{

\\
\\ 1859 s

\\.\ %d‘

POLITECNICO DI TORINO

Master’s degree course in Cybersecurity

Master’s Degree Thesis

Post-Quantum IPsec Gateway: Policy
Decision Point

Supervisors
Prof. Antonio Lioy
Dott. Flavio Ciravegna

Candidate
Simone SAMBATARO

ACADEMIC YEAR 2024-2025

Summary

This thesis investigates how to protect existing IPsec-based networks from emerging quantum
threats without requiring an immediate upgrade of all endpoints. It focuses on environments
where legacy systems and operational constraints make a direct migration to post-quantum cryp-
tography difficult, and instead introduces a policy-driven gateway that can offer quantum-resilient
protection at the network edge, working as a translator between the two ”worlds”. The work first
reviews the impact of quantum computing on contemporary cryptography, the NIST PQC stan-
dardisation process, and the design of IPsec, IKEv2 and strongSwan, in order to motivate the
need for crypto-agility and centrally managed cryptographic policies.

Building on this background, the thesis proposes a post-quantum IPsec gateway that termi-
nates classical IKEv2 tunnels on one side and re-establishes connectivity towards post-quantum
capable peers on the other, under the control of an external Policy Decision Point (PDP) im-
plemented with Open Policy Agent (OPA). The strongSwan-based gateway acts as a Policy En-
forcement Point (PEP), consulting the PDP before accepting IKE SAs, installing CHILD SAs or
performing rekeys, and enforcing service-specific security levels through structured policy classes.
While a decision logger, metrics exporter and dashboards give observability and current time
status and security level trends.

The prototype is validated through functional tests that exercise the complete negotiation
workflow, demonstrating correct policy enforcement, downgrade resistance and fail-closed be-
haviour in the presence of non-compliant proposals. Performance experiments provide a multi-
layered assessment that jointly examines timing behaviour, network overhead and fragmentation
across the four defined security levels and at each stage of secure tunnel establishment. The
results show that, although decoupling policy decisions from the data plane and incorporating
post-quantum certificates and signature exchanges introduces a measurable bottleneck, the addi-
tional latency is justified by the improved security posture and the deliberate verification time
at each step, both of which are crucial in the intended deployment context. Overall, the findings
indicate that a policy-centric, post-quantum IPsec gateway is technically feasible and offers a prac-
tical migration strategy for organisations seeking to place long-lived or hard-to-upgrade services
behind a quantum-safe perimeter, while paving the way for broader adoption of quantum-resistant
protocols in the future.

Acknowledgements

This thesis project was conducted in collaboration with my colleague, Leonardo Rizzo.

List of Figures

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10

4.1
4.2

5.1
5.2

6.1

7.1
7.2
7.3

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10

Internet Protocol Security (IPsec) architecture overview 34
IPsec outbound packets processing oo 36
Tunnel mode oL 37
Tunnel mode 37
Authentication Header (AH) format 39
Encapsulating Security Payload (ESP) format 40
IKESAINIT . . .o e 44
IKEAUTHo s 44
CREATE_CHILD_SA e e 45
INFORMATIONAL MESSAGES e 45
Authentication Header (AH) format 49
Authentication Header (AH) format 50
OPA philosphy o o 55
OPA management 60
The Crypto-Agile Post-Quantum Gateway architecture 75
Network topology 77
OPA system monitoring dashboard 0. 87
OPA security monitoring dashboard 88
Initial IKE SA exchanges 90
IKE SA metadata collection via ext-auth 91
IKE SA successfully installed 91
IKE SA establishment denied owing to an insufficient security level 91
Peer-side parsing of vendor-specific notification indicating required security levels . 92

Persisted OPA decision and child template 93
Authorised CHILD SA being initiated via VICT 94
Final CHILD SA bound to the IKE SA after installation 94
Ex-post validation performed by the updown hook 94
Decision Logger entry for validated CHILD SA 95

5

8.11

8.12
8.13
8.14

8.15

8.16

8.17

8.18

8.19
8.20
8.21

The updown hook detecting a selector mismatch between OPA metadata and the
negotiated traffic selectors, and aborting the CHILD SA installation

Rekey request intercepted and evaluated against PDP policy
Audit entry showing the validated rekey decision and resulting action

Comparison of transmitted and received data volumes for single-KEM and multi-
KEM IKE establishment

Packet count distribution across IKE phases for ML-KEM only versus multi-KEM
SELUPS e e e e e e e e e

Phase-level timing comparison between ML-KEM only and multi-KEM IKE nego-
tlations oL e

Data and time overhead of a normal IKE establishment with CHILD SA versus
childless mode

Breakdown of OPA evaluation times across the IKE establishment, child creation
and rekey security gates Lo Lo

Network traffic comparison across all security levels
IP fragmentation comparison across security levels

Performance timing breakdown across security levels

List of Tables

2.1

2.2
2.3

2.4

2.5

6.1

6.2
6.3

Comparison of classical and quantum security levels for the most used crypto-
graphic schemes oL L 21

Summary of the quantum impact on different cryptographic algorithms 22

National Institute of Standards and Technologies (NIST) Post-Quantum Cryptog-
raphy (PQC) Security Levels - equivalence with classical symmetric primitives and
quantum attack complexity. Lo 29

Comparison among Module-Lattice-based Key Encapsulation Mechanism (ML-KEM)
and traditional Key Encapsulation Mechanism (KEM)/KEX schemes: public key,
private key and ciphertext sizes (in bytes). L. 29

Comparison among PQC Digital Signature Scheme (DSS) and traditional counter-
parts (in bytes) 31

Configured Internet Key Exchange (IKE) levels (Key Exchange (KE)-L1 to KE—
L4): Authenticated Encryption with Associated Data (AEAD), PRF, Diffie-Hellman

(DH) groups and KEM slot L 70
Configured composite and pure ML-DSA signature suites with assigned levels . . . 72
Child security levels and admitted ESP proposals 73

Listings

4.1 Tlustrative /etc/swanctl/swanctl.conf, 53
5.1 Scalars and compositeso 57
5.2 Guarded rule 58
5.3 Existential query over a collection Lo oL 58
5.4 Array comprehension (join) Lo 58
5.5 Sets, objects, complete vs. incremental 59
5.6 User function L e 59
5.7 OPA as an HTTP server in Docker 61
5.8 Evaluate a mounted policy L Lo 61
6.1 IKE SA establishment (childless mode). 67
7.1 Single control panel by service_classes.regoo oL 81
7.2 Connection-to-subnet mappings 82
7.3 Skeleton of ike_establishment.rego. L oL oL oL 82
7.4 child_templates.rego snippets Lo 85
B.1 Additional includes and hint entry definition in ext_auth listener.c 115
B.2 Peer certificate acquisition from the current auth round 116
B.3 Exporting the peer certificate to the environment and a temporary file 117
B.4 Exporting negotiated PRF and key exchange methods 117
B.5 Parsing OPA hints from the helper script L 0L 118
B.6 Scheduling and attaching the REQUIRED_LEVEL notify 119
B.7 Listener creation with hint list initialization 120
B.8 Example output from opa-check-auth 121
B.9 Top-level mapping in service_classes.rego oo 122
B.10 Imports in ike_establishment.rego 123
B.11 KE suite mapping in ike_establishment.rego 123
B.12 Example inbound template for partnerB.o 124
B.13 Example OID — algorithm/level mapping 124
B.14 Peer requirements in certificate_validation.rego. 125
B.15 Generic patch creation workflow oL oo 126

Contents

List of Figures

List of Tables

1 Introduction

2 Quantum technology and cybersecurity

2.1 Quantum computing: principles, promise and practical limits
2.2 The quantum threat to cryptographyo L.
2.2.1 X-Keyscore: a real-world example of data harvesting
2.3 Quantum impact on current technologies L.
2.3.1 Shor’s algorithm
2.3.2 Grover’s algorithm Lo
2.3.3 Cryptographic schemes affected L.
2.4 Migration to a quantum-safe state L L.
2.4.1 Migration challenges e
2.4.2 Cryptographic agility L
2.4.3 Hybrid schemeso
2.5 Post-Quantum Cryptography
2.5.1 Post-Quantum families L

2.5.2 NIST selected algorithms

3 Internet Protocol Security (IPsec)

3.1 1IPsec architecture. L
3.2 Security Association (SA)
3.3 Processing model for IPsec packets L.
3.4 Operating modes Lo e
3.4.1 Transport mode L
3.4.2 Tunnel mode L
3.5 Protection mechanisms Lo
3.5.1 Authentication Header (AH)
3.5.2 Encapsulating Security Payload (ESP)

9

14

16
16
17
18
18
18
19
20
22
22
24
24
25
25
27

3.6 IPsec (partial) replay protection 40

3.7 Modeofuse e 41
3.7.1 End-to-end security L 41
3.7.2 Basic Virtual Private Network (VPN) (site-to-site) 41
3.7.3 End-to-end security with basic VPN o0 o0 41
3.7.4 Secure gatewayo 42
3.7.5 Secure 1emote ACCESS i i 42

3.8 IPsec version 3 L 42

3.9 Key management Lo e 43
3.9.1 Internet Key Exchange (IKEv1) 43
3.9.2 Internet Key Exchange (IKEv2) 43
3.9.3 Intermediate Exchange and Additional Key Exchanges 45

StrongSwan 48
4.0.1 Daemon and modular architecture 0. 48

4.0.2 Out-of-band control: Versatile IKE Control Interface (VICI) and swanctl . 51

4.0.3 Configuration files and directory layout 51
Open Policy Agent 54
5.1 Design 54

5.1.1 Philosophy 55

5.1.2 The document model L L o 56
5.2 Policy Language e 57

5.2.1 Regoataglance L 57

5.2.2 Values and collections Lo 58

5.2.3 Variables and references oL 58

5.2.4 Comprehensions 58

5.2.5 Rulestyles 59

5.2.6 Functions L 59

5.2.7 Negation and universal quantification 59

5.2.8 Built-ins and error handling oL oo 59
5.3 Control and management L oL L 59

5.3.1 Deployment models L Lo 60

5.3.2 Management APIs L Lo 60
5.4 Deployment L 60

5.4.1 Deploying OPA with Docker 61

10

6 Post-Quantum IPsec Gateway: design 63

6.1 Architectures evaluation oL 63
6.1.1 A Minimalist Approach to Hybrid Key Exchange 64

6.2 IKE-less IPsec e 64
6.3 Industry solutions 65
6.4 The proposed solution 66
6.4.1 Policy Enforcement Point 66
6.4.2 Policy Decision Point o 68
6.4.3 Modularity and maintenance L oL 73
6.4.4 Decision logger L e 74
6.4.5 Metrics and dashboardso 74

7 Post-Quantum IPsec Gateway: implementation 76
7.1 Network topology e 76
7.2 StrongSwan modifications oL Lo 77
7.2.1 ext-auth plugin script: opa-auth-check.py 78
7.2.2 Child manager: vici-child-manager.py 79
7.2.3 Tunnel provisioner 80
7.2.4 Legacy subnet implementation 0oL 80
7.2.5 External post-quantum safe peers. oL 80

7.3 The PDP implementation 80
7.3.1 Policies structureo 81
7.3.2 service_classes.Tego 81
7.3.3 ike_establishment.rego 82

7.3.4 child_templates.rego 85

7.3.5 Auxiliary validation modules oL 86
7.3.6 Policy network services L L 86

8 Test 89
8.1 Testbed e 89
8.2 Functional tests 89
8.2.1 IKE SA establishment 90
8.2.2 IKE SA establishment denial due to insufficient security level 91
8.2.3 Child SA installation 92
8.2.4 Child ex-post validation Lo 94
8.2.5 Rekey validation gate Lo oo 95

8.3 Performance tests 96
8.3.1 Unauthenticated multi-KEM overhead in IKE establishment 97
8.3.2 Legacy IKE establishment: normal versus childless mode 98
8.3.3 Policy evaluation timing analysis 99
8.3.4 Comprehensive evaluation across security levels 100

11

9 Conclusions 103

Bibliography 105
A User Manual 109
Al System setup e e 109
A.1.1 Software prerequisites 109

A.2 Building and starting the system L Lo 110
A.2.1 Building Docker images L 110
A.2.2 Launching the environment 110
A.2.3 Inspecting container status Lo 111

A.3 Loading strongSwan configuration, 111
A.3.1 Loading configurations and credentials 111
A.3.2 Listing available connection profiles 111

A.4 Establishing VPN tunnels o 111
A.4.1 Initiating the IKE SA o 111
A.4.2 Inspecting Security Associations 112
A.4.3 Testing connectivityo 112

A.5 Inspecting logs and OPA decisions 0. 112
A.5.1 Gateway authorisation logs L oo 112
A.5.2 Child SA installation logs L 112
A.5.3 IKE SA denial with vendor-specific notification 112
Ab54 OPAauditlogs 113

A.6 Visualising metrics with Grafana 113
A.7 Testing and troubleshooting Lo 113
A.7.1 Performance Tests 113
A.7.2 Rebuilding and cleaning the environment 114
A.7.3 Diagnosing connection issues 114

B Developer’s Reference Guide 115
B.1 strongSwan-OPA integration 115
B.2 strongSwan ext_auth patch o 115
B.2.1 File location and high-level responsibilities 115
B.2.2 OPA hints and REQUIRED_LEVEL notify 118

B.3 opa-check-auth and helper scriptso oo 121
B.3.1 Authorisation script interface oo 121

B.4 Connection naming and tunnel provisioning L. 121
B.4.1 Naming conventions for connections and hosts 121

B.5 OPA policy modules 122
B.5.1 service.classes.Tego 122

B.6

B.5.2 ike_establishment.rego 123

B.5.3 certificate_validation.rego 124
Applying patches and extending the system 125
B.6.1 Patch directory in pep-gateway 125
B.6.2 Adding new connections and hosts 126

13

Chapter 1

Introduction

Within today’s landscape, quantum computing has recently gained significant attention as an
alternative paradigm for information processing, leveraging quantum computers’ ability to cre-
ate and manipulate quantum bits (qubits) to carry out computations [1] [2]. Two fundamental
properties define qubits: Superposition, which allows a qubit to exist in a linear combination of
multiple basis states simultaneously, thereby enabling parallel processing across a vast computa-
tional space and Entanglement, whereby a group of qubits share a single quantum state, allowing
them to coordinate and perform complex computations more efficiently. Exploiting these effects,
a quantum computer can act on many value combinations at once, tackling problems that out-
strip the practical reach of classical and even high performance systems, commonly referred to as
supercomputers.

While these capabilities bring clear advances, they also create risks for cybersecurity [3].
Today’s public-key cryptosystems rely on the concept of NP problems, notably Rivest-Shamir-
Adleman (RSA) and Elliptic Curve Cryptography (ECC), specifically on the presumed intractabil-
ity of factoring large integers and solving discrete logarithms with classical resources. Quantum
algorithms, most prominently Shor’s algorithm, could solve these problems efficiently, undermin-
ing the security of those schemes [4]. As a proof of concept, it has been estimated that breaking
a RSA 2048-bit key could be feasible with about 20 million qubits in roughly 8h [5].

Although large scale quantum computers are not yet widely deployed, it is crucial to put
countermeasures in place ahead of practical availability. In this scenario, the development of
quantum-resistant solutions, known as PQC[6], becomes essential. Beginning in 2016, the NIST
launched a PQC standardisation program. After several evaluation rounds, in 2022 it narrowed
the field to four candidates for standardisation [7], and finally, on August 2024, NIST published the
first three finalised FIPS standards, marking the first quantum-resistant cryptography standards
to be issued [§].

This competition has involved industry and government organisations, including the National
Security Agency (NSA), providing advice that emphasises the need to switch to PQC, especially
concerning software signing and traditional networking frameworks. This involves enhancing the
protocols that facilitate secure connectivity, Transport Layer Security (TLS) for web security and
IPsec for network layer protection.

For IPsec, the actual baseline protocol machinery is defined by RFC-4301 [9] for the security
architecture and RFC-7296 for the IKEv2 protocol [10]. Recent updates introduce post-quantum
aware mechanisms: RFC-9242 [11] and RFC-9370 [12] specify hybrid and PQ-ready exchanges so
that IKEv2 can combine classical and post-quantum key encapsulation while preserving interop-
erability with existing deployments.

Migration, however, is not just a matter of "turning on” new algorithms. As early field trials
(e.g. Cloudflare’s hybrid TLS KEM deployments) show, organisations need time to validate end-
to-end behaviour with PQC: measuring handshake latency, assessing appliance overhead, stress
testing large messages and reassembly paths. Furthermore, the presence of middleboxes, hardware
offload constraints and legacy endpoints complicates roll outs.

14

Introduction

All of this suggests that cryptographic agility is a strategic necessity. Systems must be modular
enough to switch primitives without requiring intrusive rewrites, ideally isolating changes behind
stable APIs and capability negotiation at the protocol layer, as PQC schemes are still an emerging
field. In a rapidly changing and possibly ever changing environment, policy-driven control is
essential.

The centrally established rules that choose cryptography suites, key sizes, and acceptable risk
levels for each peer, application or network segment are the foundation of this effort.

Instead than addressing cryptographic algorithms as the primary design dimension, this thesis
takes a policy-centric approach, establishing policy as the governing layer that coordinates the
behaviour of IPsec systems. In particular, it offers a crypto-agile post-quantum gateway that
provides PQC protections for legacy systems that are unable to migrate natively. The proposed
gateway ”translates” network traffic, facilitating secure interoperability with post-quantum-ready
counterparts in alignment with centrally established cryptographic policies.

15

Chapter 2

Quantum technology and
cybersecurity

In the early twentieth century, quantum mechanics emerged as a theory that departs from clas-
sical determinism and governs phenomena at microscopic scales. The guiding principles are the
uncertainty principle, which limits the simultaneous precision with which conjugate observables
(e.g. position and momentum) can be known, and superposition, whereby a system may occupy
multiple classically exclusive states until measurement collapses the state.

In the standard probabilistic interpretation, a particle is described by a wavefunction ¥(z,t)
whose squared modulus yields the probability density P(z,t) of finding the particle at position
and time ¢. In addition, a group of particles is defined entangled, when the quantum state of each
particle in the group cannot be described independently of the state of the others. This marks
a defining departure from classical composition: the joint state of a composite quantum system
generally cannot be factorised into independent subsystem states, giving rise to non-classical
correlations that persist across large separations. In such ensembles, the state of each constituent
is inseparable from that of the others, the system realises a single, global quantum state whose
correlations endure even when the particles are far apart. Complementing this picture, the no-
cloning theorem forbids the creation of an independent, identical copy of an arbitrary unknown
quantum state, a limitation with far reaching consequences for quantum communication and
computation.

2.1 Quantum computing: principles, promise and practical
limits

Unlike conventional computers that process information as binary digits streams of electrical or
optical signals representing logical 0s and 1s, quantum computers operate on qubits, physical
systems such as electrons, photons or superconducting circuits maintained in precisely controlled
quantum states. Realised through technologies like superconducting loops at cryogenic tempera-
tures or ions confined in ultra-high-vacuum traps, qubits exhibit distinctly non-classical behaviour
that can be harnessed for computation.

Quantum Computing (QC) exploits three quintessential quantum phenomena to manipulate
information in ways that classical architectures cannot:

e quantum superposition: quantum bits can occupy coherent combinations of 0 and 1
at once, so ensembles of qubits span exponentially large state spaces that algorithms can
explore during computation;

e quantum entanglement: in composite quantum systems, the joint state cannot be fac-
tored into independent states of the parts. As a result, measurements on one qubit constrain

16

Quantum technology and cybersecurity

the admissible states of others, even across large separations, yielding correlations with no
classical analogue. This resource is engineered in quantum circuits to coordinate multi-qubit
operations and enable algorithmic speedups.

e quantum interference: by engineering constructive and destructive interference of prob-
ability amplitudes, quantum circuits amplify the probability amplitudes associated with
correct outcomes while suppressing the others, which yields speedups for specific problem
families (e.g. structured search, factoring and selected simulation tasks).

QC is not a universal accelerator: performance gains are problem dependent and arise only
when algorithms can exploit quantum structure. Moreover, contemporary devices are noise lim-
ited. Decoherence, the loss of phase information due to unwanted interaction with the environ-
ment, together with gate and readout errors, forces the use of fault tolerance, whereby a single
logical qubit is encoded across many physical qubits. As a consequence, large-scale, general pur-
pose quantum advantage remains a medium term objective, while near term utility is expected
in domains such as quantum simulation (e.g. chemistry and materials) [2], constrained optimisa-
tion and selected data analysis workflows where hybrid quantum-classical pipelines are effective.
Minimising decoherence is essential. Even tiny thermal or vibrational perturbations (”noise”)
can destroy phase coherence and eject qubits from superposition prematurely. Error rates further
necessitate fault tolerance, in which one logical qubit is encoded across many physical qubits, with
leading surface code schemes this overhead is typically in the hundreds-to-thousands of physical
qubits per logical qubit. [1]

QC is not a general-purpose accelerator. Its benefits are problem dependent and arise only
when algorithms can exploit specifically quantum structure. Beyond the gate-model paradigm,
specialised approaches such as Quantum Annealing (QA), target combinatorial optimisation di-
rectly. Commercial QA systems (e.g. D-Wave’s superconducting flux-qubit processors with
O(10?) physical qubits) implement adiabatic dynamics, but face practical scaling limits from
cryogenic infrastructure to fabrication variability. Looking forward, roadmaps emphasise fault
tolerance and scale: for example, plans call for systems with hundreds of logical qubits by the end
of the decade and thousands in the early 2030s, together with advances in error correction aimed
at pushing sustained circuit depths into the 103-10% gate range [13]. Alternative hardware lines
(e.g. topological platforms based on Majorana modes) aim to reduce error rates at the device
level, but remain in the research and prototyping stage [14].

Overall, current trends in QC point towards larger-scale devices, higher fidelities and progres-
sively more expressive programming abstractions. In the near term, a form of quantum utility is
beginning to materialise, in which today’s noisy hardware can already deliver reliable solutions
to selected problems that go beyond straightforward brute-force classical simulation, particularly
in areas such as quantum simulation and constrained optimisation. In contrast, sustained, fault-
tolerant quantum advantage is expected to depend on the next generation of fully error-corrected
architectures that are presently under development.

2.2 The quantum threat to cryptography

Contemporary cryptographic systems, especially those relying on asymmetric primitives, face an
inherent expiration date under the imminent arrival of large-scale quantum computers.

The Quantum Threat Timeline Report 2024, published by the Global Risk Institute, outlines
projections for the first Cryptographically-Relevant Quantum Computer (CRQC), estimating that
within the next 15-30 years such devices may be capable of breaking encryption schemes now
widely deployed [15]. As the report emphasises, the threat is not just theoretical. Organisations
must begin preparations today because:

e the development, validation, standardisation and wide deployment of post-quantum algo-
rithms is a multi-year process;

e adversaries may already adopt a ”Harvest Now, Decrypt Later (HNDL)” strategy, capturing
encrypted data today in hopes of decrypting it when quantum resources become available;

17

Quantum technology and cybersecurity

e sensitive data collected now may remain valuable years into the future, making deferred
decryption attacks especially damaging.

2.2.1 X-Keyscore: a real-world example of data harvesting

To illustrate the reality of large-scale data collection, we could consider the NSA’s X-Keyscore
surveillance system, revealed in disclosures by Edward Snowden, which enables broad interception
and analysis of global Internet traffic, including emails, web browsing and metadata [16]. Although
not a cryptanalysis tool itself, X-Keyscore exemplifies how intelligence frameworks already possess
infrastructure capable of massive data harvesting, which could be repurposed in a post-quantum
era to mount retrospective decryption attacks.

By integrating extensive data collection platforms with prospective quantum decryption ca-
pabilities, an adversary could utilise X-Keyscore like systems to maintain extensive archives of
encrypted content, awaiting the moment when quantum advantage renders decryption feasible.

2.3 Quantum impact on current technologies

The advent of QC represents a paradigm shift for modern cryptography, undermining the math-
ematical assumptions upon which current security systems rely. Contemporary cryptographic
mechanisms draw their strength from the computational infeasibility of solving certain mathe-
matical problems using classical architectures. Asymmetric schemes such as RSA, DH key ex-
change, and ECC depend on the presumed hardness of integer factorisation and discrete logarithm
problems, whereas symmetric ciphers and hash functions derive their robustness from the imprac-
ticality of exhaustive key search.

While these problems remain intractable under classical computational models, the emergence
of large-scale quantum computers would overturn such guarantees. Quantum algorithms can, for
specific classes of problems, provide exponential speed-ups over their classical counterparts, as
exemplified by Shor’s algorithm [4] for factorisation and discrete logarithms, while others, such as
Grover’s algorithm [17] for unstructured search, offer quadratic improvements. These advances
render much of today’s public-key cryptography vulnerable to future quantum adversaries.

2.3.1 Shor’s algorithm

Shor’s algorithm is known for its ability to endanger public-key cryptography, since it can effi-
ciently factor large numbers and solve the Discrete Logarithm Problem (DLP), the foundation of
security for many public-key algorithms [4].

The algorithm proceeds in two stages:

1. aclassical reduction that maps the Factoring problem to an Order-Finding problem, lowering
the complexity of the original task;

2. a quantum subroutine that solves the Order-Finding problem efficiently.

The Order-Finding problem consists in determining the period of a modular exponential func-
tion.

Formally, given the exponential function a® the modular exponential function is defined as the
remainder of the division among the exponential function and an integer V:

Fy(z) = a” mod N.

The order r of the modular exponential is the least positive integer such that:

a" mod N = 1.
18

Quantum technology and cybersecurity

The strategy over which the Order-Finding solution is based on consists in computing the
function Fy(z) for many values of z in parallel, aiming to detect the period in the function
sequence’s values. Using randomisation, integer factorisation can be reduced to finding the order
of a suitably chosen element. A high-level description of the factoring procedure is:

1. pick a random integer x coprime to IV,
2. compute the order r of £ modulo IV;

3. compute ged(z"/? — 1, N).

The quantum algorithm to compute the order can be found in [4]. The computed greatest
common divisor fails to produce a non-trivial factor of N only in the exceptional cases

rmod2=0 or 2"/ =—-1 (mod N).

When z is chosen uniformly at random, the procedure yields a non-trivial factor of N with
probability at least
p=1—2"F

where k£ denotes the number of distinct odd prime factors of N.

The asymptotic time complexity of Shor’s algorithm is commonly quoted as
O((log N)*) = O(n?),

where N is the integer to factor and n is the bit-length of V. Consequently, a sufficiently large
and capable quantum computer could efficiently solve integer factorisation and the DLP, thus
compromising systems that depend on these problems.

It is important to emphasise that while practical large-number factorisations via real quantum
hardware are not yet available, proof-of-principle demonstrations and small-number implementa-
tions have been reported [18]. Hence, Shor’s algorithm is both theoretically and experimentally
established, even though the construction of a large-scale machine capable of factoring crypto-
graphically relevant integers remains an open engineering challenge.

2.3.2 Grover’s algorithm

In contrast, Grover’s algorithm, threatens symmetric key primitives, or, more generally, provides
a speed up for searching an unstructured database with respect to the classical algorithms. In-
formally, the task that the algorithm aims to solve can be expressed as follows.

Given an abstract function f(z) that accepts search items x, an item xg is a solution to the
search task if

flzo) =1

otherwise,

f(z0) = 0.

The Search Problem consists in finding any item such that f(zg) = 1.

Based on this problem, the purpose of the algorithm can be seen as inverting a ”black-box”
function y = f(x) by amplifying the amplitude of the marked solutions across the search space.
Hence, the algorithm enables the search for specific solutions across all possible input combina-
tions.

As stated by the European Telecommunications Standards Institute (ETSI) [19], if a problem
has the following four properties:

19

Quantum technology and cybersecurity

the only way to solve the problem is by repeatedly answering and checking the answers;

the number of candidates equals the number of possible inputs;

each candidate evaluation requires comparable time (uniform cost);

e there is no additional structure or heuristic that favours certain candidates over others.

The time required for a quantum computer to solve problems with these four properties is pro-
portional to the square root of the number of inputs.

Classically, finding a marked item in the worst case requires O(N) oracle queries, and so f(z)
has to be evaluated a total of N — 1 times for a space of size N (e.g. in the symmetric algorithms
and hash functions contexts, this can be seen as all the possibilities that must be evaluated to
respectively brute force the secret key or a pre-image). This is reduced to O(v/N) queries using
Grover’s technique [17], which offers a quadratic speedup for brute force search jobs.

2.3.3 Cryptographic schemes affected
Asymmetric schemes

Any cryptosystem, security protocol, and product relying on the presumed classical hardness of
integer factorisation or discrete logarithms becomes vulnerable in the presence of a sufficiently
powerful quantum computer. This includes RSA, DH , and ECC [20].

For RSA, the knowledge of the public key (N, e) allows an attacker that can factor N to
compute the private exponent d, satisfying:

e-d=1 (mod ¢(N))

where
e(N)=(p—-1)(¢g—1)
N =pq

Once N is factored into primes, it is straightforward to compute the private key. Furthermore,
publishing the public key would be equivalent to posting the private key as well.

Not only would all data encrypted with this method be vulnerable, but no message could
be guaranteed to be secure, effectively destroying the purposes of the encryption and digital
signatures.

Unlike RSA, DH and ECC based schemes rest on the Discrete Logarithm Problem hardness.
Diffie-Hellman is an asymmetric cipher widely deployed that uses the aforementioned properties to
transmit keys securely over a public network. Rather than exploiting the classic DLP, algorithms
that employ Elliptic Curve Cryptography (e.g. ECDH) rely on the hardness of computing the
Elliptic Curve Discrete Logarithm for their security.

The difficulty of breaking these cryptosystems is based on the difficulty in determining the
integer r such that:
g" =z (mod p)
which can be expressed as:
r=log,z (mod p)

The integer r is called the DLP of = to the base g.

A suitable adaptation of Shor’s algorithm can efficiently solve Discrete Logarithms over these
groups (and over Elliptic Curves) [21]. Due to ECC employing shorter keys for identical clas-
sical security, smaller quantum computers may potentially compromise ECC prior to breaching
comparable RSA key sizes.

Typical deployments that would be affected include:
20

Quantum technology and cybersecurity

Public Key Infrastructure (PKI);

Secure Software Distribution;

e Key Exchange over Public Channels;

Virtual Private Networks (VPNs);

Secure Web Browsing (e.g. SSL/TLS);

Secure Boot.

Symmetric schemes

For symmetric cryptography, the advent of quantum computing is regarded as a comparatively
minor threat [20]. This is because the fundamental primitives on which these algorithms rely are
not based on computational problems that can be efficiently solved by Shor’s algorithm. The only
known quantum threat in this domain arises from Grover’s algorithm, which allows to obtain a
quadratic speed-up over classical exhaustive methods.

Consequently, a quantum computer would not dramatically reduce the time required to dis-
cover a symmetric key compared to classical machines. The same level of security can therefore
be maintained by simply doubling the key length, assuming that the symmetric algorithm does
not depend on structural properties that can be exploited by quantum computation.

Formally, for a cipher employing an n-bit key, a quantum computer would need approximately
V2" = 2%/2 evaluations to complete an exhaustive key search.

Accordingly, Advanced Encryption Standard (AES) remains a highly resilient symmetric prim-
itive in the quantum era when deployed with keys of at least 192 or 256 bits, which translate to
approximate security levels of 96 and 128 bits, respectively.

Moreover, Grover’s algorithm is known to parallelise poorly. As reported in [22], even when
multiple quantum computers operate in parallel, the improvement over the classical brute force
approach remains marginal.

Table 2.1 summarises the classical and quantum security strengths of several widely adopted
cryptographic schemes in light of the discussed quantum algorithms [23].

Table 2.1. Comparison of classical and quantum security levels for the most used cryptographic
schemes

Crypto scheme Key size Classic strength (bits) Quantum strength (bits)

RSA-1024 1024 80 0
RSA-2048 2048 112 0
ECC-256 256 128 0
ECC-384 384 256 0
AES-128 128 128 64
AES-256 256 256 128

Hash functions

The family of hash functions is subject to threats analogous to those faced by symmetric ciphers.
Adversaries typically pursue two primary goals: finding a collision, i.e. two distinct inputs that
yield the same digest, or discovering a pre-image, i.e. an input that maps to a given hash output.

As previously discussed, Grover’s algorithm effectively reduces the computational cost of a
pre-image search: a quantum adversary can identify a pre-image by exploring approximately the
square root of the classical search space. Consequently, an n-bit hash function offers only about
n/2 bits of resistance against an adversary equipped with an ideal quantum search capability.

21

Quantum technology and cybersecurity

The hash output length must thus be doubled in order to preserve the same degree of security as
in the classical context.

Collision attacks follow a different complexity model. Classically, the Birthday Paradox [24]
implies that a collision on an z-bit hash can be expected after about 2%/2 evaluations. Brassard
observed that Grover style quantum techniques can be combined and adapted to attack collisions
more efficiently than the naive birthday strategy for certain black-box functions. His approach
targets an r-to-one function F, i.e. a function for which each output has on average r pre-images,
and trades quantum memory for time. Concretely, for collision search the two algorithms compare
as follows:

Grover : time = O(N'/?), space = O(log N),
Brassard : time = O((N/r)'/3), space = O(N'/3)

where N denotes the size of the domain being searched. For cryptographic hash functions (mod-
elled as near random mappings), the Brassard-style method therefore achieves a better time/space
trade-off than Grover alone by allocating substantial quantum memory. Informally, if a quantum
adversary can maintain a lookup structure of size (N 1/ 3) and use Grover as a subroutine, col-
lision finding can be carried out in roughly O(N'/3) time and space rather than O(N'/?) time
with only logarithmic space.

