
POLYTECHNIC UNIVERSITY OF TURIN
Master’s Degree in Cybersecurity Engineering

PDF Forensics and Attack Analysis:
Development of a Unified Investigation Tool

Supervisor:

Prof. Andrea Atzeni

Co-Supervisor:

Prof. Paolo Dal Checco

Candidate:

Michele Merico
s332058

Academic Year 2024/2025

Abstract

Nowadays, the number of daily cyberattacks is extremely high. As a mitigation
measure and to shed light on such incidents, digital forensics often plays a crucial
role. Digital forensics is the process of identifying, collecting, preserving, analyzing
and presenting digital evidence to support investigations and legal proceedings. A
significant number of the attacks that digital forensics must deal with exploit the
Portable Document Format (PDF). For this reason, understanding how to prevent
and analyze the misuse of PDF files has become increasingly important.

Despite the existence of several tools for PDF analysis, current solutions present
important limitations for forensic usage. In many real-world scenarios, PDFs are not
standalone files but are transmitted as email or PEC attachments, making it essential
to analyze not only their internal structure but also their associated transmission
metadata in a forensically sound manner. Most existing tools either focus on static
structure inspection or on malware detection, but they lack integration with email
metadata, do not ensure forensic soundness, do not support the analysis of embedded
files within the original PDFs and cannot automatically process PDFs embedded
in emails or PECs. Moreover, few of them can verify embedded digital signatures
or identify objects that have been modified after signing or only partially covered
by digital signatures in a forensically reliable way. These shortcomings make it
difficult for investigators to safely extract, analyze, and correlate PDF evidence
while maintaining data integrity and traceability.

This thesis addresses these issues by developing an integrated tool for PDF foren-
sic analysis called foredf. The work first studies the structure of PDFs, emails and
PECs, then evaluates existing tools, identifying peepdf as the most suitable start-
ing point. Since no existing solution could automatically parse and analyze PDFs
from emails or PECs while preserving metadata, a new parsing module was imple-
mented. Furthermore, peepdf was extended to support verification of embedded
objects and digital signatures. The entire toolset was executed in a containerized
environment to ensure forensic soundness, prevent any alteration of evidence, and
automatically generate human-readable preliminary reports, serving as a foundation
for subsequent full forensic reports.

The tool was evaluated on a variety of PDFs, including those retrieved from
emails and PECs containing fake or partial digital signatures and embedded con-
tent, analyzed both statically and partially dynamically. The results demonstrate
that foredf allows users with moderate technical skills to verify PDF integrity,
while providing forensic experts with detailed object-level information and meta-
data correlation. The use of containerization ensures secure handling of potentially
malicious PDFs, reducing risks for analysts and systems. Additionally, foredf may
support investigators in tracing the origin of attacks or harmful attachments without
interacting directly with the files, further improving safety and efficiency in forensic
investigations.

With further refinements, foredf could become a valuable tool for forensic profes-
sionals, supporting PDF investigations both as standalone files and when embedded
in emails or PECs. It may also help non-expert users make informed decisions about
whether to open received PDF documents, making it a potentially powerful tool not

only for forensic analysis but also for proactive cybersecurity.

Contents

List of Tables iv

List of Figures iv

1 Introduction 1
1.1 Scope and Objectives . 1
1.2 Thesis Structure . 2

2 State of the Art 4
2.1 Existing Tools and Frameworks . 4

2.1.1 Static Analysis Tools . 4
2.1.2 Dynamic and Hybrid Tools . 5
2.1.3 Integration in Forensic Suites 6

2.2 Limitations of Current Approaches 6
2.3 Motivation and Thesis Contribution 8
2.4 Comparison of Existing Tools . 9
2.5 Summary . 9

3 Digital Forensics Investigation 11
3.1 Key Challenges in Digital Forensics Investigations 12

4 Portable Document Format 13
4.1 General Properties of the PDF Format 13
4.2 PDF Syntax . 13

4.2.1 Objects . 14
4.2.2 File Structure . 16
4.2.3 Document Structure . 19
4.2.4 Content Streams . 20

4.3 Incremental Updates . 21
4.4 Encryption in PDFs . 22
4.5 Metadata in PDFs . 22

4.5.1 Example of dual Metadata representation 23
4.6 Identification of Watermarks . 24

5 Digital Signatures in PDFs 25
5.1 Understanding Digital Signatures . 25

5.1.1 The Signing Phase . 26
5.1.2 The Verification Phase . 27

5.2 Implementation of Digital Signatures in PDFs 27
5.2.1 Structure of Public- Key Cryptography Standards #7 28
5.2.2 Embedding PKCS#7 Signatures in PDF Files 29

5.3 Multiple Signatures and Incremental Updates 31
5.3.1 Certifying Signatures and Approval Signatures 32
5.3.2 Example of Multiple Signatures 32

5.4 Extracting and Verifying Signatures 33

i

5.4.1 Signature Extraction . 33
5.4.2 Signature Verification . 34
5.4.3 Example of an Embedded PDF Signature 34

6 Emails and Posta Elettronica Certificata (PEC) 36
6.1 Emails . 36

6.1.1 Core Architectural Components 36
6.1.2 Email Message Structure . 37

6.2 Forensic Considerations in Email Analysis 38
6.3 Posta Elettronica Certificata (PEC) 39

6.3.1 PEC Architecture and Transmission Flow 39
6.3.2 Message Composition and Legal Receipts 39
6.3.3 Cryptographic Structure and Verification 40
6.3.4 Forensic Workflow and Evidentiary Value 40
6.3.5 Limitations and Interoperability 41

7 PDF Attack Techniques and Forensic Analysis 42
7.1 PDF Metadata . 42

7.1.1 Real-World Example . 44
7.2 Embedded JavaScript . 44
7.3 Embedded Files and Launch Actions 45
7.4 Exploitation of Reader Vulnerabilities 45
7.5 Phishing and Social Engineering . 47
7.6 Obfuscation and Evasion Techniques 47
7.7 Attacks on Digitally Signed PDFs . 48

7.7.1 Signature Wrapping and Incremental Update Abuse 48
7.7.2 Exploiting Certification Signatures 48
7.7.3 Viewer Parsing Bugs and Shadow Attacks 49
7.7.4 Universal Signature Forgery (USF) 49
7.7.5 Certification Attacks . 50
7.7.6 Pre-Signing Compromise . 50
7.7.7 Format Confusion and Polyglot Attacks 50
7.7.8 External Resource Abuse . 51

8 Acquisition Sources of PDF Files 52
8.1 The Critical Importance of Acquisition Sources 52
8.2 Common Sources for PDFs . 52

8.2.1 Emails and Certified Email (PEC) 52
8.2.2 Websites and Online Databases 53
8.2.3 Repositories for Testing and Research 53
8.2.4 Local Filesystems and Removable Devices 53

9 Development of foredf 54
9.1 Docker and Containerization . 54
9.2 Analysis of Peepdf: Strengths and Limitations 54
9.3 Overview: How foredf Works . 55
9.4 Internal Structure of foredf . 56

ii

9.4.1 Dockerfile and Docker-Compose file 56
9.4.2 Email Fetcher . 58
9.4.3 Enhanced Peepdf-3 . 67

9.5 Generated Files Example . 95
9.6 Strengths and Weaknesses of foredf 99

10 Foredf: Attack Prevention and Analysis 100
10.1 Use Case 1 — Malicious PDF Delivered via Corporate Email 100
10.2 Use Case 2 — Forged or Tampered Signed PDF in Legal/PEC Com-

munications . 101
10.3 Use Case 3 — Post-Incident Investigation: PDF as Suspected Ran-

somware Vector . 101
10.4 Use Case 4 — Mass Automated Triage in Security Operations Center

(SOC) . 102
10.5 Use Case 5 — Post-Incident Investigation: Malicious PDF Delivered

via USB . 103
10.6 Mapping of foredf features to use cases 103

11 Conclusions and Future Works 105

References 107

iii

List of Tables

1 Comparison of existing tools for PDF forensic analysis 9
2 Mapping of foredf features to the described use cases 104

List of Figures

1 Initial structure of a PDF file . 19
2 Structure of an updated PDF file . 21
3 Signing Phase [53] . 26
4 Verification Phase [53] . 27
5 Example of Signature . 31
6 Multiple Signatures and Incremental Updates 31
7 Overview of Foredf . 56
8 Email Fetcher Workflow . 67
9 General overview of the analyzed file. 96
10 Indicator showing the presence of embedded files. 98
11 Analysis of embedded files. 98

iv

1 Introduction

Before diving into the forensic analysis of Portable Document Format (PDF) files,
it is essential to understand what digital forensics is and why it plays a critical role
in modern investigations. Digital forensics is the process of identifying, collecting,
preserving, analyzing and presenting digital evidences to support investigation and
legal proceedings. It is mostly used to investigate cybercrimes but it can be also
used as support for civil and criminal investigations.

Digital evidence, the core of digital forensics, refers to any information with
evidential value that is either stored or transmitted in digital form through digital
devices. This can include files, emails, logs, metadata and more. However, managing
digital evidence poses unique challenges: unlike physical evidence, digital data is
volatile and can be easily altered, overwritten or destroyed even just through normal
use of the device. Evidences must be acquired using forensic sound methods that
ensure its authenticity and integrity are preserved from the moment of collection to
its presentation in a legal context.

In the field of digital forensics, challenges are becoming increasingly complex.
Forensic experts are required to be highly skilled and well-trained in the use of
specialized tools, even those open-source, and techniques. Open-source tools allow
experts to analyze their source code further ensuring their transparency and reli-
ability. This openness not only helps ensure the trustworthiness of the tools but
also supports compliance with major legal and forensic standards. Moreover, digi-
tal forensic experts must have a deep knowledge of laws and regulations to ensure
following rules during investigations. Furthermore, they must be impartial and ob-
jective during the whole forensic process since each personal consideration will result
in the inadmissibility of corresponding evidence.

However, despite the availability of many tools and methodologies, the field still
suffers from a high failure rate in practice. Many investigations fail to produce ad-
missible or consistent results due to tool misconfiguration, undocumented steps, or
lack of reproducibility in the analysis process. As highlighted in studies [29, 27], a
large number of forensic investigations involve manual tool switching or ad-hoc work-
flows, which significantly increase variability and reduce reliability. Similar evidence
from broader computational research [9] indicates that the majority (about 70%)
of experiments suffer from reproducibility issues due to non-standardized environ-
ments. This situation undermines the credibility of forensic results and emphasizes
the need for reproducible, automated, and well-documented workflows that ensure
consistent outcomes across different systems and operators.

1.1 Scope and Objectives

PDF files are widely used for document sharing due to their portability and con-
sistency across platforms. However, such versatility introduces opportunities for
misuse. From a digital forensics perspective, PDF files can be very important evi-
dences in cybercrimes, fraud investigations and intellectual property cases.

The main objective of this thesis is to investigate the PDF, focusing on its struc-
ture and features, in order to understand how it can be exploited to carry out

1

cybercrimes and how compromised or malicious PDF files can be identified through
forensic analysis. PDF files embedded within email communications, especially cer-
tified emails (Posta Elettronica Certificata, or PEC), will be also analyzed as they
can serve as effective vectors for delivering malicious content.

As part of this research, a prototype of forensic tool based on a well-known foren-
sic tool will be created. The original forensic tool will be examined and extended
to enable the automatic parsing of PDF files, including those contained within PEC
messages, as well as their subsequent analysis. The proposed framework will also
address the reproducibility challenge by running in a containerized environment that
guarantees identical outcomes from identical inputs, minimizing dependency on the
underlying system configuration. While still allowing manual inspection and ana-
lyst control, the system will support integration into automated pipelines to perform
predefined checks or batch analyses, enabling scalable and reproducible workflows,
thus reducing both human error and failure rates in practical forensic scenarios.

The main objective of this thesis is to investigate the PDF, focusing on its struc-
ture and features, in order to understand how it can be exploited to carry out
cybercrimes and how compromised or malicious PDF files can be identified through
forensic analysis. PDF files embedded within email communications, especially certi-
fied emails (Posta Elettronica Certificata, or PEC), will be also analyzed as they can
serve as effective vectors for delivering malicious content. As part of this research, a
prototype of forensic tool based on a well-known forensic tool will be created. The
original forensic tool will be examined and extended to enable the automatic parsing
and scanning of PDF files, even those contained in PEC messages.

1.2 Thesis Structure

This thesis is organized as follows:

• Chapter 1 - Introduction: introduces digital forensics, the importance of PDF
files in investigations, and defines the objectives and structure of the thesis.

• Chapter 2 - State of the Art: presents the current state of the art in PDF
forensics and outlines how the proposed forensic tool fits within this context.

• Chapter 3 - Digital Forensics Investigation: provides a general overview of
digital forensics processes, methodologies and the handling of digital evidence.

• Chapter 4 - Portable Document Format: describes the PDF format, its syntax,
objects, file and document structures, content streams, incremental updates,
encryption, metadata and watermarks.

• Chapter 5 - Digital Signatures in PDFs: explains digital signatures, signing
and verification phases and PKCS#7 implementation. It explains also multiple
signatures, signature extraction and verification techniques.

• Chapter 6 - Emails and PEC Introduction: presents the structure of email and
certified email (PEC) and protocols they use. Their implications in forensic
investigations and their relevance for PDF acquisition and analysis are also
discussed.

2

• Chapter 7 - PDF Attack Techniques and Forensic Analysis: different attacks
based on the use of PDFs are discussed, alongside forensic analysis techniques.

• Chapter 8 - Acquisition Sources of PDF Files: forensic acquisition principles
and potential sources of PDF evidence are discussed and analyzed.

• Chapter 9 - Development of Foredf for Forensic Analysis of PDFs: describes the
enhancement of an existing forensic tool and the development of forensically
sound email and PEC metadata and files parser, which is then integrated to
create a new, more comprehensive forensic tool.

• Chapter 10 - Foredf: Attack Prevention and Analysis : describes potential
attacks scenarios and the role that foredf can play.

• Chapter 11 - Conclusions and Future Works.

3

2 State of the Art

The analysis of PDF files within digital forensics has been the focus of various re-
search efforts and practical tools over the past decade. Investigators have developed
multiple approaches to extract evidential information, detect malicious content, and
identify structural anomalies. These approaches can be broadly categorized into
static analysis, dynamic analysis and hybrid methods that combine both strategies.

Recent literature confirms this tripartite taxonomy. Abdallah et al. [1] provide
a comprehensive survey on malicious PDF detection, systematically classifying ap-
proaches into static, dynamic and hybrid categories. Their study highlights that
hybrid strategies, those that combine structural inspection with runtime observa-
tion, are increasingly effective against obfuscated and evasive attacks, achieving
higher robustness than traditional static methods alone. This observation strongly
supports the evolution of PDF forensic tools toward integrated, multi-phase analysis
frameworks.

Static analysis tools parse the internal structure of PDF files, inspecting objects
and streams and detecting suspicious patterns without executing the file. On the
other hand, dynamic approaches try to monitor the behavior of PDF documents
when opened in controlled and safe environments, capturing any malicious actions
triggered at runtime. Hybrid methods are built to take advantage of the strengths
of both static and dynamic analysis, providing a more complete forensic assessment.

This chapter examines the most widely used tools and frameworks, highlighting
their capabilities and limitations, and identifies gaps that motivate the enhancements
introduced in this thesis.

2.1 Existing Tools and Frameworks

As stated before, the tools available for PDF forensic analysis can be grouped ac-
cording to the approach they employ: static, dynamic or hybrid.

2.1.1 Static Analysis Tools

PDF Tools [51] by Didier Stevens are among the first open-source utilities designed
to detect potentially dangerous elements such as embedded JavaScript or automatic
actions. They are a collection of lightweight, practical utilities widely used in PDF
forensics. The suite includes tools such as pdf-parser.py for low-level inspection
of PDF objects and streams, PDFiD for fast keyword-based triage, make-pdf util-
ities for generating test PDFs with embedded JavaScript or files and pdftool.py

for inspecting incremental updates. These tools emphasize simplicity, robustness,
and transparency, allowing analysts to examine potentially malicious PDFs without
executing them.

These tools are particularly useful to identify structural anomalies, embedded
scripts, automatic actions ,triggered when the files are opened for example, and
they are widely referenced in both research and practical forensic workflows. How-
ever, they are static analysis tools: they do not perform dynamic analysis, signature
validation and often require manual and human interpretation. Despite these lim-
itations, the suite remains a fundamental reference in PDF forensic analysis and

4

provides a solid baseline for more advanced frameworks.
peepdf [20] represents a more advanced static analysis framework. It is an

open-source Python tool designed for the forensic analysis of PDF files. Its main
strength lies in the ability to deeply examine the internal structure of PDF docu-
ments, identifying potentially malicious components such as embedded JavaScript,
shellcode and compressed objects. Through its command-line interface, peepdf pro-
vides precise and detailed control during analysis, making it particularly useful for
digital investigators and security researchers.

Key features of peepdf include:

• Object and stream analysis: decodes and inspects compressed objects,
such as those encoded with FlateDecode or LZWDecode, and allows detailed
examination of streams within the PDF.

• Embedded JavaScript analysis: supports decoding, beautification and
controlled execution of embedded JavaScript to detect potential exploits or
malicious behaviors.

• Shellcode emulation: libraries like Pylibemu are integrated into peepdf to
emulate the behavior of embedded shellcode or payloads, facilitating the de-
tection of maliciousness.

• Structural and metadata analysis: provides detailed information on the
physical and logical structure of PDFs, including metadata, versions and in-
cremental updates.

• PDF creation and modification: allows creation of new PDF files or mod-
ification of existing ones, including the addition of JavaScript, object compres-
sion and embedded files.

It can be found in security-related Linux distributions, such as Kali Linux. For
this reason, forensic and security experts can easily use it and at the same time,
its presence in security-related distributions highlights its reliability and widespread
adoption in PDF forensic workflows.

The peepdf is indeed a powerful tool, but it has some shortcomings. It does
not offer any kind of sandboxing to keep the runtime activity under observation.
Further, it does not provide built-in capabilities to verify digital signatures and
analyze embedded files (if any). Additionally, interpreting the results often requires
advanced expertise, as the tool provides detailed insights without automating risk
assessment or large-scale analysis.

Other frameworks such as Origami [16] or PDF Examiner [21] provide sim-
ilar static capabilities, but they are either outdated or limited in extensibility and
forensic scope.

2.1.2 Dynamic and Hybrid Tools

Dynamic analysis tools focus on executing PDF files within controlled sandbox en-
vironments to observe their runtime behavior. By monitoring system calls, registry

5

changes, network activity and embedded script execution, these tools can detect ob-
fuscated or previously unknown malware that might evade static inspection. Well-
known examples include Cuckoo Sandbox[15], an open-source automated malware
analysis system that can execute PDFs in virtual machines, Joe Sandbox[30], a
commercial platform supporting PDF analysis with detailed behavioral reporting,
and online services such as Any.Run[7], which provide near-real-time execution
reports highlighting embedded scripts, network interactions, and system modifica-
tions.

On one hand, dynamic analysis is a particularly effective approach to discover-
ing hidden threats; on the other hand, it requires significant resources and it may
not be completely reproducible thus making it less suitable for traditional forensic
workflows that value evidence preservation and repeatability.

Hybrid analysis combines static inspection with selective dynamic monitoring
to achieve more effective malware detection. Abdallah et al. [1] emphasize that
such hybrid methodologies significantly reduce false negatives in the presence of
obfuscation, as they combine structural analysis with behavioral evidence. Their
survey also points out that while static techniques are efficient and transparent, they
often fail against encrypted or obfuscated PDFs; conversely, dynamic techniques
can detect these cases but lack scalability. Thus, hybrid approaches are the most
promising way of resilient and forensic-oriented analysis of PDF. Moreover, Liu et
al. [36] show that combining structural analysis, intermediate representations and
language models yields more adversarially robust systems. Combined, these studies
highlight that merely examining structure is inadequate against advanced malware.

2.1.3 Integration in Forensic Suites

General-purpose forensic suites such asAutopsy[8], FTK[22] andX-Ways Foren-
sics[4] include partial support for PDF documents, focusing mainly on metadata
extraction and previewing. However, they do not provide detailed analysis of the
internal PDF structure or mechanisms to detect malicious or manipulated content.

This divergence between forensics research and practice is also evident in recent
meta-surveys. Javed et al. [29] expose forensic fragmentation, non-standardization
and lack of automation as well as limits to the scalability of current tools. In a
similar vein, the DFPulse survey [27] indicates that users often make extensive use of
manual and semi-automated workflows with more than one tool, which undermines
reproducibility and facilities case backlogs. Both studies highlight the need for
reproducible, automated and evidence-based pipelines, features that remain scarce
in PDF analysis environments.

2.2 Limitations of Current Approaches

Despite the great progress made by research in PDF forensics, there are several
limitations that still restrict the effectiveness and reliability of existing tools. These
limitations are not only in the field of analytical completeness but also implications
on reproducibility and the possibility for mistakes, both important considerations
in forensic procedures. These limitations are now discussed in detail:

6

• Lack of automation and scalable workflows - many tools, including
widely adopted frameworks such as PDF Tools [51] and peepdf [20], re-
quire manual user interaction to inspect objects or interpret results. This
dependency on the operator significantly slows down the process and increases
the likelihood of inconsistent outcomes across different investigations. Sur-
veys such as DFPulse [27] and Javed et al. [29] confirm that analysts often
combine multiple semi-automated utilities, resulting in fragmented and hard-
to-reproduce workflows. In large-scale or repetitive investigations, this manual
handling becomes unsustainable and leads to inconsistent findings.

• Limited support for digital signatures - several static and dynamic frame-
works either ignore or only partially implement signature validation. For ex-
ample, peepdf and Origami [16] can parse document objects but do not
verify cryptographic integrity of them. This restriction inhibits full forensic
analysis of tampering, and even worse the provenance problem, that is crucial
for legal or evidentiary environments where authentication should be verified.

• Incomplete handling of embedded content - most existing solutions can-
not handle the analysis of complex embedded elements, such as compressed
files, images, or secondary documents. Static analyzers such as peepdf [20]
identify structural anomalies and indicate potential suspicious embedded ob-
jects, without considering embedded binaries or attachments. As a result,
malicious payloads can hide particularly well when they are nested or obfus-
cated reducing the overall analysis precision and coverage.

• Insufficient forensic reporting and evidence traceability - forensic tools
tend to produce technical log or raw values based on a command-line out-
put, rather than preparing something that can then be used in the future for
redacting a real forensic report. For example, peepdf gives a comprehensive
analysis, but it does not have an immediate report mechanism that includes
metadata, timestamps, and analysis provenance. Lack of standardization not
only slows down writing, but also hampers the reproducibility of evidence:
experts may have a hard time unwinding how they reached their conclusion
without re-running an analysis from scratch.

• Fragmented and non-reproducible workflows - this issue, emphasized in
both DFPulse [27] and Javed et al. [29], stems from analysts mixing different
tools and environments (Windows, Linux, virtualized sandboxes) with incon-
sistent configurations. When analysis conditions are not controlled or docu-
mented, results become non-deterministic. Two analysts may reach different
outcomes even when analyzing the same file. The reproducibility literature [9]
within digital forensics is also clear that the lack of containerization, version
control, and environment consistency are key contributors of this variance.

In summary, the limitations of existing approaches can be traced to the combined
effect of manual dependencies, lack of reproducibility mechanisms, and insufficient
automation. These shortcomings motivate the development of a reproducible, con-
tainerized and transparent system capable of reducing operator error and increasing

7

the reliability of forensic analyses. The framework proposed in this thesis directly
addresses these problems by providing a consistent, automated environment where
every analytical step is traceable and repeatable.

2.3 Motivation and Thesis Contribution

To address the gaps identified in Section 2.2, this thesis introduces an extended
framework built upon peepdf, integrating advanced forensic capabilities and ad-
dressing major weaknesses of current tools. The proposed system encapsulates
peepdf within a containerized environment capable of automatically fetching emails
from certified (PEC) or standard mailboxes, extracting PDF attachments, and con-
ducting a full forensic analysis.

• Reproducibility and automation: in forensic analysis, reproducibility and
consistency are critical. However, studies such as DFPulse [27] and Javed
et al. [29] indicate that a large number of investigations involve manual tool
switching or undocumented configuration steps, leading to inconsistent results.
Similar evidence from broader computational research [9] reports that over
70% of experiments suffer from reproducibility issues due to non-standardized
environments. The proposed framework solves this by running in a container-
ized environment that guarantees identical outcomes from identical inputs,
reducing dependency on system configuration. Our tool still supports man-
ual interaction for detailed inspection and decision-making, preserving analyst
control. However, by running within a containerized environment and offering
extensibility, it can also be integrated into automated pipelines to perform pre-
defined checks or batch analyses, enabling scalable and reproducible workflows
when desired.

• Reduction of human error: manual steps in PDF analysis, such as parame-
ter selection or interpretation of results, are prone to operator mistakes. These
may cause discrepancies in object parsing or risk misclassification of content
and results. Automating data acquisition, processing and reporting amelio-
rate the latter risk. Each analysis stage is logged and versioned, guaranteeing
traceability and forensic audit.

• Enhanced transparency: structured metadata records the environment,
tool versions and configurations used for each step. This permits third parties
to replicate analyses precisely and confirm their authenticity, in accordance
with forensic principles of repeatability and verifiability.

To support these features, the proposed framework integrates the following new
or extended functionalities:

• Fully reproducible workflow: achieved through containerization, ensuring
environmental consistency and deterministic outputs with same inputs;

• Digital signature verification: visual differentiation of signed and unsigned
objects within the document structure;

8

• Embedded file inspection: entropy and MIME checks, hash computation,
VirusTotal integration, and YARA-based rule scanning;

• Automated forensic reporting: creation of structured, metadata-heavy
reports that increase traceability and reliability of evidence.

Overall, we present a cohesive, automated and reproducible workflow which both
improves efficiency and scientific rigor early in the investigation of PDF forensics
and directly tackles issues of reproducibility and human error found in precedent
work.

