which is a trade off between the previous cases, since the attacker has a lower probability of
executing the attack if the vulnerable service is not exposed consecutively. Together these
design choices define a benchmarking workflow that combines realism with reproducibility.
In conclusion, the architecture is evaluated across 27 distinct test configurations, each
executed three times to obtain average performance scores, resulting in a total of 81
tests. The methodology captures both the correctness of the agent’s service exposure
and its ability to infer the adversary’s true progression through the attack chain.

Figure 6.1: Experimental Test-Case Matrix. The figure depicts full set of the evalu-
ated scenarios: three honeynet configurations, three attacker behaviors, and three model
variants used as the reasoning engine. Each combination of configuration, attacker be-
havior, and model is executed three times to obtain robust statistics.

6.2 Metrics Definition

The evaluation framework utilizes formalized performance metrics to assess the system’s
reasoning capabilities and operational efficiency. Specifically, the study focuses on Graph
Inference Accuracy to evaluate the precision of attack graph inference, and two effi-
ciency metrics, Exploitation Achieved and Exposure Efficiency, to measure the
effectiveness of the autonomous exposure strategy.

Metric Definition Unit

Graph Inference Accuracy Accuracy in attack graph inference, measuring
the correct recovery of causal attack transitions.

%

Exploitation Achieved The achieved level of exploitation of the deployed
assets relative to the maximum potential.

%

Exposure Efficiency The number of steps utilized relative to the opti-
mal solution (”golden steps”).

%

Table 6.1: Summary of Selected Performance Metrics
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6.2.1 Graph Inference Accuracy

Graph Inference Accuracy quantifies how closely the inferred attack graph Ĝ matches the
ground truth G⋆. Let G⋆ = (V ⋆, E⋆) and Ĝ = (V̂ , Ê) represent the ground truth and
inferred graphs, respectively, where directed edges encode ordered attack progressions.
To evaluate the sequential correctness, we define the set of phase units for an edge with
a de-duplicated Attack Graph Inference δ = (p1, . . . , pk) as:

U(δ) =
{

( START , p1)
}

∪
{

(pi, pi+1) | i = 1, . . . , k − 1
}
.

This set captures the initial phase and all subsequent transitions. For any attacker–victim
pair (u, v), let U⋆

uv and Ûuv denote the ground truth and inferred phase unit sets. We
define the Graph Inference Accuracy as a micro-averaged metric incorporating penalty
terms for structural hallucinations:

GraphInferenceAccuracy =

∑
(u,v) TPuv∑

(u,v) TPuv +
∑

(u,v) F̂Puv +
∑

(u,v) FNuv

Here, TPuv = |U⋆
uv∩Ûuv| represents correctly identified transitions, and FNuv = |U⋆

uv\Ûuv|
represents missed transitions. The term F̂Puv denotes the penalized false positives, defined
as:

F̂Puv =

{
|Ûuv \ U⋆

uv| + Ωuv if (u, v) ∈ E⋆

w · |Ûuv| if (u, v) /∈ E⋆

where:

• Ωuv is a penalty term applied when the inferred sequence contains an explicit ”in-
ferred” marker. It refers to the logical backfilling of missing intermediate attack
phases that were not explicitly detected but are assumed to have occurred because a
subsequent, dependent phase in the attack taxonomy was observed. It is calculated
as α · kmissed, where α is a penalty factor (set to 0.5) and kmissed is the count of
ground truth transitions skipped by the inference.

• w is a weighting factor (set to ≥ 1.0) applied to edges that do not exist in the
ground truth, effectively penalizing hallucinated attack paths more heavily if the
victim node is also hallucinated.

6.2.2 Exposure Efficiency Metrics

These metrics evaluate the agent’s ability to facilitate meaningful adversarial progression
through the honeypot landscape, balancing coverage against temporal cost.

Exploitation Achieved

This metric measures the level of asset exploitation relative to the total available attack
surface. Let F be the set of unique flags captured during the run and Fmax be the
maximum attainable number of flags for the deployed configuration. The exploitation
percentage is defined as:

Exploitation Achieved = 100 × |F|
Fmax

.

51



Results

Exposure Efficiency

Exposure Efficiency evaluates the temporal optimality of the solution. Let T be the total
number of epochs utilized in the run, and S⋆ be the configuration-dependent "golden

steps", representing the minimal epochs required to reach full coverage. The metric
indicates the proximity to the optimal solution:

Exposure Efficiency =

{
100 × min

(
1, S⋆

T

)
, S⋆ > 0 and T > 0,

100, if coverage = 1 and S⋆ undefined.
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6.3 Results Analysis

This section presents a detailed analysis of the experimental results obtained from the
agent benchmark execution. The primary objective of this analysis is to validate the
methodology proposed in Chapter 3 by addressing the three rhetorical questions posed
regarding Interpretation, Engagement, and Efficiency. Before diving into the results anal-
ysis, it is crucial to interpret the aggregate findings in the context of our initial research
objectives.

• RQ1 (Understanding): Can the agent correctly understand the attacker’s ex-
ploitation phase within the intrusion chain based solely on fragmented network evi-
dence?
The results indicate a strong affirmative, particularly for the best-performing model.
With Attack Graph Inference Accuracy up to 96% for GPT-4.1, the system demon-
strates a high capacity to map low-level indicators into a coherent attack narrative,
even in the presence of structural ambiguity.

• RQ2 (Engagement): Can the agent maximize intrusion depth under uncertainty?
The high exploitation percentage observed across distinct attack modes val-
idates the agent’s ability to sustain engagement. While probabilistic behaviors
introduce noise, the agent successfully manages the attack surface to ensure the
adversary rarely encounters a ”dead end”, effectively guiding them through the
intrusion chain to maximize information gain.

