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Summary

This thesis explores whether HT'TP sessions reconstructed from server-side logs can be grouped
according to behavioral similarities using unsupervised learning. The motivation comes from
the limitations of rule-based Web Application Firewalls, which focus on individual requests and
struggle to detect threats that develop progressively within a session. By examining sequences
of requests instead of isolated events, it becomes possible to detect anomalies, understand usage
patterns, and distinguish automated actors from genuine users.

The work begins with an analysis of session identification techniques. Approaches based on IP
addresses, User-Agent strings, browser fingerprints, favicon-based identifiers, and cookies are ex-
amined. This study adopts a simpler combination of IP addresses and User-Agent strings since
the main objective is clustering rather than persistent user tracking.

A central contribution of the thesis is the construction of a feature set designed to describe session
behavior. Existing research provides numerical indicators such as request frequency, error rates,
distribution of HT'TP methods or ratios of HTML to static resources. These classical features are
expanded with additional signals derived from traffic inspection, including Sec-Fetch metadata,
temporal dynamics, and response content categories. Such features help differentiate normal nav-
igation from scripted actions or stealth scanning activities.

Because clustering techniques are meaningful only when the underlying data exhibit multimodal
structure, the thesis evaluates clusterability through the Dip Test. Both dimensionality-reduction
and distance-based formulations are examined. The analysis highlights situations where data do
not clearly support partitioning, at which preprocessing becomes essential.

Deep clustering is discussed briefly, but the focus remains on Self-Organizing Maps and K-Means,
which are appropriate given the moderate dimensionality of the dataset. For SOMs, training
parameters, weight interpretation, and methods for evaluating the quality of the map are exam-
ined. For K-Means, attention is given to initialization, convexity assumptions, and the need to
determine the number of clusters. Internal validation metrics such as the Davies-Bouldin coeffi-
cient, the Silhouette score, the Dunn-OWA index, and the WB index are compared, noting that
numerical measures do not always reflect expert intuition.

The dataset is obtained from Elasticsearch, and sessions are assembled by grouping requests orig-
inating from the same IP address and User-Agent when their timestamps fall within a 60-minute
window. Sessions that contain too few interactions or requests blocked due to ASN reputation
are discarded. Features are first expressed as ratios and then normalized to avoid dominance by
features with larger ranges.

At the current stage, the thesis covers both the exploratory analysis and the unsupervised learning
phase. The labeled dataset produced from cluster inspection provides a semantic grounding of the
session groups and enables a meaningful interpretation of behavioral patterns. Future work will
alm to strengthen the session identification process and to develop supervised classifiers trained
on the labeled sessions, with the objective of improving robustness and detection performance
and potentially deploying the trained models in a production environment.
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Chapter 1

Introduction

HTTP request clustering refers to the process of grouping user sessions, defined as sequences of
requests performed by a user within a specific time window, into clusters based on behavioral
similarities. Since clustering is an unsupervised machine learning technique, it can reveal hidden
patterns in user behavior. As a result, it becomes possible to gain insights into common usage
scenarios, such as identifying navigation paths, spotting unusual behaviors, or detecting potential
anomalies in user interactions.

Sicuranext, the company in which this thesis is carried out, currently employs a Web Applica-
tion Firewall (WAF) whose detection logic relies on predefined rule matching. This mechanism
examines requests and responses individually and, as a result, does not take into account the
broader session context. Such a limitation encourages the adoption of session-level traffic analysis
and unsupervised learning techniques, which can reveal behavioral patterns that extend beyond
manually crafted rules.

The objective of this work is to evaluate whether web sessions can be grouped and automatically
labeled in order to characterize their intent or functional category, with particular attention to
security-oriented classes such as attacks and anomalous behaviors. The analysis is conducted
using only information extracted from server-side HTTP logs, for example request headers and
aggregated session features. Although the primary focus is the identification of malicious or ab-
normal activities, the derived labels may also represent legitimate user behavior.

In addition, Sicuranext’s WAAP (Web Application & Api Protection) compensates for the ab-
sence of native session-tracking capabilities by maintaining stateful information for authenticated
users. This enables the application of functionalities such as rate limiting and session-level bans,
implemented through proprietary mechanisms that extend and enhance the capabilities of a stan-
dard WAF.

After this step is completed and a label is assigned, supervised learning models or neural networks
can be used to train a system able to predict session types in real time. This makes the identifi-
cation of session intent faster and more accurate, which is especially important for detecting and
blocking potentially malicious sessions. The proposed methodology also reduces the time needed
to manually analyze and classify sessions.

The supervised learning part of this approach could be useful for Sicuranext, as it allows the au-
tomation of session classification and improves overall system security. However, before reaching
this phase, it is essential to ensure that the labels are both available and correct; otherwise, the
model may learn wrong patterns and produce unreliable predictions. It should be noted that the
development and implementation of the supervised learning model fall outside the scope of this
thesis, which focuses mainly on data preparation and labeling.

In this article [1], the authors analyzed supervised and unsupervised machine learning algorithms
applied to intrusion detection systems, outlining their advantages and drawbacks. Although the
domain is different from the topic of this thesis, supervised learning has shown promising results.
Their analysis also helps identify when each algorithm is most suitable. For example, the Decision
Tree algorithm is both fast and interpretable, which is important in cybersecurity: threats must
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be blocked quickly, and it is necessary to understand why a specific alert is raised.

The Decision Tree algorithm is also suitable for detecting attacks with a WAF [2]. Although this
is not the main focus of this thesis, WAF systems must operate very quickly to detect attacks in
real time, and the authors reported good results in this regard. They chose traditional machine
learning algorithms instead of deep learning models to improve computational cost. Deep learn-
ing automatically extracts features from high-dimensional traffic data, while traditional machine
learning requires manual feature selection. The authors also noted that they tested only a small
subset of the OWASP Top 10 vulnerabilities and that machine learning algorithms can be exposed
to new attack types, such as adversarial inputs designed to evade detection.

In this work [3], the authors describe adversarial attacks and present techniques designed to defend
against them. This aspect represents a possible improvement for this work; when the supervised
learning model is trained, these attacks should be considered.

Deploying a machine learning model in a production environment is more complex than it may
appear. In this paper [4], the authors highlight practical challenges and review the strengths
and limitations of two popular backend frameworks, Node.js and Python. Moreover, deploying
a machine learning algorithm can be expensive in terms of infrastructure, which is an important
factor to evaluate before moving forward.

However, this thesis may also serve as a retrospective analysis tool, removing the need to deploy
a real-time detection system. Instead, it can be used to evaluate past requests or analyze network
traffic to define new static rules for blocking emerging malicious activity. There is also the issue
of model retraining, since changes in the volume or distribution of traffic may lead to incorrect
session classification.

The implementation is developed in Python, selected for its wide ecosystem of data analysis and
machine learning libraries, which supports rapid experimentation with clustering algorithms. The
dataset is built by sending queries to Elasticsearch to retrieve aggregated data, where aggregation
is handled directly by Elasticsearch. Afterward, an exploratory data analysis is performed to
study feature correlations. Different configurations are tested, including one using all features
and another excluding highly correlated ones.

To assess whether the dataset is effectively clusterable, a statistical unimodality test known as the
Dip Test is applied. However, since this method operates on one-dimensional data, two alternative
strategies are considered: (i) reducing dimensionality with Principal Component Analysis (PCA)
and performing the test on the first principal component, or (ii) computing pairwise distances
and applying the test to these values.

If the data prove to be clusterable, the standard K-Means algorithm is applied. A dedicated
section also discusses how internal clustering metrics may diverge from expert intuition, showing
the limitations of purely quantitative evaluation methods.

Then, to assign labels to the clusters, an LLM is used, mainly because manually assigning labels is
very time-consuming. Large language models have recently shown an ability to capture semantic
context; therefore, the suitability of an LLM for this task is examined.

The thesis is organized as follows: Chapter 2 reviews the relevant literature on session identifica-
tion, feature extraction, exploratory feature analysis, the selection of suitable clustering methods,
internal evaluation metrics, and labeling approaches. Chapter 3 presents the core components
of Sicuranext’s infrastructure and describes the system requirements and semantics. Chapter 4
details the practical implementation of the approach, including the creation of the dataset, the
analysis of feature correlations, the application of the Dip Test, the clustering experiments, and
the labeling process. Finally, Chapter 5 discusses the results, followed by closing remarks and
directions for future work.



Chapter 2

Related Work

To achieve the objectives of this study, the following challenges are addressed:

Session Identification

Feature Identification

Exploratory Feature Analysis

Selection of Appropriate Clustering Algorithms

Labeling

These steps are essential for structuring the analysis. For this reason, the current state of the art
related to each challenge is reviewed.

2.1 Session Identification

The purpose is to aggregate requests issued by the same user in order to enable further analysis
on the resulting sessions. In [5], sessions are reconstructed by grouping consecutive requests
originating from the same IP address within a fixed time window of ten minutes. Similarly, [6]
adopts a time-based approach but relies on the combination of IP address and User-Agent to
identify a user.

Using only the IP address raises the well-known NAT issue: when several devices share the same
public address, their requests may be incorrectly merged into a single session. Although combining
IP address and User-Agent reduces this risk, it does not eliminate it entirely.

Both approaches can also be easily bypassed. In the first case, rotating the IP address forces the
system to create a new session for each request. In the second case, frequently modifying the User-
Agent string leads the system to interpret a continuous browsing activity as several independent
sessions.

Strengths: Straightforward to deploy, as both the IP address and the User-Agent string are
available on the server-side.

Weaknesses: Susceptibility to IP rotation and/or User-Agent rotation.

These issues motivate the investigation of appropriate mitigation techniques. One such approach
is browser fingerprinting, which generates a device-specific identifier and assigns incoming data
to this identifier rather than relying solely on the IP address or the User-Agent header. This
identifier is derived from high-entropy attributes of the client environment that tend to remain
stable over time, enabling reliable re-identification of the same device across multiple sessions
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and, in some cases, across different websites. The survey in [7] offers a comprehensive overview
of browser fingerprinting. It outlines the main fingerprinting techniques, examines the associated
privacy implications, and reviews existing work on fingerprint randomization. In particular, the
authors of [8] and [9] describe how several JavaScript APIs can be leveraged to construct such
fingerprints, for example, the canvas API, which exposes differences in font rendering; the can-
vas font list, which reveals installed fonts; WebRTC, which can disclose peer information; and the
AudioContext API, which uncovers hardware-dependent variations in audio processing. Interest-
ingly, even subtle rendering differences, such as those observed in system-provided emojis, can
contribute to a browser’s uniqueness. These variations may also disclose sensitive information,
including the presence of specific software or the absence of certain security patches.