2.4 Comparison of Existing Tools

Table 1: Comparison of existing tools for PDF forensic analysis

Tool Main Features Strengths Limitations Reference
PDF Parser Object and stream

inspection, struc-
ture traversal

Flexible and
scriptable via
Python

No automation,
lacks advanced
reporting

[51]

peepdf Interactive shell
for PDF structure
analysis, object
parsing, stream
decoding

Advanced static
inspection, sup-
ports JavaScript
emulation

No signature
verification, lim-
ited embedded
file analysis,
manual work-
flow

[20]

Origami Ruby-based frame-
work for PDF anal-
ysis and manipula-
tion

Extensible, sup-
ports creation
and modifica-
tion of PDFs

No malware de-
tection, limited
forensic use

[16]

PDF Exam-
iner

PHP-based static
analyzer, supports
PDF object inspec-
tion and JavaScript
detection

Simple to use,
open-source

Limited au-
tomation,
not designed
for forensic
pipelines

[21]

Proposed
Tool

Containerized,
plug-and-play
workflow integrat-
ing email fetching,
peepdf core, digital
signature verifica-
tion, embedded file
analysis and report
generation

Automated
fetching and
basic report
generation,
forensically
sound, unified
workflow, mini-
mal setup

Requires con-
tainer environ-
ment

[38]

2.5 Summary

In summary, while several tools exist for analyzing PDF files, few provide an in-
tegrated and forensically sound framework that combines acquisition, analysis and
partial reporting. Recent literature demonstrates that detection accuracy alone is

9

insufficient; automation, embedded file handling, and signature verification are es-
sential to produce actionable forensic evidence. The proposed solution builds upon
these insights to deliver a more comprehensive, automated and verifiable approach
to PDF forensic analysis.

10

3 Digital Forensics Investigation

Digital forensics is a structured and scientific discipline dedicated to identifying,
preserving, analyzing and presenting digital evidence in a manner that ensures its
reliability and legal admissibility. It serves as a fundamental component in inves-
tigating cybercrime, financial fraud, intellectual property theft, insider misuse, and
other offenses where digital information is central to the case.

Digital evidence refers to any information stored or communicated in digital
form that holds probative value for an investigation or legal proceeding [52, 47].
This evidence can originate from a broad array of sources, including computers,
mobile phones, network devices, cloud servers, IoT systems, and even social media
platforms. Digital evidence may take the form of emails, metadata, images, transac-
tion records, log files and other artifacts that shed light on user activities or intent.
Due to its fragile and easily alterable nature, digital evidence must be collected
using specialized tools and handled according to established procedures to ensure
authenticity, integrity and admissibility in court.

Recognized frameworks such as the NIST Guide to Integrating Forensic Tech-
niques into Incident Response [31] and ISO/IEC 27037: Guidelines for Identifica-
tion, Collection, Acquisition and Preservation of Digital Evidence [28] categorize the
forensic process into five interdependent phases:

1. Identification: the process begins with identifying all potential sources of
digital evidence. These may include computers, smartphones, external drives,
servers, IoT devices and cloud storage services. Overlooking a critical evidence
source can jeopardize the integrity and completeness of the investigation.

2. Preservation: digital evidences, once identified, must be collected and pre-
served without any alterations to maintain integrity and admissibility. The
first step of the process of correct preservation is to create forensic images
of the original data. Forensic images are bit-a-bit copies of the original data
which ensure reproducibility of analysis and integrity on the original data
along the whole forensic process. However, proper documentation of the chain
of custody and the use of cryptographic hash values during the whole process
ensure integrity throughout the process.

3. Extraction and Analysis: in this stage, data are extracted from preserved
forensic images and examined using specialized forensic tools. The analysis of
these data can serve different purposes: recovering deleted content, decrypt-
ing protected data, correlating system logs, reconstructing timelines and any
other useful data. In this phase, challenges, such as handling of large data
volumes, breaking strong encryption and facing anti-forensic techniques used
by adversaries, are commonly encountered by forensic investigators.

4. Documentation: each action during the investigation, including tools used,
procedures followed and hash values computed, must be meticulously docu-
mented. Detailed documentation provides transparency, reproducibility and
admissibility. Evidences which lack sufficient procedural documentation are
often dismissed by courts.

11

5. Presentation: the final phase translates technical findings into clear, concise,
and precise reports for stakeholders such as law enforcement, legal authorities
or organizational executives. This phase often involves expert testimony and
visualizations that effectively communicate complex technical results.

3.1 Key Challenges in Digital Forensics Investigations

Despite standardized methodologies, digital forensic investigations face several per-
sistent challenges:

• Data Volume: the exponential growth of digital data complicates timely
analysis. Automated triage systems and AI-assisted analytics are increasingly
employed to improve efficiency and accuracy [23, 12].

• Encryption: a common challenge while trying to access data is encryption.
Investigators may utilize memory captures or seek legal mechanisms to obtain
decryption keys in order to freely access, acquire and analyze data.

• Cloud and Jurisdiction: data stored across multiple jurisdictions presents
complex legal and technical challenges, particularly under cross-border data
protection frameworks such as the GDPR. The distributed nature of cloud
storage requires specialized tools and clear legal frameworks for evidence ac-
quisition [23].

• Anti-Forensics: adversaries may use methods such as steganography, log
wiping or multiple layers of encryption to mislead or delay forensic analysis.

• Mobile and IoT Forensics: the proliferation of smartphones, IoT and wear-
able devices demands advanced techniques to extract evidence from a growing
variety of platforms [23, 12].

12

4 Portable Document Format

The Portable Document Format (PDF), originally developed in 1993, is a widely
used file format designed to reliably represent documents across different devices and
platforms, independently of the application software, hardware or operating system
used to create them. PDF is commonly used in legal, academic and professional
environments where document integrity, authenticity and long-term accessibility are
essential.

This chapter is based on the specifications provided in the original Adobe PDF
1.0 reference manual [3], the PDF 1.7 reference manual [2], and the PDF 2.0 refer-
ence manual [19], which collectively illustrate how the format has evolved and been
standardized over time.

4.1 General Properties of the PDF Format

The PDF format has several key properties that contribute to its portability, effi-
ciency and security. These features have made it a widely adopted standard in legal,
forensic and archival contexts:

• Portability: PDF files are platform-independent and stored as 8-bit binary
data, ensuring consistency across different systems.

• Compression: PDFs support multiple compression methods, in order to re-
duce the size of files while maintaining their integrity. Some of the most
commonly used compression methods, supported by PDFs, are JPEG, JBIG2
and Flate.

• Security: PDFs offer some security mechanisms, including encryption and
digital signatures. Encryption can be used to ensure different access rights to
different users who can either view, edit or print the files. On the other hand,
digital signatures can be used to verify authenticity and detect unauthorized
modifications.

• Incremental Updates: incremental updates allow to append modifications
to original content of the PDF files while preserving the original content. This
allows tracking of document revisions and updates.

• Random Access: a cross-reference table enables direct access to objects and
pages, improving efficiency in document parsing.

• Extensibility: PDFs allow embedding of custom metadata or annotations.

4.2 PDF Syntax

Due to its portable nature, a PDF requires a defined syntax to ensure consistency
across different platforms and systems. This syntax establishes a set of rules detailing
how data is structured, stored and interpreted within a PDF file.

The PDF syntax consists of four fundamental components:

13

• Objects: in the PDF, the representation of data relies on a set of fundamental
object types. These objects form the basic building blocks for all content
within a PDF document, including text, graphics and metadata.

• File Structure: it specifies how objects are organized within a PDF file. It
defines the rules for object storage, access and updating, ensuring efficient nav-
igation within the document. This structure is independent of the semantics
of the objects themselves. Additionally, it includes security mechanisms such
as encryption, which protect the document from unauthorized access.

• Document Structure: it defines how objects are utilized to represent key
components of the document. These components include pages, fonts, annota-
tions and other elements necessary for document composition. The document
structure ensures that the relationships between these objects are maintained,
facilitating correct rendering and logical organization.

• Content Streams: they contain sequences of instructions that describe the
graphical appearance of the document. These streams dictate how text, im-
ages, and vector graphics are positioned and rendered on a page. Although
content streams are represented as objects, they are conceptually distinct from
the document structure, as they focus specifically on visual presentation rather
than logical organization.

4.2.1 Objects

An object in PDF is a distinct data entity that can be labeled and referenced,
allowing for the construction of complex data structures.

PDF defines eight basic object types, each with a specific purpose:

• Boolean Objects: represent logical values, either true or false. They are
used for conditional logic, flags and settings within PDF structures.

• Numeric Objects: represent numerical values, including integers and real
numbers. Integers are whole numbers (e.g., 123, −5), while reals are floating-
point numbers (e.g., 3.14, −0.002). They are used for coordinates, dimensions
and numerical data.

• String Objects: sequences of bytes representing text or binary data. They
can be literal strings (enclosed in parentheses) or hexadecimal strings (enclosed
in angle brackets). Used for text content, file names and arbitrary binary data.
Example: (This is a string), <4E6F7620737472696E67>.

• Name Objects: atomic symbols, uniquely identified by a sequence of charac-
ters, beginning with a slash (/). Used as keys in dictionaries and as symbolic
names. Example: /Name, /Font, /Page.

• Array Objects: ordered collections of other PDF objects, allowing heteroge-
neous data structures, enclosed in square brackets ([and]). Used to represent
lists of values, sequences of coordinates and other structured data. Example:
[1 2 3], [true (text) /Name].

14

• Dictionary Objects: collections of key-value pairs, where keys are name
objects and values can be any PDF object. Used to define attributes and
properties. Example: << /Type /Page /Contents 10 0 R >>.

• Stream Objects: sequences of bytes, typically used for large data like images
or compressed content, associated with a dictionary describing the stream’s
properties. Used for embedding images, fonts and other binary data.

• Null Object: represents the absence of a value, indicating optional or unde-
fined values. Example: null.

Within a PDF document, objects can be labeled and thus becoming indirect ob-
jects to facilitate referencing and sharing objects. This mechanism is essential for
efficient storage and manipulation of complex data structures. An indirect object is
uniquely identified by an object number and a generation number. The object
number uniquely identifies the object within the PDF file and it is typically assigned
consecutively by PDF itself. On the other hand, the generation number is used to
distinguish between different versions of the same object and it is particularly rel-
evant when objects are modified through incremental updates. The other objects
can use this unique identifier to refer to it, avoiding nesting duplicate objects while
enhancing the reuse of the same original object.

For instance, consider a scenario where a PDF document contains an image that
is used multiple times across different pages. Instead of embedding the image data
repeatedly, it can be stored as an indirect object, allowing each page to reference it.
The definition of the image object could appear as:

10 0 obj

<image data>

endobj

Here, 10 0 identifies the image object. Any other object in the PDF can now refer
to this image using the syntax 10 0 R. For example, a page’s content stream might
include:

/Image1 10 0 R Do

This indicates that the image labeled Image1 is represented by the indirect object
10 0 while Do indicates to PDF renderer to draw or render the image referenced.

Another example involves a font definition that is used across various text el-
ements in a document. The font definition can be stored as an indirect object,
allowing multiple text elements to reference it.

20 0 obj

<<

/Type /Font

/Subtype /Type1

/BaseFont /Helvetica

15

>>

endobj

And then, a text object can refer to it (indicated by the R operator):

/Font 20 0 R

Indirect objects are essential for reducing redundancy and improving the efficiency
of PDF documents, especially when dealing with large or frequently used objects.

4.2.2 File Structure

The File Structure of a PDF file is a crucial element. It dictates how objects are or-
ganized within the file, ensuring efficient random access and support for incremental
updates.

A PDF file consists of four main components (see Fig. 1):

• File Header: the first line of a PDF file contains the header, which speci-
fies the PDF version the file conforms to. It begins with the string ”%PDF-”
followed by the version number, such as 1.0, 1.1, 1.2, and so on, with 2.0
being the latest. Starting from PDF 1.4, the version declared in the header
can be overridden by the Version entry within the document’s catalog dictio-
nary located by means of the Root entry in the file’s trailer, enabling updates
via incremental changes (see Section 4.2.3). This feature ensures backward
compatibility, allowing newer PDF features to be ignored by older applica-
tions that do not support them. Additionally, some PDF files may include a
comment line (marked by a ”%”) immediately following the header. This line
contains at least four binary characters, which help file transfer applications
determine whether the file should be treated as text or binary.

• File Body: the body contains a series of indirect objects that define the
document’s content. These objects represent various components, including
fonts, pages and embedded images.

• Cross-Reference Table: the cross-reference table allows fast access to
indirect objects within a PDF without requiring a full file scan. It consists of
sections, each starting with the keyword xref, followed by subsections con-
taining entries for a range of object numbers.

Each entry is exactly 20 bytes long and follows this format:

nnnnnnnnnn ggggg t eol

where nnnnnnnnnn is a 10-digit byte offset representing the position in the file
where the corresponding object definition begins, ggggg is a 5-digit generation
number, t represents the entry type (n for in-use objects and f for free
objects) and eol is a 2-character end-of-line sequence.

16

Each generation number starts at 00000 when an object is first created. If
an object is later deleted, it is marked as free (f), and its generation number is
incremented by 1. The maximum value is 65535, beyond which the object
can no longer be reused.

Free objects form a linked list, allowing efficient management of deleted ob-
jects. The first entry (object 0) is always free with a generation number
of 65535, serving as the head of the list. The last free entry links back to
object 0. Some free entries may also link back to object 0 without being part
of the list.

For instance, the entry 0000000123 00001 f indicates that the object’s defi-
nition begins at byte offset 123 in the file. The object has a generation number
of 00001, which means it was initially created (generation 00000), then deleted
once, and is now marked as free (i.e. available for reuse). When an object is
later recreated, its new instance will have its generation number incremented
accordingly.

Each subsection in the cross-reference table begins with:

<starting_object_number> <number_of_entries>

where starting object number is the first object number covered in the sub-
section and number of entries is the count of consecutive objects described
in the subsection. These two numbers define the range of object numbers
described in the lines that follow.

Indirect objects in a PDF are defined with a unique object number (and an
associated generation number), typically assigned sequentially as they appear
in the file. For example, if the PDF contains:

1 0 obj

...

endobj

2 0 obj

...

endobj

then objects 1 and 2 are referenced in the cross-reference table with their
corresponding byte offsets, enabling quick access to each object.

Example of a Cross-Reference Table

xref

0 6 % 6 entries starting from object 0

0000000003 65535 f % Object 0 (always free)

0000000017 00000 n % Object 1 (in use)

0000000081 00000 n % Object 2 (in use)

17

0000000000 00007 f % Object 3 (free)

0000000331 00000 n % Object 4 (in use)

0000000409 00000 n % Object 5 (in use)

This example shows a single subsection with six entries: four in-use objects
(1, 2, 4, 5) and two free objects (0, 3). Object 3 has been deleted and will be
assigned 7 as generation number when reused.

Example with Multiple Subsections

xref

0 1 % 1 entry starting from object 0

0000000000 65535 f % Object 0 (always free)

3 1 % 1 entry starting from object 3

0000025325 00000 n % Object 3 (in use)

23 2 % 2 entries starting from object 23

0000025518 00002 n % Object 23 (in use)

0000025635 00000 n % Object 24 (in use)

30 1 % 1 entry starting from object 30

0000025777 00000 n % Object 30 (in use)

Here, the table consists of multiple subsections, each containing entries repre-
senting a range of objects.

Starting from PDF 1.5, cross-reference tables may be replaced with cross-
reference streams, which store this information in a compact binary format.

• Trailer: the trailer of a PDF file is essential for applications to quickly locate
the cross-reference table and other critical objects. The trailer’s structure is
as follows:

– trailer keyword, followed by the trailer dictionary.

– Trailer Dictionary (<< ... >>):

∗ /Size: (Required) total entries in the cross-reference table.

∗ /Prev: (Conditional) byte offset to previous cross-reference section.

∗ /Root: (Required) indirect reference to the document’s catalog.

∗ /Encrypt: (Conditional) encryption dictionary.

∗ /Info: (Optional) indirect reference to the document’s information
dictionary.

– startxref keyword, followed by the byte offset to the last cross-reference
section’s xref keyword.

– %%EOF: End-Of-File marker.

The trailer acts as a directory at the end of the PDF file, providing pointers
for navigation and interpretation.

18

Figure 1: Initial structure of a PDF file

4.2.3 Document Structure

A PDF document can be described as a hierarchy of objects contained in the body
section (see Section 4.2.2) of a PDF file.

The structure is built upon a root object, which is the document catalog and
acts as the central control point. The catalog in a PDF file serves as a guide for the
PDF reader. It directs the reader to the key elements like, for example, page tree,
which is essential for rendering the document’s pages. The page tree defines the
sequence of pages within the document through a nested structure of page tree nodes
and page objects. Page objects, the leaf nodes of this tree, contain attributes spe-
cific to each page, such as its dimensions, content and associated resources necessary
for rendering the pages.

Additionally, the document catalog may reference important dictionaries, such
as those related to logical structure (MarkInfo, StructTreeRoot) and security per-
missions (Perms). It can also include an OpenAction entry that specifies an action
to be executed when the document is opened, which can point to a JavaScript script
via an action dictionary with the /S /JavaScript type. Similarly, entries like AA

(Additional Actions), AcroForm (for interactive forms) and annotation objects may
also trigger JavaScript, enabling interactive behavior within the document.

These objects typically use an action dictionary with a /JS entry that holds the
script content, allowing dynamic behaviors based on user interaction or document
events.

Example: A minimal action dictionary embedded in the catalog to run JavaScript
on document open:

<< /OpenAction

<< /S /JavaScript

19

/JS (app.alert("Hello from PDF!");)

>>

>>

Another important entry that may appear in the document catalog is the /Meta-
data key. This entry points to a metadata stream object that contains XML-
encoded information following the Extensible Metadata Platform (XMP) specifica-
tion. This stream allows for the inclusion of structured and standardized metadata
describing the document, such as its title, author, language, creation date, modifi-
cation dates and more.

The referenced stream object typically includes the /Type /Metadata and the
/Subtype /XML entries, identifying it as a metadata container.

Example: A simplified metadata reference from the document catalog:

<<

/Type /Catalog

/Pages 2 0 R

/Metadata 12 0 R

>>

And the corresponding metadata stream:

12 0 obj

<< /Type /Metadata

/Subtype /XML

/Length 512

>>

stream

<x:xmpmeta xmlns:x="adobe:ns:meta/">

<!-- XMP metadata here -->

</x:xmpmeta>

endstream

endobj

This mechanism offers a flexible way to embed descriptive information within the
PDF, supporting features like searchability, indexing and document management.

4.2.4 Content Streams

A content stream in a PDF is a sequence of instructions that describe how graph-
ical elements should be painted on a page. These instructions follow the standard
PDF object syntax and must be interpreted sequentially. Each page in a PDF has
at least one content stream, and content streams can also be used to define reusable
graphical elements like forms, patterns, certain fonts and annotation appearances.
The instructions within a content stream consist of operands and operators, where
operands provide data, and operators specify actions, such as painting shapes or ren-
dering text. Operators must have their required operands immediately before them.

Since content streams cannot contain indirect object references, any external
objects they need, such as fonts or images, must be referenced through a resource

20

dictionary. A resource dictionary maps names to these external resources, ensuring
that a content stream can access fonts, images, color spaces, shading patterns, and
other graphical elements. In a resource dictionary each resource type is stored in
a subdictionary where specific resource names are associated with corresponding
PDF objects. This ensures that all resources required by a content stream are
clearly defined and accessible within its scope.

4.3 Incremental Updates

Incremental updates allow for efficient modifications to PDF files by appending
new data to the end, rather than rewriting the entire document. This method
significantly speeds up saving, especially for minor changes. For instance, editing
a page or adding an annotation results in new content being appended, with only
the modified portions updated (see Figure 2). This is particularly advantageous in
scenarios where overwriting the original file is not feasible, such as HTTP transfers.

The process involves updating the cross-reference section, which saves changes
to objects, including marking deleted objects without physically removing them.
Additionally, the trailer section is updated, containing a ’Prev’ entry that links to
previous cross-reference versions, enabling PDF readers to navigate through mul-
tiple updates. Consequently, a PDF might contain multiple versions of the same
object, with the cross-reference section directing the reader to the most recent one.
Beginning with PDF 1.4, the document catalog’s ’Version’ entry can also be up-
dated, facilitating version tracking. In essence, incremental updates provide a fast
and efficient way to modify PDFs without altering the original content, ideal for
environments requiring frequent and small edits.

Figure 2: Structure of an updated PDF file

21

4.4 Encryption in PDFs

Encryption in the PDF format is implemented through the use of a dedicated
dictionary structure, enabling document authors to restrict access and define us-
age permissions. Central to this mechanism is the Encrypt dictionary, which is
referenced in the PDF file’s trailer (see Section 4.2.2). Its presence indicates that
the document contents are encrypted and specifies the necessary parameters for in-
terpreting or decrypting the file. The dictionary includes several key entries, such
as Filter, which defines the security handler used for the encryption process
(commonly Standard), and V and R, which denote the version and revision of the
encryption algorithm, respectively. Other important fields include Length, which in-
dicates the encryption key length in bits, and the entries O and U, which are 32-byte
strings representing the owner and user passwords. These are used in combina-
tion with the permissions flag P to control what a user can or cannot do with the
document, such as printing, copying or modifying its content.

The encryption process typically applies to all strings and streams within the
file, ensuring that textual content, images and even embedded files are protected.
Depending on the document’s settings, metadata may also be encrypted. To manage
this, PDF encryption uses object-level encryption, where the encryption key is de-
rived by combining a document-level key with the object and generation numbers.
This design allows for consistent and secure decryption of each individual object
within the file.

The most widely used encryption method is the Standard Security Handler,
which relies on passwords to differentiate between user access (with limited permis-
sions) and owner access (with full control). When a PDF viewer opens an encrypted
document, it reads the Encrypt dictionary and attempts to derive the decryption
key using the supplied password. The specific decryption algorithm employed de-
pends on the version and revision values, which correspond to different levels of
security, from RC4 to AES encryption.

PDF encryption also supports Public-Key Security Handlers, offering an
alternative to traditional password-based methods. These handlers use different
algorithms to compute the encryption key and manage access permissions.

Furthermore, PDF 1.5 introduced crypt filters, which allow for finer control
over encryption. Crypt filters enable specific streams or parts of a document to
be encrypted differently or even excluded from encryption, providing more granular
security management.

In general, PDF encryption offers a flexible mechanism for securing content,
built directly into the document’s internal structure through dictionaries. Using
various security handlers, password protection, granular permission settings and
crypt filters, it supports both confidentiality and controlled access.

4.5 Metadata in PDFs

PDF documents can includemetadata, which is information that describes the doc-
ument itself rather than its visible content. These metadata help identify, categorize
and manage PDF files and can be divided into two main categories: document-
level metadata and object-level metadata.

22

Document-level metadata refers to information that describes the entire PDF
file. This may include the title of the document, the author’s name, subject, key-
words, creation date, modification date and the software used to generate the PDF.
Historically, this kind of metadata was stored in a structure known as the docu-
ment information dictionary. However, starting with PDF 1.4, Adobe introduced
a more flexible and extensible method for storing metadata: the metadata stream,
which uses XML formatted according to the Extensible Metadata Platform (XMP)
standard. From a structural point of view, the XMP metadata stream is stored as
a separate stream object within the PDF file and is referenced by the document
catalog (see Section 4.2.3) through the /Metadata key.

Object-level metadata, on the other hand, refers to individual components within
a PDF, such as images, fonts or embedded multimedia. This allows specific ele-
ments to carry their own descriptive information, which can be particularly useful
in complex or composite documents.

4.5.1 Example of dual Metadata representation

Consider a PDF document that was created on March 15, 2024, modified on April 1,
2024, authored by “Jane Doe,” titled “Climate Data Report,” and generated using
Adobe Acrobat Pro.

• The document information dictionary might contain:

<<

/Title ()

/Author ()

/CreationDate (D:20240315120000Z)

/ModDate (D:20240401113000Z)

>>

• In contrast, the metadata stream would include a richer XMP packet like
the following (simplified for illustration):

<x:xmpmeta xmlns:x="adobe:ns:meta/">

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

<rdf:Description rdf:about=""

xmlns:dc="http://purl.org/dc/elements/1.1/"

xmlns:xmp="http://ns.adobe.com/xap/1.0/"

xmlns:pdf="http://ns.adobe.com/pdf/1.3/">

<dc:title>

<rdf:Alt>

<rdf:li xml:lang="x-default">Climate Data Report</rdf:li>

</rdf:Alt>

</dc:title>

<dc:creator>

<rdf:Seq>

23

<rdf:li>Jane Doe</rdf:li>

</rdf:Seq>

</dc:creator>

<xmp:CreateDate>2024-03-15T12:00:00Z</xmp:CreateDate>

<xmp:ModifyDate>2024-04-01T11:30:00Z</xmp:ModifyDate>

<pdf:Producer>Adobe Acrobat Pro</pdf:Producer>

</rdf:Description>

</rdf:RDF>

</x:xmpmeta>

This example shows how both traditional and modern metadata mechanisms can
coexist within a single PDF. While the document information dictionary provides
minimal date-related metadata, the metadata stream delivers a more comprehensive
and structured description.

4.6 Identification of Watermarks

In the context of the PDF, a watermark is a visible graphic or textual element
layered over or behind the page content. Watermarks are commonly used to provide
additional information about the status of the document, such as ’Confidential,’
’Draft,’ or company logos, and are meant to be visible to the reader.

Unlike some other formats, PDF does not define a dedicated object type named
watermark. Instead, watermarks can be implemented in various ways using standard
PDF features:

• Content stream watermarks : drawn directly onto the page within the content
stream.

• Annotation-based watermarks : defined using page annotations, which are lay-
ered over the page content. These may include transparency or interactive
features.

• Optional Content Groups (OCGs): introduced in PDF 1.5 and standardized
in PDF 2.0, OCGs allow certain content, such as a watermark layer, to be
dynamically shown or hidden in the viewer.

Even without opening a PDF in a viewer, the presence of a watermark can
often be identified by inspecting internal structures such as page content streams,
annotations or OCGs. These elements may contain visible text or images labeled as
watermarks, or refer to layers selectively rendered by the viewer. Automated tools
or custom scripts can scan these object structures for indicators of watermark use.

24

5 Digital Signatures in PDFs

With the widespread use of digital documents in both personal and professional
contexts, ensuring the authenticity and integrity of files has become increasingly
important. Digital signatures provide a cryptographic solution that allows users
to verify the origin of a document and confirm that it has not been tampered after
signing. Among various formats, PDFs are widely adopted for contracts, reports
and official communications, making them a common target for applying digital
signatures. This section introduces the fundamental concepts of digital signatures
and explores how they are specifically implemented within PDF documents.