Translating these discoveries into practical hash length standards creates a prudent basis
for post-quantum collision-resistant design. Upon demonstrating that, the Brassard technique
reduces the effective collision search cost from 2%/2 to roughly 2%/3 within the presumed quantum
memory framework. As a result, a commonly accepted conservative standard is to allocate hash
outputs of no less than 3b bits to guarantee b-bit collision resistance against adversaries who can
leverage these quantum advantages.

Taken together with the Grover based pre-image considerations, these analyses explain why
many legacy hash constructions are unsuitable for a post-quantum environment, and why SHA-
2/SHA-3 variants with substantially longer outputs remain preferable for quantum-resilient de-
ployments.

The overall quantum impact on various widely adopted cryptographic algorithms is sum-
marised in table 2.2.

Table 2.2. Summary of the quantum impact on different cryptographic algorithms

Cryptographic algorithm Type Purpose Quantum impact
AES Symmetric key Encryption Larger keys needed
SHA-2, SHA-3 — Hash functions Larger output needed
RSA Public key Signatures, key establishment No longer secure
ECDSA, ECDH Public key Signatures, key exchange No longer secure
DSA Public key Signatures, key exchange No longer secure

2.4 Migration to a quantum-safe state

2.4.1 Migration challenges

According to the NIST, the migration to PQC cannot be accomplished as a simple drop-in re-
placement [25].

The diversity of contexts in which this transition must occur, ranging from Internet of Things
(IoT) devices and embedded systems, to complex applications and network protocols, introduces
significant challenges. Indeed, PQC algorithms differ substantially from current cryptographic
standards in terms of key sizes, ciphertext and signature lengths, as well as computational and
communication requirements, many of which may be incompatible with existing infrastructures.
In addition, several candidates introduce novel requirements, such as state management, ne-
cessitating modifications to current frameworks. These algorithms may be suitable for certain

22

Quantum technology and cybersecurity

environments but misaligned with others. Furthermore, each new cryptographic scheme proposed
for standardisation requires extensive cryptanalysis, as mandated by the ongoing NIST evaluation
process. Consequently, it is crucial to recognise that no single algorithmic replacement will be
sufficient. Rather, a diverse set of quantum-resistant solutions will need to coexist, each selected
according to specific operational requirements and deployment contexts.

The migration process must therefore be approached holistically, taking into account three
key dimensions: performance, security and implementation.

Performance considerations

Since PQC algorithms typically demand greater computational power, memory, storage and com-
munication resources, assessing their performance in various deployment scenarios represents a
critical research area.

Before these schemes can be safely adopted in production environments, extensive studies
are required to develop efficient and practical implementations. For instance, in networking
environments, the increased key and signature sizes associated with PQC schemes can introduce
additional latency and bandwidth overhead in secure communication protocols such as TLS and
during IPsec key establishment, thereby directly affecting overall system performance. Optimising
these parameters while preserving scalability and security remains a major engineering challenge.
Similarly, in constrained environments such as IoT devices, limitations on processing, memory
and battery capacity further complicate deployment. Until lightweight and hardware-efficient
implementations become available, the widespread adoption of PQC will remain limited in such
constrained environments, as well as across legacy systems.

Security considerations

The integration of new public-key primitives has direct implications not only for performance but
also for overall system security. Unlike RSA or ECC, PQC schemes involve different trade-offs
among configurable parameters, such as key length, ciphertext size and computation time. A
key challenge, therefore, lies in balancing these factors across diverse operational domains, as
inappropriate configurations may inadvertently expand the attack surface.

Moreover, many PQC candidates, such as Multivariate Cryptographic Schemes, are still un-
dergoing intensive cryptanalysis compared to the long studied classical algorithms. A particularly
important research direction concerns the identification of vulnerabilities in different protocols and
adversarial models. Among these, side-channel vulnerabilities represent a critical concern. Side-
channel attacks exploit information leakage from an implementation, such as timing behaviour,
power consumption or memory access patterns, to infer sensitive data. Since most PQC algo-
rithms introduce novel computation and communication patterns, understanding and mitigating
such leaks is a central open problem. Accordingly, designing implementations resilient to this
type of attack exploitation remains an active and essential area of research.

Implementation considerations

The implementation of cryptographic algorithms is itself a cornerstone of secure system design.
Even mathematically sound algorithms can become insecure if implemented incorrectly. This chal-
lenge extends beyond simple software coding, it also involves translating abstract mathematical
formulations into platform specific architectures. Subtle factors like data representation, memory
layout, and buffer handling can introduce security flaws that are difficult to detect.

As previously stated, problems are more noticeable in embedded systems, where implemen-
tation complexity is increased by heterogeneity in device capabilities (e.g. memory, power avail-
ability, processor architecture). Security risks are further increased by the fact that these devices
are frequently physically accessible and so susceptible to tampering.

23

Quantum technology and cybersecurity

Finally, it should be emphasised that the reference implementations bundled with NIST can-
didate submissions are not intended for direct production deployment. Algorithms that have al-
ready been standardised are a partial exception. However, they should still be adopted prudently,
given the comparatively limited public cryptanalysis to date. Nonetheless, initiating a phased
migration remains essential. Therefore, practitioners are encouraged to rely on well-maintained,
security-hardened libraries, such as the libogs library from the Open Quantum Safe project [26],
to facilitate experimentation and integration of PQC algorithms across specific platforms.

2.4.2 Cryptographic agility

As previously stated, continual advances in cryptanalysis and computing steadily erode the prac-
tical security of deployed primitives, so schemes once regarded as robust may become inadequate.

New cryptographic primitives and schemes may also be required to mitigate emerging weak-
nesses or to achieve more favourable trade-offs between assurance and performance. It is therefore
sensible to treat obsolescence as an intrinsic stage in the cryptographic life cycle and to engineer
systems that explicitly anticipate, and can gracefully accommodate, such change.

In this spirit, cryptographic agility denotes the capability to replace and adapt cryptographic
mechanisms across software, hardware, firmware, protocols and supporting infrastructures, while
preserving security, interoperability and service continuity [27].

Recent guidance from NIST frames crypto-agility as a cross-cutting set of practices spanning:
protocol design, application interfaces and enterprise governance. Intended to enable timely tran-
sitions without unacceptable operational disruption [28]. This perspective is elaborated in the
NIST Cybersecurity White Paper on Crypto Agility, which surveys historic transitions, identi-
fies common pitfalls, outlines strategies for protocol negotiation, key life-cycle management and
enterprise risk governance.

Crypto-agility concepts are based on the following pillars. Robust software engineering prac-
tices encapsulate cryptographic functionality behind stable, policy-driven interfaces, thereby al-
lowing algorithms and parameter sets to be substituted without necessitating modifications to
data paths or business logic. Modular architectures and well specified negotiation mechanisms
enable implementations to introduce new cipher suites, including post-quantum options and hy-
brid compositions, while preserving interoperability. It is essential, however, that negotiation
processes are integrity protected to prevent downgrade attacks and that deployments incorporate
telemetry mechanisms to verify successful migration to the preferred suites. Moreover, opera-
tional governance, encompassing asset inventories, configuration baselines, deprecation strategies,
conformance testing and rollback procedures, constitutes the organisational framework necessary
to manage cryptographic transitions at scale and to ensure alignment with evolving standards
and regulatory requirements [28].

2.4.3 Hybrid schemes

The Internet Engineering Task Force (IETF) highlights in [29] the necessity of employing hybrid
cryptographic schemes, where traditional and post-quantum algorithms are combined following
defined structural patterns. The rationale behind such combinations lies in the need, or in some
cases, the regulatory requirement for security protocols to leverage both classes of algorithms
simultaneously. This approach provides resistance against quantum adversaries while preserving
the well understood security assurances of traditional cryptographic primitives. Moreover, hybrid
deployments facilitate the practical integration of PQC into existing infrastructures, supporting
a smoother migration process.

A Post-Quantum Traditional Hybrid (PQ/T) scheme can be viewed as a Multi Algorithm
Cryptographic Scheme in which at least one component is quantum-resistant and at least one
remains purely classical. More generally, a Multi Algorithm Scheme refers to any cryptographic
construction that combines multiple algorithms serving the same purpose, such as key establish-
ment or digital signatures. As a result, the security guarantees of a hybrid scheme are intrinsically
tied to the security properties of its individual constituent algorithms.

24

Quantum technology and cybersecurity

Hybrid approaches acquire particular significance in the context of retrospective decryption,
also known as the Harvest Now, Decrypt Later attack model. The adoption of PQ/T hybrid
schemes thus provides an immediate defensive measure against such future decryption attempts.

As delineated in the aforementioned [29], the IETF further discusses how PQC certificates
should be handled within transitional deployments that enable hybrid configurations. In partic-
ular, hybrid certificates are defined as those containing public keys from two or more component
algorithms, at least one traditional and one post-quantum. These keys can either be embedded
as a composite public key or provided as distinct, individually signed public key fields. Within
this framework, a Composite Cryptographic Element is defined as an element that incorporates
multiple cryptographic elements of the same type, collectively forming a multi algorithm construct.

Although distinct certificates could theoretically be maintained for each component algorithm,
employing a single hybrid certificate can streamline hybrid authentication protocols. However, as
emphasised by the IETF, the use of PQ/T hybrid certificates does not automatically guarantee
hybrid authentication of identity. For example, an end-entity certificate containing a composite
public key but signed using a single traditional algorithm may provide hybrid authentication of
the message origin, yet it would not constitute hybrid authentication of the sender’s identity.

A recent extension of these concepts is provided in the Internet-Draft ”Composite ML-DSA
for use in X.509 Public Key Infrastructure” [30], which defines hybrid combinations of the
post-quantum ML-DSA algorithm [31] with traditional signature schemes such as RSASSA-PSS,
RSASSA-PKCS1-v1.5, ECDSA, Ed25519, and Ed448. These hybrid constructs are designed for ap-
plications that rely on X.509 or PKIX data structures, offering additional resilience against poten-
tial cryptanalytic or implementation level weaknesses in either algorithmic family while ensuring
compliance with regulatory and assurance requirements.

2.5 Post-Quantum Cryptography

2.5.1 Post-Quantum families

Post-Quantum Cryptography represents the branch of cryptography designed to remain secure
against both classical and quantum adversaries. Unlike traditional public-key systems, whose
security relies on the previously discussed mathematical problems, PQC algorithms are based
on mathematical principles considered resilient to quantum assaults. These constructions are
generally classified into five main families of primitives, all ultimately derived from the concept
of trapdoor functions.

A trapdoor function is a mathematical function that is computationally straightforward to
evaluate in one direction, yet infeasible to invert without privileged information. The following
sections summarise the principal families of PQC algorithms that have been selected for stan-
dardisation and still undergoing active evaluation and refinement.

Lattice-based cryptography

Lattice-based cryptography is a form of public-key cryptography that mitigates the structural
weaknesses of RSA by basing its security on the presumed hardness of lattice problems.

A lattice may be described as a discrete, regularly repeating set of points in an n-dimensional
Euclidean space, formed by all integer linear combinations of a chosen basis of vectors. In contrast
to factorisation-based schemes, lattice-based cryptography replaces arithmetic over integers with
operations on matrices and linear algebraic structures.

The security of such schemes derives primarily from the computational difficulty of the Shortest
Vector Problem (SVP), which requires identifying the shortest non-zero vector in a lattice given
an arbitrary basis, a task proven to be NP-hard. More formally, lattice-based cryptosystems
rely on the worst-case to average-case reduction principle: breaking the scheme in practice would
imply the existence of an algorithm capable of solving the corresponding lattice problem in all

25

Quantum technology and cybersecurity

instances. In most cases, this involves approximating hard lattice problems, such as SVP, within
polynomial factors, a task widely conjectured to be intractable [32]. Consequently, the security
of every key within these schemes is as strong in the easiest case as in the hardest.

Moreover, these schemes are typically computationally efficient and offer considerable flexi-
bility, as their parameters can be adjusted to suit a wide range of deployment scenarios. At the
same time, poor parameter choices can unintentionally erode security guarantees and broaden the
attack surface. Additionally, to note is that, there is currently no known quantum algorithm that
yields a substantial advantage over classical methods for the underlying lattice problems, which
further strengthens their candidacy as post-quantum primitives.

Code-based cryptography

Code-based cryptography is grounded in the theory of error-correcting codes [33]. Such codes
enhance reliability by embedding redundancy into transmitted data, enabling recovery even when
bit errors occur on the channel. Within this family, Goppa codes have been studied extensively
and underpin a number of robust constructions.

A secure scheme built on Goppa codes requires the secrecy of both the encoding and decoding
transformations, while exposing only a masked public encoding function.

This public function enables the linkage of a message to a specific set of codewords, concealing
the underlying framework of the secret code. While access to the secret decoding function is
required in order to recover the original plaintext from the encoded communication.

In this category of cryptosystems, the ciphertext is depicted as a codeword intentionally com-
bined with controlled errors, which can only be rectified with the possession of private decoding
information.

Despite their theoretical strength, code-based systems suffer from extremely large key sizes,
which obstruct their practical implementation. Although they frequently produce compact signa-
tures, their overall efficacy is typically inferior to that of other post-quantum primitives.

Multivariate polynomial cryptography

Multivariate cryptography derives its hardness from solving systems of multivariate quadratic
equations over finite fields [34].

In this setting, the trapdoor takes the form of a quadratic polynomial mapping that converts
an otherwise linear system into a non-linear one. To achieve security, designers conceal specific
algebraic structure within the polynomial system such that, to an external observer, the resulting
equations are computationally indistinguishable from random instances.

While these approaches can produce compact signatures, they typically entail slow decryption
and very large public keys, reflecting inherent inefficiencies in the decryption process.

Hash-based signatures

Hash-based cryptography offers digital signature schemes constructed entirely from cryptographic
hash functions [35]. Because hash functions are well understood and not dependent on number
theoretic assumptions, such constructions remain robust against both classical and quantum ad-
versaries. Notably, even quantum computers cannot drastically improve upon the generic attack
complexity against secure hash functions.

A primary constraint of hash-based signatures is their frequent dependence on One-Time
Signature (OTS) schemes, wherein each key pair can be utilised to sign only a singular message.
The reuse of keys undermines security by disclosing adequate information for an attacker to
replicate signatures.

26

Quantum technology and cybersecurity

To overcome this limitation, modern constructions arrange one-time keys in a binary tree,
allowing a single master key pair to support many signatures, with the total capacity determined
by the depth of the tree.

In these tree-based constructions, the value stored at each internal node is obtained by hashing
its two child nodes, while the hash at the root serves as the public key. For each individual
signature, a distinct OTS key is chosen from the leaves, and the final signature comprises both
the OTS signature output and an authentication path that links the selected leaf back to the
root. Schemes of this kind are usually categorised as either stateful or stateless. In the stateful
case, the signer must maintain accurate records of key usage to avoid reusing one-time keys,
which can become operationally demanding at scale. Stateless schemes remove this bookkeeping
requirement, but do so at the price of significantly larger signatures.

Isogeny-based cryptography

Isogeny-based cryptography is among the most mathematically intricate branches of post-quantum
cryptography. Its security is grounded in the hardness of problems involving isogenies, that is,
structure-preserving morphisms between elliptic curves.

Central to this area is the Supersingular Isogeny Problem, which, given two supersingular
elliptic curves, asks for an isogeny that maps one onto the other. Current evidence suggests that
this problem is computationally infeasible for both classical and known quantum algorithms, as
no efficient sub-exponential quantum algorithm is available to solve it [36]. Consequently, isogeny-
based schemes offer one of the few post-quantum options that retain key and ciphertext sizes on
a similar scale to traditional elliptic-curve cryptography, making them particularly appealing in
bandwidth-constrained environments.

2.5.2 NIST selected algorithms

This section provides a general overview of the cryptographic objects considered within the NIST
Post-Quantum Cryptography standardisation process.

The PQC algorithms target three principal applications: public-key encryption, Key Encap-
sulation Mechanisms (KEMs) and digital signatures.

A Public Key Encryption (PKE) scheme consists of three core algorithms:

e a key generation algorithm that outputs a pair of public and private keys;
e an encryption algorithm that, given a message and a public key, produces a ciphertext;

e a decryption algorithm that, given the ciphertext and the corresponding private key, recovers
the original plaintext.

For correctness, the decryption algorithm must always reproduce the original message when the
appropriate private key is used.

A KEM provides a mechanism for two parties to establish a shared symmetric key over an
untrusted communication channel. It operates by encapsulating a session key into a fixed-size
ciphertext, from which the corresponding symmetric encryption material can subsequently be
recovered.

Formally, a KEM consists of three algorithms:

e a key generation algorithm producing a pair of public and private keys;

e an encapsulation algorithm that uses the public key to generate a ciphertext and a symmetric
key;

e a decapsulation algorithm that, given the ciphertext and the private key, recovers the same
symmetric key.

27

Quantum technology and cybersecurity

Correctness requires that encapsulation and decapsulation yield identical session keys when the
legitimate private key is applied.

A DSS also relies on three algorithms:

e key generation, which produces a public-private key pair;
e signature generation, which takes a message and a private key to compute a digital signature;

e verification, which takes a signature, a message, and a public key, and outputs a boolean
value indicating validity.

For correctness, a correctly generated signature verifies under the right public key.

Following three evaluation rounds (2022), NIST announced the first set of algorithms to be
standardised:

¢ PKE/KEM: CRYSTALS-Kyber;
e DSS: CRYSTALS-Dilithium, Falcon and SPHINCS+.

Beyond these, the benefits of Extended Merkle Signature Scheme (XMSS) need consideration: its
hash-based design is increasingly regarded as both robust and conceptually straightforward for
quantum-safe use.

In parallel with its primary selections, NIST has also retained a set of alternate candidates
that exhibit promising security properties but warrant further investigation, particularly in terms
of performance and implementation. These have progressed to a fourth evaluation round for
continued assessment.

Acceptance Criteria

The NIST call for proposals required submissions to meet specific security guarantees. For PKE
and KEM schemes, the main criterion was Indistinguishability under Adaptive Chosen
Ciphertext Attack (IND-CCAZ2), ensuring that adversaries cannot distinguish ciphertexts
even after adaptively querying a decryption oracle. This property maintains confidentiality under
chosen-ciphertext attacks, preventing adversaries from generating new valid ciphertexts.

For DSS, NIST mandates Existential Unforgeability under Adaptive Chosen Message
Attack (EUF-CMA) security. This ensures that no adversary, even one with access to a signing
oracle, can forge a valid signature on any previously unseen message.

Evaluation Criteria

Security strengths in the NIST PQC process are defined in terms of security levels, a concept
derived from NIST Special Publication 800-57 [23]. Unlike classical schemes, where resistance
could be conveniently expressed in terms of key length, the advent of quantum attacks requires
an abstract quantification based on equivalent computational effort. Each level corresponds to
the estimated cost of performing a specific reference attack against well understood symmetric
primitives such as AES or SHA-2/3, both under classical and quantum cost models. The five levels
adopted by NIST are summarised in Table 2.3, together with the reference hardness assumptions
and motivating attack types (Grover’s and Brassard’s algorithms).

These levels are used as a baseline for categorising post-quantum schemes to ensure that their
security strength remains consistent with classical expectations even under the quantum threat
model. Level I, for example, corresponds to the effort required to perform a Grover optimised
key search over AES-128, while Level V represents parity with the full exhaustive search over
AES-256.

28

Quantum technology and cybersecurity

Performance was the second key metric, incorporating computational efficiency, communica-
tion overhead and implementation costs. This includes the time for key generation, encryption or
signing operations, the bandwidth required to transmit public keys and ciphertexts or signatures.

Nevertheless, it is worth noting that, for KEMs, where ephemeral key pairs are often generated
per session to ensure forward secrecy, generation cost is more relevant than in signature schemes.

Table 2.3. NIST PQC Security Levels - equivalence with classical symmetric primitives and
quantum attack complexity.

Level At least as hard Attack model Quantum complexity
I AES-128 exhaustive key search 0O(25%) (Grover)

II SHA-256 collision search ~ 0(2%) (Brassard)
111 AES-192 exhaustive key search 0(2%) (Grover)

v SHA-384 collision search ~ O(2'?8) (Brassard)
\% AES-256 exhaustive key search 0(2'2%) (Grover)

NIST Standardised Algorithms

On August 13, 2024, NIST released the first three standards resulting from the Post-Quantum
Cryptography standardisation process:

e ML-KEM (FIPS 203) [37] — Module-Lattice-based Key Encapsulation Mechanism (ML-KEM)
(formerly CRYSTALS-Kyber);

e ML-DSA (FIPS 204) [38] — Module-Lattice-based Digital Signature Algorithm (ML-DSA)
(formerly CRYSTALS-Dilithium);

e SLH-DSA (FIPS 205) [39] — Stateless Hash-based Digital Signature Algorithm (SLH-DSA)
(formerly SPHINCS+).

Module-Lattice-based Key Encapsulation Mechanism (ML-KEM)

ML-KEM is an IND-CCA2 secure KEM, whose security foundations lie in well-studied prob-
lems from lattice-based cryptography. It demonstrates excellent performance across software,
hardware, and hybrid environments, achieving efficient key generation, encapsulation and decap-
sulation. Like other structured lattice constructions, its public key and ciphertext sizes are on
the order of a few kilobytes.

Table 2.4 summarises key and ciphertext sizes (in bytes) compared with traditional key ex-
change schemes for a 256 bits (i.e. 32 bytes) encapsulated key.

Table 2.4. Comparison among ML-KEM and traditional KEM/KEX schemes: public key,
private key and ciphertext sizes (in bytes).

Security Level Algorithm Public key size = Ciphertext size
Traditional P256_ HKDF_SHA256 65 65
Traditional P521_ HKDF_SHA512 133 133
Traditional X25519_ HKDF_SHA256 32 32

1 ML-KEM -512 800 768

3 ML-KEM -768 1184 1088

5 ML-KEM -1024 1568 1588

The three configurations correspond to the following quantum-resistant security levels:

o ML-KEM-512: equivalent to AES-128 security;
29

Quantum technology and cybersecurity

o ML-KEM-768: equivalent to AES-192 security;
o ML-KEM-1024: equivalent to AES-256 security.

Considering the expected capabilities of quantum adversaries (e.g. Grover’s algorithm), ML-KEM-
768 is generally recommended as it achieves a balanced trade-off between classical and post-
quantum security.

Digital Signature Schemes

The standardised digital signature algorithms are ML-DSA and SLH-DSA. Although Falcon was
among the NIST Round 3 finalists, it was not ultimately selected for standardisation, as discussed
in Section 2.5.2.

All mentioned standardised schemes comply with the EUF-CMA security criterion and utilise
the hash and sign methodology, whereby messages are hashed prior to the generation of signatures.

Module-Lattice-based Digital Signature Algorithm (ML-DSA)

ML-DSA is a lattice-based signature scheme proven secure under chosen-message attacks, relying
on the computational hardness of module-lattice problems. This security notion means that
an adversary having access to a signing oracle cannot produce a signature of a message whose
signature he has not seen yet, nor produce a different signature of a message that he already saw
signed.

It offers flexible parameter sets allowing trade-offs between key size, signature size and com-
putational performance. Together with Falcon, ML-DSA was among the most efficient Round 3
candidates suitable for widespread deployment, with even better performance than classic ones.

Stateless Hash-based Digital Signature Algorithm (SLH-DSA)
SLH-DSA is a stateless hash-based signature scheme. It combines one-time signatures, few-time
signatures and tree structures to build a general purpose digital signature framework.

Specifically, it employs both:

e a few-time signature scheme, Forest of Random Subsets (FORS);

e a multi-time signature scheme, the Extended Merkle Signature Scheme (XMSS), constructed
using the hash-based one-time signature scheme Winternitz One-Time (WOTS+)

Its security of SLH-DSA rests solely on the properties of the underlying hash function. Because
of the way signatures are constructed, key generation and verification are considerably faster than
signing. Internally, the scheme uses randomised message compression via a keyed hash function
capable of processing inputs of arbitrary length.

Two alternative design variants are proposed:

e a faster signature mode at the expense of larger signatures;

e a smaller signature mode at the cost of slower signing.

More aggressive trade-offs may also be selected depending on application requirements.

Specifically, the public keys are very short, but the signatures are relatively large. One sig-
nificant drawback lies in the complexity of the scheme: its sophisticated structure makes im-
plementation error-prone, complicating both security analysis and deployment. It is essential to
acknowledge that the algorithm’s design imposes a limit on the number of signatures: beyond a
certain number, there is a non-negligible probability that the signatures leak enough information

30

Quantum technology and cybersecurity

to allow forgery. To keep this risk acceptably low, the total number of signatures that can be se-
curely generated must be bounded (for instance, NIST requires support for at least 264 signatures)
[40].

In table 2.5 the key and signature sizes for SLH-DSA variants are shown alongside those of
other PQC and traditional algorithms (e.g. RSA-2048, ECC P-256). The entries for SLH-DSA
include both ”s” (small) and ”f” (fast) versions, denoting trade-off options.

Table 2.5. Comparison among PQC DSS and traditional counterparts (in bytes)

Sec. Level Algorithm Pub. key size Priv. key size Sign. size
Traditional ~RSA-2048 256 256 256
Traditional P-256 64 32 64

1 SLH-DSA-SHA256-128f 32 64 17088

2 ML-DSA-44 1312 2560 2420

3 ML-DSA-65 1952 4032 3309

3 SLH-DSA-SHA256-192f 48 96 35664

5 SLH-DSA-SHA256-256f 64 128 49856

5 ML-DSA-87 4627 4896 4627

Extended Merkle Signature Scheme (XMSS)

XMSS is a stateful hash based digital signature scheme capable of producing a fixed, though
potentially large, number of signatures per key pair [40]. Its security relies solely on the prop-
erties of cryptographic hash functions rather than number-theoretic assumptions. While state
tracking is required, XMSS offers compact implementations, natural side-channel resistance and
relatively short signatures compared with other hash-based constructions. The multi tree variant
of XMSS mitigates key generation latency and enhances scalability, making it a practical option
for constrained or embedded environments.

Implementation flaws in post-quantum algorithms

The evolution of the PQC standardisation process illustrates that algorithmic innovation and
solid implementation frequently conflict. Certain schemes once considered promising have re-
vealed critical design or operational weaknesses under scrutiny, prompting withdrawals or delayed
standardisation.

The fall of SIKE and the Hertzbleed attack Schemes in the isogeny-based family, such as
Supersingular Isogeny Key Exchange (SIKE), provide a DH style key agreement on the isogeny
graph of elliptic curves. Rather than exponentiation in finite fields or scalar multiplication in
Elliptic Curve Diffie-Hellman (ECDH), each party computes a secret isogeny whose kernel is
generated by a private point, publishes the resulting isogenous curve together with the images of
basis points, and both parties arrive at the same j-invariant to derive a shared key.

Initially celebrated for their compact key sizes and elegant mathematical foundations, these
constructions were seen as potential candidates for long term quantum resistance.

However, SIKE, jointly implemented by Microsoft and Cloudflare as a ”constant time” library
to resist timing attacks, was later found vulnerable to a new class of side-channel exploit known
as Hertzbleed [41]. This attack leverages dynamic CPU frequency scaling (e.g. Intel Turbo Boost,
AMD Ryzen Zen 2 and Zen 3) to extract cryptographic keys remotely by analysing variations in
execution frequency rather than execution time.

In addition to practical implementation difficulties, cryptanalytic attacks that exploited struc-
tural weaknesses in SIDH ultimately prompted the authors to withdraw the SIKE proposal from
the NIST PQC competition. The research team documented both their findings and the precise
cause of the scheme’s failure in a final technical report [42], an act that has since been recognised
as contributing to greater collective insight and transparency within the PQC community.

31

Quantum technology and cybersecurity

The Falcon problem Falcon, a lattice based signature scheme and former finalist in the NIST
competition, achieves compact keys and efficient verification through the use of Fast Fourier
Transform (FFT) arithmetic over NTRU lattices. Despite its performance advantages, Falcon’s
reliance on floating-point operations poses significant implementation risks: non-constant time
arithmetic introduces potential side-channel leakage. Consequently, NIST has delayed the pub-
lication of FIPS 206, the intended Falcon based digital signature standard (provisionally titled
FN-DSA, short for FFT aver NTRU-Lattice-based Digital Signature Algorithm), until secure and
deterministic constant-time mitigations are demonstrated.

Alternative KEMs: BIKE and HQC Among code-based KEM proposals, Bit-flipping Key
Encapsulation (BIKE) and Hamming Quasi-Cyclic (HQC) have advanced as alternative candi-
dates to the lattice based ML-KEM. Both are built upon error correcting codes, but rely on
distinct mathematical assumptions. BIKE is grounded in Quasi-Cyclic Moderate Density Parity-
Check (QC-MDPC) codes and offers simple, low latency operations with compact public keys.
However, its security relies heavily on the hardness of decoding random linear codes, an assump-
tion that has been under continual examination.

By contrast, HQC employs structured quasi-cyclic codes and a noise injection mechanism that
enhances resistance to known decoding and reaction attacks. It provides a conservative design
with predictable performance and resistance to side-channel analysis. For these reasons, NIST
has initiated its standardisation as FIPS 207 [43], presenting HQC as a mathematically diverse
and implementation friendly complement to ML-KEM.

32

Chapter 3

Internet Protocol Security (IPsec)

This section provides an overview of one of the oldest security protocols [44], which emerged from
the necessity to protect network infrastructure from unauthorised monitoring and control of the
network traffic, as well as to secure end-user-to-end-user communication through authentication
and encryption mechanisms.

The analysis begins with a review of the current IPsec specifications, RFC-4301 and RFC-7296
respectively for the security architecture and for Internet Key Exchange protocol, providing an
overview of its core mechanisms, architectural principles and the evolution from its earlier ver-
sions. Particular attention is given to the updates introduced in subsequent specifications, namely
RFC-9242 and RFC-9370, which refine key exchange procedures and cryptographic negotiation
to accommodate post-quantum requirements, reflecting the primary efforts to solve practical dif-
ficulties such as increasing signature, certificate volumes and network packet overhead.

3.1 IPsec architecture

IPsec is the IETF architecture for Layer 3 security in IPv4/IPv6 designed to create a Secure
VPN (S-VPNs) over unstrusted networks and create end-to-end secure packets flows. Generally
speaking, an S-VPN can be defined as a solution that enhances the security and privacy of
user communications by protecting network packets through cryptographic means. When robust
cryptographic algorithms are employed, the only remaining practical attack vector is to disrupt
the communication channel itself (Denial of Service (DoS)). Prior to encapsulation, packets are
safeguarded using the following mechanisms:

e Message Authentication Code (MAC): ensures data integrity and source authentica-
tion;

e encryption: provides confidentiality by protecting the payload against unauthorised access;

e sequence numbering: mitigates replay attacks by enforcing packet order validation.
This is achieved through the definition of two specific packet types:

e AH: provides integrity, authenticity and protection against replay attacks;

e ESP: offers functions similar to AH, with the addition of payload confidentiality.

It is crucial to emphasise that confidentiality can only be provided for the payload. In fact,
it is never possible to encrypt the (external) header, otherwise, intermediate systems would be
unable to process the packets.

There is also a specific protocol for key management and exchange for use with IPsec. It is
named Internet Key Exchange, used to create and distribute keys in IP networks. The IPsec
security services are the following:

33

Internet Protocol Security (IPsec)

Authentication of IP packets The authentication of the IP packets is achieved by computing
a keyed digest using a shared key, which ensures:

e data integrity: the recipient can detect any packet manipulation;
e sender authentication: a formal proof of the sender’s identity;

e (partial) protection against replay attacks: challenges emerge due to operations at
Layer 3, where packets may be lost or duplicated.

Confidentiality of IP packets Providing data privacy, with payload encryption with a sym-
metric algorithm and a shared key.

Peer Authentication during SA creation Peer authentication is achieved by a pre-shared
key or a digital signature, with key agreement reached just after the authentication procedure
complete.

Key exchange

IPsecy3 IPsec SA Pair
e = o o o]
Security Security
association <@ P association

database ESP protects data database

Figure 3.1. IPsec architecture overview

3.2 Security Association (SA)

The above enumerated security features are associated with the concept of Security Association,
which is an one-way logical connection between a sender and a receiver that affords security
services to the traffic carried on it. Each SA is associated with different security services. To
achieve full protection for a bidirectional packet flow between two nodes, two SAs are needed.

A SA is uniquely identified by three parameters.
e Security Parameters Index (SPI): 32-bit unsigned integer designated for the SA with

local significance alone. The SPI is carried in AH and ESP headers, to enable the receiving
system to select the SA under which a received packet will be processed;

o IP destination address: address of the destination endpoint of the SA, which may be an
end-user system or a network system such as a firewall or router;

e security protocol identifier: field from the outer IP header indicates whether the security

association is an AH or ESP.

Theoretically, independent security features and algorithms might be employed for each di-
rection. Nevertheless, it is standard practice to employ the same kind of protection, even while
utilising two distinct SAs.

Security Associations are administered via two local databases:

34

Internet Protocol Security (IPsec)

e Security Policy Database (SPD): a catalogue of security policies applied to packet
flows, either preconfigured (e.g. manually) or provisioned by an automated system (e.g.
Internet Security Policy System (ISPS));

e Security Association Database (SAD): a runtime store of active SAs and their at-
tributes (e.g. algorithms, keys, parameters) used to produce protected traffic for each SA.

A SA is further characterised by a set of parameters stored within the Security Association
Database, each of which defines the operational state and cryptographic context of the secure
channel. The already mentioned SPI, a sequence number counter, also 32 bits in length, is em-
ployed to populate the sequence number field in AH or ESP headers, ensuring ordered delivery
and potentially replay protection. Associated with it is the sequence counter overflow flag, which
indicates whether exceeding the sequence limit should trigger an auditable event and suspend
packet transmission under the affected SA. Moreover, an anti-replay window mechanism provides
additional defence against replay attacks by determining whether inbound packets are duplicates
of previously received ones. Each SA also specifies the cryptographic material in use: for AH,
this includes authentication algorithms, keys and their lifetimes. For ESP, both encryption and
authentication parameters are defined alongside keying material and initialisation values. Fur-
thermore, every SA possesses a defined lifetime, expressed either as time interval or byte count,
after which it must be replaced with a new association (and newSPI) or terminated, as prescribed
by policy. Finally, the SAD entry records the operational mode of IPsec, either transport or
tunnel, and the observed Path Mazimum Transmission Unit (MTU), which denotes the largest
packet size that can be transmitted without fragmentation, together with its ageing variables.

