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Summary

Introduction

The rapid evolution of deepfake technologies has introduced one of the most pressing challenges in
today’s digital environment. Originally developed as research experiments with generative models
such as GANs, autoencoders, and diffusion models, deepfakes have now become widely accessible
tools capable of producing synthetic images, videos, and audio that are nearly indistinguishable
from authentic content. While such technologies can serve creative and commercial purposes,
they are increasingly misused for fraud, identity theft, extortion, misinformation, and reputational
damage, generating severe personal, financial, and political risks. Recent cases confirm the urgency
of this issue: deepfake fraud attempts surged by 3,000 percent in 2023, with losses often exceeding
hundreds of thousands of dollars per incident. Despite the scale of the problem, current legal
and technical responses remain inadequate. Regulatory frameworks are fragmented and often
ambiguous, while detection methods, though advanced, are inherently reactive and struggle to
keep pace with the sophistication of generative models. This highlights the necessity of shifting
focus from detection to proactive authentication strategies that can verify the integrity of digital
content at the point of its creation.

This thesis aims to contribute to this preventive approach by developing a lightweight and
verifiable authentication mechanism for digital images. By embedding fragile watermarks capable
of detecting even minimal alterations, the proposed method seeks to provide proof of integrity,
ensuring that manipulated media can be identified before it spreads. Beyond the technical contri-
bution, the research also underscores the importance of accountability within digital ecosystems,
advocating for shared responsibility between creators, platforms, and regulatory bodies. Ulti-
mately, the work aspires to strengthen the trustworthiness of digital content and support the
broader effort to mitigate the risks posed by deepfake technologies.

Project overview

This thesis presents the design and implementation of a prototype system that integrates digital
watermarking, cryptographic hashing, and blockchain technology to ensure the authenticity, in-
tegrity, and traceability of digital images, particularly within forensic and evidentiary contexts.
The project aims to address one of the major challenges in digital forensics, the preservation
and immutability of digital evidence, by leveraging blockchain’s tamper-evident and append-only
structure to maintain an auditable chain of custody over time. The proposed system combines
fragile watermarking with blockchain-based immutability to create a verifiable framework for
detecting tampering and preserving evidentiary reliability. While hashing provides a standard
method for generating unique digital fingerprints of image data, the innovation lies in the use of
blockchain as a decentralized ledger for securely storing these identifiers. This approach ensures
that once an image and its metadata are registered, any alteration or removal becomes detectable,
thus reinforcing the trustworthiness and non-repudiation of stored evidence.

The system, implemented in Python, is modular and designed to reflect the main stages of the
forensic authentication pipeline. The watermarking module employs a fragile Least Significant Bit
(LSB) embedding technique, encoding a textual watermark that is visually imperceptible but sen-
sitive to pixel modifications. The hashing mechanism (SHA-256) complements this by producing
unique identifiers for both image content and metadata, which are then recorded in a simulated

4



blockchain ledger that links each entry cryptographically to the previous one, reproducing the
core immutability property of real blockchain systems. Verification procedures integrate these
components to provide a comprehensive integrity assessment. The system recalculates hashes
and validates them against blockchain records, while also verifying watermark integrity. Any
inconsistency signals a potential manipulation, enabling a fine-grained localization of tampering
at the pixel or metadata level. To evaluate real-world applicability, the framework was tested
on data from the NIST Computer Forensic Reference Data Sets (CFReDS). Using the Autopsy
forensic platform, a selected image from the Data Leakage Case dataset was analyzed through
the entire workflow: watermarking, hashing, blockchain registration, and verification. The results
confirmed the system’s capability to detect tampering, preserve traceability, and maintain eviden-
tiary integrity in realistic forensic conditions. Finally, the project integrates a legal perspective to
assess how technical mechanisms like blockchain and watermarking can strengthen the evidentiary
value of digital content, supporting accountability and compliance within judicial and investiga-
tive processes. By aligning technological immutability with legal requirements for authenticity
and chain of custody, this work contributes to bridging the gap between forensic technology and
legal reliability in digital evidence management.

Overall, the developed prototype provides a proof-of-concept for using blockchain-based im-
mutability, combined with digital watermarking and cryptographic hashing, to enhance trust,
transparency, and traceability in digital forensics.

Results and Conclusions

The developed scripts demonstrated significant effectiveness in detecting and authenticating ma-
nipulated images, particularly in the context of deepfake content. Through extensive testing on
both online images and forensic datasets from CFReDS, the system consistently identified anoma-
lies and distinguished authentic images from tampered ones. The dual-layer approach, combining
fragile watermarking and SHA-256 hashing, proved crucial for detecting alterations not only to the
image itself but also to embedded metadata, thereby enhancing the robustness of the verification
process.

The blockchain-inspired component, simulated through a CSV-based ledger, further reinforced
data integrity by maintaining cryptographic links between consecutive entries. This mechanism
enabled the detection of unauthorized modifications or deletions, demonstrating the system’s
ability to preserve the authenticity of recorded information. Practical simulations included three
types of tampering: direct image alterations, watermark manipulations, and metadata changes,
all of which were successfully detected by the tool.

These results highlight the potential of integrating watermarking, hashing, and blockchain
mechanisms to address the growing challenges of multimedia verification and deepfake detection.
The system bridges theoretical concepts and practical applications, offering a proof of concept for
digital forensic use and legal contexts. By enabling verification at multiple levels (image, water-
mark, and metadata) the project contributes to safeguarding digital evidence integrity, intellectual
property, and trust in information systems. Future developments could include transitioning from
a simulated to a real blockchain infrastructure to ensure stronger guarantees of immutability, de-
signing a user-friendly interface for forensic practitioners, and testing the tool with real forensic
case materials. Such enhancements would increase the system’s applicability in operational en-
vironments, allowing it to support investigators, legal authorities, and courts in verifying digital
content. Ultimately, this work establishes a solid foundation for practical deepfake detection
solutions, combining technical rigor with societal and legal relevance in an increasingly digital
world
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Chapter 1

Introduction

1.1 Motivations of the study

The rapid development of deepfake technologies represents one of the most significant and complex
challenges in the contemporary digital landscape. Deepfakes, originally conceived as experimental
outputs of generative models such as Generative Adversarial Networks (GANs), autoencoders,
and diffusion models, have now become widely accessible tools capable of producing synthetic
content with astonishing realism. These technologies can manipulate images, videos, and audio
recordings in ways that are increasingly indistinguishable from authentic media, even to trained
experts. What was once a domain restricted to researchers and visual effects professionals has
now expanded into widespread public use, with applications spanning entertainment, advertising,
politics, and disinformation.

The growing realism of deepfakes poses a serious and multidimensional threat to the reliability
of digital content. As generative algorithms evolve, they can replicate facial expressions, lip move-
ments, vocal intonations, and body gestures with extreme precision. This level of sophistication
makes it virtually impossible for an average user to distinguish between real and manipulated
content, creating fertile ground for deception. Malicious actors can exploit deepfake technologies
to impersonate individuals, fabricate statements, falsify evidence, or orchestrate highly convinc-
ing social engineering attacks. Consequently, deepfakes have become powerful instruments for
fraud, identity theft, extortion, and reputational damage, frequently resulting in severe personal,
financial, or political consequences.

Recent statistics confirm the scale and urgency of this problem. According to data published by
Eftsure, deepfake fraud attempts surged by 3,000 percent in 2023, revealing a dramatic escalation
in the frequency and sophistication of such attacks [1]. In one of the most striking cases reported,
an employee was tricked into transferring 25 million dollars after being deceived into believing
they were on a video call with their company’s CFO, a call that was, in fact, entirely synthetic.
Furthermore, average losses per incident are now estimated to be close to 480,000 dollars, with
large organizations reporting even greater damage, sometimes exceeding 680,000 dollars. These
figures highlight how the financial and operational risks associated with deepfakes are no longer
hypothetical, but increasingly tangible and systemic.

Despite the growing awareness of the dangers posed by deepfakes, regulatory frameworks
remain largely inadequate. Neither Italian law nor broader international legal systems, including
those of the United States or China, have yet formulated a comprehensive and enforceable strategy
to address the creation, dissemination, and accountability of deepfake content. Existing legal
instruments are often limited by ambiguities in the definition of synthetic media, inconsistencies
in criminalization criteria, and jurisdictional fragmentation. While some legislative initiatives
aim to introduce transparency requirements or mandatory content labeling, they often include
broad exceptions for artistic, journalistic, or satirical content, which can be exploited to bypass
regulatory controls.

Equally urgent is the issue of accountability. In today’s digital ecosystem, responsibility for
the circulation of manipulated content is frequently placed solely on the content creator, thereby
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Introduction

overlooking the critical role played by digital platforms. As primary gatekeepers of online in-
formation, these platforms must be involved not only in the detection and removal of deepfakes
but also in implementing mechanisms that prevent their spread in the first place. This implies
a need to reconsider both their legal obligations and their technical infrastructure, particularly
with respect to content moderation, traceability, and systemic transparency.

The current regulatory and technical gaps underscore the importance of enhancing both de-
tection and authentication frameworks. Although detection techniques, particularly those based
on deep learning and statistical analysis, have achieved remarkable accuracy, sometimes exceed-
ing 99 percent, they remain fundamentally reactive and vulnerable to adversarial evasion. As
generative models continue to improve, detection systems struggle to keep pace. Therefore, it
is essential to complement detection with proactive solutions that can verify the authenticity of
digital content at the moment of its creation or publication. Authentication mechanisms, such
as digital watermarking or cryptographic signatures, can provide verifiable proof that a specific
image or video has not been tampered with, shifting the burden of verification from the end user
to the point of origin.

In light of these considerations, this thesis focuses on the development and implementation of
robust authentication strategies for detecting deepfake images, with the broader aim of contribut-
ing to the ongoing discussion on how to preserve the integrity of digital content and reinforce
accountability across the entire information supply chain.

1.2 Research objectives

This thesis aims to contribute to the ongoing efforts in mitigating the threats posed by deepfake
technologies by addressing a dimension that is still underexplored in comparison to detection:
authentication. While deepfake detection techniques have advanced significantly in recent years,
achieving high accuracy rates through machine learning and computer vision, they are inherently
reactive. These approaches typically analyze already circulating content to assess its authenticity,
leaving a critical gap in the prevention and early verification of manipulated media.

The objective of this research is to propose and develop an effective, lightweight, and verifiable
method for the authentication of visual content, particularly images that may be subject to deep-
fake manipulation. The focus shifts from detecting malicious alterations after their dissemination
to proactively certifying the originality of content at the point of its creation. This preventive
approach is essential to limiting the potential harm caused by synthetic media before it can spread
online and produce damaging effects.

By embedding a fragile watermark that can detect even minimal changes in the image data, the
proposed method seeks to provide a proof-of-integrity mechanism that allows recipients, whether
human or automated systems, to verify whether an image has been modified since it was authen-
ticated. The ultimate goal is to reduce the likelihood that manipulated images will be accepted as
authentic, thereby mitigating the risks associated with their spread, such as reputational damage,
fraud, identity theft, misinformation, and erosion of public trust.

In addition to the technical objectives, the thesis also aims to emphasize the importance of
authentication mechanisms as a structural component of future digital ecosystems. In particular,
it seeks to promote a paradigm in which the responsibility for ensuring content integrity does not
rest solely on post-publication detection but is shared through proactive technical measures and
platform accountability. This perspective is especially relevant in an era where the speed and
scale of content distribution often outpace both legal regulation and manual verification, calling
for embedded safeguards that can accompany media from its origin throughout its lifecycle.

By exploring this authentication-oriented approach to the deepfake challenge, the thesis hopes
to offer a modest yet meaningful contribution to the broader discourse on content reliability,
security, and ethical technology design.
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1.3 Methodology

1.4 Thesis structure

This thesis is structured into six chapters, each of which contributes to the investigation and devel-
opment of an authentication-based approach to mitigate the risks posed by deepfake technologies,
with a specific focus on image manipulation.

Chapter 1 introduces the topic, outlining the motivations behind the study, the main re-
search objectives, the adopted methodology, and the overall structure of the work. It highlights
the increasing sophistication and widespread diffusion of deepfake technologies, the difficulties
faced by users in identifying manipulated content, and the current limitations of both technical
countermeasures and regulatory frameworks. It also emphasizes the importance of shifting the
focus from detection to prevention through authentication.

Chapter 2 provides the technical and legal background essential for understanding the deep-
fake phenomenon. It begins by exploring the evolution of generative artificial intelligence, with
particular attention to models such as GANs, autoencoders, and diffusion models, as well as their
most relevant applications and challenges. The chapter then focuses on deepfakes specifically,
discussing the underlying technologies used to generate synthetic visual content, the main types
of manipulations (face swapping, lip syncing, and puppet master techniques), and the tools that
enable their creation. It also addresses the practical uses of deepfakes and the societal and ethical
concerns they raise. The second part of the chapter provides a comparative overview of current
regulatory approaches to deepfakes at the global level. It examines the emerging yet still insuffi-
cient frameworks in Italy, particularly in relation to the European Union’s AI Act and its current
limitations, the centralized, surveillance-driven strategy adopted by China, and the fragmented,
state-based legislative landscape in the United States. The chapter concludes by reflecting on the
still unresolved issue of accountability, especially regarding the responsibility of online platforms
in the dissemination and amplification of deepfake content.

Chapter 3 presents the current state of the art in the field of deepfake detection and authen-
tication. It begins by analyzing existing detection techniques, including those based on machine
learning, deep learning, and statistical analysis, and evaluates their strengths and vulnerabilities.
The chapter then shifts to authentication strategies, illustrating emerging approaches such as the
use of blockchain for content verification and digital watermarking for integrity assurance. In ad-
dition, it highlights the importance of user awareness as a complementary measure in combating
the spread of manipulated media, stressing the need for effective educational and technological
tools that can support users in identifying and responding to deepfake content. The chapter also
addresses the role of organizations and companies, outlining a set of best practices that can be
adopted to counteract the threat of deepfakes.

Chapter 4 details the design and implementation of the proposed authentication-based so-
lution, structured as a case study. It describes each step of the process, from the selection and
preparation of forensic datasets to the development of a tool capable of verifying the integrity
and authenticity of digital images using cryptographic hashing and blockchain technology. The
chapter includes the simulation of a real-world data leakage scenario, based on a publicly avail-
able dataset from the NIST CFReDS portal, in which a sensitive image is exfiltrated, modified,
and illegally redistributed. This simulation demonstrates how image authentication can support
forensic investigations and protect intellectual property rights by verifying whether a given im-
age has been previously registered and whether it has been tampered with. Furthermore, the
chapter explores and critically discusses the main alternative approaches that could be employed
to address the problem of image authentication and manipulation detection. Several technical
strategies are presented and compared in terms of feasibility, scalability, and forensic soundness.
Based on this analysis, the implemented direction is selected and justified in light of the project’s
goals and constraints.

Chapter 5 presents a discussion of the experimental results obtained during the case study.
It analyzes the effectiveness of the implemented approach in detecting image manipulation and
verifying authenticity, evaluates the accuracy and reliability of hash-based checks in various ma-
nipulation scenarios, and assesses the practical implications of using blockchain as a verification
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tool. In addition, the chapter provides a critical reflection on the limitations of the current
prototype and explores possible improvements, such as enhancing robustness against adversar-
ial modifications or extending the solution to different file types. Potential applications of the
tool in real-world scenarios are also discussed, including its use in digital forensics investigations,
journalistic content verification, and intellectual property protection frameworks.

Chapter 6 concludes the thesis by summarizing the main findings and reflecting on the
broader implications of authentication-based strategies in the fight against deepfake technologies.
It reiterates the importance of shifting from reactive to preventive measures and highlights the
potential of forensic methods, such as those implemented in this work, to support legal investiga-
tions, promote accountability, and enhance user trust in digital media.
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Chapter 2

Technical background and legal
framework

2.1 Generative AI

2.1.1 What is Generative AI

Generative Artificial Intelligence, also known as Generative AI, is a field of artificial intelligence
capable of creating original content in response to the user’s input. The output can be any type of
data, such as text, images, audio, or even software code. What distinguishes it from classical AI
is precisely this ability to generate something new, which in some way mimics human creativity
in an effective manner.

2.1.2 The process

Generative AI essentially follows a structured process made up of three main phases: training,
tuning and ongoing refinement.

The training process

The first step is the training phase, characterized by the creation of a foundational model, a deep
learning model that will serve as the main structure for several applications; Large Language
Models (LLMs) are the most common models used for text generation, but other types of model
exist for other purposes like image, audio, or video generation. The training process requires
feeding the algorithm with vast amounts of raw, unstructured, and unlabeled data, often gathered
from extensive sources such as the internet. During this phase, the model faces several predictive
exercises, consisting of anticipating the next word in a sentence, the subsequent pixel in an image,
or the following command in a line of code. By repeatedly adjusting its internal parameters to
minimize the gap between its predictions and the actual data, the model gradually learns the
underlying patterns and structures within the dataset [2].

The tuning phase

Once the foundation model is established, it often requires further refinement to enhance its
performance in specific applications. The tuning process can be achieved by following the fine
tuning or reinforcement learning with human feedback (RLHF).

Fine tuning involves training the model on labeled data specifically designed for the target
application, ensuring that it can generate accurate and context-appropriate responses. For ex-
ample, when developing a medical diagnosis assistant, the model would be trained using datasets
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Technical background and legal framework

containing patient symptoms, potential diagnoses, and recommended treatments. Although this
method is highly effective, it can be time-consuming and often requires extensive data labeling
efforts carried out by experts in the respective field.

Reinforcement learning with human feedback (RLHF) enhances the performance of
the model through direct user feedback: human assess the output of the model by scoring its
accuracy and relevance and / or providing corrections to improve future responses; the model
then integrates these evaluations and refines its internal parameters, improving overall quality.

Ongoing refinement

The refinement process does not end with tuning: generative AI applications undergo continuous
assessment and improvement with the aim of ensuring their outputs remain accurate and relevant.
To further enhance performance, developers may adopt a technique known as retrieval-augmented
generation (RAG). This method extends the model’s capabilities by allowing it to access external
data sources beyond its original training set. By integrating updated information, RAG ensures
that generative AI applications remain accurate and aligned with current knowledge, while also
enhancing transparency by providing clear references to the supplementary data used.

2.1.3 Generative models

A generative model is a machine learning model designed to produce new, original data that
closely resembles the input data it was trained on. These models are provided with large amounts
of unlabeled data, which they process independently to identify patterns and distributions. This
allows them to develop the internal logic needed to generate new data. During training, the model
uses a loss function to assess the difference between its predictions and real-world outcomes, aiming
to minimize this loss and make the generated outputs as realistic as possible. There are various
types of generative models, each with its own architecture; in this section I will focus on the most
relevant ones.

Autoregressive models

Autoregressive models are a class of machine learning techniques used to predict the next item
in a sequence based on previous items. They analyze the relationships between data points in a
sequence to identify probabilistic correlations, which are then applied to predict the most likely
next component. These models were originally mainly implemented using recurrent neural net-
works (RNNs) but nowadays transformer models have become the standard due to their enhanced
capabilities.

Figure 2.1. Autoregressive Model (fonte: deepgenerativemodels).

The transformer model is a deep learning architecture introduced in the paper “Attention is
All You Need” (Vaswani) in 2017 [3]. The key innovation behind Transformers is the self-attention
mechanism, which allows the model to weigh the importance of different words (or tokens) in a
sequence relative to each other, regardless of their positions. Moreover, another relevant feature
is the parallel processing, which allows them to process all items in a sequence simultaneously,
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improving efficiency. The architecture of transformers consist of two main parts: the encoder and
the decoder. The encored processes the input sequence, it uses multiple layers of self attention
and feedforward neural networks to create a rich representation of the input. The decoder is
used for generating the output; it uses self-attention and feedforward networks and additionally
incorporates attention mechanisms to focus on relevant parts of the encoder’s output.

Diffusion models

Diffusion models work by gradually obfuscating input data through the act of adding noise and
then learning how to gradually reverse the diffusion process to generate new samples [4]. They
operate in 3 main phases: diffusion, learning and reverse diffusion. During diffusion, the model
gradually introduces noise to the input data until it is no longer recognizable. The model adds
a small amount of Gaussian noise to the data at each step in a mathematical process known as
a Markov chain. During the learning phase, the model traces the evolution of the now-destroyed
data to understand how it was altered through the noising process. Finally, the reverse diffusion:
by understanding how noise alters data, the diffusion model learns to reverse the noising process
and reconstruct the input data. The goal is to go backward through the Markov chain, removing
Gaussian noise until only pure data is left. These models are mainly used for image generation
but their applications or use cases are also 3D modeling, anomaly detection or market research
[5].

Figure 2.2. Diffusion Model (fonte: ResearchGate).

Generative adversarial networks (GANs)

Generative Adversarial Networks (GANs) are a class of deep learning models introduced by Ian
Goodfellow and his collaborators in 2014 [6]. GANs consist of two neural networks, a generator
and a discriminator, trained simultaneously in a competitive process with the aim to generate
synthetic data indistinguishable from real data [4]. The generator takes random noise (usually
from a uniform distribution) as input and transforms it into synthetic data with the goal of
creating outputs that resemble the real data distribution. Initially, the generated data may be
noisy or unrealistic, but, through training, the generator improves its output to the point where it
produces highly convincing data. The discriminator has the task to distinguish between real data
(from the training dataset) and fake data (produced by the generator): it assigns a probability to
each input with the goal of classifying the data as real or fake. The training process involves these
two networks competing against each other until the generator produces data that are virtually
indistinguishable from real data, and the discriminator can no longer reliably differentiate between
them.
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Figure 2.3. GAN (fonte: IBM).

2.1.4 Applications and tools

Generative AI has a wide array of applications that span across multiple industries and domains.
This technology is transforming traditional workflows and enabling new capabilities in fields rang-
ing from content creation to scientific research. Below are some of the key areas where generative
AI is making a significant impact, accompanied by the most famous and interesting related tools

Content creation

Generative AI is particularly powerful in generating text, images, video, and audio. In content
creation, AI models, especially transformer-based ones, are capable of writing coherent and con-
textually relevant text; this includes drafting articles, blogs, reports, and even creative writing.
In particular, for content creation, the most famous and used tools are: Jasper [7], which excels in
summarizing articles, writing reports and academic content; ChatGPT [8], focused on customer
support, creative writing and brainstorming but sometimes producing generic responses since it
lacks domain-specific accuracy; Claude [9], a conversational AI that excels in document summa-
rization and knowledge retrieval. In the visual arts, tools like DALL-E [10], Midjourney [11], and
Stable Diffusion [12] generate realistic images or unique art pieces from textual prompts, and can
perform tasks such as image editing and enhancement. Lastly, for music and audio, tools like
Synthesia [13] excels in creating professional-quality video presentations with virtual avatars.

Coding and development

Generative AI models are transforming the software development process by automating the gen-
eration of code. These models can autocomplete code, translate between programming languages,
and even suggest improvements. For developers, this means faster prototyping, efficient debug-
ging, and an overall quicker development cycle. Additionally, AI tools assist in modernizing legacy
applications by automating the repetitive and time-consuming tasks of updating code for hybrid
cloud environments. The most valuable examples that worth to be mentioned are GitHub Copilot
and AlphaCode.

GitHub Copilot enhances developer productivity with real time coding suggestions, it sup-
ports multiple languages but it may generate incorrect or insecure code and requires developer
oversight [14, 15].

AlphaCode is designed for code generation, bug fixing and learning new programming lan-
guages; it automates coding, optimizes solutions and provides debugging support [16].
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Science and engineering

Generative AI is playing an increasingly central role in scientific research and innovation. In the
pharmaceutical field, for example, it is being used to generate molecular structures with specific
desired properties, significantly contributing to drug discovery and the development of innovative
pharmaceutical compounds.

A concrete example is the GENTRL (Generative Tensorial Reinforcement Learning) model,
which is capable of designing molecules that interact precisely with specific biological mechanisms.
This makes it especially useful for developing targeted and personalized treatments, particularly
in the case of complex or rare diseases [17].