Beyond improving session identification, browser fingerprinting can also assist in detecting au-
tomated traffic. Many bots attempt to evade detection by deliberately altering parts of their
fingerprint, which often creates inconsistencies among collected attributes [10]. For example, a
request may include a User-Agent string identifying the device as an iPhone while reporting the
absence of touch capabilities, a combination that is impossible on genuine hardware. Likewise, a
device claiming to be mobile may report a screen resolution typical of a desktop system, contra-
dicting the declared platform. Detecting such inconsistencies not only helps distinguish human
traffic from evasive bots but also strengthens the reliability of session association.

However, some browsers, such as Brave, already include built-in mechanisms that reduce finger-
printing. In addition, adopting this approach requires modifications to the client source code
and the collection of a broad set of client information for fingerprint generation, a process that is
technically complex and raises privacy concerns.

Strengths: Provides robust session identification without relying on the IP address or the User-
Agent, both of which are relatively easy to bypass.

Weaknesses: Requires substantial development effort and careful attention to detail during im-
plementation.

An alternative method is presented in [11], where the authors track users by exploiting favicons to
create persistent identifiers. The favicon cache (F cache) is a dedicated storage area that operates
independently of the browser’s main cache and is therefore not affected by clearing browsing data
such as cache, history, or cookies. The identifier assigned to a user is constructed by redirecting
the browser through a sequence of subdomains, each delivering a distinct favicon, which allows
information to be encoded in the F cache. An N-bit identifier makes it possible to distinguish
among 2V users and requires N redirections. At the time of publication, Chrome, Safari, Edge,
and Brave were all susceptible to this technique. In Firefox, however, the authors reported that
the browser did not load favicons from the cache, but instead requested them again, which pre-
vented tracking. This method is capable of identifying users even when they browse through a
virtual private network or in private mode.

Although the mechanism is appealing from a theoretical perspective, it is not practical in real de-
ployments because the required sequence of redirections introduces a substantial performance cost.

Strengths: Enables persistent user identification by exploiting a cache mechanism that is unaf-
fected by clearing browsing data and remains effective across private browsing sessions and
the use of a virtual private network.

Weaknesses: Relies on multiple sequential redirections, which introduce noticeable performance
overhead and limit its practicality in real-world deployments.

A different approach is proposed in [12], where requests are grouped into sessions by relying on the
Google Analytics Client ID. When a user visits a website that has Google Analytics enabled and
is logged in to their Google account, the platform sets a cookie (typically named _ga) that stores
this identifier. This value can then be used to associate multiple requests with a single session.
Variations in the user’s IP address or User-Agent string do not interfere with this process, because
the Client ID remains stable across such changes.
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Strengths: Provides a stable session identifier that remains consistent across changes in IP ad-
dress and User-Agent, allowing reliable association of requests without requiring server-side
state management.

Weaknesses: Depends on the presence of Google Analytics and the acceptance of the corre-
sponding cookie, which limits applicability in contexts where tracking protection, cookie
restrictions, or user consent policies prevent the Client ID from being set or retained.

A methodology closely related to the previous technique is the use of a dedicated cookie. In this
approach, the server assigns a unique identifier to the client and stores it in a cookie that is sent
with subsequent requests. As long as the cookie remains stored in the browser, the identifier
offers a straightforward way to associate multiple interactions with the same user across different
requests.

Strengths: Simple to implement and effective for tracking, since the identifier persists across
requests and does not rely on network characteristics.

Weaknesses: Loses effectiveness when users delete their cookies, which prevents the identifier
from being retained.

In this work, sessions are identified using the combination of IP address and User-Agent. Although
this method is known to have limitations, developing a more robust identification mechanism is not
the primary focus of the thesis. Nevertheless, it indicates a clear direction for future improvements,
since inaccurate session identification would compromise all subsequent analyses. However, it is
worth noting that if sessions are similar, they will be grouped into the same cluster; in this sense,
the clustering process itself acts as a sort of defense mechanism, mitigating the impact of potential
errors in session identification.

2.2 Feature Identification

It is worth remarking that only server-side features are considered, which contribute to simplifying
the analysis. The study below is among those applying unsupervised learning to web session
characterization. In [6], the authors employ two unsupervised neural network models, namely the
Self Organizing Map (SOM) and the Modified Adaptive Resonance Theory 2 (Modified ART?2).
They select nine features, which are reported below:

1. Click rate, a numerical attribute defined as the number of HTTP requests within a single
session.

2. HTML to Image ratio, a numerical attribute defined as the number of HTML page requests
divided by the number of image file requests (JPEG and PNG).

3. Percentage of PDF or PS file requests, a numerical attribute defined as the proportion of
PDF or PS file requests within a session.

4. Percentage of 4xx error responses, a numerical attribute defined as the proportion of erro-
neous HTTP requests in a session.

5. Percentage of HT'TP requests of type HEAD, a numerical attribute defined as the proportion
of HEAD requests in a session.

6. Percentage of requests with unassigned referrers, a numerical attribute defined as the pro-
portion of requests with blank or missing referrer fields within a session.

7. Robots.tzt file request, a nominal attribute equal to 1 if the robots.txt file is requested during
a session and 0 otherwise.

8. Standard deviation of requested page depth, a numerical attribute defined as the standard
deviation of the depth of the requested pages within a session.
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9. Percentage of consecutive sequential HT'TP requests, a numerical attribute defined as the
proportion of sequential requests for pages belonging to the same directory during a session.

In a more recent study [5], the authors detected malicious crawlers as well as attacks such as
brute force password cracking. They selected ten features for anomaly detection in a session. The
features include:

1. Proportion of abnormal User-Agents, such as spider bots or crawlers

2. Proportion of requests using methods other than GET or POST, such as HEAD, PUT,
CONNECT, OPTIONS or PROPFIND

3. Proportion of POST requests

4. Access amount, defined as the total number of requests after excluding those for static pages
5. Access frequency, measured as the number of requests per minute

6. Number of accesses to sensitive files

7. Browser automatic access request ratio, which represents the percentage of visits within a
session generated automatically by the browser, for example requests for static resources
such as js, css, png or jpeg files. This feature is similar to the HTML to Image ratio used
in previous work [6], although it is more general.

The remaining features were the same as those used in the previous study [6]. The authors
applied the DBSCAN algorithm, using Euclidean distance as the similarity metric, to identify
anomalous web sessions. DBSCAN requires two parameters, MinPts and eps. They set MinPts
to 11, corresponding to the ten features plus one, while the value of eps was not specified in their
paper.

To assess whether the proposed features provide meaningful information within the context of
this thesis, Kibana visualizations can be used to examine their relevance. This approach makes it
possible to determine which features actually contribute useful insights to the analysis conducted
in this work. The available logs do not include a notion of sessions, which makes it impossible to
analyze the features at the session level. The construction of the sessions is therefore performed
offline, within the Python scripts that preprocess the data. Nevertheless, examining individual
requests can still offer insights into whether the features identified in the previous study remain
useful.

HEAD
OPTIONS 4XX

@timestamp per 3 hours @timestamp per 3 hours

(a) HEAD vs HEAD with response status code 4xx (b) OPTIONS with response status code 4xx

Figure 2.1: Comparison of 4xx responses for HEAD and OPTIONS requests

On the thirteenth and fourteenth of November, nearly all HEAD requests resulted in response
codes of the 4xx class, most frequently 403 Forbidden and 404 Not Found. During this period,
the volume of HEAD requests was noticeably higher than on the other days of the week. This
concentration of erroneous HEAD requests suggests that their occurrence may serve as an indicator
of automated threat activity, since attackers often employ HEAD requests to remain covert,
retrieving only response headers rather than full content.
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A similar pattern is observed in the number of OPTIONS requests on the tenth of November.
This indicates that not only HEAD requests but also OPTIONS requests may provide useful
information. For this reason, this work focuses more generally on non-GET and non-POST
requests, as they can contribute meaningful insights when characterizing potentially automated
behaviors.

EMPTY REFERER /WP*

EMPTY REFERER

SN~ I N~ @timestamp per 3 hours

@timestamp per 2 hours

(b) Empty referer with URI path /wp-login.php or
(a) Empty referer with response status code 4xx /wp/wp-admin/*

Figure 2.2: Comparison of empty referer request patterns

In general, it is possible for requests to appear without an assigned referrer. What is unusual in
the Figure 2.2, however, is that at a regular interval of three days (9, 12, and 15 November at
9:00), there is a noticeable increase in requests with no referrer that target either the endpoint
/wp-login.php or the paths /wp/wp-admin/*. When such a periodic pattern emerges, it is
typically associated with some form of automated activity. For this reason, the total number of
requests with an unassigned referrer may itself represent a useful feature.

2.2.1 Novel Features Introduced

A feature that is absent from the existing research is the type of content contained in each response.
This idea is related to what has already been explored, for example features that compute the
ratio of HTML to images or that count the number of accesses while excluding requests for static
resources. Because many content types exist, this work focuses only on images, fonts, application,
and text. In addition, only the main category is taken into account; for instance, responses of
type image/gif and image/jpeg are not distinguished but are grouped under the image category.
These features can help characterize user sessions, as several hypotheses can be formulated. For
example, a session that contains no image or font requests may be considered suspicious. Although
some of these resources might be retrieved from the cache, the absence of such requests can still
raise suspicion.

Another feature that is rarely discussed in the literature is the use of the Sec-Fetch headers,
which provide additional information on the context of each request. While most studies rely on
traditional request headers or server-side information, and some make use of client-side signals to
infer navigation behavior as shown for example in this master’s thesis [12], the Sec-Fetch headers
remain underexplored partly because they are relatively new and not yet uniformly supported
across browsers. However, the Sec-Fetch-* headers can be leveraged as heuristics to infer whether
requests stem from direct user interactions or are automatically generated by scripts.

For instance, the Sec-Fetch-User header typically appears in requests triggered by explicit user
actions such as clicks. The Sec-Fetch-Site header, which indicates the relationship between the
initiator’s origin and the target origin, is often set to none when a request originates directly from
a user (e.g., typing a URL or selecting a bookmark) rather than from a cross-site or same-site
script. Similarly, the Sec-Fetch-Dest header specifies the intended destination of a request; when
its value is document, it commonly signals a top-level navigation event initiated by the user.

It is important to note that this approach is intrinsically heuristic: because these are standard
HTTP headers, they can be modified by an attacker. However, when incorporated into a broader
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detection strategy, they provide valuable indicators for distinguishing legitimate user traffic from
automated or scripted requests.

(Information about the Sec-Fetch-#* headers can be found in the official MDN Web Docs: MDN
Fetch Metadata Request Headers)

“empty’)

.+ = text/javascript and sfd I= ("script" and

(a) Responses with content type text/javascript (b) Responses with content type text/html where
where the request sec-fetch-dest is not script the request sec-fetch-dest is not document or
or empty. empty.

Figure 2.3: Comparison of anomalous request patterns based on content type and sec-fetch-dest
mismatches.