In complex network environments, multiple entries may correspond to a single SA, or con-
versely, several SAs may be linked to a single Security Policy Database entry. Each entry in
the SPD is defined by a set of selectors, which specify the IP and upper-layer protocol fields used
to determine how traffic should be processed. These selectors act as filtering rules that classify
outbound packets and map them to the appropriate SA for transmission. Typical selectors include
the remote and local IP addresses, each of which may represent a single host, a list or range of
addresses, or a wildcard address. The latter options are particularly relevant when multiple sys-
tems share the same SA, such as in scenarios where endpoints reside behind a firewall or gateway.
The next-layer protocol selector corresponds to the protocol field in the IP header, referred to
as Protocol in IPv4 and Next Header in IPv6, which identifies the protocol operating over IP.
Depending on the configuration, this field may specify an individual protocol number, the key-
word ANY, or, in the case of IPv6, OPAQUE. When AH or ESP is employed, the IP protocol header
directly precedes the corresponding authentication or encapsulation header within the packet.

In addition to these network layer selectors, an identity selector or name may be included to
represent a user identifier provided by the operating system. Although not contained within IP
or upper layer headers, such identifiers are available when IPsec operates within the same host
environment as the user application. Finally, local and remote port numbers, whether defined as
single values, lists or wildcards, enable more granular control over transport layer traffic, support-
ing selective protection of specific application flows within the overall IPsec policy infrastructure.

3.3 Processing model for IPsec packets

IPsec provides a high degree of granularity in discriminating between traffic that is afforded IPsec
protection and traffic that is allowed to bypass it.

When an outbound packet emerges from the TCP/IP stack and is queued for transmission on
Layer 2, it is first intercepted by the IPsec subsystem. A t this stage, the system consults the
SPD to determine the applicable security policy, deciding whether protection is required and, if
so, which mechanisms must be applied. Depending on the outcome, the packet is either passed
directly to the data-link layer or subjected to IPsec processing.

If protection is mandated and the packet initiates a flow for which no suitable SA has yet been
established, the system triggers the creation of a new SA. On the contrary, when a matching

35

Internet Protocol Security (IPsec)

SA already exists, the IPsec module retrieves the corresponding entry from the SAD, including
the selected cryptographic algorithms, keys and operational parameters. The packet is then
encapsulated and/or authenticated according to the chosen protocol (ESP or AH). After the
required security transformations have been applied, the resulting protected packet is handed off
to Layer 2 for transmission over the physical network.

Outbound IP packet
(e.g., from TCP or UDP)

No match
found

_ Search
security policy
database

‘ Match found
L J
Discard_DlS(‘ARD Determine'\ PROTECT
packet policy

No match
found

BYPASS Match
found

Forwarfl Prolc s Internet
packet via 1« (AH/ESP) kgy
1P exchange

Figure 3.2. IPsec outbound packets processing

3.4 Operating modes

The protocol operates in two distinct modes: transport and tunnel. These modes govern the
extent of encapsulation and protection applied to a packet, the identity of the communicating
endpoints and the suitability for host-to-host versus network oriented deployments. The fol-
lowing subsection introduces each mode and outlines their principal semantics and deployment
considerations.

3.4.1 Transport mode

Transport mode is utilised for end-to-end security, mostly implemented by hosts rather than
gateways, except for traffic sent to the gateway itself (e.g. SNMP, ICMP). The original packet,
as represented in fig. 3.3, is split into two parts, with a new header placed between the IPv4
header and the TCP/IP one. Consequently, the IPv4 header will signify that it is conveying IPsec
rather than TCP/UDP. Within the IPsec header, an additional field will indicate the specific
payload being transmitted. Among the advantages, it is computationally efficient, whereas it
lacks protection for header variable fields.

36

Internet Protocol Security (IPsec)

Transport layer

transport data |

IP layer

Figure 3.3. Tunnel mode

3.4.2 Tunnel mode

Tunnel mode IPsec is employed to establish a VPN, generally between gateways. The appropriate
name is gateway, which functions as a contact point between a presumed secure network and
another network that is considered not secure. In this modality the original packet, with the
end-to-end header, is encapsulated within a tunnel. The tunnel is established by the sending
gateway, which secures the network of the corresponding destination. The transmitting gateway
implements IPsec on this IP in the IP packet.

The primary advantage is the full protection of the packet, including mutable fields inside
the header, yet, it is computationally intensive. While less prevalent, IPsec in tunnel mode may
be utilised for end-to-end communication, but it is generally employed between border elements
of extensive networks. This configuration is commonly note to as a site-to-site VPN, as the
organisations involved are generally complete networks.

- IP paylaod |

IP layer

Figure 3.4. Tunnel mode

3.5 Protection mechanisms

This section surveys IPsec’s two foundational mechanisms: Authentication Header (AH) and
Encapsulating Security Payload (ESP). It outlines their security objectives, packet formats pro-
cessing rules and clarifies how each interacts with transport and tunnel mode.

3.5.1 Authentication Header (AH)

The Authentication Header has progressed through three main specifications. The first version
(RFC-1826), together with RFC-1828 and RFC-1852, provided data integrity and data origin

37

Internet Protocol Security (IPsec)

authentication, mandating support for keyed-MD5 and offering keyed-SHA-1 as an option. The
second version (RFC-2402) retained these guarantees and introduced (partial) anti-replay protec-
tion, standardising truncated message authentication codes: HMAC-MD5-96 and HMAC-SHA-
1-96. The current specification (RFC-4302 [45]) refines processing rules, header structure and
clarifies algorithm agility and anti-replay handling.

AH header format (RFC-4302)

Figure 3.5 illustrates the AH placed between the IP header and the upper layer payload. Its
fields are:

e Next Header: in the IP header, it will indicate the transport of AH, but within the AH,
there will be the actual transport packet field;

e Length: 1 byte to describe the length of the packet;

e Reserved: bytes for future uses;

o Security Parameters Index (SPI);

e Sequence Number: monotonically increasing counter supporting anti-replay protection;

o Integrity Check Value (ICV): variable number of 4-byte words to provide authentication
data.

Processing of a received AH protected packet
Upon receipt :

1. parse AH and extract the ICV supplied by the sender;

2. normalise the IP packet into a canonical form so that both peers MAC have the same
bitstring (e.g. zeroing mutable header fields);

3. select the SA by using the SPI to locate the appropriate entry in the SAD, which determines
the algorithm, key, and parameters to be used;

4. recompute the ICV over the normalised packet using the SA’s algorithm and key;

5. compare ICVs, if the recomputed value matches the received one, the packet is considered
authentic and integral, otherwise it is deemed fraudulent and/or as a counterfeit sender.

The AH provides assurance about the identity of the peer associated with a given SA. The
binding between the SPI and the peer identity is established during SA negotiation via IKE,
when the remote endpoint is authenticated. As a result, each packet benefits from implicit peer
authentication: the MAC is verified using the key bound to that peer’s SA.

38

Internet Protocol Security (IPsec)

0 8 16 31
Next Header Payload Lenght Reserved

Security Parameter Index (SPI)

Sequence number

Authentication Data (variable lenght)

Figure 3.5. Authentication Header (AH) format

3.5.2 Encapsulating Security Payload (ESP)

When confidentiality is required, the ESP must be employed. In its first specification (RFC-
1827), it provided confidentiality only, with the reference transform based on DES-CBC (RFC-
1829), although other mechanisms were possible. A subsequent version introduced authentication
capabilities, albeit not for the IP header, so its coverage does not coincide with that of AH. In
practice, this design reduces packet size and saves one SA. Even though, both packet types can
be utilised simultaneously without restriction and combined as necessary.

ESP packet format (RFC-4303 [9])

In the current specification, an ESP packet comprises an ESP Header, consisting of the 32 -bit SPI
and a 32 -bit sequence number, followed by the protected data and, optionally, an integrity trailer.
The protected data, ”Payload Data”, carries the encrypted content: in transport mode this is
the upper-layer payload, whereas in tunnel mode it is an entire inner IP packet. Where required
by the transform, an initialisation vector or nonce is included within this protected portion.
The encrypted block also contains any necessary padding together with a 1 octet ”Pad Length”
and a 1 octet "Next Header” that identifies the encapsulated protocol. When authentication is
configured, an ICV follows as a trailer to provide data-origin authentication and integrity. By
design, encryption covers the Payload Data, Padding, Pad Length, and Next Header, while (when
enabled) the integrity computation authenticates the ESP Header and the encrypted portion
according to the selected transform and the SA policy.

39

Internet Protocol Security (IPsec)

0 8 16 31 &
A : 7]
Security Parameter Index (SPI) =
Q s
=t Sequence number 3
3 h =
o
']
g_ Payload Data (variable lenght))
z =
N 215
5 w
2 Padding E
. [
v Padding Lenght Next Header v IF
r'y o
@
Authentication Data (variable lenght) "
=
<
v

Figure 3.6. Encapsulating Security Payload (ESP) format

ESP supports both transport and tunnel mode.

In transport mode, ESP is inserted between the IP header and the payload. After the ESP
header, all subsequent content is encrypted up to the terminating ESP trailer. In this arrangement,
the payload is concealed, including information that might otherwise be used for Quality of
Service (QoS), filtering, or intrusion detection. While the IP header remains in cleartext.

By contrast, in tunnel mode, a tunnel is first established and protection is then applied to
the tunnel payload. The entire original packet, including the end-to-end header, is encrypted so
that both the payload and the original header are hidden, at the cost of an increased packet size.

3.6 IPsec (partial) replay protection

IPsec provides an anti-replay service designed to protect against the unauthorised retransmission
of previously captured packets. Each sender maintains a monotonically increasing sequence num-
ber counter within the relevant SA). Every outbound AH or ESP packet carries this sequence
number, which the receiver uses to detect duplicates or replays.

Due to the fact that the underlying IP network is inherently unreliable, packets may be delayed,
dropped, duplicated or delivered out of order.

To handle this ambiguity in an efficient manner, IPsec uses a fixed-length sliding window of
width W that tracks recently accepted sequence numbers. Each position in the window corre-
sponds to a single packet, and the slot is marked when that packet is accepted. When a new
packet arrives, if its sequence number falls within the current window and the associated slot is
still unset, the packet is treated as a valid out-of-order delivery and accepted. If, instead, the slot
has already been marked, the packet is recognised as a duplicate and dropped.

The sliding window advances dynamically as higher sequence numbers are received. Whenever
a packet arrives with a value greater than the current maximum, the window is shifted forward
to include this new position. This mechanism offers a practical compromise, providing robust
replay protection while tolerating a bounded amount of reordering, without requiring the receiver
to maintain an unbounded history of all previously seen packets.

For connection-oriented traffic such as TCP, the occasional discard of a legitimate out-of-order
packet is of limited concern, as retransmissions are handled by the transport layer. In contrast,
for connectionless protocols such as UDP, accepting old packets is not permitted, as doing so
could lead to the processing of stale or malicious data. Accordingly, the sender must initiate
transmission with a fresh, valid sequence number to remain synchronised within the current SA.

40

Internet Protocol Security (IPsec)

3.7 Mode of use

The IPsec architecture can be deployed in several configurations depending on the desired level of
protection, the position of the protected entities, and the operational constraints of the network.
The following subsections describe the principal modes of use.

3.7.1 End-to-end security

In this configuration, the IPsec module is enabled directly on the communicating end hosts.
The peers establish a transport mode SA to form a secure virtual channel between them. This
ensures that packets are cryptographically protected at the source host’s network layer before
transmission, providing confidentiality, integrity, and authentication across untrusted segments
such as local or wide area networks.

The main advantage of this approach lies in its independence from the underlying infras-
tructure: even if intermediate gateways or network segments are untrusted, the traffic remains
protected. Consequently, the only feasible attack becomes a Denial of Service. The drawback,
however, is the need to enable and manage IPsec on all communicating endpoints. Although
modern operating systems natively support IPsec, certain constrained devices such as, mobile
platforms or embedded systems, may lack this capability or sufficient computational power to
process cryptographic workloads efficiently.

Security management also becomes more complex at scale. When many hosts across a large
enterprise network require protection, a coordinated configuration management solution is needed
to distribute and maintain SAs in a consistent manner. Furthermore, when ESP encryption is
in use, network-level monitoring tools such as Intrusion Detection Systems (IDSs) cannot inspect
the protected payloads unless they are deployed directly on the endpoints.

3.7.2 Basic VPN (site-to-site)

In the basic virtual private network (VPN) configuration, the IPsec modules are deployed on the
security gateways that interconnect and protect the internal networks. The gateways establish a
tunnel mode SA to encapsulate and secure all traffic between the two sites. This approach assumes
that the internal networks are trusted, and therefore protection is required primarily across the
untrusted wide area network.

Although this model simplifies deployment, only the gateways require configuration rather
than every endpoint. Confining authentication to the intermediate devices rather than the ulti-
mate communicating peers. Moreover, since encryption and encapsulation are performed at the
gateways, traffic remains inspectable within the internal network but not across the external link.

From a performance standpoint, gateways must perform all encapsulation and cryptographic
operations for transit traffic, which may require high-end processors or dedicated accelerators such
as Hardware Security Modules (HSMs). Nevertheless, the administrative burden is significantly
lower, as configuration and key management are centralised on a relatively small number of
gateway appliances.

3.7.3 End-to-end security with basic VPN

This hybrid configuration implements the principle of defence in depth, combining both end-to-end
and site-to-site protection. In this architecture, IPsec is active on the communicating endpoints as
well as on the connecting gateways. Two distinct layers of defence are thus established, allowing
for flexible security policies.

This mode of use preserves observability inside the local network while enforcing confidentiality
on the external path. However, it entails the administrative burden of maintaining configurations
on both the endpoints and the gateways.

41

Internet Protocol Security (IPsec)

3.7.4 Secure gateway

The secure gateway model is typically employed to support mobile users who need secure access
to an internal enterprise network while travelling or working remotely. In this setup, an IPsec
client on the user’s device establishes a tunnel mode SA with the enterprise gateway. All traffic
between the mobile node and internal servers is thereby protected, and the gateway can perform
both authentication and authorisation functions to enforce access control policies.

3.7.5 Secure remote access

This configuration extends the secure gateway model by establishing two layers of protection:
a tunnel mode SA between the mobile user and the gateway, and a separate transport mode
SA between the mobile user and the final destination host within the network. Typically, the
tunnel mode SA is used for user authentication and initial authorisation, granting access to
internal resources, while the transport mode SA provides end-to-end data protection. This layered
configuration allows organisations to tailor security levels based on the sensitivity of specific
applications or services while maintaining robust access control at the network perimeter.

3.8 IPsec version 3

In version 3, ESP has become mandatory, while AH remains optional. As a result, some imple-
mentations of IPsec no longer include AH support, thereby providing integrity and authentication
solely for the payload rather than for the entire IP packet header. This approach reflects the grow-
ing preference for using ESP in both transport and tunnel modes due to its flexibility and wider
compatibility with network devices. Furthermore, IPsec v3 extends its functionality to support
single-source multicast communications, improving scalability for group-oriented secure transmis-
sion.

Given that IPsec is widely deployed in high-throughput settings such as site-to-site VPNs,
version 3 tackles the practical risk of sequence-number exhaustion. To prevent sequence number
overflow in long-lived sessions, the protocol adopts the Extended Sequence Number (ESN) mech-
anism with a 64-bit counter: only the lower 32 bits are carried in each packet, while the full value
is maintained locally. Use of ESN is enabled by default when operating with IKEv2 [46].

Another significant enhancement is the adoption of AEAD, which consolidates confidentiality
and integrity /authentication into a single cryptographic primitive.

With respect to cryptographic algorithms, IPsec v3 supports a wide range of primitives to
ensure both backward compatibility and forward security.

For integrity and authentication, supported algorithms include HMAC-SHA2-256-128 (manda-
tory), HMAC-SHA2-512-256 (recommended), and AES-XCBC-MAC-96 (optional, particu-
larly for IoT profiles), with HMAC-SHA1-96 retained only for legacy interoperability. The
NULL authentication option is acceptable only when an AEAD cipher is used for ESP.

For confidentiality, AES-GCM-16 is mandatory and CHACHA20-PorLy1305 is recommended,
while AES-CCM-8 is recommended for IoT deployments. The block cipher AES-CBC remains
mandatory for interoperability, whereas 3DES-CBC is SHOULD NOT and NULL encryption
remains permitted to support ”authentication-only” ESP configurations.

In authenticated encryption mode, the recommended AEAD algorithms are AES-GCM-16,
AES-CCM-8 (notably for IoT), and CHACHA20-PoLY1305, which offer both robustness and
efficiency. Furthermore, longer hash digests such as HMAC-SHA2-256-128 and HMAC-SHA2-
512-256 can be used to achieve enhanced resistance against collision and preimage attacks [47].

42

Internet Protocol Security (IPsec)

3.9 Key management

The key management portion of IPsec involves the determination and distribution of secret keys.
A typical requirement is four keys for communication between two applications: transmit and
receive pairs for both integrity and confidentiality.

The IPsec architecture document mandates support for two types of key management:

e manual: a system administrator manually configures each system with its own keys and
with the keys of other communicating systems. This is practical for small, relatively static
environments;

e automated: an automated system enables the on-demand creation of keys for SAs and
facilitates the use of keys in a large distributed system with an evolving configuration.

In the automated in-band key distribution scenario, it is referred to as the IKE protocol,
which performs the following functions: mnegotiation of security parameters, authentication, key
establishment and key management post-establishment.

3.9.1 Internet Key Exchange (IKEv1)

In this subsection, a concise overview of the first version of the Internet Key Exchange is pro-
vided, outlining only the essential concepts required to appreciate the significant enhancements
introduced in its successor, IKEv2.

As defined in RFC-2409 [48], IKEv1 unified two earlier protocols: Internet Security Associa-
tion and Key Management Protocol (ISAKMP), specified in RFC-2408 [49], which provided the
framework for negotiating, establishing, updating and deleting SAs, and the Oakley Key Determi-
nation Protocol [50], which provided the authenticated key exchange methods for deriving shared
secrets.

The IKEv1 operates in two distinct phases. In phase 1, the peers establish an SA to protect
subsequent ISAKMP exchanges, thereby creating a secure, authenticated channel for later IKE
traffic. This initial phase can be executed either in Main Mode or in Aggressive Mode.

The Main Mode involves six messages and affords identity protection, since authentication
data are exchanged only after encryption is in place.

While Aggressive Mode, by contrast, completes the exchange in three messages, lowering
latency at the cost of exposing peer identities during the handshake. Upon completion of phase 1,
both sides hold keys derived from a DH exchange and random nonces, which protect against
replay and supply keying material for subsequent negotiations.

Phase 2, also known as Quick Mode, uses the protection of the phase 1 ISAKMP SA to
negotiate one or more IPsec SAs. These SAs contain the cryptographic transforms and traffic
selectors required for the ESP or AH protocols, enabling the secure transmission of payload
packets.

The Quick Mode typically involves three messages, bringing the total number of data-
grams exchanged to nine for the establishment of a single IPsec SA.

3.9.2 Internet Key Exchange (IKEv2)

As originally specified in RFC-4306 and subsequently refined through later updates culminating in
its current definition in RFC-7296, IKEv2 streamlines its predecessor by establishing a single IPsec
SA in just four UDP datagrams (fig. 3.7). The protocol follows a strict request-response pattern
in which each response also serves as an explicit acknowledgement. Retransmission responsibility
lies solely with the initiator, a design that markedly improves robustness under loss and congestion
compared with IKEv1, where both peers might otherwise retransmit concurrently.

43

Internet Protocol Security (IPsec)

The initial IKE_SA_INIT round negotiates the cryptographic transforms for the IKE SA (SA1;/SA1,),
performs a shared DH secret derivation via KE; /KE., exchanges nonces Nj/N;, all within a single
round trip.

Initiator UDP/500 Responder
IKE - _()—p
Headen SAL;| KE; | N;
IKE
(| 1icoder |SALr| KE; | N,

Figure 3.7. IKE_SA_INIT

The subsequent IKE_AUTH exchange authenticates the peers (AUTH;/AUTH,) using pre-shared
keys, RSA signatures or Extensible Authentication Protocol (EAP), and simultaneously installs
the first Child SA by conveying traffic selectors. The (TS;/TS,) and the transforms for the IPsec
connection (SA2;/SA2,). Each party supplies its identity (ID;/ID,) and may attach a certificate
(CERT; /CERT,). The initiator can also request that the responder assume a specific identity value
if multiple identities are available.

IKE
Header | IDi | Certi | ID; _®_>

Auth, | SA2,| TS, | TS,

encrypted 4_@_

encrypted |SAZ2.| TS; | TS,

Figure 3.8. IKE_AUTH

Further Child SAs are established using the CREATE_CHILD_SA request/response pair (fig. 3.9).
This exchange conveys the new transform proposals (SA;/SA,), fresh nonces (N; /N,), optional DH
material when perfect forward secrecy is required and the corresponding traffic selectors (TS;/TSy).
The same mechanism also enables periodic rekeying of either a Child SA or the parent IKE SA
via an appropriate notification payload.

44

Internet Protocol Security (IPsec)

Initiator UDP/500 Responder

Figure 3.9. CREATE_CHILD_SA

At any time, either peer may send an INFORMATIONAL exchange, which is always acknowledged.
As shown in fig. 3.10, such messages can carry notification (N), delete (D), or configuration payloads
(CP). Empty INFORMATIONAL exchanges are commonly used to implement Dead Peer Detection
(DPD).

Initiator UDP/500 Responder
IKE
Header N|D|CP _®_’
encrypted
¢ @ IKE
Header N|D|CP

encrypted

Figure 3.10. INFORMATIONAL MESSAGES

3.9.3 Intermediate Exchange and Additional Key Exchanges

As specified in RFC-9242, the Intermediate Exchange was introduced as a substantive enhance-
ment to IKEv2, intended to remedy operational inefficiencies and security limitations inherent
in the traditional two-exchange workflow. In the baseline design of RFC-7296, the IKE_SA_INIT
and IKE_AUTH exchanges are tightly coupled, forcing substantial cryptographic payloads to be
transmitted early in the handshake. This frequently results in fragmentation, especially over User
Datagram Protocol (UDP) when multiple certificates, large keys, or complex authentication data
are present, thereby elevating loss rates and jeopardising a successful negotiation.

The Intermediate Exchange (IE) defines an optional, standardised facility for inserting addi-
tional message pairs between IKE_SA_INIT and IKE_AUTH. This intermediate stage can be used to
gather pre-authentication data, negotiate advanced cryptographic options, or conduct external
authentication procedures (e.g. EAP), without prematurely committing to authentication. In do-
ing so, it improves robustness in the face of packet loss and affords greater flexibility for large-scale
deployments, including mobile scenarios and environments with constrained devices. However, it
also introduces security considerations: any intermediary message must preserve cryptographic

45

Internet Protocol Security (IPsec)

binding to the IKE_SA_INIT exchange to avoid man-in-the-middle and replay attacks. To mit-
igate these risks, RFC-9242 mandates that all intermediate messages remain cryptographically
protected and authenticated within the negotiated IKE_SA context.

From an operational standpoint, the IE addresses the problem of UDP fragmentation by al-
lowing the division of large payloads into smaller, manageable segments transmitted in separate
messages, making use of the existing IKE fragmentation mechanism, avoiding Internet Proto-
col (IP) fragmentation thus reducing retransmissions and negotiation failures. Furthermore, it
enables new use cases, such as staged authentication or exchange of post-quantum public keys,
by deferring the full authentication until all cryptographic material is safely exchanged. Nonethe-
less, implementations must consider potential DoS vectors introduced by additional exchanges,
ensuring validation and rate-limiting mechanisms are applied.

Based on these concepts, RFC-9370 introduces Additional Key Frchange within IKEv2. Where
the traditional protocol performs a single Diffie-Hellman exchange during IKE_SA_INIT (with an
optional exchange in CREATE_CHILD_SA for Perfect Forward Secrecy (PFS) during the rekey phase),
RFC-9370 extends the model to permit multiple, concurrent key exchanges both in IKE_SA_INIT
and in subsequent CREATE_CHILD_SA exchanges. In order to strengthen cryptographic agility
and accommodate hybrid post-quantum deployments, combining classical and post-quantum key
material, ensuring that session keys remain secure even if one primitive is later broken.

From an operational perspective, Additional Key Exchange (ADDKE) transform types are
carried within the IKE_SA_INIT SA payload, each one identifying an additional KE method through
its specific ADDKE transform identifier (e.g. ADDKE2, ADDKE3, and so on). These transforms an-
nounce the extra key exchanges that the peers will subsequently perform during IKE_INTERMEDIATE
exchanges.

During the IKE_AUTH phase, the contributions of all negotiated ADDKE transforms are incor-
porated into the shared-secret derivation, resulting in a hybrid Key Derivation Function (KDF).
The same principle applies to CREATE_CHILD_SA exchanges, where additional ADDKEs may
be included if required.

The specification introduces two complementary safeguards for managing multiple key ex-
changes. First, ordering and dependency are enforced by stipulating that each ADDKE; must be
fully completed and validated before processing ADDKE; ;. In practice, this yields a strict, de-
terministic sequence: any reordering, omission or duplication of KE/ADDKE payloads causes the
exchange to fail immediately. Second, cryptographic binding is achieved by feeding the shared
secret from each key exchange into the key schedule in the same order, using the negotiated
Pseupo Ranpom FuncrioN (PRF).

As originally defined in RFC-7296, the peers first derive a base set of keys—namely SKj,
SKijar and SKg;o,—from the initial DH exchange in IKE_SA_INIT. They then perform one or
more IKE INTERMEDIATE exchanges, each protected using the previously established SK,[;/,) and
SKa[i/r) keys.

After each IE, the SKEYSEED value is refreshed by incorporating the newly derived shared
secret SK (n) from the corresponding ADDKE, together with the nonces N; and N, as follows:

SKEYSEED™ = PRF(SK," ™V, SK(n)| N; | N,).

The updated SKFE YSEED™ is then expanded via the PRF to obtain the refreshed keying mate-
rial:

{SKd(n)y SKai(n)a SKar(n)a SKei(n)a SKer(n); SKpi(n)a SKp7(n)}

PRF(SKEYSEED™, N;|| N, || SPL; || SPL,).

After each update, both peers compute the intermediate authentication values IntAuth; /T(")
using the corresponding SK,[;/y (n) keys [11]. These intermediate values are later used during
the IKE_AUTH exchange to produce the final authentication data (InitiatorSignedOctets and
ResponderSignedQOctets), thereby binding the authentication step to all preceding key exchanges
and providing robustness against downgrade or truncation attacks.

46

Internet Protocol Security (IPsec)

Fragmentation is handled in following manner. Since multiple key exchanges naturally increase
message sizes, RFC-9370 relies on the fragmentation framework of RFC-7383 [51] to segment and
reassemble large payloads without compromising integrity. Implementers must nonetheless ensure
that fragmentation behaviour does not inadvertently leak information about message structure
or group selection, which could in turn be exploited through side-channel analysis.

For IEs, the main concern is that partially authenticated states could be abused to inject or
replay intermediate messages. Within RFC-9370, the central challenge is to bind multiple key ex-
changes securely and to coordinate their inclusion in the key-derivation process. This introduces
additional operational complexity: peers must negotiate supported groups, accommodate asym-
metric capabilities and absorb the computational cost of parallel key exchanges without unduly
harming performance or introducing timing side channels.

Finally, RFC-9370 endorses the Childless IKE_LAUTH mode, as defined in RFC-6023 [52],
which allows completion of the IKE_SA setup without creating a corresponding CHILD_SA in the
same phase. This is particularly useful in scenarios where key management and policy negotiation
must be finalised before the data plane is brought up, such as deferred VPN activation, zero-trust
authentication workflows or post-quantum rekeying strategies.

Operationally, this mechanism permits the initiator and responder to agree on establishing
an IKE_SA alone, confirmed by the CHILDLESS_TKEv2_SUPPORTED notification in the IKE_SA_INIT
response. Subsequent CREATE_CHILD_SA exchanges can then be used to derive traffic keys, option-
ally incorporating further post-quantum key exchanges via IKE_FOLLOWUP_KE messages. In this
model, peers may omit the initial Child_SA entirely, ensuring that all later CHILD SAs benefit
from quantum-resistant key material.

From a security perspective, establishing a childless IKE_SA also mitigates the risk of unau-
thenticated DoS attacks. Since no Child_SA or data-plane channel is created prior to completing
peer authentication, attackers cannot easily exploit unauthenticated requests to consume cryp-
tographic or networking resources. This effectively narrows the attack surface during the initial
exchange phase, ensuring that heavy cryptographic operations, especially those involving post-
quantum primitives, are only performed once authenticity has been verified.

47

Chapter 4

StrongSwan

Having delineated the overarching architecture of IPsec, it is useful to view a ”secure channel”
not as a monolithic artefact but as a policy-driven construction: a set of negotiated algorithms,
parameters and traffic selectors bound into SAs and enforced by the system’s security policy &
association databases. In practice, the semantics of the channel are fixed by policy (what to
protect and how), while the mechanics are realised by IKE state machines that instantiate and
renew the requisite SAs. This separation of concerns is fundamental to engineering cryptographic
change: policy expresses intent. The key management layer executes it.

strongSwan is a widely deployed open-source implementation of the IPsec architecture with a
particular focus on the IKE key management protocol. In contemporary deployments, strongSwan
is typically used to negotiate SAs and enforce policy for protected traffic flows, while the operat-
ing system kernel performs the actual ESP/AH processing once the negotiated parameters are
installed. This division of responsibilities allows strongSwan to provide rich control-plane features
without handling user-plane packets directly. In particular, IKEv2 exchanges are transported over
UDP/500 (or UDP/4500 when NAT traversal is in use), and are used to create and rekey IKE
and Child SAs that, in turn, control ESP/AH processing in the kernel [53].

4.0.1 Daemon and modular architecture
At the heart of strongSwan is the charon daemon, implemented largely in the reusable 1ibcharon

library so that several front-ends (charon, charon-systemd, charon-svc, charon-cmd, Network-
Manager’s charon-nm, Android) can share the same IKEv2 state machine.

48

StrongSwan

B + e +
Credentials Backends
T e S S T + e T +
=== === === + == + === + e——— === +
| receiver | | | | | +--—--- + | CHILD_SA |
e ettt + | Scheduler | | IKE= | | IKE- [—-%---——————— +
| | | | SA |--| SA | | CHILD_SA |
e +——+ e e + | | +=-=--- N e +
<->| socket | | Man- |
=== +==+ L T + | ager | +-—-—-—--- oG e +
| | | | | | IKE- |--| CHILD_SA |
e + | Processor |-—-—--—-—-—- | [=-1 SA | +==---=--—-- +
| sender | [| | [+ +
Fommm - + Fomm - + o= +
= e e + e = === = +
Bus Kernel Interface
B + e +
I I I
t=mmmmm === + fmmmm === + Vv
| File-Logger | | Sys-Logger | il
=== === + b= —m— === +

Figure 4.1. Authentication Header (AH) format

The daemon exposes a strictly modular plugin architecture: at start-up, plugins are loaded to
extend core functionality (credential back-ends, EAP methods, PKI helpers, logging/transcript
sinks, control interfaces such as VICI, SQL configuration back-ends and more). Internally, charon
uses a job processor (thread pool), a scheduler for timed events (e.g. rekey), an IKE_SA manager
to serialise access to IKE state, and a kernel interface to install SAs, policies, routes and virtual
addresses. A message bus provides pub/sub signalling to interested listeners, enabling rich logging
and external orchestration.

49

StrongSwan

e +
| charon t———t - e s +
| | | | vici

| | | +=——-- tm +
| +=-———————- + | | +—---- o +
| | bus -——--> | p | | stroke |
| +=-———————- + | 1 | +~-—--- o +
| +=-——————- + <= | u| +----- tm———— +
| | controller | | g | | sqgl

| +———————————- + -=-=-> | 1| +----- - +
| +———————————- + | n | +=——-- - +
| | credentials | <---- | | | eap_aka |
| - + | 1 | +-—--- $-— - +
| = + --—> | o | +—-- - +
| | backends | | a | | eap_sim |
| 4= + L==== | d | +=---- tm +
| === + | e | +—---- e +
| | eap ----> | r | | eap_md5> |
| +=-——————- + | | +—---- tm———— +
| || Ao +
| | | |eap_identity|
| +-——t F---—- - +
e +

Figure 4.2. Authentication Header (AH) format

libcharon

Most of the IKEv2 logic resides in libcharon. Parsing and proposal negotiation are primarily
implemented under src/libcharon/sa and src/libcharon/encoding. Key components include:

e sa/ike_sa.c, sa/ike_sa.h: define ike_sa_t and handle the lifecycle of IKE_SAs, including
IKE_SA_INIT and IKE_AUTH;

e sa/ike_sa manager.c: coordinates IKE_SA management (e.g. half-open checks, message
reordering) and dispatches messages to the appropriate IKE_SA;

e sa/child sa.c, sa/child_sa.h: implement creation and reconfiguration of CHILD_SAs
(CHILD_SA_INIT), including ESP proposal negotiation;

e encoding/payloads/*.c: parse and generate IKE payloads, notably SA payloads (with
Proposal and Transform sub-payloads). While payload types are declared in payloads/
payload.h;

e plugins: src/libcharon/plugins/ hosts existing plugins (e.g. whitelist, duplicheck)
illustrating integration with negotiation. Ultimately, src/libcharon/sa/credential.c
manages identities and credentials used during IKE_AUTH, useful for inspecting remote
IDs.