Another important area where Gen AI is making a strong impact is synthetic data generation.
This is essential for training and testing AI models, especially when real-world data is limited or
protected by privacy regulations. Technologies such as GANs (Generative Adversarial Networks),
VAEs (Variational Autoencoders), and hybrid models like CorGAN, which combines convolutional
GANs with autoencoders, are being used to generate highly realistic synthetic electronic health
records and medical images, while ensuring compliance with data protection laws [17].

Synthetic data is also proving especially valuable in medical image analysis, where it is used
to improve diagnostic accuracy. For instance, synthetic chest X-ray images generated using latent
diffusion models have been shown to enhance the performance of classification algorithms, offering
practical support for early diagnosis [17].

Anomaly detection and security

Generative AI is also being increasingly applied in cybersecurity for anomaly detection, offering
capabilities that go far beyond traditional rule-based systems. By learning the statistical and
structural characteristics of normal behavior within datasets, such as network traffic, user activity,
or system logs, generative models can identify subtle deviations that might indicate the presence of
a threat. What distinguishes generative models, such as Generative Adversarial Networks (GANs)
or Variational Autoencoders (VAEs), is their capacity to not only detect anomalies but to simulate
them as well. This dual function is especially valuable in threat anticipation and in training more
resilient detection systems. As highlighted in the study by Blake (2024) [18], generative AI
has been effectively used to simulate adversarial attack scenarios in order to stress-test existing
intrusion detection frameworks. For instance, a leading cybersecurity firm implemented GANs to
create a wide range of synthetic evasion attacks, which helped uncover vulnerabilities in their AI-
driven security system. This proactive approach led to a measurable reduction in false negatives
and significantly improved the system’s responsiveness to novel attack vectors. In this context,
generative AI operates not merely as a detection tool but as a strategic component in the broader
lifecycle of cyber defense, enabling systems to adapt to dynamic and previously unseen threat
patterns. Moreover, the synthetic data generated by these models plays a crucial role in enhancing
the training of supervised anomaly detection algorithms. Since real-world malicious data can
be limited, especially for rare or emerging threats, the ability to generate realistic yet diverse
examples of abnormal behavior enriches training datasets and improves model generalization.
This is particularly evident in applications such as phishing detection or fraud prevention, where
generative models can simulate email or transaction patterns that closely resemble genuine attacks.
The study also presents the case of a deepfake phishing campaign powered by GANs, where
attackers generated a highly realistic voice message impersonating a CEO to deceive employees
into transferring funds. While this example highlights the risks associated with generative AI in
the wrong hands, it simultaneously underscores the necessity of deploying such tools defensively,
anticipating the techniques that adversaries are likely to use. In summary, generative AI not only
enhances anomaly detection by identifying deviations from established norms, but also enables
the simulation of realistic threats, allowing security systems to learn and evolve in parallel with
the adversarial landscape.
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2.1.5 Challenges

Generative AI has made significant advancements, offering numerous opportunities across various
domains. However, it also presents several challenges and risks that must be addressed for its
responsible and effective use. Below are some of the main issues and the approaches being explored
to mitigate them [5, 19].

Inconsistent output

Generative AI models often produce variable results even when the same input is provided, which
can be problematic in applications like customer service chatbots where consistency is crucial.
To manage this, users can employ prompt engineering, refining their inputs to achieve more
predictable and desired outputs.

Bias

Generative AI models can inherit biases from the data used to train them, which may include
societal biases from labeled data, external sources, or human feedback. This can lead to the gen-
eration of biased, unfair, or even offensive content. Developers are addressing this issue by using
diverse and representative datasets, setting guidelines to minimize bias during model training,
and continually monitoring the outputs to ensure fairness and accuracy [20].

Lack of explainability

Another challenge is the lack of transparency in many generative AI models, which function as
“black boxes”. This makes it difficult to understand how the models arrive at their decisions.
Even the developers of these models may not fully comprehend the underlying decision-making
process. To overcome this, researchers are working on Explainable AI (XAI) techniques that aim
to improve transparency, allowing users and developers to better understand how the models work
and fostering trust in their outputs [20].

Evaluation difficulties

Assessing the quality of AI-generated content can be complex, as traditional evaluation met-
rics may not fully capture subjective factors like creativity, relevance, or context. As a result,
researchers are focused on developing more robust and nuanced evaluation methods to better
measure the value and quality of generative AI outputs [21].

Model Collapse

Model collapse is an emerging phenomenon affecting generative AI models, particularly large
language models (LLMs), when they are trained increasingly on synthetic data generated by
other models rather than on original, human-created content. This recursive reliance leads to
a progressive degradation of the model’s ability to produce accurate, diverse, and meaningful
outputs. The issue develops in stages. In the early collapse phase, the model begins to lose
representation of rare or low-frequency data, reducing its capacity to generate varied content.
In the late collapse phase, accumulated errors from repeated training on synthetic data cause
the model’s outputs to drift significantly from the This degradation becomes more likely as AI-
generated content becomes more To mitigate model collapse, researchers stress the importance
of maintaining access to human, generated data, verifying data provenance, and using synthetic
data as a complement, rather than a replacement, to real data. These practices help preserve the
integrity and long-term performance of generative AI systems in the face of increasing reliance on
synthetic content. [22]
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Catastrophic forgetting

Catastrophic forgetting, also known as catastrophic interference, refers to the tendency of neural
networks to lose previously acquired knowledge when trained sequentially on new tasks. This
phenomenon arises because, during training, the model’s parameters (weights) are adjusted to
minimize a loss function based on new data. If these adjustments significantly alter parameters
critical to earlier tasks, the model’s performance on those tasks deteriorates. This issue is partic-
ularly pronounced in large models, such as large language models (LLMs), due to their extensive
parameter spaces. The problem stems from the inherent plasticity of neural networks: while they
can adapt to new information, this adaptability can lead to the overwriting of existing knowl-
edge. This mirrors the stability-plasticity dilemma observed in biological systems, where the brain
balances learning new information with retaining existing knowledge. To mitigate catastrophic
forgetting, several strategies have been proposed: regularization techniques (methods like Elas-
tic Weight Consolidation (EWC) add penalties to changes in parameters important for previous
tasks, preserving prior knowledge); rehearsal Methods (these involve interleaving training on new
tasks with examples from previous tasks, ensuring continuous reinforcement of earlier knowledge);
memory-augmented Neural Networks (by incorporating external memory components, MANNs
can store and retrieve information from past tasks, aiding in knowledge retention). Addressing
catastrophic forgetting is crucial for developing AI systems capable of continual learning without
compromising previously acquired skills. [23]

Security, privacy, and intellectual property risks

Generative AI has the potential to be misused in malicious ways, such as creating convincing
phishing emails, fake identities, or other harmful content. These risks pose significant threats to
security and privacy. Developers and users must be cautious when handling input data, ensuring
that the generated content respects intellectual property rights and does not violate the rights of
others [20].

Deepfakes

Deepfakes represent one of the most concerning applications of generative AI. They involve the
creation or manipulation of images, videos, or audio to falsely depict individuals performing or
saying things they never actually did. The consequences of deepfakes can be severe, ranging from
reputational damage to facilitating fraudulent activities. Although detection technologies are
improving, user education on verifying the authenticity of content remains crucial to minimizing
their impact. A more comprehensive discussion on the subject of deepfakes and their broader
implications will be explored in the following chapter.

2.2 Deepfakes

A deepfake is a synthetic media generated through deep learning techniques, particularly using
Generative Adversarial Networks (GANs) or autoencoders, that manipulates or fabricates visual
or audio content to create realistic yet false representations of individuals. The term “deepfake”
originates from the combination of “deep learning” and “fake”, emphasizing its roots in artificial
intelligence. This technology in fact, leverages advanced neural networks trained on large datasets
to analyze and replicate facial features, voice patterns, and behavioral traits [24]. While deepfakes
have legitimate applications in entertainment, education and art, they also pose significant risks
in the context of disinformation, identity theft, and digital impersonation. Due to their potential
to deceive, deepfakes are a growing concern in both legal and cybersecurity domains, prompting
the development of detection methods and regulatory frameworks.
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2.2.1 The technologies behind deepfake

Deepfake technology relies on a combination of advanced artificial intelligence techniques and
computational resources to create synthetic media that can be indistinguishable from real content.
The technologies that form the foundation of deepfake generation are varied and highly specialized,
each playing a crucial role in different stages of the process. Among the key technologies are
Convolutional Neural Networks (CNNs), Autoencoders, Natural Language Processing (NLP),
Generative Adversarial Networks (GANs), and Recurrent Neural Networks (RNNs). These tools
work together to produce highly convincing and sophisticated deepfake content [24].

Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs) is a type of neural network mainly designed to process and
analyze visual data, excelling at image recognition, object detection, and facial feature analysis.
The technology works by processing images through multiple layers of filters to detect increasingly
abstract features like how the subject’s face moves and expresses emotions over time. For instance,
when training a model to generate a deepfake of a particular person, the CNN analyzes thousands
of images to recognize specific features like the shape of the eyes, nose, and mouth, and how these
features change when the person smiles, frowns, or moves their head. By doing so, the system can
accurately map the target subject’s face onto another body or generate realistic facial movements
that match a given video or audio clip.

Figure 2.4. Convolutional Neural Network (fonte: Wikipedia).

Autoencoders

Autoencoder is a type of neural network made up of two main components, an encoder and a
decoder: the encoder compresses the input data into a lower-dimensional space, while the decoder
reconstructs the data from this compact representation. In deepfake generation, autoencoders
are trained to learn the distinctive characteristics of a subject’s face and body, so, once trained,
the system can manipulate these features and apply them to new video frames. This allows
the replacement of a target’s face on another person’s body with minimal distortion, so the
AI can seamlessly transfer facial expressions, lip movements, and other features, making the
deepfake appear more authentic. Essentially, autoencoders help the system “understand” the
essential components of the subject’s facial structure and movement, enabling it to reconstruct
these features in novel contexts.

Natural Language Processing (NLP)

While visual manipulation is the focus of most deepfake technologies, Natural Language Process-
ing (NLP) plays a fundamental role when the content involves audio or speech synthesis. NLP
encompasses a broad spectrum of computational techniques that enable machines to process, in-
terpret, and generate human language in a manner that is both syntactically and semantically
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Figure 2.5. Autoencoder (fonte: Wikipedia).

coherent. In the context of audio deepfakes, these techniques are integrated with speech synthesis
and voice cloning technologies to replicate the linguistic identity of a target individual with high
fidelity.

The process begins with the collection and pre-processing of speech data, during which raw
audio samples are transcribed and cleaned through methods such as tokenization, normalization,
and the removal of noise or irrelevant content. This stage ensures that the textual and phonetic
representations of speech are accurately aligned, forming a structured foundation for further
analysis.

NLP models then perform in-depth linguistic analysis, including phoneme segmentation, part-
of-speech tagging, and prosodic modeling. These operations allow the system to capture not only
the lexical choices and syntactic structures characteristic of the target’s speech, but also their
unique vocal features such as intonation, pitch variation, speech rhythm, and stress patterns.
Advanced embedding techniques, such as contextual word embeddings and acoustic feature en-
codings, are used to map these speech characteristics into high-dimensional vector spaces that
preserve semantic nuance and temporal dependencies.

Once these patterns are learned, often through deep learning architectures like recurrent neural
networks (RNNs), transformers, or generative adversarial networks (GANs) adapted for audio
synthesis, the model becomes capable of generating new audio sequences that mimic the target
speaker. These sequences are not merely replicas of previously recorded phrases; instead, the
system constructs entirely novel sentences, shaped by probabilistic models that predict the most
plausible phonetic and linguistic continuations based on the target’s speaking style.

This process is inherently complex due to the multifaceted nature of human speech, which
includes not only phonetic articulation but also emotional tone, conversational intent, and con-
textual variation. Capturing sarcasm, emphasis, hesitation, or sentiment requires models to go
beyond surface-level replication and engage in deeper semantic understanding, often supported by
natural language understanding (NLU) components within the NLP pipeline. Consequently, the
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success of voice-based deepfakes depends heavily on the accuracy and granularity of NLP-driven
modeling, which seeks to simulate not only how something is said, but also why it is said and
what it conveys in context.

Through these technological advancements, NLP has become a central enabler of realistic audio
deepfakes, pushing the boundaries of synthetic media generation while also raising significant eth-
ical and security concerns related to misinformation, identity theft, and digital impersonation.[25]

Generative Adversarial Networks (GANs)

One of the most innovative and essential technologies behind deepfake systems is the Generative
Adversarial Network (GAN). A GAN consists of two neural networks that work in opposition to
each other: the generator and the discriminator. The generator creates fake content, such as im-
ages, videos, or audio, while the discriminator’s role is to distinguish between real and generated
content. These two networks are trained together in a process of competition, with the generator
trying to improve its ability to create realistic content in order to fool the discriminator, and the
discriminator improving its ability to detect fake content. The generator begins by producing
rough, low-quality content, and the discriminator provides feedback, helping the generator im-
prove. Over time, this iterative process leads to the generation of highly realistic deepfakes, as
both networks continue to improve their performance. GANs are particularly powerful because
they enable the creation of content that is not simply a copy of real-world data but is instead
generated from learned patterns, making the fake content increasingly harder to distinguish from
reality. In deepfake video generation, for example, the GAN allows the system to generate faces
and body movements that appear natural, even though they are entirely synthetic. The constant
interplay between the generator and the discriminator ensures that the output becomes more
refined with each iteration, ultimately producing deepfakes that can be nearly indistinguishable
from genuine media.

Recurrent Neural Networks (RNNs)

In addition to CNNs and GANs, Recurrent Neural Networks (RNNs) are also used in deepfake
creation, particularly for tasks that involve sequences of data. RNNs are well-suited for analyzing
temporal or sequential data, such as speech, video frames, or audio-visual synchronization. In
deepfakes, RNNs are often employed to synchronize lip movements with generated speech or
audio, a task that requires understanding how the movements of the mouth and facial expressions
correspond to the sounds being produced.

Figure 2.6. Recurrent Neural Network (fonte: Wikipedia).

High Performance Computing (HPC)

The creation of deepfakes necessitates substantial computational power due to the complexity of
the underlying machine learning models and the massive volumes of data they must ingest and
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process. Training deep learning models, particularly for high-resolution video and audio synthesis,
involves intensive numerical computation and repeated iterations over extensive datasets. In
this context, High Performance Computing (HPC) plays a critical role by enabling the parallel
processing of tasks across multiple cores or nodes, significantly reducing the time required for
training and inference.

HPC systems differ from traditional computing architectures in that they rely on parallel
computing, where tasks are distributed and executed concurrently across a large number of pro-
cessors or specialized hardware components, such as Graphics Processing Units (GPUs). These
GPUs are especially well-suited for the linear algebra operations and matrix transformations that
characterize deep learning workloads. Modern HPC clusters often consist of tens of thousands
of interconnected nodes, each equipped with high-performance CPUs or GPUs, and optimized
through fast, low-latency interconnects, high-throughput storage systems, and centralized sched-
ulers to manage computational resources efficiently.

Given the scale and speed demanded by deepfake generation, many organizations leverage
HPC resources through cloud computing platforms, a model often referred to as HPC-as-a-Service
(HPCaaS). This approach provides scalable, on-demand access to advanced computing infrastruc-
tures, reducing the need for substantial upfront investment in physical hardware. The widespread
availability of cloud-based HPC resources allows researchers and developers to experiment with
increasingly complex generative architectures, such as Generative Adversarial Networks (GANs)
and Transformer-based models, at a previously unattainable scale.

Furthermore, the convergence of deep learning and HPC technologies is facilitated by the de-
ployment of Remote Direct Memory Access (RDMA) networks, which enable rapid, low-latency
communication between nodes without burdening their operating systems. This capability is es-
sential for maintaining efficiency in distributed training processes, particularly when large models
must be synchronized across multiple compute nodes.

In this computational ecosystem, deepfake technology benefits from a combination of algorith-
mic sophistication and high-performance infrastructure. Convolutional Neural Networks (CNNs)
enable fine-grained visual analysis, autoencoders manipulate latent feature spaces, Natural Lan-
guage Processing (NLP) techniques contribute to voice synthesis, Generative Adversarial Networks
(GANs) create photorealistic content, and Recurrent Neural Networks (RNNs) manage temporal
alignment. All these components are accelerated and made feasible through the application of
HPC, which provides the computational foundation necessary to generate synthetic media with a
high degree of realism and coherence. [26]

2.2.2 Typologies of deepfakes

The landscape of deepfake technology is continuously evolving, giving rise to various forms of
synthetic media manipulation, the most relevant forms are reported below [27].

Face swapping

Face swapping is one of the most representative and technically advanced applications of deepfake
technology. It involves replacing the face of a person in an image or video with that of another
individual, while preserving essential attributes such as facial expression, pose, lighting, and back-
ground. This process relies on deep learning techniques, particularly autoencoders and generative
adversarial networks (GANs), and requires not only a well-trained model but also accurate pre-
and post-processing stages to ensure that the result appears perceptually realistic [28]. The archi-
tecture of a typical face swapping system is usually divided into three main components: identity
extraction, attribute extraction, and image generation [28].

Identity extraction focuses on capturing the facial features of the source person, while attribute
extraction retrieves contextual information such as pose, gaze, expression, and background from
the target image. These two inputs are then fused by the generator, which produces a new
synthetic face that integrates the identity of the source with the contextual features of the target
[28].
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Two main approaches can be adopted in face swapping: source-based and target-based. The
source-based approach edits the source image by incorporating the visual attributes extracted
from the target, while the target-based method overlays the identity features from the source im-
age into the structural context of the target. Although both approaches can achieve high-quality
results, the target-based method is generally favored in recent research and practical implemen-
tations. This preference is primarily due to its greater robustness and generalizability. Unlike
the source-based approach, which provides limited control over the surrounding environment and
may introduce inconsistencies in background or lighting, the target-based approach ensures that
the final output maintains the original environmental coherence of the target image. As a result,
it yields more convincing and universally applicable face swaps, making it the preferred strategy
in the development of identity conversion pipelines [28].

Among the first widely known tools were FaceSwap and DeepFaceLab, both relying on
autoencoders and designed to work in a one-to-one setting. This means they must be trained
from scratch for every new pair of identities, which makes them less scalable. [29]

More recent systems, such as FaceShifter, SimSwap, HiFiFace, and DiffFace, are instead based
on many-to-many architectures, capable of working with multiple unseen faces. FaceShifter,
for example, uses two networks - AEI-Net and HEAR-Net - to deal with occlusions and increase
fidelity by separating identity and attribute embeddings through adaptive normalization layers.
SimSwap simplifies the pipeline with a single model and introduces identity embeddings via the
pre-trained ArcFace network. HiFiFace enhances realism by incorporating 3D morphable models
(3DMMs) to reconstruct facial geometry and improve identity preservation. The latest generation,
DiffFace, relies on diffusion models to generate exceptionally realistic results, although the trade-
off is slower execution time [30].

Lip-syncing

Lip syncing has emerged as one of the most critical components in the field of synthetic video gen-
eration, playing a vital role in producing realistic, high-quality media content. As the demand for
personalized and dynamically generated content increases, particularly in sectors like education,
corporate communication, and advertising, the synchronization between audio and visual facial
expressions becomes indispensable. The fundamental goal of lip syncing is to align the movement
of lips in a video with the accompanying audio in a way that appears both seamless and natural.
As Kadam et al. (2021) [31] observe, “approximately, 1 second out of sync lip movement is identi-
fied by the viewers”, which underlines how sensitive human perception is to misalignment between
speech and facial movements. This level of perceptiveness necessitates highly accurate synchro-
nization techniques in order to maintain the illusion of authenticity. Traditionally, lip syncing
methods can be categorized as either constrained or unconstrained. Constrained methods, such
as those used in the Obama synthesis model, require large datasets of a specific individual (e.g.
Barack Obama), meaning the system is tailored to one speaker and performs poorly with novel
identities or languages [31]. While these methods are capable of generating highly realistic out-
puts, they are inherently limited in flexibility. In contrast, unconstrained methods like LipGAN
and Wav2Lip are designed to work on “generic videos and audio” making them far more adaptable
in real-world applications [31]. Among these, Wav2Lip stands out due to its use of a 91 percent
accurate discriminator, significantly outperforming prior models in terms of lip-sync accuracy on
in-the-wild datasets such as LRS2. This method utilizes a modified SyncNet architecture, which
aligns the generated lip movement more closely with audio input, ensuring fluidity and realism
[31].

Puppet-master

One of the most accessible and increasingly popular forms of deepfake generation is the puppet-
master technique, a method that allows the animation of a static image by transferring motion
from a source video. In essence, this approach makes it possible to make someone appear to
speak or move, even if only a single frontal image of them is available. As described by Pantelic
and Gavrovska (2022) [32], “puppet-master deepfake creation is one of the modest and popular
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methods for making a deepfake”, highlighting both its simplicity and its widespread use. This
technique is made possible by tools like the First Order Motion Model, a neural network that
encodes and transfers motion using dynamic keypoints, building upon earlier architectures such as
Monkey-Net. The model generates motion by identifying and tracking critical facial features in the
source video, which are then mapped onto the target image through local affine transformations.
These transformations allow for relatively smooth and believable movements of the eyes, mouth,
and head, even if the subject never actually performed them. A key strength of the puppet-
master approach is its efficiency and adaptability. According to the authors, the model is capable
of synthesizing motion in a way that maintains the structural coherence of the target face, while
incorporating features like occlusion maps to handle areas of the face that become hidden or
partially visible during movement. These improvements significantly enhance the visual realism of
the generated video, particularly in cases involving blinking, head tilts, or natural lip movements.
However, despite these technical achievements, the method is not without its flaws. The generated
outputs can still exhibit visible artefacts, especially under fast motion or with significant head
rotations. Interestingly, the presence of these artefacts can serve as an indicator that the video is
synthetic, offering at least a partial safeguard against deception, “artefacts are observable... this
is also a positive information since we can still believe that we can distinguish true or false video
story” [32].

2.2.3 Main tools for deepfake generation

The rapid evolution of deep learning and computer vision techniques has led to the development
of various tools capable of generating highly realistic manipulated media known as deepfakes.
These tools, largely based on Generative Adversarial Networks (GANs), allow for seamless facial
manipulation, attribute alteration, and even full face synthesis in both images and videos. This
section reviews the most widely used tools for deepfake generation, focusing on their underlying
models, strengths, weaknesses, and areas of application.

A wide range of tools has emerged to facilitate the creation of deepfakes. These tools vary in
complexity, quality, speed, and usability. The table below presents a summary of the main tools
currently used in the field, along with key evaluation metrics such as accuracy, processing speed,
usability, security, and availability. [33] StyleGAN, developed by NVIDIA, has been one of the

Table 2.1. Comparison of Deepfake Generation Tools

Tool Model Focus Area Accuracy Speed Usability Availability
FaceSwap-GAN HEAR-Net + AEINet Face swapping and reenactment Moderate Slow Moderate Open source
SimSwap Encoder–Decoder + GAN Face swapping in images and video High Fast Moderate Paid
FewShot FT GAN Few-shot GAN Attribute manipulation from few samples High Moderate Moderate Paid
FaceShifter HEAR-Net Two-stage high-accuracy face swap High Fast Low Paid
DiscoFaceGAN Disentangled StyleGAN Controlled face generation High Slow Low Open source
FaceApp Proprietary Basic facial transformations Low Fast High Paid
StarGAN StarGAN Attribute transfer across domains Moderate Slow Low Open source
StarGAN-v2 StarGAN-v2 Improved multi-domain attribute editing High Slow Low Open source
ATTGAN Attribute GAN Facial attribute manipulation High Moderate Moderate Open source
StyleGAN/2/3 Style-based GANs High-res image synthesis High Slow Low Open source
CycleGAN CycleGAN Unpaired image-to-image translation High Fast Low Open source

most influential tools for generating synthetic human faces. With StyleGAN2 and StyleGAN3,
improvements were introduced in terms of resolution, style control, and temporal consistency,
particularly useful for video deepfakes. These tools allow fine-grained control over image features
such as age, expression, and lighting. Limitations: High computational cost and vulnerability in
low-data regions of latent space.