5.1 Understanding Digital Signatures

Digital signatures are a core cryptographic tool used to ensure secure commu-
nication, particularly in the contexts of authentication, authorization and non-
repudiation [37].

They serve to confirm the identity of the signer and provide proof that the signer
cannot deny having signed a specific document or message [6].

Public-key cryptography forms the basis for digital signatures. In order to gen-
erate a verifiable signature, the signer must have a signing certificate which cor-
responds to an association between their identity and a particular public key. The
certificate is issued by a trusted party, known as Certificate Authority (CA)and
can be expired, renewed or revoked following the CA verification policy.

Digital signatures are used in two primary operations: (i) signing a message us-
ing the private key, and (ii) verification of that message by using the corresponding
public key to verify the authenticity as well as integrity of the signature.

Digital signatures offer three main types of guarantees:

• Authentication: ascertains the source of the message, will affirm who sent
it.

• Integrity: verifies that the content has not been changed since it was signed.

• Non-repudiation: guarantees that the signer cannot deny that it had pushed
a signature into document.

In addition, digital signatures may optionally contain a trusted timestamp
from an Time Stamping Authority(TSA). This timestamp evidences the time at
which the document was signed, and permits verification of the timestamp even after
the certificate of the signer has expired. This is particularly critical for validation
over long timescales (as in an archival or legal context).

The particular hash functions, encryption methods and other cryptographic tech-
niques used vary from one digital signature implementation to the other and may
depend on an underlying application or system. The maind igital signature schemes
are:

• ECDSA (Elliptic Curve Digital Signature Algorithm): a digital signa-
ture algorithm that provides good security with relatively short keys, which is
desirable for modern application.

25

• PKCS#1 (Public-Key Cryptography Standards #1): specifies the
RSA-based cryptographic signature scheme widely used in PDF digital sig-
natures and other document formats, and thereby lending both compatibility
and solid cryptographic assurance.

• DSA (Digital Signature Algorithm): a US federal standard proposed by
the NIST relying on discrete logarithms. It is not widely used today, but still
available in most cryptographic libraries.

• EdDSA (Edwards-Curve Digital Signature Algorithm): a fast, modern
digital signature scheme that provides high security and it is being widely used
in secure communication and cryptographic schemes.

5.1.1 The Signing Phase

The signing phase is required to create and attach a valid digital signature to the
original document.

As shown in Figure 3, this phase consists of the following steps:

1. The document to be signed is retrieved.

2. A hash function is used to create a unique fingerprint of the document.

3. The resulting hash value is encrypted using the signer’s private key.

4. The result of the encryption is the signature, which can be attached to the
original document.

5. At this point, the document, composed of the original content and the digital
signature, is considered signed and can be sent to the receiver.

Figure 3: Signing Phase [53]

26

5.1.2 The Verification Phase

The verification phase is necessary to validate the authenticity of the digital
signature.

This phase includes the following steps, as shown in Figure 4:

1. The digitally signed data, the original document along with the digital signa-
ture, is received.

2. The original document (excluding the digital signature) is hashed, and the
resulting value is stored.

3. The digital signature is extracted and decrypted using the sender’s public
key, which is retrieved through the associated certificate. The result of this
decryption is stored.

4. Finally, if the result of the hashing and the result of the decryption match,
the verification is successful and confirms authenticity, integrity and non-
repudiation.

Figure 4: Verification Phase [53]

5.2 Implementation of Digital Signatures in PDFs

Digital signatures in PDF files are implemented using standardized cryptographic
mechanisms. These mechanisms rely on well-established standards, particularly the
Cryptographic Message Syntax (CMS), also known as PKCS#7, as defined

27

in RFC 2315 [48]. CMS provides a general syntax for data that can be cryptograph-
ically signed or encrypted, and it is the core format used to encapsulate digital
signature data in PDF documents.

5.2.1 Structure of Public- Key Cryptography Standards #7

PKCS#7 is structured using Abstract Syntax Notation One (ASN.1), a formal
language that describes data structures for representing, encoding and decoding data
independently of programming languages. The encoding of these structures is done
using either the Basic Encoding Rules (BER) or the Distinguished Encoding Rules
(DER). BER provides flexibility in encoding, while DER imposes stricter rules that
guarantee a unique encoding, this determinism is critical for ensuring the integrity
of digital signatures during validation.

In PKCS#7,the ContentInfo structure is the core element acting as a container
to connect a content type with the corresponding value(s). In the context of digital
signatures, the content type itself is set to SignedData, meaning whatever data is
in there has been signed.

ContentInfo ::= SEQUENCE {

contentType ContentType,

content [0] EXPLICIT ANY DEFINED BY contentType OPTIONAL

}

ContentType ::= OBJECT IDENTIFIER

The contentType field includes a so-called object identifier (OID) that defines
which format the content has, including a signedData or an envelopedData for
instance, whereas the optional content contains the payload itself in some agreed
fashion referring to some data or textual representation. The format of this payload
depends on the content type, (e.g. in signedData it is the data to be signed and
in envelopedData it is the encrypted data). This modularity permits PKCS#7 to
support different kinds of content, while preserving a uniform top-level syntax.

When the content type is signedData, the associated structure includes all the el-
ements necessary for verifying a digital signature. It encapsulates not only the signed
content but also the cryptographic metadata and information about the signers.

SignedData ::= SEQUENCE {

version Version,

digestAlgorithms DigestAlgorithmIdentifiers,

contentInfo ContentInfo,

certificates [0] IMPLICIT ExtendedCertificatesAndCertificates OPTIONAL,

crls [1] IMPLICIT CertificateRevocationLists OPTIONAL,

signerInfos SignerInfos

}

The SignedData structure includes a version number, a list of digest algorithms
used by the signers, and a nested ContentInfo structure that contains or refer-
ences the data being signed. Additionally, it may include the signer’s certificate

28

chain (certificates), any associated certificate revocation lists (crls), and a set
of signerInfos elements that detail the specific attributes of each signer.

The signerInfos field contains a collection of SignerInfo structures. Each
individual signer is represented using a SignerInfo structure, which specifies the
identification of the signer, the hash algorithm used and the actual digital signature
(the encrypted digest). It may also include optional signed and unsigned attributes
that provide additional metadata or functionality.

SignerInfo ::= SEQUENCE {

version Version,

issuerAndSerialNumber IssuerAndSerialNumber,

digestAlgorithm DigestAlgorithmIdentifier,

authenticatedAttributes [0] IMPLICIT Attributes OPTIONAL,

digestEncryptionAlgorithm DigestEncryptionAlgorithmIdentifier,

encryptedDigest EncryptedDigest,

unauthenticatedAttributes [1] IMPLICIT Attributes OPTIONAL

}

In this structure, the issuerAndSerialNumber field is used to identify the signer
by making an indirect reference to the certificate. The digestAlgorithm identifies
the hash function applied to the content of the document, and optionally is included
with authenticatedAttributes (e.g. signing time or document hash) before it is
encrypted with the private key of a signer. The Encrypt operation is performed, and
the result of it is placed in encryptedDigest, which is a digital signature, itself. The
unauthenticatedAttributes field might include additional information, outside
the scope of the signature.

5.2.2 Embedding PKCS#7 Signatures in PDF Files

For security in PDF documents, the digital signatures are encapsulated using PKCS#7.
This encapsulated structure is included into the PDF by using a special signature
mechanism.

When a PDF is signed, a Signature Dictionary is included in the document,
usually as an interactive form field (whose type is /Sig). This dictionary is a bucket
of metadata and cryptographic info to hold the signature, and points to a PKCS#7
SignedData object.

The Signature Dictionary include:

• /Type: specifies the type of object that, for digital signatures, usually is /Sig.

• /Filter: identifies the signature handler that was used to create the signa-
ture, such as Adobe.PPKLite. A signature handler is a software module
responsible for managing the signing process, including creating the signature,
interfacing with cryptographic libraries and embedding the PKCS#7 data into
the PDF structure.

• /SubFilter: indicates the format of the signature. Common values include:

29

– adbe.pkcs7.detached – the signature is stored separately from the signed
content. This is the most commonly used method in PDF signatures.

– adbe.pkcs7.sha1 – the signed content is hashed using SHA-1 and in-
cluded within the PKCS#7 container. This method is deprecated.

– ETSI.CAdES.detached – used for qualified electronic signatures, espe-
cially under EU eIDAS regulations.

• /ByteRange: an array defining the exact byte offsets of the signed content
in the file. This ensures that the cryptographic hash, as shown in Figure 5,
covers the intended parts of the document and explicitly excludes the signature
contents themselves.

• /Contents: this field, as shown in Figure 5, stores the DER-encoded and hex-
encoded PKCS#7 SignedData object, which includes the digital signature,
certificate chain and optional attributes.

• /Reason: a string indicating the reason for signing the document.

• /M: the signing time in PDF date format.

• /ContactInfo: optional field to provide the signer’s contact information.

• /Location: indicates where the signing took place, if applicable.

• /Name: the name of the signer or signing authority.

In the case of adbe.pkcs7.detached, the digital signature (the PKCS#7 Signed-
Data structure) is cryptographically associated with the document contents but
does not include a copy of it in the signature container itself. Instead, only a hash
(digest) of portions of the document as identified by /ByteRange is signed using the
private key of the signer.

Which means that the SignedData structure holds only the digest and metadata
(certificate, signing time, etc.), but not the document content itself at least inside
of the signature block. During verification, the signed byte ranges of the document
are rehashed and compared with the decrypted digest from the signature.

This approach allows the original content to remain external and unchanged
while ensuring integrity and authenticity. The advantage is that it reduces re-
dundancy and avoids embedding large document data directly into the signature
structure, which improves efficiency, especially for documents with large size.

PDF signatures can also include a trusted timestamp issued by a Time
Stamping Authority (TSA). This timestamp is typically included as an au-
thenticatedAttribute in the SignerInfo structure of PKCS#7. It proves that the
document was signed at a specific time and is especially useful for long-term valida-
tion (LTV), where the certificate may later expire or be revoked.

By incorporating PKCS#7 signatures in a standardized way, PDF documents
ensure better interoperability, security, and alignment with legal standards for digital
signatures.

30

Figure 5: Example of Signature

5.3 Multiple Signatures and Incremental Updates

PDF documents support multiple digital signatures through a mechanism called
incremental updates, which appends changes to the end of the file rather than
modifying the existing content. This feature is fundamental to the secure addition
of multiple signatures as shown in Figure 6: each new signature is added as an in-
cremental update, leaving previous content and its associated signatures, untouched
and fully verifiable.

Figure 6: Multiple Signatures and Incremental Updates

Each PDF digital signature only covers the particular byte ranges specified at
the time it was signed. This ensures that:

• Previous signatures remain valid even when new ones are added.

31

• The full history of modifications and signatures can be reconstructed and
audited.

• Each signer only takes responsibility for the state of the document as it existed
at their time of signing.

With the addition of a second or subsequent signature, a new /Sig form field
is created and the new structure is added to the end of the file (see Figure 6).
The /ByteRange of the new signature refers to the document up to this point, i.e.
including previous signatures.

This append-only behavior provides the following strong guarantees:

• Signed content is tamper-evident, as any change in the signed data will fail to
verify the signature.

• Signature changes are saved directly into the file, tracking and auditing the
signing history have never been easier.

• PDF viewers can also display a signature panel displaying the validity of each
signature and the details about the signer.

This implementation with PKCS#7 encapsulation and incremental update al-
lows PDFs to be able to support workflows with multiple signers yet still preserve
the strong cryptographic guarantees that had been achieved.

5.3.1 Certifying Signatures and Approval Signatures

PDF supports a signature type often referred to as a certifying signature, which is
typically the first signature applied to a document. This signature designates the
document as final or sets restrictions on the types of modifications allowed afterward
(e.g. filling out form fields or adding comments).

Although only one certifying signature is permitted, additional signatures, com-
monly known as approval signatures can be inserted, provided that they do not
violate the constraints established by the original certifying signer. Approval sig-
natures are commonly used by other participants to indicate that they have read,
approved of or explicitly agreed to the document in its current state.

5.3.2 Example of Multiple Signatures

Consider a PDF contract that is signed by two parties, Alice and Bob, sequentially.

1. Alice signs the document:

• Her signature field, Sig1, is added.

• A ByteRange is created to cover the entire document except for the
/Contents of Sig1.

• A PKCS#7 SignedData object is embedded, referencing Alice’s certifi-
cate and her signature.

32

• All changes are saved as an incremental update, preserving the original
document state.

2. Bob signs afterward:

• A new signature field, Sig2, is created.

• His ByteRange now spans the original document plus the incremental
update added by Alice.

• Bob’s PKCS#7 signature covers all content up to the point just before
his /Contents field.

• His signature is appended in a second incremental update, preserving
Alice’s signature untouched.

Both signatures can now be independently verified:

• Alice’s signature validates against the original state of the document.

• Bob’s signature validates against the document as it existed after Alice signed.

5.4 Extracting and Verifying Signatures

Verifying a digital signature in a PDF involves both structural analysis of the doc-
ument and cryptographic validation of the signature. If a PDF contains multiple
signatures, each one corresponds to a different revision of the document and must
be independently extracted and validated.

5.4.1 Signature Extraction

PDF digital signatures are stored in /Sig fields, which are embedded within inter-
active form fields defined in the document’s /AcroForm dictionary. The extraction
process typically involves:

• Locating all form fields of type /Sig via the /AcroForm entry in the document
catalog. The /AcroForm is a dictionary that defines interactive form elements
in the PDF, including signature fields, text fields and checkboxes.

• For each signature field:

– Extracting the /ByteRange, which specifies the exact byte offsets of the
signed portions.

– Reading the /Contents, which contains the DER-encoded PKCS#7 sig-
nature.

– Parsing additional metadata such as /Name, /Reason, /Location, and /M

(modification time).

Multiple signatures are supported through incremental updates: each new sig-
nature appends data to the end of the PDF without modifying previously signed
content. Each signature thus references the state of the document at the time it was
created, enabling independent validation of each revision.

33

5.4.2 Signature Verification

The process of verifying a PDF signature includes:

1. Recomputing the hash of the signed byte ranges using the specified digest
algorithm (e.g., SHA-256). The hash algorithm used is typically indicated by
the digestAlgorithm field within the SignerInfo (see Section 5.2.1).

2. Decoding and validating the PKCS#7 signature from the /Contents field.

3. Comparing the computed hash with the one embedded in the signature, which
is decrypted from the encryptedDigest field in the SignerInfo structure, to
confirm the document’s integrity.

4. Validating the signer’s certificate embedded in the SignerInfo structure:

• Ensuring a valid certificate chain up to a trusted root authority.

• Checking expiration and revocation status using OCSP (Online Cer-
tificate Status Protocol) or CRL (Certificate Revocation List).

5. Validating timestamps, if a trusted timestamp is included via a Time Stamp-
ing Authority (TSA), to confirm the signing time and support Long-Term
Validation(LTV).

If there are multiple signatures in the document, then each must be validated
independently with respect to the revision they reference.

Several tools and libraries facilitate the extraction and validation of PDF signa-
tures:

• Adobe Acrobat: offers a graphical interface that displays trust status, cer-
tificate chains and document revisions associated with each signature.

• PyHanko: a modern Python library for digital signatures verification, times-
tamp validation and even for multiple signatures and long-term validation.

• iText and Apache PDFBox: two Java libraries used to interact program-
matically with PDF signatures and verification.

5.4.3 Example of an Embedded PDF Signature

Below is an example of a signature object embedded in a PDF:

/Sig <<

/Type /Sig

/Filter /Adobe.PPKLite

/SubFilter /adbe.pkcs7.detached

/ByteRange [0 12345 67890 13579]

/Contents <308206a830820590a0030201...>

/Reason (Approved for release)

/M (D:20240406143000+01’00’)

34

/Name (John Doe)

/Location (Berlin, Germany)

>>

In this structure:

• The /ByteRange indicates which parts of the document are covered by the
signature.

• The /Contents field holds the PKCS#7 signature, which contains the en-
crypted digest and certificate chain.

• Signature objects allow for additional human-readable fields (like an /Reason,
or a /Name and /Location) to provide context about a signature.

A document can include any number of these structures, which represent indi-
vidual signing events and document versions. PDF viewers and verification tools use
this information to determine the validity and integrity of each individual signature.

35

6 Emails and Posta Elettronica Certificata (PEC)

Electronic communication is fundamental to modern society. Among its many forms,
emails represent a cornerstone of both personal and professional interaction. In
Italy, the Posta Elettronica Certificata (PEC) provides a legally recognized,
certified email system that supplements traditional email with enhanced legal guar-
antees. Both emails and PEC are critical sources and subjects of digital forensic
investigations, relevant in fraud, phishing, data breaches and legal disputes. A thor-
ough understanding of their structures, mechanisms, and vulnerabilities is essential
for forensic experts.

6.1 Emails

Email, or Electronic Mail, is a fundamental technology of digital communication,
enabling the exchange of messages across distributed networks. Its architecture fol-
lows a client–server model combined with a store-and-forward mechanism, ensuring
reliable message delivery even when recipients are temporarily unavailable.

6.1.1 Core Architectural Components

The email system is composed of several interacting components that collectively
manage message creation, transmission and retrieval.

• Mail User Agent (MUA): the application used by end users to compose,
send, receive and organize email messages. Common examples include Gmail,
Microsoft Outlook and Mozilla Thunderbird. The MUA provides the user
interface and formats messages with appropriate headers and body content
ensuring consistency.

• Mail Submission Agent (MSA): acts as an intermediary between the MUA
and the Mail Transfer Agent (MTA). It verifies and queues messages before
they are sent, ensuring compliance with transmission standards and error-free
delivery preparation.

• Mail Transfer Agent (MTA): responsible for routing and transmitting
emails between mail servers across domains using the Simple Mail Transfer
Protocol (SMTP) [33]. Each transfer between MTAs is recorded in the mes-
sage header, allowing traceability of the email path.

• Mail Delivery Agent (MDA): receives messages from the MTA and stores
them in the recipient’s mailbox. It ensures that messages are correctly placed
in user-specific storage and made accessible through retrieval protocols such
as IMAP [13] or POP3 [40].

• Message Store: the persistent storage system that maintains emails until
they are accessed by the recipient. It supports functions such as folder man-
agement, search and synchronization across multiple devices.

36

The transmission, storage and retrieval of email messages rely on a set of well-defined
protocols that operate across different stages of communication:

• Simple Mail Transfer Protocol (SMTP): the primary protocol for sending
messages between clients and mail servers or between servers themselves [33].
It typically operates over ports 25, 465, 587 or 2525 and supports secure trans-
mission through TLS/SSL encryption.

• Internet Message Access Protocol (IMAP): enables users to access and
manage emails directly on the mail server, allowing synchronization across
multiple devices and clients [13]. IMAP operates on port 143 for unencrypted
connections and port 993 for encrypted communications.

• Post Office Protocol Version 3 (POP3): used to fetch email from a mail
server onto a user’s client computer [40]. Unlike IMAP, POP3 generally down-
loads and removes messages from the server after retrieval. It uses port 110 for
unencrypted traffic and port 995 for encrypted (SSL/TLS) communications.

These components and protocols together comprise a resilient infrastructure that
guarantees the transmission, delivery and retrieval of messages over distributed net-
works.

6.1.2 Email Message Structure

Every email message is divided into two major components: the header and the
body. These components are defined by Internet standards such as RFC 5322 [46]
and RFC 2045–2049 [24, 25].

The header is an organized chunk of metadata at the top of each message. This
is used to carry crucial routing and authentication information. Common header
fields include:

• From: the sender’s email address.

• To, Cc, Bcc: the primary, carbon copy, and blind carbon copy recipients.

• Date: the timestamp of sending the message.

• Subject: the title or subject of the message.

• Message-ID: a globally unique identifier assigned by the sender’s system.

• Received: a list of entries recording the mail servers that the message tra-
versed.

• Return-Path: the address to which delivery errors or bounces are sent to.

• Authentication Fields: fields such asDKIM-Signature, SPF, andAuthentication-
Results, which indicate domain authentication and message integrity status [34,
32, 35].

37

The header serves as a critical element for message delivery and for subsequent
forensic or security analysis.

The body of the email contains the actual content of the message, which may
include text, HTML-formatted content and attachments. Modern email messages
utilize the Multipurpose Internet Mail Extensions (MIME) standard to handle dif-
ferent content types and encode file attachments [24, 25]. The different types of
body content are:

• Plain Text: unformatted text suitable for simple communication.

• HTML: richly formatted content that may include images, links and styling.

• Attachments: files of any type encoded and included as distinct MIME parts.

A blank line separates the header and body, and their proper structure ensures
compatibility between mail clients as well.

6.2 Forensic Considerations in Email Analysis

Email forensics involves the examination and interpretation of email artifacts to
verify authenticity, trace message origins and detect tampering or malicious activity.
A systematic forensic investigation typically focuses on the following aspects:

• Header Analysis: by examining the sequence of Received fields, investiga-
tors can reconstruct the transmission path of the message, identify the origi-
nating IP address and detect anomalies such as forged or manipulated headers.

• Authentication Verification: analysis of authentication mechanisms such
as SPF, DKIM and DMARC helps confirm whether the sender’s domain le-
gitimately authorized the message, thereby identifying spoofing or phishing
attempts [34, 32, 35].

• Timestamp and Routing Consistency: discrepancies between message
timestamps on relay servers can indicate a manipulation of the message.

• Detection of Tampering: missing or malformed headers, irregular message
formatting and inconsistencies between header data and message content may
indicate tampering or the use of nonstandard email tools.

• MIME Structure Inspection: examination of the MIME structure ensures
that message bodies and attachments correspond accurately to header infor-
mation and have not been altered post-transmission [24, 25].

A full-featured forensic analysis of email headers and bodies offers insight into the
veracity of a message, facilitating technically involved and legal investigations.

38

6.3 Posta Elettronica Certificata (PEC)

The Posta Elettronica Certificata (PEC) is a legally recognized certified email
system used in Italy to ensure that electronic communications have the same legal
validity as registered postal mail with proof of delivery [50, 44]. It was introduced
by the Decreto del Presidente del Consiglio dei Ministri (DPCM) 2 novembre 2005
and is currently governed and supervised by AgID (Agenzia per l’Italia Digitale).

The PEC system extends the traditional email model by integrating crypto-
graphic mechanisms, certified delivery receipts and mandatory logging, thereby guar-
anteeing integrity, authenticity and non-repudiation of messages.

6.3.1 PEC Architecture and Transmission Flow

The PEC infrastructure is composed of certified providers (Gestori PEC), users’
clients and legally binding receipt mechanisms. It operates through the following
entities:

• Sender’s PEC Provider: it receives the message from the sender’s client,
checks its structure and creates a “ricevuta di accettazione” (acceptance re-
ceipt) digitally signed with the provider’s certificate.

• Transport Network: uses standard SMTP transmission [33] within a closed,
certified domain environment. Each message is encapsulated in a secure con-
tainer ensuring cryptographic integrity.

• Recipient’s PEC Provider: verifies the digital signature and integrity of
the message, then issues a “ricevuta di avvenuta consegna” (delivery receipt),
also digitally signed.

• Recipient’s PEC Client: retrieves the message and receipts via IMAP or
POP3 protocols [13, 40], with all metadata and digital envelopes preserved.

During transmission, PEC providers log every transaction (including timestamps,
message IDs and cryptographic hashes) in their internal systems, maintaining these
logs for a minimum of 30 months [5]. Each stage is cryptographically verifiable,
ensuring end-to-end traceability.

6.3.2 Message Composition and Legal Receipts

A PEC message is built upon a standard email structure [46] and extended with
legal metadata. It consists of:

• Original Message: the content created by the sender, formatted as a MIME
email [24, 25].

• Transport Envelope: a cover digitally signed by the sending provider with
the original message as an attachment called postacert.eml.

• Receipts:

39

– Ricevuta di accettazione: indicates that the sender’s provider has ac-
cepted the message.

– Ricevuta di avvenuta consegna: acknowledges that the recipient’s provider
has successfully delivered it.

– Ricevuta di mancata consegna: issued in the event of failure specifying
the cause for non-delivery.

Each receipt is an email that has been digitally signed using X.509 certificates and
sent as a separate PEC message. Both acceptance and delivery receipts are definitive
legal evidence that the message was indeed dispatched as well as received.

6.3.3 Cryptographic Structure and Verification

PEC relies on asymmetric cryptography from Public Key Infrastructure (PKI)
for authenticity and integrity. Certified providers hold digital certificates issued by
accredited Certification Authorities (CA), and every receipt or envelope is signed
with these credentials. For forensic verification:

• The digital signature of each envelope (.p7m) requires verifying with its related
CA chain.

• The internal message (postacert.eml) should be extracted and analyzed sep-
arately.

• Timestamps in the signature metadata need to be consistent with those present
in provider logs and message headers.

All these artifacts collectively prove message integrity, sender authenticity and the
sequence of transmission events.

6.3.4 Forensic Workflow and Evidentiary Value

From a forensic perspective, PEC communications are very reliable evidence sources,
because there is a recorded and cryptographically signed step of each transaction.
A typical forensic procedure includes:

• Acquisition: acquiring the whole PEC message (.eml or .p7m) keeping orig-
inal signature and metadata.

• Verification: checking certificate and signatures via trusted CAs; comparison
of message hashes.

• Timeline Reconstruction: reconstructing a provable chain of communica-
tions by cross-referencing message headers, service receipts and log entries.

As PEC having legal certified time stamps and provider signed evidence, It is ac-
ceptable as digital proof of communication. But the messages have to be treated
very carefully by investigators while maintaining cryptographic integrity and for not
destroying legal validity.

40

6.3.5 Limitations and Interoperability

Despite its robustness, PEC has some constraints:

• It is limited to Italy and a few compatible European systems (e.g. eIDAS-
compliant certified delivery services).

• PEC addresses can be handled only by accredited suppliers of AgID.

• Interoperability with non-PEC systems (e.g. Gmail, Outlook.com) may result
in loss of legal certification.

To summarize, PEC is a reliable legal communication infrastructure built upon
widely used email standards with added cryptographic protection, and it has been
conceived as the new channel for administration-digital ready services in Italy.

41

7 PDF Attack Techniques and Forensic Analysis

7.1 PDF Metadata

PDF documents often contain embedded metadata that can reveal critical infor-
mation about their origin, structure and usage history. From a digital forensic
perspective, metadata can serve as a valuable source for establishing timelines, at-
tributing authorship, identifying suspicious activities and detecting potential cyber
threats.