50

StrongSwan

Plugin interfaces

charon plugins implement the plugin_t interface and are loaded at start-up. A plugin can interact
with the daemon via:

e Bus subscriptions and listeners (listener_t): plugins register with the internal event bus
(charon->bus->add_listener(listener)) and expose callbacks that fire on IKE lifecycle
events, for example:

— listener_t::ike_updown: notification when an IKE SA is established or torn down;
— listener_t::child_updown: notification when a CHILD SA is created or closed;

— listener_t: :message: hook for raw IKE messages sent or received;

— listener_ t::ike key: key derivation events (e.g. SK_ai, SK_ar, SK_ei, SK_er);

— listener_t::authorize: post-authorisation hook to allow/deny based on identities
or policy.

These hooks afford full visibility and targeted intervention throughout the exchange (e.g.
updown for SA installation and duplicheck to handle duplicate sessions). A plugin can
filter by connection context and negotiated parameters before deciding on enforcement.

o controllers and back-ends: controller_t enables programmatic start/stop of IKE_SA (e.g.
scheduling jobs similar to charon down). While backend t supplies configuration from
external sources.

4.0.2 Out-of-band control: VICI and swanctl

Administrative control may be decoupled from the daemon’s internal state and performed out of
band via the Versatile IKE Control Interface. VICI is an RPC-style interface provided by the
vici plugin in charon. It is designed for inter-process communication and exposes reliable re-
quest /response operations plus asynchronous event notifications over a local transport: by default,
a UNIX domain socket. As the protocol itself offers neither wire-level security nor authentication,
deployments are expected to use the UNIX domain socket with restrictive file permissions rather
than a network socket.

Thus, external tools can configure, control and observe the IKE daemon without embedding
strongSwan components or requiring manual intervention. Moreover, the vici plugin publishes
event notifications to signal material changes, such as connection state transitions or report cer-
tificate expiration, by enabling real-time monitoring and prompt adaptation in dynamic IPsec
deployments.

Contemporary systems interface with charon via swanctl, a command-line client that speaks
VICI. The swanctl tool is central to manage IPsec-based VPNs, providing exemplifications to
configure, control and monitor the daemon on demand. It provides numerous subcommands
to direct how the IKE daemon manages secure connections, inspect current connection states,
retrieve detailed logs and obtain information about overall daemon status. A set of --load-
prefixed commands reads runtime configuration, such as connections, secrets and IP address
pools, from the swanctl.conf file, which serves as the central point for defining secure channels.
Operational tasks, including initiating or terminating IKE/CHILD SAs, are driven entirely via
VICI calls, avoiding direct manipulation of kernel state and supporting automated provisioning
and lifecycle management.

4.0.3 Configuration files and directory layout

strongSwan adopts a layered configuration model. Global daemon and plugin options are ex-
pressed in strongswan.conf and modular snippets under /etc/strongswan.d/. Per-connection
policy and credentials are defined in /etc/swanctl/swanctl.conf. The daemon reads these arte-
facts at start-up and, when required, on demand via VICI. Inclusion and inheritance mechanisms
are used throughout to keep large configurations maintainable.

51

StrongSwan

strongswan.conf and /etc/strongswan.d/

The strongswan.conf file specifies global settings for charon and its plugins using a hierarchical
key—value configuration syntax.

Individual configuration snippets are placed under /etc/strongswan.d/ and can be brought
into strongswan. conf with directives such as:

include /etc/strongswan.d/charon/*.conf

Included files are merged recursively into the active configuration scope: if a section with the same
name already exists, the imported content extends it. When keys collide at the same level, the
values from the included file take precedence. This approach enables administrators to activate
or deactivate plugins and adjust default settings without modifying the codebase. References are
resolved at runtime, and fully qualified section names allow configuration values to be inherited
from nested subsections.

/etc/swanctl: directory and file layout

The /etc/swanctl directory hosts the primary configuration file, swanctl.conf, together with
several subdirectories that store file-based credentials and private keys consumed by charon
when operating IKEv2. With the adoption of swanctl, swanctl.conf supersedes the legacy
ipsec.conf for runtime policy configuration. It uses the same hierarchical syntax as strongswan
.conf: unspecified options fall back to sensible defaults, and configurations can be loaded or
reloaded dynamically via VICI or the swanctl command-line tool.

swanctl.conf

Operational policy is expressed in /etc/swanctl/swanctl.conf, which is organised into four
top-level sections:

e connections: negotiation policy for IKE and CHILD SAs (proposals, lifetimes, traffic se-
lectors);

e authorities: metadata and attributes for certification authorities;
e secrets: authentication material (e.g. PSK, private keys, EAP credentials);

e pools: named address pools and associated virtual-IP settings.

The connections section is the most substantial. FEach connection is a uniquely named
subsection describing the IKE_SA on which subsequent CHILD SAs depend. Moreover, within
a connection, child names must be unique in that connection’s scope. To complete an IKE_SA
definition and prescribe the associated CHILD SAs, three further subsections are used:

local parameters for the local authentication round (multiple rounds may be declared by suffixing
distinct local blocks);

remote parameters for the peer’s authentication (multiple rounds may likewise be declared via
suffixed remote blocks);

children one or more uniquely named child definitions, each specifying ESP proposals and se-
lectors for a single CHILD SA.

The remaining sections are structured as follows:

e authorities: each authority is a subsection with a unique name and options such as CA
certificates or validation services.

52

StrongSwan

e secrets: subsections are keyed by secret type, with suffixed names uniquely identifying

each entry and holding the pertinent key—value pairs (e.g. id, secret);

e pools: uniquely named pools that connections may reference to assign virtual addresses

and related attributes.

Listing 4.1. Tllustrative /etc/swanctl/swanctl.conf

connections {

gw-wan-in-bankA {
local_addrs = 203.0.113.2
remote_addrs = 198.51.100.10
version = 2
encap = yes
reauth_time = 0
rekey_time = 120s

local { auth = pubkey; certs = gateway-ml-dsa.pem; id = pep-gateway; }
remote { auth = pubkey; id = banka; cacerts = pgq-root-ca-ml-dsa.pem; }

proposals = aes256gcml16-prfshabl2-ecp521

children {
inbound-legacy-pay-L3 {
local_ts = 10.200.0.0/24
remote_ts = 198.51.100.10/32
esp_proposals = aes256gcml16-ecp521
rekey_time = 90s
start_action = none
updown = /usr/local/sbin/updown-verifier.sh

}
}
}

secrets {
private-gateway-ml-dsa { file = etc/swanctl/private/gateway-ml-dsa-key.pem }
}

authorities {
pg-root-ca-ml-dsa { cacert = pgq-root-ca-ml-dsa.pem }

}

53

Chapter 5
Open Policy Agent

This section provides an in-depth analysis of OPA, covering its design philosophy, policy language,
operational model and configuration, management practices and representative use cases.

The OPA is an open-source, general-purpose policy engine that unifies policy enforcement
across the stack. Graduated project within the Cloud Native Computing Foundation (CNCF)
landscape, OPA provides a high-level declarative language for expressing policy as code, together
with straightforward APIs that allow to offload policy decision-making from software. It may be
utilised to enforce rules across microservices, Kubernetes, CI/CD pipelines, API gateways and
more [54].

5.1 Design

OPA separates policy decisions from their enforcement. Instead of hard-coding rules into ap-
plications, a service that requires a decision submits a query to the policy engine together with
structured input (e.g. JSON). The engine, which is agnostic to the input schema and can consume
arbitrary structured data, evaluates this input against the configured policies and any accompa-
nying datasets to return a decision.

54

Open Policy Agent

Request, Event, etc.

Service

Query Decision
(any JSON value) (any JSON Value)

@ OPA

Data
(JSON)

Policy
(Rego)

Figure 5.1. OPA philosphy

Given that OPA and its policy language, Rego, are domain-agnostic, policies can capture a
broad spectrum of invariants, such as:

e which users may access particular resources;

e to which subnets egress traffic is permitted;

e on which clusters a workload must be deployed;

e from which registries binaries may be downloaded;
e with which OS capabilities a container may execute;

e at what times of day the system may be accessed.

Outcomes are not be limited to simple allow/deny results. Just as inputs may be arbitrarily
structured, policies can yield rich, structured responses, enabling applications to act on descriptive
guidance rather than a binary response.

5.1.1 Philosophy

A policy is a set of rules that governs the behaviour of a software service. Policies may prescribe
rate limits, enumerate trusted servers, specify the clusters to which an application should be
deployed, define permitted network routes or constrain the accounts from which a user may
withdraw funds.

55

Open Policy Agent

Authorisation vs. authentication

Authorisation is a particular class of policy that determines which people or machines may perform
which actions on which resources. It is often confused with authentication, which concerns how
entities prove their identity. While policy (and authorisation in particular) frequently relies on
authentication outputs (e.g. username, attributes, groups, claims), decisions typically depend on
a broader context than identity alone. Indeed, many policy decisions are independent of users
altogether and instead capture system-wide invariants (e.g. ”all binaries must originate from a
trusted source”).

Why decouple policy?

All organisations maintain policies. They are essential to long-term success because they encode
critical knowledge about legal compliance, technical constraints and the avoidance of repeated
mistakes. In the simplest case, policies may be applied manually, based on written rules or tacit
conventions embedded in organisational culture. They may also be enforced programmatically
in application logic or specified statically at deployment time. In many systems, policy is still
hard-coded into the very services it governs. OPA enables policy to be externalised, so that
policy owners can read, write, analyse, version, distribute and manage it independently of the
application. OPA also provides a unified toolset to decouple policy from any software service and
to express context-aware rules over any relevant data. In short, OPA helps to separate any policy,
using any context, from any software system.

Software services should allow policies to be defined declaratively, updated at any time without
recompilation or redeployment and enforced automatically, particularly when decisions must be
made faster than is humanly possible. Decoupling policy supports these aims at scale: it improves
adaptability to changing business requirements, enhances the discovery of violations and conflicts,
increases the consistency of compliance, and reduces the risk of human error. Decoupled policies
are also more resilient to external change factors the original developers may not have anticipated.

The costs of building in-house

In the absence of OPA, policy management must be constructed from first principles: design a
policy language (with clear syntax and semantics), implement and optimise an evaluation engine,
and then test, document and maintain the full stack to guarantee correctness and a satisfactory
developer experience. In addition, security, tooling and day-to-day operations require careful
design and sustained attention.

This constitutes a significant, ongoing investment that OPA is intended to reduce. OPA
offers a comprehensive policy engine that externalises decision-making from application code.
Functioning as a concierge for services, it answers fine-grained, context-aware queries on users’
behalf, providing the primitives needed to deliver consistent control and visibility over policy
across disparate systems.

5.1.2 The document model

OPA policies, written in Rego, operate over hierarchical structured data. This information is often
described as a document, a set of attributes, contextual input, or simply "JSON”. As mentioned,
OPA is domain-agnostic: policies may consume arbitrary structured data and produce decisions
that are likewise arbitrarily structured (e.g. booleans, strings, objects, lists or nested combinations
thereof).

Base and virtual documents

Data originating outside OPA, is loaded into the engine via push or pull interfaces, either syn-
chronously or asynchronously with respect to evaluation. Such externally supplied data is called

56

Open Policy Agent

base documents. Policies frequently depend on these base documents, but rules can also build on
one another. The values computed by rules (i.e. policy decisions) are called virtual documents.
”Virtual” indicates that the value is derived during evaluation rather than being externally loaded.

Base and virtual documents share the same underlying value domain (numbers, strings, lists
and maps) and are addressed uniformly via dot and bracket notation, so that policy authors can
rely on a single, consistent modelling and referencing style. Both categories of document are made
available under the global data namespace.

Although JSON and YAML are frequently used as input formats, OPA itself is not bound to
any specific external encoding. Internally, it stores information in its own native representation
of objects and arrays.

Namespacing and placement

Because base documents are supplied by external systems, their position under data is determined
by the component responsible for loading them. By contrast, the placement of virtual documents
is governed by the policy itself via the language’s package directive.

Synchronous vs. asynchronous loading and access paths Base documents may be:

o asynchronously pushed or pulled so that data is refreshed when the world changes (e.g.
periodically or on events such as database notifications). These documents are read via the
data namespace and are cached in memory for efficient evaluation;

o synchronously pushed as part of a policy query. Such per-request context is exposed under
the global input variable to avoid name clashes with data;

o synchronously pulled during evaluation using built-in functions (e.g. http.send). Return
values can be bound to local variables and surfaced via virtual documents.

Moreover, HTTP requests such as GET /v1/data or GET /vl1/data/foo/bar are translated
internally into Rego queries that mirror the request path (e.g. data or data.foo.bar).

5.2 Policy Language

In OPA, policies are written in Rego, a declarative language with Datalog roots, extended to
traverse nested structures (e.g. JSON). A Rego query states properties over the data managed by
OPA and returns a decision. Deviations are detected by enumerating elements that diverge from
the intended system state. The language is readable, unambiguous and benefits from optimisations
in OPA’s evaluator.

5.2.1 Rego at a glance

Rules define virtual documents. The simplest rule binds a scalar. Composite values are equally
natural.

Listing 5.1. Scalars and composites

package example

pi := 3.14159

rect := {"width": 2, "height": 4}

same := rect == {"width": 2, "height": 4}

57

Open Policy Agent

Guarded rules and truth A rule body is a conjunction: it holds when all expressions are
true.

Listing 5.2. Guarded rule

package example

ok if
x = 42
y =41
X >y
}

Referencing nested data Dot /bracket references traverse structures.

Listing 5.3. Existential query over a collection

package sites
sites := [{"name": "prod"}, {"name": "dev"}]

prod_exists if {
some s in sites
s.name == "prod"

}

5.2.2 Values and collections
Scalars (strings, numbers, booleans, null) and composites (arrays, objects, sets) are first-class.

Arrays preserve order and duplicates, objects map arbitrary keys to values, sets are unordered,
unique, and serialise to arrays when emitted as JSON.

5.2.3 Variables and references

Variables may appear in rule heads and bodies and act as both inputs and outputs. Head variables
must be bound by a non-negated equality in the body. References can use variables (or 7_” as
throwaway iterators) to range over collections.

5.2.4 Comprehensions

Array, object and set comprehensions build collections from sub-queries, closing over outer vari-
ables:

Listing 5.4. Array comprehension (join)

package comp
import data.example.apps
import data.example.sites

app_to_hostnames := {app.name: hostnames |
app := appsl[_]
hostnames := [hostname |
name := app.servers[_]
s := sites[_].servers[_]
S.name == name

58

Open Policy Agent

hostname := s.hostname]

5.2.5 Rule styles

Rules may define sets or objects (partial definitions are unionised) or give complete definitions
(single value).

Listing 5.5. Sets, objects, complete vs. incremental

package forms
import data.example.sites, data.example.apps

hostnames contains h if { h := sites[_].servers[_] .hostname }

apps_by_hostname [hostname] := app if {

some i

server := sites[_].servers[_]
hostname := server.hostname
apps[i] .servers[_] == server.name

app := appsl[i].name

pi := 3.14159 # complete definition

5.2.6 Functions

User-defined functions mirror built-ins and return exactly one value.

Listing 5.6. User function

package fun
trim_split(s) := parts if { parts := split(trim(s, " "), ".") }

Functions may be defined incrementally (multiple clauses) but not overloaded by arity.

5.2.7 Negation and universal quantification

Negation asserts non-existence and is safe only when variables are bound elsewhere in the rule.
Universal conditions are expressed via every or via ”existential + negation”.

5.2.8 Built-ins and error handling

Rego offers a rich suite of built-ins (arithmetic, aggregation, string and set operations, time, 1/0,
cryptography). By default, runtime errors evaluate to undefined and do not halt execution.

5.3 Control and management

OPA exposes management APIs for unified, logically centralised policy operations. These in-
terfaces allow to build a control plane that distributes policy artefacts and collects operational
telemetry (e.g. decision logs), while individual OPAs enforce policy locally for low latency and
high availability.

59

Open Policy Agent

5.3.1 Deployment models

Agent (sidecar) model OPA runs alongside an application and is invoked over HT'TP. Policies
and data reside in OPA’s in-memory store. The service offloads decisions to the colocated agent,
minimising network hops and failure domains.

Distributed enforcement In a distributed pattern, a separate OPA instance is deployed along-
side each service instance (or per pod/node), so that decisions are taken locally. This approach
provides consistently low latency and improves resilience by decentralising the enforcement of
policy.

5.3.2 Management APIs

An OPA agent can be configured to contact management endpoints that provide unified control
and observability:

e bundles: distribution and update of policies and data;
e decision logs: streaming of decision telemetry for audit and analytics;
e status: reports on agent health and the state of bundles and plugins;

e discovery: dynamic retrieval of the agent’s own configuration.

Exposing these APIs enables centralised governance across fleets of OPAs, while preserving
local, in-memory evaluation at the edge. Note, however, that OPA does not include a control-plane
service. Integration with third-party control plane is required.

Control Plane

Bundles —Bundles Status—» Monitoring
Confi Déseovany Decisions—» Loggin
g Bundes\ g99ing
Service 9
OPA

Figure 5.2. OPA management

5.4 Deployment

OPA serves as a general-purpose PDP that answers authorisation and compliance queries on
behalf of applications, i.e. the PEP. In production, an OPA instance should respond with low

60

Open Policy Agent

latency, refresh policies as they evolve, ingest live and external data necessary for evaluation, and
produce auditable decision logs. As a design principle, it is recommended to locate OPA as near
as possible to the PEP that calls it: the closer the PDP to the enforcement path, the lower the
end-to-end latency and the higher the resilience.

That said, centralising OPA behind a network endpoint can be appropriate where state is very
large, where compute is ephemeral (e.g. serverless), or where batch or CI workloads benefit from
shared caches and simplified management. In short: co-location yields speed and fault tolerance at
the cost of per-instance resources. Centralisation economises resources but introduces a network
hop and requires careful high-availability engineering. The ”right” model is therefore workload-
dependent rather than absolute. Moreover, various deployment modes for OPA are available:
Kubernetes, Docker, AWS, Google Cloud and Azure.

5.4.1 Deploying OPA with Docker
Docker provides a straightforward route to running OPA across environments. Official images are

published at openpolicyagent/opa. By default the image starts the interactive run REPL, for
deployments you will run OPA as an HTTP server.

Starting the server

Launch the agent with the --server flag and expose its listener. When running in a container,
bind to all interfaces to permit connections from outside the container.

Listing 5.7. OPA as an HTTP server in Docker

docker run -p 8181:8181 openpolicyagent/opa
run —--server --addr=0.0.0.0:8181 --log-level=info

Operational flags

The server accepts ——addr (listener, default localhost:8181), -~-log-level (debug|info|error,
default info) and --log-format (jsonl|json-prettyl|text, default json). Prefer structured
JSON in production and reserve debug for development as it can emit request/response bodies.

Supplying policies and data

The container image is deliberately minimal, no policy or data are embedded. Is required to
mount the required policy and data from the host and direct OPA to those mount points (e.g.
/policy, /data). Evaluation may then be performed ad hoc, or the server may be started with
these paths preloaded.

Listing 5.8. Evaluate a mounted policy

docker run -v "$PWD":/example openpolicyagent/opa
eval -d /example ’data.example.greeting’

package example

greeting := msg if {

info := \ac{OPA}.runtime()

host := info.env["HOSTNAME"] # set by Docker

msg := sprintf("hello from container %q!", [host])

}

61

Open Policy Agent

To serve those policies over HT'TP, it is needed to pass the directory to run:

docker run -p 8181:8181 -v "$PWD":/policies openpolicyagent/opa
run --server --addr=0.0.0.0:8181 /policies

Image tags
It is recommended to use explicit version tags (e.g. 1.0.0) for reproducibility. The X.Y.Z-dev

tracks development builds for a release line, while edge follows the main branch and is unsuitable
for production.

62

Chapter 6

Post-Quantum IPsec Gateway:
design

In view of the credible prospect of CRQCs, it is prudent to assume that, in the near to medium
term, a sufficiently powerful quantum computer could compromise the most widely deployed
public-key schemes classical (through the Shor algorithm) and materially weaken certain sym-
metric constructions (through Grover algorithm).

Let
Q@ := time until a quantum computer capable of breaking current schemes exists,

S := time for which the protected data must remain confidential,

U := time to migrate to, validate, and deploy quantum-resistant cryptography.

Mosca’s rule states that if
U+5>Q

a substantial strategic problem emerges.

Since the design, standardisation, testing, integration, and mass deployment of new crypto-
graphic mechanisms is inherently protracted, preparations should start now. This imperative is
particularly pronounced for legacy systems with long upgrade cycles, or even without the op-
tion for updates due to computational limitations, as deferral increases the likelihood that the
migration window U will exceed the remaining time @ — S.

The aim of this design is not merely to sketch a post-quantum IPsec approach, work already
initiated by RFC-9242 and extended by RFC-9370, but to specify a concrete implementation that
enables legacy services, which cannot yet perform a post-quantum transition, to interoperate with
external post-quantum enabled services via a gateway acting as a translator. The architecture
is deliberately crypto-agile and modular, providing fine grained, policy-driven control of inter-
service security levels. It facilitates rapid reconfiguration in response to vulnerabilities in newly
standardised algorithms and explicit management of trust anchors and authorities in line
with known security and performance properties.

In effect, adjustments to the environment’s security posture can be realised by updating a
small policy module, without altering hard-coded gateway logic or restarting the system, even
when the level of trust in a particular algorithm or authority must be revised at run time.

6.1 Architectures evaluation

A review of the literature and available commercial offerings for implementing post-quantum
VPNs reveals a heterogeneous landscape: approaches target different layers of the stack, threat
models and architectural patterns, reflecting varied deployment priorities and constraints.

63

Post-Quantum IPsec Gateway: design

6.1.1 A Minimalist Approach to Hybrid Key Exchange

Minimally Invasive Key Augmentation (MIKA) realises hybrid key exchange without altering
existing protocol state machines. Rather than mix post-quantum and classical primitives within
a single handshake, MIKA launches multiple, standard negotiations in parallel (e.g. IKEv2 with
ECDH alongside IKEv2 with “opaque” extensions or TLS employing a post-quantum KEM).
Each run proceeds independently to completion. Their shared secrets are then fused into a single
session key via a KDF capable of absorbing auxiliary inputs. A lightweight controller orchestrates
these concurrent runs, assigns a common session identifier, and hands the resulting secondary
secrets to the primary data-channel protocol for binding into the final key. This decoupling
confers strong crypto-agility (algorithms and even whole protocols can be exchanged without
invasive changes), keeps the core implementation small, and exploits parallelism so that the end-
to-end overhead is close to the sum of the constituent negotiations. Moreover, measurements on
strongSwan indicate modest additional cost for two-protocol hybrids and good scaling as further
secondaries are executed in parallel [55].

However, while MIKA is operationally efficient on endpoints, it is inappropriate to a gateway
that translates between legacy and post-quantum enabled peers under fine-grained policy control:

e asymmetric capabilities: the minimalist design of MIKA assumes that both communicat-
ing peers can initiate one or more independent key exchange protocols in parallel and then
locally combine the resulting secrets. In a gateway scenario, the device has to terminate a
legacy IKEv2 exchange on one side and originate a post-quantum exchange on the other.
There is no common controller on the endpoints that can run parallel negotiations. Con-
sequently a translator must perform an in path transformation of the key material rather
than deferring combination to the endpoints, which undermines the simplicity that makes
MIKA attractive on end hosts.

e per-flow policy binding and auditing: a policy enabled gateway needs to enforce se-
curity requirements for each flow (choose algorithms, enforce minimum levels, deny down-
grades, record decisions) and to expose these decisions for audit. In MIKA the ”secondary”
key exchanges occur out-of-band under the control of a lightweight controller on the end-
point, and there is no natural hook for a central policy engine to inspect or veto those
runs. Attaching fine-grained policies, logging them and updating them at run time would
therefore require invasive modifications to the controller and to the data plane, defeating
the minimalist goal;

e policy design: the described abstraction does not straightforwardly map stable security
levels into concrete operational decisions, determining a priori the resultant assurance when
keying material is combined from parallel, heterogeneous protocol exchanges is non trivial;

e operational complexity on the gateway: the proposed solution gains efficiency by
starting multiple key exchanges in parallel, but a gateway that bridges between different
technologies would have to manage those extra control channels for every tunnel (additional
TLS/IKE exchanges, session identifiers, retransmissions) while also dealing with NATs and
firewalls.

6.2 IKE-less IPsec

Recent work on Software-defined Network (SDN)-driven IPsec management reframes key estab-
lishment as a controller service rather than a device capability. [56] distinguish an "IKE case”,
where endpoints (NSFs) run IKEv2 with locally managed SPD and SAD, from an "IKE-less case”,
where Network Security Functions (NSFs) expose only the IPsec datapath while the controller
generates keys and SPIs, chooses algorithms, performs rekey before hard expiry, handles NAT
traversal, and installs SPD and SAD entries proactively or reactively. The aim is to avoid un-
scalable manual IKE provisioning and to simplify constrained devices, accepting controller-side
latency and scalability challenges as the natural cost of centralisation. The model has been stan-
dardised in RFC-9061 [57] via Interface to Network Security Function (I2NSF) YANG modules

64

Post-Quantum IPsec Gateway: design

covering IKE (when present) and the IKE-less mode, defining secure controller to NSF config-
uration and state for PAD,SPD, SAD and IKEv2 over NETCONF/RESTCONF, and analysing
operational aspects as well as the trade-offs between the two cases. A recent work [58], target-
ing IoT and security within SDN, reiterates these points arguing that IKE-less simplifies low-end
nodes and enables uniform policy rollout, provided the controller is hardened, by means of Trusted
Execution Enviroment (TEE) and HSM, for SA and policy generation and carefully engineered
for timing-sensitive rekeys and scale.

In the context of quantum-safe state migration, the controller-centric architecture offers a
different opportunity in this field. In fact, introducing post-quantum KE into the controller’s key
management workflow enables uniform SA derivation and policy enforcement across heterogeneous
dataplanes, without necessarily first requiring upgrades to every legacy IKE stack.

However, a post-quantum translator gateway, interposed between legacy IKEv2 peers and post-
quantum ready counterparts, must also enforce negotiation policy, e.g. blocking non quantum safe
transforms, pinning identities, constraining CHILD_SA creation and IKE rekey semantics, pre-
venting downgrades. Indeed, the IKE-less datapath faces an intrinsic limitation: it never processes
IKE messages, so it cannot natively inspect or veto proposal or authentication phases, and must
rely on a controller that pushes SPD and SAD consistent with desired outcomes while reacting
to notifications. The RFC-9061 explicitly contrasts this with the "IKE case”, where endpoints
authenticate peers and derive session keys locally, reducing reliance on controller timing and cor-
rectness. Consequently, for safe policy interdiction at negotiation boundaries, the translator needs
either an IKE edge on the legacy side (with SPD control) paired with IKE-less distribution on
the post-quantum side, or it must accept fragile coupling between external IKE middleboxing and
controller-driven state, with attendant risks of latency, induced races and state drift.

One might consider Quantum Key Distribution (QKD) to "make IPsec post-quantum ready”.
This is one of Telefénica’s research projects, which builds on the aforementioned SDN framework
with a centralised controller and employs QKD to ensure a transition to a quantum-safe posture.
However, while QKD establishes a shared key over a physical quantum channel, typically optical
fibre, where eavesdropping perturbs quantum states and is, in principle, detectable, it still requires
a classical authenticated side channel, reintroducing computational assumptions (or pre-shared
authenticators) that post-quantum cryptography already addresses. Moreover, practical QKD
faces distance and throughput limits (order 10-100km and 0.1-1 Mbps). It also important to
note that it will provide hop-by-hop rather than true end-to-end security, fitting better the site-
to-site deployments (e.g. between data centres) rather than heterogeneous, wide-area overlays.

6.3 Industry solutions

Among industry offerings for building a post-quantum gateway, Palo Alto Networks documents
two manufactured configurations on PAN-OS that are positioned as standards-based but delivered
through a proprietary platform and management workflow.

The first, ”Post-Quantum IKEv2 VPNs with RFC-878/ PPKs”, mixes out-of-band pre-shared
key material (PPKs) with the classical Diffie-Hellman exchange to harden IKEv2 against HNDL
threats while requiring no immediate change to the new digital signature algorithms on peers.
It is analogous to Telefénica’s programme: whereas Palo Alto’s solution operates within IKEv2,
Telefénica’s adopts an IKE-less, centralised SDN controller framework with optional QKD for
keying, providing a pragmatic mitigation of HNDL risks without fixing up endpoint stacks.

In contrast, the second workflow, ”Post-Quantum IKEv2 VPNs with RFC-9242 and RFC-9370
Hybrid Keys”, enables multiple additional KEM rounds (up to seven Additional Key Exchanges
per [12]) to form a hybrid shared secret that combines classical and post-quantum KEMs, for
crypto-agility and resilience during the transition. However, Palo Alto’s documentation states
that, at present, authentication in these exchanges remains classical (PSK or traditional digital
signatures) and therefore post-quantum signatures are still a future requirement. Moreover, it
is important to note that adding multiple KEM rounds before the initiator is authenticated, as
allowed during the IKE initial establishment, increases resource consumption and raises the risk of
DoS during the extended IKE_INTERMEDIATE phase. In fact, large payloads can also introduce

65

Post-Quantum IPsec Gateway: design

fragmentation and latency, risks that a translator gateway must weigh carefully when enforcing
negotiation policies.

6.4 The proposed solution

The next section sets out the proposed design, which employs a Docker-based deployment in
which distinct containers cooperate to realise a policy-driven, post-quantum IPsec gateway.

6.4.1 Policy Enforcement Point

To realise a gateway that supports IPsec and works as a translator, terminating tunnels on both
sides (legacy for the internal network and post-quantum capable for peers on the external side)
and forwarding only policy approved flows between them, we deploy a Docker container run-
ning strongSwan v6.0.beta6. A stable 6.0.x release would be suitable for production. However,
the chosen experimental build enables broader evaluation of multiple post-quantum KEMs and
signature schemes during the transition, whereas the stable line concentrates only on the NIST’s
standardised key encapsulation algorithm, with exclusive emphasis on mitigation of HNDL threat.
In addition, this experimental version permits activation of post-quantum features by just enabling
the ogs plugin at configuration time, which integrates 1ibogs to provide quantum-safe algorithms
and includes core support for IKE_INTERMEDIATE exchanges to realise Additional Key Exchanges.

The gateway is connected to three Docker networks: a legacy segment, an external segment,
and an internal control-plane network dedicated to communication with the PDP. The traffic
translation between these domains is achieved by enabling ip.forwarding=1 and by configuring
kernel XFRM state via strongSwan, in accordance with the child connection selectors.

The establishment of a CHILD SA installs the requisite SAD/SPD entries and XFRM policies
for each tunnel. Forwarding follows a double encryption pattern: packets are encrypted under
the first SA, decrypted at the gateway, routed internally, and then re-encrypted under the second
SA before egress automation provided by kernel XFRM hooks within the routing datapath. Peers
need only configure static routes so that traffic destined for internal legacy services is forwarded
via the gateway’s address.

To apply fine-grained control over external services attempting to reach internal legacy sys-
tems, and conversely, to ensure that outbound internal traffic is adequately protected, it is es-
sential to delineate the phases of IKE negotiation and the subsequent creation of CHILD SAs. As
already mentioned in chapter 3, IKEv2 principally comprises IKE_.SA_INIT and IKE_AUTH. During
IKE_AUTH, peers also exchange the SA and traffic selector proposals for the first child. While the
charon daemon offers no native hook to halt processing during IKE_SA_INIT, it does permit gating
after authentication and before installation of the IKE SA via the ext-auth plugin. This facility
momentarily pauses IKE_AUTH prior to any SA being installed, invokes an external script, and
awaits an allow/deny decision (and profile) from the PDP, thereby providing strong pre-install
security control.

However, charon lacks a native mechanism to expose child negotiation parameters until the
CHILD_SA is actually up. Thus, following a successful IKE_AUTH, the first child would otherwise
be created automatically, precluding policy checks at that boundary. Nonetheless, a method
could be devised to retrieve these parameters, yet doing so would incur additional delay before
issuing a denial, thereby heightening the risk of DoS. Aside from this, conducting multiple
ADDKE rounds during the initial unauthenticated KE phase again increases the risk of DoS,
due to the heavy unauthenticated post-quantum workload. To address both issues, the gateway
mandates childless IKE (RFC-6023 [52], with post-quantum generalisations in RFC-9370). In
this mode, peers authenticate and complete the IKE SA without creating a child. The additional
key exchanges (IKE_-FOLLOWUP_KE) and the first CHILD_SA are deferred until after authentication,
reducing exposure to unauthenticated computation and enabling strict policy gating before any
child is installed.