StarGAN is a multi-domain image-to-image translation tool, capable of transferring various
facial attributes (e.g., age, emotion, gender) using a single model. StarGAN-v2 enhances the
scalability and quality of generated images. Use case: Attribute-based facial transformation
across different domains.

SimSwap excels in face swapping in images and videos using a lightweight architecture.
FaceShifter adopts a two-stage process to ensure high-quality synthesis and occlusion awareness.
Strengths: High accuracy and speed, making them suitable for real-time or near-real-time appli-
cations.
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Unlike traditional GANs, CycleGAN does not require paired training data. It is highly
effective for domain translation tasks, such as converting facial expressions or transferring artistic
styles. Advantage: Versatility and reduced data constraints.

ATTGAN introduces attribute-specific control using classification constraints, ensuring that
only desired features are modified while maintaining identity and realism. Use case: Emotion or
feature editing in faces (e.g., adding/removing glasses, changing age).

2.2.4 Applications of deepfake

The applications of deepfake technology are highly diverse, spanning both beneficial and harmful
uses across multiple domains.

Entertainment and media production

Deepfake technology has revolutionized filmmaking and video game development by enabling voice
cloning and digital character manipulation: deepfakes facilitate post-production editing, allowing
actors’ voices and appearances to be seamlessly altered even when they are no longer available
for reshoots.

The entertainment industry also leverages deepfakes for satire and parody, where audiences
recognize the synthetic nature of the content and appreciate the humorous effect it produces. A
striking example of this is the 2023 deepfake depicting Dwayne “The Rock” Johnson as Dora
the Explorer, demonstrating the potential for lighthearted and imaginative reinterpretations of
popular figures.

Customer experience

Deepfake technology plays an increasing role in customer service and hyper-personalization: AI-
generated voices are integrated into caller response services, automating interactions in sectors
such as customer support and telecommunication. Deepfake-based virtual assistants provide per-
sonalized responses to routine inquiries, such as checking an account balance or scheduling an
appointment. Beyond automation, this technology enhances brand inclusivity by adapting digital
content to reflect diverse demographics, tailoring representations of ethnicity and skin tone to
resonate with different audiences.

Education

Educational platforms have also begun to incorporate deepfake-driven AI tutors, offering interac-
tive and adaptive learning experiences. Advanced AI assistants, such as Claude from Anthropic,
demonstrate the potential for deepfake technology to clarify complex concepts, identify knowledge
gaps, and personalize instruction for students.

2.2.5 Challenges

Despite these promising applications, deepfakes also present significant ethical and security con-
cerns. The most relevant ones are reported below.

Reputational demage

A major area of misuse involves blackmail and reputational damage, where manipulated images
or videos depict individuals in compromising situations, such as engaging in illegal activities,
spreading false statements, or participating in explicit content without consent. One of the most
pervasive and harmful manifestations of this is nonconsensual deepfake pornography, commonly
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used for revenge, harassment, or cyberbullying. A high-profile example occurred in 2019, when
deepfake technology was used to superimpose the face of actress Scarlett Johansson onto explicit
videos without her consent, sparking widespread discussions on the ethical implications and the
urgent need for legal frameworks to combat such abuses [34].

Political manipulation

Another alarming application of deepfakes is in misinformation and political manipulation, where
altered videos are used to distort public perception or influence elections. A striking example is
the deepfake of Ukrainian President Zelenskyy, which falsely portrayed him issuing a statement
of surrender during wartime, illustrating the potential of this technology to create confusion and
disrupt geopolitical stability [35]. Similarly, in the 2020 U.S. presidential election, concerns arose
over the possible use of deepfake technology to spread disinformation about candidates, further
highlighting its potential to erode democratic processes. In an era where digital content can
shape political narratives, the ability to fabricate convincing yet entirely false videos raises urgent
questions about media credibility. The risk extends beyond political figures to the erosion of
public trust in recorded evidence. A society where any video can be dismissed as a deepfake, a
phenomenon known as the “liar’s dividend”, could lead to widespread skepticism and an overall
decline in factual discourse.

Identity theft

Deepfake technology raises serious concerns regarding identity theft. AI-generated content blurs
the lines between digital replication and personal identity, creating legal ambiguities over owner-
ship and rights of use. Legal frameworks have struggled to keep pace with AI-generated content,
leaving gaps in regulation that enable bad actors to exploit deepfake technology for fraudulent
activities. For instance, AI-generated voices of deceased celebrities have been used in unautho-
rized media, raising ethical questions about posthumous rights and consent. As digital forgeries
become more sophisticated, lawmakers must consider how to protect individuals from the misuse
of their identities in the digital realm.

Privacy and intellectual property concerns

Alongside identity theft, deepfake technology also raises significant concerns about privacy and
intellectual property rights. Actors, musicians, and public figures have increasingly faced unautho-
rized digital reproductions of their likenesses, leading to debates on whether deepfake-generated
representations should be legally classified as a form of identity theft or a copyright violation.
In 2023, Tom Hanks publicly warned audiences about the unauthorized use of his deepfake like-
ness in an advertisement, reinforcing the growing need for intellectual property protections in the
AI era. These cases highlight the challenges in determining ownership and the rights of use for
AI-generated content, emphasizing the urgent need to adapt intellectual property laws to this
evolving technological landscape.

Fraud and cybersecurity threats

As deepfake technology continues to advance, its implications extend to future cybersecurity
threats, including AI-generated text messages that mimic an individual’s writing style to deceive
recipients. Reports such as the U.S. Department of Homeland Security’s Increasing Threat of
Deepfake Identities highlight the potential for malicious actors to leverage AI-driven text repli-
cation for social engineering attacks [36]. The intersection of deepfake fraud and cybersecurity is
particularly concerning in financial crimes, where AI-generated synthetic identities can be used
to bypass authentication mechanisms. Fraudulent deepfake videos have been utilized in remote
identity verification processes, raising significant security challenges for financial institutions and
regulatory bodies. Moreover, by convincingly imitating an individual’s voice or likeness, cyber-
criminals can deceive financial institutions into granting unauthorized access to sensitive infor-
mation. In one of the most notorious cases, a cybercriminal used AI-generated voice cloning to

27



Technical background and legal framework

impersonate the CEO of a UK-based energy firm, successfully instructing a subsidiary to transfer
220,000 euros to an external account [37]. With the increasing sophistication of deepfakes, bal-
ancing their potential for innovation with the urgent need for robust detection mechanisms and
regulatory oversight remains a critical challenge in the digital age.

2.2.6 Are deepfakes illegal?

The current regulation regarding deepfakes is still far from being competitive and comprehensive in
today’s context. At the European (and also Italian) level, there is yet no specific legislation focused
on regulating and limiting the use of deepfake technologies, nor on penalizing the creation or use
of deepfake content. In the United States, the situation is quite different, though not necessarily
better, mainly due to the significant fragmentation between states. Finally, it is interesting to
analyze China’s position on deepfakes. All three of these points are discussed in detail in the
following section.

2.3 Legal framework

2.3.1 European scenario

AI Act

Currently, the only explicit reference to deepfakes within legislation is found in the Artificial In-
telligence Act (AIA) [38]. This regulation focuses on the use of AI systems, categorizing them into
three main groups: prohibited technologies, high-risk technologies, and limited-risk technologies.
Deepfakes are not formally included in any of these categories but are addressed separately in
Article 50. Here, deepfakes are described as audio, video, or image content generated or modified
by AI that mimics real people, places, objects, or events, potentially misleading the observer.
The AIA stipulates that deployers must clearly indicate that such content has been created or
altered artificially by labeling it visibly. However, the transparency obligation does not apply if
the content falls within clearly creative, satirical, artistic, or fictional works, provided that third-
party rights are protected. In these cases, it is sufficient to signal the existence of manipulated
content without compromising the enjoyment of the work. Another exception concerns the use
of deepfakes authorized by law for crime prevention or prosecution purposes. Additionally, if
AI-generated content is published to inform the public on matters of public interest, the disclo-
sure requirement may be waived if there has been editorial review and clear accountability by a
physical or legal entity.

In summary, the AI Act takes a rather permissive stance on the use of deepfakes: it imposes an
obligation for deployers to label them but includes numerous exceptions, which could leave room
for improper use of the technology, without clear rules or adequate consequences. According
to many experts, it would be advisable to extend the labeling requirement to providers and
reconsider the current exceptions. Looking ahead, it may be necessary to introduce specific
legislation designed to regulate the use of deepfakes [39].

A critical reflection on the impact of ambiguity in the AI Act

One of the most frequently raised concerns about the Artificial Intelligence Act (AIA) is the
significant level of regulatory ambiguity that permeates the text. As extensively analyzed by
Vainionpaa et al. (2023), this ambiguity manifests in several ways. First, there is a lack of clarity
in the definitions of essential concepts such as “AI system”, “user”, “provider”, “manipulation”,
and even “fundamental rights” or “non-discrimination”. This vagueness results in legal uncer-
tainty, as stakeholders may interpret the same provision differently depending on their context
and interests. Moreover, the broad and overly inclusive scope of the AIA makes it difficult to
determine which technologies are truly covered, especially when AI is defined so broadly that it
risks encompassing even ordinary data processing systems. The authors also highlight how the
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lack of precise thresholds for classifying systems as high-risk or unacceptable adds another layer
of confusion, making enforcement inconsistent and potentially arbitrary. The ambiguity in the
risk classification mechanism is particularly problematic.

Vainionpaa et al. stress [40] that the current approach fails to differentiate between varying
degrees of harm within the high-risk category, and that certain AI applications, such as those with
societal or psychological impact, may be excluded from regulation simply because they do not
cause “ physical” harm. This leaves serious gaps in the regulation’s ability to address intangible
but very real risks, including those posed by synthetic media like deepfakes. Additionally, the
absence of harmonized standards for technical compliance and risk assessment is flagged as a
critical enforcement issue. Without concrete operational criteria, providers are left to self-assess
compliance, which, as the authors argue, creates a regulatory environment that is both difficult
to monitor and easy to manipulate. This self-regulation model is especially vulnerable to abuse
in contexts where commercial or political incentives may encourage non-transparent uses of AI.

In my view, this ambiguity represents a serious obstacle to the effectiveness of the AI Act.
While some level of flexibility might be necessary in horizontal legislation that covers a wide range
of technologies and sectors, the current vagueness risks undermining the regulation’s practical en-
forceability. Organizations may struggle to assess their compliance obligations, especially in the
absence of standardized criteria or technical guidance. As a result, compliance efforts might be-
come inconsistent, fragmented, or purely formalistic, more focused on ticking boxes than ensuring
genuine accountability. Even more concerning is the possibility that ambiguity may be exploited.
The Act’s reliance on self-assessment mechanisms, without sufficient external oversight, opens
the door to strategic interpretations that could justify non-compliance or allow actors to avoid
responsibility. For instance, harmful deepfakes could be framed as artistic or satirical content
simply to fall under one of the Act’s exceptions. I believe that such loopholes are particularly
dangerous in fast-evolving fields like generative AI, where harms can occur rapidly and at scale.
Furthermore, Vainionpaa et al. (2023) [40] emphasize that the lack of guidance on enforcement
responsibilities, particularly regarding which authorities are responsible, how compliance should
be audited, and what happens in the case of cross-border violations, raises serious doubts about
the regulation’s institutional capacity to deliver its objectives. This ambiguity risks fostering a
patchwork of national interpretations and enforcement efforts, which would weaken the overall
harmonizing purpose of the regulation.

According to my view, the AI Act should have taken a firmer stance on these issues by
clarifying core definitions and strengthening enforcement mechanisms. If left unresolved, this
ambiguity may seriously limit the AI Act’s ability to protect fundamental rights and uphold
transparency, especially in high-risk scenarios involving synthetic media and manipulative AI.
Without clear, enforceable norms, there is a real danger that the regulation may fall short of its
ambitious objectives.

Panel for the Future of Science and Technology (STOA)

As early as 2021, the need to update the AI Act to better regulate the deepfake phenomenon
emerged. That year, the Panel for the Future of Science and Technology (STOA) presented a
report to the European Parliament titled “Tackling Deepfake in European Policy” [41], which
included some specific recommendations. Among these, it is proposed to clarify when deepfakes
may fall under the prohibited or high-risk practices of the AI Act, considering the possibility of
classifying them as high-risk systems or introducing targeted bans for particularly dangerous uses,
such as non-consensual pornography or political disinformation. Regarding the labeling obligation
for content under the AI Act, STOA suggests extending this requirement to providers, highlighting
the risks associated with overly broad exceptions, such as those provided for crime prevention,
artistic or scientific purposes, or freedom of expression. Additionally, it recommends limiting
the distribution of deepfake detection technologies to prevent them from being circumvented,
while not restricting access to too few entities. Finally, the report emphasizes the importance of
investing in defensive technologies and raising public awareness on the issue.
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The new Italian DDL - Reato di deepfake

On April 23, 2024, the Government approved a bill introducing Article 612-quater to the Penal
Code, focusing on the new crime of deepfake, defined as the illicit dissemination of content that
has been altered or created through artificial intelligence technologies. This offense carries prison
sentences ranging from one to five years and is constituted when falsified content, such as images,
videos, or sounds, is disseminated involving people, objects, or voices. The falsity may involve
the entire content or just part of it. In any case, the content must have been generated or
manipulated using Artificial Intelligence and must deceive the observer, making them believe it
is authentic or comes from a legitimate source. Additionally, the content must cause unjustifiable
harm to an individual or group. In general, the crime can only be prosecuted if the victim files a
complaint, although there are exceptions. In some cases, prosecution can proceed ex officio, such
as when the offense is related to another crime requiring official intervention, when the victim is
incapable due to age or infirmity, or when the crime is committed against a public authority in the
course of their functions. To prevent AI-generated content from being confused with authentic
content, the bill establishes the obligation to mark such materials with a distinguishing sign.
This requirement applies not only to content fully generated by Artificial Intelligence but also
to content that has been partially modified or altered. For example, a watermark or mark, such
as the acronym “AI”, is required for images or videos, or an audio warning for sound content.
However, this rule does not apply to content with a clear creative, artistic, or satirical nature,
such as material intended for entertainment or fiction, unless it violates the rights or freedoms of
others. Specific procedures for implementing these provisions will be defined through a regulation
issued by AGCOM. Additionally, digital platform providers must equip themselves with tools that
allow users to declare if uploaded video content has been generated, altered, or modified using
Artificial Intelligence. [42, 43, 44]

2.3.2 USA scenario

The U.S. scenario regarding the regulation of artificial intelligence (and in particular deepfakes)
differs significantly from the European or Chinese approaches (see next section), mainly due to
the fact that in the United States, there is no binding federal legislation (hard law) on this matter,
but only some proposed bills in Congress. As a result, individual states have stepped in separately
to regulate the use of emerging technologies such as deepfakes, focusing particularly on specific
areas like political interference or non-consensual pornography.

Main legislative proposals

The Deepfakes Accountability Act was proposed in September 2023 in the House of Rep-
resentatives with the goal of protecting national security and safeguarding victims of deepfakes.
This proposal requires that deepfake creators clearly identify manipulated content, for example,
by using technologies to trace the origin of the content and adding alerts indicating the altered
nature of the materials (audio/video). Violations could lead to imprisonment, with a sentence of
up to five years for deepfakes that cause harassment, fraud, or interfere with official proceedings.
Additionally, the proposal includes the creation of a task force within the Department of Home-
land Security to manage these issues and obligations for deepfake technology developers [45]. The
DEFIANCE Act (introduced in 2024) aims to protect victims of non-consensual sexual deep-
fakes, extending existing protection for the distribution of intimate images without the consent of
the person depicted. This bill acknowledges the severity of violations related to non-consensual
pornography and proposes measures to ensure justice for the victims [46].

State-Level regulatory actions

At the state level, several states have already introduced regulations to govern the use of deepfakes.
These interventions mainly focus on two areas: pornographic deepfakes and political deepfakes.

California was one of the first states to regulate political deepfakes. In 2019, a law was passed
that banned the distribution of misleading content within sixty days of an election if the content
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was created with the intent to harm a candidate or deceive voters. However, this law was repealed
in 2023. California also introduced a law on pornographic deepfakes, allowing victims to take legal
action against those who distribute non-consensual sexual content. Exceptions are limited, for
example, when the content has journalistic or educational value.

Texas introduced a law banning the distribution of political deepfakes within thirty days of
elections if the content is intended to influence the electoral debate.

In Mississippi, a specific crime was introduced for the distribution of “digitization” (a term
used for deepfakes) within ninety days of elections, if the content is distributed without the consent
of the person depicted and with the intent to influence the electoral outcome.

New Mexico passed a law similar to the Deepfakes Accountability Act, which requires labeling
content as deepfakes and penalizes those who distribute misleading content.

Virginia passed a law that punishes the distribution of pornographic deepfakes, especially in
the context of revenge porn, when such content is created and distributed to cause psychological
and reputational harm.

Florida expanded its non-consensual pornography legislation to include deepfakes. Criminal
penalties apply to those promoting deepfakes, although the effectiveness of the exceptions provided
is unclear, as they are mainly related to content with journalistic or educational value.

In summary, the regulation of deepfakes in the United States is still limited, with a focus
primarily on specific areas such as non-consensual pornography and electoral interference [39, 47].

Critical reflection on US fragmentation

The fragmented and inconsistent regulatory approach to deepfakes in the United States, resulting
from the absence of a cohesive federal framework, poses significant challenges to the effectiveness
of legal responses to the risks posed by synthetic media. As Chesney and Citron [48] argue in their
seminal work, Deep Fakes: A Looming Challenge for Privacy, Democracy, and National Security,
the “patchwork” of state laws governing deepfake technology creates substantial legal ambiguity.
This fragmentation complicates the ability of creators, platforms, and enforcement bodies to
navigate the ever-evolving legal landscape, leaving key questions of permissibility unresolved across
different jurisdictions. As the authors point out, the lack of a uniform approach means that the
legality of creating, sharing, or using deepfake media may differ drastically from one state to
another, creating significant uncertainties for both producers and consumers of such content [48].

This regulatory uncertainty not only undermines the deterrent effect of law but also stifles
innovation and the responsible development of new technologies. When legal standards are am-
biguous or inconsistent, companies operating in the synthetic media space may struggle to ensure
that their technologies comply with every jurisdiction’s requirements. This not only results in
heightened compliance costs but also creates a climate of hesitation. As observed in the cited
article, the patchwork of state laws exacerbates the compliance burdens for companies that op-
erate across state lines, forcing them to navigate a labyrinth of conflicting obligations related to
consent, labeling, and liability [48]. In this regard, the legal uncertainty serves as a disincentive for
technology developers to implement more robust measures that could mitigate the risks associated
with deepfake content, such as improved detection mechanisms or better consent protocols.

Moreover, the lack of a centralized regulatory framework facilitates what the authors describe
as “forum shopping”, whereby malicious actors intentionally seek out states with more lenient
or non-existent regulations in order to evade accountability. I believe that this exacerbates the
problem, as it allows bad actors to exploit jurisdictional weaknesses to distribute harmful deepfake
content with relative impunity. For example, individuals creating malicious deepfakes with the
intent to deceive or harm can easily avoid legal repercussions by operating in jurisdictions that
have no laws specifically targeting this type of content. This regulatory inconsistency significantly
undermines the deterrent effect of the law, as perpetrators may calculate the risks of prosecution
as minimal, thus undermining the purpose of legal regulation. Chesney and Citron’s analysis also
highlights the broader implications of regulatory fragmentation on key societal interests, such
as individual privacy, democratic integrity, and national security. The authors argue that the
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proliferation of deepfakes poses a significant threat to democratic processes, particularly in the
context of electoral manipulation, where synthetic media could be used to create fake videos of
politicians making controversial statements or engaging in inappropriate behavior [48].

From my perspective, this issue is not only a legal one but also a deeply political challenge. If
the legal system is unable to regulate deepfake technology effectively, the potential for electoral
interference, disinformation campaigns, and public manipulation is heightened. Deepfakes can be
used to disrupt public trust in institutions and erode the foundations of democratic discourse. In
this context, a cohesive federal strategy is essential, not only to address legal gaps but to safeguard
the integrity of democratic processes and the public’s confidence in the information they consume.

Furthermore, the lack of standardized legal protections exacerbates vulnerabilities related to
privacy violations, particularly with regard to non-consensual deepfake pornography. Chesney
and Citron emphasize that the ease with which such content can be produced and distributed
without the consent of the individuals depicted in the media undermines personal privacy and
can cause severe harm to the victims, especially women [48]. I strongly agree with their assertion
that the absence of a national legal framework creates a legal gray area, where victims may find
themselves without adequate recourse in states where laws addressing non-consensual synthetic
media are either underdeveloped or nonexistent. As deepfake technology becomes more advanced
and accessible, I believe it is critical that the U.S. adopt a unified legal framework that ensures
robust privacy protections for all individuals, regardless of their state of residence.

I strongly believe that only a harmonized federal approach can effectively address the risks
posed by deepfakes and other synthetic media technologies. A comprehensive federal framework
would provide a clear and consistent set of rules that both protect individuals from harm and
enable technological innovation to thrive within a stable legal environment. Without such a
framework, the legal system risks falling behind the rapidly advancing capabilities of generative
technologies, potentially allowing the continued spread of harmful deepfake content and further
complicating the enforcement of laws designed to protect privacy and public trust

2.3.3 China

The Chinese government has developed a strategy to control the use of emerging technologies,
including artificial intelligence and deep synthesis technologies such as deepfakes. This strategy is
part of the concept of “cyber sovereignty”, which involves state control over cyberspace to protect
national security, social order, and the country’s values. Below, I will examine the main Chinese
regulations related to deepfakes, analyzing the evolution of regulation and the implications of
these laws.

The Beginning of Regulation: The ZAO Case and 2019

The phenomenon of deepfakes emerged in China as a growing concern in 2019, particularly due
to the popularity of apps like ZAO, which allowed users to create manipulated content, especially
through “face-swapping” technology. The increasing spread of these technologies and issues re-
lated to data collection prompted Chinese authorities to take action. Just three months after
the launch of ZAO, the Cyberspace Administration of China (CAC) began discussing the need to
regulate the use of these technologies, which could potentially pose risks to national security and
public order [39].

The “Regulations on the Administration of Online Audio and Video Information
Services” (2020)

In 2020, China adopted the “Regulations on the Administration of Online Audio and Video Infor-
mation Services”, a set of regulations aimed at controlling the use of deep synthesis technologies
for creating audio and video content. These regulations impose strict restrictions on the use of
images, audio, and video generated through deepfake technologies, prohibiting the creation and
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dissemination of false news. Online platforms are required to monitor and control content, ensur-
ing user identity and preventing the distribution of material that could threaten national security
or disrupt social order [39].

The Regulations on Deep Synthesis Management of Internet Information Service
(2022)

In 2022, China introduced a new set of regulations, the “Regulations on Deep Synthesis Man-
agement of Internet Information Services”. These laws aim to more specifically regulate the use
of deep synthesis technologies, including deepfakes. The goal is to protect “fundamental socialist
values”, ensure national security, and safeguard the rights of citizens. While not entirely banning
the creation of deepfakes, these regulations state that content created with these technologies
must not violate Chinese laws, harm China’s image, or damage the economic and social order.
Platforms are required to properly label content and obtain consent from the individuals involved,
such as when faces or voices are altered [39].