Several types of PDF metadata exist:

• Document Information Dictionary: that contains standard fields, such
as Title, Author, Subject, Keywords, CreationDate and ModDate. This
information can often be seen in PDF readers, or extracted with forensic tools.

• XMP Metadata Streams: PDFs may include XML-based metadata using
the eXtensible Metadata Platform (XMP), providing more detailed and struc-
tured information, including custom schemas and XML namespaces (unique
identifiers, usually a URL, that qualify the names of elements and attributes
in an XML document to avoid naming collisions) added by editing software.

• File System Metadata: timestamps from the file system (creation, modifi-
cation, access), associated with each file, provide context about the file on a
host machine and help correlate activity on that system.

• Embedded Content Metadata: metadata embedded in files (e.g., images,
documents, multimedia) could contain application-specific information (EXIF
in images, office document properties), which can also help attribution or
detection.

• Object Structure Metadata: inside a PDF document object structure, we
may find entries like /OpenAction, /AA (used to specify event-driven actions
other than those in /OpenAction) or /JS which allows JavaScript execution
on opening, each indicating potentially malicious actions.

Each of the above types of metadata can be useful for forensic investigators in
different ways:

• Establishing Timelines: comparing timestamps from various artifacts, such
as the Document Information Dictionary (e.g., /CreationDate), XMP meta-
data, and file system timestamps show discrepancies that might indicate tam-
pering, repackaging or staged file creation.

XMP metadata is often considered the most reliable, as it is typically gener-
ated and updated automatically by editing software and is harder to modify
casually. In contrast, the Document Info Dictionary can be easily edited using
PDF manipulation tools and file system timestamps may change simply due
to copying or moving the file.

For example, a PDF may have a /CreationDate of 2024-12-10T15:30:00Z,
an XMP creation date of 2023-11-01T11:00:00Z and a file system creation

42

timestamp of 2025-01-05T08:20:00Z. This discrepancy could indicate that
the document was modified or backdated to mislead investigators about its
origin or activity timeline.

• Attribution: metadata fields such as author name, last editor, language set-
tings and originating software can provide leads to identify the document’s
creator or point of origin.

• Malicious Intent Detection: signs can come in the form of documents
generated by suspect or anonymizing software, the presence of embedded script
or metadata which does not match system logs.

• Reconstructing Document History: changes to metadata fields between
different versions of the same file (that may have been versioned through in-
cremental updates) or suspicious addition of a new objects (e.g. embedded
executable) can be exploited in order to reconstruct the file history and iden-
tify unauthorized alterations.

For instance, an investigator may determine that a prior version of the PDF
(which is stored in an incremental update) does not include JavaScript; how-
ever, a subsequent appended object contains a /JS entry with obfuscated code.
Furthermore, a modification in the Producer field from version to version
(from “Microsoft Word” to “PDF Editor Pro”) could make us suspect that
the document was modified by external tools not originally used in the creation
of the document, meaning it has been manipulated.

• Localization Clues: metadata may contain information such as language
settings, time zone offsets and system locale, which can help profile the source
environment or infer the regional origin of the document or threat actor.

For instance, working on a document in an application in ru-RU locale with a
time zone of Moscow can suggest the document was made somewhere where
Russian is spoken.

Malicious actors may attempt to manipulate or erase metadata to evade detection.
Common techniques include:

• Manual editing or removal using specialized on purpose tools.

• Forging timestamps to match file creation with legitimate activity.

• Metadata hiding either through obfuscation or definition in an encoded form
to evade analysis tools.

Analysts are forced to cross-reference multiple levels of metadata and file attributes
to determine if a piece of content was authentic or tampered with.

43

7.1.1 Real-World Example

PDF-based attacks often exploit vulnerabilities via embedded scripts or malicious
payloads. For instance, the CVE-2013-3346 [42] exploit used embedded JavaScript
to trigger a vulnerability in Adobe Reader, allowing remote code execution when
the file was opened. In such cases, forensic analysis of metadata and structure, such
as the presence of suspicious /OpenAction or /JS entries, was key to detecting and
understanding the attack vector and tracing its origin.

7.2 Embedded JavaScript

One of the most common techniques used in malicious PDFs involves embedding
JavaScript code directly into documents. Attackers utilize the PDF specification’s
support for scripting to automatically execute code when the document is opened
or interacted with. This is typically achieved via entries such as /OpenAction, /AA,
and /JS (see Section 4.2.3).

Embedded JavaScript can be abused in several ways:

• Redirection to Malicious Websites: scripts can automatically open a
browser window or silently send HTTP requests to a malicious server, leading
the victim into phishing pages or drive-by download websites, which are mali-
cious or compromised websites that automatically download and often execute
harmful software onto a visitor’s device without the user explicitly agreeing or
even realizing it.

• Exploitation of PDF Viewer Vulnerabilities: by generating JavaScript
payloads, an attacker can take advantage of memory corruption vulnerabilities
(such as buffer overflows or use-after free bugs) in the PDF reader’s JavaScript
implementation. These exploits can lead to the execution of arbitrary code on
the victim’s system.

Some examples are:

– Adobe Reader - CVE-2008-2992[41]: a vulnerability in the JavaScript
function util.printf() allows an attacker to trigger a stack buffer over-
flow using a format string like "%5000f". This can overwrite exception
handlers and redirect execution flow to attacker-supplied code.

– PDFium (Chrome) – CVE-2015-1282[43]: use-after-free issues in
functions such as Document::delay enable potential denial of service or
unspecified impact via maliciously crafted PDF files.

• Automatic File Downloads & Execution: an malicious Javascript code
could download additional payloads (e.g. trojans, ransomware) from remote
servers. In certain instances, the attackers use vulnerabilities to escape from
any sand box in order to save and run the malware locally.

• Data Exfiltration: scripts can be used to capture system information, enu-
merate installed software or read cached credentials and then send this data
to an attacker-controlled server.

44

• Social Engineering via Interactive Forms: some PDFs can have form
fields or pop-up dialog boxes enable using JavaScript which makes the user
enter sensitive information (such as, for example, passwords and bank details),
which is then sent to the attacker.

Because JavaScript execution in PDFs is often hidden from the user and trig-
gered by document events (e.g. opening, scrolling, clicking), these attacks can be
highly effective and difficult to detect without proper security controls. Analysts
must examine suspicious object entries and extract JavaScript code using special-
ized tools. Carefully analyzing the JavaScript and observing its behavior are crucial
for understanding the PDF’s true intent. Comparing it with known vulnerabilities
(CVEs) and looking at when the JavaScript was added through incremental updates
can also help with attribution and detection.

7.3 Embedded Files and Launch Actions

The PDF format allows to embed files of different types (e.g. executables, Office
documents, scripts or other PDFs) with the /EmbeddedFiles dictionary. Attack-
ers frequently took advantage of this feature to hide their malicious payloads in
what otherwise appeared to be safe documents, essentially transforming an innocent-
looking PDF into a toolkit for malware delivery. The /Launch action allows to open
the embedded file when opening the pdf or clicking on specific elements (in a button
or a link, for example).

In terms of standards, if PDF/A-compliant PDFs would only be allowed to
embed other PDF/A files for archival purposes, with PDFA-3 the possibility is
given to include any sort of file type into a document. While this has legitimate
uses when attaching items like invoices or spreadsheets, it’s also quite dangerous:
if he wants, an attacker can insert an executable, a macro-enabled Office document
or a trojanized archive filled with viruses and wrap the PDF around all of them as
delivery medium.

In the real world, malicious PDF files often pack a few techniques together,
such as JavaScript opening a /Launch action automatically or unpacking the em-
bedded payload at runtime and running it. So it is important to examine the
/EmbeddedFiles dictionary and any launch actions of them can be helpful in find-
ing hidden flaws. Relating these discoveries to known news such as CVEs or possi-
ble exploit techniques improves attribution of threat and helps preventing attacks.
Researches can extract any embedded objects and filter their hashes for malware
scanning. Looking for /Launch entries, uncommon MIME types, or excessively
large/obfuscated objects can help to uncover delivered hidden payloads. Analysts
can sometimes figure out when an object was added by comparing timestamps and
versions.

7.4 Exploitation of Reader Vulnerabilities

Attackers often craft PDFs to exploit vulnerabilities in specific reader software ver-
sions. These vulnerabilities can be triggered by various malformed or specially

45

crafted objects within the document, potentially leading to memory corruption or
arbitrary code execution. Key exploitation techniques include:

• Malformed Objects: PDF readers parse complex object structures such
as dictionaries, arrays or streams. Attackers may craft objects with unex-
pected types, sizes or references to trigger heap or stack memory corruption.
For example, the Adobe Reader and Acrobat vulnerability (CVE-2010-2862),
caused by an integer overflow in the ”CoolType.dll” module when processing
a PDF containing a TrueType Font (TTF) with a malformed ”maxCompo-
nentContours” field in the ”maxp” table, could allow an attacker to crash the
application or execute arbitrary code if a user opens a specially crafted PDF.

• Corrupted Image Streams: PDFs often embed images (JPEG, JPEG2000,
JBIG2) that are decompressed by the reader. Vulnerabilities in image decoding
libraries can be exploited by embedding malformed image data. For example,
CVE-2016-0936 is a memory corruption vulnerability in Adobe Reader and
Acrobat (versions before 11.0.14) on Windows and OS X. Attackers can exploit
this by embedding specially crafted JPEG 2000 data within a PDF. When the
document is opened, the reader’s JPEG 2000 decoder mishandles the data,
leading to memory corruption. This can result in arbitrary code execution or
a denial of service (application crash).

• Malformed Annotations: PDF annotations (for example, text, links and
buttons) are interactive objects which may also include appearance streams
and JavaScript actions. However, the vulnerabilities come in when the reader
is unable to properly validate these fields. A use-after-free vulnerability in
the way that Adobe Acrobat/Reader handled annotation objects was used by
CVE-2020-9715, which could result in remote code execution, for example.

• Stream Parsing Bugs: as seen before, PDF files are composed of objects,
some of which are stored in streams and use special markers such as startxref
(indicating the byte offset of the cross-reference table) and %%EOF (marking
the end of the file). PDF readers rely on these structures to locate and parse
objects correctly. Vulnerabilities can occur when a reader fails to properly
handle malformed or maliciously crafted streams or markers. This can lead
to issues such as buffer overflows, invalid memory dereferences or crashes. A
concrete example is CVE-2019-14267, which affected PDFResurrect 0.15. In
this case, specially crafted PDF files containing malformed startxref and
%%EOF markers triggered a buffer overflow during parsing. Exploiting this flaw
could allow an attacker to crash the application or potentially execute arbitrary
code.

It’s important to be able to reverse-engineering the structure of a PDF and then
compare it against known signatures of vulnerabilities (such as from CVE databases)
so that investigator can identify the attack vector utilized. Analysts frequently use
controlled environments (e.g., sandboxes) to observe crash behavior and examine
object streams for irregularities. Also it makes sense to need for validation and
checking the PDF substructure such as byteocde of objects, cross-reference tables,

46

length of stream and operators sequence. Proper validation ensures that malformed
structures or malicious instructions are detected before execution, reducing the risk
of triggering vulnerabilities during analysis and improving the accuracy of identifying
exploitation mechanisms.

7.5 Phishing and Social Engineering

Some PDF documents are designed to deceive users by mimicking legitimate web-
sites, brands or services. They may include fake login forms, fraudulent account
notifications or malicious hyperlinks and QR codes intended to steal credentials or
redirect users to phishing sites. These documents often exploit trust and familiarity,
making it easier for attackers to manipulate users into revealing sensitive informa-
tion.

Analysts investigate such PDFs by extracting and examining embedded links,
form fields and interactive elements. By cross-referencing URLs and domains with
threat intelligence databases, they can determine whether a link or resource is as-
sociated with known malicious activity. Metadata within the PDF, such as author
information, templates or localized content, may also provide clues about phishing
campaigns, including reused designs or targeted geographic regions. Understand-
ing these patterns helps defenders anticipate social engineering tactics and improve
detection of malicious PDFs before they reach users.

7.6 Obfuscation and Evasion Techniques

Malicious PDFs often employ a variety of techniques to evade detection and hinder
forensic analysis. Attackers may use obfuscation methods such as stream compres-
sion, hexadecimal or Base64 encoding, object splitting, and deep object nesting to
hide malicious code. Incremental updates can also be abused to conceal changes,
allowing attackers to modify a PDF without altering its apparent structure. In
addition, encryption or password protection may be used not only for legitimate
purposes but also as a way to prevent antivirus scanners or analysts from inspecting
the document’s contents. These techniques make it difficult to detect or analyze ma-
licious behavior. Obfuscation hides scripts or payloads across multiple objects, while
encryption can prevent automated tools from inspecting the file, enabling attackers
to deliver malicious content safely.

Analysts normalize the PDF structure with specialized tools (such as qpdf,
pdfwalker) to deeper inspect PDF. High entropy objects, encoded streams or un-
usually nested objects are marked as suspicious. The decompression and decoding
of streams is necessary to expose obfuscated scripts or payload contained within.
Document version comparison, particularly when the updates are incremental, can
expose hidden manipulations. Decryption efforts are also performed for encrypted
or password-protected files, if a key is known or can be estimated. Examining the
encryption dictionary and flags helps determine the level of protection. Contextual
information, such as how the PDF was delivered (e.g. via email), assists in assessing
the intent behind the protection.

47

7.7 Attacks on Digitally Signed PDFs

While digital signatures are intended to ensure authenticity and integrity of PDF
documents, attackers have developed techniques to bypass or abuse these mecha-
nisms.

7.7.1 Signature Wrapping and Incremental Update Abuse

PDFs support incremental updates, allowing new content to be appended without
modifying the original signed content. An attacker may leverage this functionality
to add malicious objects or scripts after signing, while still apparently having a valid
signature in certain viewers.

For example, an attacker may append a malicious page with altered payment
instructions to a signed invoice. If the viewer fails to properly verify the signature
against the full file, the signature may still appear valid while the user sees modified
content.

A real-world example of this type of attack is CVE-2018-18689[49], which affected
multiple PDF viewers including Foxit Reader and PhantomPDF. In this vulnerabil-
ity, attackers could manipulate the ‘/ByteRange‘ and cross-reference (xref) tables
to insert malicious content into a signed PDF without invalidating its signature.
This allowed unauthorized modifications to go undetected if the PDF viewer did
not properly verify that the signature covered the entire document.

Investigators should analyze all incremental updates using tools to detect ap-
pended objects and verify which byte ranges are covered by the signature to ensure
that the signed portions of the document have not been tampered with.

7.7.2 Exploiting Certification Signatures

PDFs can have two primary kinds of digital signatures: approval and certification.
Certification signatures are intended to verify that the document is indeed authentic
and intact, as well as to describe what types of alterations are permitted post-signing.
That makes them more flexible than approval signatures, but also subject to abuse.

The function of certification signatures is controlled by two main fields:

• /DocMDP (Document Modification Detection and Prevention): it
specifies the modification permissions for the certified PDF. There are three
common permission levels:

1. Level 1 – Do not make any changes; if any modify is made, the signature
becomes invalid.

2. Level 2 – Only form filling is allowed.

3. Level 3 – Form filling and adding annotations are allowed.

• /Perms (Permissions Dictionary): Specifies which signatures exist in the
document, what they cover and what changes are considered valid under the
certification rules.

48

A certified PDF, for instance, may allow annotations (Level 3). An attacker
could insert an invisible note with Javascript callback. As this change is permitted
by the certification settings, in the viewer, the signature would still be valid and it
wouldn’t matter if harmful code has now been added to that file.

Investigators also should consult the /DocMDP and /Perms entries to learn what
modifications are allowed. All new objects and annotations are to be carefully
inspected; hidden components or scripts are not uncommon and may be indicative
of compromise.

7.7.3 Viewer Parsing Bugs and Shadow Attacks

Even when a PDF is fully signed, vulnerabilities in PDF viewers can allow attackers
to display or execute content not covered by the signature. This is often related to
how PDF signatures define their coverage and how viewers interpret it.

As a reminder, when a PDF is signed, the signature covers a specific byte range
defined in the /ByteRange entry. This range specifies the exact segments of the
file that are protected. Any content outside of this range is not validated by the
signature. Attackers can exploit this in two main ways:

• Incremental updates after signing (see Section 7.7.1).

• Pre-existing unused or hidden objects: a PDF may include objects in
the signed byte range that are not yet referred to anywhere in the visible
page tree at signing time. An attacker can then use references from such (e.g.
with an allowed modification) to force the viewer to show these previously
unused objects instead of the original designed content. As these objects were
essentially still part of the signed data, a dumb validation would still return
’valid’ for the original signature, despite the visual content having changed.

This approach is called the Shadow Attack, as recorded in PDF Insecurity Project
[39] in 2020. In these attacks, the PDF document is generated to include both a
benign version (which will be used during the process of signing) and a malicious
version (kept silent until triggered). By swapping references after signing, the at-
tacker shows malicious version to the user as signed version but signature looks
valid.

To compare the rendered content with which objects or byte ranges where actu-
ally signed, inspectors have to work with several PDF viewers and forensics tools.
They should also check incremental updates of newly appended objects and examine
the structure of the document for unused or hidden objects that could be activated
after signing.

7.7.4 Universal Signature Forgery (USF)

Universal Signature Forgery (USF) is an attack which enables the attacker to
create a PDF for which the digital signature looks valid in certain PDF viewers,
but is invalid in reality. This abuses differences in the way various PDF viewers
implement validation rules for signatures. The attack is based on carefully mixing
the PDF structure so that every platforms can choose to see or not see an embedded

49

signature as a valid signature, and thus bypassing trust policies or legal validation
checks.

7.7.5 Certification Attacks

Certification attacks exploit the permissions granted by a PDF’s certified signa-
ture to perform unauthorized changes while still appearing valid. Two well-known
variants are:

• Evil Annotation Attack (EAA): the attacker adds hidden or malicious
annotations in a certified document. These annotations should not change
anything that is displayed on the page, but can affect how signatures will be
interpreted by PDF viewers.

• Sneaky Signature Attack (SSA): an attacker adds a second signature in
such a manner that it does not go through or avoids being validated. This way
it is possible to manipulate the content of the document without invalidating
the primary certification signature.

Both attacks rely on subtle differences in how PDF viewers enforce certifica-
tion permissions, enabling a signed PDF to appear unchanged while actually being
modified.

7.7.6 Pre-Signing Compromise

An attacker can insert malicious content or payloads into a PDF prior to digital
signing. Upon matching, a signature is effectively masking the malicious content
so that they appear to be genuine. An organization may digitally sign an insecure
document template that contains embedded JavaScript. When spread, this triggers
the malicious payload despite it being signed legitimate.

Analysts have to track down the document’s origin, review incremental versions
if they’re available, examine for odd embedded objects or scripts which could predate
the signing.

7.7.7 Format Confusion and Polyglot Attacks

PDFs can be crafted to contain multiple interpretations simultaneously. A “poly-
glot” file is a single file that can be understood in more than one way by different
programs. In other words, the same sequence of bytes in the file can be interpreted
differently depending on the program reading it.

As an illustrative example, one can think of a page which visually appears to be
normal plaintext if it is opened in a word processor, but dirty hidden data are exe-
cuted unknowingly when the same is opened with another reader. The file contains
both sets of instructions at the same time, but each program only ”sees” the part
it understands.

The same bytes are interpreted differently in various programs, according to their
expected rules:

• A PDF viewer may display harmless content, such as text or images.

50

• A signature verification tool may check the PDF and see only the signed,
benign portion.

• Another program might read hidden or overlapping data streams, potentially
triggering malicious behavior.

In this situation, the signature on the polyglot PDF could validate as safe; how-
ever, when displayed in a regular viewer, obfuscated content gets executed or oth-
erwise processed maliciously.

Investigators should analyze the raw file structure, check for overlapping or hid-
den data streams and compare what is signed versus what is actually rendered or
executed. Looking at the file with multiple tools and examining it byte by byte can
reveal these hidden interpretations.

7.7.8 External Resource Abuse

Signed PDFs may reference external resources such as images, scripts or media.
These resources can change over time, allowing attackers to influence the document’s
behavior without altering the signed content.

For instance, a signed PDF references an external JavaScript file hosted online.
The script is updated to deliver malware, bypassing signature validation.

Investigators are required to trace every external link in the PDF and evaluate
their integrity. Capture external dependencies at the time of analysis as a means
of detecting post-signing changes. One way to possibly do this is store a hash of
each external resource (e.g. SHA-256) in the signed document. When you later
check the PDF, recompute the hash and compare that to your original: if it differs,
something’s been changed about the resource even though the PDF hasn’t.

51

8 Acquisition Sources of PDF Files

Digital forensics begins with the correct identification and handling of acquisition
sources. In the context of PDF forensics, the acquisition source refers to the original
medium or platform from which a PDF file is obtained. This initial step is deci-
sive, since any mishandling, alteration or incomplete collection of the source may
compromise the reliability and admissibility of the evidence.

8.1 The Critical Importance of Acquisition Sources

The acquisition source can never be just merely a starting point for the investiga-
tion but is actually right where bottom lies in all forensic activity. One mistake in
collection can render otherwise useful proof inadmissible in court. To reduce these
risks, best practices for digital evidence handling typically focus on a number of key
principles:

• Maintaining a flawless chain of custody, so that everyone who comes into
contact with the evidence is accounted for.

• Employing cryptographic hashing throughout to validate the integrity of
collected files.

• Following recognized international standards, such as ISO/IEC 27037, which
provide guidelines for identification, collection, acquisition, and preservation
of digital evidence.

• Make use of modern solutions, such as blockchain-based tracking, that can
give an unabridged audit trail for high-value or high-risk investigative work.

In practical terms, this deals with retention of sources in unaltered state, good
documentation and reproducible processing. Without that assurance, the legitimacy
of forensic examination is undermined.

8.2 Common Sources for PDFs

PDF files can originate from a variety of sources, both legitimate and malicious. In
forensic practice, identifying the acquisition source provides context, such as whether
a file was distributed intentionally through official communication channels or in-
troduced covertly as part of an attack. The most relevant categories of acquisition
sources for PDFs are listed below.

8.2.1 Emails and Certified Email (PEC)

Emails are the most common medium for distributing PDF documents, both in le-
gitimate communication and as vectors of attack. A large proportion of phishing
campaigns and malware intrusions exploit PDF attachments, as users are accus-
tomed to receiving invoices, contracts or official letters in this format. Attackers
may embed malicious JavaScript, exploit vulnerabilities in PDF readers or disguise
executable payloads as documents with double extensions.

52

In forensic analysis, the email headers, timestamps and transmission path are
often as important as the PDF itself. Investigators may need to establish not only
what the PDF contained, but also who sent it, when it was received and whether
the attachment was altered in transit.

An Italian and European special case isPosta Elettronica Certificata (PEC).
Considering that PEC is legally binding as registered mail, the PDFs sent through
PEC generally carry huge probative value in disputes, for instance, administrative
and judicial origilling. But this also turns PEC into a sweet candy for attackers: a
rogue PDF sent through PEC might be automatically seen as trustworthy by the
recipients. Experts in forensic that handle PEC messages must take into account
the certified delivery receipts and also the content of PDF attachments, to avoid
considering authenticity as an obstacle against malintent.

8.2.2 Websites and Online Databases

Another major source of PDF evidence is the web. PDFs are often hosted on
corporate websites, academic repositories or governmental portals. Attackers may
compromise these platforms to distribute infected documents, for example by re-
placing a legitimate policy document with a trojanized version. From a forensic
perspective, acquisition in this context involves preserving the webpage, the server
headers and the original hosting environment in addition to the PDF itself. This
ensures that the context of distribution is documented and verifiable.

8.2.3 Repositories for Testing and Research

For controlled testing and training purposes, forensic practitioners and researchers
often may rely on repositories of sample PDF files. One such example is the format-
corpus collection available on GitHub (see format-corpus), which contains a wide
variety of file formats, including PDFs, suitable for validating forensic tools and
methods. While these repositories are not direct forensic acquisition sources, they
are valuable resources for benchmarking, tool verification and experimentation in
academic and professional contexts.

8.2.4 Local Filesystems and Removable Devices

Last but not least, one of the most direct sources of acquisition is the local device
of a suspect or target machine. PDFs can be found that are in a user folder, a
document folder or in cloud synchronized folders. USB sticks and other removable
mediums are also very commonly (if not ideally) used to take PDFs from place to
place or even as a vector for spreading infected files. In these cases, the acquisition
is done by full disk imaging or targeted forensic copy of digital evidence files so that
no metadata is discarded.

53

https://github.com/openpreserve/format-corpus

9 Development of foredf

In this chapter, which forms the core of the thesis, we introduce foredf, our tool
whose name is derived as an acronym from FORensic Email fetcher and PDF ana-
lyzer using peepDF.

foredf is a forensic-oriented tool designed for the analysis of PDF documents
within a fully dockerized environment. By default, all operations run under a non-
root user to ensure safer and more controlled execution. It allows fetching PDFs
contained in emails and PEC communications, and analyzing them in a safe and
reproducible environment. Finally, it supports the generation of information that
can later be included in a formal forensic report.

9.1 Docker and Containerization

Docker[17] is a lightweight virtualization platform that allows applications to run
inside containers, which are isolated environments sharing the host system’s kernel.
Unlike traditional virtual machines, containers are more efficient and faster to start,
making them ideal for deploying and distributing applications consistently across
different systems.

Containerization[45] ensures that all the dependencies and configurations re-
quired by an application are packaged together, reducing compatibility issues and
making the environment reproducible.

Docker Compose[18] is a complementary tool that allows the definition and
management of multi-container applications through a single configuration file, typ-
ically named docker-compose.yml. With Docker Compose, multiple services, such
as databases, web servers and analysis tools, can be orchestrated easily, enabling
the creation of complex and fully reproducible environments with minimal effort.

In foredf, Docker and Docker Compose are used to provide a secure and fully
reproducible environment for PDF analysis. By default, all operations run under a
non-root user to enhance safety and control in case of malicious PDFs or erroneous
operations, while allowing users to fetch and analyze PDFs from emails and PEC
communications seamlessly.