66

Post-Quantum IPsec Gateway: design

Listing 6.1. IKE SA establishment (childless mode)

HDR(IKE_SA_INIT), SAil(.. ADDKEx...), -——>
KEi (Curve25519), Ni, N(IKEV2_FRAG_SUPPORTED),
N(INTERMEDIATE_EXCHANGE_SUPPORTED)
Proposal #1
Transform ECR (ID = ENCR_AES_GCM_16,
256-bit key)
Transform PRF (ID = PRF_HMAC_SHA2_512)
Transform KE (ID = Curve25519)
Transform ADDKE1 (ID = PQ_KEM_1)
Transform ADDKE1 (ID = PQ_KEM_2)
Transform ADDKE1 (ID = NONE)
Transform ADDKE2 (ID = PQ_KEM_3)
Transform ADDKE2 (ID = PQ_KEM_4)
Transform ADDKE2 (ID = NONE)
Transform ADDKE3 (ID = PQ_KEM_5)
Transform ADDKE3 (ID = PQ_KEM_6)
Transform ADDKE3 (ID = NONE)
<--- HDR(IKE_SA_INIT), SAri(.. ADDKEx...),
KEr (Curve25519), Nr, N(IKEV2_FRAG_SUPPORTED),
N(INTERMEDIATE_EXCHANGE_SUPPORTED)
Proposal #1
Transform ECR (ID = ENCR_AES_GCM_16,
256-bit key)
Transform PRF (ID = PRF_HMAC_SHA2_512)
Transform KE (ID = Curve25519)

Transform ADDKE1 (ID = PQ_KEM_2)
Transform ADDKE2 (ID = NONE)
Transform ADDKE3 (ID = PQ_KEM_5)

HDR (IKE_INTERMEDIATE), SK {KEi(1) (PQ_KEM_2)} -->
<--- HDR(IKE_INTERMEDIATE), SK {KEr(1) (PQ_KEM_2)}
HDR (IKE_INTERMEDIATE), SK {KEi(2) (PQ_KEM_5)} -->
<--- HDR(IKE_INTERMEDIATE), SK {KEr(2) (PQ_KEM_5)}
HDR(IKE_AUTH), SK{ IDi, AUTH } --->
<--- HDR(IKE_AUTH), SK{ IDr, AUTH }

/* No SAi2/SAr2 or TSi/TSr are exchanged in childless mode */

Once authentication completes, ext-auth is invoked and calls an external script that assembles
a structured JSON request for the PDP. This payload captures the role, peer address and identity,
the negotiated IKE suite (including PRF, DH and any agreed ADDKE), together with certificate
derived metadata (subject, issuer, signature and public-key algorithms). The PDP evaluates this
context to determine whether the minimum policy level required for the target service has been
met for both the IKE key exchange and the certificate’s signing algorithms. Through an internal
mapping, the policy engine also identifies which legacy service, or subnet, the external peer is
permitted to reach (and vice versa).

When the PDP returns allow, it provides the minimum IKE level achieved, the certificate level
achieved for the session and a complete child SA configuration describing traffic selectors, rekey
time and ESP proposals (including ADDKE choices) in detail. The ext-auth script consumes
this child template, converts it into swanctl format via an internal mapper, verifies consistency
against the local swanctl.conf and then persists {ike_unique_id, child_sa_config} to the
ike-<unique-id>. json file. In light of a positive decision, the script exits successfully, allowing
the IKE negotiation to complete in childless mode. If the PDP returns deny, it supplies a reason,
such as the required KE level or certificate algorithm thresholds, which is delivered to the peer
via a vendor specific Notify alongside the standard AUTH_FAILED.

A background controller listens for ike-up events. Upon notification, it loads the correspond-
ing state file, reads ike-<unique-id>. json, and installs the authorised child using VICI’s initiate

67

Post-Quantum IPsec Gateway: design

child SA command. An ex-post verifier, then re-checks that the installed selectors and ESP pa-
rameters exactly match the approved child configuration received from OPA, any discrepancy
triggers a controlled teardown of the child. The same gating pattern applies to rekeys: during
make-before-break, the daemon negotiates a new IKE SA in parallel, submits both the incum-
bent and candidate suites to OPA, and promotes the new SA only if it satisfies policy minima.
Otherwise, the existing SA remains active until a compliant rekey succeeds. Since rekeys do not
reauthenticate peers, they can be used to raise the post-quantum strength of the IKE SA safely
after authentication, avoiding the earlier risk of unauthenticated heavy exchanges.

6.4.2 Policy Decision Point

All decisions concerning IKE establishment, the enforcement of child parameters, and the mini-
mum levels accepted during rekey are subjected to rigorous validation by OPA, which serves as
the central PDP in our environment. To present these policy checks clearly, we first outline the
Rego files employed at each validation stage, explaining how each artefact contributes to the over-
all verdict and how responsibilities are partitioned across modules to maximise code modularity
and enable rapid changes.

IKE establishment gate

This module governs whether the gateway will accept an incoming or outgoing IKE_SA before any
children are created. It specifies a set of security levels (KE-L1 - KE-L4) that constrain the PRF,
Diffie-Hellman group and, the post-quantum Key Encapsulation Mechanism. At this point, only
a single KEM (kel) is permitted, specifically the NIST standardised ML-KEM at the required
security strength, while the auxiliary KEM slots ke2 and ke3 are disabled. By design, this
phase forbids additional ADDKESs (up to seven are allowed by RFC-9370 during the initial IKE
exchange), as previously said, to limit unauthenticated post-quantum computation and reduce the
DoS attack surface, while multi-KEM suites are deferred to the child stage. The module maps
peers to minimum KE levels (e.g. Bank A requires KE-L3) and resolves peer identities through a
separated peer mapping Rego file. The main IKE policy file, enforces address based access lists,
verifies that the connection is running in childless mode, ensures that the negotiated suite meets
or exceeds the minimum level, and consults the specific module to check certificates metadata.
Moreover, real-time Cyber Threat Intelligence (CTI) feeds are incorporated, allowing the gate to
block traffic from known malicious. If all conditions pass, the module returns an allow decision
together with the complete child SA template (selected again from a specific module dedicated to
child SA parameters definition). Otherwise, it returns a securely framed explanation of the failure
and, where appropriate, indicates the minimum level required for that specific IKE connection.

Certificate validation To augment IKE establishment checks, a certificate validator file is in-
voked to verify that the peer certificate, together to the previously negotiated parameters during
IKE_SA_INIT, attests to a fully post-quantum channel and satisfies the level mandated for the
specific external-to-internal service pairing. This file defines OIDs for the newly standardised
ML-DSA and for composite hybrid signatures [30]. It maps signature and public key algorithms
to a hierarchy of signature levels (SIG-L1, SIG-L2, ...) and specifies per-peer minimum require-
ments. For example, Bank A’s certificates must have signature and public key strength at least
SIG-L3-SUF, and must be issued by one of the permitted CAs. The module checks that the
certificate has a valid composite or ”pure” post-quantum signature and public-key, that the sig-
nature algorithm is at least as strong as the public-key algorithm, that the subject matches the
expected peer, and that the issuer is trusted. It returns the certificate’s public key level and a
boolean cert_allow which is consulted by the IKE gate. By decoupling signature policy from
key exchange policy, the design permits signature requirements to be tuned independently of the
KE levels.

Service classification and peer mapping This helper module is the authoritative source for
classifying internal subnets and external partners, and for deriving service-to-peer authorisation.

68

Post-Quantum IPsec Gateway: design

Rather than listing individual host IPs, it adopts a subnet-oriented model: any host within a
designated range (e.g. 10.200.0.0/24 for legacy services) automatically inherits the relevant
security profile, cryptographic capabilities, and permitted partner set for that class. External
partners are described by subnet (or single IP), service type (e.g. payments, ERP, HR), and
minimum cryptographic requirements (min_ke_level, min sig level, min pubkey_level). Each
entry also enumerates admissible CA issuers so that certificate checks can consistently validate
subject names and trust anchors. For example, banka maps to 198.51.100.10/32, is classified
as a payments service, and must satisfy KE-L3 for key exchange and SIG-L2 for signatures.

Due to consolidating service and partner definitions in a single location, any changes to sub-
net ranges, partner permissions or minimum security levels are automatically reflected in de-
pendent modules without requiring modifications to the enforcement logic. In practice, when
network addressing changes or a particular pairing must be disabled, it is sufficient to up-
date service_classes, thereby preserving maintainability, auditability and operational agility
as threats and organisational policies evolve.

Child templates and levels Once an IKE_SA is authenticated, a childless handshake defers
child SA creation until after policy evaluation. This file defines child security levels (CHILD-L1 -
CHILD-L4) and, for each level, enumerates ESP proposal strings that combine AEAD ciphers, DH
groups, and a full multi-KEM suite. The policy is structured so that the cryptographic profile for
a child, including the ADDKES, is specified in a dedicated module, whereas responder/initiator
templates that map peers and KE levels to concrete traffic selectors, rekey intervals, and an updown
hook for ex-post verification are defined in a separate module within the same file. This separation
keeps security parameters distinct from selector and lifecycle settings, maximises modularity, and
preserves crypto-agility, to ensure that, updating a profile requires changes only to the relevant
section. Helper functions fetch the appropriate template for a given role, peer and KE level and
expose it as a structured configuration.

Threat intelligence data for augmented decisions The threat intelligence inputs are pro-
vided as a signed CTI bundle by a dedicated container. This service periodically retrieves sources
(in this case lists of malicious IPs), packages them into an OPA bundle with a deterministic
ETag, signs the bundle and exposes it via a token protected endpoint. At evaluation time, the
CTI dataset is accessed via data.cti.threats. The IKE establishment policy consults the pred-
icate ip_ismalicious to block connections originating from these addresses. Due to the fact
that CTI content is decoupled from policy logic, new feeds can be integrated by updating the
dataset rather than rewriting rules, preserving modularity and allowing operators to select their
own trusted intelligence sources.

Ex-post child validation

After a child SA has been installed by the gateway, this module validates that the actual parame-
ters match the template authorised by the IKE establishment policy. It checks that the child name
corresponds to the expected profile, that the negotiated traffic selectors equal the expected selec-
tors, and that the cryptographic algorithms satisfy the requirements of the declared child level.
It also uses the same CTI feed to block child creation if the peer address becomes malicious. Rea-
sons for denial are recorded internally indicating, ”profile_mismatch” and/or ” crypto_mismatch”,
providing clear telemetry to the decision logger.

IKE SA rekey gate

IKE rekeys do not require peers to reauthenticate, they are effected via CREATE_CHILD_SA with-
out exchanging Traffic Selectors (TSs). Because authentication is not repeated, additional KEM
rounds can be introduced at this stage without incurring the risk of heavy, unauthenticated frag-
mented messages. Accordingly, this module permits secondary KEMs (ke2, ke3) during rekey,
provided the new suite meets the service’s minimum requirements and does not downgrade the

69

Post-Quantum IPsec Gateway: design

existing IKE_SA. It imposes an ordering over PRFs, DH groups and KEMs, detects regres-
sions (e.g. from ML-KEM-1024 to ML-KEM-512), and returns either promote new_delete_old
or terminate new keep_old. CTI checks are enforced at this stage as well. The rekey gate ap-
plies exclusively to the IKE_SA, rekeying the IKE SA legitimately renegotiates a fresh transform
set, whereas (per RFC-7296) a Child_SA rekey is intended to be an equivalent replacement and
therefore SHOULD NOT alter its TSs or algorithms.

Algorithm choices and NIST guidance

The policy’s cryptographic settings reflect the state of the NIST post-quantum cryptography
standardisation process.

IKE cryptographic suites The IKE establishment policy, restricts the unauthenticated hand-
shake to a single KEM, namely the NIST standardised ML-KEM, in order to minimise pre-
authentication computational load and bandwidth while relying on the only KEM formally stan-
dardised to date. This choice reflects NIST selection of ML-KEM as the first PQC KEM, from
a cost/performance perspective, ML-KEM provides a favourable balance between encapsulation
speed and ciphertext size at this stage of the exchange, at the same time mitigating the HNDL
threat: delaying multi-KEM operations until after authentication reduces the potential for at-
tackers to exhaust resources with heavy unauthenticated exchanges.

The configured KE levels are conjunctive profiles that align with NIST’s security strength
categories: a level is satisfied only when all prescribed primitives (AEAD, PRF, DH group(s), and
kel KEM) are jointly present. The design does not sum independent scores for each primitive.
Instead, it mandates a singular, cohesive tuple that encapsulates the desired strength. This
approach mirrors NIST’s guidance that security strength is a property of the overall construction,
benefits from algorithmic diversity and is not directly inferred from any one parameter such as
key length alone [23]. The proposed policy adopts a hybrid stance, integrating classical and
post-quantum components, to maintain a cautious approach as the PQC ecosystem evolves. By
pairing a post-quantum KEM with a classical counterpart, the derived keys retain robustness
even if one primitive is later weakened. Practically, the post-quantum KEM level is paired with
an appropriate classical suite so that each acts as a backstop for the other, hedging against future
cryptanalytic advances and reflecting the IKEv2 framework for multi-KEM (hybrid) exchanges.
For example, ML-KEM-512 targets the 128-bit class (comparable to AES-128), hence its pairing
with aes128gcm16 at KE-L1, by contrast, although both KE-L2 and KE-L3 employ mlkem768,
KE-L3 hardens the classical tuple, upgrading to aes256gcm16, sha512, and mandating ecp521,
thereby increasing cryptographic margin at the expense of greater computational cost, except for
the PRF change, that is effectively cost-neutral on 64-bit platforms since SHA-384 is a truncated
variant of SHA-512.

Table 6.1. Configured IKE levels (KE-L1 to KE-L4): AEAD, PRF, DH groups and KEM slot

Level AEAD PRF DH groups kel (ADDKE)
KE-L1 {aes128gcm16} {sha256} {ecp256, modp2048} {mlkem512}
KE-L2 {aes192gcm16} {sha384} {ecp256, ecp384, x25519} {mlkem768}
KE-L3 {aes256gcm16} {sha512} {ecp384, ecp521} {mlken768}
KE-L4 {aes256gcm16} {sha512} {ecp521} {mlkem1024}

Certificate algorithms In aligning certificate validation with contemporary guidance, we
adopt security strength as the organising principle rather than treating any single parameter
as determinative. The idea was to establish a common scale for comparing primitives and
suites, which we use to tier post-quantum signatures by the standardised ML-DSA parameter
sets (mldsa44, mldsa65, mldsa87) and to map composites accordingly. In practice, ML-DSA
L2/L3/L5 serve as reference anchors, composite schemes then combine ML-DSA with established
RSA/ECDSA/EdDSA variants to achieve a target strength while accommodating interoperabil-
ity and risk mitigation during transition. This design choice mirrors current LAMPS work on

70

Post-Quantum IPsec Gateway: design

composite signatures, where multiple algorithms are bound into a single atomic key and signature
so that verification succeeds only if all components validate, thereby retaining security so long as
at least one constituent remains robust.

The policy stratifies certificate requirements into three macro levels, each keyed to an ML-DSA
parameter set. Within each strength tier, we further differentiate composite signatures by the as-
surance contributed by their classical component. In line with the LAMPS draft [30], selections
using stronger classical primitives (e.g. ECDSA on higher-strength curves or RSA with larger
moduli and modern padding schemes) populate ”enhanced” sub-classes, while choices such as
Ed25519 can offer additional assurance properties, notably Strong Unforgeability under Chosen
Message Attack (SUF-CMA). As suggested by the draft, the profiles are designed to be pri-
oritised by application domain, for example: id-MLDSA65-ECDSA-P256-SHA512 as a balanced
default, id-MLDSA65-RSA3072-PSS-SHA512 where RSA is required, id-MLDSA44-ECDSA-P256-
SHA256 or id-MLDSA44-Ed25519-SHA512 for performance and bandwidth sensitive deployments,
id-MLDSA87-ECDSA-P384-SHA512 where PQC Level 5 is mandated, and id-MLDSA65-Ed25519-
SHA512 when the signature primitive must provide SUF-CMA assurance. This profiling approach
explicitly counters the combinatorial explosion of composite options by encouraging domain spe-
cific, interoperable subsets rather than attempting to support the entire option space. Although
FALCON offers compact keys and high throughput, its secure implementation remains intricate:
floating-point arithmetic complicate constant-time design, and studies have demonstrated tim-
ing and power analysis leakages on common platforms. Consequently, we do not include FALCON
among admissible options until a mature, demonstrably constant-time profile is broadly available,
only when the planned FN-DSA standard FIPS 206 is finalised and implementation guidance
stabilises, this decision can be revisited.

At the policy layer, service specific modules interpret security levels in context (enforcing
stricter subclasses for payment flows or critical infrastructure), while an independent trust-anchor
check verifies that issuers belong to the designated Certification Authority (CA) set. This sepa-
ration of responsibilities permits signature policy to evolve independently of key exchange policy
and streamlines operational changes (e.g. introducing a new composite scheme or deprecating a
classical fallback) without requiring modifications to the enforcement code.

To prevent parsing inconsistencies across different stacks (such as strongSwan, OpenSSL and
related toolchains), algorithms are matched using their Object Identifiers (OIDs) rather than
human-readable names. The current implementation relies on the provisional OIDs defined in
the aforementioned draft. However, these experimental identifiers must be replaced promptly once
TANA assigns the final standard values, in order to avoid ambiguity during certificate validation.

Is important to note that, the effective security of a certificate chain is bounded by its weakest
primitive. If a certificate is signed with an algorithm whose strength is lower than that of the
subject’s public-key algorithm, an attacker may forge the certificate (or an issuing link) despite
the subject key itself remaining hard to break. In these cases, NIST explicitly cautions against
mized-strength suites and recommends selecting algorithms so that the overall protection meets
the intended strength target. The IETF’s algorithm profiles for PKI operations follow the same
principle, requiring algorithms no weaker than those of the objects being protected. In post-
quantum deployments the asymmetry is more acute: pairing a post-quantum secure public key
with a classically secure only signature reintroduces an existential forgery path for quantum
adversaries. Enforcing signature > public-key thus preserves the soundness of the chain under
both classical and quantum threat models.

Child templates The policy is intentionally split into two layers. First, the security level
catalogue enumerates the admissible ESP proposal strings per level (CHILD-L1-CHILD-L4). Each
proposal fixes the AEAD cipher, the (optional) DH group for PFS, and a full multi-KEM suite
(kel, ke2, ke3) used via IKE_FOLLOWUP KE. Second, two binding modules (responder_templates,
initiator_templates) map a concrete peer (e.g. banka, partnerB and opsC and the achieved
KE-L* to a named child profile. These bindings only carry deployment specifics - name, local_ts,
remote_ts, reqid, start_action, and the updown verifier, while the cryptographic proposals are
referenced by level from the catalogue. This partitioning maximises modularity (cryptography
and traffic scoping evolve independently) and enables rapid changes without touching enforcement
code.

71

Post-Quantum IPsec Gateway: design

Table 6.2. Configured composite and pure ML-DSA signature suites with assigned levels

Suite Assigned level
Pure ML-DSA

mldsad4 SIG-L1
mldsa65 SIG-L2
mldsa87 SIG-L3
Composites

mldsa44-rsa2048-pss-sha256 SIG-L1
mldsa44-rsa2048-pkcs15-sha256 SIG-L1
mldsa44-ecdsa-p256-sha256 SIG-L1
mldsa44-ed25519-shab12 SIG-L1-SUF
mldsa65-rsa3072-pss—-shab12 SIG-L2
mldsa65-rsa3072-pkcs15-shab12 SIG-L2
mldsa65-rsa4096-pss-shab12 SIG-L2
mldsa65-rsa4096-pkcs15-shab12 SIG-L2
mldsa65-ecdsa-p256-shab12 SIG-L2+
mldsa65-ecdsa-p384-shab12 SIG-L2+
mldsa65-ecdsa-brainpoolp256ri-shab12 SIG-L2+
mldsa65-ed25519-shab512 SIG-L2-SUF
mldsa87-ecdsa-p384-shab12 SIG-L3
mldsa87-ecdsa-brainpoolp384ri-shab12 SIG-L3
mldsa87-ecdsa-p521-shab12 SIG-L3
mldsa87-rsa3072-pss—-shab12 SIG-L3
mldsa87-rsa4096-pss-shab12 SIG-L3
mldsa87-ed448-shake256 SIG-L3-SUF

As introduced in section 6.4.1, child profiles are emitted in the same schema and naming style
as /etc/swanctl/swanctl.conf. The gateway’s ext-auth handler (upon allow) verifies that the
exact child profile returned by OPA exists locally (same profile name, traffic selectors, and ESP
suite). Only on an exact match is vici initiate --child <name> issued against the specific
IKE_SA. While the updown hook performs an ex-post check to confirm that the installed selectors
and cryptographic transforms are those mandated by policy, any discrepancy triggers a controlled
teardown.

Within each child template, local_ts denotes the selector on the gateway side of that child,
remote_ts denotes the peer side. Thus, for inbound service access (external to legacy), selectors
constrain flows from the external peer to the designated internal host/subnet, for outbound cases,
they constrain the inverse direction. In both cases, the establishment of a CHILD_SA installs the
corresponding SAD/SPD entries and kernel XFRM policies.

The RFC-9370 allows multiple additional key exchanges and, in principle, peers could perform
several (e.g. up to seven ADDKE transform slots). In this design, children are capped at three
combined KEMs(kel, ke2, ke3) to balance assurance and algorithmic diversity against opera-
tional cost: each added KEM grows message size and increases fragmentation and retransmission
pressure, therefore it results fundamental to keep fragment counts modest and avoid advertising
overly long algorithm lists.

The child-level catalogue pairs the standardised lattice-based ML-KEM as kel with two addi-
tional KEMs (ke2, ke3) drawn from distinct mathematical families to avoid common mode failure.
Our child-stage policy couples the standardised lattice family (ML-KEM at kel) with a second,
non-lattice KEM at ke2/ke3 to avoid common-mode failure. The NIST’s fourth round report
formalises this diversification goal and records the decision to standardise HQC' as the non-lattice
companion to ML-KEM [43]. Moreover, in the comparative discussion, BIKE is acknowledged
as having ”"the most competitive performance among the non-lattice-based KEMs” while HQC
generally achieves faster key generation and decapsulation, at the cost of larger public keys and ci-
phertexts. The relative advantage can flip under adverse network conditions where BIKE’s smaller

72

Post-Quantum IPsec Gateway: design

bandwidth footprint helps. This trade-off is reiterated indicating that HQC, requires only a frac-
tion of BIKE’s kilocycles for key generation and decapsulation at comparable security levels, but
with larger on-the-wire sizes.

From an IPsec perspective, these characteristics translate into concrete operational pros and
cons. The HQC algorithm offers lower CPU cost during frequent rekeys on busy dataplanes
and benefits control-plane latency where compute dominates. However, as said, its drawback is
greater message size, which increases fragmentation risk during IKE_FOLLOWUP_KE child establish-
ment. BIKE, conversely, reduces bandwidth and fragmentation pressure thanks to more compact
keys and ciphertexts, thus can be attractive on lossy or high-RTT paths. The costs are higher
keygen/decap time and the need to manage decryption failure rate and related robustness issues
that remain an area of scrutiny, even though the specification and implementations have adopted
countermeasures (e.g. constant-time samplers and improved decoders). Our catalogue therefore
treats HQC as the default non-lattice complement (performance-oriented rekeys, mature analysis)
and BIKE as an optional alternative where bandwidth and fragmentation constraints dominate
and in the case where its decryption failure rate posture is deemed acceptable.

On the other hand, Classic McEliece is deliberately excluded for our gateway’s child pro-
posals. While cryptanalytically conservative, its public keys are extremely large (hundreds of
kilobytes to over a megabyte at higher categories). In an IKEv2 setting this burdens policy arte-
facts and control-plane signalling, provoking heavy fragmentation and larger state, even though
ciphertexts are very small. Ultimately, it is essential to note that the policy remains modular,
enabling authorised KEMs to be exchanged as standards and operational evidence progress, or to
let users to incorporate their trusted algorithms without modifying the validator’s basic logic.

Within a given child level the proposals are intentionally not identical: for example, aes128gcm16-
ecp256-kel mlkem512-ke2 none-ke3_HQC1 and aes128gcm16-modp2048-kel mlkem512-ke2 BIKE1-
ke3_HQC1 are both CHILD-L1. The former needs fewer ADDKESs because ecp256 is stronger than
modp2048, as stated in the RFC-9142 ”security strength” tables [59], the latter compensates by
employing two post-quantum KEMs to achieve comparable hybrid assurance. This pattern re-
curs across levels: where the classical group offers a smaller margin, the proposal uses more
post-quantum exchanges. In all cases, however, the number of ADDKE:s is still bounded.

Table 6.3. Child security levels and admitted ESP proposals

Child level Admitted esp_proposals

aes128gcm16-ecp256-kel mlkem512-ke2 none-ke3_HQC1
CHILD-L1 aes128gcml6-ecp256-kel mlkemb12-ke2 BIKE1-ke3_none
aes128gcm16-modp2048-kel mlkemb512-ke2 BIKE1-ke3_HQC1
aes192gcm16-ecp384-kel mlkem768-ke2 none-ke3_HQC3
CHILD-L2 aes192gcml16-ecp384-kel mlkem768-ke2_BIKE3-ke3 _none
aes192gcm16-x25519-kel mlkem768-ke2 BIKE3-ke3_HQC3
aes256gcml6-ecp521-kel mlkem1024-ke2 none-ke3_HQC5
CHILD-L3 aes256gcml6-ecpb521-kel mlkem1024-ke2 BIKE5-ke3 none
aes256gcm16-ecp384-kel mlkem1024-ke2 BIKE5-ke3_HQC5
CHILD-L4 aes256gcm16-ecp521-kel mlkem1024-ke2 BIKE5-ke3_HQC5

6.4.3 Modularity and maintenance

Dependencies are imported explicitly to maintain clear separation of concerns: modifications to
the classification, security levels and authorisation logic for internal subnets and external partners
are localised within service_classes. Each policy module queries this file through well-defined
helper functions, ensuring that changes to subnet definitions or partner authorisation rules prop-
agate automatically without requiring modifications to the other modules. This architectural
pattern ensures that policy evolution remains tractable, scalable and that cross-cutting concerns
are managed centrally. The separation of concerns improves readability, simplifies unit testing,
and enables rapid reaction to evolving standards or new CTI indicators. In addition, algorithm

73

Post-Quantum IPsec Gateway: design

catalogues and strength tiers are centralised as data tables, aligning the gateway with future
NIST guidance typically requires editing those tables rather than altering decision logic, preserv-
ing policy reviewability. Operationally, OPA runs as its own container beside companion services
(CTT feeder, decision logger, metrics stack) on an internal bridge network. This sidecar pattern
is the recommended way to decouple policy evaluation from applications and to keep decisions
low-latency and highly available. In particular, containerisation provides portability and process
isolation. All the services in our design are situated within an isolated ”bridge” network. A
Docker bridge network is a software switch: containers attached to the same bridge can talk
to each other, while traffic is isolated from containers on other bridges. By default, the bridge
driver installs host firewall and NAT rules so that containers on different bridge networks cannot
communicate unless a port is explicitly published.

In the proposed deployment model, OPA clearly separates the decision path from ancillary
management activities (such as bundle distribution, status reporting and decision logging), en-
abling scalable distribution and observability across multiple components. This arrangement
preserves centralised governance while still performing evaluations locally in memory. Policies
and data can be updated in place, either by modifying Rego source files or by releasing signed
bundles. More specifically, OPA retrieves, validates and activates new bundles without requiring
a restart, and emits decision events that can be consumed for auditing and analytics. In combina-
tion with container-mounted volumes, this permits targeted changes to shared Rego tables (e.g.
algorithm catalogues or strength tiers) or the roll-out of signed bundles, without necessitating
gateway rebuilds or redeployments.

6.4.4 Decision logger

All policy decisions and data queries are forwarded to an independent decision-logger service.
Every entry is timestamped in UTC using ISO 8601 to guarantee unambiguous time correla-
tion across systems. The logger performs three functions: normalisation (canonical keys, types
and ordering), redaction of sensitive fields (tokens, secrets), and derivation of user-friendly at-
tributes (e.g. allow/deny outcome, negotiated level, deny reason, service labels). For auditability
and triage it maintains separate daily files: a full decision stream (decisions-YYYY-MM-DD.log),
a compact audit ledger (audit-YYYY-MM-DD.log, pipe delimited for quick scanning), and an er-
rors only channel (errors-YYYY-MM-DD.log). Due to the fact that, OPA forwards all decisions,
the logger can emit Prometheus compatible counters that OPA does not provide natively (OPA
native metrics focuses on CPU, heap and timings). Specifically, the /metrics endpoint exposes
totals and rates for IKE and Child events by level, rekey outcomes (success,fail or downgrade)
and unique endpoints.

6.4.5 Metrics and dashboards

Prometheus scrapes the decision-logger’s /metrics alongside OPA runtime endpoints, storing
time-series for query and alerting [60]. Grafana [61] renders two complementary views: an opera-
tions dashboard (CPU, heap, evaluation latency) from OPA’s own metrics and a security posture
dashboard from decision-logger metrics (allow/deny volumes, IKE/Child level distributions, rekey
success and downgrade attempts, CTI feed health such as bundle revision and uptime). Alert
rules can flag, unusually high deny rates in a time window, a sustained drop to low security
levels or recurrent rekey downgrades. The result is an auditable, centrally enforced pipeline with
clear separation of concerns: OPA evaluates, the decision logger explains and quantifies, while
Prometheus and Grafana deliver real-time transparency for post-quantum era risk, rapid change
and compliance.

74

Post-Quantum IPsec Gateway: design

Policy-Network

Figure 6.1. The Crypto-Agile Post-Quantum Gateway architecture

75

Chapter 7

Post-Quantum IPsec Gateway:
implementation

In this chapter we set out the implementation steps and the modifications applied to make
the design concrete. The proof-of-concept is delivered as a containerised environment orches-
trated via Docker Compose. Each logical component: gateway, PDP, CTI feeder, decision logger,
Prometheus and Grafana, runs in its own container and is attached to one or more virtual bridges.
This approach mirrors an enterprise edge and provides clean separation between a public domain,
a legacy LAN and a private policy plane. Within this sandbox, the gateway mediates between
classical IKEv2 peers on the inside and post-quantum capable peers on the outside, while an
Open Policy Agent (OPA) container acts as the PDP and exposes management APIs for bundle
distribution and decision logging. Prometheus and Grafana collect and visualise operational met-
rics, and a CTT service produces signed threat intelligence bundles that are ingested by OPA. By
encapsulating each component in its own Docker image and connecting them via named bridges,
we achieve reproducibility, isolation and the ability to apply security hardening, by dropping all
capabilities and mounting read only volumes, consistently across the stack.

More precisely, we discuss:

e the strongSwan changes, including daemon and file level modifications and the ext-auth
plugin script;

e the implementation of PDP policies and the associated validation logic;

e the internal policy network for policy augmentation and the build of the monitoring services.

7.1 Network topology

The deployment mirrors an enterprise edge with a three-segment topology that cleanly separates
concerns: an external partner domain, a legacy LAN, and a private policy plane. The gateway at-
taches to three Docker bridges, awan-net (public 203.0.113.2), a lan-net (internal 10.200.0.2)
and the opa-network (control). An edge router, realised as a lightweight Alpine container, links
the partner segment external-net (198.51.100.0/28, router 198.51.100.2) to the gateway’s
WAN via 203.0.113.3, emulating routed external connectivity. It simply routes traffic between
the partner subnet and the WAN network. This minimalist router suffices to emulate an enterprise
border without conflating routing and policy functions. Peers install static routes towards the
gateway and the legacy LAN via 198.51.100.2. The gateway exposes a single public address and
routes the partner block via the edge router. Internal hosts, situated on a /24 segment derived
from the /16 legacy address space, access the gateway at 10.200.0.2, with transit enforced by
IPsec decapsulation/encapsulation and kernel forwarding. In the proposed demonstration, the
CHILD_SA traffic selectors are advertised as 10.200.0.0/24 — X /32 (e.g. 198.51.100.10/32),
thereby permitting any host in the legacy /24 to reach the designated external peer X through

76

Post-Quantum IPsec Gateway: implementation

the gateway. Finally, OPA, the decision-logger, the CTI feeder, Prometheus and Grafana reside
on the private opa-network. The gateway consults this control enclave for SAs establishment,
rekeys and ex-post verification only.

External Network

banka partnerb opsc
(198.51.100.10) (198.51.100.11) (198.51.100.12)
A
/‘
“
~h

edge-router
(ext: 198.51.100.2)
(wan: 203.0.113.3)

Policy Network
OPA/ Logger / Metrics

PDP-network

pep-gateway
(wan: 203.0.113.2)
(lan: 10.200.0.2)

i

legacy-LAN

v

10.200.0.0/24

host-legacy host-legacy-2 host-legacy-3
10.200.0.3 10.200.0.4 10.200.0.5

Figure 7.1. Network topology

7.2 StrongSwan modifications

The gateway container is based on strongSwan 6.0.beta6, an experimental build that ships
the ogs plugin. The image is assembled in a multi-stage Dockerfile: a builder stage uses
Ubuntu 22.04 to compile 1ibogs (release 0.10.0) with both static and shared libraries, followed
optionally by the OQS provider for OpenSSL [62]. It then clones strongSwan at the 6.0.0beta6
tag, applies a custom patch (ext-auth-runtime-cert.patch) and configures the build with
--enable-openssl, --enable-ogs and --enable-ext-auth. The patch extends the ext-auth
plugin to export the peer certificate via AUTH_RULE_SUBJECT_CERT, add a vendor-specific notifi-
cation (NOTIFY_REQUIRED_LEVEL) and capture hints from the external script. The final runtime
stage installs the compiled strongSwan binaries, 1ibogs, OpenSSL configuration for the OQS
provider, and Python 3. It copies custom orchestration scripts, config templates and a start-up
script into the container. The beta image enables extensive evaluation of multiple post-quantum
KEMs and signature schemes alongside the classical stack. Enabling the ogs plugin simply re-
quires loading it in strongswan. conf. Beyond plugin activation, the container modifies the kernel
runtime to permit forwarding (net.ipv4.ip_forward=1) and to disable source-route and redirect
handling. The strongSwan configuration files (swanctl.conf, strongswan. conf and plugin snip-
pets in strongswan.d) are mounted read-only from the host, rendering the IPsec stack declarative
and eliminating configuration drift.

PKI and certificate management Shared root Certification Authoritys, one for legacy and
one for external peers, are created outside the container environment and then imported into each
strongSwan instance. On the gateway, both a legacy RSA certificate (used for the classical tunnel)
and a post-quantum certificate (e.g. based on ML-DSA) are issued by the respective roots and

77

Post-Quantum IPsec Gateway: implementation

placed under swanctl/x509, while the associated private keys are stored in swanctl/private.
Partner containers are provisioned in an analogous way, with certificates tailored to their specific
role. Since the patch makes the peer certificate available to the ext-auth script, the script can
apply policy checks on the signature and public-key algorithms at runtime without having to
trust the certificate chain implicitly. The underlying cryptographic validation (e.g. signature
verification and expiry checks) remains the responsibility of strongSwan.