Labelling (2025)

On March 7, 2025, the Cyberspace Administration of China (CAC), along with other Chinese
authorities, introduced the “Measures for the Labeling of AI-Generated Content” (AIGC), which
will come into effect on September 1, 2025. These regulations require all online service providers
to clearly label AI-generated content, such as text, images, audio, video, and virtual content, to
avoid confusion or disinformation. The labels must be both explicit and implicit. Explicit labels
must be visible to users and placed clearly on AIGC content, such as at the beginning, end, or
middle of texts, videos, or images. Implicit labels, on the other hand, are embedded in the file’s
metadata and contain information about the content’s nature and the service provider, but are
not visible to users. All service providers must include these labels in their service agreements and,
if required, can offer content without explicit labels, but only if the labeling obligation for users
is clearly specified. Furthermore, app distribution platforms must ask providers to declare if they
offer AIGC services and verify the adequacy of the labels. Users are required to declare when
posting AIGC content using the labeling feature provided by services. Additionally, practices
such as removing or modifying AIGC labels are prohibited. Violations of these regulations may
lead to sanctions by the competent authorities. These measures respond to the growing concern
about the risks associated with AI use, particularly regarding the spread of false content. With
the advancement of local AI models like DeepSeek, China has intensified its regulations, aiming
to ensure transparency and prevent content manipulation online [49, 39].

Considerations on Chinese approach

One crucial aspect to consider when analyzing China’s approach to regulating deepfakes is its
long-term sustainability and the potential risks of authoritarian abuses. While Chinese laws and
regulations aim to safeguard national security and maintain social order, the regulatory framework
implemented by China raises significant concerns regarding individual freedoms and the pluralism
of information.

Regulations such as the “Regulations on Deep Synthesis Management of Internet Information
Services” and the more recent AI-generated content labeling measures are clear manifestations of
the Chinese government’s strategy to establish total control over cyberspace, not only to prevent
technological misuse but also to protect the so-called “fundamental socialist values” of the country.

However, a problematic aspect of this regulation is that such an approach could easily be used
by the government as a pretext for increasingly stringent forms of censorship [39]. The regulation
of deepfakes, while ostensibly focused on protecting the integrity of information, could quickly
turn into a tool of repression. For example, the vague definitions of terms like “threat to national
security” or “disruption of public order” leave ample room for arbitrary interpretations by the
authorities. In this sense, the Chinese government could exploit these laws to suppress content
that, although not constituting an actual security threat, might be seen as critical of the regime
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or as political dissent. This could severely undermine press freedom and access to independent
information, two fundamental pillars of a democratic society.

Furthermore, the requirement to label all AI-generated content and implement monitoring
mechanisms on platforms, while aimed at ensuring greater transparency, could result in constant
surveillance of users, further eroding privacy and fostering a kind of “self-censorship” among
content creators. Indeed, as argued in the article, while such measures are designed to protect
against harmful or deceptive content, they risk stifling free expression online by making platforms
more susceptible to political demands for censorship, especially in a context like China, where the
government exerts significant control over emerging technologies and information.

In this regard, it is interesting to note that China is implementing more aggressive regulatory
policies compared to other countries, such as the United States and European nations, which
adopt a less centralized and more rights-oriented approach. The fundamental difference lies in
the fact that while Western countries tend to balance privacy protection and online security with
freedom of expression, China views cyberspace as an extension of state power, rather than as a
space for free and independent interaction.

One of the most concerning reflections that arises from this, as also highlighted in the arti-
cle, is the possibility that China could become a model for other authoritarian states to adopt
similar approaches to digital technology regulation, creating a global norm that could undermine
fundamental rights. The danger of this scenario lies in its ability to be justified under the guise of
combating fake news and disinformation, but in reality, it could serve to consolidate authoritarian
regimes that have no qualms about using technology to suppress opposition.

In conclusion, while China’s approach may appear effective in the short term at combating the
malicious use of deepfakes and protecting public security, the risk of abuse is significant. Chinese
regulation could, in fact, become a pretext for justifying oppressive and centralized control over
information, potentially exacerbating censorship and political repression. If other countries were
to follow this model, the result would be a digital world characterized by ever-more pervasive
state control, with severe implications for individual freedoms and the pluralism of information.

2.3.4 UK

Online Safety Act

The United Kingdom has recently taken significant steps to update its legal framework in re-
sponse to the growing threat posed by synthetic media, particularly in the context of intimate
image abuse. The Online Safety Act 2023, which came into force in early 2024, now explicitly
criminalizes the distribution of sexually explicit deepfakes without the subject’s consent. The
reform is particularly impactful because it removes the previous requirement to demonstrate that
the offender intended to cause distress. Under the current law, the mere act of sharing synthetic
intimate content without permission is sufficient to constitute a criminal offence. Furthermore,
the law explicitly recognizes deepfakes as a form of intimate image abuse, treating them on equal
terms with authentic photographs or videos. If the offender’s actions are driven by the inten-
tion to cause harm or seek sexual gratification, aggravating factors apply, leading to more severe
penalties. [50]

Broader vision of responsibility

In January 2025, the UK government announced a further expansion of its legal arsenal: the cre-
ation of a new standalone offence for generating sexually explicit deepfakes, even in cases where
the content is not distributed. This reform addresses a critical gap in the previous framework,
where only the act of sharing or threatening to share such content was punishable. The forthcom-
ing provision rightly recognizes that the mere production of synthetic explicit material involving
real individuals constitutes a serious violation of personal dignity and privacy. In addition, this
approach represents an important step forward compared to emerging EU legislation such as the
AI Act, which primarily places responsibility on platforms to label AI-generated content, without
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sufficiently addressing the liability of the individuals or entities who create harmful content in
the first place. The UK’s decision to penalize the act of creation itself, regardless of intention
to disseminate, offers a more victim-centric approach and acknowledges the psychological and
reputational harm that can arise even from undisclosed deepfake production. This reform could
serve as a model for other jurisdictions seeking to address the misuse of AI-generated media with
greater precision and fairness. [50]

The missing legislation for political deepfakes

While the United Kingdom has made considerable progress in regulating deepfakes in the context
of intimate image abuse, the political dimension remains less developed. At present, there is no
specific legislation addressing the use of synthetic media in electoral campaigns. Nonetheless,
the Electoral Commission holds the authority to intervene in cases where manipulated content
constitutes a criminal false statement about a candidate, as outlined in existing electoral laws.
However, these provisions are relatively narrow in scope and may not fully capture the emerging
risks associated with generative AI in political discourse. The growing potential for AI-generated
audio and video to impersonate political figures and mislead voters has sparked discussions around
the adoption of ethical guidelines and voluntary codes of conduct for political parties and adver-
tisers. While the UK has not yet enacted binding rules in this area, ongoing debate reflects a
growing awareness of the need to prevent deceptive uses of AI in democratic processes, especially
in light of similar controversies that have emerged in other countries, including the circulation of
deepfaked campaign materials.

2.3.5 Some cases

Crosetto Case

Recently, a scam case emerged involving some of the most well-known Italian entrepreneurs and
professionals, exploiting the name of the Minister of Defense, Guido Crosetto. The scammers,
likely using advanced technologies such as artificial intelligence to replicate the Minister’s voice,
impersonated members of his staff and contacted the victims, demanding large sums of money
as ransom for allegedly kidnapped Italian journalists abroad. They assured the victims that the
transferred funds would later be reimbursed by the Bank of Italy. Among the individuals targeted
were prominent figures such as Massimo Moratti, former president of Inter Milan, Giorgio Armani,
Marco Tronchetti Provera, Diego Della Valle, Patrizio Bertelli, the Caltagirone and Del Vecchio
families, and the Beretta family. At least one entrepreneur transferred nearly one million euros
to a foreign account, believing the request to be legitimate. Minister Crosetto promptly reported
the incident, highlighting the high level of professionalism demonstrated by the fraudsters and the
importance of raising public awareness to prevent similar cases in the future. The Milan Public
Prosecutor’s Office has launched an investigation to identify those responsible and recover the
transferred funds. This incident illustrates how the use of advanced technologies, such as artificial
intelligence, is becoming an increasingly significant factor in scams, making it more difficult to
distinguish between genuine and fraudulent communications. Authorities have urged the public
to remain vigilant and to promptly report any suspicious activity [51].

Taylor Swift pornographic deepfake

In January 2024, sexually explicit images of American singer Taylor Swift, generated using arti-
ficial intelligence, were published on X (formerly Twitter) and quickly spread to other platforms
such as Facebook, Reddit, and Instagram. One tweet containing the images was viewed over 45
million times before being removed. A report by 404 Media revealed that the images appeared to
originate from a Telegram group, whose members used tools like Microsoft Designer to generate
them, employing typos and keyword hacks to bypass Designer’s content filters. Following the re-
lease of the material, Swift’s fans flooded the platforms with videos and images from her concerts
to bury the deepfake images and reported the accounts sharing them. Searches for Swift’s name
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were temporarily disabled on X, returning an error message instead. Graphika, a disinformation
research company, traced the origin of the images back to a 4chan community. A source close to
Swift told the Daily Mail that she was considering legal action, stating: “Whether legal action will
be pursued is still under consideration, but one thing is clear: these AI-generated images are abu-
sive, offensive, exploitative, and were created without Taylor’s consent and/or knowledge”. The
controversy drew condemnation from White House Press Secretary Karine Jean-Pierre, Microsoft
CEO Satya Nadella, the Rape, Abuse and Incest National Network (RAINN), and SAG-AFTRA.
Several U.S. lawmakers called for federal legislation to combat deepfake pornography. Later that
month, U.S. Senators Dick Durbin, Lindsey Graham, Amy Klobuchar, and Josh Hawley intro-
duced a bipartisan bill that would allow victims to sue individuals who created or possessed
“digital forgeries” with the intent to distribute them, or those who knowingly received such ma-
terial created without consent [52].

Deepfakes in politics

The political use of deepfakes, although less common than their applications in pornography
or satire, can have serious consequences for government stability, electoral processes, and even
armed conflicts. These tools are used to manipulate public opinion by creating falsified images
and videos capable of casting doubt on the legitimacy of a government, influencing state policies,
shifting voter sentiment, defaming political figures, or altering economic perceptions. Over the
years, several examples have emerged in which deepfakes have had significant political impacts,
prompting governments to adopt protective measures and appoint experts to detect such content
before it spreads widely.

A notable case occurred in 2018 when Jordan Peele released a fake video of Barack Obama,
showing the former president making offensive statements against Donald Trump. This episode
highlighted the dangers of deepfakes and how easily technology can manipulate public opinion.
A year later, in 2019, a video of Nancy Pelosi, manipulated with simple slowing techniques, was
used to suggest she was intoxicated, damaging her reputation. That same year, a suspicious video
of Ali Bongo, the president of Gabon, fueled rumors of his alleged death, triggering distrust and
even an attempted coup. Although the video turned out to be authentic, it demonstrated how
even minimal manipulation can threaten political stability.

In 2021, another incident involved members of the European Parliament, who were tricked by
a deepfake during a diplomatic meeting, an event that revealed the vulnerability of international
institutions to digital manipulation. More recently, in 2022, during the war in Ukraine, deepfakes
were used to spread false messages that undermined the legitimacy of leaders, attempting to
demoralize the population and sow confusion among combatants.

These events have made it clear that deepfakes are increasingly infiltrating election campaigns,
and their impact is likely to grow. To counter them, it is essential not only to improve detection
systems but also to educate the public about the risks and the psychological vulnerabilities these
technologies exploit [53].

CEO Fraud UK

A striking example of how artificial intelligence can be maliciously exploited to conduct sophisti-
cated scams emerged in the United Kingdom in 2019. In this incident, cybercriminals employed
advanced voice-cloning technologies to impersonate the CEO of the German parent company of a
UK-based energy firm. By using AI-generated voice synthesis, the perpetrators were able to ac-
curately replicate the executive’s tone, accent, and speaking style, convincingly deceiving a senior
manager into transferring a substantial amount of money to a fraudulent account.

The employee, believing he was speaking directly with his CEO, was instructed to urgently
wire 220,000 euros (approximately 200,000 dollars at the time) to a Hungarian bank account,
allegedly as part of a confidential and time-sensitive acquisition. The conversation, carried out
over the phone, was so meticulously constructed that the victim did not question the legitimacy
of the request. The attackers further reinforced the ruse by following up with emails and other
calls, maintaining the illusion of an authentic corporate transaction.
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It was only after a second attempt to solicit funds that suspicions arose, prompting an internal
investigation. The scam was ultimately uncovered, but the initial payment had already been
completed and could not be recovered. The case underscores the evolving threat landscape posed
by AI-powered fraud techniques.

This incident highlights the vulnerabilities of even well-established companies when confronted
with the psychological and technological sophistication of modern scams. Traditional verification
mechanisms, such as phone recognition or hierarchical trust, are no longer sufficient when arti-
ficial intelligence can replicate the human voice with near-perfect accuracy. The case serves as
a cautionary tale, emphasizing the urgent need for organizations to implement multi-factor ver-
ification protocols, foster internal awareness of AI-enabled threats, and develop robust incident
response strategies. As synthetic media becomes more accessible, such attacks are likely to in-
crease in frequency and complexity, making preparedness and resilience essential components of
contemporary cybersecurity practices. [54]

2.3.6 Accountability of digital platforms

The growing prevalence of deepfake technology has raised significant concerns regarding the ac-
countability of digital platforms in moderating and managing harmful content. Deepfakes present
serious challenges to the integrity of online information, privacy, and public trust. Platforms like
X (formerly Twitter), Facebook, and TikTok, which facilitate the rapid sharing of user-generated
content, are at the forefront of these challenges, as they balance between freedom of expression
and ensuring the safety of their users.

Deepfakes represent a new form of misinformation, one that is far more sophisticated than
traditional fake news or doctored images. They leverage artificial intelligence (AI) to create
hyper-realistic video and audio recordings that can be used to manipulate public opinion, incite
violence, or harass individuals. The implications of deepfakes extend beyond mere deception;
they pose significant threats to democracy, privacy, and security. As Citron and Chesney argue
[55], deepfakes create new avenues for disinformation campaigns, political manipulation, and
personal harm. Their legal implications are especially complex because deepfakes can be difficult
to distinguish from authentic content, and their creators can remain anonymous. Given the
increasing frequency and potential harm of deepfakes, digital platforms must confront the issue of
content moderation. These platforms are often criticized for their reactive rather than proactive
approach to harmful content. X, Facebook, and TikTok, all of which operate under different
regulatory and legal frameworks, have faced increasing scrutiny for their role in enabling the
spread of deepfakes.

USA - Section 230 of the Communications Decency Act

The question of legal responsibility for deepfakes is intricately tied to the debate over platform
liability. Current legal frameworks, particularly Section 230 of the Communications Decency Act
in the United States, provide platforms with broad immunity from liability for user-generated
content. This has allowed platforms like X, Facebook, and TikTok to avoid legal consequences
for the harmful content posted by users. However, as deepfakes continue to gain prominence, the
limitations of this immunity are becoming more apparent. Citron and Chesney [55] suggest that
the existing legal regime might no longer be adequate for addressing the unique challenges posed
by deepfakes. While platforms are not directly responsible for creating deepfakes, they can be held
accountable for their failure to moderate such content once it is uploaded. In particular, platforms
could face legal consequences if they fail to take reasonable steps to detect and remove harmful
deepfakes or if they continue to allow the spread of deepfakes in a way that exacerbates the harm.
The platform’s responsibility is compounded by their ability to amplify the spread of content
through algorithms that prioritize sensational or controversial material. For example, in the case of
Facebook, the platform has been criticized for its slow response to disinformation and manipulated
media, especially during critical political events such as elections. In 2020, Facebook’s CEO Mark
Zuckerberg faced public backlash after his platform failed to adequately address the proliferation
of deepfakes and other manipulated media, despite ongoing concerns raised by researchers and
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advocacy groups. Similarly, TikTok has faced scrutiny for hosting deepfake videos that were used
to harass individuals, particularly minors. While TikTok has taken steps to improve its content
moderation, the platform’s algorithm-driven approach to content distribution often means that
harmful content can gain significant visibility before it is removed.

The question then becomes: what legal responsibilities should these platforms have in the
moderation of deepfake content? Should they be legally obligated to invest in advanced detection
systems, or should their responsibility be limited to removing content once it has been flagged by
users? Several legal frameworks have been proposed to address the spread of deepfakes. Citron
and Chesney [55] argue that a comprehensive approach to regulating deepfakes should involve a
combination of civil and criminal liability for both content creators and platforms. In the case of
platforms, one potential legal avenue is to amend Section 230 to remove immunity for platforms
that fail to moderate harmful content, such as deepfakes. This could encourage platforms to
take a more proactive approach in detecting and removing deepfakes before they gain widespread
attention. Moreover, some experts suggest that platforms could be required to implement content
verification technologies, such as blockchain or digital watermarking, which could help distinguish
authentic content from manipulated media. While these technologies are not foolproof, they
could provide an additional layer of accountability for platforms by making it easier to trace the
origins of content and identify deepfakes early on. Another option is to introduce new criminal
laws that target the creators and distributors of deepfakes. In many jurisdictions, creating or
distributing harmful deepfakes, especially those aimed at defamation, harassment, or political
manipulation, could be punishable by law. However, this approach would still leave a significant
gap in accountability for platforms, who may be complicit in amplifying harmful content.

UE - Digital Service Act

In the European context, the Digital Services Act (DSA) represents a significant legislative mile-
stone in redefining the responsibilities of digital platforms. Adopted in 2022, the DSA establishes
a new framework for regulating online intermediaries, particularly very large online platforms
(VLOPs), by introducing stricter obligations in relation to content moderation, transparency,
and risk mitigation. One of the DSA’s central goals is to enhance platform accountability by
mandating proactive measures against illegal and harmful content, including deepfakes. Under
the DSA, platforms are no longer shielded by blanket immunity but are instead required to con-
duct systematic risk assessments and implement mitigation strategies that address the spread of
disinformation and manipulated media.

Deepfakes fall under the broader category of “systemic risks” identified by the DSA, due to
their potential to undermine democratic discourse and fundamental rights. Accordingly, VLOPs
must assess the impact of deepfakes on civic discourse, public health, and individual dignity,
and take “reasonable, proportionate, and effective” measures to limit their dissemination. This
includes the obligation to cooperate with vetted researchers, provide greater algorithmic trans-
parency, and adopt auditable internal processes. The DSA also introduces a notice-and-action
mechanism, which enables users and trusted flaggers to report harmful content more efficiently.
Moreover, the law strengthens enforcement through potential fines of up to 6 percent of the
platform’s global annual turnover, thereby creating a robust incentive structure for compliance.

The DSA marks a shift from the reactive and fragmented approach that previously character-
ized platform governance in the EU, toward a co-regulatory model that combines public oversight
with private responsibility. While it remains to be seen how effectively the DSA will be imple-
mented, particularly in cases involving complex and rapidly evolving technologies like generative
AI, it provides a valuable blueprint for embedding accountability into the architecture of digital
platforms. By explicitly recognizing the risks posed by deepfakes and embedding legal duties to
mitigate them, the DSA could become a pivotal tool in the broader effort to balance freedom of
expression with the protection of users and democratic processes. [56, 57]

2.3.7 Bridging legal and technical perspectives

The comparative analysis of existing legal frameworks demonstrates a converging international
effort toward establishing principles that ensure accountability, transparency, authenticity, and
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integrity in the development and dissemination of AI-generated content. Although the approaches
differ, ranging from the European Union’s regulatory precision in the AI Act and Digital Services
Act, to the punitive stance of the new Italian bill introducing the crime of deepfake dissemination,
and the more fragmented yet pragmatic models adopted in the United States, China, and the
United Kingdom, a common thread emerges: the legal necessity to guarantee the verifiability and
lawful provenance of digital content.

Regulations such as the AI Act and China’s Measures for the Labeling of AI-Generated Con-
tent explicitly demand transparency and labeling of manipulated media, while the Italian and
British frameworks underscore the importance of authenticity and protection against deception
and harm. Similarly, U.S. legislative proposals such as the Deepfakes Accountability Act em-
phasize traceability and the duty to disclose alterations, reflecting an increasing recognition that
effective regulation depends on the ability to technically verify the origin and integrity of digital
materials. These principles collectively translate into de facto technical requirements: systems
must be capable of detecting manipulation, ensuring content provenance, and maintaining a ver-
ifiable chain of custody.

Therefore, while legal measures lay the normative foundation for ethical and accountable AI
usage, their practical enforcement ultimately depends on the implementation of technological
mechanisms capable of upholding these standards. This calls for solutions that embed legal prin-
ciples into their architecture, mechanisms ensuring digital evidence integrity, non-repudiation,
and authenticity verification. The chapter four address these challenges from a technical per-
spective, illustrating how principles such as accountability, transparency, and data integrity can
be operationalized through cryptographic hashing, digital watermarking, and blockchain-based
traceability, thereby bridging the gap between law and technology in the context of AI-generated
content regulation.
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Chapter 3

State of the art

In this chapter, I will explore the current state of the art in both the detection of deepfakes and
the prevention of the negative consequences that may arise from their use. As the sophistication
of synthetic content continues to grow, so does the challenge of identifying manipulated media and
mitigating the risks associated with it. This section will begin by presenting the most relevant
tools and techniques that have been developed to detect deepfakes, highlighting the technological
advances and methodologies behind them. Following that, I will address the role of user aware-
ness and education, which has emerged as an equally essential component in the broader defense
strategy. Indeed, empowering individuals to critically evaluate the content they encounter online
is increasingly recognised as a necessary complement to technical solutions, especially in scenarios
where technology alone may not suffice. Through this twofold approach, I aim to provide a com-
prehensive overview of the efforts currently underway to counteract the risks posed by synthetic
media, from both a technological and human-centered perspective.

3.1 Deepfake detection methods

3.1.1 Machine Learning based method

Machine Learning-Based Methods for Detecting Deepfakes Traditional machine learning (ML)
algorithms have played a significant role in the development of deepfake detection techniques due
to their interpretability and ease of implementation. Unlike more opaque black-box approaches,
these models allow researchers and practitioners to better understand the logic behind the clas-
sification decisions, which is essential in high-stakes contexts such as media forensics or legal
proceedings. Their transparency makes them especially suitable for the deepfake domain, where
understanding the nature of manipulated content is often as important as detecting it. [58]

Decision trees and random forests

Among the most widely used ML models are tree-based methods such as Decision Trees and
Random Forests. These models represent the decision-making process in the form of hierarchical
trees, making it possible to visualize how specific features contribute to the final prediction. This
characteristic inherently addresses the issue of explainability, which is often a limitation in more
complex models like deep neural networks.

A decision tree is a supervised machine learning algorithm used for both classification and
regression tasks. It works by splitting data into branches based on feature values, ultimately
leading to a prediction or decision at the leaf nodes. The model mimics a tree-like structure, where
internal nodes represent decision points based on feature attributes, branches represent possible
outcomes of these decisions, and leaf nodes denote the final classification or output. Decision trees
are valued for their interpretability and transparency, as they provide a clear explanation of how
predictions are made. This is especially important in domains where understanding the rationale
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behind a model’s decision is critical, such as legal or forensic applications. There are two main
types of decision trees, classification trees are used when the target variable is categorical and
the model predicts class labels by learning decision rules inferred from the data features, while
regression trees are applied when the target variable is continuous and they predict a numerical
value by learning from historical data and minimizing prediction error. [59]

In the context of identifying manipulated visual content, decision trees operate by analyz-
ing a set of extracted features from images or videos and using them to classify the input as
either authentic or manipulated ( deepfake). The first step involves extracting meaningful fea-
tures from facial images or video frames. These features may include abnormal eye or mouth
movements, inconsistencies in skin texture or lighting, lack of synchronization between facial ex-
pressions and head motion, presence of visual artifacts or irregularities; a decision tree functions as
a flowchart-like structure composed of internal nodes, branches, and leaf nodes:internal nodes rep-
resent decision points based on specific features, branches indicate the outcome of those decisions
(yes/no), leaf nodes provide the final classification (deepfake/authentic). The tree is constructed
by recursively selecting the feature that best separates the data at each step. The goal is to split
the dataset in a way that improves classification accuracy at each node. For example: is the eye
blinking naturally? yes, then likely authentic; no, then Is mouth movement inconsistent? yes,
then likely deepfake; no, then possibly authentic.

Figure 3.1. Decision Tree (fonte: IBM).