• RQ3 (Efficiency): Can the agent optimize resource usage? The exposure efficiency

metric, which remains close to 100% in mixed configurations, confirms that the
agent does not resort to ”spray and pray” tactics. Instead, it identifies and exposes
the precise sequence of assets required for the attacker to progress, validating the
system’s capability to manage resources autonomously and intelligently.

Each experiment is executed three times per configuration, and averages are reported to
reduce the effect of stochastic variance. AThe following analysis first presents a high-level
comparative summary of all models based on averaged metrics. Subsequently, a detailed
analysis focuses on the specific test-case results of the best-performing model, GPT-4.1.

6.3.1 Overall Results Analysis

This subsection provides a comparative overview of the three LLM configurations. It is
important to note that the data presented in Table 6.2 represents the average perfor-
mance across all tested network configurations. In contrast, the subsequent section will
analyze the specific behavior of GPT-4.1 within the individual test cases.
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Model Attack Mode Attack Graph Inf. Acc. Exploit. % Exposure Eff. % Runtime (min)

GPT-4.1-mini

Det 84.8 100.0 91.4 8.81
Prob 81.6 100.0 88.6 9.12
Cons 79.2 92.6 93.9 8.55

GPT-4.1

Det 91.2 100.0 95.0 8.20
Prob 86.7 88.9 97.2 7.76
Cons 85.1 85.2 96.4 7.39

GPT-OSS

Det 80.8 96.3 90.4 14.93
Prob 79.4 87.0 94.8 14.75
Cons 82.1 100.0 95.7 22.59

Table 6.2: Aggregated Performance Metrics by Model and Attack Mode. This
table summarizes the mean values for Graph Inference Accuracy, Exploitation Percentage,
Exposure Efficiency, and Runtime. The results are averaged across all network topolo-
gies to provide a high-level comparison of model capabilities under Deterministic (Det),
Probabilistic (Prob), and Consecutive (Cons) adversarial simulations.

Across all experiments, the evaluation highlights a clear and stable trend: performance
decreases as the attack scenario becomes more complex, but the drop remains relatively
small.

Model Comparison

Among the three evaluated models, GPT-4.1 demonstrates the most robust perfor-
mance. It consistently achieves the highest Graph Inference Accuracy across all attack
modes and maintains superior Exposure Efficiency. However, unlike the smaller model,
its Exploitation Percentage drops in probabilistic and consecutive modes. Its runtime
remains the lowest, confirming high computational efficiency.
GPT-4.1-mini proves surprisingly effective at task completion, achieving 100% Exploita-
tion in both deterministic and probabilistic modes—outperforming the larger GPT-4.1
in pure coverage. However, its reasoning precision is lower, as evidenced by a noticeable
drop in Graph Inference Accuracy, the most complex task, and lower Exposure Efficiency.
This suggests that while the model effectively clears nodes, it struggles to reconstruct the
correct causal ordering of the attack phases compared to the larger model.
GPT-OSS presents a mixed profile. While it lags behind the proprietary models in
Graph Inference Accuracy and Exposure Efficiency, it displays unexpected resilience in
the most complex setting, achieving 100% Exploitation in consecutive attacks. However,
it exhibits the highest runtime across all configurations, taking nearly three times as
long as GPT-4.1 in the consecutive scenario, reflecting the heavy computational latency
required to run the model locally.

Trends Across Attack Modes

A consistent pattern appears across all models: Deterministic attacks yield the highest
reasoning fidelity across the board, with GPT-4.1 achieving near-perfect phase reconstruc-
tion and efficiency. Probabilistic attacks introduce degradation primarily in reasoning
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precision (Graph Inference Accuracy) rather than raw node clearing. Notably, GPT-
4.1-mini maintains perfect exploitation here despite the added noise, whereas the larger
model becomes less reliable. Consecutive attacks produce the most distinct behavioral
divergence. While graph inference accuracy generally reaches its lowest point here for the
GPT-4.1 family, GPT-OSS interestingly improves its exploitation performance.

Runtime Performance

Clear distinctions emerge in computational cost. GPT-4.1 provides the most efficient run-
time, completing each evaluation cycle in roughly eight minutes. The smaller GPT-4.1-mini,
despite its reduced size, runs slightly slower. The open-weight GPT-OSS model shows
significantly higher runtime, more than doubling that of the proprietary models. This
reflects the limited computational power available in Polito cluster to make the model
run locally. Overall, GPT-4.1 emerges as the most balanced configuration, offering the
strongest inference and best efficiency. GPT-4.1-mini provides a high-coverage alter-
native that prioritizes exploitation over precise causal ordering. GPT-OSS remains a
viable but computationally expensive option, capable of high exploitation in complex
scenarios but lacking the reasoning sharpness and speed of the proprietary models. The
consistency across all aggregated metrics highlights the robustness of the agent architec-
ture: even under varied attack modes, the system maintains coherent inference, effective
exposure management, and stable convergence behavior.
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6.3.2 GPT-4.1 Results: Best Model

Having established the general trends, this section provides a granular analysis of the
best-performing model. The following figures detail the specific performance of GPT-4.1
across the distinct test configurations.