The gateway is connected to three separate networks: a legacy LAN (10.200.0.0/16) via in-
terface ethl, a public WAN segment (203.0.113.0/29) via eth2, and a dedicated policy bridge
(opa-network) used exclusively for control-plane traffic between OPA, CTI and monitoring ser-
vices. Static routes inside the container ensure that traffic targeting 198.51.100.0/28 (external
partners) is forwarded to the edge router at 203.0.113.3, and that legacy hosts direct outbound
traffic via the gateway. Moreover, the container entrypoint script configures these routes and
then executes /opt/gateway/bin/startup.sh, which launches charon along with the auxiliary
daemons described below.

The implementation comprises several scripts beyond the stock strongSwan daemons:

opa-auth-check.py: the ext-auth hook invoked by charon to gate IKE establishment.

e vici-child-manager.py: an event-driven controller that installs authorised CHILD SAs
and enforces rekey/downgrade rules.

e vici-suite-publisher.py: a background worker that extracts negotiated IKE suites via
VICI or from charon.log and caches them for the ext-auth script.

e vici-tunnel-provisioner.py: a monitor that observes legacy traffic patterns and, upon
authorisation from OPA, provisions outbound tunnels to post-quantum safe partners.

e crypto_mapper.py: a utility library that maps algorithm names between OPA’s policy vo-
cabulary and strongSwan’s internal identifiers and validates that child configurations match
the local swanctl.conf.

7.2.1 ext-auth plugin script: opa-auth-check.py

The ext-auth plugin is patched to hand control to opa-auth-check.py during the IKE_AUTH
exchange. Execution occurs after authentication but before any IPsec SA is installed. In addition
to the standard environment variables provided by strongSwan, the patch adds facilities to capture
the peer’s certificate and the complete negotiated suite.

Dynamic certificate parsing The patched listener uses the AUTH_RULE_SUBJECT_CERT hook to
obtain the remote end-entity certificate from the authentication rule and writes it to a temporary
file. It then pushes an extra environment variables into the hook, the PLUTO_PEER_CERT_PEM
(PEM encoded certificate). This enables the Python script to parse subject and issuer fields and
to extract signature and public-key OID algorithms at run time without embedding certificate
parsing logic inside strongSwan or depending on preloaded certificates within configuration files.

Suite extraction and normalisation Since the negotiated AEAD, PRF, DH group and
ADDKEs are not directly visible to ext-auth, an auxiliary daemon (vici-suite-publisher.py)
subscribes to IKE events and records the selected suite in a cache under /run/opa-ike/. The
ext—auth script then reads this cache together with relevant environment variables and normalises
algorithm identifiers using crypto_mapper.py (e.g. mapping prf_hmac_sha2 512 to sha512 and
ecp256 to p_256). Finally, it constructs a JSON payload containing the negotiated suite, peer
identity, certificate metadata and connection name, and submits it to the PDP at /v1/data/ike/
establishment/decision.

78

Post-Quantum IPsec Gateway: implementation

OPA decision and child configuration The PDP evaluates whether the proposed IKE SA
meets the minimum levels for the service and, if so, returns a child template defining the traf-
fic selectors, rekey time and a multi-KEM ESP suite. The script converts this template into
swanctl.conf syntax and validates it against the locally installed configuration to ensure that
the gateway will install exactly the authorised child. It persists the decision and template in
/run/opa-ike/ike-(id). json. If OPA denies the request because the key exchange or certificate
algorithms are insufficient, the script triggers an informative failure.

Vendor-specific notifier for minimum level The patch also introduces a new vendor-specific
notification type NOTIFY_REQUIRED_LEVEL (0xA001). When OPA returns deny, the script prints
a line of the form OPA_HINT unique_id=... required_ke=... on stdout. The patched listener
parses this hint, stores the required level in an internal structure and marks a pending notifica-
tion. When charon constructs the IKE_AUTH response in case of a deny, the listener attaches the
NOTIFY _REQUIRED_LEVEL payload with the required level to the outgoing message. Thus the peer
receives both the standard AUTH_FAILED and the implemented vendor-specific notify indicating the
minimum acceptable KE/signature level. This is conveyed without modifying the IKEv2 protocol
itself. On receipt of such a notification from a peer, the listener stores the peer’s requirement and
logs it, enabling future negotiations to satisfy the advertised level.

7.2.2 Child manager: vici-child-manager.py

The child manager is implemented in Python and as an event driven service that maintains tight
coupling between strongSwan and the PDP throughout the SA lifecycle. The daemon subscribes
to charon events via VICI and reacts to three conditions: new IKE SAs (ike-up), child SA
creation (child-up) and IKE rekeys (ike-up with rekey flag). Its core responsibilities are to
install only the authorised child SA for each IKE, to enforce the one child per IKE invariant,
to gate rekeys via OPA, and to perform ex-post verification of installed children via an updown
hook. It uses non-blocking VICI event subscriptions and periodic polling to avoid deadlocks,
ensuring that rekey and updown events do not interleave incorrectly.

When a new IKE SA is reported, the manager retrieves the corresponding state file (ike-<
id> . json) generated by opa-auth-check.py. This file contains the OPA verdict and, if access
is granted, the full CHILD SA configuration (child_sa_config). The manager then instantiates
the authorised child via VICI, invoking swanctl --initiate --child <child_name>. Once the
tunnel is established, it installs the approved CHILD SA and removes any unsolicited children
that may have been created by the peer. All operations are recorded as structured JSON logs,
and internal caches are updated to avoid duplicate installations.

For the rekey gate, the daemon employs two complementary mechanisms to govern rekeys. It
subscribes to IKE rekey events and, whenever a new IKE SA is negotiated with the same remote
endpoint and connection name, the manager extracts the negotiated cryptographic suites for both
the old and new IKE associations, encapsulates the transformation sets into a JSON object, and
submits it to /vl/data/ike/rekey/decision. The PDP responds with a decision containing an
allow flag and an action (e.g. promote new_delete_old, terminate new keep_old). If promo-
tion is approved, the manager marks the new IKE SA as ”adopted”, copies all CHILD state files
from the old to the new association, deletes the old IKE SA, and logs the result. Otherwise, it
terminates the new IKE SA.

To guard against state drift and misconfiguration, every CHILD installation triggers an updown
hook (updown-verifier.py). This script queries the effective CHILD parameters via VICI (in-
cluding traffic selectors, AEAD algorithm, DH group and KEM slots) and submits them to
/v1/data/ike/child_create/decision. Then, OPA then verifies that the installed CHILD SA
conforms to the authorised template, if any field diverges, it returns deny. Upon such a denial,
the manager tears down the CHILD SA and records the policy violation.

79

Post-Quantum IPsec Gateway: implementation

7.2.3 Tunnel provisioner

Dynamic outbound provisioning is implemented in vici-tunnel-provisioner.py. This process
scans the installed child SAs to detect patterns indicating that a legacy host (10.200.0.X) is try-
ing to communicate with an external partner (198.51.100.X/32). When a new pattern is found,
the provisioner constructs a JSON payload with legacy host_ip and external _partner_ip and
posts it to OPA via /v1/data/ike/tunnel provisioning/decision. If OPA returns allow
with the name of an outbound post-quantum connection required to contact the external peer
via the external interface of the gateway (e.g. gw-wan-out-bankA), the script initiates the corre-
sponding childless IKE connection via swanctl --initiate and records the provisioning state,
subsequently, all the previously specified IKE gating flow applies. This dynamic mapping allows
flows from new legacy hosts or new partners to be provisioned without manual configuration.
The provisioner runs in a loop, rescans theSA list at configurable intervals, and continues until
terminated.

7.2.4 Legacy subnet implementation

The gateway’s LAN interface (10.200.0.2/16) terminates a legacy subnet, within which a /24
segment (10.200.0.0/24) is populated with representative hosts for the testbed. The traffic selec-
tors in the CHILD SA templates are expressed at subnet granularity (e.g. local_ts=10.200.0.0
/24), allowing any host in the legacy slice to reach a designated external peer via the gateway.
These selectors are enforced through kernel XFRM state so that outbound packets from the legacy
subnet are encrypted towards the gateway, decapsulated, forwarded internally and re-encapsulated
towards the external peer, and similarly processed in the reverse direction. The swanctl con-
figuration assigns distinct reqid values to inbound and outbound legacy children, keeping state
separated for each internal network segment. Moreover, static routes on the legacy hosts direct
traffic destined for the external subnet through the gateway, ensuring that all flows traverse the
policy-enforced IPsec tunnel.

7.2.5 External post-quantum safe peers

External partners are modelled as individual containers on an external-net bridge (198.51.100.0
/28) and connect to the gateway through an edge router. Each partner has its own strongSwan
instance configured with post-quantum ready IKE proposals using the standardised ML-KEM
and optional BIKE/HQC KEMs for Child SAs. The strongSwan patch is also included, on the
external peer side, to elucidate the additional failure Notify in the event of a denial of IKE es-
tablishment, caused by a low security level. This patch enables recording of the received notifier
payload containing the required KE or SIG level for that connection. Static routes on the part-
ners point 10.200.0.0/24 and the WAN network towards the edge router, directing traffic to the
gateway. The gateway’s WAN interface advertises a single public IP (203.0.113.2) and uses the
edge router (203.0.113.3) as the next hop for the external subnet.

7.3 The PDP implementation

The PDP is deployed on a dedicated Docker bridge network (opa-network), such that only
containers attached to this bridge are able to communicate with one another. By default, the
Docker bridge driver installs iptables rules on the host to isolate traffic between bridges, ensuring
that containers on different bridges remain separated and can interact only via explicitly exposed
ports. In this specific setup, opa-network acts as a private control plane: external peers cannot
reach the gateway on this network, and policy evaluation traffic remains fully segregated from the
data plane.

80

Post-Quantum IPsec Gateway: implementation

7.3.1 Policies structure

The PDP container is assembled through a deliberately lightweight multi-stage build. The first
stage simply extracts the static upstream OPA binary (openpolicyagent/opa:0.70.0-static),
ensuring that only the executable required for policy evaluation and bundle verification is retained,
without introducing compilers, build tools or auxiliary packages. The second stage constructs the
runtime image on top of a minimal alpine:3.19 base. Alpine is chosen for its small footprint
and reduced attack surface, providing only the essential runtime environment. A limited set of
dependencies (ca-certificates and tzdata) is added, and all package caches are removed to
keep the image compact. The static OPA binary, unified configuration file, and policy directory
are copied into the container and assigned to an unprivileged user (UID 1000, GID 1000), under
which the PDP exclusively operates. At runtime, all capabilities are dropped via cap_drop:{ALL}
and no-new-privileges:true is enforced, with the sole exception of a few ephemeral paths ex-
plicitly designated as writable. These writable areas are isolated via tmpfs and carry restrictive
flags, ensuring that no persistent or executable content can be introduced at runtime, and pre-
venting any form of escalation or lateral movement even in the presence of a compromise. The
final image exposes only the 8181/tcp API endpoint and starts OPA in server mode using the
unified configuration, resulting in a hardened and fully reproducible policy engine.

Policies are modularised in several Rego modules.

7.3.2 service_classes.rego

The service_classes.rego file acts as the central classification and routing oracle for the PDP.
It defines the authoritative mapping between internal legacy subnets, external partners, service
types and minimum cryptographic requirements. Rather than enumerating individual hosts, the
policy relies on subnet-level classification, ensuring scalability and consistency across the gateway’s
decision pipeline.

Internal subnet and partner classification

Legacy networks are expressed as subnet classes (e.g. 10.200.0.0/24), each associated with a se-
curity profile and the list of authorised external partners such as bankA, partnerB or opsC. Exter-
nal entities are likewise defined as partner classes indexed by their prefixes (e.g. 198.51.100.10/32),
with each class specifying the service type (payments, ERP, operational control) and the minimum
acceptable security levels for key exchange, signatures and public keys. By centralising classifi-
cation logic in a single module, policy updates such as extending subnet ranges, modifying trust
relationships, or raising minimum cryptographic thresholds require changes in only one place,
while the rest of the authorisation pipeline adapts automatically. This design ensures scalability,
auditability and rapid policy evolution while preserving strict correctness guarantees.

Listing 7.1. Single control panel by service_classes.rego

internal_service_classes := {
"legacy_internal": {
"subnet": "10.200.0.0/24",

"security_profile": "legacy",
"crypto_capabilities": ["RSA-2048", "ECDH-P256", "ECDSA-P256"],
"description": "Internal legacy hosts using traditional cryptography",
"allowed_external_partners": ["banka", "partnerB", "opsC"]
1,
X
external_partner_classes := {

81

Post-Quantum IPsec Gateway: implementation

"banka": {
"subnets": ["198.51.100.10/32"],
"service_type": "payments",

"min_ke_level": "KE-L3",
"min_sig_level": "SIG-L2",
"min_pubkey_level": "SIG-L2",
"allowed_issuers": {
"C=CH, 0=Cyber, CN=Cyber Root CA",
"0=PQ-Gateway Lab, CN=PQ-Gateway IKE CA PQ",
"0=PQ-Gateway Lab, CN=PQ-Gateway Root CA PQ"
3,
"description": "Banking partner requiring highest security"
1,
"partnerB": {

Moreover, to support dynamic tunnel instantiation in che of an outbound connection, the
module embeds explicit mappings between IKE connection names and the internal subnet that
each connection serves.

Listing 7.2. Connection-to-subnet mappings

Outbound connections initiated by the gateway

outbound_connection_subnet_mapping := {
"gw-wan-out-bankA": "10.200.0.0/24",
"gw-wan-out-partnerB": "10.200.0.0/24",
"gw-wan-out-opsC": "10.200.0.0/24",

¥

Inbound authentication connections (responder mode)

inbound_connection_subnet_mapping := {
"gateway-legacy-auth": "10.200.0.0/24"

b

These mappings enable just-in-time tunnel provisioning: when the tunnel provisioner observes
a legacy host contacting an external partner, it queries this module to identify the correct internal
subnet and trigger the creation of the appropriate post-quantum ready outbound tunnel.

7.3.3 1ike_establishment.rego

This policy gate evaluates incoming IKE_SA requests. It checks that the negotiated AEAD,
PRF, DH group and ADDKE combination meets the minimum required level for the service,
that the peer’s certificate is issued by a trusted CA, that respect the signature level in order to
establish a full post-quantum safe tunnel, and that the subject matches the expected peer, to avoid
spoofing. If all checks pass, it returns allow=true and the child configuration template to enforce.
Otherwise, it returns allow=false along with a denial explanation, particularly indicating that a
denial due to insufficient security during the IKE setup specifies the requisite KE and SIG levels.

A skeleton of the decision logic is:

Listing 7.3. Skeleton of ike_establishment.rego

package ike.establishment

Import of the others Rego modules
import rego.vl
import data.ike.service_classes

82

Post-Quantum IPsec Gateway: implementation

import data.ike.child_templates
import data.ike.certificates
import data.cti.threats

Example suite -> level mapping (simplified)

ke_suites := {
"aes128gcm16-sha256-ecp256-mlkemb512-none-none": "KE-L1",
"aes192gcm16-sha384-x25519-mlkem768-none-none": "KE-L2",
"aes256gcm16-shabl2-ecp384-mlkem768-none-none": "KE-L3",
"aes256gcm16-shabl2-ecp521-mlkem1024-none-none": "KE-L4",

Derive achieved KE level from suite; fall back to KE-LO if unknown
ke_achieved := level {

suite := build_suite_string(input.ike)
level := ke_suites[suite]
} else := "KE-LO"

Map IKE connection name to the internal subnet being protected
internal_subnet := subnet {
subnet := service_classes.get_subnet_for_connection(input.connection_name)

3

External IP: peer address classified as partner
external_ip := ip {
ip := input.peer.addr
service_classes.classify_external_ip(ip)

}

Required KE level for this (internal subnet, external partner) pair
req_ke_level := level {

level := service_classes.get_required_ke_level(internal_subnet, external_ip)
3
Service type used later to select child template and metrics labels
service_type := service_classes.get_service_type(external_ip) {

external_ip
X

Partner must be allowed for the resolved internal service class
peer_ok {

internal_subnet

external _ip

partner_name := service_classes.classify_external_ip(external_ip)

some class_name, class_def in service_classes.internal_service_classes

class_def.subnet == internal_subnet

partner_name in class_def.allowed_external_partners

83

Post-Quantum IPsec Gateway: implementation

CTI integration: block malicious or TOR endpoints early
cti_blocked {

external _ip

ip_is_malicious(external_ip)
} else {

external_ip

ip_is_tor(external_ip)

}

ip_is_malicious(ip) {
ip in threats.malicious_ips

} else {
some subnet in threats.malicious_ips
net.cidr_contains(subnet, ip)

}

ip_is_tor(ip) {
ip in threats.tor_exit_nodes

}

Certificate validation via dedicated module
cert_ok {

input.certificate

certificates.cert_allow

3

cert_level := certificates.cert_level {
input.certificate
} else := "none"

Crypto validation: achieved suite level vs required policy level
crypto_ok {

req_ke_level

ke_level_order[ke_achieved] >= ke_level_order[req_ke_levell

}

Child SA template resolution (wildcard TS for legacy subnet)
child_template := child_templates.get_child_config_wildcard(
input.role,
internal_subnet,
external_ip,
req_ke_level,
) 1
internal_subnet
external_ip

Decision object returned to the gateway
decision := {

84

Post-Quantum IPsec Gateway: implementation

"allow": allow,

"reason": reason,

"ke_level": ke_achieved,
"ke_required": req_ke_level,
"cert_level": cert_level,
"service_type": service_type,
"child_sa_config": child_template,

7.3.4 child templates.rego

Once the policy engine confirms that the negotiated key exchange and signature levels satisfy the
minimum requirements for the connection, this module specifies the corresponding ESP proposals,
covering the AEAD cipher, the DH group, and the full set of ADDKE parameters, associated
with each security tier. It then binds individual service classes to their required levels so that a
complete, level appropriate child SA template can be constructed. The resulting structure mirrors
the layout used in the swanctl.conf configuration, enabling a precise, one-to-one comparison
during validation. This ensures that the gateway installs exclusively the authorised and policy-
compliant child SA, preventing any deviation from the intended cryptographic or traffic selector
profile.

Listing 7.4. child_templates.rego snippets

child_security_levels := {
"CHILD-L1": {

"esp_proposals": [
"aes128gcml6-ecp256-kel_mlkemb12-ke2_none-ke3_hqcl",
"aes128gcml16-ecp256-kel_mlkemb512-ke2_bikel-ke3_none",
"aes128gcm16-modp2048-kel_mlkemb12-ke2_bikel-ke3_hqcl"

1,

1,

_templates := {

"banka": {
"KE-L3": {
"name": "inbound-legacy-pay-L3",

"local_ts": "10.200.0.0/24",

"remote_ts": "198.51.100.10/32",

"child_level": "CHILD-L3",

"esp_proposals": child_security_levels["CHILD-L3"].esp_proposals,

"rekey_time": "90s",

"reqid": 101,

"start_action": "none",

"updown": "/usr/local/sbin/updown-verifier.sh",
"description": "Banka inbound payments tunnel (L3 security)"

The separation between level definitions and mapping enables to update the proposals or add
a new algorithm family requiring the edit of only that specific part of the file.

85

Post-Quantum IPsec Gateway: implementation

7.3.5 Auxiliary validation modules

The remaining policy modules, certificate_validation.rego, child_create.rego and rekey_
ike_sa.rego, provide the complementary validation stages required to complete the PDP’s en-
forcement pipeline. Their conceptual role and decision flow have already been outlined in sec-
tion 6.4.2, and their implementation follows the same Rego based principles illustrated in the
earlier modules.

The certificate_validation.rego module applies end-entity checks to the metadata ex-
ported by the gateway’s patched ext-auth hook, verifying that the peer identity, trust anchor and
cryptographic algorithms satisfy the requirements of the selected security level. The child_create
module performs an ex-post validation of installed CHILD SAs by comparing the effective T'Ss and
ESP parameters with the internal templates authorised by OPA. Any discrepancy yields a nega-
tive decision and triggers removal of the affected SA by the child manager. Finally, rekey_ike_sa
steers make-before-break rekeys by comparing the relative strength of the old and new IKE suites
and returning either a promotion or termination directive.

Although they address distinct validation stages, these modules adopt the same structured
and modular approach as the core policies above, enabling uniform evaluation semantics and
straightforward future extensions.

7.3.6 Policy network services

All containers in the opa-network adopt a least-privilege posture. They run as non-root users,
mount configuration and certificates as read-only volumes, set no-new-privileges:true, drop all
capabilities except those needed (e.g. CHOWN for OPA to change ownership of policy directories),
and use tmpfs for writable paths with noexec,nosuid flags. All these measures assist in mitigating
hazards associated with lateral movement and privilege escalation.

CTI bundle service

The CTT unified service is implemented in Python using FastAPI. It runs on the opa-network,
fetches threat feeds from ” AbuseIPDB” on a schedule (configurable via CTI_FETCH_INTERVAL), and
aggregates them into a unified dataset. Each update produces a JSON bundle containing arrays
of malicious IPs, a monotonic version number, and an expires timestamp. The service signs
the bundle with an EADSA private key stored in a Docker secret. The corresponding public key
is distributed to OPA via opa-config-unified.yaml. To support caching, the service returns
an ETag header that encodes the bundle version, then OPA includes If-None-Match on each
fetch, and the service responds with 304 if the dataset has not changed. The service exposes a
/bundles/cti endpoint protected by a bearer token. More in details, the OPA’s configuration
includes:

services:
cti-bundle-service:
url: http://cti-unified-service:8090/bundles/cti
credentials:
bearer_token: ${CTI_BUNDLE_TOKEN}
bundles:
- name: cti
service: cti-bundle-service
polling: true
verified_signature: true
signing key: |

Bundles are periodically pulled by the policy engine and stored under data.cti.threats,
where the Rego policies call helper functions to check whether an IP is malicious.

86

Post-Quantum IPsec Gateway: implementation

Decision Logger

The decision logger is a Node. js service that receives all decisions from OPA via the decision_
logs sink. It uses the http module to listen on port 8080 and writes three separate ISO 8601
timestamped logs on a per-day basis: decisions-YYYY-MM-DD.log (full request and result),
audit-YYYY-MM-DD.log (compact summary with outcome, peer IP, IKE level, child level, rekey
downgrade result and deny reason) and errors-YYYY-MM-DD.log. Seusitive fields are redacted,
and derived attributes (e.g. allow/deny flag, service and peer tags) are added. The logger
exposes a /metrics endpoint using the prom-client library, which exports counters such as
opa_decisions_total, opa_decisions_allow, ike _rekeys_downgrade, etc. Moreover, batching
is configured via environment variables: decisions are streamed immediately, while summaries can
be grouped and flushed on a timer.

Metrics and dashboards

Prometheus runs in its own container and scrapes three endpoints: OPA’s runtime metrics
(http://opa-server:8282/metrics), the decision logger (/metrics) and the CTI service one,
every b seconds. The configuration file prometheus.yml defines separate jobs for each and stores
time-series in a local volume. While Grafana runs as another container, pre-provisioned with a
datasource pointing at Prometheus and dashboards for operations (fig. 7.2: OPA heap usage,
evaluation durations, bundle refresh times) and security (fig. 7.3: volume of allow/deny decisions,
IKE/Child levels negotiated, rekey outcomes, CTT freshness). Alert rules are defined in Grafana’s
alerting UI. For instance, trigger a warning if opa_decisions_deny exceeds a threshold in a rolling
window, or if the CTI bundle is older than six hours.

Figure 7.2. OPA system monitoring dashboard

87

Post-Quantum IPsec Gateway: implementation

17 39.37 64.7%

Figure 7.3. OPA security monitoring dashboard

88

Chapter 8

Test

This chapter contains the description of several tests conducted on the implemented solution.

The first part outlines the capabilities provided by the implemented system, followed by
a performance assessment examining execution time and the volume of packets and bytes ex-
changed during operation. Subsequently, a practical demonstration is presented to illustrate the
DoS exposure inherent in enabling multiple unauthenticated multi-ADDKE exchanges during the
initial IKE SA negotiation. A comparative analysis is then performed between a conventional
legacy IKE configuration, where the CHILD SA is instantiated directly following the IKE_AUTH
exchange, and the legacy childless procedure, which serves as the reference baseline against which
our post-quantum establishment method is evaluated. The evaluation also measures the over-
head contributed by OPA, taking into account the combined time spent on input parsing, query
compilation, query evaluation and additional processing within each PDP decision cycle.

Finally, a comprehensive analysis of the entire session-establishment workflow is provided.
For every phase, we report the elapsed time, the OPA evaluation latency, the delay between
the PDP decision and the subsequent CHILD SA installation, the child creation duration itself,
and the number of packets, fragments and bytes exchanged. The additional cost of the ex-post
CHILD validation, after which the secure tunnel is considered fully operational, is also included.
This examination is repeated for all defined post-quantum security levels, enabling a detailed
comparison of their respective performance characteristics.

8.1 Testbed

The experiments were conducted on an HP Pavilion Gaming 15-dk0000 Laptop PC with
the following specifications:

e CPU: Intel Core i5-9300H @ 2.40 GHz;

e GPU: NVIDIA GeForce GTX 1650 4 GB GDDR6 Dedicated VRAM,;
e RAM: 8GB DDR4;

e Storage: 256 GB SSD, 500 GB HDD;

e OS: Ubuntu 22.04 LTS, 64-bit.

8.2 Functional tests

Different tests have been executed to check the correctness of the features introduced.

In sequence, the section covers the establishment of the IKE SA; followed by the scenario in
which the initial setup is rejected because the negotiated security level is insufficient, thereby

89

Test

activating the additional vendor-specific Notifier. Subsequently, the parameters of the installed
child are further examined with ex-post validation to ensure that the installed child corresponds
exactly to the configuration mandated by OPA for the relevant security level. Finally, the rekey
downgrade validation mechanism is analysed.

8.2.1 IKE SA establishment

The first experiment illustrates the correct establishment flow of an IKE SA. The procedure be-
gins with the IKE_INIT exchange, followed by an IKE_INTERMEDIATE round, which in this scenario
is fragmented into two parts due to the sizeable ML-KEM —1024 (Kyber_L5) key exchange pay-
loads. Subsequently, the peers proceed with the IXE_AUTH exchanges, which themselves appear
in multiple fragments in both directions. This fragmentation is primarily caused by the certifi-
cate transmission, which represents the dominant contributor to message size in this phase. In
this testbed, the end-entity certificate relies on ML-DSA —65 (Dilithium_3) for its public key and
issuer’s signature algorithms.

initiating IKE_SA banka-responder[4] to 203.0.113.2

generating IKE_SA_INIT request @ [SA KE No N(NATD_S_IP) N(NATD_D_IP) N(FRAG_SUP) N(HASH_ALG) N(REDIR_SUP) N(IKE_INT_SUP) V]
sending pack from 198.51.100.10[500] to 203.0.113.2[500] (384 bytes)
received packet: from 203.0.113.2[500] to 198.51.100.10[500] (461 bytes)
parsed IKE_SA_INIT response @ [SA KE No N(NATD_S_IP) N(NATD_D_IP) CERTREQ N(FRAG_SUP) N(HASH_ALG) N(CHDLESS_SUP) N(IKE_INT_SUP) N(MULT_AUTH) V]
received strongSwan vendor ID

selected proposal: IKE:AES_GCM_16_256/PRF_HMAC_SHA2_512/ECP_521/KE1_KYBER_L5
remote host is behind NAT

received cert request for "CN=PQ-Gateway Root CA"

received cert request for "0=PQ-Gateway Lab, CN=PQ-Gateway IKE CA PQ"
received cert request for "0=PQ-Gateway Lab, CN=PQ-Gateway Root CA PQ"
received cert request for "CN=Post-Quantum CA, OU=strongSwan, O=Linux strongSwan"
generating IKE_INTERMEDIATE request 1 [KE]

splitting IKE message (1633 bytes) into 2 fragments

generating IKE_INTERMEDIATE request 1 [EF(1/2)]

generating IKE_INTERMEDIATE request 1 [EF(2/2)]

sending packet: from 198.51.100.10[4500] to 203.0.113.2[4500] (1248 bytes)
sending packet: from 198.51.100.10[4500] to 203.0.113.2[4500] (450 bytes)
received packet: from 203.0.113.2[4500] to 198.51.100.10[4500] (1248 bytes)
parsed IKE_INTERMEDIATE response 1 [EF(1/2)]

received fragment #1 of 2, waiting for complete IKE message

received packet: from 203.0.113.2[4500] to 198.51.100.10[4500] (450 bytes)
parsed IKE_INTERMEDIATE response 1 [EF(2/2)]

received fragment #2 of 2, reassembled fragmented IKE message (1633 bytes)
parsed IKE_INTERMEDIATE response 1 [KE]

sending cert request for "0=PQ-Gateway Lab, CN=PQ-Gateway Root CA PQ"
authentication of 'banka' (myself) with DILITHIUM_3 successful

sending end entity cert "CN=banka"

generating IKE_AUTH request 2 [IDi CERT N(INIT_CONTACT) CERTREQ IDr AUTH N(MOBIKE_SUP) N(NO_ADD_ADDR) N(MULT_AUTH) N(EAP_ONLY) N(MSG_ID_SYN_SUP) 1]
splitting IKE message (9056 bytes) into 8 fragments

generating IKE_AUTH request EF(1/8)

generating IKE_AUTH request EF(2/8)

generating IKE_AUTH request EF(3/8)

generating IKE_AUTH request EF(4/8)

generating request EF(5/8)

generating request EF(6/8)

generating request EF(7/8)

generating request EF(8/8)

sending 198.51. .10[4500] to 0. -2[4500] (1248 bytes)
sending 198.51.100.10[4500] to .0.113.2[4500] (1248 bytes)
sending 198.51.100.10[4500] to .0.113.2[4500] (1248 bytes)
sending 198.51. .10[4500] to 0. .2[4500] (1248 bytes)
sending 198.51.100.10[4500] to .0.113.2[4500] (1248 bytes)
sending 198.51.100.10[4500] to .0.113.2[4500] (1248 bytes)
sending 198.51. .10[4500] to 0. .2[4500] (1248 bytes)
sending packet: from 198.51.100.10[4500] to .0.113.2[4500] (751 bytes)
retransmit 1 of request with message ID 2

sending packet: from 198.51.100.10[4500] to .0. .2[4500] (1248 bytes)
sending packet: from 198.51.100.10[4500] to 2 tes

Figure 8.1. Initial IKE SA exchanges

After authentication concludes, but before the IKE SA is fully installed, the ext-auth plugin
intercepts the workflow. At this point, the state machine is deliberately paused while the plugin’s
script extracts all relevant metadata, including the peer identity, source address, negotiated cryp-
tographic suite and certificate attributes. These are transmitted to the PDP (OPA) for policy
evaluation.

90

Test

"oid": "1.3.6.1.4.1.2.267.7.6.5"
¥
3,
"not_before": "Oct 13 15:21:24 2025 GMT",
“not_after": "Oct 12 15:21:24 2028 GMT"
3
}

)

[2225—11 18T10:27:04.463515] [OPA-RESPONSE] Received from OPA: {
declslon "'527729c5-822e-40b6-82ee-721013bcdacl",

"child_profil nbound-legacy-pay-L3",
“child_sa_con {
”chlld leve HILD-L3",
"descriptio anka inbound payments tunnel (L3 security)",
"esp_proposals":
"aes256gcm16-ecp521-kel_mlkem1024-ke2_none-ke3_hqc5",
"'aes256gcml6-ecp521-kel_mlkem1@24-ke2_bike5-ke3_none"
""aes256gcm16-ecp384-kel_mlkem1024-| Kke2_bike5-| ke3,hqc5

0.200.0.0/24'
1t

nka inbound payments tunnel (L3 security)", " aesZSSgcmlG—ecpSZl—kel
84-ke1_mlkem1024-ke2_bikeS-ke3_hqc5"1, " z
art_actiol one", “updown": */usr/local/sbin/upd
ve scription nka inbound payments tunnel (L3 securit
aesZSchmlG—ecpSZl —kel_| kyberS —ke2_| blkes—ke3 none" 52569Cm16-ecp384-kel_kyber5-ke2_bike5-ke3_hqc5"1, "local_f '10.200.0.0/. : "inbound-lega)
“renote_ts": "198.51,100.10/32", “reqid": 101, _action": "none", "updown": "/usr/local/sbin/updown-veri

[2025-11-18T10 1465976] Persisted decision state unique_id=5 path=, /run/opa—lke/lke—s.json
[2025-11-18T10 .477594] OPA allow: resolved_peer=banka reason=allow child_profile=inbound-legacy-pay-L3

Figure 8.2. IKE SA metadata collection via ext-auth

Based on this input, the PDP returns a decision that includes both the approved security
level and the complete child SA configuration template to be enforced. Before finalising the
installation of the IKE SA, the returned template is validated against the locally defined swanctl
configuration to ensure that the child to be installed corresponds exactly to the policy mandated
one. Once this final consistency check succeeds, the ext-auth plugin issues an authorisation
success verdict and the IKE SA is installed.