A random forest is an ensemble machine learning algorithm that builds multiple decision
trees and combines their outputs to improve predictive accuracy and control overfitting. It is
widely used for both classification and regression tasks due to its robustness, scalability, and
ability to handle high-dimensional data. The fundamental idea behind Random Forest is to
create a “forest” of decision trees during training and aggregate their results to make a final
prediction. In classification tasks, the model outputs the class that receives the majority vote
from individual trees, whereas in regression tasks, it computes the average of all predictions.
The Random Forest algorithm follows a process based on two key techniques: bagging (bootstrap
aggregating) and random feature selection. During bootstrap sampling, the model creates multiple
subsets of the original training data by sampling with replacement. Each subset is used to
train an individual decision tree. This introduces diversity among the trees and reduces the
variance of the model. During random feature selection, at each split in the construction of a
tree, a random subset of features is selected. The best feature among this subset is chosen to
perform the split. This method prevents the trees from becoming too similar and ensures that the
model explores a broader feature space. Because of this combination of diversity and aggregation,
Random Forest offers strong generalization performance. It is less prone to overfitting compared
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to single decision trees and performs well even with missing or unbalanced data. Furthermore,
Random Forest provides feature importance scores, which allow practitioners to understand which
variables contribute most significantly to the model’s predictions, a valuable trait in domains such
as deepfake detection, where interpretability remains a key concern. [60]

Random Forest is a machine learning technique that combines multiple decision trees to im-
prove classification accuracy and reduce overfitting. Each tree in the forest is trained on a random
subset of the data and considers a random selection of features, enabling the model to learn diverse
patterns and reduce the risk of bias associated with individual trees. In the context of deepfake
detection, Random Forest models are trained on features extracted from images or videos, such
as facial expressions, eye movements, head orientation, skin texture, and other subtle inconsisten-
cies that may arise in manipulated content. These features help the model distinguish between
authentic and synthetic media. Each decision tree provides a classification output (real or fake),
and the final decision is made through a majority voting mechanism across all trees in the forest.
This ensemble approach enhances the model’s robustness and stability.

Figure 3.2. Random Forest (fonte: ResearchGate).

MLPs

Another effective strategy involves the use of lightweight neural networks, such as Multi-Layer Per-
ceptrons (MLPs), to detect visual artifacts in manipulated videos. As demonstrated by Habeeba
et al [61], MLPs can be employed to identify anomalies in the facial region with relatively low
computational requirements, making them suitable for real-time or resource-constrained appli-
cations. The Multilayer Perceptron, also known as MLP, is a type of artificial neural network
composed of multiple layers of neurons. These layers include: input layer, which receives the
input data; hidden layers, which process the information through non-linear activation functions,
allowing the network to learn complex patterns; output layer, which provides the final result,
such as a classification or prediction. Each neuron in one layer is connected to all neurons in
the next layer, forming a fully connected network. During training, the MLP uses an algorithm
called backpropagation to update the connection weights by minimizing the error between the
predicted output and the desired output. Thanks to its structure, the MLP is capable of solv-
ing complex and non-linearly separable problems, making it an effective tool in many machine
learning applications. [62]
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Figure 3.3. Multi Layer Perceptron (fonte: ResearchGate).

Conclusions about machine learning based methods

In terms of performance, machine learning-based methods have demonstrated impressive results,
with detection accuracies reaching up to 98 percent in controlled experimental settings. However,
these results heavily depend on several factors, including the quality and nature of the dataset,
the selection of features and the alignment between the training and test sets. When models
are trained and evaluated on similar datasets, commonly using a split such as 80 percent for
training and 20 percent for testing, the performance is typically high. Conversely, applying
the model to entirely different datasets can result in a significant drop in accuracy, sometimes
approaching random classification levels (around 50 percent), thus underscoring the challenges
related to generalizability. Overall, while traditional ML methods offer a promising foundation for
deepfake detection due to their interpretability and versatility, their performance remains closely
tied to dataset characteristics. This highlights the ongoing need for robust feature engineering,
diverse training data, and cross-domain validation in order to enhance the reliability and resilience
of ML-based deepfake detectors.

3.1.2 Deep Learning based methods

In recent years, deep learning-based techniques have emerged as the most prominent and effective
approach for detecting deepfakes, particularly due to their remarkable capacity to model complex
visual patterns and subtle anomalies introduced during the synthetic generation process. These
methods leverage powerful architectures, such as Convolutional Neural Networks (CNNs), Re-
current Neural Networks (RNNs), and attention-based mechanisms, to analyze both spatial and
temporal inconsistencies in deepfake media. [58]
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CNN based architectures

Convolutional Neural Networks (CNNs) have played a central role in the early and ongoing de-
velopment of deep learning-based approaches to deepfake detection, thanks to their remarkable
ability to capture spatial features and identify subtle visual artifacts introduced during the gen-
eration of manipulated media.

One of the earliest and most influential approaches in this area was proposed by Zhang et
al. [63], who developed a GAN simulator to replicate common artifacts produced by generative
adversarial networks. These simulated artifacts were then used as inputs for a CNN-based clas-
sifier, allowing the model to learn global deepfake signatures rather than relying exclusively on
pixel-level irregularities. This method enabled better generalization, as the model could recognize
high-level patterns associated with fake content, regardless of the specific generation method.

Building upon this foundation, Zhou et al. [64] introduced a CNN that focused on stan-
dardized feature extraction from RGB data, aiming to improve the model’s ability to distinguish
between real and fake images using consistent visual cues. In parallel, other researchers proposed
resolution-agnostic CNN architectures capable of maintaining detection performance across im-
ages and videos of varying quality and compression levels. These models addressed the problem of
performance degradation when fake media is shared on social platforms, where heavy compression
and scaling are common.

Another notable advancement in CNN-based detection leveraged the fact that synthetic media
often fails to accurately replicate biological signals, such as heartbeat rhythms and facial blood
flow. These subtle patterns, which are naturally present in authentic video recordings, can be
extracted from facial regions and analyzed using CNNs trained to detect inconsistencies in color
changes and motion. The absence or distortion of such physiological signals is a strong indicator
of manipulation, and CNNs have proven effective at learning these cues. [58]

To balance performance and efficiency, models like Meso-4 and MesoInception-4 [65] intro-
duced lightweight CNN architectures based on Inception modules. These models were trained
using Mean Squared Error (MSE) loss and demonstrated solid performance in detecting manipu-
lated frames while being computationally suitable for real-time applications. These architectures
have been particularly effective for shallow spatial features, and when combined with handcrafted
cues such as eye blinking anomalies or unnatural lip synchronization, they improved overall clas-
sification precision.

Several techniques have been explored to increase the robustness and generalization of CNN-
based detectors. Data augmentation, super-resolution reconstruction, and pixel-level anomaly
localization have been employed to train models on a wider range of fake patterns. Addition-
ally, loss functions like Maximum Mean Discrepancy (MMD) have been used to align feature
distributions between real and fake data, minimizing the risk of overfitting to a specific dataset.

To improve model interpretability and focus, attention mechanisms have been integrated into
CNN pipelines, enabling the networks to concentrate on the most informative facial regions,
such as the eyes, mouth, or jawline [66]. Furthermore, Capsule Networks (CNs) [67] have been
explored as an alternative to traditional CNNs. These models provide improved spatial awareness
and preserve part-whole relationships, while requiring fewer parameters, thus enhancing both
efficiency and performance.

Finally, ensemble learning has been applied to further enhance CNN-based detection accuracy.
By combining the outputs of multiple CNN models trained on different features or with different
architectures, ensemble methods have achieved detection rates exceeding 99 percent on several
benchmark datasets, confirming the continued relevance and adaptability of CNNs in deepfake
detection pipelines [68].

RNN based architectures

Recurrent Neural Networks (RNNs), particularly Long Short-Term Memory (LSTM) and Gated
Recurrent Unit (GRU) variants, have shown notable success in deepfake detection tasks involving
video data. Unlike CNNs, which primarily focus on spatial features in individual frames, RNNs
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are specifically designed to model temporal dependencies, making them well-suited for capturing
the motion dynamics and continuity inherent in real video sequences.

One of the key advantages of RNN-based architectures lies in their ability to analyze frame-
by-frame temporal evolution of facial expressions, eye blinking, lip synchronization, and head
movements. These features often exhibit subtle temporal inconsistencies in deepfake videos due
to the difficulty generative models face in maintaining coherent motion patterns across consecutive
frames. For instance, while a GAN might produce a visually convincing single frame, it may fail to
generate natural transitions between expressions or maintain temporal consistency in eye blinks
and gaze direction, patterns that RNNs can effectively learn to recognize.

Several works have leveraged RNNs in combination with CNNs in a two-stage pipeline. In
these hybrid architectures, CNNs first extract spatial features from each video frame, which are
then passed to an RNN module that captures their temporal relationships. This approach benefits
from the strengths of both network types and has led to improved performance in distinguishing
real videos from manipulated ones. Some systems also integrate optical flow information or motion
vectors as input to the RNNs, enabling the detection of irregular motion patterns and artifacts
caused by frame interpolation errors.

Another notable application of RNNs in deepfake detection is the analysis of micro-expressions
and subtle temporal patterns that may be imperceptible to human observers but inconsistent
across synthesized frames. These include minor changes in muscle tension, skin deformation, or
blinking frequency. When trained on large and diverse datasets, RNNs can learn these temporal
features as reliable indicators of authenticity. [58]

Despite their effectiveness, RNN-based approaches face challenges related to overfitting, es-
pecially when trained on datasets that lack variability in pose, lighting, or demographic repre-
sentation. To mitigate this, some researchers have implemented data augmentation strategies,
while others have explored the use of autoencoder architectures in conjunction with RNNs. These
models aim to reconstruct expected facial motion sequences, flagging deviations as potential ma-
nipulations. [58]

Furthermore, enhancements like triplet loss functions, temporal feature regularization, and
adversarial training have been introduced to increase the generalizability and discriminative power
of RNN-based models. These techniques encourage the network to learn more robust temporal
embeddings that can distinguish between authentic and manipulated content even when faced
with previously unseen deepfake methods.

Overall, RNNs represent a crucial tool in the deepfake detection landscape, particularly for
applications that require fine-grained temporal analysis. As deepfake generation methods continue
to evolve toward producing more temporally consistent outputs, the role of RNNs, and their
integration with other architectures, remains fundamental for detecting nuanced inconsistencies
that betray synthetic content.

Conclusions on deep learning based methods

These contributions demonstrate that deep learning has significantly advanced the field of deepfake
detection. While the performance of these models is undeniably impressive, often exceeding 99
percent accuracy in controlled benchmarks, challenges remain regarding cross-dataset generaliza-
tion, robustness against adversarial attacks, and explainability of predictions. As the generation
techniques evolve, detection frameworks must also adapt, emphasizing the need for continual
refinement of model architectures and training methodologies.

3.1.3 Statistical measurements based methods

In addition to deep learning-based techniques, statistical-based methods have also demonstrated
promising results in the detection of Deepfakes, particularly through the analysis of inherent pat-
terns and deviations within digital content. These approaches typically rely on the measurement
and interpretation of various statistical features that are either preserved or altered during the
Deepfake generation process.
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PRNU

One of the most notable contributions in this field is the study by Koopman et al. [69], which
explores the use of photo-response non-uniformity (PRNU) for detecting manipulations in video
frames. PRNU is an intrinsic noise pattern embedded in digital images, caused by subtle imper-
fections in the light-sensitive sensors of a camera. Due to its uniqueness, PRNU serves as a sort
of fingerprint of the device used for capturing the image. In their method, the authors generate
a sequence of frames from input videos, systematically categorizing and processing them. Each
frame is cropped consistently to isolate and enhance the PRNU pattern. These cropped frames are
subsequently divided into eight groups, and a standard PRNU pattern is estimated for each using
the second-order Fast Spatial Transform Vector (FSTV) method. Normalized cross-correlation
scores are then computed to quantify the similarity between PRNU patterns, followed by a statis-
tical t-test to determine the significance of discrepancies between Deepfake and authentic videos
[58].

Figure 3.4. PRNU and NP (noise print) (fonte: ResearchGate).

Regional statistical features

Further research in this domain has focused on modeling the generative process underlying Deep-
fakes through the extraction of regional statistical features. In [70], the authors employed the
Expectation-Maximization (EM) algorithm to identify characteristic regions across different gen-
erative adversarial networks (GANs), including GDWCT, STARGAN, ATTGAN, STYLEGAN,
and STYLEGAN2. These extracted features were subsequently validated using naive classifica-
tion schemes in preliminary experiments, allowing for the assessment of statistical anomalies that
arise from the generation process.

Statistical distance measures

A particularly innovative approach is presented by Agarwal et al. [71], who proposed a hypothesis-
testing framework for detecting Deepfakes based on statistical distance measures. This framework
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defines and calculates the shortest path between the statistical distributions of real and GAN-
generated images. The key insight is that the detectability of a Deepfake correlates with the sta-
tistical divergence between these distributions: when the distance is large, the detection becomes
easier, as it implies greater inconsistency between synthetic and genuine content. Conversely,
a well-trained GAN capable of producing high-fidelity images can reduce this distance, thereby
increasing the challenge of detection. This observation underscores the escalating complexity of
identifying Deepfakes as generative models improve in accuracy and realism. [58]

Conclusions on statistical measurements based methods

Ultimately, statistical-based detection methods provide a complementary perspective to learning-
based approaches, as they offer a principled way to quantify deviations from natural data distribu-
tions. They are particularly useful in scenarios where the generative pipeline leaves behind subtle
yet consistent artifacts that can be revealed through statistical analysis, and they highlight the
ongoing arms race between detection strategies and the sophistication of generative technologies.

3.2 Challenges in deepfake detection methods

Despite the significant advancements in the performance of deepfake detectors, the field still faces
numerous unresolved issues that hinder the robustness and generalizability of detection systems.
This section outlines the main challenges that currently affect deepfake detection methodologies,
based on recent literature and empirical observations.

3.2.1 Limitations of deepfake datasets

The availability of large-scale datasets is fundamental for developing and evaluating deepfake de-
tection techniques. However, a critical analysis of these datasets reveals substantial limitations
compared to real-world manipulated content. Common artifacts found in synthetic datasets in-
clude temporal flickering during speech, blurriness and over-smoothness in facial regions, lack
of head pose variations, absence of occlusions, inconsistencies in gaze or skin tone, and limited
diversity in audio-visual pairings. These imperfections are due to the manipulation process itself
and result in unrealistic content that is easier to detect. Consequently, even when detection mod-
els perform well on these datasets, they may fail in real-world scenarios, where the quality and
sophistication of manipulations are much higher. [72, 73]

3.2.2 Performance evaluation and labeling issues

Most current detection methods frame the task as a binary classification problem: real or fake.
While this is effective in controlled experimental settings, it does not align with the complexity
of real-world cases. For instance, a video might be manipulated in only some frames or might
involve multiple forms of tampering (visual and audio). Moreover, videos may include several
faces, only some of which are deepfaked. In such contexts, binary labeling is insufficient and can
lead to inaccurate results. Therefore, there is a need for more granular detection techniques, such
as multi-class or multi-label approaches and localized, frame-level analysis. [72, 73]

3.2.3 Model scalability and inference time

Another major challenge is the scalability of detection models, particularly for high-volume plat-
forms like social media. High detection accuracy is of limited use if the inference time is too
long, especially when processing large amounts of content in real time. Many current models
are computationally expensive and impractical for deployment on large-scale platforms. Future
work must focus on developing lightweight, real-time detection methods without compromising
performance. [72]
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3.2.4 Lack of explainability

Most deepfake detection models, especially those based on deep learning, operate as black boxes,
providing little to no explanation for their outputs. In critical applications, such as journalism or
law enforcement, the numerical probability that a video is fake is not sufficient unless it is accom-
panied by interpretable evidence. Without transparency, these results may not be admissible or
credible in judicial or investigative contexts. Hence, integrating explainable AI (XAI) techniques
into detection frameworks is an urgent research direction. [72]

3.2.5 Bias, fairness, and trust

Deepfake datasets and the detection models trained on them often exhibit demographic biases,
particularly concerning race and gender. This imbalance can lead to unfair and unreliable detec-
tion outcomes, especially when applied to underrepresented groups. Although research on fairness
in deepfake detection is emerging, it remains limited, and existing systems may perpetuate or am-
plify existing societal biases (source text, p.4). Fairness-aware training strategies and balanced
datasets are essential to build trust in deepfake detection technologies. [72]

3.2.6 Temporal inconsistencies and aggregation

Many current approaches evaluate frames individually without considering temporal coherence.
However, deepfakes often display temporal artifacts that can be detected only by analyzing se-
quences of frames. Moreover, isolated frame-level predictions must be aggregated to compute
an overall integrity score for the video, which adds complexity and may introduce inaccuracies.
Advanced techniques that incorporate temporal modeling, such as recurrent neural networks or
temporal attention mechanisms, may offer more robust solutions. [72]

3.2.7 Impact of social media laundering

When videos are uploaded to platforms such as Twitter, Instagram, or Facebook, they undergo
compression, down-sampling, and metadata removal, a process known as social media laundering.
These transformations obscure manipulation traces and reduce the efficacy of detection models
that rely on low-level signal features. To improve robustness, training datasets must simulate
such post-processing effects, and evaluation benchmarks should include content altered by social
media platforms. [72]

3.2.8 Lack of diverse audio deepfake datasets

While visual deepfake detection has benefited from extensive datasets, the audio domain remains
underdeveloped. For instance, the ASVspoof-2021 dataset lacks specific training data for audio
deepfake detection, and other datasets are limited to a single speaker. This lack of diversity
hinders the ability of models to generalize to real-world audio manipulations. There is a pressing
need for more comprehensive and realistic datasets for the evaluation of synthetic speech detection
systems. [72, 73]

3.2.9 Evasion and adversarial attacks

Attackers have developed methods to bypass deepfake detection systems by eliminating detectable
artifacts. These evasion techniques include adversarial perturbations (noise injection, cropping,
JPEG compression), manipulation of frequency-domain features, and the use of advanced image
filtering to conceal synthetic traces. Research has shown that such attacks can significantly
reduce the performance of state-of-the-art detectors. Therefore, future detection models must be
resilient to such adversarial strategies through robust training, adversarial defense mechanisms,
and redundancy in detection cues. [72, 73]
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3.3 Tools for deepfake detection

As deepfake technologies continue to advance in realism and accessibility, the need for effective
detection mechanisms has become increasingly critical. Deepfake detection tools are designed
to identify manipulated media using a combination of computer vision, machine learning, and
forensic analysis techniques. These tools play a crucial role in mitigating the risks posed by
malicious deepfakes in areas such as politics, journalism, law enforcement, and digital media
authentication. Detection tools aim to identify synthetic content by analyzing subtle artifacts
left by manipulation processes, inconsistencies in facial landmarks or lighting, or discrepancies in
biometric patterns such as eye movement or pulse signals. [33]

Sensity AI is a pioneering platform that uses deep learning models trained on large datasets of
real and fake media to automatically detect manipulated content. It is widely used by social media
platforms and governments to monitor disinformation campaigns and synthetic media threats.
Features: Deepfake video and image detection, Scans large datasets efficiently, Integrated APIs
for enterprise use

Truepic provides media integrity verification by applying cryptographic hashing at the point
of capture, ensuring that no tampering has occurred post-creation. It is used in journalism,
insurance, and legal proceedings. Strengths: Tamper-evident media capture, Forensic analysis of
image metadata, Blockchain integration for auditability

FakeCatcher uses a biological signal-based approach, analyzing fluctuations in blood flow
on the face to identify synthetic content in real time. This is one of the few systems to use
physiological indicators instead of visual artifacts. Strengths: Real-time detection, Robust to
post-processing (compression, filters), Effective even with realistic deepfakes

Microsoft Video Authenticator, developed in the context of disinformation threats, ana-
lyzes videos and images and assigns a confidence score to each frame, indicating the likelihood of
manipulation. Use case: Political video authentication, Integration with fact-checking workflows

Deepware Scanner is a lightweight application allowing users to scan local or online video
files for signs of deepfake manipulation. While it does not always offer detailed analytics, it
provides a quick assessment accessible to non-expert users. Strengths: Cross-platform (mobile
and desktop), Fast initial scanning, Simple user interface.

Table 3.1. Comparison of Deepfake Detection Tools

Tool Description Accuracy Speed Usability Availability
Sensity AI AI-based detection platform for im-

ages and videos, used by media and
governments

High (∼95%) High High Commercial

Truepic Verifies media authenticity via cryp-
tographic and forensic analysis

High Moderate High Commercial

D-ID Protects privacy by anonymizing fa-
cial features in images/videos

Moderate High High Commercial

FakeCatcher (Intel) Detects deepfakes via physiological
signals such as blood flow

High High Moderate Proprietary

Microsoft Video Authenticator Provides frame-level manipulation
probability score

Moderate Moderate Moderate Commercial

Deepware Scanner App for mobile/desktop to detect
deepfakes in uploaded videos

Moderate High High Freemium

3.4 The role of users and companies

3.4.1 User education and awareness

Public education and awareness are essential pillars in the fight against the dissemination of ma-
nipulated media. As previously discussed, fostering a critical understanding of how digital content
can be altered is crucial in helping individuals evaluate the authenticity of the information they
encounter online. A pressing question emerges: how can we effectively build a comprehensive
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awareness framework to educate society about this evolving threat? One approach involves of-
fering accessible technical training, through online courses or open resources, that introduces the
foundational concepts of technologies used to generate deepfakes. Equally important is the promo-
tion of critical thinking skills by providing real-world examples, regular updates via newsletters,
and public engagement with available detection tools. Raising awareness also means equipping
individuals with practical skills to recognize potential signs of synthetic media. These may include
detecting unnatural eye movements or blinking patterns, which are often imperfectly replicated
in deepfakes, and observing the clarity and symmetry of facial expressions, skin texture, or facial
hair, which may appear distorted or inconsistent. Similarly, anomalies in the rendering of teeth
and hair, such as overly smooth or excessively bright textures, may signal artificial reconstruction.
In video analysis, discrepancies between audio and lip movements are particularly telling, as are
visible visual distortions, pixelation, or misplaced shadows. Importantly, attention must also be
given to the source of the content, assessing its reliability and reputation to further gauge the
credibility of the material. Addressing the deepfake challenge will require a coordinated, mul-
tidisciplinary effort involving governments, private companies, non-governmental organizations,
and individual users. Continued research, the advancement of defensive technologies, and the
widespread promotion of digital literacy must all be integrated into a global strategy to counter
the manipulation of digital information effectively. [27]

Figure 3.5. Main signs of a deepfake (fonte: MIAMI INFORMATION TECHNOLOGY).

3.4.2 Best practices for companies

As deepfake technology continues to advance, it becomes increasingly essential for organizations
to adopt comprehensive strategies to detect and mitigate the risks it poses. One of the most
promising approaches involves the use of advanced detection systems powered by artificial in-
telligence and machine learning. These technologies are capable of analyzing audio and visual
content in depth, identifying subtle inconsistencies that may escape human perception, and thus
enabling timely recognition of manipulated media. AI-based tools employ sophisticated pattern
recognition techniques to detect anomalies, while multimodal analysis integrates visual, auditory,
and metadata signals to assess the overall authenticity of the content. In addition to these meth-
ods, blockchain technology is being explored to verify the origin and integrity of digital files,
adding a layer of trust through decentralized and tamper-resistant records. To strengthen their
defenses, organizations must also adopt a holistic approach that combines these technical tools
with strategic practices. This includes implementing strong authentication mechanisms, estab-
lishing verification protocols for sensitive communications, ensuring regular updates of detection
systems, and fostering a culture of awareness through employee training. Furthermore, integrat-
ing watermarking and digital signatures into original content can support provenance tracking
and discourage malicious alterations. Collaborating with cybersecurity experts and research in-
stitutions is equally vital to stay ahead of evolving threats. Finally, well-defined incident response
plans should be in place to ensure swift action in the event of suspected deepfake attacks. By
aligning advanced technological solutions with sound organizational policies, it is possible to build
a resilient framework capable of addressing the growing challenge posed by synthetic media. [24]
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3.5 Deepfakes authentication methods

3.5.1 Blockchain based methods

Understanding blockchain

Before delving into its application for deepfake authentication, it is essential to understand what
Blockchain is and how it functions. At its core, Blockchain is a decentralized digital ledger
that records transactions across a network of computers in a secure, transparent, and immutable
manner. Each transaction is grouped into a block and added sequentially to a chain of previous
records, forming an unalterable chronological history. This structure eliminates the need for a
central authority, as all network participants have access to the same version of the data, which
is verified through consensus mechanisms. The immutability and transparency provided by this
architecture make Blockchain particularly well-suited for scenarios where trust, integrity, and
provenance of data are crucial, such as in the fight against manipulated media.