Graph Inference Accuracy

Figure 6.2: Graph Inference Accuracy Average Score

The Graph Inference Accuracy is arguably the most critical metric for the agent, as its
accurate calculation represents the system’s most complex task: translating low-level se-
curity events into a high-level, actionable adversarial narrative.
GPT-4.1 reconstructs attack step order with high reliability in both two mixed services
scenarios, maintaining graph inference accuracy in the 78–96% range across attack
modes. A moderate drop is observed in the all exploitable configuration, where struc-
tural ambiguity inherently increases, but the model retains acceptable performance. Over-
all, GPT-4.1 demonstrates strong and stable inference across configurations.
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Exploitation Percentage

Figure 6.3: Exploitation Percentage Achieved Average Score

In deterministic attacks, the agent consistently exposes the correct honeypots in the re-
quired order, enabling full exploitation across all scenarios. This is expected: since the
attacker always selects the optimal next target, any correct exposure sequence immedi-
ately drives the attack graph forward. As long as the agent does not block essential paths,
full exploitation is inevitable.
However, the probabilistic and consecutive attack modes introduce uncertainty in the
attacker progression if the targeted asset is not maintained exposed. Here, the attacker
may not always progress towards the next attack phase if the exposure is not consistent,
reducing the total reached exploitation. This makes the order and timing of honeypot
exposure critical. If the agent conceals services too early or in an order that does not align
with the attacker’s decisions, exploitation can stall. Despite this increased difficulty, the
exploitation percentage in these modes remains high. Even when decoy services increase,
degradation is limited. This suggests that the agent is managing the attack surface in a
way that is aligned with the attacker interest as long as required. This behavior enables
to fully exploit the asset and therefore acquire valuable intelligence, which is confirmed
by high value of graph inference accuracy.
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Exposure Efficiency

Figure 6.4: Exploitation Percentage Achieved Average Score

Exposure Efficiency remains close to 100% in the mixed configurations across all attack
modes. This indicates that GPT-4.1 consistently identifies the correct sequence of assets
to expose, enabling the attacker to progress using almost the theoretical minimum num-
ber of epochs. In deterministic attacks, this outcome is fully expected: since the attacker
always progress through the exploitation chain, an exposure at each step is sufficient to
guarantee perfect Exposure Efficiency. As long as the agent does not prematurely hide a
required service, the attacker will always advance.
However, the probabilistic and consecutive attack modes impose a much stricter require-
ment. In these settings, the correct asset must remain exposed for multiple consecutive
epochs, because the attacker need multiple consecutive epochs before completing the ex-
ploitation. A näıve strategy that alternates exposures each epoch, for example cycling
between all assets in a round-robin manner, would:

• Completely fail in the consecutive mode, where exploitation requires the same asset
to remain visible across the required consecutive epochs

• Achieve only low success rates in probabilistic mode, since each epoch in which
an exploitable asset is concealed before reaching full exploitation, reduced the at-
tacker’s chance to progress.

The high observed Exposure Efficiency therefore demonstrates that the agent does more
than simply expose the right assets, but it also maintains them persistently for as long
as needed. In the all exploitable configuration, efficiency drops slightly because all
asset are exploitable and a new exposure leads to an add in the attack graph. The
agent may occasionally conceal assets too early or delayed, leading to a small number of
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additional epochs. Nonetheless, performance remains high across all modes, confirming
that GPT-4.1 effectively preserves viable attacker progression even under uncertainty.

Summary of Results Across Attack Simulations

Across all three simulated attack modes the results reveal a consistent trend: perfor-
mance decreases as adversarial complexity increases, but the decline remains
relatively small. GPT-4.1 maintains high Graph Inference Accuracy, strong exploitation
percentages, and competitive Exposure Efficiency even as uncertainty grows. This ro-
bustness across difficulty levels indicates that the model can generalize its reasoning and
exposure decisions beyond the simplest cases, without exhibiting drastic degradation as
the attacker becomes more stochastic. From an overview perspective, the key takeaway
is that the agent demonstrates stable and reliable behavior across all scenar-
ios. Decoys and probabilistic transitions introduce noise and ambiguity, yet GPT-4.1
preserves most of its performance margin. This suggests that the underlying inference
mechanism are resilient and that the exposure strategy remains effective even under ad-
versarial variability.
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6.4 Costs Analysis

Figure 6.5: Agent Development Cost Over Time. The figure reports the cumulative
cloud-inference expenditure for GPT-4.1 and GPT-4.1-mini from July to November, cov-
ering both development and experimental runs. Costs rise more steeply during intensive
prototyping and multi-agent benchmarking phases, then grow more slowly as the archi-
tecture stabilizes and experimentation becomes more focused.

Cost evaluation is targeted solely at GPT-4.1 usage, as GPT-OSS model carry negligible
inference costs, apart from a minimal amount of electricity needed for local inference
computation. The total incurred costs in GPT-4.1 as well as GPT-4.1-mini settings rep-
resent the total computational cost from July to November in the cloud inference phase
during development as well as experimentation stages. The cumulative costs over time
highlight an initial phase of moderate costs related to early prototyping, after which
higher increments took place when integrating multi-agent coordination as well as bench-
marking processes. As development maturity increased, the pace of accumulated costs
also reduced, signifying better efficiency as well as more focused experimentation phases.
Notably, Although GPT-4.1-mini has a much smaller computational requirement, it is
able to provide results more in line with those of the full GPT-4.1 model, resulting in less
of a financial implication for the budget constraints but at no loss to experimental truth.
Nonetheless, in using the open-weight model of GPT-OSS-120b, prior inference payment
is unnecessary, offering a chance to dedicate time to in depth analysis, which incurs little
to no financial expense. Though it is clear that open-weight models have much higher
latency than those of its closed-weight variants, having such models available for infer-
ence without any inference costs makes them an incredibly valuable resource during early
architectural development phases. The higher execution time of open-weight models is
more than compensated by the benefit of having full freedom to extensively explore, in-
vestigate different possibilities of agent actions and without incurring costs during this
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phase of development.

6.4.1 Ongoing Real-World Validation

To bridge the gap between simulation and operational applicability, the proposed ar-
chitecture has been deployed in a live honeynet environment. This deployment aims to
assess the agent’s efficiency and enhancement capabilities against actual threat actors,
moving beyond controlled adversarial models. The operational protocol involves a com-
parative analysis of four distinct deployment scenarios, hosted across an infrastructure of
15 web services. These scenarios are designed to isolate the specific contributions of the
LLM-driven orchestration against various static and stochastic baselines:

1. LLM-Driven Dynamic Orchestration: The primary test case where the au-
tonomous agent actively manages the lifecycle and exposure of honeypots based on
real-time threat intelligence and interaction analysis.