[ENC] received fragment #13 of 13, reassembled fragmented IKE message (14593 bytes)

[ENC] parsed IKE_AUTH response 2 [IDr CERT CERT AUTH N(MOBIKE_SUP) N(ADD_4_ADDR) N(ADD_4_ADDR) 1
[IKE] received end entity cert '"CN=pep-gateway"

[IKE] received issuer cert '"0=PQ-Gateway Lab, CN=PQ-Gateway IKE CA PQ"

[CFG] using trusted certificate "CN=pep-gateway"

[CFG] using trusted intermediate ca certificate "0=PQ-Gateway Lab, CN=PQ-Gateway IKE CA PQ"
[CFG] using trusted ca certificate "0=PQ-Gateway Lab, CN=PQ-Gateway Root CA PQ"

[CFG] reached self-signed root ca with a path length of 1

[IKE] authentication of 'pep—gateway' with DILITHIUM_3 successful

[IKE] peer supports MOBIKE

[IKE] IKE_SA banka-responder[4] established between 198.51.100.10[bankal...203.0.113.2[pep—gateway]
[IKE] scheduling rekeying in 112s

[IKE] maximum IKE_SA lifetime 124s

initiate completed successfull

Figure 8.3. IKE SA successfully installed

8.2.2 IKE SA establishment denial due to insufficient security level

When the PDP rejects an incoming IKE SA request because the negotiated parameters do not
satisfy the minimum security requirements, the gateway halts the establishment process. In this
case, the PDP response includes both the reason for the denial and the minimum KE and signature
levels expected for that specific peer. Consequently, the responder returns a failure during the
IKE_AUTH exchange: besides the standard AUTH_FAILED notification, the gateway also emits a
vendor-specific notification whose payload explicitly encodes the required KE and signature levels.

[NET] sending packet: from 198.51.100.11[4500] to 203.0.113.2[4500] (760 bytes)
[INET] received packet: from 203.0.113.2[4500] to 198.51.100.11[4500] (9@ bytes)
[ENC] parsed IKE_AUTH response 2 [N(AUTH_FAILED) N(BEET_MODE)]

[IKE] received AUTHENTICATION_FAILED notify error
initiate failed: establishing IKE_SA 'partnerb-responder' failed

Figure 8.4. IKE SA establishment denied owing to an insufficient security level

91

Test

The remote peer, which also includes the corresponding parsing patch, is capable of recognising,
decoding, and logging this additional notification. As illustrated in fig. 8.5, the peer processes the
vendor-specific payload and records the required cryptographic levels, thereby enabling diagnostic
feedback and future renegotiations that comply with the advertised security policy.

10:52:14 @8[ENC] <partnerb-responder|2> parsing NOTIFY payload, 33 bytes left

10:52:14 @8[ENC] <partnerb-responder|2> parsing payload from => 33 bytes @ oxffff7001ac28

10:52:14 @8[ENC] <partnerb-responder|2> 0: 29 00 00 08 00 00 00 18 00 00 00 19 00 00 A0 01)..

10:52:14 @8[ENC] <partnerb-responder|2> 16: 4B 45 2D 4C 32 3B 63 65 72 74 3D 53 49 47 2D 4C KE-L2;cert=SIG-L
10:52:14 @8[ENC] <partnerb-responder|2> 32: 32 2

10:52:14 @8[ENC] <partnerb-responder|2> parsing rule @ U_INT_8
10:52:14 @8[ENC] <partnerb-responder |2> => 41

10:52:14 @8[ENC] <partnerb-responder|2> parsing rule 1 FLAG
10:52:14 @8[ENC] <partnerb-responder|2> = 0

10:52:14 @8[ENC] <partnerb-responder|2> parsing rule 2 RESERVED_BIT
10:52:14 tnerb der |2 =>

Figure 8.5. Peer-side parsing of vendor-specific notification indicating required security levels

8.2.3 Child SA installation

As already noted, in the final phase of the exchange, once the PDP returns the authorised child
template, the gateway verifies that this configuration exactly matches the corresponding entry in
swanctl.conf. If the template is consistent with the locally declared policy, it is persisted under
/run/opa-ike/ike-<id>. json, thereby recording both the decision and the full set of parameters
required for subsequent enforcement.

92

Test

~sAVIR AR 1y T grriarapans docker exec pep-gateway cat /run/opa-ike/ike-2.7json.done

"schema_version": 3,
"created_by": "opa-auth-check",
"timestamp": 1763461322.9229274,
"ike_unique_id": "2",
"role": "initiator",
"service'": "payments",
"service_hint": "payments",
"allow": true,
"reason": "allow",
"required_ke_level": "unknown",
"required_cert_level"™: "unknown",
"child_profile": "to-banka-L3",
"child_sa_config
"child_level" HILD-L3",
"description": "BankA outbound payments tunnel (L3)",
"esp_proposals": [
"aes256gcml6-ecp521-kel_kyber5-ke2_none-ke3_hqc5",
"aes256gcml6-ecp521-kel_kyber5-ke2_bike5-ke3_none",
"aes256gcml6-ecp384-kel_kyber5-ke2_ bike5-ke3 hqc5"
1,
"local_ts": "10.200.0.0/24",
“name": "to-banka-L3",
"rekey_time": "9@s",
"remote_ts": '"198.51.100.10/32",
"reqid": 201,
"start_action": "none",
"updown": "/usr/local/sbin/updown-verifier.sh"
H
"child_sa_config_opa": {
"child_leve HILD-L3",
"description' BankA outbound payments tunnel (L3)",
"esp_proposals": [
"aes256gcml6-ecp521-kel_mlkem1024-ke2_none-ke3_hqc5",
"aes256gcml6-ecp521-kel_mlkem1l@24-ke2_bike5-ke3_none",
"aes256gcml6-ecp384-kel_mlkem1024-ke2_bike5-ke3_hqc5"

r
"local_ts": "10.200.0.0/24",
"“name": "to-banka-L3",
"rekey_time": "90s",
"remote_ts": '"198.51.100.10/32",
"reqid": 201,
"start_action": "none",
"updown": "/usr/local/sbin/updown-verifier.sh"

Figure 8.6. Persisted OPA decision and child template

From this point, the vici-child-manager retrieves the approved child profile name from the
stored decision file and triggers its installation. The ensuing CHILD SA negotiation follows the
standard strongSwan flow. However, in this instance the level-4 child requires multiple fragments,
reflecting the computational weight and message size associated with the HQC-5 component of
the multi-KEM ESP proposal.

93

Test

Figure 8.7. Authorised CHILD SA being initiated via VICI

Once installed, the CHILD SA is formally associated with the pre-existing corresponding IKE
SA, completing the childless workflow in which the child is created only after the IKE SA has
been authorised and validated.

gw-wan-in-bankA: #2@, ESTABLISHED, IKEv2, 9fclf57fea2d6b7a_ik fe8f329fb154c208_r
local ‘'pep-gateway' @ 203.0.113.2[4500]
remote 'banka' @ 198.51.100.10[4500]1
AES_GCM_16-256/PRF_HMAC_SHA2_512/ECP_521/KE1_KYBER_L5
established 18s ago, rekeying in 100s

inbound-legacy-pay-L3: #29, reqid 101, INSTALLED, TUNNEL-in-UDP, ESP:AES_GCM_16-256/ECP_521/KE1_KYBER_L5/KE3_HQC_L5
installed 50s ago, rekeying in 34s, expires in 51s
in ¢597d61f, 0 bytes, 0 packets
out ca@cbé@c, 0 bytes, 0 packets
local 10.200.0.3/32
remote 198.51.100.10/32

Figure 8.8. Final CHILD SA bound to the IKE SA after installation

8.2.4 Child ex-post validation

After the CHILD SA has been successfully installed, the updown verification hook performs an
ex-post consistency check, consulting again the PDP. Using the parameters obtained via VICI,
it inspects the effectively negotiated ESP suite and traffic selectors, ensuring that they precisely
correspond to the configuration authorised by the PDP for that specific connection. Any deviation,
whether a weaker cryptographic proposal, an unexpected selector, or an omitted KEM component,
would trigger a controlled teardown of the tunnel to prevent the establishment of a non-compliant
security association.

Once the verification step has completed, the result is passed to the decision logger, which
records both the authoritative OPA decision and the parameters of the CHILD SA. This yields
an auditable, time-stamped trace of the enforcement path, capturing the effective security level
and the outcome of the ex-post validation.

updown[16] D Resolved service=payments (source:
child_profile=inbound-legacy-pay-L3
G Child payload addke (converted to OPA format): {'
: "none"},
["10.200.0.0/2:
.100.10", " : "child_|

e response: {"decision 0ed7191b-0858-4.
= “CHILD-L3", 1low"}}
e allow for inbound-legacy-pay-L3: reason=allow

Figure 8.9. Ex-post validation performed by the updown hook

94

Test

2025-11-18T710:59:30.522Z [108e8676-able-4733-8de/-07e5942d9687] DECISION: ALLOW | REMOTE: 198.51.100.10 | PATH: ike/establishment/decision | LEVEL: KE-L4 | DURATION: 27.41ms
5.489Z [INFO] POST /logs - RequestID: 4f5e4e@2-4103-49eb-9ea8-0bf817339a2e
2025-11-18T10 5.475Z [child-16-1763463585] DECISION: ALLOW | SERVICE: payments | PATH: child/create/decision
2025-11-18T10 8.010Z [INFO] POST /logs - RequestID: e957af25-916b-4b2d-af6b-b79c647fd54e
2025-11-18T10 5.473Z [0ed7191b-0858-454c-89ca-fdb77a96a349] DECISION: ALLOW | REMOTE: 198.51.100.10 | SERVICE: payments | PATH: child/create/decision | LEVEL: CHILD-L3 | DURATION: 3.

ms
2025-11-18T11:01:41.773Z [INFO] POST /logs - RequestID: 190890c2-833b-4eae-804b-e970e8dfba68
2025-11-18T11:01:33.504Z [d6fdalc0-993b-4dfc-9ael-762eb3084a17] DECISION: ALLOW | REMOTE: 198.51.100.10 | SERVICE: banka | PATH: rekey/ike_sa | DURATION: 8.71ms

Figure 8.10. Decision Logger entry for validated CHILD SA

Selector mismatch enforcement

To demonstrate that the ex-post validation mechanism reliably blocks any CHILD SA whose
parameters diverge from the policy authorised by the PDP, a controlled tampering experiment was
carried out using the tamper-updown. sh script. The scenario emulates an adversary manipulating
state on the enforcement gateway, deliberately corrupting the cached metadata consumed by
the updown hook so that the traffic selectors stored in the cache no longer correspond to those
negotiated on the wire.

In order, the script first restarts the gateway and banka containers, reloads all swanctl config-
uration and establishes a clean IKE/CHILD context (gw-wan-out-bankA/to-banka-L3). It then
suspends the auxiliary services that manage metadata (vici-suite-publisher, child_suite_
cache, vici-child-manager), ensuring that the cached state remains fixed while it is being ma-
nipulated. The child-suite file under /run/opa-ike/child-suites/ike-*-to-banka-L3. json is
subsequently edited, replacing the authorised ts.local with the broader prefix 10.200.0.0/24,
even though the on-wire negotiation continues to request 10.200.0.3/32. A fail-close flag
(/run/opa-ike/fail on mismatch) is then created so that any detected discrepancy forces an
immediate teardown. A fresh IKE/CHILD negotiation is triggered, causing updown to validate
against the tampered metadata. Once the experiment concludes, the flag is removed and the
previously suspended helper processes are resumed.

As illustrated in fig. 8.11, the log output shows the hook successfully identifying the dis-
crepancy: the cached and negotiated selectors (meta_local/meta_remote versus config local/
config remote) differ, prompting an immediate policy-driven teardown.

Every subsequent installation attempt under the corrupted state is therefore consistently re-
jected, confirming that the enforcement layer prevents the activation of any CHILD SA whose
selectors deviate from the PDP approved configuration.

1875-2025-11-18T17:47:30.639996Z updown[3] DEBUG Cache hit for unique_id=3 child=to-banka-L3 timestamp=2025-11-18T17:04:16.289865Z

1876-2025-11-18T17:47:30.640298Z updown[3] DEBUG Using cached metadata for unique_id=3 child=to-banka-L3

1877-2025-11-18T17:47:30.640649Z updown[3] DEBUG Child config TS differ from metadata (meta_local=['10.200.0.3/32'] config_local=['10.200.0.0/24"'] meta_remote=['198.51.100.10/32'] config
_remote=['198.51.100.10/32"'] source=cache)

1878:2025-11-18T17:47:30.640913Z updown[3] ERROR Selector mismatch detected and UPDOWN_FAIL_ON_MISMATCH enabled; terminating child immediately
1879-2025-11-18T17:47:30.641161Z updown[3] WARN Terminating child to-banka-L3 due to policy deny

1880-2025-11-18T17:51:39.692329Z updown[2] INFO action=down unique_id=2 child=in-banka-L3 local_ts=None remote_ts=None
1881-2025-11-18T17:51:39.703092Z updown[2] INFO Skipping verification for action=down

Figure 8.11. The updown hook detecting a selector mismatch between OPA metadata and the
negotiated traffic selectors, and aborting the CHILD SA installation

8.2.5 Rekey validation gate

A final validation stage is executed during the lifetime of an established IKE SA in order to
prevent any form of cryptographic downgrade when rekeying occurs. When strongSwan signals
that an IKE rekey is imminent, the vici-child-manager intercepts the event and leverages the
native make-before-break mechanism to retrieve both the ”old” and the "new” cryptographic suites
associated with the rekey attempt. The suites, are packaged and submitted to OPA through the
dedicated rekey policy endpoint.

95

Test

20925-11-18 12:14:42,626 - INFO - IKE REKEY detected for gw-wan-out-bankaA: uniqueid 9 -> 1@
2025-11-18 12:14:42,626 - INFO - Preparing OPA rekey validation for gw-wan-out-bankA
2025-11-18 12:14:42,626 - INFO - 0ld suite: {"aead’: "aes256gcml6’, "prf': 'sha512", 'dh': ‘ecp521°,
‘addke’: {'kel': 'mlkeml@24’, "ke2': 'none’, ‘ke3'
20925-11-18 12:14:42,626 - INFO - New suite: {'aead': "aes256gcml6’, "prf': 'shas
‘addke’: {'kel’: 'mlkem1024°, ‘ke2': "none', “ke3': 'none'}}
2025-11-18 12:14:42,627 - INFO - Calling OPA rekey policy: http://opa-server:8181/vl/data/rekey/ike sa
2025-11-18 12:14:42,627 INFO - Payload: {
"input™: {
"service™: "banka”,
"connection_name”: "gw-wan-out-bankA”,
"peer_addr”: "198.51.100.10",
"old™: {
"aes256gcmie”,
shas12™,

"aes256gcmle”,
shas12",

1

"mlkem1e24™,
"ke2": "none”,
"ke3™: “none”

2025-11-18 12:14:42,644 - INFO - OPA rekey decision: allow=True, reason=allow, action=promote new delete old
2025-11-18 12:14:42,645 - INFO - IKE rekey ALLOWED by OPA for gw-wan-out-bankA

Figure 8.12. Rekey request intercepted and evaluated against PDP policy

The PDP evaluates whether the proposed replacement satisfies the minimum security require-
ments for the associated service. If the new suite preserves or improves the previously achieved
level, the vici-child-manager promotes the fresh IKE SA and subsequently tears down the old
instance. Conversely, if the rekey attempt results in a weaker configuration, the new IKE SA is
rejected and the existing one is retained, thus preventing any inadvertent or malicious downgrade.

:44.1257 [INFO] POST /logs - RequestID: 73c82387-f79b-4794-bAc5-29a74e91406a

:42.6387 [701befen-7fc3-4f81-b57c-fe@3793111a5] DECISION: ALLOW | REMOTE: 198.51.100.1@ | SERVICE: banka | PATH: rekey/ike sa | DURATION:

3.29ms

Figure 8.13. Audit entry showing the validated rekey decision and resulting action

8.3 Performance tests

In this section, we present the performance evaluation of the proposed solution and contrast it
with a classical baseline composed of a standard IKE exchange followed by immediate CHILD SA
creation. The analysis examines the latency introduced throughout the entire establishment work-
flow, the additional computational effort required for post-quantum primitives, and the resulting
increase in packet count, fragmentation and byte overhead.

Furthermore, the evaluation isolates the delay attributable to PDP consultation at each stage
of the negotiation process, from the initial policy query to the moment at which a functional
protected channel becomes available. A detailed breakdown of the policy evaluation pipeline
is also provided, highlighting the contribution of each component, parsing, compilation, rule
matching and final decision synthesis, to the overall OPA processing time observed during the
establishment procedure.

96

Test

8.3.1 Unauthenticated multi-KEM overhead in IKE establishment

This experiment quantifies the cost of adding multiple KEMs during the unauthenticated IKE
SA setup, highlighting the DoS exposure that motivates the use of a single KEM in the IKE
establishment and the use of the childless design adopted in this work. Two runs are compared: a
baseline configuration in which the gateway negotiates a single post-quantum KE (ML-KEM-1024)
and a multi-KEM configuration that adds BIKE-5 and HQC-5 in ADDKE #2 and ADDKE #3,
respectively. Even though only three out of the seven additional KEM slots envisaged by RFC-
9370 are exercised, the overall exchange time more than doubles (from roughly 100 ms to 217 ms),
and the total UDP volume and packet count increase by factors of approximately 2.16 and 2.11,
as illustrated in figs. 8.14 to 8.16. The bulk of the extra cost stems from the HQC exchange,
which alone accounts for over 40 % of the total duration in the multi-KEM case.

The measurements are obtained by capturing the full IKE traffic on the gateway container
using the helper script:

./scripts/capture-and-analyze-ike.sh \
pep-gateway gw-wan-out-bankA 198.51.100.2

The script first terminates any existing IKE SA, then starts tcpdump inside the gateway con-
tainer to record packets on UDP ports 500/4500. The resulting PCAP is copied to the host
and analysed by analyze-pcap-timing.py, which invokes tshark to extract timestamps, mes-
sage types and lengths, groups packets into phases (IKE_SA_INIT, IKE_INTERMEDIATE #1-#3,
IKE AUTH), and computes, for each phase, the duration, number of packets and bytes sent/re-
ceived at the UDP level.

Data Transfer Comparison by Phase (UDP level) -
R d
38,563 B

40000 (Solid bars = Sent | Hatched bars = Received])

35000
30000 Sent
24,984 B

. -

Received
ML-KEM-1024 Only ML-KEM-1024 + BIKE5 + HQC5

15000 Sent
11,725 B
mmm IKE_SA_INIT s ADDKE #1 (ML-KEM) ADDKE #2 (BIKE) mmm ADDKE #3 (HQC) mem [KE_AUTH

Bytes

10000

5000

Figure 8.14. Comparison of transmitted and received data volumes for single-KEM and multi-
KEM IKE establishment

97

Test

IKE Exchange Packet Count Comparison

ML-KEM-1024 Only\nPacket Count per Phase ML-KEM-1024 + BIKE5 + HQC5\nPacket Count per Phase
= Sent = Sent

1, W Received 1o W Received

10- 10-
0)
© ©
]]
o 8- 8 8-
o o
w“ w“
o o
g 6- 5 6
-3 2
E 3
3 3
Z 4- 2 4-

2- 2 2-

i : -
0- o=
IKE_SA_INIT ADDKE #1 IKE_AUTH n<e _SA_INIT ADDKE #2 ADDKE #3 IKE_AUTH
(ML-KEM-1024) ML KEM 1024) (BIKE)
Phase Phase

Figure 8.15. Packet count distribution across IKE phases for ML-KEM only versus multi-KEM
setups

IKE Exchange Timing Comparison

ML-KEM-1024 Only (99.84 ms) ML-KEM-1024 + BIKE5 + HQC5 (216.69 ms)

IKE_AUTH - 78.7 ms (36.3%)
IKE_AUTH 80.5 ms (80.6%)
Pl 7— 203 me i

(HQC)

ADDKE #1 10.8 10.8% ADDKE #2 | 29.1 13.4%
(ML-KEM-1024) I ms;() P 9.1 ms (13.4%)
ADDKE #1 | o
PR E et . 10.9 ms (5.0%)
IKE_SA_INIT 8.6 ms (8.6%)

IKE_SA_INIT . 7.8 ms (3.6%)

0 10 20 30 40 50 60 70 8 0 20 40 60 80
Duration (ms) Duration (ms)
Figure 8.16. Phase-level timing comparison between ML-KEM only and multi-KEM IKE negoti-
ations

8.3.2 Legacy IKE establishment: normal versus childless mode

A second experiment contrasts a conventional legacy IKE setup, in which a CHILD SA is cre-
ated immediately during IKE_AUTH, with a childless initial exchange where only the IKE SA is
established. As specified by RFC-7296, in the normal case the first CHILD SA is derived directly
from the key material negotiated in IKE_SA_INIT. The IKE_AUTH message carries, in addition to
the authentication payloads, also the ESP proposal and traffic selectors for that child. While
additional effective independent key exchanges are used solely for subsequent CREATE_CHILD_SA
operations to provide PFS.

The experiment is automated by the simple-ike-comparison.sh script, which alternates
between the normal and childless configurations of the gateway and host-legacy containers. For
each mode the script restarts the containers, reloads the swanctl configuration, captures the full
handshake on the gateway with tcpdump, and derive the total establishment time and the number
of bytes observed on the wire. The two JSON reports are finally compared, which computes the
incremental overhead introduced by negotiating a CHILD SA within IKE_AUTH.

The results summarised in fig. 8.17 indicate that embedding a CHILD SA directly into the IKE
handshake leads to a clear increase in both data volume and processing time. From a bandwidth
standpoint, the overall handshake grows by roughly 7 %, driven by the additional payloads carried
in the final IKE_AUTH response. In particular, this response enlarges by about 80 B, accounting
for the ESP SA payload, the TSi and TSr payloads, and a small amount of padding and alignment
overhead.

98

Test

On the initiator side, the impact is more pronounced (around 476 B), as the peer must send
the full CHILD SA proposal, the associated traffic selectors and several notify payloads. In our
measurements, this request is fragmented at the IP layer into multiple packets, increasing both
the number of packets on the wire and the per-packet processing cost for each endpoint.

From a latency perspective, the impact is even more pronounced. The end-to-end estab-
lishment time increases by more than a factor of three, from roughly 157 ms in the childless
configuration to around 539ms when the CHILD SA is negotiated in-band. This additional
delay is largely due to the extra processing and fragmentation required to convey the CHILD
proposal within IKE_AUTH. These results reinforce the hardening choices in our design, where
the gateway deliberately establishes the initial IKE SA in childless mode and only subsequently,
once the PDP has authorised the connection, creates a new CHILD SA using dedicated post-
quantum key exchanges. This approach cleanly decouples tunnel key material from the initial
IKE negotiation, keeps the IKE proposal compact (restricted to a single standardised KEM), and
shifts the additional post-quantum overhead into an explicitly authorised and tightly controlled
CHILD establishment phase, ensuring that even the first CHILD SA is characterised by a full,
quantum-resistant key exchange.

IKE Child SA Overhead Analysis

Data Transfer Establishment Time

8,237 600 - 539.0
bytes 7,681
bytes

8000 -
500 -

N
6000 - E,400
:
= i~ 300-
° I
2 4000 s
[
200 1|5“65'6
N -
100 -
[0 v 0- T
Normal Childless Normal Childless
(with Child SA) (IKE_SA only) (with Child SA) (IKE_SA only)

Figure 8.17. Data and time overhead of a normal IKE establishment with CHILD SA versus
childless mode

8.3.3 Policy evaluation timing analysis

To quantify the computational cost introduced by the policy-driven control plane, we analyse the
evaluation time of each OPA rule involved in the security workflow: the ike/establishment deci-
sion, the child/create decision, and the rekey/ike_sa downgrade prevention gate. Figure 8.18
reports the breakdown of the average latency observed for each policy phase, distinguishing the
time spent parsing the input, compiling the Rego query, evaluating the policy logic, and the
residual runtime overhead.

The evaluation of the IKE establishment policy is, by construction, the most time-consuming
stage. This rule represents the core of the PDP’s security assessment and consequently carries
out the widest range of checks. Specifically, the decision:

e authenticate and classify the remote peer identity;

e determine whether the requested connection is admissible given the declared policy set;

e assess whether the negotiated IKE security level satisfies the minimum requirements for that
peer or service;

e validate the remote certificate, including level requirements and subject matching;

99

Test

e derive the authorised child template to be enforced by the gateway.

For these reasons, its cost dominates the evaluation process, averaging 10.48 ms, with more
than 92 % of this time attributed to actual query evaluation.

On the contrary, the subsequent child/create and rekey/ike_sa stages are considerably
more lightweight. Both rules serve as consistency checks, effectively performing pattern-matching
against state that has already been authorised.

OPA Policy Evaluation Timing Analysis

Evaluation Time Breakdown by Phase Total Evaluation Time
10.48 ms
N N Input Parse 124
10- == Query Compile
mmm Query Evaluation 10.48 ms
w Overhead

4.15 ms

Time (ms)

3.70 ms

4.15 ms

Total Time (ms)
o

3.70 ms

Average Breakdown:

Query Eval: 81.9%
Overhead: 9.4%

Child Rekey

Child Rekey IKE
IKE Establishment Create IKE

Estab:\KSE\ment Create
Figure 8.18. Breakdown of OPA evaluation times across the IKE establishment, child creation
and rekey security gates

8.3.4 Comprehensive evaluation across security levels

This section consolidates the multi-level performance analysis by examining, in a unified manner,
the timing characteristics, network overhead, and fragmentation behaviour observed across the
four security levels. The measurements derive from controlled experiments conducted through
the benchmarking framework executed via the run_benchmark _suite.sh script. Packets are cap-
tured on the gateway with tcpdump into PCAP traces, then parsed with tshark and correlated
with vici and OPA audit logs to extract timing and traffic metrics. Although, it is important
to highlight that the timing values exhibit a degree of non-determinism. Such variability pri-
marily stems from the packet capture methodology, the behaviour of the Docker-based execution
environment, and short-lived network congestion during the exchange phases. Consequently, the
collected timings should be regarded as representative rather than absolute. It is worth noting
that, across all evaluated configurations, the required signature strength is fixed at level 2. This
choice provides a satisfactory level of assurance for authentication while avoiding the heavier
level 3 option, whose cost is dominated by certificate exchange. At the same time, level 2 remains
sufficient to study the differences between security levels arising from the distinct Additional Key
Exchanges (ADDKEs) used in each case. However, this decision is easily reversible: since the
security level of the KE is decoupled from that of the signature, it is sufficient to adjust the sig-
nature level in service_classes.rego for the relevant external service, and the new requirement
will be propagated automatically during the validation phase.

Traffic, bytes and fragmentation

The aggregate network statistics in figs. 8.19 and 8.20 reflect the intrinsic cost of increasing post-
quantum security levels. Packet counts, transferred bytes and the number of IKE fragments all
grow consistently from L1 through L4. This trend is especially visible for the child installation
stage, where the cryptographic workload directly influences the payload size and fragmentation
ratio. At level 4, where ML-KEM-1024, BIKE-5, and HQC-5 are jointly negotiated, the child

100

Test

establishment accounts for the highest number of fragments (34 fragments in total), and a cor-
responding traffic volume of approximately 37.1 KiB. Such growth is entirely expected as larger
post-quantum public keys and ciphertexts must be transmitted during the ESP negotiation.

Packet Count Distribution

Network Traffic Comparison Across Security Levels

Data Volume Distribution IKE

Packets

— KE SA
| Child SA

Total Packet Count

36 IKE SA
35| == child sa

Data Volume (KiB)

L2 L3

371 357 - KE SA 34
W Child SA

30

N
b

Fragment Count

L3 L2 L3

Total IKE Fragmentation

Total Packets

63

60

Total Data (KiB)
w & @
8 & g

N
3

La

60

50

Total Fragments
w 5
8 &

N
S

Figure 8.19. Network traffic comparison across all security levels

IP Fragmentation Analysis by Direction

IKE SA Fragmentation

Child SA Fragmentation

15

W Outbound 20.0 ™= Outbound 20
1| Inbound == Inbound
13 13 175
12
15.0 s
14
w10 o
5 5125
° 2
o ¥}
E * E 10.0
H £ o s
o o
£ s g .
75
6
A 5.0
4
27 2.5
0 0.0
12 [E] L1 2 13 L4
Total Fragmentation Breakdown Fragmentation Intensity
60 { mmm IKE Outbound 0.88
s IKE Inbound 0.85
m== Child Outbound 0.81
= Child Inbound 0.8
50
40 @ 0.6
E 4
=
S H
0
E 304 2
£ o
g g o
' o
* [
20
0.2
10
0 0.0
2 13 L4

Figure 8.20. IP fragmentation comparison across security levels

101

Test

Macroscopic timing behaviour

Although the cryptographic payload grows with the level, the global timing bottlenecks remain
consistent across all tiers. The most significant contributor to the total duration is the IKFE
authentication phase, dominated by certificate exchange and signature verification. A second non-
negligible component is the delay between the PDP’s decision and the start of child negotiation,
which varies according to system load, scheduling of the vici-child-manager, and transient
conditions within the Docker network stack.

The child negotiation time (purple bar in fig. 8.21) increases monotonically with the security
level, as anticipated, and reaches its maximum at level 4. This reflects the cumulative cost of
negotiating three post-quantum KEMs sequentially. The evaluation also accounts for the ex-post
validation performed by the updown mechanism to ensure that the installed suites strictly match
the authorised template, to consider complete the entire secure tunnel establishment.

Performance Timing Breakdown Across Security Levels

35
wsm |KE SA Establishment
mmm OPA IKE SA Evaluation 2.907s
wsw IKE-Child Transition Delay -
3.01 mmm Child SA Establishment — L —
mmm OPA Child SA Evaluation
15.9%
2.5
(2:2525) T
m
| 1.8ms | (0.273s)
= 1.880s S T
T 201 —— (0. 2018) (0.8825)
o 25.2%
g (0.185s) (0.591s)
0 25.3%
; (0.545s)
28.3%
£ 159 (0.5323)
=
[23ms |
1.0
53.5%
63.0%
61.3% (1.4785) (1.33¢3)
61.6% (1.319s)
0.5 1 (1.158s)
0.0

Security Level

Figure 8.21. Performance timing breakdown across security levels

Overall interpretation

Despite a clear increase in establishment time relative to the classical legacy scenario, where the
first child is derived immediately after IKE_AUTH with negligible additional negotiation, the pro-
posed solution offers a qualitatively different security posture. In the proposed solution, when
compared with the legacy baseline, even the lowest configured level incurs more than a fourfold
increase in traffic load and more than 3.7 times the establishment time of the classical exchange,
rising to around an eightfold increase in KiB transferred and a sixfold increase in latency at
the highest level. Nevertheless, although this additional overhead is expected given the extra
work introduced by post-quantum algorithms and certificate handling, it remains justified by
the enhanced security posture offered by the system. The policy-driven approach enables com-
plete control over the negotiation pipeline: the PDP can enforce the precise KE, signature and
child-level combinations required for each service, while decoupling the establishment of the trans-
mission tunnel from the IKE SA itself. The resulting overhead represents a one-time cost incurred
only during the initial establishment, and is justified by the stringent security guarantees needed
in the target deployment environment.

102

Chapter 9

Conclusions

This document has introduced and evaluated a policy-centric, post-quantum aware IPsec gate-
way. The proposed system is designed to shield legacy infrastructures that cannot yet adopt
post-quantum schemes natively, while still allowing them to benefit from quantum-resistant pro-
tections. Informed by the analysis of the quantum threat landscape, the NIST PQC standard-
isation process and the practical obstacles of migrating IPsec and IKEv2, the gateway operates
as a translation point: it terminates conventional IKEv2 sessions with a legacy LAN and re-
establishes connectivity towards post-quantum capable peers on an external network, enforcing
centrally defined cryptographic policies and target security levels along the way.

A central premise of this work is that cryptographic agility, rather than the selection of one
specific algorithm, is the main design requirement for systems expected to face both classical
and quantum-capable adversaries over time. To this end, the gateway does not embed fixed
cryptographic choices in its data plane. Instead, it follows a policy-driven architecture in which
an external Policy Decision Point (PDP), realised with Open Policy Agent (OPA), determines
admissible algorithms, key exchange patterns, signature schemes and per-service security levels.
The strongSwan-based gateway acts as a Policy Enforcement Point (PEP), terminating tunnels
on both sides and consulting the PDP, before allowing security relevant state changes. This
clean separation of roles decouples policy evolution from packet processing, so that changes in
security posture can be realised by updating policy modules and data bundles, without modifying
or restarting the enforcement component.

The prototype has been validated through functional tests that exercise the full negotiation
workflow. The experiments show that the gateway correctly intercepts authenticated IKE ex-
changes, submits a rich context to the PDP, and proceeds only when an internally consistent
child configuration is authorised. When a proposed cryptographic suite fails to meet the mini-
mum requirements, the gateway rejects the IKE association and returns a diagnostic notification
that can be logged and interpreted by the peer. Child SA installation is shown to derive exclu-
sively from OPA-approved templates, which are recorded and cross-checked against the actually
negotiated traffic selectors and ESP transforms. Any deviations cause a fail-closed teardown.
Rekey validation further confirms that downgrade attempts are systematically blocked, and that
new IKE SAs are accepted only when they preserve or raise the previously achieved security level.

Furthermore, the performance evaluation provides a quantitative perspective on the costs of
adopting post-quantum primitives and policy-driven control. Measurements show that performing
multiple unauthenticated ADDKE rounds during IKE SA setup substantially increases handshake
latency and traffic volume, and makes the protocol more exposed to denial-of-service. This ob-
servation justifies constraining IKE itself to a single standardised KEM while moving additional
post-quantum work into an authenticated, policy-gated child establishment phase. Additional
benchmarks quantify the contribution of the PDP: even for the most complex rule, which per-
forms peer classification, admissibility checks, level verification, certificate validation and child-
template derivation, the average evaluation time remains in the order of a few tens of milliseconds,
with lighter rules incurring only a few milliseconds. Across four configured security levels, packet
counts, bytes and fragmentation grow as larger post-quantum keys and ciphertexts are used, yet

103

Conclusions

the overall timing profile remains dominated by certificate handling and the actual delay from
the OPA response to the mandated child initialisation, with PDP evaluations contributing only
a modest fraction. These results suggest that a policy-driven, post-quantum IPsec gateway is
practically deployable, with overheads that are visible but acceptable for many site-to-site and
high-value service scenarios.