When a browser retrieves a JavaScript file, and provided that the request headers have not been
altered, it usually sends the header Sec-Fetch-Dest: script. The server response in such
cases commonly specifies the content type text/javascript. When a response is delivered with
the content type set to text/javascript but the Sec-Fetch-Dest header is absent or indicates
a value other than script/empty, this can indicate that the request did not originate from a
standard browser. Situations of this kind may reveal automated tools or scripted clients and may
also correspond to specific device behavior such as certain iOS clients. A detailed analysis shows
that the Safari versions reported by these requests, together with the associated iOS versions, are
relatively old. This point is illustrated in the figure below.

500

161

16.3
16.2
16.0

15.6.7
15.61
155
oo 15.6.6
® 920

15.2

Other

Mobile Safari versions

100

@timestamp per 3 hours

Figure 2.4: Mobile Safari versions

This behavior can be considered legitimate, because the Sec-Fetch header is added only starting
from version 16.4.

A similar observation applies to the case in which the header Sec-Fetch-Dest: document would
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be expected, as shown in Figure 2.3b. When filtering requests by User-Agent version, it appears
that recent versions of Chrome do not send the Sec-Fetch-Dest header, however, it also appears
that very old versions of Chrome are present. The spike in traffic shown below is very likely
produced by an automated process.

@ 136.0.0.0
@ 142.0.0.0
@ 137.0.0.0
I @ 140.0.0.0

(l & 120.0.0.0

I ‘ 109.0.0.0
[ @ 139.0.0.0

| | & 124.0.0.0
|1 ® 91.0.4472...
. @ Other

Count of records

@timestamp per 3 hours

Figure 2.5: Distribution of Chrome versions

The same reasoning applies to the case in which Sec-Fetch-Dest: image is present and Sec-
Fetch-User: 7?1 is present. Typically, when an image is requested, the Sec-Fetch-User header
is not set. Nonetheless, as shown in Figure 2.6, there are cases in which it is set. Most of these
requests correspond to Chrome version 125.0.0.0, which is suspicious, because it is a version
from the previous year, although it might still be legitimate. Further investigation would be
required to determine its nature.

@ 125.0.0.0
® 142000
@ 140.00.0

Count of records

@timestamp per 3 hours

Figure 2.6: Sec-Fetch-Dest: image and Sec-Fetch-User: 71

A comparable consideration applies to requests with Sec-Fetch-Mode: navigate and Sec-
Fetch-Dest: script. This combination is suspicious, because navigation requests are normally
associated with a destination of document, which is usually triggered by direct human interaction.
As already mentioned, many of these requests originate from outdated Chrome versions, which
suggests the same explanation as in the previous scenarios.
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120.0.0.0
119.0.0.0
121.0.0.0

* & o @

118.0.0.0
123.0.0.0
Other

Count of records

@timestamp per 3 hours

Figure 2.7: Sec-Fetch-Mode: navigate and Sec-Fetch-Dest: script

Moreover, a third feature requires consideration, namely the average response content length.
One hypothesis regarding its usefulness is that, during periods in which attackers extract sub-
stantial amounts of data from a website, the size of the returned content increases significantly.
In such intervals, the average response content length becomes unusually high, indicating that
the retrieved data may be suspicious.

These new features provide additional signals that go beyond the classical features used in previous
studies, and they are presented in Section 4.

2.3 Exploratory feature analysis

A survey covering two decades of research in feature analysis is presented in [13]. Feature selection
is a fundamental task in machine learning, as choosing appropriate features reduces dimensionality
by removing irrelevant or redundant variables. It also improves model performance and enhances
interpretability. However, no single technique is universally optimal. The choice depends on sev-
eral factors such as dataset size, the presence of missing values, the need for interpretability, and
whether the problem is supervised or unsupervised.

In this work, only a limited number of features is used. These features are selected because they
provide meaningful information for the task. In the unsupervised setting, several techniques dis-
cussed in the aforementioned survey are applied, including correlation analysis, variance analysis,
and locality preservation. Another relevant contribution is [14], in which the authors provide a
Python library implementing a wide range of feature analysis methods.

This topic will be revisited when the supervised model is developed. At that stage, stronger tech-
niques, as discussed in the cited works, will be employed to identify the most influential features in
the model. In the feature analysis conducted in this work, correlation is examined, but it is worth
noting that in this type of problem a correlation value around 0.9 does not necessarily justify elim-
inating a feature, as it may still contribute useful information for detecting suspicious sessions.
The article [13] also provides an overview of high-dimensional scenarios, in which the number of
features is much greater than the number of samples. In the present work, the dataset contains
87942 samples and 31 features. Therefore, the problem is not considered high dimensional. Con-
sequently, the computational complexity is lower, as no dimensionality reduction preprocessing
step is required.
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2.4 Clustering Algorithms

The current state of the art in clustering is known as deep clustering. Deep clustering combines
deep learning with clustering, and as discussed in [15, 16], these approaches are well suited for
handling highly complex data. They are applied in several fields, for example anomaly detection,
image analysis, and other domains where non linear relationships are present. These surveys
provide an overview of the main techniques.

One interesting aspect is the use of autoencoders for dimensionality reduction, in which the input
data are mapped to a latent space and this representation is then used for clustering. Autoen-
coders are capable of learning non linear structures, whereas classical dimensionality reduction
methods, for instance PCA, often struggle. Another introduction to autoencoders and their use
in clustering, together with comparisons between clustering on the original data and on the latent
representation, is provided in [17].

As noted in Section 2.3, the problem considered in this work is not high dimensional, therefore
the use of autoencoders or deep clustering is not necessary. Instead, shallow clustering techniques
are adopted. A recent review of these algorithms is presented in [18], which describes different
types of methods, including partition based, hierarchical, density based, grid based, and model
based approaches. The authors examine the advantages and limitations of each method, taking
into account factors such as the number of features and the size of the dataset. In this thesis,
K-Means is applied with full awareness of its limitations:

e Sensitive to outliers
e Prone to convergence to local optima
e Requires a predefined number of clusters

e Not well suited for non-convex data

Nevertheless, as noted in the literature, K-Means performs well in many applications, with the
exception of domains such as image analysis and bioinformatics, where high-dimensional or com-
plex data structures make alternative clustering approaches more appropriate. Since this is not
the case in the present study, K-Means remains a relevant choice. They also discuss internal and
external indices for assessing clustering quality. Section 2.4.3 examines these validation metrics
in more detail and discusses their limitations.

2.4.1 Dip Test for Multimodality

Clustering is only appropriate when a cluster structure is present in the data, as shown in [19].
Such analysis is independent of any clustering method and should therefore precede the application
of clustering algorithms. If the data do not exhibit an inherent cluster structure that can be
meaningfully partitioned, clustering may not be suitable for the given data, or the data may need
to be reprocessed.

To identify an appropriate clusterability measure, several key properties are considered:

e Efficiency: the measure should be computable in polynomial time

e Algorithm Independence: the measure should not depend on any specific clustering
algorithm

e Effectiveness: the measure should accurately identify data as either clusterable or unclus-
terable

The procedure consists of two main stages: first, the dimensionality of the data is reduced, and
second, a statistical test is applied to assess multimodality. The low-dimensional embedding helps
determine how readily the dataset can be partitioned into meaningful clusters. When the data
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are generated from a single bivariate normal distribution, the observations form one cluster, and
both the distribution of pairwise distances and the distribution of the first principal component
exhibit a single mode. In contrast, if the data come from a mixture of clusters that are well sepa-
rated, these distributions display multiple modes, reflecting the distinction between within-cluster
variation and between-cluster separation.

A common approach for dimensionality reduction is PCA, which projects the data onto orthog-
onal dimensions that explain most of the original variance. PCA is relatively robust but not
well suited for non-linear structures, for which principal curves may be more appropriate. The
pairwise-distance approach yields a one-dimensional array but increases the sample size approx-
imately by the square of the original size; thus, for large datasets, it becomes computationally
demanding.

Following dimensionality reduction, multimodality tests are applied. These tests generally assume
that the data are generated from a unimodal distribution, which serves as the null hypothesis.
The p-value indicates how compatible the observed sample is with this hypothesis, in the sense
that larger p-values reflect little evidence against unimodality, whereas smaller p-values provide
evidence that the data deviate from a single underlying mode. When the p-value is large, the
data are likely not separable into distinct clusters. In contrast, a small p-value suggests the pres-
ence of multiple modes, hence supporting the existence of several clusters in the population. It
is important to note that statistical multimodality tests are designed for data in one dimension,
because their asymptotic properties in higher dimensions remain insufficiently understood.

In the study by Adolfsson et al., several multimodality tests are evaluated on both simulated and
empirical datasets. Among these methods, the Dist-Dip test shows the best performance, and it
is the only procedure that recognizes chaining structures in the data, such as single lines, parallel
lines, or concentric circles. It is important to note that the previous works [6, 5] do not employ
this statistical test to verify whether the data are effectively clusterable, and this represents a
crucial step before proceeding with the analysis.

The Hartigan Dip Test [20] evaluates whether a sample originates from a unimodal distribution.
The method determines the largest vertical deviation between the empirical cumulative distri-
bution function (ECDF) and the unimodal distribution function that minimizes this deviation.
Formally, the dip statistic is defined as

DIP = max|F, (z) — U(x)|,

where F,(z) denotes the empirical distribution function and U(z) is the unimodal cumulative
distribution function that yields the smallest maximum difference.
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Figure 2.8: Visualization of the Dip Test procedure

As illustrated in Figure 2.8, the ECDF exhibits a flat region, which indicates a departure
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from unimodality. The distribution U(z) shown in the figure represents only an initial candidate
and not the final unimodal approximation. The algorithm iteratively searches for the unimodal
cumulative distribution function that is closest to the ECDF. To achieve this, it constructs the
Least Concave Majorant (LCM) and the Greatest Convex Minorant (GCM) of the empirical
distribution and combines them. The dip statistic corresponds to the maximum vertical distance
between the empirical cumulative distribution function and the unimodal cumulative distribution
function that minimizes this distance.

To visualize the outcomes of the Dip Test, several datasets are examined, and some of them are
found not to be clusterable. The essential point is that when the data are not clusterable, a
preprocessing step becomes necessary. For instance, in the Gaussian quantiles dataset, the data
are not clusterable, indicating that some form of preprocessing is necessary.
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Figure 2.9: Dip Test analysis

However, there are cases in which a dataset is clusterable, although the p-value is greater than
0.005. For example, in the case of the make_moons dataset, the Dip Test yields a p-value above this
threshold even though the structure is clearly clusterable. As reported in the paper, the distance-
based method identifies clusterable data with a success rate of about 95% for both simulated
and real datasets. What is particularly important, and explicitly noted by the authors, is that
applying the Dip Test to the distance distribution results in a Type I error rate of roughly 1%.
This indicates that it is unlikely for the test to classify a dataset as clusterable when it is not.
Therefore, even when the Dip Test returns a p-value greater than 0.005, the dataset may still be
clusterable, whereas a p-value close to zero provides stronger evidence in favour of clusterability.
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Figure 2.10: Dip Test analysis on the make_moons dataset
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2.4.2 Self-Organizing Map

The Self-Organizing Map (SOM), originally proposed by Kohonen [21], is an unsupervised neural
algorithm that performs dimensionality reduction and topology-preserving vector quantization.
The model consists of a finite set of neurons arranged on a two-dimensional grid (rectangular or
square), although higher-dimensional grids are possible.