9.2 Analysis of Peepdf: Strengths and Limitations

Peepdf [20] is a Python-based forensic and security analysis tool designed for the de-
tailed inspection of PDF files, primarily to detect potential malicious content such as
embedded scripts or shellcodes. Its key strength lies in its comprehensive analytical
capabilities since it can parse multiple PDF versions, decode various encodings (hex-
adecimal, octal, names), analyze object structures and identify suspicious elements
using filters and reference tracing. The integration with PyV8 [26] and Pylibemu
[10] extends its capabilities to dynamic JavaScript and shellcode analysis, allowing
researchers to deobfuscate code and simulate execution behavior within the same
tool. Furthermore, its interoperability with VirusTotal enables quick hash-based
malware cross-referencing, enhancing its usefulness in threat intelligence workflows.

Peepdf also supports the creation and modification of PDF documents, including
the generation of files containing executable JavaScript or obfuscated strings, which

54

https://www.virustotal.com/

makes it not only an analysis tool but also a testing framework for exploit devel-
opment and research. Its flexible operation modes, command-line, interactive shell
and batch, make it adaptable to both automated pipelines and manual inspection.

However, despite its robustness, peepdf has some limitations. The project re-
mains relatively static, with limited ongoing development and only partial automa-
tion in its JavaScript analysis modules. The absence of a graphical user interface
(GUI) restricts accessibility for less experienced users, and certain features, such
as embedded PDF analysis or validation of embedded digital signatures, remain
unimplemented. Moreover, since it relies on legacy dependencies like PyV8 and
Pylibemu, installation and compatibility on modern systems can be challenging.
For these reasons, several forks of peepdf have emerged to address some of these
issues, including a fork that ports peepdf from Python 2 to Python 3, and another
that replaces the legacy PyV8 with StPyV8 [11].

In conclusion, peepdf is a great tool to manually analyse PDF malware and deep
structure exploration, not including some of the fresh really cool features you would
see in such advanced security frameworks like real-time behavior emulation or full
automation.

9.3 Overview: How foredf Works

As illustrated in Fig. 7, from a high-level perspective, foredf operates entirely within
the host device after being downloaded and initialized. Once set up, the tool can be
used in two main ways, which can also be combined for more advanced workflows:

1. Users can manually insert PDF files into the files folder, under the pdfs one,
and analyze them using the enhanced version of peepdf integrated into the
tool.

2. The application lets the user set up their email or PEC (Posta Elettronica
Certificata) inboxes to be connected with the tool and download PDFs and
related metadata automatically from them. The unpacked files can then be
inspected with the improved peepdf.

In both cases, the analysis produces a comprehensive basic report. When the email
fetcher is used, the report includes also the related email or PEC metadata; other-
wise, it contains only the interaction logs from peepdf together with cryptographic
hashes of the analyzed files.

Prior to peepdf being invoked, foredf calculates and retains the hash value
for each file and provides a transient forensic copy to the analysis tool. After the
analysis, a fresh hash is calculated and compared with it to verify that input file is
untouched. This ensures that the original object is not altered during analysis and
therefore preserved from a forensic standpoint.

As an additional security measure, the container runs in a non-privileged mode
and write all the files from the use of foredf in read-only mode. This ensures that
the original data cannot be altered from inside the container, even when files are
automatically fetched by the email modules.

55

Figure 7: Overview of Foredf

9.4 Internal Structure of foredf

The foredf tool is composed of different parts that work closely together. The final
goal is to create a forensic tool that aims to minimize possibilities of file alterations
while maintaining a clean workflow and supporting forensic experts in doing their
work.

9.4.1 Dockerfile and Docker-Compose file

For creating a container with non-root permission, the Dockerfile used is the follow-
ing:

1 # Base image

2 FROM python :3.12- slim

3

4 ENV DEBIAN_FRONTEND=noninteractive

5 ENV PYTHONUNBUFFERED =1

6

7 # Install system dependencies

8 RUN apt -get update && apt -get install -y \

9 libmagic1 gcc make nano jq \

10 && rm -rf /var/lib/apt/lists/*

11

12 WORKDIR /app

13

14 # -------------------- Copy only files needed for pip

15 COPY mail -pdf -extractor/requirements.txt

/app/requirements.txt

56

16 COPY peepdf -3 /app/peepdf -3

17

18 # -------------------- Install Python dependencies

19 RUN pip install --upgrade pip

20 RUN pip install /app/peepdf -3

21 RUN pip install -r /app/requirements.txt

22

23 # -------------------- Copy the rest of the project

24 COPY mail -pdf -extractor /app/mail -pdf -extractor

25 COPY fetch_email /app/fetch_email

26 COPY peepdf /app/peepdf

27 RUN chmod +x /app/fetch_email /app/peepdf

28 ENV PATH="/app:${PATH}"
29

30 # -------------------- Non -root user --------------------

31 ARG UID =1000

32 ARG GID =1000

33 RUN groupadd -g ${GID} user && \

34 useradd -m -u ${UID} -g ${GID} user && \

35 chown -R user:user /app

36 USER user

37

38 CMD ["bash"]

This Dockerfile defines a lightweight Python 3.12–based container and installs the
required system dependencies (libmagic1, gcc, make, nano and jq) to support file
analysis and script execution. The project files are copied in stages to optimize the
build: first the dependencies needed for Python installation, and then the rest of
the project scripts.

Python dependencies are installed with pip, including peepdf-3 and any re-
quirements listed in mail-pdf-extractor/requirements.txt. Execution permis-
sions are set for scripts like fetch email and peepdf to ensure they can run inside
the container.

For security and forensics reasons, the container executes as a non-root user,
no system files are modified and input data is not changed as well. The group IDs
(UID and GID) can be set to match the host system’s values to prevent permission
issues.

After that, a docker-compose file has been used for simplicity in creation and
removal. The file is the following:

1 services:

2 foredf:

3 build:

4 context: .

5 args:

6 UID: ${UID : -1000}
7 GID: ${GID : -1000}

57

8 container_name: foredf

9 volumes:

10 - ./pdfs:/app/pdfs

11 - ./mail -pdf -extractor :/app/mail -pdf -extractor

12 - ./peepdf -3:/ app/peepdf -3

13 env_file:

14 - .env

15 tty: true

In this docker-compose configuration, project directories are mounted inside the con-
tainer. Moreover, also an .env file is included since it is needed for the Email Fetcher
(see Sec. 9.4.2). The use of docker-compose also simplifies container management,
including building, starting and removing the environment in a reproducible way.

9.4.2 Email Fetcher

The Email Fetcher is a Python script named fetch email designed to extract
PDFs from IMAP inboxes while ensuring forensic integrity. It verifies PEC signa-
tures, if present, stores metadata, and maintains a read-only environment for all
evidence. This section provides a detailed explanation of the script, component by
component.

To facilitate its usage inside the container, a wrapper shell script is provided.
This allows users to execute fetch email.py from the container’s entry point with-
out worrying about the current working directory. By running fetch email -h, the
user can view the main help description. Essentially, this script acts as a convenient
launcher for the Python program:

Listing 1: Wrapper script to run fetch email.py from anywhere
1 #!/bin/bash

2 # Wrapper to run fetch_email.py from anywhere

3 cd /app/mail -pdf -extractor

4 python3 fetch_email.py "$@"

The main script begins with environment setup and configuration. It loads the
configuration from a .env file, ensuring that sensitive credentials are not hardcoded:

Listing 2: Environment and Configuration Setup
1 dotenv_path = os.path.join(os.path.dirname(__file__), "..",

".env")

2 load_dotenv(dotenv_path)

3 # Extract environmental variables from loaded .env

4 HOST = os.getenv("IMAP_HOST")

5 USERNAME = os.getenv("IMAP_USER")

6 PASSWORD = os.getenv("IMAP_PASS")

7 # Use a trusted CA certificate for validating PEC signatures

8 PEC_CA_CERT = "AgIDCA1_20210921.pem"

9 # Find or create folders

10 # The folder in which PDFs can be manually inserted or

fetched

58

11 OUTPUT_DIR = "../ pdfs/files"

12 # The folder which receives forensic copies of the files and

information generated

13 FORENSIC_FOLDER = "../ pdfs/forensic_copy"

14 # Create folders if not yet created

15 os.makedirs(OUTPUT_DIR , exist_ok=True)

16 os.makedirs(FORENSIC_FOLDER , exist_ok=True)

First, the code loads the .env file to retrieve its variables. This approach allows
sensitive credentials to be loaded securely, enhancing both security and usability, as
nothing is hardcoded in the script. The PEC CA CERT variable points to the trusted
root certificate used to verify PEC signatures whenever they are present.

Next, the script ensures the existence of two directories:

• OUTPUT DIR, located under the pdfs root folder, is intended to store the orig-
inal PDFs. These PDFs can either be manually inserted by the user or auto-
matically fetched by the Email Fetcher itself. If fetched, these files are written
in read-only mode to preserve their integrity.

• FORENSIC FOLDER includes forensic copies of the PDFs and all the generated
information (metadata extracted from emails and analytical reports).

By dividing original and forensic data into separate folders, raw evidence is also
kept unmodified once processed.

The Email Fetcher are leaning on a couple of small helper functions to ensure
the code becomes clear and easy maintainable.

The first such function, compute hashes, computes cryptographic hashes for
each file. These hashes are then saved in a metadata file (.json) located in the
forensic folder:

Listing 3: Compute hashes of files
1 def compute_hashes(data):

2 return {

3 "sha256": hashlib.sha256(data).hexdigest (),

4 "md5": hashlib.md5(data).hexdigest ()

5 }

Hashes, as well as metadata files, are generated for each fetched file to ensure the
integrity of the entire process, from download to subsequent analysis. They serve
as a cryptographic guarantee that the files have not been altered, supporting the
forensic chain of custody.

Another vital function for this script is the save pdf function

Listing 4: Save PDFs and emails metadata
1 def save_pdf(filename , data , mail=None , uid=None , prefix=""):

2 """Save PDF attachment and create forensic JSON

metadata."""

3 path = os.path.join(OUTPUT_DIR , prefix + filename)

4 forensic_json_path = os.path.join(FORENSIC_FOLDER ,

f"{prefix }{ filename }.json")

59

5

6 # --- Check if file already exists ---

7 if os.path.exists(path) or

os.path.exists(forensic_json_path):

8 print(f"[*] File or metadata already exists ,

skipping download: {path}")

9 print("[!] If you want to force a fresh download ,

remove the existing file(s) first.")

10 print("[!] Be careful in a forensic context:

altering or deleting existing evidence may

compromise integrity.")

11 return

12

13 # Decode base64 if needed

14 if isinstance(data , str):

15 try:

16 data = base64.b64decode(data)

17 except Exception as e:

18 print(f"[!] Could not decode {filename }: {e}")

19 return

20

21 # --- Save PDF ---

22 with open(path , "wb") as f:

23 f.write(data)

24 print(f"[+] Saved PDF: {path}")

25 os.chmod(path , 0o444) # read -only for everyone

26

27 # Forensic metadata

28 if mail:

29 meta = {

30 "uid": uid ,

31 "original_filename": filename ,

32 "saved_filename": os.path.basename(path),

33 "content_type":

mail.attachments [0]. get("mail_content_type",

""),

34 "subject": mail.subject ,

35 "from_header": mail.from_ ,

36 "headers": dict(mail.headers),

37 "hashes": compute_hashes(data)

38 }

39

40 # Detect sender mismatch

41 env_sender = mail.headers.get("Return -Path")

42 hdr_sender = mail.from_ [0][1] if mail.from_ else None

43 if env_sender and hdr_sender and

env_sender.strip("<>") != hdr_sender:

44 meta["sender_mismatch"] = {

45 "from_header": hdr_sender ,

60

46 "envelope_sender": env_sender

47 }

48

49 # --- Save JSON ---

50 with open(forensic_json_path , "w", encoding="utf -8")

as jf:

51 json.dump(meta , jf , indent=2, ensure_ascii=False)

52 print(f"[+] Forensic metadata saved:

{forensic_json_path}")

53 os.chmod(forensic_json_path , 0o444)

Its primary responsibility is to save PDF attachments from emails while si-
multaneously generating corresponding forensic metadata. The function begins
by defining the paths for both the PDF and its associated metadata file. The
PDF is saved under the OUTPUT DIR, while the JSON metadata file is stored under
FORENSIC FOLDER. An optional prefix can be added to handle nested attachments,
ensuring that each file remains uniquely identifiable. This separation of original
PDFs and forensic metadata is critical for maintaining integrity and traceability.

Even before writing any files, this function checks if the PDF file (or its metadata)
is already present. If any of the files is available, a warning message gets printed
and the download is skipped, so as to not overwrite by mistake. Especially in a
forensic setting, any modification to the evidence gathered before could harm the
investigation.

The function also cover cases of email attachments which could be encoded in
base64. If the attachment is a string, it attempts to decode it; if decoding fails, it
logs an error and safely skips the file. Once the decoding is done, the PDF is saved
in binary so nothing of the original content get lost. File permissions for evidence
are set to read-only for all users immediately after writing so the evidence cannot
be manipulated once it has been written in its proper location.

If the email object is provided, the function generates detailed forensic metadata.
This also includes the email UID, original/saved filenames, mime content type, the
subject & sender of the email as well as full headers and cryptographical hashes
(SHA-256 and MD5) of the stored PDF. The utility checks metadata for sender
discrepancies by comparing envelope sender value to the header sender (From). Any
variance is logged as an alert to spoofing or tampering.

Finally, metadata is saved in a JSON file using UTF-8 encoding and with read-
only permissions. In this way, both the evidence and metadata linked to it are
not modified. Overall, the save pdf function guarantees integrity, authenticity,
traceability and security, making it a fundamental component of the Email Fetcher’s
forensic workflow.

Another useful function is the verify p7m:

Listing 5: Verify the .p7m signatures
1 def verify_p7m(p7m_file , PEC_CA_CERT):

2 try:

3 subprocess.run([

4 "openssl", "smime", "-verify",

5 "-in", p7m_file ,

61

6 "-CAfile", PEC_CA_CERT ,

7 "-out", "/dev/null"

8], check=True , stdout=subprocess.PIPE ,

stderr=subprocess.PIPE)

9 return True

10 except subprocess.CalledProcessError:

11 return False

The verify p7m function is responsible for verifying the authenticity of PEC
messages that are digitally signed in the .p7m format. These files encapsulate either
a signed PDF or an entire email message, providing legal and forensic assurance of
the sender’s identity and message integrity.

This function delegates the verification process to the openssl command-line
utility, a widely trusted tool for cryptographic operations. It runs the smime -verify

command, which checks the digital signature embedded in the .p7m file against a
trusted Certificate Authority (CA). The argument -CAfile specifies the trusted root
certificate used in this verification, in this case the AgIDCA1 20210921.pem. This
certificate corresponds to the AgID (Agenzia per l’Italia Digitale) root CA, which is
the official Italian authority responsible for issuing and managing digital certificates
for PEC providers.

So the verification is done in a try/except block. If verification completes without
error (i.e. OpenSSL returns 0), the tool returns True, indicating the signature is
genuine and that the content of the message has not been changed since it has been
signed. If OpenSSL threw a CalledProcessError, meaning it was not able to verify
successfully (e.g. the signature is bad, the certificate is untrusted or corrupted file),
the function safely returns False. The use of stdout and stderr redirection ensures
that verification logs do not clutter the terminal, keeping the forensic process clean
and controlled.

The choice of the AgIDCA120210921. pem credential (2021, if relevant) is cor-
rect and adequate in this situation. Systems like PEC are based on this architecture
with a trust chain at scale: as long as the Root CA is valid and trusted, all certificates
of subordinated CAs (and hence also those used to sign messages for the emitters)
can be reliably verified. The AgID CA certificate is a long-lived and publicly-trusted
trust anchor for Italian PEC services, and it remains valid beyond its issuance date
as long as it has not been revoked or superseded. As a consequence, the forensic
tool can validate properly all PEC signatures produced by accredited providers un-
der AgID’s trust framework released messages in an authentic and legally reliable
manner.

The last helper function is the match filters one:

Listing 6: Filters are used on fetched emails
1 def match_filters(mail):

2 if args.subject and args.subject.lower() not in

(mail.subject or "").lower ():

3 return False

4 if args.from_:

5 from_addresses = [addr [1]. lower() for addr in

mail.from_ or []]

62

6 if not any(args.from_.lower() in addr for addr in

from_addresses):

7 return False

8 return True

This is a simple yet effective utility that allows filtering of fetched emails based
on the command-line arguments provided by the user. Its purpose is to reduce
unnecessary processing by limiting the analysis to only those messages that match
a specified subject or sender.

The function checks whether a subject filter has been defined and, if so, compares
it against the email’s subject in a case-insensitive manner. Similarly, if a sender filter
is defined, the function extracts all sender addresses from the email’s From header,
converting them to lowercase for consistent comparison. If no match is found, the
function returns False, effectively skipping that email. Otherwise, it returns True,
signaling that the email meets the filter criteria and should be processed. This
approach improves performance and efficiency, particularly when dealing with large
inboxes, while maintaining a clear forensic focus on relevant communications only.

At the heart of the Email Fetcher lies the parse message function, which is
responsible for orchestrating the entire forensic extraction workflow:

Listing 7: Core of the tool: it is the main function
1 def parse_message(raw_message , uid=None , prefix="",

check_filters=True):

2 """Parse email , verify PEC , extract PDFs , store forensic

JSON."""

3 old_stderr = sys.stderr

4 sys.stderr = io.StringIO ()

5 try:

6 mail = mailparser.parse_from_bytes(raw_message)

7 finally:

8 sys.stderr = old_stderr

9

10 if check_filters and not match_filters(mail):

11 return False

12

13 pdf_found = False

14 for idx , attachment in enumerate(mail.attachments):

15 ctype = attachment.get("mail_content_type", "")

16 fname = attachment.get("filename") or f"attach_{idx}"

17

18 # ---- Extract PDFs ----

19 if ctype == "application/pdf" or

fname.lower ().endswith(".pdf"):

20 save_pdf(fname , attachment["payload"],

mail=mail , uid=uid , prefix=prefix)

21 pdf_found = True

22

23 # ---- PEC .p7m ----

24 elif fname.lower().endswith(".p7m") or ctype ==

63

"application/pkcs7 -mime":

25 temp_file = os.path.join(tempfile.gettempdir (),

fname)

26 with open(temp_file , "wb") as f:

27 f.write(attachment["payload"])

28

29 # ---- Verify signature ----

30 if verify_p7m(temp_file , PEC_CA_CERT):

31 print(f"[+] PEC signature verified: {fname}")

32 inner_eml_file =

os.path.join(tempfile.gettempdir (),

f"{fname}_inner.eml")

33 subprocess.run([

34 "openssl", "smime", "-verify",

35 "-in", temp_file ,

36 "-CAfile", PEC_CA_CERT ,

37 "-out", inner_eml_file

38], check=True)

39 with open(inner_eml_file , "rb") as f:

40 inner_content = f.read()

41 inner_pdf_found =

parse_message(inner_content , uid=uid ,

prefix=f"{fname}_")

42 pdf_found = pdf_found or inner_pdf_found

43 os.unlink(inner_eml_file)

44 else:

45 print(f"[!] Invalid PEC signature , skipping:

{fname}")

46 os.unlink(temp_file)

47

48 # ---- Nested .eml ----

49 elif fname.lower().endswith(".eml"):

50 nested_raw = attachment["payload"]

51 if isinstance(nested_raw , str):

52 nested_raw = nested_raw.encode ()

53 nested_pdf_found = parse_message(nested_raw ,

uid=uid , prefix=f"{fname}_")

54 pdf_found = pdf_found or nested_pdf_found

55

56 if not pdf_found:

57 print("[*] No PDFs found.")

58 return pdf_found

59

60 # -------------------- CLI --------------------

61 parser = argparse.ArgumentParser(

62 description="Forensic PDF extraction from IMAP mailbox

with PEC verification.",

63 formatter_class=argparse.RawDescriptionHelpFormatter ,

64 epilog=textwrap.dedent("""\

64

65 Examples:

66 python script.py --subject "fattura" -n 5

67 python script.py --from_ "pec@domain.it"

68 python script.py -f "pec@domain.it" -s "fattura"

-n 3

69 """)

70)

71 parser.add_argument("-s", "--subject", help="Filter emails

by subject (case -insensitive).")

72 parser.add_argument("-f", "--from", dest="from_",

help="Filter emails by sender email address.")

73 parser.add_argument("-n", type=int , default =10, help="Number

of last emails to process (default 10).")

74 args = parser.parse_args ()

75

76 # -------------------- IMAP Processing --------------------

77 with IMAPClient(HOST , ssl=True) as client:

78 client.login(USERNAME , PASSWORD)

79 client.select_folder("INBOX")

80

81 if args.subject and args.from_:

82 search_criteria = ["FROM", args.from_ , "SUBJECT",

args.subject]

83 elif args.subject:

84 search_criteria = ["SUBJECT", args.subject]

85 elif args.from_:

86 search_criteria = ["FROM", args.from_]

87 else:

88 search_criteria = ["ALL"]

89

90 messages = client.search(search_criteria)

91 last_n = messages[-args.n:] if args.n else messages

92 print(f"[*] Found {len(last_n)} messages to process")

93

94 for uid in last_n:

95 raw_message = client.fetch(uid ,

["RFC822"])[uid][b"RFC822"]

96 parse_message(raw_message , uid=uid)

This function parses an email message, verifies any digital signatures (PEC),
extracts all relevant attachments such as PDFs and stores the corresponding forensic
metadata.

The function begins by temporarily redirecting the standard error stream to
suppress unwanted warnings from the mailparser library, ensuring clean console
output during forensic operations. The raw email content is then parsed into a
structured mail object using the mailparser.parse from bytes method, which
facilitates easy access to headers, subjects, attachments and sender information.

If email filters are enabled through command-line arguments, parse message

invokes the match filters function to determine whether the email should be pro-

65

cessed. Emails that do not meet the criteria are skipped, ensuring that only relevant
evidence is collected.

The core logic loops through all attachments in the mail. For each attachment
gets its content type, filename and does one of the following action:

• PDF extraction: if the attachment is recognized as a PDF (either by way
of MIME type or file extension), the method calls save pdf, which saves it
into the appropriate folder and creates a JSON metadata record. This process
maintains the integrity and provenance of every document.

• PEC signature verification: if the attached file is a . p7m file (for exam-
ple, a PEC-signed email or document), it is initially written to a temporary
directory. If the verification passes, the signed content is then extracted using
Openssl smime -verify and temporarily written out to a temporary file as an
inner .eml file. The function then calls itself recursively on this inner email, so
that even messages (and sub-attachments) within attachments get processed
and validated. In case of an invalid PEC signature, the attachment is ignored,
but a helpful message written to console. In every case, temporary files are
deleted once the operation is completed to prevent from leaving any leftover
data.

• Nested emails: if an attachment is an .eml file, indicating a nested email,
the function encodes it if necessary and again recursively calls itself. This re-
cursive implementation makes it possible to process emails inside other emails
(forwarded PEC message for example) and to extract embedded PDFs without
the user interference.

As the final step, if no PDFs are found in a message or its document attach-
ments, it prints a message to alert us that no useful content was discovered there.
The function returns a boolean value to represent the fact of an extraction having
succeeded keeping code flow well-organized and traceable.

The last section of the Email Fetcher script takes care of the command-line
interface (CLI), and connecting with the IMAP mailbox. It is defined by using
the argparse library and it allows for filtering emails by subject (--subject) or by
sender (--from), as well as analyzing only a predefined number of received messages
(-n). To facilitate use by the user, default values and example usages are given in
help messages.

After the arguments are processed, the script uses the IMAPClient library to
make a secure connection to the mail server using IMAP and SSL. It logs in with
the credentials found from the environment variables then switches to the INBOX
folder. It builds the search query that is according to user-defined filters and retrieves
the most recent n messages.

Once arguments are parsed, the script establishes a secure IMAP connection to
the mail server using the IMAPClient library with SSL enabled. It authenticates
using credentials loaded from the environment variables and selects the INBOX folder
for processing. Based on the user-defined filters, it constructs the appropriate search
criteria and retrieves the most recent n messages.

66

For each selected message, the script fetches the raw content in RFC822 [14]
format and passes it to the parse message function for forensic analysis. This de-
sign ensures modularity and scalability: the fetching logic remains separate from the
forensic extraction process, while the recursive structure of parse message guaran-
tees that every level of email nesting and signature verification is handled automat-
ically and securely.

Overall, the parse message function and its integration with the CLI and IMAP
components form the operational backbone of the Email Fetcher. Together, they
enable automated, secure and reproducible forensic extraction of PDFs from certified
email systems, maintaining full compliance with the principles of digital evidence
preservation and traceability.

Finally, the following diagram illustrates the complete workflow: connecting to
the IMAP mailbox, fetching emails, applying filters, parsing messages, verifying
PEC signatures if any, extracting PDFs, generating metadata and ensuring forensic
integrity.

Start: Connect to IMAP Mailbox

Fetch Emails (Raw Bytes)

Apply Filters: Subject / Sender

Parse Email with mailparser

Iterate Attachments
PDF Attachment

→ Save to OUTPUT DIR
Save Metadata to FORENSIC FOLDER

PEC .p7m Attachment
→ Verify Signature

Extract Inner Message
Recursively Parse

Nested .eml Attachment
→ Recursively Parse

End: All PDFs Extracted
Metadata Verified

Figure 8: Email Fetcher Workflow

9.4.3 Enhanced Peepdf-3

The second vital component is the enhanced version of peepdf adapted for Python 3.
During the analysis of the original tool, several limitations were identified:

• Lack of any analysis for embedded files.

• Lack of verification of digital signatures, especially concerning signature cov-
erage with reference to the signed object. This could be used as an attack

67

vector.

• Lack of support for automatic report generation after the interaction with
peepdf.

To overcome these issues, we developed additional functionalities to extend the
tool and to enable automatic report generation after the analysis of a PDF document.

To integrate new features into the original peepdf, it was necessary to modify the
PDFConsole.py file, where all the core functionalities are defined and implemented.

Embedded Analysis Functionality
The first new feature introduced is the embedded analysis command. This func-

tionality required the creation of two main components: the core function, following
the naming convention do embedded analysis, and the supporting routines respon-
sible for entropy computation, hashing, and signature checks.

The implementation of the core function is reported below:

Listing 8: Core implementation of the embedded analysis function-
ality

1 def do_embedded_analysis(self , arg):

2 def shannon_entropy(data):

3 """Calculate Shannon entropy of a byte sequence."""