2. Non-Vulnerable Baseline: A control group utilizing services that are not vul-
nerable, deployed via random or sequential rotation. This baseline tests the efficacy
of ”moving target” defense without intelligent reasoning.

3. Fixed Non-Vulnerable Baseline: A static set of 10 non-vulnerable services.
This represents the traditional, low-interaction honeypot setup used to establish a
baseline.

4. Digital Twin Deployment: The deployment of high-fidelity static pages that
visually mimic vulnerable systems (digital twins) but lack functional back-end vul-
nerabilities.

Data collection is currently in progress. This comparative framework allows for the
quantification of the agent’s ability to retain attackers’ attention and manage resources
compared to traditional static or randomized methods.
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Chapter 7

Conclusions, Limitations and
Future Works

This thesis presented an agentic architecture for autonomous honeynet exposure manage-
ment and a discrete-event simulator to assess it. The system, agent and simulator, inte-
grates multi-step attack analysis, inference of adversarial progression, and dynamic con-
trol of firewall rules to expose appropriate services during an ongoing intrusion. Through
a controlled evaluation framework spanning multiple network configurations and attacker
models, the benchmark assessed both the correctness of the inferred attack graphs and
the operational efficiency of the resulting exposure strategies.

7.1 Conclusions

The experimental results presented in this thesis demonstrate that LLM-driven agents
can robustly infer an attacker’s phase progression and adaptively manage service ex-
posure across a variety of simulated attack flows. The GPT-4.1 model consistently
achieved high graph inference accuracy, high exploitation percentages, and strong
exposure efficiency, exhibiting robust performance even as adversarial complexity in-
creased. These findings confirm that combining structured attack graph reasoning with
policy aligned exposure actions is an effective strategy for defensive automation. Be-
yond simulation, the engineering viability of this approach is currently being validated
through a live deployment in a real-world honeynet. By benchmarking the agent against
rule-based, static, and digital-twin baselines, this research lays the foundations for a new
generation of adaptive defense systems capable of operating autonomously in dynamic
threat landscapes.

7.2 Limitations

Despite these encouraging results, several limitations must be acknowledged.

• Single Attacker Simulation Environment: The quantitative benchmark pre-
sented in this thesis was conducted within a simulated environment. While the
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benchmark is designed to mimic realistic multi-step exploitation workflows, it nec-
essarily simplifies attacker behavior, network noise, timing variability, and services.
Real adversarial traffic is significantly more heterogeneous, adversarially adaptive,
and operationally complex.

• Finite Service and Attack Diversity: The set of vulnerable services, exploita-
tion vectors, and attacker policies, though representative, remains limited compared
to the vast diversity found in real production networks.

• Lack of Real Honeypot/Darknet Data: The attacker modeling which driven
agent architecture design and evaluation was developed under general attacks as-
sumption which may not reflect a real deployment environment.

These limitations indicate that further testing beyond this controlled environment is
necessary before real world deployment.

7.3 Future Work

Future developments will focus on analyzing the data from the ongoing real world de-
ployment described in the conclusions. Specifically, incorporating real attack traces and
diverse honeypot services will be essential to assess the robustness of the approach under
genuine operational noise and heterogeneous adversarial behavior. A critical direction for
enhancement is the implementation of Retrieval Augmented Generation (RAG) to
establish a long term episodic memory. By indexing and retrieving data from past in-
teraction traces, the agent can move beyond static inference. This architecture would
allow the system to continuously refine its reasoning by retrieving historical context from
similar past attacks, thereby improving decision making accuracy and efficiency over the
long term.
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Network Gathering Node

1 async def network_gathering(state: state.AgentState , config) ->
Dict[str , Any]:

2 logger.info("Network gathering Node")
3 """
4 Network Gathering Node:
5 Fetch IDS alerts , Docker containers , and firewall rules.
6 """
7 time_window = config.get("configurable", {}).get("time_window",

"0")
8 time_window = int(time_window)
9 memory = config.get("configurable", {}).get("store")

10 last_iteration = memory.get_recent_iterations(limit =1)
11 last_summary = {}
12 last_exposed = {}
13 if last_iteration:
14 last_summary =

last_iteration [0]. value.get("security_events_summary", {})
15 last_exposed =

last_iteration [0]. value.get("currently_exposed", {})
16

17

18

19 alerts_response = await
network_tools.get_alerts(time_window=time_window)

20

21 containers_response = network_tools.get_docker_containers ()
22 firewall_response = await firewall_tools.get_firewall_rules ()
23

24 # Parse results
25 alerts = alerts_response.get(’security_events ’, {})
26

27 previous_snapshot = last_summary
28

29 vulnerable_containers =
containers_response.get(’vulnerable_containers ’, {})

30 firewall_config = firewall_response.get(’firewall_config ’, {})
31 security_events = st.build_security_summary(
32 data=alerts ,
33 vulnerable_containers=vulnerable_containers ,
34 previous_snapshot=previous_snapshot ,
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35 last_exposed=last_exposed
36 )
37

38 security_events = security_events.get("security_events", {})
39 messages = str(f"Security events: {security_events }\n")
40 messages += str(f"Vulnerable Containers:

{vulnerable_containers }\n")
41 messages += str(f"Firewall Configuration: {firewall_config}")
42 # Update state
43 return {
44 "security_events": security_events ,
45 "vulnerable_containers": vulnerable_containers ,
46 "firewall_config": firewall_config ,
47 "messages": messages
48 }
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Attack Inference Node

1 async def graph_and_exploitation_inference(state: state.AgentState ,
config):

2 """
3 Infers/Update the attack graph from security events
4 """
5 logger.info("Inference Agent")
6 episodic_memory = config.get("configurable", {}).get("store")
7 model_name = config.get("configurable", {}).get("model_config",