Let the SOM contain K neurons. Each neuron i € {1,...,K} is associated with a prototype
(codebook) vector

m; (t) S Rn,

where n is the dimensionality of the input space and ¢ denotes the training iteration. The set of
all prototypes is denoted

Let the dataset consist of M vectors
x5 € R", s=1,...,M.

Each neuron has a fixed position vector r; € R? on the map grid. These locations are used to
define neighborhood relationships, not to be confused with m;, which exist in input space.

Best Matching Unit (BMU)

Given an input vector X, its best matching prototype (BMU) is the neuron

c(s) = arg min [x, —m; (1)].
K3

Online (Sequential) Training

At each iteration ¢, one sample is presented and the prototypes are updated. A neighborhood
kernel h.;(t) modulates how strongly neuron ¢ reacts to input belonging to BMU c¢:

m; (t +1) = my(t) + at) hegs)t) [xs — my(t)],

where: - a(t) € (0,1) is the learning rate (monotonically decreasing), - hes)i(t) € (0,1] is the
neighborhood function. A common choice for the neighborhood function is a Gaussian kernel:

hm(®:=exp(—Jh;J%;32),

where o(t) is the neighborhood radius. Typically,

o(t) = o0 exp (_D ,

with initial radius og and time constant 7.

Kohonen suggests that the total number of online training steps should be at least several hundred
times the number of neurons, e.g., 500K . A typical learning rate schedule is linear or exponential

decay, for example
t
t)=09(1——].
a(t) 09< 1mm)
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Batch Training

The batch SOM update [22] uses the entire dataset at once. After determining the BMU for every
sample, the prototype vectors are updated as weighted averages:

M

m; M
Dot hegs) i

This formulation does not require a learning rate and usually converges faster and more stably
than sequential training.

An equivalent and computationally efficient form groups samples by their BMU. Let S; be the
set of samples mapped to neuron j, and n; = |S;|. Let

be the mean of those samples. The batch update becomes
K
o 2y hyi Xy
K
> e 1 hyi
Initialization

Prototype vectors can be initialized randomly or using the first two principal components (PCA)
to accelerate convergence, especially when Euclidean distance is used.

Distance Measures

Kohonen discusses two similarity metrics: - Euclidean distance (dissimilarity), - Cosine similarity
via normalized dot product. In high dimensions the difference is often negligible, but with sparse
data cosine similarity is computationally advantageous.

Neighborhood Width

The kernel width o should not decay to zero. Practical guidelines: - Minimum o ~ 0.5 grid units.
- For large maps, 0 may be set to 0.05 of the shorter grid dimension.

Quantization and Topology Preservation

The SOM seeks to minimize the average quantization error between samples and their BMUs, a
concept Kohonen refers to as optimal partitioning. However, additional indices evaluate preser-
vation of the input topology on the map lattice.

Quantization Error The quantization error (QE) for dataset {xs} is:

1 M
QE = -7 ; s = mes) | -

Increasing K typically reduces QE but may impair topology preservation [23].
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Topographic Error The topographic error (TE) [23] measures whether the first- and second-
best matching units of each sample are adjacent:

6= 3 (00, 200) >1.

where §(-, ) denotes graph distance on the map grid, and M, ¢@) are the first and second BMU
indices.

Topographic Product The topographic product (TP) [23, 24] quantifies map dimensionality

suitability. Let - d(-, -) denote input-space distance, - 4(+, ) denote grid distance. Define for neuron

j the k-th nearest neighbors: - nd(j): nearest in grid space, - n{(j): nearest in input space. Define

ratios
d(mj7 mni(]))

Ql(j7 k) = ) .
d(my,m,00(,)) 50, (7))
Their geometric mean is
k %
[H Q2 .71 )‘|
The topographic product is
1 K K—-1
TP = ———— log P3(j, k).
ROE =) 2 2

Negative values (TP < 0) indicate insufficient map dimensionality; positive values (TP > 0)
indicate excessive dimensionality. This measure is reliable primarily for nearly linear data.

Clustering on SOM Prototypes

Several works [25, 26] cluster data indirectly by clustering SOM prototypes instead of the full
dataset. Since K <« M, this approach offers reduced computational cost and noise smoothing
because prototypes represent local averages.

This method is effective only if the SOM has preserved the data topology; otherwise, clustering
the prototypes deviates from clustering the raw data. Map visualization often uses distance-based
methods such as the U-matrix, which encodes inter-prototype distances through colors.

The optimal cluster count can be determined using validity indices such as the Davies-Bouldin
Index (DBI), though this should be interpreted as guidance rather than strict ground truth. SOM
map size is frequently chosen heuristically as

K ~5v M.

2.4.3 Internal Validation Indices

In an unsupervised learning problem, where the true class labels are unknown, only internal
validation indices can be used to assess the quality of the clustering. These indices evaluate the
clustering structure based on intrinsic properties of the data, such as cohesion (how close the
points within a cluster are) and separation (how distinct different clusters are), without relying
on any external ground truth labels.

In [27], the authors provide an extensive review of both classical and recently proposed clustering
validation indices, including a summary table of their computational complexity, advantages, and
limitations. The newly proposed WB index is the only one that identifies the correct number
of clusters in all the datasets tested. Although the way the WB index is applied differs from
the approach used in this work, an additional evaluation is carried out to verify whether it also
performs well in this context.
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WB Index

According to [28], this family of indices, which is based on sums of squares, shows promising
results in determining the number of clusters. These indices rely on the sum of squares within

clusters (SSW), and the sum of squares between clusters (SSB).

N M

SSW = 3" [|z; — ¢, |1 SSB =Y n;je; - X’

i=1 =1

X =A{z1,...,zn} dataset of N points

| X
X = N ; x; global mean
C={c,...,cm} set of M cluster centroids

¢; = centroid of the i-th cluster
p; = cluster index (label) of point z;

n; = number of points in the i-th cluster

The WB index is calculated as:

SSW
WB=M<ssg

(2.1)

Unfortunately, no Python implementation of the WB index appears to be available in the litera-

ture, therefore the following code provides the implementation.

def wb_index(self, data: np.ndarray, labels: np.ndarray) -> float:
n_clusters = len(np.unique(labels))
overall_mean = np.mean(data, axis=0)

ssw = 0
ssb = 0
for k in np.unique(labels):
cluster_points = data[labels == k]
cluster_mean = np.mean(cluster_points, axis=0)
ssw += np.sum((cluster_points - cluster_mean) ** 2)

ssb += len(cluster_points) * np.sum((cluster_mean - overall mean) *x*

2)

wb = n_clusters * (ssw / ssb)
return wb

The optimal value for this metric is the minimum. However, when the data have more than two
dimensions, the metric rarely identifies a clear minimum. Since the dataset used in this work
contains 31 features, this metric is not suitable. Moreover, it is designed for data that follow a

Gaussian distribution, which is the same limitation already discussed for K-Means.
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Metric comparison: wb
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Figure 2.11: WB Index

As shown in the plot, the metric has difficulties determining the exact number of clusters in the
make_moons dataset, while it performs well on the make_blobs dataset.

Silhouette Coefficient

The Silhouette coefficient [29] measures the consistency of clustering results by quantifying how
similar a data point is to other points within its own cluster (cohesion) compared to points in
other clusters (separation). For a data point 4, it is defined as:

b)) —ald)
) = ax{a() b0 (2.2)

where:

e a(i) is the average distance between 4 and all other points in the same cluster (intra-cluster
cohesion).

e b(7) is the minimum average distance between 7 and all points in any other cluster (inter-
cluster separation).

The Silhouette value ranges from —1 to 1, where values close to 1 indicate that a sample is well
matched to its own cluster and poorly matched to neighboring clusters. The overall Silhouette
score is computed as the mean of s(i) across all data points. The computational complexity of
the Silhouette index is O(n?), where n is the number of data points.

As noted by Rousseeuw, the Silhouette coefficient is most informative when the clusters are
compact and well separated, and when their structure is close to spherical.
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Metric comparison: silhouette
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Figure 2.12: Silhouette

This figure illustrates that the Silhouette score struggles to detect the appropriate number of
clusters in the make_moons dataset, while it provides a clear indication of the optimal partitioning
for the make_blobs dataset.

Davies—Bouldin Index

The Davies-Bouldin Index (DBI) [30] is another widely used internal evaluation metric. It quanti-
fies the average similarity between each cluster and the most similar one to it, where the similarity
is defined as a function of the ratio between within-cluster scatter and inter-cluster separation. It
is defined as:

k
1 S+ S,
DBI = — == 2.3

ki_lr?if< M, ) 23

where:

e £k is the number of clusters.

e S; is the average distance between each point in cluster ¢ and the centroid of cluster i
(intra-cluster scatter).

o M;; is the distance between the centroids of clusters ¢ and j (inter-cluster separation).

A lower DBI value indicates a better clustering result, as it reflects low intra-cluster dispersion
and high inter-cluster separation. Its computational complexity is O(n), making it more efficient
than the Silhouette coefficient.

24



Related Work

Metric comparison: dbi
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Figure 2.13: Davies-Bouldin Index (DBI)

The same reasoning applied to the Silhouette score also applies to the Davies-Bouldin Index, since
both metrics evaluate the quality of the clustering based on intra-cluster cohesion and inter-cluster
separation, although they do so through different formulations.

These observations align with the findings of Gagolewski et al. [31], who show that several widely
used internal validity indices, including the Silhouette and the Davies—Bouldin coefficient, may
favor clusterings that do not correspond to expert judgement, particularly when they are used as
objective functions to be maximized. In their study, Gagolewski et al. also introduce more robust
alternatives to classical validity measures, for example OWA-based generalized Dunn variants,
which are available in the genieclust library [32].

DuNN-OWA

Let X = {z1,...,2,} and let C(¢) denote the cluster label of x;. For each i, let NNy (i) be the
set of its M nearest neighbours. The DuNN-OWA index is

_ OWAL({ Jlzs — ]| : C(i) # C(§), i € NNu(j) or j € NNus(i) })
OWA,({ ||lz: — 2;]| : C(i) = C(j), i € NNy (j) or j € NNus(i) })°

DuNN(C) (2.4)

Only distances in the M-nearest neighbour graph are used: the numerator reflects inter-cluster
separation and the denominator reflects intra-cluster compactness. OWA operators may be chosen
as Min, Max, or Mean, while smooth variants such as SMin and SMax downweight extreme values,
reducing the influence of isolated outliers.