4 if not data:

5 return 0

6 freq = [data.count(bytes([i])) / len(data) for i in

range (256)]

7 return -sum(f * math.log2(f) for f in freq if f > 0)

8

9 def file_hashes(data):

10 """Return MD5 , SHA1 , and SHA256 hashes of the given

data."""

11 return {

12 "md5": hashlib.md5(data).hexdigest (),

13 "sha1": hashlib.sha1(data).hexdigest (),

14 "sha256": hashlib.sha256(data).hexdigest ()

15 }

16

17 try:

18 # Check if a PDF file has been loaded in the current

session

19 if self.pdfFile is None:

20 self.log_output("embedded_analysis", "[!] Error:

You must open a file!")

21 return False

22

23 # Load and compile YARA rules to detect suspicious

content

24 rules = yara.compile(filepath="../ rules.yar")

25

68

26 # Extract embedded files from the currently opened

PDF

27 embedded = self.getEmbeddedFiles ()

28 if not embedded:

29 self.log_output("embedded_analysis", "[!] No

embedded files found")

30 return False

31

32 # Process each embedded file individually

33 for f in embedded:

34 filename = f["filename"]

35 data = f["data"]

36

37 # Ensure data is in bytes format

38 data_bytes = data.encode(errors=’ignore ’) if

isinstance(data , str) else data

39

40 # --- Header section ---

41 print("=" * 60)

42 print(f"Analyzing embedded file: {filename}")

43 print("=" * 60)

44

45 # --- YARA Scan ---

46 matches = rules.match(data=data_bytes)

47 if matches:

48 print(f"[!] Suspicious: YARA match -

{matches}")

49 else:

50 print("[-] No YARA matches")

51

52 # --- MIME Type Verification ---

53 try:

54 mime_type = magic.from_buffer(data_bytes ,

mime=True)

55 print(f"[i] MIME type: {mime_type}")

56

57 expected_mime , _ =

mimetypes.guess_type(filename)

58 if expected_mime and expected_mime !=

mime_type:

59 print(f"[!] Suspicious: Extension does

not match MIME ({ expected_mime} vs

{mime_type })")

60 elif expected_mime:

61 print(f"[+] Extension matches MIME type")

62 except Exception as e:

63 print(f"[!] Failed to detect MIME type: {e}")

64

65 # --- Hash Computation ---

69

66 hashes = file_hashes(data_bytes)

67 print("[i] Hashes:")

68 for hname , hval in hashes.items():

69 print(f" {hname.upper():7}: {hval}")

70

71 # --- VirusTotal Query (if API key available) ---

72 if "yourAPIkey" in self.variables["vt_key"][0]:

73 print("[i] No VirusTotal API key found

\rightarrow skipping check on md5")

74 else:

75 ret = vtcheck(hashes["md5"],

self.variables["vt_key"][0])

76 if ret [0] == -1:

77 print(f"[!] Error querying VirusTotal:

{ret [1]}")

78 else:

79 jsonDict = ret[1]

80 maliciousCount =

jsonDict["data"]["attributes"]

81 ["last_analysis_stats"]["malicious"]

82 totalCount =

sum(jsonDict["data"]["attributes"]

83 ["last_analysis_stats"]. values ())

84 selfLink =

f’https ://www.virustotal.com/gui

85 /file/{ jsonDict ["data"]

86 [" attributes "][" sha256 "]}’

87

88 print(f"[i] VirusTotal report:")

89 print(f" Detection rate:

{maliciousCount }/{ totalCount}")

90 print(f" Report link: {selfLink}")

91

92 if maliciousCount > 0:

93 print(f" [!] Marked as MALICIOUS

by {maliciousCount} engines")

94 else:

95 print(" [+] No malicious

detections")

96

97 # --- Entropy Calculation ---

98 entropy = shannon_entropy(data_bytes)

99 if entropy > 7.5:

100 print(f"[!] Suspicious: High entropy

({ entropy :.2f})")

101 else:

102 print(f"[+] Entropy: {entropy :.2f} (normal

if < 7.5)")

103

70

104 print() # Blank line between files

105

106 except Exception as e:

107 print(f"[!] Exception during embedded analysis: {e}")

108 return False

The function begins by verifying that a PDF file is currently loaded and acces-
sible. Then extract all the possible embedded files and each of them is analyzed
individually through four verification steps:

• Yara Check: the embedded analysis functionality relies on a set of YARA
rules designed to identify suspicious or potentially malicious embedded files
within a PDF document. They can be modified directly by users to match
with specific requirements. YARA is a static analysis engine widely used in
malware research to detect patterns in binary or textual data based on user-
defined rules. Each rule below defines a specific signature associated with
known malicious file types or suspicious embedded structures.

Listing 9: YARA rules used for embedded file detection within en-
hanced Peepdf-3

1 rule contains_pe_file_attachment {

2 meta:

3 description = "Detects MZ header inside an

extracted attachment"

4 strings:

5 $pe_header = { 4D 5A } // ’MZ’

6 condition:

7 $pe_header
8 }

9

10 rule detect_activemime_attachment {

11 meta:

12 description = "Detects base64(’ActiveMime ’) in

an extracted attachment"

13 strings:

14 $activemime_b64 = "QWN0aXZlTWltZQ ==" ascii

15 condition:

16 $activemime_b64
17 }

18

19 rule detect_embedded_excel_attachment {

20 meta:

21 description = "Detects Excel XML tag inside

extracted attachment"

22 strings:

23 $xls_header = "<x:ExcelWorkbook >" ascii

24 condition:

25 $xls_header
26 }

71

27

28 rule detect_embedded_word_attachment {

29 meta:

30 description = "Detects Word XML tag inside

extracted attachment"

31 strings:

32 $word_header = "<w:WordDocument >" ascii

33 condition:

34 $word_header
35 }

36

37 rule detect_embedded_mht_attachment {

38 meta:

39 description = "Detects ’mime’ token inside

extracted attachment"

40 strings:

41 $mht_header = "mime" ascii

42 condition:

43 $mht_header
44 }

45

46 rule detect_embedded_pdf_attachment {

47 meta:

48 description = "Detects embedded PDF header

inside an extracted attachment"

49 strings:

50 $pdf_header = "%PDF -" ascii

51 condition:

52 $pdf_header
53 }

Each rule performs pattern-based detection on the content of the extracted
embedded files:

– contains pe file attachment: detects the MZ header (0x4D5A), which
indicates the presence of a Windows Portable Executable (PE) file, a
common container for malicious payloads.

– detect activemime attachment: identifies base64-encoded strings that
include the ActiveMime header, which is a frequent feature of Microsoft
Office documents and commonly used to conceal embedded macros

– detect embedded excel attachment: detects the XML tag
<x:ExcelWorkbook>, revealing the presence of an embedded Excel doc-
ument.

– detect embedded word attachment: searches for tag <w:WordDocument>
indicating embedded Microsoft Word document.

– detect embedded mht attachment: finds the “mime” keyword that
is commonly present in MIME HTML content.

72

– detect embedded pdf attachment: identify the %PDF-header, de-
tecting embedded or nested PDF files.

These rules are loaded at runtime by the embedded analysis function and
applied to each extracted attachment. If any of these signatures are matched,
the tool flags the file as suspicious and reports the corresponding rule name,
providing analysts with immediate insight into the nature of the embedded
content.

• MIME Type Verification: compares the discovered MIME type of the
embedded file (as discovered by libmagic) with its computed expected one
given the file extension. A discrepancy between extension announced (e.g.
.jpg) and the correct MIME type (e.g. application/x-executable), hinting
that this file could be a deliberately disguised attempt to mask the actual file
type, which is a common obfuscation technique used in malicious PDFs.

• File hashes & VirusTotal lookup: calculates the cryptographic hash func-
tions of the embedded file (MD5, SHA1, SHA256) and outputs them for com-
parison against analysts results. If you have configured your own VirusTotal
API key (vt key), the tool sends only its calculated MD5 hash across the
network to query the VirusTotal API and obtain a report on that file. The
lookup provides the aggregated detection statistics (e.g. how many engines
have labeled the file as malicious) and a URL for a direct report. As an aside,
notice that we deliberately send the hash instead of the file to reduce data
exposure.

• Entropy analysis: calculates the Shannon entropy of embedded file’s byte
stream, to check randomness level in its content. The entropy H(X) of a
discrete random variable X representing the byte values is computed using
the classic Shannon formula:

H(X) = −
255X
i=0

p(i) log2 p(i)

where p(i) is the probability (frequency) of each possible byte value within
the file. In practice, the function counts the occurrences of all 256 possible
byte values, normalizes them by the file length to estimate p(i), and then sums
the resulting values weighted by their logarithms. The resulting entropy score
ranges from 0 (no randomness, e.g. a file filled with a single repeated byte) to
8 (maximum randomness for uniformly distributed byte values). High entropy
(typically above 7.5) is indicative that the content is compressed or encrypted,
and can be a characteristic of obfuscated or malicious payloads embedded
within PDF files.

Two auxiliary functions are introduced to implement this feature.
The first helper functions really should help end users have an understanding of

how the new function can be used and what checks it does. Its implementation is
provided in the listing above.

73

1 def help embedded analysis(self):

2 newLine = "\n"

3 print(f"{newLine}Usage:")

4 print(" embedded analysis")

5

6 print(f"{newLine}Description:")

7 print(" Analyze all embedded files in the currently

loaded PDF , including:")

8 print(" • /EmbeddedFiles (standard PDF

attachments)")

9 print(" • Annotation -based file attachments")

10

11 print(f"{newLine}Checks performed for each embedded

file:")

12 print(" 1. YARA scan")

13 print(" → Matches against predefined YARA rules

to detect known malicious patterns.")

14 print(" 2. MIME type detection")

15 print(" → Identifies the file type from its

magic number and compares it with the extension.")

16 print(" 3. Hash computation")

17 print(" → Calculates MD5 , SHA1 , and SHA256 for

reference or external checks (e.g., VirusTotal).")

18 print(" 4. Entropy analysis")

19 print(" → High entropy (> 7.5) may indicate

encryption , compression , or obfuscation.")

20

21 print(f"{newLine}Malicious indicators:")

22 print(" [!] YARA match")

23 print(" → The file matches a rule and is

flagged as potentially malicious.")

24 print(" [!] MIME type mismatch")

25 print(" → Example: a file named ’.jpg’ but

detected as ’application/x-dosexec ’.")

26 print(" [!] High entropy")

27 print(" → Could indicate packed or encrypted

content.")

28

29 print(f"{newLine}Output format:")

30 print(" For each embedded file , the analysis will

display:")

31 print(" • Filename")

32 print(" • YARA results")

33 print(" • MIME type and extension check")

34 print(" • File hashes (MD5 , SHA1 , SHA256)")

35 print(" • VirusTotal detection rate (if API key

is configured)")

36 print(" • Entropy value and suspiciousness

indicator")

74

37 print(newLine)

The second helper function is responsible for extracting all embedded files from
the currently parsed PDF object. The implementation of this extraction routine is
provided in the following listing:

1 def getEmbeddedFiles(self):

2 from PDFCore import PDFTrailer

3

4 files = []

5

6 if not self.pdfFile:

7 return files

8

9 # Flatten trailer list

10 def flatten_trailers(trailers):

11 flat = []

12 for t in trailers:

13 if isinstance(t, list):

14 flat.extend(flatten_trailers(t))

15 else:

16 flat.append(t)

17 return flat

18

19 trailers = flatten_trailers(self.pdfFile.trailer)

20

21 # Helper: resolve a reference if needed

22 def resolve(obj):

23 if hasattr(obj , "getType") and obj.getType () ==

"reference":

24 return self.pdfFile.getObject(obj.getId())

25 return obj

26

27 # Helper: extract a file spec into bytes

28 def extract_file(file_spec , filename_hint=None):

29 file_spec = resolve(file_spec)

30 if hasattr(file_spec , "hasElement") and

file_spec.hasElement("/EF"):

31 ef_dict =

resolve(file_spec.getElementByName("/EF"))

32 file_stream_ref =

resolve(ef_dict.getElementByName("/F"))

33

34 file_stream = resolve(file_stream_ref)

35

36 # Get raw bytes

37 if hasattr(file_stream , "stream"):

38 raw_bytes = file_stream.stream

39 elif hasattr(file_stream , "getRawStream"):

40 raw_bytes = file_stream.getRawStream ()

75

41 else:

42 return None

43

44 filters = file_stream.getElementByName("/Filter")

45 decode_params =

file_stream.getElementByName("/DecodeParms")

46

47 if filters:

48 status , data_bytes = decodeStream(raw_bytes ,

filters , decode_params)

49 if status != 0:

50 return None

51 else:

52 data_bytes = raw_bytes

53 return data_bytes

54 else:

55 return None

56

57 for idx , tr in enumerate(trailers):

58 if not isinstance(tr , PDFTrailer):

59 continue

60

61 tr_dict = tr.trailerDict

62 root_ref = tr_dict.getElementByName("/Root")

63 if not root_ref:

64 continue

65 root = resolve(root_ref)

66

67 # --- Extract /EmbeddedFiles ---

68 if root.hasElement("/Names"):

69 names_dict =

resolve(root.getElementByName("/Names"))

70 if names_dict.hasElement("/EmbeddedFiles"):

71 embedded_dict = resolve(names_dict

72 .getElementByName("/EmbeddedFiles"))

73 if embedded_dict.hasElement("/Names"):

74 names_array_obj = resolve(embedded_dict

75 .getElementByName("/Names"))

76 if hasattr(names_array_obj ,

"getElements"):

77 names_array =

names_array_obj.getElements ()

78 else:

79 names_array = list(names_array_obj)

80

81 for i in range(0, len(names_array), 2):

82 name_obj = names_array[i]

83 file_spec_ref = names_array[i + 1]

84

76

85 filename = name_obj.getValue () if

hasattr(name_obj , "getValue")

else str(name_obj)

86 file_spec = resolve(file_spec_ref)

87

88 data_bytes = extract_file(file_spec ,

filename)

89 if data_bytes:

90 files.append ({"filename":

filename , "data": data_bytes })

91

92 # --- Extract /FileAttachment annotations ---

93 if root.hasElement("/Pages"):

94 def process_pages(pages_dict):

95 pages_dict = resolve(pages_dict)

96 kids = pages_dict.getElementByName("/Kids")

if pages_dict.hasElement("/Kids") else []

97 if hasattr(kids , "getElements"):

98 kids_list = kids.getElements ()

99 else:

100 kids_list = list(kids)

101

102 for kid_ref in kids_list:

103 page = resolve(kid_ref)

104 if page.hasElement("/Annots"):

105 annots_array = resolve(page

106 .getElementByName("/Annots"))

107 if hasattr(annots_array ,

"getElements"):

108 annots =

annots_array.getElements ()

109 else:

110 annots = list(annots_array)

111

112 for annot_ref in annots:

113 annot = resolve(annot_ref)

114 subtype =

115 annot.getElementByName("/Subtype")

116 subtype_val = subtype.getValue ()

if subtype and

hasattr(subtype , "getValue")

else None

117 if subtype_val ==

"/FileAttachment":

118 file_spec =

119 resolve(annot

120 .getElementByName("/FS"))

121 filename_obj =

resolve(file_spec

77

122 .getElementByName("/F")) if

file_spec.hasElement("/F")

else None

123 filename =

filename_obj.getValue ()

if filename_obj and

hasattr(filename_obj ,

"getValue") else "unknown"

124 data_bytes =

extract_file(file_spec ,

filename)

125 if data_bytes:

126 files.append ({"filename":

filename , "data":

data_bytes })

127 # Recurse into nested /Pages

128 if page.hasElement("/Kids"):

129 process_pages(page)

130

131 process_pages(root.getElementByName("/Pages"))

132

133 return files

This function is responsible for extracting all embedded files from the cur-
rently loaded PDF. This includes both standard PDF attachments stored under
the /EmbeddedFiles name tree and file attachments associated with annotations
(/FileAttachment) on PDF pages.

The function does the following:

1. Initialize storage: creates an empty list which is used to store all extracted
files.

2. Flatten trailer structure: PDF document may contain several trailers, and
these can be nested in lists. The function recursively flattens these into a
single list to be processed.

3. Reference resolution: introduces a helper function which resolves object
references to their real content from within the PDF. This makes sure that
any later accesses use the right objects.

4. File extraction helper: defines a function extracting raw bytes from file
spec object. This should also manage whatever filters (/Filter) and decode
parameters (/DecodeParms) might be in effect to get the actual file data.

5. Iterate through trailers: for each PDF trailer, the function resolves the
/Root object and looks for embedded content.

6. Extract /EmbeddedFiles: if the PDF has an /EmbeddedFiles name tree,
the method loops over name-value pairs and dereferences each file specification,
returning its bytes.

78

7. Extract /FileAttachment annotations: for each page in the PDF, it
searches for annotation objects of subtype /FileAttachment and extracts the
associated files. The function recursively processes nested pages to ensure all
attachments are captured.

8. Return collected files: the function returns a list of dictionaries, each con-
taining the filename and the corresponding byte stream of the embedded file.

To conclude, this functionality allows a thorough and multi-layered analysis of
embedded files within PDF documents. By combining signature-based detection
(YARA rules), file type verification (MIME type), cryptographic hashing and en-
tropy analysis, it provides several levels of inspection to identify potentially malicious
or suspicious content.

This is particularly useful in forensic investigations, as PDFs’ embedded files
are frequently leveraged by attackers to propagate malware, obfuscate scripts or
exfiltrate data. The function enables analysts to:

• Detect known malicious patterns in attachments via YARA rules.

• Identify inconsistencies between file extensions and actual content, which could
suggest intentional obfuscation.

• Calculate file hashes to check them against threat intelligence sources like
VirusTotal.

• Detect encrypted or compressed payloads via entropy analysis, which often
signify attempts to evade detection.

Overall, by automatically extracting and investigating each embedded objects,
this tool offers a consistent and repeatable approach for forensic analysis, assisting
investigators in identifying concealed threats, and accurately evaluating the security
risks of PDF.

Check Signatures Functionality
The second functionality implemented in the tool is do check signatures, which

allows the extraction and verification of PDF signatures. Its primary purpose is to
determine which objects in a PDF are covered by digital signatures and which are
not, providing a detailed and structured overview of signed and unsigned objects.
The core function performs several steps, combining reference resolution, byte-range
analysis and object mapping to give forensic insight into the PDF’s signature in-
tegrity.

Listing 10: Core function of do check signatures
1 def do_check_signatures(self , arg):

2 """

3 Checks PDF objects against signature ByteRange(s)

and prints which objects are signed.

4 Marks the actual signature object(s) and includes

full debug output.

79

5 """

6

7 def resolve(obj):

8 """Recursively resolve references to get the

actual object."""

9 try:

10 while hasattr(obj , "getType") and

obj.getType () == "reference":

11 obj = self.pdfFile.getObject(obj.getId())

12 except Exception as e:

13 return

14 return obj

15

16 def is_object_signed(obj_start , obj_end ,

byte_ranges):

17 """Returns True if the object falls entirely

within any ByteRange segment."""

18 for i in range(0, len(byte_ranges), 2):

19 start = byte_ranges[i]

20 length = byte_ranges[i + 1]

21 if obj_start >= start and obj_end <= start +

length:

22 return True

23 return False

24

25 if not self.pdfFile:

26 print("[!] No PDF loaded")

27 return

28

29 # --- Flatten objects from offsets ---

30 try:

31 offsets_array = self.pdfFile.getOffsets ()

32 except Exception as e:

33 return

34

35 objects = []

36 for offset_block in offsets_array:

37 if "objects" in offset_block:

38 for obj_id , start , size in

offset_block["objects"]:

39 objects.append ({

40 "Id": obj_id ,

41 "Start": start ,

42 "End": start + size - 1

43 })

44

45 # --- Build resolved object map for marking

signature objects ---

46 resolved_obj_map = {}

80

47 for o in objects:

48 try:

49 obj =

resolve(self.pdfFile.getObject(o["Id"]))

50 resolved_obj_map[id(obj)] = o["Id"]

51 except Exception as e:

52 return

53

54 # --- Identify signature fields ---

55 sig_objs = []

56 for o in objects:

57 try:

58 obj =

resolve(self.pdfFile.getObject(o["Id"]))

59 ft_val = None

60 v_val = None

61

62 try:

63 ft = obj.getElementByName("/FT") if

hasattr(obj , "getElementByName") else

None

64 ft_val = ft.getValue () if ft and

hasattr(ft , "getValue") else ft

65 except:

66 return

67

68 try:

69 v_val = obj.getElementByName("/V") if

hasattr(obj , "getElementByName") else

None

70 except:

71 return

72

73 if ft_val == "/Sig" and v_val is not None:

74 sig_objs.append(resolve(v_val))

75

76 except:

77 return

78

79 if not sig_objs:

80 print("\n[!] No signatures found\n")

81 return

82

83 # --- Check each object against each signature ---

84 for idx , sig in enumerate(sig_objs , start =1):

85 try:

86 br = sig.getElementByName("/ByteRange") if

hasattr(sig , "getElementByName") else None

87 if not br:

81

88 continue

89

90 if hasattr(br , "getElements"):

91 byte_ranges = [int(x.getValue ()) if

hasattr(x, "getValue") else int(x)

for x in br.getElements ()]

92 else:

93 byte_ranges = [int(x.getValue ()) if

hasattr(x, "getValue") else int(x)

for x in br]

94

95 valid , msg = self.verify_signature(idx)

96

97 print("{:<8} {:<10} {:<10}

{:<30}".format("Object", "Start", "End",

"Signed?"))

98

99 RED = "\033[91m"

100 RESET = "\033[0m"

101

102 for o in objects:

103 start = o["Start"]

104 end = o["End"]

105 obj_id = o["Id"]

106 signed = is_object_signed(start , end ,

byte_ranges)

107 is_sig_obj = id(sig) in resolved_obj_map

and resolved_obj_map[id(sig)] ==

obj_id

108

109 marker = "YES" if signed else "NO"

110 if is_sig_obj:

111 marker += " (Signature Object)"

112

113 if not signed and not is_sig_obj:

114 print(f"{RED}{ obj_id :<8} {start :<10}

{end:<10} {marker : <30}{ RESET}")

115 else:

116 print(f"{obj_id :<8} {start :<10}

{end:<10} {marker :<30}")

117

118 except:

119 return

120

121 # --- Recap for multiple signatures ---

122 if len(sig_objs) > 1:

123 recap = {}

124 for o in objects:

125 recap[o["Id"]] = {

82

126 "Start": o["Start"],

127 "End": o["End"],

128 "covered_by": []

129 }

130

131 for sig_idx , sig in enumerate(sig_objs , start =1):

132 br = sig.getElementByName("/ByteRange") if

hasattr(sig , "getElementByName") else []

133 if hasattr(br , "getElements"):

134 byte_ranges = [int(x.getValue ()) if

hasattr(x, "getValue") else int(x)

for x in br.getElements ()]

135 else:

136 byte_ranges = [int(x.getValue ()) if

hasattr(x, "getValue") else int(x)

for x in br]

137

138 for o in objects:

139 if is_object_signed(o["Start"],

o["End"], byte_ranges):

140 recap[o["Id"]]

141 ["covered_by"]. append(sig_idx)

142

143 last_sig_obj_id =

resolved_obj_map.get(id(sig_objs [-1]), None)

144

145 print("\nFINAL RECAP OF ALL SIGNATURES:")

146 print("{:<8} {:<10} {:<10} {:<20} {:<25}".format(

147 "Object", "Start", "End", "Signed by",

"Status"

148))

149

150 RED = "\033[91m"

151 RESET = "\033[0m"

152

153 for obj_id , info in recap.items():

154 signed_by = ",".join(str(s) for s in

info["covered_by"])

155 if obj_id == last_sig_obj_id:

156 status = "Last Signature Object"

157 elif not signed_by:

158 status = "Unsigned / Suspicious"

159 else:

160 status = "Covered"

161

162 line = "{:<8} {:<10} {:<10} {:<20}

{:<25}".format(

163 obj_id , info["Start"], info["End"],

signed_by or "-", status

83

164)

165 if not signed_by and obj_id !=

last_sig_obj_id:

166 line = RED + line + RESET

167 print(line)

168

169 print("\n")

The function performs the following tasks in detail:

• Reference resolution: the function defines a helper resolve(obj) that re-
cursively dereferences PDF objects. Since PDF objects can be indirect refer-
ences, resolving them ensures the function operates on the actual content of
the document.

• Object offset mapping: the function reads the /ByteRange for each sig-
nature object indicating which byte ranges of the PDF is covered by that
signature. Then, it inspects each object to see whether its range of bytes is
completely within any one of the signed segment.

• Signature object identification: the function iterates through all PDF
objects and identifies those that are signature fields. This is done by checking
for an /FT (field type) of /Sig and the presence of a /V (value) element. These
objects are stored for further analysis.

• ByteRange verification: for each signature object, the function retrieves the
/ByteRange, which specifies the portions of the PDF covered by the signature.
It then checks each object to determine whether its byte range falls entirely
within any of the signed segments.

• Marking and output: it prints in a table format all objects showing their
identifier, starting and ending offset, as well as the information about if it
is signed. If the object is a signature object, it is marked in a special way.
Unsigned objects are highlighted in red to draw attention to potential incon-
sistencies or tampering.

• Multiple signature handling: if multiple signatures are present, the func-
tion constructs a summary that reports which objects are covered by each
signature. It also identifies the last signature object, the signing time, and
marks unsigned elements as ”Unsigned/Suspicious”, thus giving a comprehen-
sive forensics brief of all signatures in a document.

• Debug and validation: the function optionally invokes verify signature

to validate each signature. Detailed debug logging can be examined by ana-
lysts to determine signature coverage and validate that the PDF has not been
tampered with.

The check signatures functionality relies, similarly to embedded analysis, on
two helper functions. The first helper function guides users in understanding the
purpose of the function and interpreting its output:

84

Listing 11: Helper function describing the signature check workflow
1 def help_check_signatures(self):

2 newLine = "\n"

3 print(f"{newLine}Usage: check_signatures")

4 print(f"{newLine}Checks the digital signatures in a

PDF and validates them.")

5 print(f"For each signature , the tool verifies:")

6 print(f" 1. Cryptographic validity of the signature

(hash and signed content).")

7 print(f" 2. Certificate validity (trusted , expired ,

or self -signed).")