In the broader landscape of Deepfake detection, blockchain-based methods are emerging as an
innovative and promising direction. While still in the early stages of development compared to
deep learning or statistical techniques, Blockchain technologies offer unique features that make
them particularly suitable for ensuring the authenticity and traceability of digital content. Their
decentralized, transparent, and tamper-proof nature allows for the verification of the origin and
integrity of multimedia files, which is especially valuable in the context of maliciously manip-
ulated content. The foundational premise of blockchain-based detection approaches lies in the
concept of verifiable provenance. By associating digital content, such as images or videos, with
immutable transaction records, it becomes possible to trace the history of a file and verify whether
it originated from a trusted source. In this context, public blockchains are especially relevant, as
they allow open access to historical transactions and provide a resilient infrastructure for content
validation in a decentralized setting. [58]

Hasan and Salah approach

Hasan and Salah [74] have proposed one of the first generic frameworks applying Blockchain to
the Deepfake detection problem. Their solution leverages the transparency and immutability of
public Blockchains to trace suspicious video content back to its original source. Even when the
digital material has been copied or modified multiple times, the framework enables the reconstruc-
tion of its transaction history. The central idea is that a piece of content should be considered
authentic only when it can be convincingly linked to a legitimate and trusted origin. Their archi-
tecture integrates key Blockchain mechanisms to manage and monitor interactions among users
and content, ensuring that authenticity proofs are anchored to a verified source. Furthermore,
they combine Blockchain with InterPlanetary File System (IPFS) storage, which supports de-
centralized file hosting, and employ the Ethereum Name Service to facilitate the resolution and
identification of content sources.

Chan at al. approach

Building on a similar philosophy, Chan et al. [75] introduced a more technically sophisticated
Blockchain-based approach for tracking the historical provenance of digital content. In their
proposal, multiple LSTM-based convolutional neural networks are used to encode and extract
discriminative features from images and videos. These high-dimensional features are then com-
pressed into a binary-coded structure and hashed to create a unique transaction record, which
is stored on a permissioned Blockchain. Unlike public Blockchains, permissioned systems allow
for access control, giving content owners full governance over their data and its provenance trail.
This ensures a higher level of privacy and security, particularly relevant in sensitive domains such
as journalism or digital evidence management.
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Conclusions on blockchain based methods

Although the number of studies exploring Blockchain-based Deepfake detection is currently lim-
ited, only 2 percent of the surveyed research according to the authors of the study, these methods
highlight a significant shift in the conceptualization of authenticity verification. Rather than re-
lying exclusively on post-hoc analysis of content features, Blockchain approaches aim to secure
the origin and evolution of content from the moment of its creation, thereby preventing the pro-
liferation of manipulated media in the first place. In conclusion, Blockchain-based methods offer
a complementary path to traditional detection strategies by shifting the focus from identifying
manipulations to guaranteeing the verifiable integrity of digital content. As the technology ma-
tures and more comprehensive frameworks are developed, its integration with other detection
techniques could provide a robust defense mechanism against the growing threat of Deepfakes.

3.5.2 Watermarking for authentication

Digital watermarking is a technique for embedding imperceptible information into digital media
content, such as images, audio, or video, in order to provide proof of authenticity, ownership, or
integrity. Unlike metadata, which can be easily removed or modified, watermarks are embedded
directly into the content and are designed to be resistant to various forms of signal processing. The
information carried by a watermark may include content identifiers, timestamps, cryptographic
signatures, or even content-dependent hashes. Depending on the goal, watermarking schemes
can be designed to be either robust, able to withstand typical signal transformations such as
compression or scaling, or fragile, designed to be sensitive to even the slightest modification, thus
serving as a tamper-detection mechanism. A fundamental distinction exists between visible and
invisible watermarks. While visible watermarks are used primarily for copyright notification (e.g.,
logos on images), invisible watermarks are central to applications involving content authentication
and secure communication. These invisible watermarks can be blind (i.e., recoverable without
access to the original media) and can serve various roles such as verifying content integrity,
tracking the source of unauthorized copies, and confirming the authenticity of digital media in
legal and forensic contexts. In recent years, watermarking has been explored as a proactive defense
mechanism against synthetic media manipulation, particularly deepfakes, which are increasingly
difficult to detect with the naked eye or even with traditional machine learning techniques. In this
context, watermarking serves not merely as a protective mechanism but as an active authentication
strategy, allowing stakeholders to verify whether content has been tampered with or artificially
generated.[76]

The system proposed by Qureshi, Megias, and Kuribayashi

The system proposed by Qureshi, Megias, and Kuribayashi represents a concrete and innova-
tive application of digital watermarking for deepfake detection, marking one of the first attempts
to combine active watermark-based authentication with blockchain immutability. In their 2021
study titled Detecting Deepfake Videos using Digital Watermarking [77], the authors developed a
hybrid method that embeds both robust and fragile watermarks into the audio stream of a video,
targeting manipulations such as voice impersonation and lip-syncing. The robust watermark,
constructed using Discrete Wavelet Transform (DWT) and Discrete Cosine Transform (DCT),
encodes metadata like the perceptual hash of the video ID and copyright information, allowing
consistent identification even after compression or noise addition. Conversely, the fragile water-
mark, derived from Mel-Frequency Cepstral Coefficients (MFCCs) and facial features extracted
via Multi-task Cascaded Convolutional Neural Networks (MTCNN), is designed to detect tam-
pering. Its sensitivity ensures that any alteration of the audio-visual correspondence disrupts
the embedded hash comparison, thereby signaling manipulation. To strengthen verifiability, all
watermark-related metadata are recorded in a blockchain ledger, ensuring immutability and de-
centralized integrity verification.

While this proof-of-concept demonstrates a powerful synergy between watermarking and blockchain
technologies, its real significance lies in the broader implications for scalable, trustworthy media
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authentication systems. The work highlights the potential of active detection mechanisms, em-
bedding verifiable information into content itself, over purely AI-based passive classifiers, which
risk obsolescence as generative models evolve. However, several critical considerations emerge
when envisioning large-scale deployment. First, the computational complexity of embedding and
extracting dual watermarks in every video segment raises questions about scalability and real-time
feasibility, particularly for platforms managing vast multimedia streams. The trade-off between
robustness and imperceptibility also remains delicate: higher embedding strength enhances resis-
tance to attacks but may degrade perceptual quality or introduce detectable artifacts.

Another challenge concerns dependence on the original embedding process. The method pre-
supposes that trustworthy content producers will watermark their media before distribution; yet,
widespread adoption hinges on user cooperation and compatible recording or editing devices. In
scenarios where only one modality, audio or video, is available, as in silent clips or voice-only
media, the system’s detection capacity might fail or produce false negatives, exposing its vulner-
ability to modality loss. From a threat-model perspective, the approach appears effective against
conventional manipulations like noise addition or compression, but it could be undermined by
deliberate adversarial strategies such as recompression, re-sampling, or spatial cropping that par-
tially remove or distort the watermark while preserving perceptual coherence. This highlights the
need for a more systematic evaluation of resilience under diverse and adaptive attack conditions.

Beyond technical performance, the study also raises important reflections about the role of
watermarking within a broader ecosystem of digital content authentication. Watermarking alone
cannot ensure full provenance or authorship verification; rather, it should be seen as one compo-
nent within a multilayered trust architecture that includes metadata signatures, secure capture
hardware, and verified provenance chains. In this sense, the authors’ integration of blockchain
is not merely an implementation choice but an essential conceptual step toward distributed ac-
countability, where watermark traces serve as locally verifiable evidence anchored in a global,
tamper-resistant ledger. This approach aligns with the emerging vision of multi-factor media
authentication, combining cryptographic, perceptual, and infrastructural safeguards, to counter
the escalating sophistication of synthetic content.

In summary, the contribution of Qureshi et al. lies not only in their technical implementa-
tion but in articulating a new paradigm for deepfake detection: one that embeds integrity into
the medium itself while leveraging distributed verification to preserve public trust in digital me-
dia. Despite its experimental nature and current limitations in scalability and generalization,
their work provides a crucial foundation for the development of hybrid, explainable, and resilient
systems for multimedia authentication in real-world contexts.

3.5.3 A comprehensive survey on robust image watermarking

More recent comprehensive reviews demonstrate that digital watermarking is increasingly viewed
not simply as a copyright protection tool but as a proactive component of media authentication
and integrity protection. For instance, the 2022 survey by Wan et al. [78] on robust image water-
marking offers a systematic appraisal of frequency-domain, transform-domain and deep-learning-
driven embedding methods, noting how traditional trade-offs (robustness versus imperceptibility
versus capacity) remain central to design decisions. This survey highlights that while many
embedding algorithms show good resistance to standard distortions (e.g., compression, additive
noise, geometric transforms), far fewer address real-world deployment challenges: high-volume
streaming, heterogeneous devices, varying network conditions, or adaptive adversaries. In other
words, although the embedding techniques are becoming more sophisticated, their scalability and
operational cost remain under-explored. Embedding and extracting watermarks at scale, in live
video platforms, or on devices with constrained compute and battery budgets, raises questions
about latency, throughput, and the user-experience impact (e.g., perceptual degradation or pro-
cessing overhead). Moreover, user adoption becomes more difficult if watermarks alter perceptual
quality, require custom capture devices, or rely on centralized infrastructures. These observations
suggest that the mere technical feasibility of watermarking does not automatically translate into
practical, large-scale deployment.

Beyond technical embedding considerations, the surveys also emphasise the need for a holistic
threat-model awareness and multi-layer authentication architectures. A more recent review on
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proactive forensic techniques with watermarking emphasises that passive detection (i.e., purely
AI-based classification of manipulated media) is increasingly vulnerable to adversaries who adapt
generative models or apply counter-forensic transformations. In contrast, proactive watermarking
provides embedded defence by carrying authentication markers within the media itself, enabling
detection of tampering even when generative models evolve. Yet this approach is not without
limitations: it presupposes that the watermark embedding is trusted, protected, and remains
accessible; if an attacker intentionally recrops, recompresses, temporally shuffles, or merely strips
the audio/video channel containing the watermark, the scheme may fail. Such vulnerability
emphasises the dependency on the original embedding environment, the single-modality risk (if
only audio or only video is watermarked, the other channel becomes a vector for attack), and
the cost of maintaining a secure chain from capture to embedding to verification. The surveys
therefore argue convincingly that watermarking must be integrated in a multifactor authentication
ecosystem, for instance combining hardware-trusted capture devices, metadata signing, secure
provenance chains and blockchain or ledger anchoring, rather than operating as a standalone
solution. This shift from isolated watermarking to systemic authentication highlights both the
promise and the caution required for real-world adoption.
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Project

4.1 Linking legal principles to technical implementation

Building upon the legal and ethical foundations outlined in the second chapter, this section
presents the practical implementation of a system designed to meet the technical requirements
emerging from current regulatory frameworks on artificial intelligence and deepfakes. The prin-
ciples enshrined in the AI Act, the Digital Services Act, and the recent Italian DDL on deepfake
offences, along with corresponding measures in the United States, China, and the United Kingdom
, reflect an increasing global recognition of the need for technological mechanisms capable of ensur-
ing trust, transparency, and accountability in digital content production and dissemination. These
legislative initiatives converge on several common objectives: guaranteeing that AI-generated ma-
terial can be identified and traced; preserving the integrity of digital evidence; and establishing
verifiable chains of custody that allow attribution and provenance to be demonstrated beyond
reasonable doubt.

While the normative landscape defines the what ( transparency, integrity, accountability, and
content provenance) it is the technical layer that defines the how. The effective realization of these
legal imperatives relies on infrastructures capable of authenticating data at its origin, detecting any
manipulation, and maintaining an immutable record of its lifecycle. This necessitates an interplay
between law and technology, where cryptographic and forensic principles are embedded within
digital architectures to transform abstract legal duties into verifiable computational procedures.

The proposed framework operationalizes these requirements through a combination of digital
watermarking, cryptographic hashing, and a blockchain-inspired recording mechanism. Digital
watermarking, implemented through the Least Significant Bit (LSB) technique, allows the in-
sertion of imperceptible identifiers within media files, enabling both transparency and origin
authentication. Cryptographic hashing guarantees that even the slightest unauthorized alteration
of the image or its metadata is immediately detectable, reinforcing the principles of integrity and
non-repudiation that underpin digital evidence admissibility. Finally, the blockchain simulation
module records each content instance and links it to the preceding one through hash chaining,
thereby creating an immutable, traceable ledger that upholds accountability and verifies content
provenance.

In this sense, the project represents a tangible synthesis between legal mandates and tech-
nological enforcement, demonstrating how abstract regulatory concepts can be transformed into
a concrete, verifiable framework for digital trust. By bridging the gap between compliance and
computation, the system provides a technical realization of the legal principles articulated in
the preceding chapters , ensuring that authenticity, integrity, and accountability are not only
prescribed by law, but also implemented and measurable within the digital domain.

The table below summarizes the correspondence between the discussed legal principles and
their respective technical implementations within the proposed framework, illustrating how regu-
latory requirements are concretely translated into system functionalities.
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Table 4.1. Correspondence between legal principles and technical implementations

Regulatory principle Derived technical require-
ment

Implemented mechanism

Transparency (AI Act,
DSA, China’s Measures)

Clear identification of AI-
generated or manipulated
content

Digital watermarking (LSB em-
bedding) for visible and hidden
content labeling

Accountability (AI Act,
Italian DDL, UK Online
Safety Act)

Attribution of content to a re-
sponsible entity and prevention
of unlawful dissemination

Blockchain-based structure
ensuring non-repudiation and
traceable authorship

Integrity of digital evi-
dence (EU Evidence Di-
rectives, U.S. Deepfakes
Accountability Act)

Detection of any alteration or
tampering of digital content

Cryptographic hashing of images
and associated metadata

Chain of custody
(Forensic and evidentiary
principles)

Immutable record of content life-
cycle and provenance verification

Sequential blockchain linking
through hash references

Content provenance
(AI Act, Chinese Deep
Synthesis Regulations)

Verification of content’s lawful
and authentic origin

Combination of watermark-
ing, metadata hashing, and
blockchain registration

4.2 Base idea of the project

In a digital era increasingly characterized by sophisticated forms of media manipulation, the
need for reliable mechanisms to verify the authenticity of digital content has become imperative.
This project was conceived as a response to this challenge, proposing an integrated solution
that combines digital watermarking and blockchain technology to ensure the authenticity and
traceability of images. The system aims to provide users with a verifiable method to determine
whether an image is genuine or has been manipulated, thus addressing growing concerns related
to deepfakes and AI-generated content.

The conceptual foundation of the proposed system rests on two complementary technologies.
First, digital watermarking enables the embedding of authenticity information directly into an
image at the moment of its creation or acquisition. This watermark acts as an intrinsic digital
signature, imperceptible to the human eye yet detectable by dedicated algorithms, thereby serv-
ing as tangible proof of originality and provenance. Second, blockchain technology is employed
to record immutable and verifiable data related to the watermarked image, such as its hash and
associated metadata. By storing this information on a decentralized ledger, the system ensures
transparency and tamper resistance: each image registration is cryptographically linked to pre-
vious entries, preventing retroactive modifications and guaranteeing the reliability of the stored
information.

From a conceptual standpoint, this dual approach aligns with recent developments in the state
of the art, particularly those discussed in the research by Hasan and Salah [74], Chan et al. [75],
and Qureshi, Megias, and Kuribayashi [77]. The proposed framework shares with these works the
goal of building a trust infrastructure for digital media, where authenticity is not merely inferred
through post-hoc analysis but guaranteed through cryptographic and infrastructural safeguards
established at the point of content creation.

Compared to Hasan and Salah’s blockchain-based framework, which focuses primarily on the
transparent tracing of video provenance, the present project adopts a similar philosophy but ap-
plies it to the domain of static imagery. It simplifies the complexity of multi-layer blockchain
interactions while maintaining the essential principles of transparency, immutability, and decen-
tralized verification. Unlike Chan et al.’s approach, which relies on neural feature extraction and
storage within permissioned blockchains, this system emphasizes accessibility and general appli-
cability, opting for a more lightweight implementation suitable for public or open environments.
This design choice enhances usability and scalability, albeit at the cost of more limited control
over access and governance compared to permissioned networks.
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Furthermore, the system conceptually resonates with the hybrid watermarking approach pro-
posed by Qureshi et al. [77], who combined robust and fragile watermarks with blockchain im-
mutability to detect manipulations in audiovisual content. Like their study, the present work
leverages watermarking as an active authentication mechanism, embedding verifiable information
within the media itself rather than depending solely on external verification. However, while
Qureshi et al. focused on dual watermarking for multimodal (audio - video) synchronization and
tampering detection, the present project concentrates exclusively on visual data, allowing for a
simpler yet effective implementation that demonstrates the feasibility of the concept in a specific
media type.

From a critical perspective, the proposed system can be regarded as a proof-of-concept that
bridges theoretical models and practical feasibility. Its main strength lies in the integration of two
complementary mechanisms, digital watermarking and blockchain registration, each addressing a
distinct aspect of the authenticity verification process: the first guarantees content integrity at
the perceptual level, while the second secures its traceability and provenance at the infrastruc-
tural level. Nevertheless, some of the challenges identified in the literature also apply here. For
instance, large-scale deployment may be hindered by computational overheads related to water-
mark embedding and extraction, as well as by user dependency on trusted capture or editing
environments. Moreover, as highlighted in recent surveys [78], the balance between robustness,
imperceptibility, and scalability remains delicate, particularly when considering real-time or high-
volume applications.

Despite these limitations, the project contributes to the ongoing research discourse by demon-
strating a tangible implementation of a hybrid authentication paradigm. It exemplifies how the
combination of watermarking and blockchain can provide a practical and explainable approach
to media authenticity verification, one that not only detects manipulation but also proactively
embeds trust and accountability into the content itself. In this sense, the system aligns with the
evolving vision of multi-factor and proactive authentication frameworks, representing a meaning-
ful step toward the realization of resilient, transparent, and scalable mechanisms for combating
digital media falsification.

4.3 Details of the project

4.3.1 Watermarking

The implementation of digital watermarking constitutes a pivotal element of the project, serving as
the mechanism by which images are marked with a unique identifier to attest to their authenticity
and provenance. Designing an effective watermarking system requires a careful choice between
different strategies, each with its own peculiarities in terms of robustness, invisibility, and ability
to detect manipulations. In general, the main types of digital watermarking can be classified as
fragile or robust.

Fragile Watermarking

This type is designed to be extremely sensitive to any modification of the image. Even minimal
alterations cause the watermark to “break” (become undetectable). It is ideal for verifying content
integrity and authenticity, allowing even small manipulations to be detected. Typically, these
watermarks are embedded in the Least Significant Bits (LSB) of the image. Its primary advantages
lie in its extreme sensitivity, which makes it excellent for detecting manipulations, and its relative
ease of implementation (for example through the LSB approach). However, its disadvantages are
evident: it does not withstand common compressions, filters, or resizing, making it less suitable
for content that needs to circulate or undergo standard editing operations.

Robust Watermarking

Unlike fragile watermarking, this variant is designed to survive common and expected modifica-
tions an image may undergo, such as JPEG compression, resizing, or the application of filters.
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It is particularly useful for protecting content intended for public circulation, ensuring that the
identifier persists even after non-malicious alterations. Embedding usually occurs in the trans-
form domain (for example DCT Discrete Cosine Transform, DWT Discrete Wavelet Transform,
SVD Singular Value Decomposition), distributing the watermark redundantly across the entire
image. Its advantages include resistance to common modifications and effectiveness in protecting
publicly distributed content. On the other hand, it presents disadvantages such as greater imple-
mentation complexity, less utility for granular integrity verification (as it survives modifications),
and potentially less invisibility.

Hybrid solution

This approach combines the strengths of the two previous methodologies, employing two separate
watermarks: a fragile one (e.g., in the LSB) for fine integrity verification and a robust one (e.g., in
the DCT domain) to ensure the persistence of the identifier. The advantages of a hybrid solution
lie in the effective compromise it offers, ideal in scenarios where both authenticity and content
persistence are desired. However, it requires greater design and balancing complexity, as well as
a more articulated extraction and verification logic.

My choice

My current choice has leaned towards fragile watermarking. This decision is primarily driven by
the time and resource limitations available for the prototype’s development. A fragile watermark
has proven to be the most accessible and quickest option to implement, while simultaneously
providing excellent capabilities for detecting even the smallest manipulations on the image, a
fundamental requirement for integrity verification.

While acknowledging the limitations of a purely fragile approach (particularly its suscepti-
bility to compression and filters), the possibility of integrating a robust watermark component
in the DCT domain is left as a future direction. The long-term goal is to converge towards an
optimal hybrid solution, combining the precise manipulation detection of fragile watermarking
with the resistance to common alterations of robust watermarking, thereby offering an even more
comprehensive and versatile authentication system.

In forensic and legal terms, this mechanism reinforces authenticity verification by offering
a built-in integrity indicator that complements hashing. The watermark therefore serves as a
preventive evidentiary safeguard, allowing experts to demonstrate whether and how a piece of
evidence was modified after its acquisition.

4.3.2 Hashing

Within the architecture of our image authentication system, the hashing process plays a role of
paramount importance. Hashing is a cryptographic technique that transforms an input of any
size (in our case, an image) into a fixed-length string of characters, commonly called a “hash”
or “digest”. The key characteristic of a good hashing function is that it is unidirectional (it’s
impossible to reverse engineer the input from the hash) and highly sensitive: even a minimal
modification in the input generates a completely different hash. This feature makes it ideal
for data integrity verification. In the context of our project, hashing is employed for two main
purposes, directly linked to the security and authenticity of the watermarked image: immutable
digital fingerprint and blockchain linkage.

Immutable digital fingerprint: the hash of the watermarked image serves as a unique and
unalterable “digital fingerprint”. Once calculated, this hash represents the exact state of the
image at that precise moment. If the image were to undergo even the slightest modification after
hashing, the recalculated hash would be different, immediately signaling a tampering.

Blockchain linkage: the image’s hash is the key element that is registered on the blockchain.
This linkage is fundamental: the blockchain, by its nature, guarantees the immutability of data
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once recorded. By associating the image’s hash with the blockchain, we create a verifiable and
tamper-proof reference for the image’s authenticity.

From a forensic standpoint, hashing plays a critical legal role: it guarantees data integrity and
allows investigators to verify that evidence remains unaltered and admissible from acquisition to
presentation in court. Each computed hash is stored within the blockchain-inspired log, creating
an immutable link between the digital artifact and its forensic record.

4.3.3 Blockchain

The integration of blockchain technology within this project constitutes a foundational element,
critical for ensuring the immutability and verifiability of information pertaining to image au-
thenticity. By its very nature, blockchain offers a distributed and decentralized ledger where
transactions are aggregated into “blocks” and cryptographically linked, rendering retrospective
alteration exceedingly difficult. The selection of a particular blockchain implementation approach
was subject to careful deliberation, weighing various options, each presenting its own set of ad-
vantages and disadvantages.

Option 1: true blockchain (Ethereum)

This approach entails leveraging a real, operational blockchain network, complete with its native
smart contract capabilities and full decentralization. Such a setup represents the gold standard
for secure and verifiable data management.