"large :4.1")
8

9 last_epoch = episodic_memory.get_recent_iterations(limit =1)
10 last_exploitation , last_attack_graph =

get_last_epoch_fields(last_epoch)
11

12 if not last_attack_graph or "edges" not in last_attack_graph:
13 logger.info("Initializing first -epoch attack graph baseline")
14 last_attack_graph = {"edges": [], "interesting": []}
15

16 if not isinstance(last_exploitation , list) or
len(last_exploitation) == 0:

17 logger.info("Initializing first -epoch containers exploitation
baseline")

18 last_exploitation = [
19 {
20 "ip": h["ip"],
21 "service": h["service"],
22 "level_prev": 0,
23 "level_new": 0,
24 "changed": False ,
25 "evidence_quotes": []
26 }
27 for h in state.vulnerable_containers
28 ]
29

30

31 logger.info(f"Using: {model_name}")
32 current_graph = copy.deepcopy(last_attack_graph)
33 current_exploitation = copy.deepcopy(last_exploitation)
34

35 message_lines = []
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36

37 try:
38

39 for container in state.vulnerable_containers:
40 container_ip = container.get("ip")
41 container_service = container.get("service")
42 logger.info(f"Processing container {container_ip} /

{container_service}")
43

44 events_for_container = []
45 for ev in state.security_events:
46 ev_ip = ev.get("ip")
47 ev_service = ev.get("service")
48 if (ev_ip is not None and ev_ip == container_ip) or
49 (ev_service is not None and ev_service ==

container_service):
50 events_for_container.append(ev)
51

52 if not events_for_container:
53 logger.info(f"No security events for container

{container_ip };
54 skipping LLM call")
55 continue
56 messages = [
57 {"role" : "system", "content" :
58 graph_and_exploitation_inference_prompt.SYSTEM_PROMPT},
59 {"role" : "user", "content":
60

graph_and_exploitation_inference_prompt.USER_PROMPT.substitute(
61 security_events=json.dumps(events_for_container ,
62 ensure_ascii=False , indent =2),
63 vulnerable_containers=container ,
64 previous_attack_graph=json.dumps(current_graph ,
65 ensure_ascii=False , indent =2)
66 )}
67 ]
68

69 logger.info(f"Calling LLM for container {container_ip}")
70 try:
71

72 agent =
instructor.from_openai(OpenAI(api_key=OPEN_AI_KEY))

73 response: DeltaOutput = agent.chat.completions.create(
74 model=model_name ,
75 response_model=DeltaOutput ,
76 temperature =0.2,
77 messages=messages # type: ignore
78 )
79 response = enforce_backfill_on_deltas(response ,

current_graph)
80

81 merged = merge_deltas_into_graph(
82 prev_graph=current_graph ,
83 prev_exploitation=current_exploitation ,
84 vulnerable_containers=state.vulnerable_containers ,
85 deltas=response
86 )
87
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88 current_graph = merged["inferred_attack_graph"]
89 current_exploitation =

merged["containers_exploitation"]
90 message_lines.append(f"[{ container_ip }] LLM reasoning:
91 {response.reasoning}")
92 except BadRequestError as e:
93 logger.error(f"Error: {e}")
94 except Exception as e:
95 logger.error(f"Error parsing json in attack
96 graph inference :\n{e}")
97

98

99 final_text = []
100 final_text.extend(message_lines)
101 final_text.append(f"Inferred Attack Graph:

{str(current_graph)}")
102 final_text.append(f"Containers ’ Exploitaiton:

{str(current_exploitation)}")
103 message = AIMessage(content="\n".join(final_text))
104

105

106 return {
107 "messages": [message],
108 "inferred_attack_graph": current_graph ,
109 "containers_exploitation": current_exploitation
110 }
111 except Exception as e:
112 logger.error(f"Error in per -container attack graph inference:

{e}")
113 return {
114 "messages" : [AIMessage(content="; ".join(message_lines)
115 or "error during inference")]
116 }
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Exposure Manager Node

1 async def exposure_manager(state: state.AgentState , config):
2 """
3 Decides which container(s) to expose next based on current attack

graph
4 """
5 logger.info("Exploitation Agent")
6

7 episodic_memory = config.get("configurable", {}).get("store")
8 model_name = config.get("configurable", {}).get("model_config",
9 "large :4.1")

10

11 last_epochs = episodic_memory.get_recent_iterations(limit =20)
12 exposure_registry = _extract_exposure_registry(last_epochs)
13 logger.info(f"Exposure registry: {exposure_registry}")
14

15 schema = StructuredOutput.model_json_schema ()
16

17 logger.info(f"Using: {model_name}")
18 message = ""
19 try:
20 response = StructuredOutput(reasoning="",

selected_container ={})
21

22 messages = [
23 {"role":"system", "content":
24 exposure_manager_prompt.SYSTEM_PROMPT},
25 {"role" : "user", "content" :
26 exposure_manager_prompt.USER_PROMPT.substitute(
27 vulnerable_containers=state.vulnerable_containers ,
28 containers_exploitation=state.containers_exploitation ,
29 exposure_registry=exposure_registry
30 )}
31 ]
32

33 agent = instructor.from_openai(OpenAI(api_key=OPEN_AI_KEY))
34 response: StructuredOutput = agent.chat.completions.create(
35 model=model_name ,
36 response_model=StructuredOutput ,
37 temperature =0.2,
38 messages=messages # type: ignore
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39 )
40 message += f"Reasoning: {str(response.reasoning)}" + "\n"
41 message += f"Selected Container:
42 {str(response.selected_container)}" + "\n"
43 message += f"Lockdown: {str(response.lockdown)}"
44 message = AIMessage(content=message)
45 return {
46 "messages": [message],
47 "selected_container":response.selected_container ,
48 "lockdown_status":response.lockdown
49 }
50 except BadRequestError as e:
51 logger.error(f"Error: {e}")
52 except Exception as e:
53 logger.error(f"Error during json parsing of response
54 in Exposure Manager\n{e}")
55