8

9 print(f"{newLine}For each signature found , it prints

a block with:")

10 print(f" SUMMARY : Signer , status (VALID ,

INVALID , or UNTRUSTED), and reason if applicable")

11 print(f" PDF METADATA : SubFilter , Signing Date ,

Location , and ByteRange")

12 print(f" CERTIFICATE INFO : Certificate details

such as CommonName , Organization , SerialNumber ,

Issuer , and validity dates")

13

14 print(f"{newLine}After that , it prints a table for

all PDF objects:")

15 print(f" Object Start End Signed?")

16

17 print(f"{newLine}Legend:")

18 print(f" YES : Object fully

covered by the signature")

19 print(f" NO : Object not

covered (may require further inspection)")

20 print(f" NO (Signature Object) : Object contains

the signature itself (normal , not suspicious)")

21

22 print(f"{newLine}Color codes (if supported by

terminal):")

23 print(f" RED : Object outside signature

coverage (possible tampering)")

24 print(f" Default : Object properly covered or

signature object itself")

25

26 print(f"{newLine}Notes:")

27 print(f" - Multiple signatures are supported; each

ByteRange is checked independently.")

28 print(f" - Unsigned objects may indicate tampering

or unsigned content.")

29 print(f" - Signature objects are marked separately

because they naturally fall outside their own

ByteRange.")

85

The second helper function, verify signature, is responsible for verifying the
validity of digital signatures embedded within a PDF document. This function is
used by do check signatures to provide detailed information about each signature
and assess its trustworthiness.

Listing 12: Function to verify digital signature
1 def verify_signature(self , sig_id=None):

2 import logging , traceback

3 from pyhanko.pdf_utils.reader import PdfFileReader

4 from pyhanko.sign.validation import

validate_pdf_signature , ValidationContext

5 from pyhanko.sign.validation.errors import

DisallowedAlgorithmError

6 from asn1crypto import x509

7 from dateutil import parser

8

9 logging.getLogger("pyhanko.sign.validation")

10 .setLevel(logging.CRITICAL)

11 logging.getLogger("pyhanko_certvalidator")

12 .setLevel(logging.CRITICAL)

13

14 pdf_path = self.pdfFile.getPath ()

15 results = []

16

17 def extract_asn1_cert_info(cert: x509.Certificate):

18 def get_name_value(name , attr):

19 for rdn in name.chosen:

20 for ava in rdn:

21 if ava[’type’]. native == attr:

22 return ava[’value’]. native

23 return None

24

25 subject = cert.subject

26 issuer = cert.issuer

27

28 return {

29 "CommonName": get_name_value(subject ,

’common_name ’),

30 "Organization": get_name_value(subject ,

’organization_name ’),

31 "OrganizationalUnit":

get_name_value(subject ,

’organizational_unit_name ’),

32 "SerialNumber": hex(cert.serial_number),

33 "IssuerCN": get_name_value(issuer ,

’common_name ’),

34 "ValidFrom":

cert[’tbs_certificate ’][’validity ’]

35 [’not_before ’].native ,

86

36 "ValidTo":

cert[’tbs_certificate ’][’validity ’]

37 [’not_after ’].native ,

38 }

39

40 def normalize_pdf_value(v):

41 """If v is a PDF string -like object with

getValue (), return its value , else str or

None."""

42 try:

43 if v is None:

44 return None

45 if hasattr(v, "getValue"):

46 return v.getValue ()

47 return str(v)

48 except Exception:

49 return str(v)

50

51 try:

52 with open(pdf_path , "rb") as f:

53 reader = PdfFileReader(f)

54 sig_fields = reader.embedded_signatures

55

56 if not sig_fields:

57 return False , "No signatures found in

the PDF"

58

59 for idx , sig in enumerate(sig_fields ,

start =1):

60 if sig_id is not None and idx != sig_id:

61 continue

62

63 # --- PDF metadata ---

64 md = {}

65 try:

66 sig_dict = sig.sig_object

67 if sig_dict:

68 md["Signer"] =

normalize_pdf_value(sig_dict

69 .get("/Name", "Unknown"))

70 md["SubFilter"] =

normalize_pdf_value(sig_dict

71 .get("/SubFilter"))

72 md["Reason"] =

normalize_pdf_value(sig_dict

73 .get("/Reason"))

74 md["ContactInfo"] =

normalize_pdf_value(sig_dict

75 .get("/ContactInfo"))

87

76 md["Location"] =

normalize_pdf_value(sig_dict

77 .get("/Location"))

78 md["SigningDate"] =

normalize_pdf_value(sig_dict

79 .get("/M"))

80 md["ByteRange"] = sig.byte_range

81 else:

82 md = {"Signer": "Unknown"}

83 except Exception:

84 md = {"Signer": "Unknown"}

85

86 # --- Validation & certificate ---

87 cert_info = {}

88 summary = "VALIDATION SKIPPED"

89 trusted = False

90 reason_invalid = []

91

92 try:

93 status = validate_pdf_signature(sig)

94 valid = getattr(status , "valid",

False)

95 trusted = getattr(status , "trusted",

False)

96

97 if valid and trusted:

98 summary = "VALID & TRUSTED"

99 reason_invalid.append("Signature

cryptographically valid;

certificate trusted and

verified")

100 elif valid and not trusted:

101 summary = "VALID but UNTRUSTED"

102 reason_invalid.append("Certificate

is valid but not trusted

(self -signed or unrecognized

CA)")

103 elif getattr(status ,

"weak_algorithms", None):

104 summary = "VALID but WEAK

ALGORITHM"

105 reason_invalid.append("weak

algorithm")

106

107 cert = getattr(status ,

"signer_cert", None)

108 if cert:

109 cert_info =

extract_asn1_cert_info(cert)

88

110

111 except Exception as e:

112 summary = f"VALIDATION ERROR ({e})"

113 reason_invalid.append(str(e))

114 try:

115 cert = getattr(sig ,

"signer_cert", None)

116 if not cert and hasattr(sig ,

"embedded_signature"):

117 cert =

118 getattr(sig.embedded_signature ,

119 "signer_cert", None)

120 if cert:

121 cert_info =

122 extract_asn1_cert_info(cert)

123 except:

124 pass

125

126 result = {

127 "Signature": idx ,

128 "Signer": md.get("Signer",

"Unknown"),

129 "Trusted": trusted ,

130 "Summary": summary ,

131 "Metadata": md ,

132 "Certificate": cert_info ,

133 "ReasonInvalid": ";

".join(reason_invalid) if

reason_invalid else ""

134 }

135

136 results.append(result)

137

138 # --- Print everything divided by

section ---

139 print(f"\nSignature {idx}:")

140

141 # SUMMARY

142 print(" SUMMARY")

143 print(f" Signer :

{result[’Signer ’]}")

144 status_text =

result[’Summary ’]. split(’(’)[0]. strip()

145 print(f" Status : {status_text}")

146 print(f" Trusted :

{result[’Trusted ’]}")

147

148 reason_text = result[’ReasonInvalid ’]

149 if status_text == "VALIDATION SKIPPED"

89

and not reason_text:

150 reason_text = "No signer certificate

or unsupported signature"

151 if reason_text:

152 print(f" Reason :

{reason_text}")

153

154 # PDF METADATA

155 print(" PDF METADATA")

156 print(f" SubFilter :

{md.get(’SubFilter ’)}")

157 # Print Reason and ContactInfo (if

present)

158 print(f" Reason :

{md.get(’Reason ’) or ’-’}")

159 print(f" ContactInfo :

{md.get(’ContactInfo ’) or ’-’}")

160 # Format SigningDate

161 signing_date_raw = md.get(’SigningDate ’)

162 if signing_date_raw:

163 try:

164 signing_date_clean =

signing_date_raw [2:] if

signing_date_raw

165 .startswith(’D:’) else

signing_date_raw

166 signing_date_clean =

signing_date_clean.replace("’",

"")

167 signing_dt =

168 signing_date_fmt =

signing_dt.strftime(’%Y-%m-%d

%H:%M:%S%z’)

169 signing_date_fmt =

signing_date_fmt [:-2] + ’:’ +

signing_date_fmt [-2:]

170 except Exception:

171 signing_date_fmt =

signing_date_raw

172 else:

173 signing_date_fmt = ’-’

174 print(f" Signing Date :

{signing_date_fmt}")

175 print(f" Location :

{md.get(’Location ’)}")

176 print(f" ByteRange :

{md.get(’ByteRange ’)}")

177

178 # CERTIFICATE INFO

90

179 if cert_info:

180 print(" CERTIFICATE INFO")

181 for ck , cv in cert_info.items():

182 if not cv:

183 cv = "-"

184 print(f" {ck: <20}: {cv}")

185

186 return True , results

187

188 except Exception as e:

189 return False , f"Signature verification failed:

{e}"

Its main operations can be summarized as follows:

• PDF reading and signature extraction: the function opens the PDF file
using PdfFileReader and extracts all embedded signatures. If no signatures
are found, it returns immediately.

• ASN.1 certificate parsing: for each signature the function retrieves as-
sociated X.509 certificate and parses key attributes, such as common name,
organization, organizational unit, serial number, issuer and validity period.
This gives us a full overview of certificates which were used to sign a PDF.

• Normalization of PDF values: the function safely converts PDF string-like
objects to Python strings, handling cases where the object may not provide a
direct value. This ensures metadata is extracted reliably without errors.

• Signature validation: performs cryptographic verification of each signature
using the pyHanko library. It determines if the signature is valid, trusted or
uses weak algorithms. Validation results are stored in a structured format,
including reasons for untrusted or invalid signatures.

• Metadata extraction: alongside cryptographic validation, the function ex-
tracts signature metadata such as signer name, subfilter, reason, contact info,
location, signing date and the /ByteRange of the signed content. The signing
date is converted into a human-readable format.

• Certificate information display: if a certificate is available, detailed cer-
tificate information is printed, including subject and issuer attributes, validity
period, and serial number.

• Structured output: the method returns the results in a list including all per-
tinent information for each signature, including validation status, trust level,
metadata, certificate details, and reasons for invalidity. It prints a formatted
forensic summary as well.

By combining cryptographic verification, certificate inspection and metadata ex-
traction, this function provides a comprehensive assessment of digital signatures in

91

a PDF, which is essential for forensic analysis, document integrity verification and
detecting potential tampering.

In general, do check signatures offers a solid solution for forensic investigation
of the digitally signed PDF. By parsing the object coverage, recognizing unsigned
objects or partly covered ones, and processing multiple signatures, it makes the
investigators to be able to expediently evaluate reliability and integrity of each
document. Overall, do check signatures provides a robust method for forensic
analysis of digitally signed PDFs. By mapping object coverage, detecting unsigned
or partially covered objects, and handling multiple signatures, it allows investigators
to quickly assess the trustworthiness and integrity of the document.

Support for Report Generation
The functionality for supporting report generation is implemented through a

peepdf wrapper script, designed to facilitate the use of peepdf within the container:

Listing 13: Wrapper script to run peepdfy from anywhere
1 #!/bin/bash

2 # Forensic wrapper for peepdf generating human -readable TXT

report

3 set -euo pipefail

4

5 PDF_FOLDER="/app/pdfs/files"

6 FORENSIC_FOLDER="/app/pdfs/forensic_copy"

7 mkdir -p "$FORENSIC_FOLDER"
8

9 # --- Argument check ---

10 if [[$# -eq 0]]; then

11 echo "[!] Usage: peepdf -h | peepdf <filename.pdf >"

12 exit 1

13 fi

14

15 ARG="$1"
16 shift

17

18 # Allow only help

19 if [["$ARG" == "-h"]]; then

20 cd /app/peepdf -3/ peepdf || exit 1

21 python3 peepdf.py -h

22 exit 0

23 fi

24

25 # Reject additional flags

26 if [[$# -ne 0]]; then

27 echo "[!] Only ’peepdf -h’ or ’peepdf <filename.pdf >’

are allowed"

28 exit 1

29 fi

30

92

31 # Ensure original file exists

32 ORIGINAL="$PDF_FOLDER/$ARG"
33 if [[! -f "$ORIGINAL"]]; then

34 echo "[!] File not found: $ORIGINAL"
35 exit 1

36 fi

37

38 # --- Create forensic copy ---

39 COPY="$FORENSIC_FOLDER/$ARG"
40 cp "$ORIGINAL" "$COPY"
41

42 # --- Compute pre -analysis hashes ---

43 SHA256_BEFORE=$(sha256sum "$COPY" | awk ’{print $1}’)
44 MD5_BEFORE=$(md5sum "$COPY" | awk ’{print $1}’)
45

46 # --- Run peepdf and capture output ---

47 OUTPUT_LOG="$FORENSIC_FOLDER/${ARG}_peepdf.log"
48 cd /app/peepdf -3/ peepdf || exit 1

49 script -q -c "python3 /app/peepdf -3/ peepdf/peepdf.py -i

’$COPY ’" "$OUTPUT_LOG"
50

51 # --- Compute post -analysis hashes ---

52 SHA256_AFTER=$(sha256sum "$COPY" | awk ’{print $1}’)
53 MD5_AFTER=$(md5sum "$COPY" | awk ’{print $1}’)
54

55 # --- Prepare fetch_email section ---

56 FETCH_JSON="$FORENSIC_FOLDER/${ARG}.json"
57 if [[-f "$FETCH_JSON"]]; then

58 FETCH_SECTION="=== FETCH_EMAIL METADATA ===

59 $(cat "$FETCH_JSON")"
60 # Compute JSON hashes

61 JSON_SHA256=$(sha256sum "$FETCH_JSON" | awk ’{print $1}’)
62 JSON_MD5=$(md5sum "$FETCH_JSON" | awk ’{print $1}’)
63 JSON_HASH_SECTION="JSON SHA256 : $JSON_SHA256
64 JSON MD5 : $JSON_MD5"
65 else

66 FETCH_SECTION="=== FETCH_EMAIL METADATA ===

67 No fetch_email metadata available."

68 JSON_HASH_SECTION="JSON SHA256 : N/A

69 JSON MD5 : N/A"

70 fi

71

72 # --- Prepare peepdf section (cleaned for report) ---

73 PEEPDF_SECTION="=== PEEPDF OUTPUT ===

74 $(sed -r ’s/\x1B \[[0 -9;]*[JKmsu]//g’ "$OUTPUT_LOG")"
75

76 # --- Prepare forensic hashes section ---

77 HASH_SECTION="=== FORENSIC HASHES ===

78 Original file: $ORIGINAL

93

79 Forensic copy: $COPY
80 SHA256 before: $SHA256_BEFORE
81 MD5 before : $MD5_BEFORE
82 SHA256 after : $SHA256_AFTER
83 MD5 after : $MD5_AFTER
84 Hash match : $([["$SHA256_BEFORE" == "$SHA256_AFTER" &&

"$MD5_BEFORE" == "$MD5_AFTER"]] && echo "True" || echo

"False")"

85

86 # --- Combine all sections into TXT report ---

87 REPORT_TXT="$FORENSIC_FOLDER/${ARG}_report.txt"
88 {

89 echo "$FETCH_SECTION"
90 echo

91 echo "$JSON_HASH_SECTION"
92 echo

93 echo "$PEEPDF_SECTION"
94 echo

95 echo "$HASH_SECTION"
96 } > "$REPORT_TXT"
97

98 # --- Compute hashes of the report itself ---

99 REPORT_SHA256=$(sha256sum "$REPORT_TXT" | awk ’{print $1}’)
100 REPORT_MD5=$(md5sum "$REPORT_TXT" | awk ’{print $1}’)
101

102 echo "[+] Forensic report saved: $REPORT_TXT"
103 echo " SHA256: $REPORT_SHA256"
104 echo " MD5 : $REPORT_MD5"

Reports are generated automatically for each interaction with peepdf. Each re-
port is a .txt file containing a comprehensive summary of the processed PDFs,
including metadata, forensic hashes and results from the peepdf analysis. The re-
port is divided into several sections to facilitate forensic review and traceability. The
layout is:

• FETCH EMAIL METADATA: this section contains metadata generated
by the email fetching process. If no metadata is available, a placeholder mes-
sage such as No fetch email metadata available. is displayed. For ex-
isting metadata, cryptographic hashes of the .json file are computed and
reported in two fields: JSON SHA256 and JSON MD5. If no metadata exists,
placeholders such as N/A are used.

• PEEPDF OUTPUT: contains results from peepdf and interactions with
the tool for each PDF file analyzed.

• FORENSIC HASHES: displays the SHA256 and MD5 hashes for both the
original file and the forensic copy, before and after processing with peepdf,
along with a hash match indicator. This provides integrity of evidence across
the entire workflow.

94

This structure guarantees that each step of the forensic processing is fully doc-
umented, verifiable, and easily reviewable by experts. By including both metadata
and file analysis results, the report provides a transparent audit trail for all PDF
files processed by the system.

9.5 Generated Files Example

Each step of the process produces different files, each serving a specific purpose.
The files generated depend on the workflow adopted when using foredf, but from a
high-level perspective, as previously stated, the main file types that can be produced
are the following:

• The .json file contains metadata about the emails from which PDFs are
downloaded. For PEC (Posta Elettronica Certificata) messages, it includes
metadata about both the original message and the wrapper .eml file. Its
general structure is as follows:

1 {

2 "uid": 1003,

3 "original_filename": "document.pdf",

4 "saved_filename": "example.eml_document.pdf",

5 "content_type": "application/pdf",

6 "subject": "Example Message",

7 "from_header": [

8 ["User Name", "user@example.com"]

9],

10 "headers": {

11 "To": [["", "recipient@example.com"]],

12 "Subject": "Example Email",

13 "Date": "Thu , 18 Sep 2025 14:06:03 +0200"

14 },

15 "hashes": {

16 "sha256": "REDACTED_FOR_PRIVACY",

17 "md5": "REDACTED_FOR_PRIVACY"

18 },

19 # This field is present only in case of mismatch

20 "sender_mismatch": {

21 "from_header": "user@example.it",

22 "envelope_sender": "user1@example.it >"

23 }

24 }

• For each downloaded PDF, the enhanced version of peepdf can be used. Once
executed, the user sees a general overview of the analyzed file, which also
includes additional indicators about the file status, such as whether it is signed
or not:

95

Figure 9: General overview of the analyzed file.

Since the file is signed, as we can see at line 11 of the Fig.9, the new command
can be executed to check the signature. The resulting output will resemble
the following, depending on the specific signature:

1 PPDF > check_signatures

2

3 Signature 1:

4 SUMMARY

5 Signer : Unknown

6 Status : VALIDATION ERROR

7 Trusted : False

8 Reason : The algorithm rsassa_pkcs1v15 is not

allowed by the current usage policy. Reason: Key

size 1024 for algorithm rsassa_pkcs1v15 is

considered too small; policy mandates >= 2048.

[AdESIndeterminate.CRYPTO_CONSTRAINTS_FAILURE]

9 PDF METADATA

10 SubFilter : /adbe.pkcs7.detached

11 Reason : I approve these details.

12 ContactInfo : Contact info

13 Signing Date : 2018 -09 -01 12:57:33 -04:00

14 Location : City

96

15 ByteRange : [0, 18374 , 43144 , 2872]

16 CERTIFICATE INFO

17 CommonName : Test Signing Certificate

18 Organization : Tecxoft

19 OrganizationalUnit : Test

20 SerialNumber : 0x7a10d

21 IssuerCN : Tecxoft Public CA

22 ValidFrom : 2011 -12 -31 19:00:00+00:00

23 ValidTo : 2022 -01 -01 18:59:59+00:00

24 Object Start End Signed?

25 5 15 142 YES

26 6 144 1036 YES

27 1 1038 1180 YES

28 9 1182 1268 YES

29 8 1270 1333 YES

30 10 1335 8117 YES

31 11 8119 8311 YES

32 12 8313 8613 YES

33 13 8615 8982 YES

34 2 8984 9120 YES

35 3 9122 9208 YES

36 14 9210 16295 YES

37 15 16297 16477 YES

38 16 16479 16732 YES

39 17 16734 17066 YES

40 4 17068 17195 YES

41 7 17197 17246 YES

42 18 17248 17307 YES

43 19 17309 17600 YES

44 27 18165 18349 YES

45 23 18351 43435 NO (Signature Object)

46 28 43437 43534 YES

47 29 43536 43611 YES

48 22 43613 43700 YES

49 20 43702 43948 YES

50 26 43950 44156 YES

51 25 44158 44378 YES

52 24 44380 44553 YES

53 21 44555 44904 YES

54 19 44906 45218 YES

55 18 45220 45401 YES

56 1 45403 45552 YES

If no object is marked as suspicious (i.e., none are highlighted in red), the tool
still identifies the object that contains the signature information, along with
its validation details and related metadata.

Furthermore, the analyzed PDF may include embedded files. In that case,
something similar to the following output is displayed:

97

Figure 10: Indicator showing the presence of embedded files.

If the new functionality is executed, the tool provides a summary of the per-
formed checks:

Figure 11: Analysis of embedded files.

In this case, the embedded file is not considered harmful, and the user can
decide to trust it at their own risk since no indicators of potential threats are
present.

• During the interaction with peepdf, a .log file is also generated. This file is
later used to create preliminary forensic reports.

Finally, based on all the collected information, the report is automatically
saved at the end of the analysis. The user is notified with a message such as:

1 [+] Forensic report saved:

/app/pdfs/forensic_copy/time.pdf_report.txt

2 SHA256: 50972 e35ad4f1454d379060437da0d9adefe

98

3 6216591 d64a3aa0bca33f5f30662

4 MD5 : 5f488230f43a399fbcce4b65e39783bd

In this way, the user can easily locate the generated report, verify and maintain
the corresponding hash values for forensic integrity and traceability purposes.

9.6 Strengths and Weaknesses of foredf

The main strength of foredf lies in its ability to automate and integrate multiple
forensic operations into a single, reproducible workflow. By extending the peepdf

tool, it provides advanced features such as digital signature verification, embedded
file inspection, automated metadata extraction from PEC and standard emails, and
forensic report generation, all within a containerized and controlled environment.
This unified design reduces the need for manual intervention and minimizes the frag-
mentation typical of current forensic workflows, ensuring higher reproducibility and
forensic soundness. Furthermore, the integration of hashing, signature validation
and scanning mechanisms (e.g. YARA and VirusTotal) strengthens its evidential
reliability and broadens its analytical scope.

However, foredf still has certain limitations. Its reliance on static analysis re-
stricts dynamic behavioral assessment, meaning it cannot directly observe runtime
exploits or evasive code execution. In addition, while the containerized environment
enhances portability and isolation, it introduces dependencies that may limit us-
ability on constrained systems or environments without container support. Future
developments could address these aspects by incorporating lightweight sandboxing
capabilities and extending support for incremental report comparison and visualiza-
tion.

99

10 Foredf: Attack Prevention and Analysis

To better illustrate the utility and functionality of foredf, this chapter presents sev-
eral basic scenarios in which the tool plays a fundamental role. Each use case defines
a specific context, explains how foredf can be applied to address the situation, and
describes the expected outputs as well as any complementary analyses or tools that
may be required to achieve a complete forensic analysis.

10.1 Use Case 1 — Malicious PDF Delivered via Corporate
Email

Description. Employee gets a seemingly legitimate invoice or report in PDF for-
mat, with an embedded malicious payload (JavaScript, Shellcode or an embedded
executable). If the PDF is opened on a workstation, this will exploit it, allowing to
move laterally and compromise everything in case of execution.

Why it matters. Email is the top initial vector of attack – and as PDF files
are widely accepted they often slip through the simplest filtering systems purely
because they are generally perceived to be ‘safe’.

How foredf could be used.

1. Before opening any PDF attachments in an email communication, foredf can
fetch emails from specific mailboxes and extract PDF attachments.

2. The generated .json metadata file, useful for maintaining chain-of-custody
and logging message headers, should be analyzed to verify sender and envelope
consistency.

3. Once you have downloaded it, a static analysis with the improved peepdf

module is able to find embedded Javascripts, obfuscated objects and streams.
If the analyzed PDF has embedded files, they can be analyzed as well. Finally,
peepdf can act as validation tool to establish if the file has been manipulated
or even to check if a digital signature was invalidated (there are several ways to
do that like adding some new objects which are not covered by the signature).

4. Finally, preliminary reports and hashes generated can be saved and used to
flag high-risk files for immediate containment and dynamic analysis by the
security team.

Expected results. Using foredf in this context allows a user to open a file only
when its content has been verified, particularly when the sender is untrusted or email
addresses may have been spoofed. This demonstrates the tool’s strength in enabling
employees to autonomously detect and analyze suspicious PDFs locally, without
opening them directly and without requiring extensive resources. Moreover, all the
supporting documents generated can serve also as a fundation for legal proceedings
against the sender of that email. In addition, security team is not overloaded with
unuseful requests since it can be alerted only when a file is considered really unsafe
and flagged as dangerous.

100

However, foredf provides only static evidence; a follow-up dynamic sandbox
analysis (e.g. with Cuckoo or Joe Sandbox) is recommended to observe runtime
behavior and confirm payload activation and malicious intent.

10.2 Use Case 2 — Forged or Tampered Signed PDF in
Legal/PEC Communications

Description. There is a certified email (PEC) with an, on the surface, signed
contract. A party has challenged the authenticity of the signature or denied that
the document was modified after it was signed.

Why it matters. Legal and forensic contexts require precise, object-level ver-
ification of signature coverage and proof that no document objects were altered
following the signing event.

How foredf could be used.

1. Consume the PEC message and extract both the wrapper .eml file and the
inner PDF, and some metadata of interest for the analysis of timing as well
as sender authenticity.

2. Object-level digital signature verification with peepdf can be performed. This
allows to visually see which objects are covered within and which are outside
of the signature. If certain objects fall outside the signed range, incremental
updates can be analyzed to determine whether the object existed at signing
time or was added later. peepdf can also report discrepancies between the
signed byte ranges and the current object map.

3. Finally, the tool can generate a structured report suitable for legal presen-
tation, showing signed versus unsigned objects, temporal information about
object insertion and signing and details of the certificate chain.

Expected outputs/evidence. Using the check signatures functionality of
peepdf, this scenario can be resolved efficiently by providing object-level proof of
digital signatures, their coverage and their validity status.

However, if certificate revocation or PKI provenance requires deeper validation,
integration with PKI validation services or consultation with legal experts is nec-
essary. Moreover, while foredf provides object-level forensic evidence, it does not
guarantee legal adjudication; every result must be independently verified, discussed
and properly contextualized within legal procedures.