Advantages: A true blockchain offers the highest level of security due to its cryptographic
foundations and consensus mechanisms, rendering data virtually immutable once recorded. Its
decentralized nature provides unparalleled resistance to censorship and single points of failure,
making it an ideal choice for high-stakes applications requiring absolute trust and transparency.

Disadvantages: The complexities associated with configuring and deploying on a live blockchain
network are substantial, demanding deep technical expertise in blockchain architecture, smart
contract development, and network management. Furthermore, the operational costs can be sig-
nificant, particularly due to “gas fees” (transaction fees) that must be paid for every interaction
with the network. These costs can fluctuate based on network congestion, making budget plan-
ning challenging for extensive data registration. The time required for transaction finality can
also vary, impacting real-time application responsiveness.

More details about Ethereum

Ethereum is a decentralized, global, open-source platform that utilizes blockchain technology to
facilitate the creation and execution of smart contracts and decentralized applications (dApps).
Unlike traditional centralized systems controlled by a single entity, Ethereum is maintained and
operated by a vast, distributed network of “nodes”, individual computers run by volunteers across
the globe. This decentralized structure is key to its resilience against censorship, fraud, and down-
time, as it means no single entity can control the network or its data. Its native cryptocurrency
is Ether (ETH).

At its core, Ethereum functions as a programmable blockchain. This means developers can
build and deploy custom applications directly on its network. Transactions on Ethereum are
grouped into “blocks” and added to the blockchain, secured by cryptographic principles. Users
pay “gas fees” (in ETH) for every operation they perform on the network, such as sending ETH,
executing smart contracts, or interacting with dApps. These fees incentivize validators (previously
miners) to process transactions and secure the network. The network’s operations are governed
by smart contracts, self-executing agreements whose terms are directly coded into the blockchain,
eliminating the need for intermediaries.

With “The Merge” Ethereum transitioned from a Proof of Work (PoW) consensus mechanism
to Proof of Stake (PoS). Staking is a fundamental component of PoS. Instead of competing to
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solve complex mathematical puzzles (as in PoW), participants (known as validators) “stake” or
lock up a certain amount of their Ether (currently 32 ETH) into a smart contract. By doing so,
they become eligible to be chosen to validate new blocks of transactions. If they correctly validate
and add blocks, they are rewarded with more ETH. This mechanism not only secures the network
but also makes it significantly more energy-efficient compared to PoW.

Ether (ETH) can be purchased through various channels, primarily centralized cryptocurrency
exchanges like Coinbase, Binance, or Kraken. The process typically involves creating an account,
verifying your identity (KYC Know Your Customer), linking a payment method (such as a bank
account or debit card), and then placing a buy order for ETH. It can also be acquired through
decentralized exchanges (DEXs) or peer-to-peer transactions.

The value of Ether, like other cryptocurrencies, is influenced by several factors. Key deter-
minants include supply and demand dynamics in the market. Beyond speculation, its utility as
the “gas” for the Ethereum network means its value is tied to the network’s usage and adop-
tion. The growth of decentralized finance (DeFi), NFTs, and other dApps built on Ethereum
directly contributes to the demand for ETH. Furthermore, technological developments within the
Ethereum ecosystem (upgrades like sharding), market sentiment, regulatory news, and overall
macroeconomic conditions also play significant roles in determining its value. [79]

Option 2: online test blockchain (Testnet)

This alternative involves utilizing public online environments or simulators that emulate the
behavior of a real blockchain. Testnets are designed to allow developers to experiment with
blockchain functionalities without incurring real financial costs.

Advantages: testnets are typically free to use, eliminating financial risk during the devel-
opment and testing phases. They effectively simulate the real-world dynamics of a blockchain
network, allowing developers to gain practical experience with transaction processing, block min-
ing (or validation), and smart contract execution in a controlled environment. This provides a
valuable bridge between simulated and live environments.

Disadvantages: while emulating real networks, testnets are not designed for production
environments and therefore do not offer 100 percent security or guarantee of immutability in
the same way a mainnet does. They can be prone to resets, instability, or unexpected changes,
which might disrupt ongoing development. Furthermore, they may impose usage limitations (for
example transaction rate limits, data storage caps) that are not present on a live blockchain,
potentially hindering large-scale testing. Their public nature also means that data recorded on a
testnet is not private and could be subject to external scrutiny, though without the same level of
security guarantees as a mainnet.

Further Details on Testnets

Within the broader blockchain ecosystem, and particularly for platforms such as Ethereum, test-
nets (test networks) fulfill a pivotal role. A testnet is a dedicated and controlled blockchain
network meticulously designed for the sole purpose of testing and experimentation. It precisely
mirrors the functionalities of the main blockchain (mainnet) but operates within a risk-free en-
vironment, ensuring that no real funds or assets are subjected to risk during development and
testing activities.

In essence, a testnet serves as a “secure playground” or a “virtual sandbox” enabling developers
to innovate and experiment without the apprehension of real-world ramifications. On a testnet,
developers can deploy and interact with smart contracts and decentralized applications (dApps),
simulate transactions, and validate new features using test cryptocurrencies that hold no economic
value. This controlled environment is indispensable for identifying software bugs, optimizing code
for efficiency and performance, verifying the security posture of the codebase, and refining the
user experience. Such rigorous testing is conducted prior to the deployment of solutions on the
mainnet, where real financial value and critical assets are transacted. The strategic utilization of
testnets is thus integral to the blockchain development lifecycle, providing a robust and controlled
milieu for continuous innovation and validation.
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Option 3: simulated blockchain with CSV

This methodology involves creating a CSV (Comma Separated Values) file where each row func-
tions as a block with its integrity ensured by a cryptographic link to the preceding row via a
previous hash field. This approach prioritizes simplicity and ease of integration within a develop-
ment environment.

Advantages: this option is remarkably straightforward to implement, making it highly suit-
able for rapid prototyping and testing. The data stored in the CSV file is easily readable and man-
ageable, which streamlines debugging and development processes. Furthermore, its lightweight
nature ensures seamless compatibility with cloud-based development platforms such as Google
Colab, avoiding complex setup procedures.

Disadvantages: a significant drawback is the inherent lack of security; the CSV file itself is
not protected from direct manual modifications, undermining the core principle of immutability
that a true blockchain provides. Moreover, it is a centralized solution, devoid of the distributed
and decentralized characteristics that make genuine blockchains robust against single points of
failure or censorship. Consequently, it offers no intrinsic protection against external tampering
beyond the internal cryptographic link.

My choice

For the purposes of this project, a deliberate decision was made to adopt option 3: the simulation
of a blockchain via CSV files. This choice was primarily driven by practical considerations. The
utilization of a true blockchain would have introduced an unwarranted level of complexity and
infrastructural requirements that extended beyond the scope of a foundational prototype in an
academic setting. Moreover, to ensure simple and direct compatibility with the chosen develop-
ment environment, Google Colab, opting for an internal simulation was deemed the most effective
approach, circumventing the need for external test networks or complex blockchain integrations.

Despite the simulation not replicating the decentralization of a true blockchain, it crucially
preserves a fundamental aspect: the integrity of the chain. Each “block” (row in the CSV) is
cryptographically linked to its predecessor via the previous hash field, thereby effectively emulating
the chaining and immutability mechanisms characteristic of a genuine blockchain. This approach
allows for an effective demonstration of the concept of a tamper-proof ledger for digital image
authenticity, all while maintaining the simplicity and efficiency necessary for the development
and demonstration of the prototype. The specific structure of each “block” within our CSV-
based blockchain and the functions developed to manage it faithfully reflect the core principles of
blockchain technology, as further detailed in the following subsection.

To summerize, the blockchain-like log was designed to store transaction entries containing the
file hash, operation timestamp, and actor identification. Each log entry is linked to the previous
one through a hash pointer, ensuring immutability and sequential integrity. Such design guaran-
tees non-repudiation and supports forensic accountability, fulfilling one of the key requirements
of digital evidence handling: the ability to demonstrate who did what and when, in a way that is
legally verifiable.

4.4 Implementation

The theoretical framework and design choices outlined in the preceding sections were brought to
fruition through a practical implementation, primarily leveraging Python scripts within the Google
Colab environment. This setup offered a flexible and accessible platform for developing and testing
the core components of the image authentication system. The implementation was modular, with
distinct Python functions and scripts dedicated to each primary process: watermarking, hashing,
and blockchain simulation.
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4.4.1 Implementing the watermark

The implementation of the digital watermarking component was carried out using custom Python
scripts, specifically leveraging basic image manipulation techniques from the cv2 (OpenCV) and
numpy libraries. This approach directly implements the fragile watermarking strategy previ-
ously discussed, focusing on the Least Significant Bit (LSB) embedding method due to its sim-
plicity and effectiveness in detecting minute image alterations. The core of the watermarking
implementation consists of several interconnected functions: text to bin, bin to text(binary), em-
bed watermark(img, watermark text), extract watermark(img)

text to bin(text)

This utility function serves as the initial step in preparing the watermark. It takes a plain
text string as input (in the example “Foto originale by Giada”) and converts it into its binary
representation. This conversion is performed by first obtaining the ASCII (or Unicode) code
for each character using ord(c) and then formatting it into an 8-bit binary string (for example,
’A’ becomes ’01000001’). The resulting binary strings are then concatenated to form a single
continuous binary sequence.

bin to text(binary)

This function performs the reverse operation of text to bin. It takes a binary string, segments it
into 8-bit chunks, converts each chunk back into an integer (representing an ASCII code), and
then casts these integers back to their corresponding characters. This allows for the reconstruction
of the original textual watermark from the extracted binary data.

embed watermark(img, watermark text)

This is the central function for embedding the watermark. It first converts the watermark text into
a binary string using text to bin(). Crucially, a specific 16-bit binary marker, ’1111111111111110’,
is appended to the binary watermark. This unique end-of-message marker is vital for the extrac-
tion process, as it signals where the hidden message terminates.

The input image img is then flattened into a one-dimensional array using img.flatten(). This
allows for sequential pixel-by-pixel processing. The core LSB embedding logic is then applied: for
each pixel value in the flattened image, its least significant bit is set to 0 by performing a bitwise
AND operation with 254 (11111110 in binary).

Immediately after, the current bit from the binary wm (watermark) is inserted into this cleared
LSB position using a bitwise OR operation. This process modifies the LSB of each pixel to carry a
bit of the watermark data, making the changes visually imperceptible. The embedding continues
until all bits of the binary wm (including the end-of-message marker) have been inserted.

Finally, the modified flat array of pixel values is reshaped back into the original image dimen-
sions using flat img.reshape(img.shape), yielding the watermarked image.

extract watermark(img)

This function is designed to retrieve the hidden watermark from a watermarked image. Similar
to embedding, the watermarked image img is flattened. The function then iterates through each
pixel in the flattened image. For every pixel, it extracts its least significant bit by performing
a bitwise AND operation with 1 (00000001 in binary). This extracted bit is appended to a
binary data string. The loop continues to collect LSBs until the predefined end-of-message marker
(’1111111111111110’) is detected as the suffix of binary data. Once the marker is found, the 16
bits of the marker are removed, and the remaining watermark bin string is converted back into
readable text using the bin to text() function. The extracted textual watermark is then returned.

62



Project

Testing the functions

The implementation was tested within Google Colab, demonstrating the full cycle from loading an
example image (original.jpg), embedding a custom watermark text (“Foto originale by Giada”),
saving the watermarked image (foto watermarked.png), and successfully extracting the original
watermark from the saved image. This practical demonstration validates the effectiveness of the
chosen fragile LSB watermarking technique for the purpose of detecting image manipulations.

4.4.2 Implementing the hash

The process of generating a unique and immutable digital fingerprint for each watermarked image
is crucial for ensuring its integrity within the proposed authentication system. This is achieved
through a hashing mechanism, specifically employing the cryptographically secure SHA-256 (Se-
cure Hash Algorithm 256-bit) algorithm. The implementation leverages Python’s standard hash-
lib library, which provides a robust and efficient way to compute cryptographic hashes. The core
functionality for hashing is encapsulated within the generate hash Python function.

generate hash(image path)

This function takes the file path of a watermarked image as its input.

Binary File Reading: the function begins by opening the specified image file in binary read
mode (rb). Reading the file as raw bytes is paramount, as it ensures that the hash calculation
considers every single bit of the image data, making the resulting hash highly sensitive to even
the most minute modifications.

SHA-256 Calculation: the entire byte stream read from the image file is then passed to
the hashlib.sha256() method. This operation computes the SHA-256 cryptographic hash of the
binary data.

Hexadecimal Representation: the raw binary hash output by hashlib.sha256() is then
converted into a more human-readable hexadecimal string using the .hexdigest() method. This
64-character hexadecimal string serves as the unique and fixed-length identifier for the image.

Testing the function

The generate hash function is integrated into the workflow immediately after the watermarking
process. As demonstrated in the provided script, once an image has been watermarked (e.g.,
resulting in watermarked img), it is first saved to a temporary path (watermarked img.jpg). Sub-
sequently, this path is passed to generate hash to compute its unique SHA-256 value. This
generated hash value is then ready to be recorded on the blockchain (or its simulated equivalent),
acting as a verifiable proof of the image’s state at the time of its registration. Any future alteration
to the image would result in a different hash, instantly flagging potential tampering.

4.4.3 Implementing the blockchain

The simulated blockchain, chosen for its practical advantages in a Google Colab environment, is
implemented using standard Python libraries, primarily csv for data persistence, hashlib for cryp-
tographic linking, and datetime for timestamping. This implementation meticulously replicates
the core principle of cryptographic chaining, where each new “block” (represented as a row in a
CSV file) is linked to its predecessor via a hash. The blockchain implementation relies on three in-
terconnected Python functions: compute block hash(timestamp, user, image name, image hash,
prev hash), get last block hash(csv file), register on blockchain(image name, image hash, user =
“giada”, csv file=“blockchain.csv”
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compute block hash(timestamp, user, image name, image hash, prev hash)

This function is fundamental to the integrity of the simulated chain. It takes all the key data
points that constitute a single “block” as input: the timestamp of creation, the user who initiated
the transaction, the image name, the image hash (generated as described in the previous section)
and the prev hash of the preceding block. These elements are concatenated into a single string.
The function then calculates the SHA-256 hash of this combined string, providing a unique cryp-
tographic fingerprint for the entire current block. This block hash serves as the prev hash for the
subsequent block, forging the essential cryptographic link that binds the chain.

get last block hash(csv file)

This utility function is responsible for retrieving the block hash of the most recently added “block”
in the simulated blockchain. It reads the CSV file (blockchain.csv) and extracts the hash from the
last row. If the file does not exist or is empty, it returns a “genesis” hash (a string of 64 zeros),
which serves as the initial prev hash for the very first block, ensuring a consistent starting point
for the chain. This function is crucial for maintaining the sequential and cryptographic order of
the blocks.

register on blockchain(image name, image hash, user, csv file)

This is the primary function for adding new image authenticity records to the simulated blockchain.

Upon invocation, it first generates an ISO-formatted timestamp to record the exact moment
of registration. It then calls get last block hash() to retrieve the prev hash of the last valid block
in the chain.

Subsequently, it computes the block hash for the current block by calling compute block hash(),
incorporating all the relevant data for the new record. Finally, a record list containing all these
pieces of information (timestamp, user, image name, image hash, prev hash, and the block hash
of the current record) is appended as a new row to the specified CSV file (blockchain.csv). The
csv module handles the proper formatting and writing of this new entry.

This modular implementation, particularly the reliance on explicit prev hash and block hash
calculations stored within the CSV, effectively simulates the chain-like structure of a blockchain.
It ensures that any attempt to tamper with a previous record in the CSV would invalidate the
hash of subsequent blocks, thereby demonstrating the core integrity principle, even without the
full decentralization of a true blockchain network. The register on blockchain function is the
gateway through which verified image data enters the immutable ledger.

4.4.4 Verifying integrity of an image

The culmination of the watermarking, hashing, and blockchain simulation processes is the ability
to verify the authenticity and integrity of an image. This critical step confirms whether an image
has been altered since its initial registration on the simulated blockchain. The verification process
leverages the immutable record created by combining the image’s hash with the blockchain’s cryp-
tographic chaining. The primary function responsible for this verification is verify image integrity

verify image integrity(image path, blockchain csv)

This function is designed to check if the hash of a given image matches any hash recorded in the
simulated blockchain.

Current image hash calculation: the function first computes the SHA-256 hash of the im-
age path provided as input. This is achieved by calling the previously defined generate hash(image path)
function, ensuring that the integrity check is based on the exact state of the image at the time of
verification.

64



Project

Blockchain traversal: it then opens the blockchain.csv file (the simulated blockchain) in
read mode. It iterates through each row of the CSV, treating each row as a block in the chain.

Hash comparison: for every row read from the CSV, it extracts the image hash that was
originally stored. This stored hash is then directly compared with the current hash calculated
from the input image.

Outcome Reporting: if a match is found (stored hash == current hash), it signifies that the
image’s current state aligns with a registered record in the blockchain. The function then prints a
success message and displays the associated metadata from the blockchain record, such as the user
who registered it, the timestamp of registration, and the original image name. It then returns
True, indicating successful verification. If the loop completes without finding a matching hash, it
means the image’s current hash does not correspond to any registered entry, suggesting a potential
alteration or that the image has never been registered. In this case, a failure message is printed,
and the function returns False. This verify image integrity function provides a direct and tangible
demonstration of the project’s core utility: leveraging the combined power of watermarking,
hashing, and blockchain-like immutability to establish trust and detect unauthorized modifications
in digital images. The example usage, verify image integrity( watermarked img.jpg ), shows how
a previously watermarked and hashed image can be subjected to this integrity check.

4.5 Real world example of application

In order to validate the practical applicability of the proposed system, I conducted a test using a
realistic forensic dataset. Ideally, my objective was to obtain and work on a real image extracted
from a concluded legal case. However, accessing such materials proved to be extremely challenging
due to privacy, legal, and ethical constraints. For this reason, I turned to CFReDS, the Computer
Forensic Reference Data Sets, a well-established initiative designed precisely to provide openly
available, realistic forensic data for educational and testing purposes. The ultimate goal of this
test is to demonstrate a concrete use case of my system and to evaluate its effectiveness (or
potential weaknesses) when applied in a realistic scenario that approximates the dynamics of
a genuine forensic investigation. The broader objective of this application is to illustrate how
the combined use of watermarking techniques (to ensure traceability and data integrity) and
blockchain technology (to provide an immutable audit trail) can strengthen the integrity, chain
of custody, and overall verifiability of digital evidence in scenarios that are closely aligned with
real-world legal contexts.

4.5.1 CFReDS

The Computer Forensic Reference Data Sets (CFReDS) portal, managed by the National Institute
of Standards and Technology (NIST), provides a collection of well-documented digital forensic
datasets aimed at supporting tool testing, academic research, and professional training. These
datasets are publicly available and offer structured collections of realistic digital evidence artifacts,
complete with metadata, file structures, and timelines that accurately simulate real investigative
scenarios. By offering access to curated data that reflects typical digital crime scenes, CFReDS
represents an invaluable resource in digital forensics education and validation. Most importantly,
it circumvents the ethical, legal, and privacy-related obstacles that often prevent the use of real
case data in academic or testing contexts, making it an ideal environment for safely experimenting
with forensic procedures and technologies. [80]

Chosen dataset: Data Leakage Case

For this project, I selected the Data Leakage Case dataset, available at the CFReDS portal under
the linked url. This dataset is specifically designed to replicate a corporate scenario involving
unauthorized data exfiltration through removable storage devices. It includes a wide range of
artifacts such as USB access logs, documents, and media files that simulate the type of digital
evidence typically encountered in investigations of insider threats, intellectual property violations,
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Figure 4.1. CFReDS portal

or breaches of confidentiality agreements. Among these artifacts, particular attention was given
to disk image files containing traces of user activities and file transfers, which enabled the simu-
lation of a full forensic workflow, from evidence acquisition and metadata reconstruction to the
integrity verification of exfiltrated data. The realistic context provided by this dataset served as
an ideal foundation to test the effectiveness of the proposed system under conditions that closely
approximate a real-world forensic case. [81]

Figure 4.2. Data Leakage Case - CFReDS

4.5.2 Autopsy

To extract and analyze relevant artifacts from the dataset, I employed Autopsy, a widely used
open-source digital forensics platform. Autopsy provides a comprehensive interface for navigating
through forensic images, identifying user activities, recovering deleted files, and correlating data
across various sources. Thanks to its integration with The Sleuth Kit and its support for a wide
range of forensic modules, Autopsy enables a structured and methodical examination of digital
evidence.
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Using Autopsy, I conducted an in-depth analysis of the USB evidence file, specifically a .E01
forensic disk image. By mounting and exploring the volume through Autopsy’s graphical interface,
I was able to recover several user-created files, including images, documents, and logs. I selected
one particular image file for this simulation, exported it from the forensic container, and saved
both the file and the associated metadata for further analysis. Screenshots of the Autopsy interface
showing the mounted image, the file hierarchy, and the extracted image’s metadata are included
in figures below.

Figure 4.3. Autopsy view

Figure 4.4. Autopsy extraction - csv of image33 info

4.5.3 Practical simulation - real forensic scenario

The system was then tested in a simulated forensic environment reproducing the process of
evidence collection, registration, and validation. The scenario consisted of an image acquisi-
tion phase, hash computation, watermark embedding, and the recording of all actions in the
blockchain-inspired log. When the image was subsequently altered, both the hash and the wa-
termark detected the tampering, while the blockchain log maintained a transparent record of
every operation. From a legal standpoint, the combined use of hashing, fragile watermarking, and
blockchain-inspired logging provides a verifiable chain of custody consistent with digital forensic
standards, ensuring evidentiary reliability in judicial contexts. This integrated approach estab-
lishes a technically sound chain of evidence, where each procedural step, acquisition, processing,
storage, and verification, is cryptographically and temporally anchored, allowing full reconstruc-
tion of the evidence lifecycle if required by a court.

In particular, will simulate these scenarios: one has access to an original image from the
company through the use of a disk image into a USB (for example image33 reported above)
and modifies it, later divulging the modified one; one has access to the original csv of metadata
regarding the original image and modifies it (for example by modifying the location field), later
divulging it; one has access to the watermarked image and modifies the embedded watermark,
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Figure 4.5. Autopsy - image33

later divulging it. All these scenarios are included into my python scripts and detected through
specific verification functions reported on the programmer manual.

The implemented code provides a comprehensive framework for ensuring the integrity and
authenticity of digital images through a combination of watermarking, metadata hashing, and
blockchain-based logging. The system is designed to detect tampering attempts by verifying the
consistency of image content, metadata, and embedded watermarks. Below, the major compo-
nents of the implementation are discussed in detail.

Binary Conversion for Watermarking

To embed and extract watermark information, the system first converts textual data into binary
format. The text to bin() function transforms each character of a string into its 8-bit binary
equivalent, while bin to text() performs the inverse operation. These conversions are fundamental
for embedding the watermark bit-by-bit into the image.

Watermark Embedding and Extraction

The watermarking mechanism uses a basic Least Significant Bit (LSB) technique. The function
embed watermark() modifies the LSB of each image pixel to encode the binary watermark, which
includes a custom delimiter (’1111111111111110’) to signal the end of the embedded message.
This watermark is typically derived from concatenated metadata and a user-defined tag. The
extract watermark() function retrieves the watermark by reading the LSBs until the delimiter is
encountered, and then converts the binary data back into text.

Cryptographic Hashing

To ensure data integrity, the code utilizes SHA-256 hashing: the generate hash() function com-
putes the SHA-256 hash of a file (in the example usage, an image); the hash metadata() function
creates a hash of metadata values by concatenating them in a standardized format before hashing.
These hashes act as unique digital fingerprints and are later used for verification and logging.

Metadata handling

Metadata associated with each image is stored in a CSV file. The function get metadata from
csv() (and its variant extract metadata from csv()) retrieves metadata fields such as filename,
creation time, size, MIME type, and hash. This metadata is concatenated into a single string for
hashing and embedding as a watermark.