To avoid degenerate ratios, if one of the distance sets is empty, default values can be used (e.g.
OWA,; = 0 or OWA,. = +00), since DuNN(C) = 0 indicates no inter-cluster separation and
DuNN(C) = +o0 indicates perfect separation with no internal connectivity.

This metric shows good performance on the make_moons and make_blobs datasets.
The optimal clustering corresponds to the highest DuNN-OWA score.
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Metric comparison
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Figure 2.14: DuNN-OWA index values

2.5 Labeling

In the study [33], the authors propose a technique for performing clustering by relying exclusively
on large language models. The method consists of two main stages.

In the first stage, the objective is to identify potential labels for the dataset. Due to the context
window limitations of the models, the dataset is divided into batches, each batch is processed to
assign preliminary labels to its samples, and the resulting candidate labels are then aggregated.
This aggregation step is necessary because different batches may produce labels with distinct
terms but equivalent meanings.

In the second stage, the approach performs a classification task. Each text sample is assigned to
one of the previously determined labels, which enables the clustering process. The authors also
evaluate the token cost associated with the method and provide the prompts employed in their
experiments.

This article focuses on text clustering, however, it explores several approaches [34]. The authors
investigate how different large language models generate embeddings for clustering tasks. Multiple
models are tested and compared with classical embedding methods. Six clustering techniques are
evaluated, one of which is K-Means, and the GPT based model achieves the highest performance.
Furthermore, when using GPT embeddings, even a simple algorithm such as K-Means performs
well.

Text clustering is not the primary focus of this thesis. However, large language models (LLMs)
have evolved at a rapid pace, with increasingly promising benchmark results. In this work, we
investigate whether LLMs can effectively handle contextual information, process sessions, and
interpret HT'TP requests. Their performance in these scenarios will be evaluated in the course of
this thesis.
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Chapter 3

Infrastructure and Operational
Context

3.1 Infrastructure Requirements and Architectural Justifi-
cation

Before describing the Sicuranext infrastructure, it is important to explain the requirements that
shaped its design. Since Sicuranext’s Web Application & API Protection (WAAP) is a managed
service, the infrastructure must meet several technical and operational needs:

e Complete TLS termination and inspection: Sicuranext must decrypt incoming traffic
to apply WAF rules, plugins, and logging. TLS termination must be secure, compliant with
standards, and able to scale automatically during periods of high traffic

e Elastic scalability and fault tolerance: The system should adapt automatically to
changes in traffic, without manual intervention. It must include automatic scaling, health
checks, and failover mechanisms to guarantee availability

o Layered security: Security rules must act at different points of the HTTP lifecycle. L7
protections (WAF, rate-limiting, anomaly detection) must be enforced before forwarding
requests, while the outgoing response must also be inspected to avoid data leaks

e Performance and latency constraints: Security should not create excessive delays.
Cache mechanisms and geographically distributed entry points should reduce response time
and avoid unnecessary computation

e Audit and traceability: Every request and response must be logged with enough con-
text to allow forensic analysis, behavior tracking, and debugging. Logs should be indexed,
searchable, and usable with analytical tools

e Vendor independence and sustainability: Cloud services simplify operations, but the
infrastructure must remain portable. Sicuranext must be able to reduce cloud dependency
and migrate components without redesigning the entire system

These requirements lead to a WAAP architecture based on Kong Gateway, strengthened by Mod-
Security, and supported by distributed caching and centralized logging. Each element balances
security, performance, and operational cost.

3.1.1 Infrastructure Overview

The diagram below shows the main components of the infrastructure and the flow of requests and
responses:
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Figure 3.1: Sicuranext Infrastructure

Assuming Sicuranext protects the website example.com, the request and response flow is as follows:

e When a user visits example.com, the request is received by the Amazon Elastic Load Bal-
ancer (ELB). ELB distributes traffic and manages TLS certificates to decrypt it.
ELB was chosen for three main reasons. First, AWS handles load balancing, scaling, and
health checks. This allows the infrastructure to scale without extra work from Sicuranext.
Second, ELB supports AWS Global Accelerator, which provides static IPs distributed across
more than 20 AWS regions. Requests are served from the closest region, reducing latency.
Third, AWS Certificate Manager (ACM) integrates with ELB and allows the creation of
trusted TLS certificates at no additional cost.

Alternatives to ELB: Sicuranext could use Kong Gateway, OpenResty, or Nginx for
load balancing, but these options would require more engineering and maintenance. The
company plans to replace ELB with Kong Gateway in the future to reduce AWS dependency
and support smaller clients.

Alternatives to ACM: Let’s Encrypt could generate certificates and import them into
ACM or use them directly in Kong. Sicuranext plans to use Let’s Encrypt with Kong to
automate ACME challenges and manage TLS certificates per service.

e After TLS termination, the decrypted request is forwarded to the WAAP layer, where Kong
Gateway operates. Kong integrates the ModSecurity WAF with the OWASP Core Rule Set
(CRS) and custom rules.

ModSecurity is one of the few open-source WAF's that reliably work with Nginx. Other
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open-source options such as Coraza still show stability issues. Service-based solutions such
as AWS WAF exist, but they do not offer the flexibility or features required by Sicuranext.

o Kong Gateway also supports plugins. In this setup, one plugin blocks requests from mali-
cious Autonomous System Numbers (ASNs). An AS controls a group of IP address ranges.
Blocking individual IPs is easy to bypass since attackers can switch to another IP from the
same AS. Blocking the whole AS is more effective, but it must be used carefully to avoid
affecting legitimate users. Only ASes with a history of abuse should be blocked.

o If the request is valid, it is forwarded to the protected application (example.com). The
application generates a response.

e On the return path, ModSecurity inspects the response again. If the content is static, it
may be stored in AWS ElastiCache (Redis) to improve performance for future requests.
Sicuranext chose Amazon ElastiCache to deploy a managed Redis cluster, reducing opera-
tional complexity. In the future, the company plans to host its own Redis cluster to lower
AWS costs.

Alternatives: Other possible technologies include Memcached, KeyDB, or Apache Cas-
sandra. Redis was selected because of its maturity and strong Lua module support in
OpenResty.

e When a second request for the same content is made, ModSecurity still performs its checks,
but cached content may bypass some Kong plugins, such as the ASN filter. This improves
performance while maintaining a reasonable level of security.

e All requests and responses are logged asynchronously and stored in Elasticsearch. Sicuranext
uses Elasticsearch for storage and Kibana for visualization. Other valid alternatives include
OpenSearch, Apache Solr, or MongoDB.

The dataset for analysis will be downloaded from Elasticsearch. Blocking based on ASNs will be
important during the preprocessing described in Chapter 4.
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Chapter 4

Implementation Approach

4.1 Dataset Creation

The construction of the dataset required defining which information could identify a client in a
stable manner during a session. As discussed earlier, relying on a single feature such as IP address
or User-Agent is not sufficiently reliable because of NAT, IP rotation, and User-Agent rotation
(see Section 2.1).

For this reason, the dataset creation relies on the combination of both identifiers. This approach
reduces the risk of grouping unrelated clients within the same session or splitting a single client
into multiple artificial ones.

User activity is not constant. It may contain short bursts of requests followed by periods of
inactivity and then resume. To capture this pattern, the requests are aggregated per minute.
This representation preserves the chronological order of actions and separates active periods from
those without traffic. It also prevents Elasticsearch from returning a single large document per
client, which would be difficult to process. At this stage, minute buckets provide only a temporal
view of the traffic and do not define the logical session.

To extract the data, Elasticsearch is queried through a composite aggregation over the IP and
the User-Agent. The composite aggregation returns groups of client keys in batches, which avoids
loading all records into memory at once. Within each key, a date histogram with a fixed interval
of one minute collects the requests occurring during that time range. The query used is shown
below:

"size": O,
"query": {
"bool": {
"must": [
{"range": {"Q@timestamp": {"gte": start_time, "lte": end_time}}},
{"term": {"octofence.service-id": service_id}}
]
}
},
"aggs": {

"all_clients": {
"composite": {
"size": 100,
"sources": [
{"real_client_ip": {"terms": {"field": "real_client_ip"1}}},
{"user_agent": {"terms": {"field":
"request.headers.user-agent"}}}
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"aggs": {
"per_minute": {
"date_histogram": {
"field": "@timestamp",
"fixed_interval": "1im",
"min_doc_count": 1

An example of the response is:

"key": {
"real_client_ip": "X.X.X.X",
"user_agent": "Mozilla/5.0 (X11; Linux i686) ..."
3,
"doc_count": 1,
"per_minute": {
"buckets": [
{
"key_as_string": "2025-07-31T19:24:00.000Z",
"key": 1753989840000,
"doc_count": 1

3,

{
"key_as_string": "2025-07-31T19:31:00.000Z",
"key": 1753990260000,
"doc_count": 1

b

This output shows two requests issued by the same client. They appear in two different minute
buckets because they were sent seven minutes apart. However, this does not imply that they
correspond to two distinct sessions. The minute buckets are only a representation of the temporal
distribution of activity.

The actual session reconstruction is performed in Python. All consecutive requests generated
by the same (IP, User-Agent) pair are assigned to the same session as long as the temporal gap
between them is less than one hour. If the gap exceeds one hour, a new session is created. In the
previous example, the two requests are separated by seven minutes, therefore they are assigned
to the same session. This logic reflects typical user behaviour: brief pauses are common, whereas
longer periods of inactivity usually indicate that the interaction has ended.

The one-hour threshold was selected primarily because Sicuranext also protects e-commerce plat-
forms. In this context, users often take more time before generating the next request. They may
read product pages, compare alternatives, or leave the page open while deciding what to purchase.
Shorter time limits would fragment this behaviour into many separate sessions, even though it
corresponds to a single visit. The one-hour window maintains slow navigation within the same
session and prevents artificial interruptions in the user journey.

Elasticsearch cannot directly manage session information because the logs contain no field that
defines it. The system stores only individual HTTP requests, each with its own timestamp and
metadata. Consequently, Elasticsearch can group data by fields or time windows, but it cannot
detect when a user stops browsing and resumes later. Since the concept of session does not
exist in the raw data, the session boundaries must be computed externally in Python after the
aggregated records have been retrieved.
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4.1.1 Features

The feature set contains 31 elements. They are organised by purpose, and their identification is
based on the considerations already discussed in Section 2.2. The intention is not to introduce
features only because they are technically available, but to select those that can provide informa-
tion useful to distinguish normal behaviour from suspicious traffic. For this reason, the dataset
includes both features already explored in previous research and new ones tailored to the context
of this work.

The first group captures basic traffic volume and request types:

total_number_requests
e get

® post

e non_get_post

e unassigned _referer

These features describe the overall structure of the session. For example, an unusual number of
non-GET requests is often associated with automated scripts or brute force attacks rather than
interactive browsing. Similarly, a missing or undefined referer may indicate non-standard navi-
gation patterns or direct URL probing, which are less common in regular user behavior.