10.3 Use Case 3 — Post-Incident Investigation: PDF as
Suspected Ransomware Vector

Description. A company gets hit with ransomware. A forensic triage indicates
that it may have come from a PDF attachment which was the initial point of entry.
Investigators must figure out if the PDF provided an initial entry point or delivered
a malicious payload.

101

Why it matters. Identifying the true initial vector is critical for containment,
eradication and remediation. PDFs are commonly used as stealthy delivery mech-
anisms that can evade basic security controls and may carry or link to malicious
content.

How foredf could be used.

1. foredf can ingest the suspicious email(s) and their associated PDFs from a
forensic image, mail archive or endpoint, preserving both .eml and PDF files.

2. Perform static analysis of the PDF to identify any anomalous structures,
scripts or other indicators of suspicious behavior.

3. Write a structured forensic report by analyzing the PDF’s elements, possible
vulnerabilities and suspicious objects with foredf (using peepdf module).

Expected outputs/evidence. Using foredf, investigators obtain the original
PDF, metadata for chain-of-custody, analysis logs detailing suspicious structures
or behaviors and a comprehensive initial forensic report that can support incident
response, remediation, real final reports and further investigative actions.

10.4 Use Case 4 — Mass Automated Triage in Security Op-
erations Center (SOC)

Description. Big organizations may receive hundreds or thousands of emails daily;
businesses depend on automated triage for PDF attachments to quickly assess
threats.

Why it matters. Manual review is not intended for high volume environments,
so the more this part of detection is automated, the faster the attack can be detected.

How foredf could be used.

1. Deploy containerized pipeline to poll monitored mailboxes and batch process
PDF attachments.

2. For each PDF, generate metadata (.json) during fetching emails, later per-
form a static peepdf scan, analyze embedded files, any suspicious objects and
perform digital signatures checks if any. In this case, the automation of the
peepdf tool is required based on the security teams requirements.

3. Produce machine-readable reports or ticketing systems, ensuring traceable
forensic artifacts.

Expected outputs/evidence. By using the extensibility of foredf, security
teams can construct personalized containerized images suited to their organization’s
operational requirements. These iamges, when used, can generate aggregated foren-
sic artifacts, including JSON metadata and peepdf analysis logs. They can be
utilized to automatically rank suspicious PDFs while preserving a useful chain of
custody if the PDFs are to be subjected to further forensic analysis or regulatory
compliance auditing.

102

10.5 Use Case 5 — Post-Incident Investigation: Malicious
PDF Delivered via USB

Description. During a forensic investigation, a compromised workstation is found
to have connected a USB device. Preliminary evidence suggests that a PDF file
on the USB may have been the vector for malware or ransomware infection. The
forensic analyst must determine whether the PDF contributed to the compromise.

Why it matters. USBs are still one of the primary vectors for malware and
that PDF files accessed from removable media can evade typical security controls.
Analysis of the malicious file is crucial for incident containment, remediation and to
gain insight into how was infection achieved.

How foredf could be used.

1. Acquire the USB device in a forensically sound manner and mount it in a
controlled environment.

2. Extract PDF files from the USB and preserve original artifacts, including file
metadata, timestamps and any related system logs.

3. Use foredf within a containerized reproducible environment to analyze each
PDF, performing static inspection with peepdf, checking for anomalous struc-
tures, scripts, suspicious objects, embedded files and digital signatures if present.

4. Create a formal forensic report of the what you determine, all potential expo-
sures and any proof that links the PDF back to an attack.

Expected outputs/evidence. From foredf, the examiner receives original
PDF(s), associated metadata for chain-of-custody, analysis logs of suspicious be-
haviour or structures and a very good base to start to do forensic report. These
outputs can be used by an analyst to verify if the PDF on USB was a part of the
attack that may help remediation and incident documentation.

10.6 Mapping of foredf features to use cases

103

Feature Relevant Use Cases
Automation & ingestion Essential for Use Cases 1 (email fetch

& triage), 4 (SOC automated process-
ing), 5 (USB acquisition & batch pro-
cessing).

Signature verification & object mapping Essential for Use Case 2 (forged/tam-
pered PDFs).

Static analysis of PDF structure Relevant for Use Cases 1, 3, 5 (mali-
cious content inspection, ransomware
vector analysis).

Report & artifact preservation Relevant for Use Cases 1, 2, 3, 4, 5
(forensic logs, chain-of-custody, struc-
tured reports).

Table 2: Mapping of foredf features to the described use cases

104

11 Conclusions and Future Works

The work carried out in this project highlights the practical and methodological
significance of the developed tool, especially in areas that require reproducibility,
transparency and standardization of methodology. In the context of investigations,
audits or regulations, it is a basic necessity to be able to replicate results in the same
manner. The described tool will support these methods directly as it automatizes
a chain of clear steps, which ensures consistency while human action is minimized.
This systematic approach enables results to be reproduced, read and compared in a
way compatible with best practice and standards in open scientific data.

The features provided in the current version have proven to be highly useful
in real scenarios. The tool also accepts standard input and output types, making
it straightforward to include in larger processing pipelines or collaborative envi-
ronments. The modular design makes it easy to maintain and extend, while its
lightweight reporting and logging mechanisms provide essential feedback on opera-
tions, errors, and results. These features combined make the tool a powerful and
versatile tool that balances ease of use with methodological strength.

The utility of this tool is not only self-evident but it also also promotes the adop-
tion of standardized workflows across different environments. It therefore improves
the comparability of results obtained by different experimenters at different labora-
tories, something particularly crucial in fields where reproducibility is increasingly
recognized as a scientific and ethical imperative. In addition, the open and extensi-
ble design can be easily adapted to future standards or domain-specific requirements
for long time sustainability.

For the future, there are several potential developments. One of the steps would
be to improve reporting system: instead of simple .txt summaries, the generation
of structured and visually enriched reports (e.g. in PDF or HTML format) would
provide a more comprehensive overview of the operations performed and their out-
comes. Furthermore, the inclusion of sandboxing mechanisms would improve se-
curity and reproducibility and enable the tool to recognize malicious files based on
their runtime behavior.

Another promising direction is the integration of machine learning components to
further exploit the outcomes produced by foredf during batch analyses of PDF files.
Instead of directly inspecting the documents, ML models could be applied to the
structured results generated by the tool, such as extracted features, metadata and
analytical indicators, to detect patterns, anomalies, or suspicious behaviors across
large datasets. This approach would enable automatic prioritization of potentially
problematic cases, improve the interpretability of large-scale analyses, and support
decision-making processes by identifying trends that may not be immediately evident
through manual inspection. Such functionality would therefore not only enhance
efficiency but also contribute significantly to data integrity and overall analytical
robustness.

Some longer-term ideas include adding a GUI (graphical user interface) so that
it can be used by non-technical users, while others are having detailed configuration
profiles to better fit the tool in diverse workflows. Following these directions, the
tool could then become an integrated secure framework not only for safe and smart

105

applications deployment, but also to support reproducible and standardized data
processing at scale.

In conclusion, this project establishes a solid foundation for reliable, repro-
ducible, and standardized document processing. Through continued refinement, ex-
pansion, and integration of advanced features, the tool can become an indispensable
asset for both researchers and practitioners who value transparency, repeatability,
and methodological precision.

106

References

[1] A. Abdallah et al. “A Survey on Malicious PDF Detection: Static, Dynamic,
and Hybrid Approaches”. In: Journal of Information Security and Applications
(2025). url: https://www.sciencedirect.com/science/article/pii/
S1877050925008798.

[2] Adobe Systems Incorporated. PDF Reference, Sixth Edition: Adobe Portable
Document Format Version 1.7. Adobe Technical Reference Manual. Nov. 2006.
url: https://opensource.adobe.com/dc-acrobat-sdk-docs/pdfstandards/
pdfreference1.7old.pdf.

[3] Adobe Systems Incorporated, Tim Bienz, and Richard Cohn. Portable Doc-
ument Format Reference Manual. First Printing, June 1993. Reading, Mas-
sachusetts: Addison-Wesley, 1993. isbn: 0-201-62628-4.

[4] X-Ways Software Technology AG. X-Ways Forensics. Integrated computer
forensics software based on WinHex. url: https : / / www . x - ways . net /
forensics/index-m.html.

[5] Agenzia per l’Italia Digitale. Linee guida per la gestione e conservazione della
Posta Elettronica Certificata. Describes PEC operational rules, retention, and
log management for certified providers. 2021. url: https://www.agid.gov.
it/it/linee-guida/pec.

[6] Mehran Alidoost Nia, Ali Sajedi, and Aryo Jamshidpey. “An Introduction to
Digital Signature Schemes”. In: arXiv preprint arXiv:1404.2820 (2014). url:
https://arxiv.org/abs/1404.2820.

[7] ANY.RUN Interactive Malware Analysis. https://any.run/. Online service
for interactive malware sandbox analysis.

[8] Autopsy. Autopsy - Digital Forensics. Open-source digital forensics platform
developed by Sleuth Kit Labs. url: https://www.autopsy.com/.

[9] Monya Baker. “1,500 scientists lift the lid on reproducibility”. In: Nature
(2016). doi: 10.1038/533452a.

[10] Buffer. Pylibemu. https://cybersectools.com/tools/pylibemu. 2025.

[11] Cloudflare. STPyV8: Python 3 and JavaScript Interoperability. https : / /

github.com/cloudflare/stpyv8. 2025.

[12] Cognyte. Emerging Trends and Technologies in Digital Forensics. 2025. url:
https://www.cognyte.com/blog/digital-forensics-investigations/.

[13] M. Crispin. INTERNET MESSAGE ACCESS PROTOCOL - VERSION 4rev1.
RFC 3501. Mar. 2003. url: https://datatracker.ietf.org/doc/html/
rfc3501.

[14] David H. Crocker. Standard for the Format of ARPA Internet Text Messages.
RFC 822. Obsoleted by RFC 5322. Aug. 1982. doi: 10.17487/RFC0822. url:
https://datatracker.ietf.org/doc/html/rfc822.

[15] Cuckoo Sandbox. https://github.com/cuckoosandbox. Open-source auto-
mated malware analysis system.

107

https://www.sciencedirect.com/science/article/pii/S1877050925008798
https://www.sciencedirect.com/science/article/pii/S1877050925008798
https://opensource.adobe.com/dc-acrobat-sdk-docs/pdfstandards/pdfreference1.7old.pdf
https://opensource.adobe.com/dc-acrobat-sdk-docs/pdfstandards/pdfreference1.7old.pdf
https://www.x-ways.net/forensics/index-m.html
https://www.x-ways.net/forensics/index-m.html
https://www.agid.gov.it/it/linee-guida/pec
https://www.agid.gov.it/it/linee-guida/pec
https://arxiv.org/abs/1404.2820
https://any.run/
https://www.autopsy.com/
https://doi.org/10.1038/533452a
https://cybersectools.com/tools/pylibemu
https://github.com/cloudflare/stpyv8
https://github.com/cloudflare/stpyv8
https://www.cognyte.com/blog/digital-forensics-investigations/
https://datatracker.ietf.org/doc/html/rfc3501
https://datatracker.ietf.org/doc/html/rfc3501
https://doi.org/10.17487/RFC0822
https://datatracker.ietf.org/doc/html/rfc822
https://github.com/cuckoosandbox

[16] Guillaume Delugré.Origami Framework for PDF analysis and creation. https:
//code.google.com/archive/p/origami-pdf/.

[17] Docker, Inc. Docker. https://www.docker.com/. 2025.

[18] Docker, Inc. Docker Compose: Define and Run Multi-Container Applications.
https://docs.docker.com/compose/. 2025.

[19] Document Management — Portable Document Format — Part 2: PDF 2.0.
International Standard. Developed by ISO/TC 171/SC 2/WG 8. Geneva,
Switzerland: International Organization for Standardization, 2020.

[20] José Miguel Esparza. peepdf – Python tool to analyze PDF files. https://
github.com/jesparza/peepdf. 2012.

[21] PDF Examiner. PDFExaminer Tool - Analyse PDF Malware. https://github.
com/tylabs/pdfexaminer. 2021.

[22] Exterro. Forensic Toolkit (FTK). Commercial digital forensics software for-
merly developed by AccessData. url: https://www.exterro.com/forensic-
toolkit.

[23] Oxygen Forensics. CEO Lee Reiber: The Digital Forensics Landscape in 2025.
2025. url: https://www.oxygenforensics.com/en/resources/digital-
forensics-trends-2025/.

[24] N. Freed and N. Borenstein. Multipurpose Internet Mail Extensions (MIME)
Part One: Format of Internet Message Bodies. RFC 2045. Nov. 1996. url:
https://datatracker.ietf.org/doc/html/rfc2045.

[25] N. Freed and N. Borenstein. Multipurpose Internet Mail Extensions (MIME)
Part Two: Media Types. RFC 2046. Nov. 1996. url: https://datatracker.
ietf.org/doc/html/rfc2046.

[26] Google Inc. PyV8. https://code.google.com/archive/p/pyv8. 2010.

[27] Christopher Hargreaves et al. “DFPulse: The 2024 digital forensic practitioner
survey”. In: Forensic Science International: Digital Investigation (2024). doi:
https://doi.org/10.1016/j.fsidi.2024.301844. url: https://www.
sciencedirect.com/science/article/pii/S2666281724001719.

[28] ISO/IEC 27037:2012 – Guidelines for Identification, Collection, Acquisition
and Preservation of Digital Evidence. International Organization for Standard-
ization, 2012.

[29] A. Javed et al. “A Comprehensive Survey on Computer Forensics: State of
the Art, Tools, Techniques, Challenges, and Future Directions”. In: CDU
Researchers Journal (2022). url: https : / / researchers . cdu . edu . au /
en/publications/a-comprehensive-survey-on-computer-forensics-

state-of-the-art-too.

[30] Joe Sandbox. https://www.joesecurity.org/. Commercial malware analysis
and sandboxing platform.

[31] Karen Kent et al. Guide to Integrating Forensic Techniques into Incident Re-
sponse. Tech. rep. NIST SP 800-86. National Institute of Standards and Tech-
nology, 2006. url: https://csrc.nist.gov/pubs/sp/800/86/final.

108

https://code.google.com/archive/p/origami-pdf/
https://code.google.com/archive/p/origami-pdf/
https://www.docker.com/
https://docs.docker.com/compose/
https://github.com/jesparza/peepdf
https://github.com/jesparza/peepdf
https://github.com/tylabs/pdfexaminer
https://github.com/tylabs/pdfexaminer
https://www.exterro.com/forensic-toolkit
https://www.exterro.com/forensic-toolkit
https://www.oxygenforensics.com/en/resources/digital-forensics-trends-2025/
https://www.oxygenforensics.com/en/resources/digital-forensics-trends-2025/
https://datatracker.ietf.org/doc/html/rfc2045
https://datatracker.ietf.org/doc/html/rfc2046
https://datatracker.ietf.org/doc/html/rfc2046
https://code.google.com/archive/p/pyv8
https://doi.org/https://doi.org/10.1016/j.fsidi.2024.301844
https://www.sciencedirect.com/science/article/pii/S2666281724001719
https://www.sciencedirect.com/science/article/pii/S2666281724001719
https://researchers.cdu.edu.au/en/publications/a-comprehensive-survey-on-computer-forensics-state-of-the-art-too
https://researchers.cdu.edu.au/en/publications/a-comprehensive-survey-on-computer-forensics-state-of-the-art-too
https://researchers.cdu.edu.au/en/publications/a-comprehensive-survey-on-computer-forensics-state-of-the-art-too
https://www.joesecurity.org/
https://csrc.nist.gov/pubs/sp/800/86/final

[32] S. Kitterman. Sender Policy Framework (SPF) for Authorizing Use of Do-
mains in Email, Version 1. RFC 7208. Apr. 2014. url: https://datatracker.
ietf.org/doc/html/rfc7208.

[33] J. Klensin. Simple Mail Transfer Protocol. RFC 5321. Defines the core SMTP
protocol used for email transmission. Oct. 2008. url: https://datatracker.
ietf.org/doc/html/rfc5321.

[34] M. Kucherawy and E. Crocker. DomainKeys Identified Mail (DKIM) Signa-
tures. RFC 6376. Sept. 2011. url: https://datatracker.ietf.org/doc/
html/rfc6376.

[35] M. Kucherawy and E. Zwicky. Domain-based Message Authentication, Re-
porting, and Conformance (DMARC). RFC 7489. Mar. 2015. url: https:
//datatracker.ietf.org/doc/html/rfc7489.

[36] X. Liu et al. “Analyzing PDFs like Binaries: Adversarially Robust PDF Mal-
ware Analysis via Intermediate Representation and Language Model”. In:
arXiv preprint arXiv:2506.17162 (2025). url: https://arxiv.org/abs/
2506.17162.

[37] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of
Applied Cryptography. Boca Raton, FL: CRC Press, 1996. isbn: 9780849385230.

[38] Michele Merico. foredf: Forensic tool which allows users to fetch emails and
analyze them with an enhanced version of peepdf. https://github.com/
emfourem/foredf. 2025.

[39] D. Müller et al. “Shadow Attacks: Hiding and Replacing Content in Signed
PDFs”. In: 2020. url: https://www.pdf-insecurity.org/.

[40] J. Myers and M. Rose. Post Office Protocol - Version 3. RFC 1939. May 1996.
url: https://datatracker.ietf.org/doc/html/rfc1939.

[41] National Institute of Standards and Technology (NIST). CVE-2008-2992: Stack-
based buffer overflow in Adobe Acrobat and Reader 8.1.2 and earlier. 2008.
url: https://nvd.nist.gov/vuln/detail/CVE-2008-2992.

[42] National Institute of Standards and Technology (NIST). CVE-2013-3346: Adobe
Reader and Acrobat JavaScript Memory Corruption Vulnerability. National
Vulnerability Database (NVD). https://nvd.nist.gov/vuln/detail/CVE-
2013-3346. 2013. url: https://nvd.nist.gov/vuln/detail/CVE-2013-
3346.

[43] National Institute of Standards and Technology (NIST). CVE-2015-1282: Mul-
tiple use-after-free vulnerabilities in PDFium. 2015. url: https://nvd.nist.
gov/vuln/detail/CVE-2015-1282.

[44] PEC: Posta Elettronica Certificata. Agenzia per l’Italia Digitale. Available
at https://www.agid.gov.it/it/piattaforme/posta- elettronica-

certificata. 2014.

[45] Red Hat. What is containerization? 2021. url: https://www.redhat.com/
en/topics/cloud-native-apps/what-is-containerization.

109

https://datatracker.ietf.org/doc/html/rfc7208
https://datatracker.ietf.org/doc/html/rfc7208
https://datatracker.ietf.org/doc/html/rfc5321
https://datatracker.ietf.org/doc/html/rfc5321
https://datatracker.ietf.org/doc/html/rfc6376
https://datatracker.ietf.org/doc/html/rfc6376
https://datatracker.ietf.org/doc/html/rfc7489
https://datatracker.ietf.org/doc/html/rfc7489
https://arxiv.org/abs/2506.17162
https://arxiv.org/abs/2506.17162
https://github.com/emfourem/foredf
https://github.com/emfourem/foredf
https://www.pdf-insecurity.org/
https://datatracker.ietf.org/doc/html/rfc1939
https://nvd.nist.gov/vuln/detail/CVE-2008-2992
https://nvd.nist.gov/vuln/detail/CVE-2013-3346
https://nvd.nist.gov/vuln/detail/CVE-2013-3346
https://nvd.nist.gov/vuln/detail/CVE-2013-3346
https://nvd.nist.gov/vuln/detail/CVE-2013-3346
https://nvd.nist.gov/vuln/detail/CVE-2015-1282
https://nvd.nist.gov/vuln/detail/CVE-2015-1282
https://www.agid.gov.it/it/piattaforme/posta-elettronica-certificata
https://www.agid.gov.it/it/piattaforme/posta-elettronica-certificata
https://www.redhat.com/en/topics/cloud-native-apps/what-is-containerization
https://www.redhat.com/en/topics/cloud-native-apps/what-is-containerization

[46] P. Resnick. Internet Message Format. RFC 5322. Specifies the format of email
message headers and bodies. Oct. 2008. url: https://datatracker.ietf.
org/doc/html/rfc5322.

[47] Rev.com. Digital Evidence in the Age of Virtual Trials. 2024. url: https:
//www.rev.com/blog/digital-evidence.

[48] B. Russell and G. Trostle. PKCS #7: Cryptographic Message Syntax Version
1.5. RFC 2315. https://datatracker.ietf.org/doc/html/rfc2315. Mar.
1998. url: https://datatracker.ietf.org/doc/html/rfc2315.

[49] National Institute of Standards and Technology (NIST). CVE-2018-18689:
Signature Wrapping Vulnerability in Foxit Reader and PhantomPDF. 2018.
url: https://nvd.nist.gov/vuln/detail/CVE-2018-18689.

[50] Italian State. DPCM 2 novembre 2005: Regole tecniche per la formazione, la
trasmissione e la validazione, anche temporale, della posta elettronica certifi-
cata. Gazzetta Ufficiale della Repubblica Italiana. 2005. url: https://www.
agid.gov.it/sites/default/files/repository_files/leggi_decreti_

direttive/dm_2-nov-2005.pdf.

[51] Didier Stevens. PDF Tools. https://blog.didierstevens.com/programs/
pdf-tools/. 2009.

[52] American Military University. How Is Digital Evidence Preserved in Modern
Investigations? 2025. url: https://www.amu.apus.edu/area-of-study/
criminal-justice/resources/how-is-digital-evidence-preserved/.

[53] Unknown author. Digital Signature diagram. https://upload.wikimedia.
org/wikipedia/commons/2/2b/Digital_Signature_diagram.svg. Licensed
under CC BY-SA 3.0 via Wikimedia Commons. 2012.

110

https://datatracker.ietf.org/doc/html/rfc5322
https://datatracker.ietf.org/doc/html/rfc5322
https://www.rev.com/blog/digital-evidence
https://www.rev.com/blog/digital-evidence
https://datatracker.ietf.org/doc/html/rfc2315
https://datatracker.ietf.org/doc/html/rfc2315
https://nvd.nist.gov/vuln/detail/CVE-2018-18689
https://www.agid.gov.it/sites/default/files/repository_files/leggi_decreti_direttive/dm_2-nov-2005.pdf
https://www.agid.gov.it/sites/default/files/repository_files/leggi_decreti_direttive/dm_2-nov-2005.pdf
https://www.agid.gov.it/sites/default/files/repository_files/leggi_decreti_direttive/dm_2-nov-2005.pdf
https://blog.didierstevens.com/programs/pdf-tools/
https://blog.didierstevens.com/programs/pdf-tools/
https://www.amu.apus.edu/area-of-study/criminal-justice/resources/how-is-digital-evidence-preserved/
https://www.amu.apus.edu/area-of-study/criminal-justice/resources/how-is-digital-evidence-preserved/
https://upload.wikimedia.org/wikipedia/commons/2/2b/Digital_Signature_diagram.svg
https://upload.wikimedia.org/wikipedia/commons/2/2b/Digital_Signature_diagram.svg

	List of Tables
	List of Figures
	Introduction
	Scope and Objectives
	Thesis Structure

	State of the Art
	Existing Tools and Frameworks
	Static Analysis Tools
	Dynamic and Hybrid Tools
	Integration in Forensic Suites

	Limitations of Current Approaches
	Motivation and Thesis Contribution
	Comparison of Existing Tools
	Summary

	Digital Forensics Investigation
	Key Challenges in Digital Forensics Investigations

	Portable Document Format
	General Properties of the PDF Format
	PDF Syntax
	Objects
	File Structure
	Document Structure
	Content Streams

	Incremental Updates
	Encryption in PDFs
	Metadata in PDFs
	Example of dual Metadata representation

	Identification of Watermarks

	Digital Signatures in PDFs
	Understanding Digital Signatures
	The Signing Phase
	The Verification Phase

	Implementation of Digital Signatures in PDFs
	Structure of Public- Key Cryptography Standards #7
	Embedding PKCS#7 Signatures in PDF Files

	Multiple Signatures and Incremental Updates
	Certifying Signatures and Approval Signatures
	Example of Multiple Signatures

	Extracting and Verifying Signatures
	Signature Extraction
	Signature Verification
	Example of an Embedded PDF Signature

	Emails and Posta Elettronica Certificata (PEC)
	Emails
	Core Architectural Components
	Email Message Structure

	Forensic Considerations in Email Analysis
	Posta Elettronica Certificata (PEC)
	PEC Architecture and Transmission Flow
	Message Composition and Legal Receipts
	Cryptographic Structure and Verification
	Forensic Workflow and Evidentiary Value
	Limitations and Interoperability

	PDF Attack Techniques and Forensic Analysis
	PDF Metadata
	Real-World Example

	Embedded JavaScript
	Embedded Files and Launch Actions
	Exploitation of Reader Vulnerabilities
	Phishing and Social Engineering
	Obfuscation and Evasion Techniques
	Attacks on Digitally Signed PDFs
	Signature Wrapping and Incremental Update Abuse
	Exploiting Certification Signatures
	Viewer Parsing Bugs and Shadow Attacks
	Universal Signature Forgery (USF)
	Certification Attacks
	Pre-Signing Compromise
	Format Confusion and Polyglot Attacks
	External Resource Abuse

	Acquisition Sources of PDF Files
	The Critical Importance of Acquisition Sources
	Common Sources for PDFs
	Emails and Certified Email (PEC)
	Websites and Online Databases
	Repositories for Testing and Research
	Local Filesystems and Removable Devices

	Development of foredf
	Docker and Containerization
	Analysis of Peepdf: Strengths and Limitations
	Overview: How foredf Works
	Internal Structure of foredf
	Dockerfile and Docker-Compose file
	Email Fetcher
	Enhanced Peepdf-3

	Generated Files Example
	Strengths and Weaknesses of foredf

	Foredf: Attack Prevention and Analysis
	Use Case 1 — Malicious PDF Delivered via Corporate Email
	Use Case 2 — Forged or Tampered Signed PDF in Legal/PEC Communications
	Use Case 3 — Post-Incident Investigation: PDF as Suspected Ransomware Vector
	Use Case 4 — Mass Automated Triage in Security Operations Center (SOC)
	Use Case 5 — Post-Incident Investigation: Malicious PDF Delivered via USB
	Mapping of foredf features to use cases

	Conclusions and Future Works
	References