Blockchain-based logging

A simulated blockchain is implemented using CSV as a lightweight append-only ledger. Each
block contains: a timestamp, username, image name, image hash, metadata hash, watermark
hash, previous block hash, current block hash. The function register on blockchain() computes
the current block’s hash using all the above fields and appends it to the ledger. The function get
last block hash() retrieves the hash of the last block to maintain blockchain continuity.
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Verification procedures

Three types of verification are implemented:

Image verification (verify image): Checks if the current hash of the image matches the
hash stored in the blockchain.

Watermark verification (verify image with wm): Verifies the integrity of the water-
marked image by comparing hashes.

Metadata verification (verify metadata): Confirms that the current metadata matches
the originally logged metadata, using hash comparison.

Each of these verification functions prints a success or failure message depending on whether
the expected values match the current ones, thereby detecting any unauthorized alterations.

Tampering simulations

Three attack scenarios are simulated to test the robustness of the system:

Attack 1 - image modification: An image is tampered by modifying pixel values and
applying a Gaussian filter. The resulting image fails the integrity check due to a mismatch in
hashes.

Attack 2 - fake watermark insertion: A forged watermark is embedded into the image,
which fails the watermark hash comparison during verification.

Attack 3 - metadata tampering: The location field in the metadata CSV is maliciously
modified. The altered metadata hash does not match the blockchain record, triggering a detection
alert.

Each attack confirms the system’s ability to identify unauthorized changes to image content,
watermark, or metadata.

Screenshots of functions’ outputs are reported below and all the original scripts ar reported
into the Porgrammer Manual.

Figure 4.6. outputs - part 1
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Figure 4.7. outputs - part 2
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Results

The scripts developed throughout this research proved to be effective tools for the detection and
authentication of deepfake content. After extensive testing on a variety of images, subjected to
different types of manipulation, the implemented code consistently demonstrated the ability to
identify anomalies and to distinguish authentic images from manipulated ones.

Central to this result was the combined use of watermarking and hashing techniques. Their
integration proved particularly valuable, as it enabled not only the detection of alterations applied
to the original image but also the identification of modifications targeting the embedded metadata
stored within the watermark itself. This dual-layer approach therefore strengthened the detection
process, offering an additional safeguard against tampering.

Another key element of the system was the blockchain-inspired component. Although simu-
lated through the use of a CSV file, its structure was carefully designed to replicate the functioning
of real blockchain systems. By ensuring that each entry contained both the hash of the current
block and the hash of the previous one, the integrity of the chain was preserved. This mech-
anism allowed any unauthorized insertion or deletion to be detected, thereby guaranteeing the
authenticity of the recorded information and reinforcing the overall reliability of the tool.

The solution was tested in two complementary scenarios: with online images and with images
extracted through Autopsy from disk images available on the CFReDS portal. This methodology
provided a complete and realistic evaluation environment, as it replicated the practical condi-
tions of digital investigations, including the management of authentic images together with their
metadata derived from forensic disk images.

Taken together, these findings suggest that the proposed tool can serve as a relevant contribu-
tion to addressing the emerging challenges posed by the spread of deepfake content. By enabling
verification of multimedia authenticity and detection of tampering, the system is able to recognize
three distinct categories of manipulation: direct alterations to the image (such as pixel modifica-
tions or filter applications), manipulations of the embedded watermark, and modifications of the
associated metadata (including creation date, location, or author details).
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Conclusions

This research has demonstrated the potential of combining watermarking, hashing, and blockchain-
inspired mechanisms to address the pressing challenge of deepfake detection and authentication.
The tool developed during this work proved effective in identifying manipulations and in reliably
distinguishing authentic images from those that had been tampered with. The results obtained
through testing with both online images and forensic disk images underline the robustness of the
proposed approach and its relevance in scenarios that closely resemble real investigative contexts.

Beyond its immediate performance, the project highlights an important contribution in bridg-
ing theoretical concepts with practical applications. By simulating blockchain structures and
integrating forensic techniques such as metadata analysis, the tool not only confirmed its ex-
pected functionality but also offered a proof of concept that can serve as a foundation for further
developments. Its capacity to detect different layers of manipulation, whether at the image, wa-
termark, or metadata level, represents a meaningful step forward in strengthening digital content
verification in the face of the growing risks associated with deepfakes.

From a broader perspective, the project also positions itself within the current state of the art
on media authentication methods, particularly in relation to blockchain-based and watermarking
approaches. Compared to existing works such as those by Hasan and Salah [74], Chan et al. [75],
and Qureshi, Megias, and Kuribayashi [77], the system presented in this thesis can be viewed as a
simplified yet operational implementation that translates theoretical frameworks into a practical
prototype. While previous studies have largely remained at the conceptual or simulation stage,
demonstrating the feasibility of blockchain and watermarking for provenance tracking, the present
work consolidates these principles into an integrated tool specifically designed for image authenti-
cation. It thus provides empirical validation to the idea, discussed extensively in recent literature,
that authenticity verification should move from post-hoc analysis toward proactive embedding
and traceability mechanisms. At the same time, the limitations identified in the literature, such
as scalability, computational overhead, and dependence on trusted capture environments, also
emerge here, confirming that the transition from controlled experiments to real-world deployment
remains a central challenge for this research domain. In this sense, the project stands as an in-
termediate step between theoretical innovation and operational maturity, contributing practical
insights that can inform future implementations of blockchain-based watermarking systems.

From a practical and forensic standpoint, this work also demonstrates potential applications
within legal and evidentiary domains. In a time when manipulated digital content can undermine
judicial proceedings, infringe upon intellectual property rights, or damage personal and corporate
reputations, the ability to authenticate multimedia evidence is of paramount importance. The
proposed tool could therefore assist investigators, legal practitioners, and judicial authorities in
verifying the authenticity of digital evidence, ensuring that content presented in court or in dispute
resolution processes has not been altered or maliciously fabricated.

While the system has already shown encouraging results, future research could expand upon
these foundations in several meaningful directions. A natural progression would be the integration
of a fully deployed blockchain infrastructure, rather than a simulated version. Real blockchain
networks, whether public or private, would offer stronger guarantees of integrity and immutability,
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ensuring that once data are stored, no actor, internal or external, could modify or delete them
without detection. This enhancement would not only increase the robustness of the system but
also align it more closely with industry standards for secure data storage and evidence preserva-
tion, thereby making the tool suitable for real-world deployment in sensitive environments.

Another significant area for development lies in the design of a dedicated user interface. At
present, the tool operates as a proof of concept, primarily intended for academic experimentation.
By extending it into a fully functional application equipped with an intuitive graphical interface,
the system could become accessible to a wider range of professionals, including digital forensics
investigators, law enforcement agencies, and legal practitioners who may not possess advanced
technical expertise. Such an interface could provide functionalities such as case management,
automated reporting of detection results, and visual representations of anomalies found within
images and metadata. This would greatly enhance the usability of the tool, transforming it from
a research prototype into a practical and operational solution.

Equally important is the possibility of testing the system with authentic evidentiary materials
in real forensic casework. While experiments conducted in this research have relied on online
images and forensic disk images from publicly available datasets, applying the tool to actual legal
investigations would constitute a decisive step in validating its effectiveness. Real-world forensic
materials often present additional challenges, such as degraded file quality, partial data corruption,
or chain-of-custody requirements, that cannot always be replicated in controlled testing environ-
ments. Engaging with such cases would not only test the technical reliability of the system but
also its compliance with evidentiary standards required in judicial proceedings. Successfully ad-
dressing these challenges would allow the tool to evolve into a credible support mechanism for
courts, particularly in cases involving digital evidence, intellectual property disputes, or content
authenticity verification.

In conclusion, the outcomes of this thesis confirm the relevance and effectiveness of the pro-
posed approach, while also paving the way for further improvements and applications. The work
conducted demonstrates how the integration of watermarking, hashing, and blockchain-inspired
mechanisms can contribute to the urgent task of verifying the authenticity of multimedia content
in an increasingly digital and interconnected world. Far from being a purely academic exercise,
this research represents a concrete step toward the development of practical tools that can be
deployed in real investigative and operational contexts.

The significance of this work extends beyond the technical dimension, as it addresses challenges
that are inherently societal and legal. The proliferation of deepfakes and manipulated media
poses not only a technological problem but also a threat to the credibility of digital evidence, the
protection of intellectual property rights, and the preservation of trust in information systems.
By offering a method for detecting manipulations at multiple levels, images, watermarks, and
metadata, this thesis contributes to the construction of frameworks that could assist courts,
investigators, and regulators in safeguarding the integrity of digital evidence. In this sense, the
research aligns with broader efforts to ensure that the justice system can adapt to the complexities
of the digital era, where the authenticity of information is increasingly called into question.

Ultimately, the work presented here should be viewed as both a foundation and a catalyst.
It establishes that reliable deepfake detection mechanisms can be implemented in practice and
demonstrates their feasibility in a forensic context, while also highlighting avenues for refinement
and expansion. At the same time, it underscores the need for continued interdisciplinary collab-
oration, bridging computer science, cybersecurity, and law, to ensure that technological solutions
are not only effective but also aligned with legal standards and societal expectations. The authen-
tication and protection of digital content in the era of deepfakes is, without doubt, one of the most
pressing challenges of our time. By addressing this issue through the development and evaluation
of a working prototype, this thesis contributes to the pursuit of solutions that can strengthen
digital trust, support the rule of law, and ultimately protect individuals and institutions from the
risks associated with the manipulation of digital information.

In conclusion, this study demonstrates that the legal principles governing the responsible use
of artificial intelligence, such as accountability, transparency, integrity, and authenticity, can be
effectively translated into concrete technical mechanisms. Through the integration of digital wa-
termarking, cryptographic hashing, and blockchain-based traceability, the proposed framework

73



Conclusions

provides a tangible response to the normative requirements emerging from instruments such as
the AI Act, the Digital Services Act, and national and international regulations addressing the
phenomenon of deepfakes. By ensuring the authenticity, provenance, and integrity of digital con-
tent, the system aligns with the core objectives of contemporary AI governance: to foster trust,
security, and accountability in the digital environment. This convergence between law and tech-
nology not only reinforces the evidentiary reliability of AI-generated media but also illustrates how
technical design can become an enabler of legal compliance and ethical responsibility. Ultimately,
the project highlights the potential of combining legal foresight with technological innovation to
build resilient mechanisms capable of protecting individuals and society from the risks associated
with synthetic content. It therefore contributes to the broader debate on how emerging technolo-
gies can be governed through verifiable, transparent, and ethically grounded solutions, paving the
way for future developments in both legal regulation and technical implementation of trustworthy
AI systems.
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User Manual

This chapter provides a comprehensive user manual detailing the experimental workflow followed
during the development of the proposed deepfake detection pipeline. The steps presented below
outline the full process, from downloading forensic disk images to applying detection scripts on
extracted images. Each phase is accompanied by explanatory details to ensure reproducibility of
the results.

A.0.1 Technical Requirements

To successfully execute the deepfake detection pipeline, the following requirements must be met.

Hardware (minimum)

• CPU: Dual-core processor (x86 64 architecture)

• RAM: 8 GB

• Disk space: 5 GB available

• GPU: optional (recommended for large datasets)

Hardware (recommended)

• CPU: Quad-core or higher

• RAM: 16 GB

• GPU: NVIDIA CUDA-enabled GPU (e.g., Tesla T4, RTX series)

Software Environment

• Operating System: Windows, macOS, or Linux (tested on Windows 11 and Google Colab
Linux VM)

• Python: Version 3.10

• Google Account: required to use Google Colab

A.0.2 Required Input Files

The pipeline requires two input files, both extracted using Autopsy:
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1. Image File

• Format: JPEG or PNG

• Recommended resolution: up to 4K for reasonable processing time

• File naming: any name, but must match the name in the CSV metadata

2. Metadata CSV

• Encoding: UTF-8

• Separator: comma

• Required columns:

– filename (string) matching the image file name

– timestamp (ISO 8601 format)

– size (optional)

– location (optional)

– sha256 (string) checksum of the file

– mime type (optional)

– extensions (optional)

A.0.3 Accessing the CFReDS Platform and Selecting a Case

The first step involves accessing the Computer Forensics Reference Data Sets (CFReDS) portal,
provided by the National Institute of Standards and Technology (NIST). This platform offers a
variety of realistic forensic challenges and datasets that can be used for academic and experimental
purposes.

Navigate to the CFReDS official website: CFReDS official website

Browse through the available forensic scenarios and select a case of interest. In this project, a
disk image containing multimedia and user data was chosen in order to simulate a digital forensic
investigation involving image evidence.

Download the relevant disk image file, which is typically provided in E01, AFF, or raw formats.

A.0.4 Downloading and Installing Autopsy

Once the disk image has been obtained, the next step is to analyze it using Autopsy, a well-known
open-source digital forensics platform.

Visit the official Autopsy website: Autopsy Download official website

Choose the version compatible with your operating system (Windows, macOS, or Linux).

Download the installer and follow the installation instructions.

A.0.5 Creating a New Autopsy Case and Importing the Disk Image

To start the forensic investigation:

Open Autopsy and click on ”Create New Case”

Choose a name and location for your project

Proceed through the wizard and select ”Add Data Source”

Select the downloaded disk image file as your input (E01 or raw format)

Autopsy will automatically parse and index the file system, recovering partitions, files, and
metadata.
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Figure A.1. CFReDS portal

Figure A.2. CFReDS portal - data leakage case

A.0.6 Exploring the Disk Image and Extracting Evidence

Autopsy presents the file hierarchy of the disk image in a user-friendly interface. Navigate through
the folders and preview files directly. In this experiment, the goal was to extract a JPEG image of
interest from the disk image. Upon identifying the image, export it using the right-click ”Extract
File(s)” function. Additionally, extract the corresponding metadata, which can be exported as a
CSV file containing EXIF information and file attributes (e.g., creation date, modification date,
GPS data if available)

A.0.7 Running the Analysis in Google Colab

To execute the detection pipeline in Google Colab:

1. Sign in with a Google Account and open Google Colab.

2. Create a new notebook.
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Figure A.3. Autopsy - downloads

Figure A.4. Autopsy - step1

3. (Optional) Mount Google Drive to store files and results:

from google.colab import drive

drive.mount(’/content/drive’)

4. Upload the following files to the Colab environment:

• Extracted image file (JPEG/PNG)
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Figure A.5. Autopsy - step2

Figure A.6. Autopsy - step3
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Figure A.7. Autopsy - step4

Figure A.8. Autopsy - step5
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Figure A.9. Autopsy

Figure A.10. Autopsy - new case

• Metadata CSV file

• Analysis scripts (as described in the Programmer’s Manual)

5. Execute the notebook cells in the following order:

(a) Install dependencies

(b) Load configuration and file paths

(c) Run preprocessing

(d) Run detection

6. Save or download results before ending the session.

Note: Google Colab sessions have a limited lifetime (typically 12 hours for GPU runtimes).
Processing time for a single image + CSV is usually less than 1 minute.

81



User Manual

Figure A.11. Autopsy project

Figure A.12. Autopsy project - csv

A.0.8 Troubleshooting

• FileNotFoundError: Ensure the file name in the CSV exactly matches the uploaded
image file.

• PermissionError when mounting Google Drive: Re-run the mount command and
allow Colab access to your Google account.

• Dependency errors: Check the requirements.txt file and re-run the installation cell.

• Slow performance: Enable GPU runtime in Colab (Runtime -> Change runtime type

-> GPU).
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Figure A.13. Google Collab project
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Programmer Manual

B.0.1 Introduction

The present Programmer Manual serves as a comprehensive technical reference for the implemen-
tation of the project. Its primary purpose is to provide a clear and structured overview of the
system’s architecture, its core components, and the underlying logic that governs their interaction.

This document is intended for developers and technical contributors who wish to understand,
maintain, or extend the implemented solution. It not only presents the source code listings, but
also describes their design rationale, modular organisation, and interdependencies.

In addition, the manual details the main data structures, algorithms, and public interfaces,
accompanied by configuration guidelines, testing procedures, and best practices. By offering both
high-level architectural insights and low-level implementation details, it aims to ensure that the
system can be efficiently understood, reliably maintained, and easily adapted for future enhance-
ments.

B.0.2 Architecture Overview

The system architecture consists of four primary components working in synergy to ensure the in-
tegrity and traceability of images through watermarking, hashing, and registration on an append-
only ledger simulated as a blockchain. The data flow is as follows:

1. Original Image: The process begins with the acquisition of the original image as input.

2. Watermarking: A unique textual identifier is converted into a binary representation and
embedded into the image using the Least Significant Bit (LSB) technique, producing a
watermarked image.

3. Hashing: Cryptographic SHA-256 hashes are generated for the original image, its associ-
ated metadata (extracted from CSV files), and the watermarked image.

4. Blockchain Simulation: All relevant information, including timestamp, user identity,
image name, and the respective hashes, is concatenated and hashed to produce a block
hash. This block is then appended to a CSV-based ledger, simulating an immutable and
append-only blockchain.

This workflow enables robust verification of the image’s authenticity, the integrity of the
embedded watermark, and the consistency of metadata, thus allowing the detection of any unau-
thorized alterations or tampering attempts.
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Module Responsibility Primary Files
Watermarking Embedding and extracting LSB watermarks watermark.py
Hashing Computing SHA-256 hashes for files and metadata hashing.py
Metadata Reading and exporting metadata from CSV metadata.py
Blockchain Simulating an append-only ledger with CSV-based block storage blockchain.py

Table B.1. Overview of main modules, their responsibilities, and associated files

B.0.3 Main Modules

Detailed usage examples and implementation specifics for each module are provided in the ac-
companying manual.

B.0.4 Algorithms

Watermark Embedding and Extraction

Purpose To embed a textual identifier into an image by converting it to binary and inserting
it into the least significant bits of pixel values, enabling subsequent retrieval for verification.

Pseudocode

function embed_watermark(image, watermark_text):

binary_wm = text_to_binary(watermark_text) + terminator_sequence

flatten image pixels into a one-dimensional array

for each pixel in array:

if more watermark bits remain:

replace pixel’s least significant bit with next watermark bit

else:

break

return reshaped image

function extract_watermark(image):

flatten image pixels into a one-dimensional array

binary_data = ’’

for each pixel in array:

append pixel’s least significant bit to binary_data

if binary_data ends with terminator_sequence:

break

remove terminator from binary_data

return binary_to_text(binary_data)

Complexity

• Time: O(n), where n is the number of pixels, as the image is traversed once.

• Space: O(n) to store the flattened pixel array.

Limitations

• The watermark capacity is limited by the image size.

• LSB watermarking is sensitive to image processing operations such as compression or resiz-
ing.

• The terminator sequence is essential to mark the end of the embedded data.
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Hashing

Purpose To generate cryptographic SHA-256 hashes of the image file, the embedded water-
mark (via the watermarked image), and the associated metadata to guarantee data integrity and
uniqueness.

Pseudocode

function generate_hash(file_path):

open file in binary mode

read entire content

return sha256 hash of content

function hash_metadata(metadata_dict):

concatenate metadata fields in sorted key order, separated by a delimiter

return sha256 hash of the concatenated string

Complexity

• Time: O(m), where m is the size of the file or metadata content.

• Space: O(m) to load the file or metadata into memory.

Limitations

• The correctness of the hash depends on the integrity of the original file.

• Metadata must always be serialized in a consistent manner to ensure reproducible hashes.

Blockchain Simulation (Append-only Ledger)

Purpose To simulate an immutable ledger where each block stores a timestamp, user identity,
image name, hashes of the image, metadata, watermark, the previous block’s hash, and its own
hash.

Pseudocode

function compute_block_hash(timestamp, user, image_name, image_hash, metadata_hash, wm_hash, prev_hash):

concatenate all fields with a delimiter

return sha256 hash of the concatenated string

function register_on_blockchain(image_name, image_hash, metadata_hash, wm_hash, user):

timestamp = current UTC time

prev_hash = retrieve last block hash or a default if none exists

block_hash = compute_block_hash(...)

append [timestamp, user, image_name, image_hash, metadata_hash, wm_hash, prev_hash, block_hash] as a new record to the CSV ledger

Complexity

• Time: O(1) for writing a new block, O(n) to read the last block hash (where n is the
number of blocks).

• Space: Grows linearly with the number of blocks.
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Limitations

• The ledger is local and not distributed, lacking the decentralization features of true blockchains.

• The CSV file is susceptible to tampering unless protected by external measures such as
backups or physical access controls.

B.0.5 Implementation and Testing

This section presents the practical application and testing of the previously described functions
within the image integrity verification system. The testing code was developed in Python, lever-
aging libraries such as OpenCV for image processing, CSV for metadata handling, and hashlib for
cryptographic hashing. The objective is to embed watermarks, generate hashes, register the data
on the blockchain simulation, and validate the system’s robustness against different tampering
scenarios.

Setup and Initial Data Loading

The testing procedure begins by defining the relevant file paths, including the original image, the
output watermarked image, a tampered image placeholder, and the CSV file containing metadata.
The original image is loaded using OpenCV, and a verification message confirms successful loading:

img = cv2.imread(image_name)

if img is None:

print("Error loading image.")

else:

print("Original image loaded successfully.")

Metadata associated with the image is extracted from a CSV file by matching the image
filename. If no metadata is found, the program raises an exception to ensure data consistency.

Watermark Embedding and Hashing

The extracted metadata fields are concatenated into a single textual string, augmented with an
identifying watermark phrase. This string is then embedded into the original image using the
watermarking function based on Least Significant Bit manipulation. The watermarked image is
saved to disk:

watermarked_img = embed_watermark(img, watermark)

cv2.imwrite(watermarked_path, watermarked_img)

Subsequently, SHA-256 hashes are computed for the original image file, the concatenated
metadata string, and the watermarked image, ensuring integrity and traceability of each element:

original_hash = generate_hash(image_name)

metadata_hash = hashlib.sha256(metadata_text.encode()).hexdigest()

watermarked_hash = generate_hash(watermarked_path)

Blockchain Registration and Verification

The computed hashes along with the image name and user identifier are registered on the simulated
blockchain ledger to maintain an immutable record:

register_on_blockchain(image_name, original_hash, metadata_hash, watermarked_hash, user="giada")
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Verification functions are then invoked to compare the current state of images and metadata
against their original, expected states. This includes checks on the original image, the water-
marked image, and the metadata:

verify_image(image_name, image_name)

verify_image_with_wm(watermarked_path, image_name)

verify_metadata(metadata_csv, image_name)

Simulated Attack Scenarios

To evaluate the robustness of the system, three types of tampering attacks are simulated and
detected:

Attack 1: Modification of the Original Image A tampered image is created by altering
a pixel region with a red square and applying a Gaussian blur filter. The verification function
detects inconsistencies relative to the original image. The tampered image is displayed using
Matplotlib to illustrate the visual impact of the attack:

tampered_img[50:100, 50:100] = [0, 0, 255] # red square

tampered_img = cv2.GaussianBlur(tampered_img, (9, 9), 0) # blur filter

cv2.imwrite(tampered_path, tampered_img)

verify_image(tampered_path, image_name)

Attack 2: Forged Watermark Insertion An image is created by embedding a fake water-
mark string, simulating an attacker’s attempt to mislead the verification system. The verification
function confirms the watermark does not correspond to the legitimate metadata:

img_with_fake_watermark = embed_watermark(img, "Fake watermark inserted by attacker")

cv2.imwrite(fake_path, img_with_fake_watermark)

verify_image_with_wm(fake_path, image_name)

Attack 3: Metadata Tampering The metadata CSV file is duplicated and then modified by
overwriting a specific field for the tested image. Verification reveals discrepancies in the metadata
hash compared to the original registration:

shutil.copy(metadata_csv, metadata_csv_modified)

# modify metadata entry for the image

verify_metadata(metadata_csv_modified, image_name)

Summary

This testing suite demonstrates the end-to-end capability of the system to embed, verify, and
secure images and their associated metadata against various manipulation attempts. The modular
structure enables straightforward extension and adaptation to additional tampering vectors and
image formats.
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