The Sec-Fetch-* headers are used to enrich this view. As presented earlier, they contain browser-
generated information about the context and origin of a request. This information makes it pos-
sible to approximate actions that are likely initiated by a human user, as opposed to requests
issued by the browser in the background or by automated tools. This distinction is important
because many raw HTTP requests do not reflect real user intent. For example, loading images,
fonts, or JavaScript files may produce dozens of requests even if the user is only visiting a single
page.

Using this filtering logic, two behavioral metrics are derived: max_requests_per_minute and
max_page_ratio. They are computed only from requests that match one of the following val-
ues: sec-fetch-user = 71, sec-fetch-site = none, sec-fetch-dest = document, or sec-
fetch-mode = navigate. These values correlate with active navigation events, such as opening
a page or clicking a link, and therefore increase the reliability of the measurements.

The first metric captures bursts of interaction: max_requests_per minute. Without filtering, this
metric would largely reflect how many static assets the browser retrieves. Instead, in this work,
it focuses on requests that are more closely aligned with user intent. The second metric measures

concentration:
requests for the most frequent page

max_page_ratio =
Pag total requests

A high value suggests repetitive interactions with a specific endpoint, which may be legitimate (for
example a dashboard refresh) or malicious (for example a brute force login attempt). Previous
studies proposed similar indicators [6, 5], but in this thesis the use of the Sec-Fetch heuristic
increases their interpretability in real-user contexts.

The following features represent the distribution of Sec-Fetch values over the session:

e sfd_image (sec-fetch-dest)

sfd_document (sec-fetch-dest)

sfd_script (sec-fetch-dest)

sfd_font (sec-fetch-dest)

e sfm_cors (sec-fetch-mode)
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e sfm_navigate (sec-fetch-mode)

e sfm_no_cors (sec-fetch-mode)

e sfm_same_origin (sec-fetch-mode)
o sfs_cross_site (sec-fetch-site)

o sfs_same_origin (sec-fetch-site)

o sfs_same site (sec-fetch-site)

e sfs none (sec-fetch-site)

e sfu_?1 (sec-fetch-user)

e xml_http_requests

e max_requests_per_minute

e max_page_ratio

These indicators describe the ”shape” of a session. Normal browsing tends to mix document
loads, script retrievals, and embedded resources from related origins. On the contrary, automated
tools often show simpler patterns: repeated navigation to a single endpoint, an unusual ratio of
cross-site requests, or an absence of resources associated with page rendering.

Response content types were previously addressed in Section 2.2. They are useful to distinguish
sessions originating from webpages, which typically return text/html, from those caused by
programmatic APIs; which frequently return application/json. Only the top-level category is
considered:

e ct_image
e ct_font
e ct_application

e ct_text
HTTP error codes provide further insight. Instead of merging all 4xx responses into one group,
they are separated, because each type explains a different behaviour. Scanning activities usually
produce many 404 Not Found responses, as the attacker explores unknown paths. In contrast,
attempts to bypass access controls are more likely to produce 403 Forbidden. This separation
has more diagnostic value than the single 4xx indicator used in several previous works:

e error_status_code_401

e error_status_code_403

e error_status_code_404

e crror_status_code_other
The avg response_content_length feature was already introduced in Section 2.2. The time
_interval measures the duration of the session, which helps separate short automated attacks
from longer activities typical of human users. When considered together, these features provide
multiple perspectives on the session and support the model in identifying behaviour that deviates
from normal patterns:

e avg _response_content_length

e time_interval
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4.1.2 Pre-Processing

Before clustering, the raw dataset contains 37 features. This initial set includes identification fields
such as real_client_ip and user_agent, temporal boundaries such as start_time and end_time,
and operational indicators such as num_asn blocks. The last feature records how many requests
belonging to the session were blocked because the ASN of the client had a poor reputation. The
role of ASN and its impact on traffic quality are described in Chapter 3.

The rationale behind this first filtering step is that sessions originating from untrusted ASNs
have a high probability of being malicious or at least not representative of normal user behavior.
Keeping them in the dataset would introduce noise and affect the interpretation of the clustering
output. Therefore, if a session contains at least one blocked request, the entire session is excluded.
Once the filtering is done, the num_asn_blocks feature has no remaining purpose and is removed.

A second exclusion rule is applied based on session size. Sessions containing fewer than five
requests do not provide enough information to derive meaningful behaviour. Such short traces of-
ten correspond to accidental visits, crawler probes, or incomplete navigation, and including them
would weaken the model rather than improve it. For this reason, they are discarded.

The next transformation concerns feature scaling relative to traffic volume. Most indicators repre-

sent counts, and large sessions would naturally show larger values even if their behaviour is normal.

To avoid bias toward users who simply interact more, all features except total number_requests,

time_interval, max_requests_per_minute, max_page_ratio, and avg_response_content_length
are divided by the total request count. This step converts raw frequencies into ratios and makes

sessions comparable regardless of size.

After normalization, feature redundancy is inspected through the correlation matrix (Section 2.3).
Highly correlated variables generally reflect the same underlying phenomenon, therefore they pro-
vide limited additional information. Their inclusion increases the dimensionality of the dataset
without necessarily improving the separation between clusters, and in distance-based models this
may even distort the results. Nevertheless, in certain contexts such variables can capture sub-
tle or complementary aspects that contribute to distinguishing one group from another, so their
relevance ultimately depends on the specific analytical scenario.
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Figure 4.1: Correlation Matrix

As shown in Figure 4.1, the features get, unassigned referer, sfm cors, sfm navigate, sfm
_no_cors, sfu_?1, ct_image, ct_application and xml_http_requests exhibit strong linear cor-
relations, with coefficients of at least 0.9. A reduced dataset is therefore produced where these
features are removed to evaluate whether clustering performance improves. This step is not only
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a dimensionality reduction process, but also a way to assess which signals are actually necessary
to represent distinct behaviours.

Finally, features are standardized using the Z-score transformation,

T —p
o b

so that variables with large numeric ranges do not dominate the clustering algorithm. Standard-
ization ensures that all features contribute with equal weight and that distance metrics reflect
differences in behavior rather than scale.

4.2 Dip Test for Multimodality

It is necessary to understand whether the dataset is likely to contain more than one underlying
group. The Dip Test is a statistical tool that helps detect multimodality by analysing the dis-
tribution of pairwise distances between samples (see Section 2.4.1). If the distance distribution
contains more than one significant peak, the dataset is unlikely to be homogeneous and a single-
cluster model would not be appropriate. This step therefore acts as a preliminary validation that
can prevent misleading interpretations in later stages.

In practice, computing the full pairwise distance matrix for this dataset is not feasible. With
87,942 samples and 31 features, evaluating all combinations would generate w distance
values, approximately 3.87 billion entries. Since each float64 element requires 8 bytes, the total
memory usage would reach about 28.81 GB. The workstation used in this project has 16 GB of
RAM, so a full calculation cannot be performed.

A possible workaround is to apply the Dip Test to a lower dimensional representation. One
common solution is to run PCA and apply the test only to the first principal component. This
approach assumes that most of the structure of the dataset is captured by a small number of linear
components. If the data were approximately linear, the first two or three principal components
should explain most of the variance.

For this reason, PCA is used to explore whether the dataset behaves linearly:

def _explore_dataset_linearity(self):
def plot_cumulative_variance(explained_variance_ratio: np.ndarray):
plt.figure(figsize=(8, 5))
plt.plot(
range(1l, len(explained_variance_ratio) + 1),
explained_variance_ratio,
marker="o",
linestyle="--",
)
plt.title("Elbow Method for PCA")
plt.xlabel("Number of Principal Components")
plt.ylabel("Cumulative Explained Variance")
plt.grid(True)
plt.show()

X = self. X

pca = PCA(n_components=0.9)

pca.fit(X)

eigenvalues = pca.explained_variance_ratio_

explained_variance_ratio = np.cumsum(eigenvalues)
logging.info(f"Eigenvalues: {np.round(eigenvalues, 5)}")
plot_cumulative_variance(explained_variance_ratio=explained_variance_ratio)

The expected outcome, if the dataset were roughly linear, is that only the first few eigenvalues
would be significantly larger than zero. Equivalently, two or three principal components should

35



Implementation Approach

capture around 90% of the variance. However, in this case 16 components are needed to reach
this threshold, which indicates that the information is distributed across many directions:

[0.24604 0.1277 0.09541 0.06468 0.04382 0.03985 0.03947 0.03472
0.03413 0.0319 0.02983 0.02965 0.02731 0.02537 0.02475 0.02021]

Eigenvalues:

Elbow Method for PCA
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Figure 4.2: PCA Explained Variance

Since the dataset does not exhibit a clear linear structure, applying the Dip Test only to the first
principal component would ignore most of the information. This would produce results that are
not reliable and could misrepresent the real geometry of the data. For this reason, the PCA-Dip
approach is discarded.

The alternative is to keep the original feature space but reduce the number of samples in a
meaningful way. A naive sampling method, such as randomly selecting a subset of sessions, would
risk removing relevant behaviors and modifying the underlying distribution. The goal is not just
to reduce the volume of data, but to preserve the relative distances between samples so that the
Dip Test remains interpretable.

To achieve this, a SOM is adopted. When correctly trained, a SOM preserves the topology of
the input space: samples that are close in the original dataset remain close on the resulting
grid. This allows replacing individual sessions with the weight vectors of SOM neurons. These
weight vectors keep the original dimensionality, so this procedure is not a form of dimensionality
reduction. Instead, it compresses the dataset into a smaller set of representative prototypes,
reducing the number of points on which the Dip Test is applied while maintaining the global
structure of the data.

4.3 Self-Organizing Map

Before setting the parameters, it is important to clarify the role of the SOM within the proposed
solution. The SOM is not employed to predict or classify. Instead, it provides a low-dimensional
representation of the data, where sessions that behave in a similar way should be mapped close
to one another. The quality of this representation depends on the ability of the map to preserve
distances from the original space and reflect meaningful neighbourhood relations.
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From a design perspective, the SOM parameters must support these goals. Therefore, the selec-
tion of the map size, neighbourhood radius, distance metric and training policy is not arbitrary.
They affect how the model learns the structure of the dataset and how stable the resulting rep-
resentations are.

The Python library used in this thesis to construct the SOM is MiniSom [35]. The SOM has
several parameters that must be defined, such as:

e x and y: the dimensions of the map. In this work, = y, resulting in a square map.
e input_len: the dimensionality of the input vectors (i.e., the number of features).

e sigma: the initial spread of the neighborhood function.

e learning rate: the initial learning rate.

e decay_function: the method used to reduce the learning rate over time.

e neighborhood_function: the kernel used to define how neighboring neurons are influenced
during training.

e topology: the map topology (e.g., rectangular or hexagonal).

e activation_distance: the metric used to compute distances when assigning input vectors
to neurons.

e random seed: random initialization seed to ensure reproducibility.

e sigma_decay_function: the method used to update the neighborhood radius during train-
ing.