56 return {
57 "messages": [message],
58 }
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Firewall Manager Node

1 async def firewall_executor(state:state.AgentState , config):
2 logger.info("Firewall Agent")
3 model_name = config.get("configurable", {}).get("model_config", "")
4

5 logger.info(f"Using: {model_name}")
6

7 messages = [
8 {"role":"system", "content":

firewall_executor_prompt.SYSTEM_PROMPT},
9 {"role" : "user", "content" :

10 firewall_executor_prompt.USER_PROMPT.substitute(
11 selected_container=state.selected_container ,
12 firewall_config=state.firewall_config ,
13 vulnerable_containers=state.vulnerable_containers
14 )}
15 ]
16

17 try:
18 response = StructuredOutput(reasoning="")
19

20 agent = instructor.from_openai(OpenAI(api_key=OPEN_AI_KEY))
21 response: StructuredOutput = agent.chat.completions.create(
22 model=model_name ,
23 response_model=StructuredOutput ,
24 temperature =0.3,
25 messages=messages # type: ignore
26 )
27 message = f"Reasoning:" + str(response.reasoning)
28 message += f"\nAction: {str(response.action)}"
29 message = AIMessage(content=message)
30

31 return {"messages": [message], "firewall_action":
response.action}

32

33 except Exception as e:
34 logger.error(f"Error in firewall executor :\n{e}")
35

36

37 async def tools_firewall(state: state.AgentState):
38 """ Execute pending tool calls and update state
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39 with enhanced threat data handling """
40 agent_output = state.firewall_action
41

42 agent_output_sorted = sorted(
43 agent_output ,
44 key=lambda action : ACTION_PRIORITY.get(type(action), 99)
45 )
46

47 rules_added = []
48 rules_removed = []
49 new_state = {}
50 try:
51 if agent_output_sorted:
52

53 for action in agent_output_sorted:
54 if isinstance(action , AddAllowRule):
55 resp = await firewall_tools.add_allow_rule(
56 source_ip=action.source_ip ,
57 dest_ip=action.dest_ip ,
58 #port=action.port ,
59 protocol=action.protocol
60 )
61 rules_added.append(resp)
62

63 elif isinstance(action , AddBlockRule):
64 resp = await firewall_tools.add_block_rule(
65 source_ip=action.source_ip ,
66 dest_ip=action.dest_ip ,
67 #port=action.port ,
68 protocol=action.protocol
69 )
70 rules_added.append(resp)
71

72 elif isinstance(action , RemoveFirewallRule):
73 resp = await firewall_tools.remove_firewall_rule(
74 rule_numbers=action.rule_numbers
75 )
76 rules_removed.append(resp)
77 new_state["rules_added_current_epoch"] = rules_added
78 new_state["rules_removed_current_epoch"] = rules_removed
79 except Exception as e:
80 logger.error(f"Exception in tools handling: {e}")
81

82 return new_state
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Persistence Node

1 def save_iteration(state: state.AgentState , config) -> Dict[str ,
Any]:

2 epoch_num = config.get("configurable", {}).get("epoch_num")
3

4 sc = None
5 if state.selected_container:
6 sc = {
7 "ip": state.selected_container.get("ip"),
8 "service": state.selected_container.get("service"),
9 "current_level":

state.selected_container.get("current_level"),
10 "epoch": epoch_num ,
11 }
12

13 episodic_memory = config.get("configurable", {}).get("store")
14

15 # Build registry purely from selected_container history
16 exposure_registry =

build_exposure_registry_from_ce(episodic_memory ,
17 key_mode="ip", include_current=sc, current_epoch=epoch_num)
18

19 iteration_data = {
20 "epoch": epoch_num ,
21 "selected_container": sc ,
22 "exposure_registry": exposure_registry ,
23 "rules_added": state.rules_added_current_epoch or [],
24 "rules_removed": state.rules_removed_current_epoch or [],
25 "containers_exploitation": state.containers_exploitation ,
26 "lockdown_status": state.lockdown_status ,
27 "inferred_attack_graph": state.inferred_attack_graph ,
28 "security_events": state.security_events ,
29 }
30

31 iteration_id = episodic_memory.save_iteration(iteration_data)
32 total_iterations = episodic_memory.get_iteration_count ()
33 logger.info(f"Iteration saved with ID {iteration_id }.
34 Total iterations: {total_iterations}")
35

36 return {"success": True , "iteration_id": iteration_id ,
37 "total_iterations": total_iterations}
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Attack Graph Inference Prompt

� �
ROLE: Graph Inference Agent.

You must output VALID JSON ONLY - no prose outside JSON.

This agent returns **deltas only**: changes observed in the current epoch,

not the full graph.

IMPORTANT: Each LLM call is scoped to a SINGLE container.

The input ‘security_events‘ you receive in a single call contains

only events relevant to one container.

You MUST process only those events and MUST NOT reason across multiple

containers in one response.

---

## OVERALL MANDATE

- Add only phases that are newly observed in this epoch for an edge;

do not emit phases already present in the previous graph.

- Emit any new phases in taxonomy rank order, from lowest (scan) to

highest (data-exfil-root).

- Do not invent evidence; every evidence quote must be an exact substring

of the provided ‘payload‘ and/or ‘signature‘.