Starting from the dimensional perspective, the topographic product does not provide substantial
information, as already discussed in Section 2.4.2. Since the dataset is not linear, the topo-
graphic product oscillates between small negative and positive values, often remaining close to
zero. Therefore, this metric cannot be used to determine the optimal size of the map. Moreover,
because the computation of the topographic product is computationally demanding, only the map
sizes of 10, 15, 20, 25, 30, 35, and 40 were evaluated. A common rule of thumb to define the map
size is = y = 5v/M, where M denotes the number of data samples; in this case M = 39. This
rule is adopted in the present work, as it yields satisfactory results in terms of quantization error
and topographic error. These two errors were already examined in Section 2.4.2, and lower values
indicate better performance.

Unfortunately, in version 2.3.5 of MiniSom, the batch training mode is not available, and the
function named train_batch in that version does not correspond to Kohonen’s batch training
algorithm is not available. Since the author of the Self Organizing Map, Kohonen, introduced
this algorithm in 2013, in this thesis the batch version is implemented so that it is possible to
evaluate whether it performs better than the standard online training. It should be noted that
the batch algorithm does not require a learning rate.

Regarding the remaining parameters, such as sigma, the learning rate in the case of standard
training, the neighborhood function and the topology, they remain unchanged. This choice is
mainly motivated by the heuristics provided by Kohonen, according to which the initial sigma
should be approximately one half of the map side length in the case of a quadratic topology, while
for the online method the learning rate should start at a relatively high value. The Gaussian
neighborhood function is the classical formulation discussed in the original works. These recom-
mendations are described in Kohonen’s articles. What is optimized through Optuna in order to
determine the best configuration are the decay_function, the sigma decay_function and the
activation_distance.

The hyperparameter tuning procedure operates as follows. The two algorithms are executed un-
der different training configurations. In the online training setting, the number of iterations is set
to 1000, and the batch size is equal to 2. Regarding the initialization of the model parameters,
the online training approach employs random weight initialization, whereas the batch training
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approach uses initialization based on principal component analysis (PCA).

It is important to note that a single iteration of the batch training procedure is not equivalent to
one iteration of the online training procedure, since the batch update internally cycles through
the entire dataset. After multiple runs, the configuration that produces the best performance
is selected, and the corresponding hyperparameters are retained. Eventually, both algorithms
converged toward the same optimal set of parameters, namely:

{’decay_function’: ’asymptotic_decay’, ’sigma_decay_function’:
’inverse_decay_to_one’, ’activation_distance’: ’cosine’}

Both training methods effectively train the map using the appropriate number of iterations. In
the case of online training, the number of iterations is 500 - z - y where x and y are the dimensions
of the map. In the case of batch training, the number of iterations is 20. These values are not
chosen arbitrarily, they are suggested in the work of Kohonen.

Comparison of train vs train_batch SOM Training

I Quantization Error (QE)
I Topographic Error (TE)
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Figure 4.3: Online Training versus Batch Training

As shown in Figure 4.3, batch training achieves consistently very good results, and it performs
better than online training.

[train] QE = 1.77805 | TE = 0.14707
[train batch] QE = 0.96502 | TE = 0.04284

To assess whether the obtained results are satisfactory, the quantization error (QE) and the
topographic error (TE) should be as low as possible (see Section 2.4.2).

Before applying any clustering method, it is necessary to verify whether the weights are likely
to form distinct groups. To this end, the Dip Test is employed to assess the null hypothesis of
unimodality. The procedure was presented in Section 2.4.1. The resulting p-value is:

dip p-value: 0.02567051939734566

Since the obtained p-value is greater than the conventional significance threshold of 0.05, the null
hypothesis of unimodality cannot be rejected. Nevertheless, as mentioned earlier, the author ob-
serves a success rate of 95%, therefore this dataset is not discarded and is still taken into account.

Indeed, as shown below, the distribution of the pairwise distances, together with the empirical cu-
mulative distribution function (ECDF), displays a unimodal pattern, since no evident flat regions
are present.
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Figure 4.4: Distribution of the pairwise distances and ECDF of SOM weights

At this stage, a new SOM map was trained on the dataset after the correlated features had been
removed, and this approach appears to yield better results. A secondary, smaller mode emerges
in the resulting distribution, which may indicate a tendency toward multimodality.
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Figure 4.5: Distribution of the pairwise distances and ECDF of SOM weights with correlated
features removed

To verify this result, the p-value of the Dip Test is reported below:
dip p-value: 0.0

4.3.1 K-Means

K-Means was employed to cluster the SOM weights. As noted in Section 2.4, this algorithm has
certain limitations; however, it remains relatively simple compared to alternatives like DBSCAN,
which is also reviewed in [18].

The main challenge with DBSCAN lies in properly tuning the hyperparameters minPts and eps.
The automatic parameter determination method proposed in [36] was applied, but the algorithm
identified only a single cluster in both distinct datasets. For the dataset containing all features,
the results were:

Auto-tuned DBSCAN params: eps=11.7067, MinPts=32

In the dataset without highly correlated features, the parameters were:
Auto-tuned DBSCAN params: eps=10.6948, MinPts=2
These results suggest that DBSCAN may struggle with the current dimensions of the datasets.

While it might perform well with lower dimensionality (e.g., up to 10 dimensions), it proved
ineffective in our specific cases involving 22 and 31 features.
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4.3.2 Results

The clustering results may also be examined, even though these indices have already been dis-
cussed in detail in Section 2.4.3, where it was shown that they do not always coincide with expert
judgement.

In the present case, the validation indices do not provide consistent indications. The best values
of both the Silhouette coefficient and the Davies—Bouldin index are obtained at k = 23, whereas
the DuNN OWA method identifies £ = 3 as the optimal number of clusters.

In contrast, for the SOM trained with correlated features removed, the silhouette score and the
DuNN-OWA metric are coherent. These metrics have performed reliably in experiments using
the make_moons and make_blobs datasets available in scikit—learn. Moreover, The silhouette value
is greater than 0.5, which indicates satisfactory clustering quality.

The SOM trained without the correlated features performs better than the SOM trained using
all features, the map is reported below (Figure 4.7). The interpretation of the SOM map is that
the neurons shown in black are very distant from the neighbouring neurons, which indicates that
they are different, and possibly that the sessions belonging to them behave differently.
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Figure 4.6: Comparison of internal metrics for SOM weights before and after removing correlated
features
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Figure 4.7: SOM map with correlated features removed
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Two distinct clusters are expected to exhibit different behaviours. It is plausible that one cluster
represents human navigation, or at least traffic patterns that mimic human navigation, while
the other appears to be automated. To assess this hypothesis, a subset of neurons is analysed
manually.

Neuron: (0, 10)

user_agent Go-http-client/1.1
start_time 2025-11-16T11:32:00.000Z
end_time 2025-11-16T11:51:00.000Z
total_number_requests 59

get 59

unassigned_referer 59
error_status_code_403 59
time_interval 19.0

user_agent python-requests/2.31.0
start_time 2025-11-13T21:20:00.000Z
end_time 2025-11-13T21:21:00.000Z
total_number_requests 51

get 43

post 8

unassigned_referer 51
error_status_code_403 51
time_interval 1.0

Neuron: (1, 10)

user_agent Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Ge...
start_time 2025-11-16T05:31:00.000Z
end_time 2025-11-16T05:57:00.000Z
total_number_requests 8

get 8

unassigned_referer 7

ct_text 3

error_status_code_403 6
avg_response_content_length 8371.333333
time_interval 26.0

These sessions are generated by automated scripts. The first two can be identified from the
user agent, while the third can be inferred from unassigned referrers and from the fact that the
number of HTTP 403 errors is almost equal to the total number of requests. It is also possible to
understand that it is an automated script because it does not include the Sec—Fetch headers and
it is likely not a genuine Mozilla client, but a script that modifies the User—Agent. This highlights
the importance of these new features, which help distinguish legitimate traffic from automated
traffic.

In contrast, a normal navigation process is observed. Almost all of the Secure Fetch (Sec—Fetch)
headers are present, only a single HT'TP 404 error occurs, and the total number of requests is 151
(neuron (35,0)).

user_agent Mozilla/5.0 (Windows NT 10.0; Win64; x64) Appl...
start_time 2025-11-12T07:35:00.000Z

end_time 2025-11-12T07:46:00.000Z

total_number_requests 151

get 117

post 34

unassigned_referer 114

sfd_image 114

sfd_document 1

sfm_cors 35
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sfm_navigate 1

sfm_no_cors 115
sfs_same_origin 150
sfs_none 1

sfu_?71 1

ct_image 114

ct_font O

ct_application 35

ct_text 2

xml_http_requests 35
max_requests_per_minute 2.0
error_status_code_404 1
avg_response_content_length 1048.925926
max_page_ratio 0.006623
time_interval 11.0

When the number of clusters increases, the manual inspection of the results becomes increasingly
time consuming. As already noted, clustering evaluation metrics do not provide conclusive as-
sessments, therefore additional analyses are required. Since k = 23 produces the most coherent
structure in the clustering of the SOM weights using the dataset that includes all features, an
additional experiment is carried out with a large language model (LLM) in order to determine
whether it can interpret the underlying context and distinguish between benign and malicious
sessions.

4.4 LLM

4.4.1 Design Rationale for the Labeling Approach

The goal of the labeling phase is to provide a meaningful interpretation of the clusters produced
by K-Means and the Self-Organizing Map. A cluster without an explanation is difficult to use in
any practical scenario. For this reason, the design of the labeling method must consider both the
structure of the data and the way in which patterns emerge at the session level.

The first design decision concerns the nature of the labels. Instead of focusing on very specific
features (for example, large numbers of image requests or repeated failures), the labels should
describe a higher-level intent or behaviour. This abstraction makes the results easier to compare
across different clusters and different datasets. It also supports future work, since behavioral
labels can be reused even if the underlying raw features change.

A second design choice is the use of representative samples rather than full session histories. Full
inspection of every session would be impractical, especially when the number of neurons grows.
The model is therefore asked to infer the dominant behaviour from a limited number of sessions
per cluster and a few raw HTTP requests for each session. This reduces the computational cost,
but it also creates a trade-off: some contextual information is removed, and small variations may
become invisible. The design accepts this limitation because the objective is to produce an initial
hypothesis, not to provide a definitive classification.

The third design element consists of treating previously assigned labels as part of the system
state. When a label has already been assigned, it should be reused if a similar pattern emerges.
This choice is motivated by the need for consistency, since assigning independent names to similar
clusters would increase ambiguity and hinder comparison. Reusing existing labels encourages the
model to connect current evidence with previously acquired knowledge. New labels are introduced
only when the observed behaviour clearly differs from the existing descriptions. This principle
has already been addressed in [33].