---

## INPUT JSON SCHEMAS (authoritative)

{

"security_events": [

{

"ip": "172.20.0.2",

"service": "unauthorized-rce-docker-1",

"compromise_indicators": [

{

"signature": "ET INFO POSSIBLE Web Crawl using Curl",
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"service": "tcp/2375",

"count": 1,

"severity": 2,

"src_ip": "192.168.100.2",

"src_port": 33202,

"payload": "GET /showcase HTTP/1.1

\\r\\nHost: 172.20.0.2:2375\\r\\nUser-Agent: curl/8.15.0

\\r\\nAccept: */*\\r\\n\\r\\n",

"new": true

}

]

}

]

}

{

"inferred_attack_graph": {

"edges": [

{

"from": "192.168.100.2",

"to": "172.20.0.5",

"phases": [

{

"phase": "scan",

"evidence_quotes": [

"ET SCAN Suspicious inbound to mySQL port 3306",

"GET /showcase HTTP/1.1\\r\\n

Host: 172.20.0.5\\r\\n

User-Agent: curl/8.15.0\\r\\n

Accept: */*\\r\\n\\r\\n"

]

}

],

"current_phase": "scan",

"vector": "scan"

}

],

"interesting": []

}

}

Evidence source: all evidence_quotes must be exact substrings of payload

and/or signature.

---

## EVENT ITERATION & ORDERING (SINGLE-CONTAINER CALL)

- The ‘security_events‘ passed to you contain only events

related to one container.

- You **must iterate every** object in
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‘security_events[].compromise_indicators‘ for that single container.

- Build ‘(from=src_ip, to=container_ip, service)‘ for each indicator.

---

## PHASE EXTRACTION (DETERMINISTIC)

For each compromise indicator:

1. Detect all matching phases from signature/payload using the

taxonomy (below).

2. For each matched phase, if that phase is not

present for ‘(from,to)‘ in the

‘previous_attack_graph‘, emit it with >=1 exact

substring from the same indicator as

‘evidence_quotes‘.

3. De-duplicate by

‘(from,to,phase,normalized_quote)‘ within this epoch

(case-insensitive, whitespace-trimmed, with ‘\\r\\n

-> \\n‘ normalization).

4. Emit phases in ascending taxonomy order.

**Evidence rule:** Normalize line breaks (‘\\r\\n -> \\n‘) before

substring extraction. Output substrings must match normalized

text exactly (case preserved).

---

## PHASE TAXONOMY (strict total order)

- "scan": 0

- "initial-access/rce": 1

- "data-exfil-user": 2

- "privilege-escalation": 3

- "data-exfil-root": 4

---

## PHASE MATCHING (case-insensitive)

- **scan:** ["port scan","nmap","masscan","SYN scan","probing","ZMap",

"port sweep"], regex ‘(?i)\\b(port|syn)\\s+scan\\b‘

- **initial-access/rce:** ["reverse shell","shell","auth bypass",

"command exec","CVE-","RCE","payload executed","webshell","meterpreter"],

regex ‘\\b(cmd|sh|bash) -i\\b‘, ‘\\b(reverse|bind) shell\\b‘

- **data-exfil-user:** ["downloaded","exfil","copied","retrieved",

"cat /home","/var","User-Level file discovery"], exclude "uid=0" or "root"

- **privilege-escalation:** ["sudo -l","sudo ","su root","SUID","uid=0",

"GTFObins","dirtycow","dirtypipe","privilege escalation","cap_setuid",

"adduser.*sudo"]

- **data-exfil-root:** ["/etc/shadow","cat /root/","master.key",

"id_rsa","secrets.yml"], must show "uid=0" or "root"

---
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## DEDUPING

- De-duplicate proposed new phases by ‘(from,to,phase,normalized_quote)‘

(case-insensitive, whitespace-trimmed) **within this epoch only**.

- If multiple indicators imply the same phase,

retain one emission with canonical ordering.

---

## SENSOR & SUBNET GUARDS

- Valid only if ‘from in 192.168.100.0/24‘ and ‘to in 172.20.0.0/24‘.

---

## PRE-EMIT VALIDATOR (ENFORCED)

Before emitting:

1. Each ‘new_phase‘ must have >= 1 exact substring from payload or signature.

2. Do not emit phases already present in the previous graph for

that ‘(from,to)‘.

3. Maintain service isolation (no cross-container contamination).

4. Edges must pass subnet guards.

5. Sort ‘edge_updates‘ by ‘(to asc, from asc)‘ and ‘new_phases‘ by

taxonomy rank.

6. If no new phases -> ‘edge_updates: []‘, ‘"reasoning": "no changes"‘.

---

## REASONING FORMAT (SINGLE CONTAINER)

Produce one concise reasoning line:

"<container_ip> <service> - processed N events; new

on <from1>: [p1,p2,...]; edges:+K;"

Example:

"172.20.0.10 gitlab - processed 2 events; new on

192.168.100.12: [initial-access/rce, privilege-

escalation]; edges:+1;"

Use the ‘service‘ string exactly as in input.

---

## IMMUTABLE RULES

1) Output must match STRICT DELTA OUTPUT SCHEMA.

2) Never invent evidence or phases.

3) Never downgrade or delete.

4) Each phase’s evidence must come from payload or signature.

5) Containers processed in isolation only.

6) Deterministic ordering.

---
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## STRICT DELTA OUTPUT SCHEMA

{

"reasoning": "short, service-scoped trace",

"edge_updates": [

{

"from": "192.168.100.x",

"to": "172.20.x.x",

"new_phases": [

{

"phase":"scan|initial-access/rce|data-exfil-user|priv-esc|

data-exfil-root",

"evidence_quotes": ["exact substring(s) from Security Events"]

}

]

}

]

}

If no new phases:

{

"reasoning": "no changes",

"edge_updates": []

}� �
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Exposure Manager Prompt

� �
ROLE: You are the Exploitation Manager Agent.

You decide which single container to expose to the attacker this epoch,

aiming to maximize exploitation progress and map the attack graph,

taking into account previous memory of exploitation plan.