Finally, the method assumes that automatic labeling cannot fully replace expert judgment. The
model is used to reduce the manual workload and to highlight potential behavioural patterns, but
the final evaluation remains a human task. This is important because the system may extract
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superficial signals from the data, or it may generalize based on incomplete evidence. Therefore,
the design explicitly includes a validation phase in which the analyst compares session statistics,
raw requests, and known traffic patterns to decide whether the assigned label is credible.

Since the map containing all the features shows the best values of the Silhouette score and the
Davies—Bouldin Index at k = 23, the K-Means algorithm is executed with k = 23. The resulting
map is presented below.

SOM Cluster Map

SOM Distance Map = Cluster 0

mmm Cluster 1
Cluster 2
= Cluster 3
Cluster 4
mmm Cluster 5
Cluster 6
BN Cluster 7
Cluster 8
B Cluster 9
Cluster 10
B Cluster 11
mmm Cluster 12
Cluster 13
B Cluster 14
Cluster 15
B Cluster 16
Cluster 17
Cluster 18
Cluster 19
mmm Cluster 20
Cluster 21
Cluster 22

35 4

Figure 4.8: SOM Map

The neurons display clear coloration, which makes it possible to observe that neurons located
farther away, represented by darker colors, form the boundaries of the clustering. This effect does
not appear in the previous example, where only two clusters are present. In the current case,
manually examining each cluster is very time-consuming, particularly because a large number of
neurons must be inspected.

To address this issue, large language models (LLMs) can assist in automating the labeling process.
In this work, only three clusters are analyzed, and for each cluster five sessions are considered.
For every session, five raw requests are randomly selected and examined. This procedure serves
merely as a preliminary test, since a full analysis would require an excessive number of tokens
and represents a promising direction for improvement, possibly by employing a local LLM. Below,
the system prompt is defined, as it is an important component when working with large language
models:

system_prompt = """
Self-Organizing Map Neuron Labeling - Behavioral/Intent Categories

You are an analyst working with a Self-Organizing Map (SOM) that clusters web
sessions based on HTTP traffic patterns. Each neuron in the SOM
represents a group of sessions with similar characteristics. Your task is
to assign a meaningful, high-level behavioral label to a single neuron
based on the data provided.

You will receive:

- Some sessions mapped to the same neuron, each with summarized statistics.

- For one session, a sample of some raw HTTP requests.

- A list of previously assigned labels and their descriptions (to avoid
duplicates or near-duplicates).

Labeling guidelines:
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- Focus on the main purpose, behavioral pattern, or security-relevant signals
reflected by these sessions.

- Do not simply summarize atomic features (such as "onlyimage" or "manyget").
Instead, infer the higher-level intent or behavior suggested by the
features.

- Consider whether the sessions resemble typical human browsing, automated
bots, crawlers, background tasks, or other patterns of interest for
traffic and security analysis.

If the behavior matches or is very similar to an existing label (including
its description), reuse that label and description exactly. Only create a
new label and description if no existing label is suitable.

- Descriptions must be a single brief sentence and reused if similar patterns

arise.

The very first labeling task will not include any existing labels and will be
used to define the initial label set.

Expected output format:

Return a JSON object exactly as follows (no explanations, no extra text):

{

"label": <one-word category label>,

"description": <very brief explanation, suitable for cluster analysis, of why
this label was chosen>

}

An example of the user prompt is provided below. In the actual system, empty fields or fields
containing 0 are included, even though they are omitted here:

--- Session Summary ---
{
"total_number_requests": 525,
"get": 525,
"unassigned_referer": 525,
"ct_application": 241,
"ct_text": 284,
"max_requests_per_minute": 0.0,
"error_status_code_401": 284,
"time_interval": 281.0
X
--- Raw Requests Sample ---
L
{
"method": "GET",
"uri_path": "[REDACTED]",
"content-type": "application/json",
"http_code": 200
1,
{
"method": "GET",
"uri_path": " [REDACTED]",
"content-type": "text/html",
"http_code": 401
1,
{
"method": "GET",
"uri_path": " [REDACTED]",
"content-type": "text/html",
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"http_code": 401

1,

{
"method": "GET",
"uri_path": "[REDACTED]",

"content-type": "application/json",
"http_code": 200

1,

{
"method": "GET",
"uri_path": "[REDACTED]",
"content-type": "application/json",
"http_code": 200

X

]

Only three clusters are labeled by the LLM. The labels and their descriptions are the following;:
{

lI12|I: {
"label": "pageview",
"description": "Multiple GET-only requests for same-origin images, styles

and scripts with occasional navigations, consistent with normal
browser page loads."

+,

"o": {

"label": "pageview",

"description": "Multiple GET-only requests for same-origin images, styles
and scripts with occasional navigations, consistent with normal
browser page loads."

1,
e {

"label": "api-probing",

"description": "Repeated unauthenticated GET requests to API endpoints
with many 401 responses and no referer, consistent with automated API
scanning or probing."

Then, it is possible to manually analyze these clusters and evaluate whether both the clustering
and the labeling are appropriate.

For cluster 1, the neurons are located at (13,38) and (13,37), the remaining neurons are empty,
and the results are consistent with the labels and the description.

user_agent axios/1.13.2

start_time 2025-11-14T06:20:00.000Z
end_time 2025-11-14T11:30:00.000Z
total_number_requests 58

get 58

unassigned_referer 58

ct_text 58

error_status_code_401 58
time_interval 310.0

user_agent Mozilla/5.0 (Linux; Android 10; K) AppleWebKit...
start_time 2025-11-12T12:55:00.000Z

end_time 2025-11-12T13:18:00.000Z

total_number_requests 8
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get 5

post 3
unassigned_referer 4
ct_application 4
ct_text 4
xml_http_requests 4
error_status_code_401 3
time_interval 23.0

In the first case, the User-Agent information helps to identify the type of session, and it is also
relevant because the total number of requests is equal to the number of HTTP 401 errors. The
second session was grouped into this cluster due to the presence of HTTP 401 errors. However,
this evidence alone does not allow us to conclude that the session is malicious. Some fields,
such as ct_application and xml_http_requests, appear consistent with legitimate activity. It
is possible that the attacker modified the headers. While this is a session in the cluster 0, labeled
as pageview:

user_agent Mozilla/5.0 (Windows NT 10.0; Win64; x64) Appl...
start_time 2025-11-12T17:13:00.000Z
end_time 2025-11-12T17:16:00.000Z
total_number_requests 34

get 34

unassigned_referer 28

sfd_image 11

sfd_document 2

sfd_script 12

sfd_font 2

sfm_cors 2

sfm_navigate 2

sfm_no_cors 30

sfs_cross_site 2

sfs_same_origin 32

sfu_71 2

ct_image 11

ct_application 2

ct_text 21
max_requests_per_minute 1.0
max_page_ratio 0.058824
time_interval 3.0

The presence of the Sec-Fetch-* headers suggests that the request originates from a real browser
operated by a human user. In particular, the value Sec-Fetch-Mode: navigate denotes that
the request triggers a navigation action, which is typically associated with a deliberate visit to
the page.
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Here, another type of session is observed. Until now, only sessions containing errors have been
considered malicious. However, another cluster includes this session. It is likely to be malicious,
because it contains eight requests that are neither GET nor POST, and the requests do not include
any Sec-Fetch headers.

user_agent Mozilla/5.0 AppleWebKit/537.36...
start_time 2025-11-15T13:45:00.000Z
end_time 2025-11-15T16:45:00.000Z
total_number_requests 16

get 8

non_get_post 8

unassigned_referer 16

ct_text 16

time_interval 180.0
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Conclusion

The aim of this thesis was to investigate whether HTTP sessions reconstructed from server-side
logs can be clustered according to their behavioral properties. The study focused on patterns that
emerge when multiple requests are considered as a collective sequence, instead of isolated events.
This shift from request-level inspection to session-level analysis allows a better understanding of
user behavior and helps distinguish genuine navigation from automated or suspicious interactions.

The first contribution of this work concerns the reconstruction of sessions from raw traffic data.
Since Sicuranext logs do not contain any explicit session identifier, the use of IP address and User-
Agent was adopted as a practical compromise. This method is not perfect, but it was sufficient
to perform exploratory analysis, to extract features, and to evaluate the feasibility of clustering.
The second contribution lies in the construction of a feature set designed to characterize sessions.
Alongside well-known indicators such as request frequency or ratio of HTTP methods, additional
signals were introduced, including Sec-Fetch headers and response content categories. These
features provided valuable context and helped capture differences between human-driven requests
and automated behavior.

To assess whether clustering was meaningful, the Dip Test was applied. Although this statistical
test operates in one dimension, it enabled the identification of multimodal structure through
dimensionality reduction or distance-based formulations.

Classical clustering method, mainly K-Means, was adopted due to the moderate dimensionality
of the dataset. While this method has limitations, it produced coherent clusters that could be
interpreted in practical contexts. Finally, the semantic interpretation of clusters confirmed the
presence of distinct behavioral groups and provided initial labels that may be used in subsequent
supervised learning tasks.

Closing Remarks

The results of this study demonstrate that unsupervised learning can extract meaningful behav-
ioral patterns from HTTP sessions using only server-side information. Even without advanced
session identification or deep learning techniques, the selected models were able to highlight clear
differences between types of user activity. Feature selection played a central role: the combination
of classical statistical indicators and less explored metadata, such as Sec-Fetch headers, helped
distinguish genuine navigation flows from automated or stealth interactions. Although the work
does not deliver a production-ready system, it lays a solid foundation for future development and
shows that clustering is a valid first step toward automated threat detection.

Future Improvements

Several directions may enhance the effectiveness of this approach. First, the session identification
method should be refined. Reliance on IP and User-Agent introduces fragmentation and mixing
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effects, especially in the presence of NAT, VPNs, or User-Agent rotation. Techniques such as
browser fingerprinting, dedicated cookies, or persistent identifiers could provide more stable ses-
sion boundaries.

Second, the clustering stage may benefit from more advanced models. Deep clustering, autoen-
coders, or contrastive representation learning could better capture non-linear patterns and reduce
noise in highly heterogeneous traffic. These approaches may also help deal with edge cases where
classical methods show instability.

Third, the labeling process could be reinforced. While manual labeling is time-consuming, and
cloud-based LLMs raise privacy and security concerns, a local large language model could be
fine-tuned on representative sessions and used to produce labels without exposing sensitive traffic
data outside the protected environment. This would help automate semantic interpretation while
preserving confidentiality and regulatory compliance.

Finally, the labeled clusters derived in this work provide a starting point for supervised learning.
Models such as decision trees or gradient boosting could be trained to classify sessions in real
time. When doing so, latency, interpretability, and robustness against adversarial manipulation
must be considered, since threats often evolve to evade detection.

Deploying the approach in a controlled production environment would also provide essential feed-
back. Factors such as model drift, changing traffic patterns, and operational constraints cannot be
fully evaluated offline. Continuous monitoring, retraining strategies, and integration with existing
logging or alerting systems are necessary to maintain the long-term effectiveness of session-based
detection.
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