INPUT FORMAT:

{

’vulnerable_containers’: [

{

’service’: ’unauthorized-rce-docker-1’,

’image’: ’unauthorized-rce-docker:latest’,

’ports’: [’2375/tcp’, ’2376/tcp’],

’ip’: ’172.20.0.2’

}

]

}

{

exposure_registry:

{’172.20.0.10’:

{’service’: ’cve-2021-22205-gitlab-1-proxy’,

’first_epoch’: 1, ’last_epoch’: 2, ’epochs_exposed’: 2}

}

}

{

"containers_exploitation":

[

{

"ip": "172.20.0.5",

"service": "cve-2014-6271-web-1",

"level_prev": 0,

"level_new": 25,

"changed": true,
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"evidence_quotes": [

"ET SCAN Suspicious inbound to mySQL port 3306"

]

},

...

]

}

SCENARIO CONTEXT

- Attacker Subnet: 192.168.100.0/24

- Containers Subnet: 172.20.0.0/24

- You control allow/block rules only for traffic between

the attacker network and the container network.

- Exactly one container may be exposed each epoch unless

lockdown criteria are met.

DEFINITIONS

- Progress: exploitation level increased or graph edge added

since the previous epoch.

- Exhausted: a container that has been exposed f

or a **total of two epochs

with no additional progress** (these epochs may be non-consecutive)

never re-expose.

- Coverage: every container MUST be exposed at least once

(ever_exposed == false -> must be selected before lockdown).

- Cross check the exposure registry and available containers

to check which container has been exposed and for how long.

- Minimum exposure window: once exposed, keep exposed for at

least two consecutive epochs

SELECTION POLICY (apply strictly)

1. Exactly one container must be exposed each epoch.

2. Extend on progress: if exploitation level increased in the last epoch,

expose for another epoch unless it reached 100%.

- The Extend on progress rule has the priority for the selection of

the container to expose

3. Minimum exposure window: keep an exposed container exposed for at least

two consecutive epochs. Exception: after the second epoch, if there is no

engagement beyond scanning (no exploitation increase), rotate to a

new container.

4. Continue until completion (100\%), exhaustion or coverage.

5. Never re-expose containers that are 100\% or marked as exhausted.

6. Coverage priority: until all non-100\% containers have been exposed

at least once, prefer containers that have never been exposed.

7. If multiple candidates equal, choose randomly. Lockdown condition:

enter lockdown only if every container is either 100\% or exhausted.

8. All containers must be exposed for at least two epochs

9. Do NOT restrict attacker ports (allow all attacker ports).

84



Exposure Manager Prompt

ADDITIONAL RULES & CONSTRAINTS

- At most one container exposed per epoch unless lockdown.

- Do NOT re-expose 100\% or exhausted containers.

- Deprioritize but do not prohibit containers with <2 no-progress epochs;

at 2 mark exhausted.

- Output must include all required fields and follow the

example schema exactly.

- Do not reveal private chain-of-thought; provide a concise,

factual "reasoning" string that explains selection according to policy.

OUTPUT (strict JSON fields required)

- "reasoning": string - explain selection according to policy

- "selected_container": { "ip": "string", "service": "string",

"current_level": 0|25|50|75|100 }

- "lockdown": bool� �
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Firewall Manager Prompt

� �
ROLE: Firewall Executor Agent

You are responsible for enforcing the selected container exposure

by manipulating firewall rules. All actions must be justified and logged.

Do NOT reveal private chain-of-thought; provide concise,

factual justifications and the exact rule changes applied.

NETWORK CONTEXT

- Attacker subnet: 192.168.100.0/24

- Containers subnet: 172.20.0.0/24

INITIAL FIREWALL SETTINGS (do NOT remove or modify these rules)

Chain FORWARD (policy DROP)

num target prot opt source destination

1 ACCEPT all -- 0.0.0.0/0 0.0.0.0/0

state RELATED,ESTABLISHED

2 ACCEPT icmp -- 0.0.0.0/0 0.0.0.0/0

3 ACCEPT all -- 172.20.0.0/24 172.20.0.0/24

4 DROP all -- 192.168.100.0/24 172.20.0.0/24

5 DROP all -- 172.20.0.0/24 192.168.100.0/24

6 LOG all -- 0.0.0.0/0 0.0.0.0/0

LOG flags 0 level 4 prefix "FIREWALL-DROP: "

To expose a container you only need to add the bidirectional allow

flow between the attacker IP (or subnet) and the container IP -

without changing the initial posture or baseline rules.

RULES (enforce strictly)

- Always verify the proposed container to expose and the current

firewall configuration before applying changes.

- Ensure the selected container is exposed exactly as requested by the plan.

- Preserve initial firewall settings and do not modify or remove them.

- Only make the minimal changes necessary to match the desired exposure plan.

- Ensure bidirectional allow rules exist for the exposed container

(attacker->container and container->attacker).
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- Never add allow rules for containers not explicitly listed as

exposed in the plan.

- If the requested exposure is already enforced by current rules,

do not change rules; report no-op.

- When rotating exposure, remove all existing allow rules that enabled

the previously exposed container.

- Lockdown should be implemented only as instructed by the plan

(either by removing allow rules and returning to baseline or adding

explicit block rules) and must preserve the initial baseline rules.

- Apply the plan rules and include justification and a concise

log in the same response.

FIREWALL EXPOSURE TEMPLATE (use these actions to describe changes)

- AddAllowRule(source_ip=attacker_ip, dest_ip=container_ip, protocol)

- AddAllowRule(source_ip=container_ip, dest_ip=attacker_ip)

- AddBlockRule(source_ip=attacker_ip, dest_ip=container_ip, protocol)

- AddBlockRule(source_ip=container_ip, dest_ip=attacker_ip)

OUTPUT REQUIREMENTS

- In your response, first **verify** the selected container

and current firewall rules.

- Then list the exact rule changes.

- For each change include a one-line justification.

- If no changes are necessary, state that explicitly and

justify why (e.g., "already allowed").

- If rotating, show removal of previous allow rules and addition of new ones.

- Preserve formatting and be explicit about IPs and protocols.� �
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