This work demonstrates comprehensively that it is both technically and operationally achiev-
able to build a post-quantum IPsec gateway that combines crypto-agility, fine-grained policy
control and rich observability, while still maintaining interoperability with existing IKEv2 deploy-
ments. At the same time, the evaluation has been limited to a controlled laboratory setting. Real-
world deployments will need to consider a broader range of hardware platforms, traffic profiles,
failure modes, long-term data-plane performance and highly available, horizontally scalable PDP
designs. Addressing these aspects, and generalising the policy-centric pattern beyond IPsec, for
example to post-quantum aware TLS termination, service meshes and application-layer gateways,
defines a natural agenda for future work and a coherent route towards quantum-safe, crypto-agile
network security at scale.

104

Bibliography

(1]

=

M. Giles, “Explainer: What is a quantum computer?.” MIT Technology Review, Jan-
uary 2019, https://www.technologyreview.com/2019/01/29/66141/what-is-quantum-
computing/

IBM, “What is quantum computing?.” https://www.ibm.com/topics/quantum-computing
S. E. Yunakovsky, M. Kot, N. Pozhar, D. Nabokov, M. Kudinov, A. Guglya, E. O. Kiktenko,
E. Kolycheva, A. Borisov, and A. K. Fedorov, “Towards security recommendations for public-
key infrastructures for production environments in the post-quantum era”’, EPJ Quantum
Technology, vol. 8, May 2021, DOI 10.1140/epjqt/s40507-021-00104-z

P. W. Shor, “Polynomial-time algorithms for prime factorization and discrete logarithms on
a quantum computer”, SIAM Journal on Computing, vol. 26, October 1997, pp. 1484-1509,
DOIT 10.1137/S0097539795293172

C. Gidney and M. Ekera, “How to factor 2048 bit RSA integers in 8 hours using 20 million
noisy qubits”, Quantum, vol. 5, April 2021, p. 433, DOI 10.22331/q-2021-04-15-433

M. Giles, “Explainer: What is post-quantum cryptography?.” MIT Technology Re-
view, July 2019, https://www.technologyreview.com/2019/07/12/134211/explainer-
what-is-post-quantum-cryptography/

G. Alagic, D. Apon, D. Cooper, Q. Dang, T. Dang, J. Kelsey, J. Lichtinger, Y.-K. Liu,
C. Miller, D. Moody, R. Peralta, R. Perlner, A. Robinson, and D. Smith-Tone, “Status Report
on the Third Round of the NIST Post-Quantum Cryptography Standardization Process.”
NIST IR 8413-updl, July 2022, DOI 10.6028 /NIST.IR.8413-upd1

NIST, “Announcing Approval of Three Federal Information Processing Standards (FIPS) for
Post-Quantum Cryptography.” NIST CSRC, August 2024, https://csrc.nist.gov/News/
2024/postquantum-cryptography-fips-approved

S. Kent, “IP Encapsulating Security Payload (ESP).” RFC-4303, December 2005, DOI
10.17487/RFC4303

C. Kaufman, P. Hoffman, Y. Nir, P. Eronen, and T. Kivinen, “Internet Key Exchange Pro-
tocol Version 2 (IKEv2).” RFC-7296, October 2014, DOI 10.17487/RFC7296

V. Smyslov, “Intermediate Exchange in the Internet Key Exchange Protocol Version 2
(IKEv2).” RFC-9242, May 2022, DOI 10.17487/RFC9242

C. J. Tjhai, M. Tomlinson, G. Bartlett, S. Fluhrer, D. V. Geest, O. Garcia-Morchon, and
V. Smyslov, “Multiple Key Exchanges in the Internet Key Exchange Protocol Version 2
(IKEv2).” RFC-9370, May 2023, DOI 10.17487/RFC9370

Jay Gambetta, “The hardware and software for the era of quantum utility is here.” IBM
Quantum Blog, 2023, https://www.ibm.com/quantum/blog/quantum-roadmap-2033
Microsoft, “Microsoft’s Majorana 1 chip carves new path for quantum computing.”
Microsoft Source (Newsroom), February 2025, https://news.microsoft.com/source/
features/innovation/microsofts-majorana-1-chip-carves-new-path-for-quantum-
computing/

M. Mosca and M. Piani, “Quantum threat timeline report 2024.” Global Risk In-
stitute, 2024, https://globalriskinstitute.org/publication/2024-quantum-threat-
timeline-report/

G. Greenwald, “XKeyscore: NSA tool collects 'nearly everything a user does on the internet’.”
The Guardian, July 2013, https://www.theguardian.com/world/2013/jul/31/nsa-top-
secret-program-online-data

105

https://www.technologyreview.com/2019/01/29/66141/what-is-quantum-computing/
https://www.technologyreview.com/2019/01/29/66141/what-is-quantum-computing/
https://www.ibm.com/topics/quantum-computing
https://doi.org/10.1140/epjqt/s40507-021-00104-z
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.22331/q-2021-04-15-433
https://www.technologyreview.com/2019/07/12/134211/explainer-what-is-post-quantum-cryptography/
https://www.technologyreview.com/2019/07/12/134211/explainer-what-is-post-quantum-cryptography/
https://doi.org/10.6028/NIST.IR.8413-upd1
https://csrc.nist.gov/News/2024/postquantum-cryptography-fips-approved
https://csrc.nist.gov/News/2024/postquantum-cryptography-fips-approved
https://doi.org/10.17487/RFC4303
https://doi.org/10.17487/RFC7296
https://doi.org/10.17487/RFC9242
https://doi.org/10.17487/RFC9370
https://www.ibm.com/quantum/blog/quantum-roadmap-2033
https://news.microsoft.com/source/features/innovation/microsofts-majorana-1-chip-carves-new-path-for-quantum-computing/
https://news.microsoft.com/source/features/innovation/microsofts-majorana-1-chip-carves-new-path-for-quantum-computing/
https://news.microsoft.com/source/features/innovation/microsofts-majorana-1-chip-carves-new-path-for-quantum-computing/
https://globalriskinstitute.org/publication/2024-quantum-threat-timeline-report/
https://globalriskinstitute.org/publication/2024-quantum-threat-timeline-report/
https://www.theguardian.com/world/2013/jul/31/nsa-top-secret-program-online-data
https://www.theguardian.com/world/2013/jul/31/nsa-top-secret-program-online-data

Bibliography

[17]

[18]

[37]

L. K. Grover, “A Fast Quantum Mechanical Algorithm for Database Search”, STOC ’96:
28th Annual ACM Symposium on Theory of Computing, Philadelphia (PA, USA), May
22-24, 1996, pp. 212-219, DOI 10.1145/237814.237866

L. M. K. Vandersypen, M. Steffen, G. Breyta, C. S. Yannoni, M. H. Sherwood, and I. L.
Chuang, “Experimental realization of Shor’s quantum factoring algorithm using nuclear mag-
netic resonance”, Nature, vol. 414, December 2001, pp. 883-887, DOI 10.1038/414883a
European Telecommunications Standards Institute, “Quantum Computing Impact on secu-
rity of ICT Systems; Recommendations on Business Continuity and Algorithm Selections.”
ETSI EG 203 310, June 2016, https://www.etsi.org/deliver/etsi_eg/203300.203399/
203310/01.01.01.60/eg_-203310v010101p.pdf

European Telecommunications Standards Institute, “Quantum-Safe threat assessment.”
ETSI GR QSC 004, March 2017, https://www.etsi.org/deliver/etsi_gr/qsc/001.099/
004/01.01.01_60/gr_qsc004v010101p.pdf

John Proos and Christof Zalka, “Shor’s discrete logarithm quantum algorithm for elliptic
curves”, QIC 3, no. 4, 2003, pp. 317-344, DOI 10.48550/arxiv.quant-ph /0301141

A. Banerjee, T. Reddy.K, D. Schoinianakis, T. Hollebeek, and M. Ounsworth, “Post-
Quantum Cryptography for Engineers.” Internet-Draft, IETF, August 2025, https://
datatracker.ietf.org/doc/draft-ietf-pquip-pqc-engineers/14/

E. Barker, “Recommendation for Key Management: Part 1 — General.” NIST SP 800-57,
pt.1, rev.5, May 2020, DOT 10.6028 /NIST.SP.800-57pt1r5

D. Coppersmith, “Another birthday attack”, CRYPTO ’85: Advances in Cryptology, Santa
Barbara, (CA, USA), August 18-22, 1985, pp. 14-17, DOI 10.1007/3-540-39799-X_2

D. Ott, C. Peikert, et al., “Identifying Research Challenges in Post-Quantum Cryptog-
raphy Migration and Cryptographic Agility.” arXiv:1909.07353, September 2019, DOI
10.48550/arXiv.1909.07353

Open Quantum Safe Project, “The Libogs Library.” https://openquantumsafe.org/
libogs/

N. Alnahawi, N. Schmitt, A. Wiesmaier, A. Heinemann, and T. Grasmeyer, “On the
state of crypto-agility.” Cryptology ePrint Archive, Paper 2023/487, 2023, https://
eprint.iacr.org/2023/487

E. Barker, L. Chen, D. Cooper, D. Moody, A. Regenscheid, and M. Souppaya,
“Considerations for Achieving Crypto Agility.” NIST CSWP 39 2pd, July 2025, DOI
10.6028 /NIST.CSWP.39.2pd

D. Flo, M. Pala, and B. Hale, “Terminology for Post-Quantum Traditional Hybrid Schemes.”
RFC-9794, June 2025, DOI 10.17487/RFC9794

M. Ounsworth, J. Gray, M. Pala, J. Klauiner, and S. Fluhrer, “Composite ML-DSA for
use in X.509 Public Key Infrastructure.” Internet-Draft, IETF, October 2025, https://
datatracker.ietf.org/doc/draft-ietf-lamps-pq-composite-sigs/12/

National Institute of Standards and Technology, “Module-Lattice-Based Digital Signature
Standard.” NIST FIPS 204, August 13, 2024, DOI 10.6028/NIST.FIPS.204

D. Micciancio and O. Regev, “Lattice-based Cryptography”, Post-Quantum Cryptography
(D. J. Bernstein, J. Buchmann, and E. Dahmen, eds.), pp. 147-191, Springer, 2009, DOI
10.1007/978-3-540-88702-7_5

R. Overbeck and N. Sendrier, “Code-based Cryptography”, Post-Quantum Cryptography
(D. J. Bernstein, J. Buchmann, and E. Dahmen, eds.), pp. 95-145, Springer, 2009, DOI
10.1007/978-3-540-88702-7_4

J. Ding and B.-Y. Yang, “Multivariate Public Key Cryptography”, Post-Quantum Cryptog-
raphy (D. J. Bernstein, J. Buchmann, and E. Dahmen, eds.), pp. 193-241, Springer, 2009,
DOI 10.1007/978-3-540-88702-7_6

C. Dods, N. P. Smart, and M. Stam, “Hash based digital signature schemes”, Cryptography
and Coding (N. P. Smart, ed.), Berlin, Heidelberg, 2005, pp. 96-115, DOI 10.1007/11586821_8
C. Peng, J. Chen, S. Zeadally, and D. He, “Isogeny-based cryptography: A promis-
ing post-quantum technique”, IT Professional, vol. 21, no. 6, 2019, pp. 27-32, DOI
10.1109/MITP.2019.2943136

N. I. of Standards and Technology, “Module-Lattice-Based Key-Encapsulation Mechanism
(FIPS 203).” NIST FIPS 203, August 13, 2024, DOI 10.6028 /NIST.FIPS.203

106

https://doi.org/10.1145/237814.237866
https://doi.org/10.1038/414883a
https://www.etsi.org/deliver/etsi_eg/203300_203399/203310/01.01.01_60/eg_203310v010101p.pdf
https://www.etsi.org/deliver/etsi_eg/203300_203399/203310/01.01.01_60/eg_203310v010101p.pdf
https://www.etsi.org/deliver/etsi_gr/qsc/001_099/004/01.01.01_60/gr_qsc004v010101p.pdf
https://www.etsi.org/deliver/etsi_gr/qsc/001_099/004/01.01.01_60/gr_qsc004v010101p.pdf
https://doi.org/10.48550/arxiv.quant-ph/0301141
https://datatracker.ietf.org/doc/draft-ietf-pquip-pqc-engineers/14/
https://datatracker.ietf.org/doc/draft-ietf-pquip-pqc-engineers/14/
https://doi.org/10.6028/NIST.SP.800-57pt1r5
https://doi.org/10.1007/3-540-39799-X_2
https://doi.org/10.48550/arXiv.1909.07353
https://openquantumsafe.org/liboqs/
https://openquantumsafe.org/liboqs/
https://eprint.iacr.org/2023/487
https://eprint.iacr.org/2023/487
https://doi.org/10.6028/NIST.CSWP.39.2pd
https://doi.org/10.17487/RFC9794
https://datatracker.ietf.org/doc/draft-ietf-lamps-pq-composite-sigs/12/
https://datatracker.ietf.org/doc/draft-ietf-lamps-pq-composite-sigs/12/
https://doi.org/10.6028/NIST.FIPS.204
https://doi.org/10.1007/978-3-540-88702-7_5
https://doi.org/10.1007/978-3-540-88702-7_4
https://doi.org/10.1007/978-3-540-88702-7_6
https://doi.org/10.1007/11586821_8
https://doi.org/10.1109/MITP.2019.2943136
https://doi.org/10.6028/NIST.FIPS.203

Bibliography

[38] N. I. of Standards and Technology, “Module-Lattice-Based Digital Signature Standard (FIPS
204).” NIST FIPS 204, August 13, 2024, DOI 10.6028 /NIST.FIPS.204

[39] N. I. of Standards and Technology, “Hamming Quasi-Cyclic Key Encapsulation Mechanism
(FIPS 205).” NIST FIPS 205, August 13, 2024, DOI 10.6028 /NIST.FIPS.205

[40] A. Huelsing, D. Butin, S.-L. Gazdag, J. Rijneveld, and A. Mohaisen, “XMSS: eXtended
Merkle Signature Scheme.” RFC-8391, May 2018, DOI 10.17487/RFC8391

[41] Y. Wang, R. Paccagnella, E. He, H. Shacham, C. W. Fletcher, and D. Kohlbren-
ner, “Hertzbleed: Turning power side-channel attacks into remote timing attacks on
x86”, Proceedings of the USENIX Security Symposium (USENIX), 2022. https://
www.hertzbleed.com/hertzbleed.pdf

[42] D. Jao, R. Azarderakhsh, M. Campagna, C. Costello, L. D. Feo, B. Hess, A. Hutchin-
son, A. Jalali, K. Karabina, B. Koziel, B. LaMacchia, P. Longa, M. Naehrig, J. Renes,
et al., “Supersingular Isogeny Key Encapsulation (SIKE) Specification.” NIST PQC Sub-
mission, September 2022, https://csrc.nist.gov/csrc/media/Projects/post-quantum-
cryptography/documents/round-4/submissions/SIKE-spec.pdf

[43] G. Alagic, M. Bros, P. Ciadoux, D. Cooper, Q. Dang, T. Dang, J. Kelsey, J. Lichtinger, Y.-K.
Liu, C. Miller, D. Moody, R. Peralta, R. Perlner, A. Robinson, H. Silberg, D. Smith-Tone, and
N. Waller, “Status Report on the Fourth Round of the NIST Post-Quantum Cryptography
Standardization Process.” NIST IR 8545, March 2025, DOI 10.6028 /NIST.IR.8545

[44] S. Crocker, D. D. D. Clark, R. T. Braden, and C. Huitema, “Report of IAB Workshop on
Security in the Internet Architecture - February 8-10, 1994.” RFC-1636, June 1994, DOI
10.17487/RFC1636

[45] S. Kent, “IP Authentication Header.” RFC-4302, December 2005, DOI 10.17487/RFC4302

[46] C. Kaufman, “Internet Key Exchange (IKEv2) Protocol.” RFC-4306, December 2005, DOI
10.17487/RFC4306

[47) P. Wouters, D. Migault, J. P. Mattsson, Y. Nir, and T. Kivinen, “Cryptographic Algo-
rithm Implementation Requirements and Usage Guidance for Encapsulating Security Payload
(ESP) and Authentication Header (AH).” RFC-8221, October 2017, DOI 10.17487 /RFC8221

[48] D. Carrel and D. Harkins, “The Internet Key Exchange (IKE).” RFC-2409, November 1998,
DOI 10.17487/RFC2409

[49] J. Turner, M. J. Schertler, M. S. Schneider, and D. Maughan, “Internet Security As-
sociation and Key Management Protocol (ISAKMP).” RFC-2408, November 1998, DOI
10.17487/RFC2408

[50] H. Orman, “The OAKLEY Key Determination Protocol.” RFC-2412, November 1998, DOI
10.17487/RFC2412

[51] V. Smyslov, “Internet Key Exchange Protocol Version 2 (IKEv2) Message Fragmentation.”
RFC-7383, November 2014, DOI 10.17487/RFC7383

[52] R. Jenwar, D. Hui, H. Tschofenig, and Y. Nir, “A Childless Initiation of the Internet Key

Exchange Version 2 (IKEv2) Security Association (SA).” RFC-6023, October 2010, DOI
10.17487/RFC6023

3] strongSwan, https://strongswan.org/

[54] Open Policy Agent, https://www.openpolicyagent.org/

[55] R. K. Zhao, N. H. Sultan, P. Yialeloglou, D. Liu, D. Liebowitz, and J. Pieprzyk, “MIKA: A
Minimalist Approach to Hybrid Key Exchange”, 2024 21st Annual International Conference
on Privacy, Security and Trust (PST), 2024, pp. 1-11, DOI 10.1109/PST62714.2024.10788054

[56] G. Lopez-Millan, R. Marin-Lopez, and F. Pereniguez-Garcia, “Towards a standard SDN-
based IPsec management framework”, Computer Standards & Interfaces, vol. 66, 2019,
p. 103357, DOI 10.1016/j.¢s1.2019.103357

[57] R. Marin-Lopez, G. Lopez, and F. Pereniguez-Garcia, “A YANG Data Model for IPsec
Flow Protection Based on Software-Defined Networking (SDN).” RFC-9061, July 2021, DOI
10.17487/RFC9061

[58] F. Ciravegna, G. Bruno, and A. Lioy, “IKE-less IPsec for Centralized Management of Network
Security”, CEUR Workshop Proceedings, 2024, pp. 1-13. https://ceur-ws.org/Vol-3731/
paper35.pdf

[59] M. D. Baushke, “Key Exchange (KEX) Method Updates and Recommendations for Secure
Shell (SSH).” RFC-9142, January 2022, DOI 10.17487/RFC9142

[60] Prometheus, https://prometheus.io/

107

https://doi.org/10.6028/NIST.FIPS.204
https://doi.org/10.6028/NIST.FIPS.205
https://doi.org/10.17487/RFC8391
https://www.hertzbleed.com/hertzbleed.pdf
https://www.hertzbleed.com/hertzbleed.pdf
https://csrc.nist.gov/csrc/media/Projects/post-quantum-cryptography/documents/round-4/submissions/SIKE-spec.pdf
https://csrc.nist.gov/csrc/media/Projects/post-quantum-cryptography/documents/round-4/submissions/SIKE-spec.pdf
https://doi.org/10.6028/NIST.IR.8545
https://doi.org/10.17487/RFC1636
https://doi.org/10.17487/RFC4302
https://doi.org/10.17487/RFC4306
https://doi.org/10.17487/RFC8221
https://doi.org/10.17487/RFC2409
https://doi.org/10.17487/RFC2408
https://doi.org/10.17487/RFC2412
https://doi.org/10.17487/RFC7383
https://doi.org/10.17487/RFC6023
https://strongswan.org/
https://www.openpolicyagent.org/
https://doi.org/10.1109/PST62714.2024.10788054
https://doi.org/10.1016/j.csi.2019.103357
https://doi.org/10.17487/RFC9061
https://ceur-ws.org/Vol-3731/paper35.pdf
https://ceur-ws.org/Vol-3731/paper35.pdf
https://doi.org/10.17487/RFC9142
https://prometheus.io/

Bibliography

[61] Grafana, https://grafana.com/
[62] The OpenSSL project, http://www.openssl.org/

108

https://grafana.com/
http://www.openssl.org/

Appendix A

User Manual

A.1 System setup

This appendix describes how to install, configure, and operate the prototype developed for this
thesis. The system is composed of a set of containerised services that collectively implement a
policy-driven secure network based on strongSwan for IPsec tunnelling and the OPA as PDP.
The deployment includes the policy enforcement gateway (pep-gateway) running strongSwan
with the ext-auth plugin, one or more initiator hosts (e.g. host-legacy), application servers
such as banka, auxiliary peers, and a suite of observability components including Prometheus,
Grafana, and a dedicated decision-logger service.

A.1.1 Software prerequisites
Docker engine and Docker compose

Install Docker using the official repository. The following commands configure the repository,
import Docker’s signing key, and install both docker-ce and the Docker Compose plugin:

sudo apt update

sudo apt install ca-certificates curl

sudo install -m 0755 -d /etc/apt/keyrings

sudo curl -fsSL https://download.docker.com/linux/ubuntu/gpg \
-0 /etc/apt/keyrings/docker.asc

sudo install -m 0644 /etc/apt/keyrings/docker.asc \
/etc/apt/keyrings/docker.asc

echo "deb [arch=$(dpkg --print-architecture) \

signed-by=/etc/apt/keyrings/docker.asc] \

https://download.docker.com/linux/ubuntu \

$(. /etc/os-release && echo \"$VERSION_CODENAME\") stable" | \

sudo tee /etc/apt/sources.list.d/docker.list > /dev/null

sudo apt update

sudo apt install docker-ce docker-ce-cli containerd.io \
docker-buildx-plugin docker-compose-plugin

Running Docker without sudo

To execute Docker as an unprivileged user, add your account to the docker group:

109

User Manual

sudo groupadd docker
sudo usermod -aG docker $USER
newgrp docker

Verify the installation:

docker run hello-world

Networking tools

Tools such as tcpdump and tshark are required for packet-level debugging and for later perfor-
mance evaluation:

sudo apt update
sudo apt install tcpdump tshark

Project files

Clone the project repository:

git clone https://github.com/PQ-IPsec-Gateway/thesis.git <DIR>
cd <DIR>

The repository includes a docker-compose.yml file defining all components: the decision-
logger, CTI service, OPA , Prometheus, Grafana, the policy-enforcing gateway, the various hosts,
and auxiliary peers. Each service contains its own configuration directory, which provides the
strongSwan and swanctl profiles for that container, along with certificates and daemon’s scripts.

A.2 Building and starting the system

A.2.1 Building Docker images

From the project root directory, build all service images:

docker compose build

This command reconstructs all Docker images according to the definitions in docker-compose.yml.
Rebuilding is required whenever Dockerfiles or build contexts change.

A.2.2 Launching the environment

Start all services in detached mode:

docker compose up -d

List running services:

110

User Manual

docker compose ps

Stop or tear down the environment:

docker compose stop
docker compose down

A.2.3 Inspecting container status

To confirm correct initialisation:

docker compose logs <service>

Check that all essential components are active.

A.3 Loading strongSwan configuration

Each strongSwan-based component uses swanctl to load IKE/CHILD SA configurations and
credentials via the VICI interface.

A.3.1 Loading configurations and credentials

Run the following inside each strongSwan container:

docker exec <container> swanctl --load-all

A.3.2 Listing available connection profiles

docker exec <container> swanctl --list-conns

This command outputs all configured IKE and CHILD connection definitions, such as legacy-
to-gateway.

A.4 Establishing VPN tunnels

A.4.1 Initiating the IKE SA

As an outbound example, from the host-legacy container, initiate the IKE negotiation:

docker exec host-legacy swanctl --initiate --ike legacy-to-gateway

111

User Manual

A.4.2 Inspecting Security Associations

Check established IKE and CHILD SAs:

docker exec host-legacy swanctl --list-sas
docker exec pep-gateway swanctl --list-sas
docker exec banka swanctl --list-sas

Entries should appear as ESTABLISHED with valid SPI pairs.

A.4.3 Testing connectivity

Verify the encrypted path:

docker exec host-legacy ping -c 4 198.51.100.10

ESP traffic can be inspected using tcpdump or tshark.

A.5 Inspecting logs and OPA decisions

A.5.1 Gateway authorisation logs

The gateway’s ext—-auth module delegates authorisation to OPA. View authorisation events:

docker exec pep-gateway tail -f /var/log/ext-auth.log

A.5.2 Child SA installation logs

strongSwan logs VICI-triggered CHILD SA installations:

docker exec pep-gateway \
grep "VICI initiate" /var/log/vici-child-manager.log

A.5.3 IKE SA denial with vendor-specific notification

To trigger a policy denial from an unauthorised peer, initiate an IKE connection from partnerb
as follows:

docker exec partnerb swanctl --initiate --ike partnerb-responder
In this scenario, the gateway rejects the IKE_AUTH request and returns an additional vendor-

specific notification payload that encodes both the denial reason and the associated security-level
classification.

To inspect the resulting notification on the peer side, run:

docker exec banka sh -c "grep -A5 -B5 A0 01’ \
/var/log/charon.log | grep ’<partnerb-responder|’"

112

User Manual

A.5.4 OPA audit logs

The decision-logger stores all PDP decisions. Logs are available under:

docker exec decision-logger \
tail -f /app/logs/decisions-YYYY-MM-DD.log

A.6 Visualising metrics with Grafana

Grafana is provided for real-time observability. After deployment, access: http://localhost:
3000. The default credentials are admin/pqgw_admin. Import dashboards via:

Dashboards — Import — Upload JSON.

Dashboards display strongSwan metrics, OPA decision statistics and network traffic counters.

A.7 Testing and troubleshooting

A.7.1 Performance Tests

The performance experiments described in this thesis are each associated with a dedicated branch
of the project repository, namely test-classic, test-ike-fragmentation and test-benchmark.
Each branch contains a minimally adapted variant of the system, together with lightweight in-
strumentation and helper scripts, allowing the corresponding test campaigns to be executed in a
controlled and reproducible manner.

test-classic
The experiment is launched with:
bash scripts/simple-ike-comparison.sh

Internally, the script deploys the appropriate swanctl configuration, restarts the relevant con-
tainers, and reloads the strongSwan settings before triggering the handshake. A packet capture
is started on the gateway, and the resulting PCAP is processed with a small Python script that
extracts packet sizes, IKE message types, and IP fragmentation. The outputs from the normal
and childless runs are then compared to quantify time-level and byte-level differences.

test-ike-fragmentation

This branch provides a tailored environment for analysing fragmentation behaviour and per-
phase timing during the IKE exchange. The suite is executed through: ./scripts/capture-
and-analyze-ike.sh pep-gateway gw-wan-out-bankA 198.51.100.2

The script clears existing SAs, initiates a timestamped tshark capture on ports 500/4500,
triggers the handshake, and subsequently parses the PCAP to recover message boundaries, in-
termediate ADDKE exchanges, and precise request/response timings. The output provides fine-
grained measurements of per- phase latency and fragmentation, enabling comparisons between
multi-KEM and single-KEM configurations.

113

User Manual

test-benchmark

The most comprehensive evaluation is conducted in the test-benchmark branch, which correlates
three independent data sources: raw PCAP captures, strongSwan VICI logs, and OPA audit
records. The benchmark is executed using:

./scripts/run-benchmark.sh

The script resets the environment, and based on the level specified in the code, initiates a full
tunnel establishment, captures all on-wire traffic, and records state transitions via VICI while
OPA produces detailed timing reports for IKE and CHILD policy decisions. These heterogeneous
data streams are then aligned to derive end-to-end timing, traffic volume, fragmentation counts,
and policy-evaluation metrics, all of which are stored in structured JSON format for subsequent
analysis.

A.7.2 Rebuilding and cleaning the environment

Rebuild images:

docker compose build --no-cache

Remove containers and volumes:

docker compose down --volumes
docker compose up -d

A.7.3 Diagnosing connection issues
e ensure each strongSwan container has reloaded its configuration via swanctl --load-all;
e inspect /var/log/charon.log for negotiation errors;
e verify that OPA policies authorise the requested connection;

e confirm certificate trust chains and identities match on both peers.

114

Appendix B

Developer’s Reference (Guide

This appendix describes the internal organisation of the thesis prototype from a developer’s stand-
point. It concentrates on the integration between strongSwan and Open Policy Agent in the
pep-gateway, the custom patches applied to strongSwan, and the policy model that governs the
creation and adaptation of tunnels.

The aim of this chapter is to equip a future maintainer with sufficient detail to understand
where and how authorisation decisions are enforced, extend the deployment with additional legacy
hosts or external peers, adjust the security levels and cryptographic algorithms enforced by the
gateway and keep the local patches aligned with upstream strongSwan.

B.1 strongSwan—OPA integration

The policy enforcement point is realised in the pep-gateway container. From the perspective of
strongSwan, the integration is built on three main elements:

1. a patched instance of the ext_auth plugin in strongSwan, implemented in src/libcharon/
plugins/ext_auth/ext_auth listener.c;

2. an helper, opa-check-auth, which bridges IKEv2’s execution environment with the PDP;

3. auxiliary scripts and services inside pep-gateway (e.g. vici-child-manager and the updown
hooks) that implement tunnel provisioning and re-provisioning according to OPA’s decisions.

B.2 strongSwan ext_auth patch
B.2.1 File location and high-level responsibilities
The core of the C-level integration resides in the modified ext_auth_listener implementation:

e file: src/libcharon/plugins/ext_auth/ext_auth_listener.c;

e plugin: ext_auth, loaded by the IKE daemon charon.

The initial part of the patch extends the include set and introduces a small in-memory structure
used to record pending OPA hints, indexed by the IKE unique_id:

Listing B.1. Additional includes and hint entry definition in ext_auth_listener.c
#include <stdlib.h>

115

Developer’s Reference Guide

#include <fcntl.h>
#include <string.h>
#include <ctype.h>

#include <utils/chunk.h>

#include <utils/enum.h>

#include <collections/linked_list.h>
#include <threading/mutex.h>

#include <encoding/message.h>
#include <crypto/proposal/proposal.h>
#include <crypto/transform.h>
#include <crypto/prfs/prf.h>

#include <crypto/key_exchange.h>
#include <credentials/certificates/certificate.h>
#include <credentials/auth_cfg.h>

typedef struct {
uint32_t unique_id;
char *required_ke;
bool pending_notify;
} hint_entry_t;

#define NOTIFY_REQUIRED_LEVEL 0xA001
typedef struct private_ext_auth_listener_t private_ext_auth_listener_t;

struct private_ext_auth_listener_t {
ext_auth_listener_t public;

/** Path to authorization program */
char *script;

/** Pending hints (hint_entry_t*) keyed by ike unique_id */
linked_list_t *hints;

/** Protect access to hints */
mutex_t *mutex;

};

The hints list keeps, for each IKE_SA (identified by unique_id), the pending required level
value received from OPA and a boolean flag pending notify which is later consulted when
deciding whether to attach a custom NOTIFY payload to the outbound IKE_AUTH.

Regarding the peer certificate extraction, the helper function acquire_peer_cert() iterates
over the current auth_cfg chain to retrieve the peer’s end-entity certificate, which is then exported
both inline (as PEM in an environment variable) and via a temporary file:

Listing B.2. Peer certificate acquisition from the current auth round

static certificate_t* acquire_peer_cert(ike_sa_t *ike_sa)
{

enumerator_t *enumerator;

auth_cfg_t *cfg;

certificate_t *cert = NULL;

enumerator = ike_sa->create_auth_cfg_enumerator(ike_sa, FALSE);
if (!'enumerator)

{
116

Developer’s Reference Guide

return NULL;

}
while (enumerator->enumerate(enumerator, &cfg))
{
cert = cfg->get(cfg, AUTH_RULE_SUBJECT_CERT);
if (cert)
{
break;
}
}

enumerator->destroy (enumerator) ;
return cert;

Later in the authorisation path, this certificate is encoded as PEM and exposed to the external
script:

Listing B.3. Exporting the peer certificate to the environment and a temporary file
peer_cert = acquire_peer_cert(ike_sa);

if (peer_cert && peer_cert->get_encoding(peer_cert, CERT_PEM, &pem))
{

push_env(envp, countof (envp), "PLUTO_PEER_CERT_PEM=),.*s",
(int)pem.len, pem.ptr);

char template[] = "/tmp/ext-auth-peer-XXXXXX.pem";

int fd = mkstemp(template);

if (fd >= 0)
{
ssize_t written = write(fd, pem.ptr, pem.len);
close(fd);
if (written == (ssize_t)pem.len)
{

push_env(envp, countof(envp), "PLUTO_PEER_CERT=Ys", template);
tmp_cert_path = strdup(template);

}
else
{
unlink(template);
}

}
chunk_free (&pem) ;

The variables PLUTO_PEER_CERT_PEM and PLUTO_PEER _CERT are then consumed by opa-check-
auth, which embed the certificate into the JSON input passed to the PDP.

Moreover, the patch also enriches the authorisation environment with detailed information on

the negotiated algorithms. This information is derived from the proposal_t associated with the
IKE_SA:

Listing B.4. Exporting negotiated PRF and key exchange methods

proposal = ike_sa->get_proposal(ike_sa);
if (proposal)
{

u_int idx;
uintl6_t alg = 0, key_size = 0;
const char *name;

117

Developer’s Reference Guide

if (proposal->get_algorithm(proposal, PSEUDO_RANDOM_FUNCTION,
&alg, &key_size))

{
(void)key_size;
name = enum_to_name (pseudo_random_function_names, alg);
if (name && *name)
{
push_env(envp, countof(envp), "PLUTO_IKE_PRF=Js", name);
}
}

if (proposal->get_algorithm(proposal, KEY_EXCHANGE_METHOD,
&alg, &key_size))

{
(void)key_size;
name = enum_to_name (key_exchange_method_names, alg);
if (name && *name)
{
push_env(envp, countof(envp), "PLUTO_IKE_DH=Ys", name);
}
}
for (idx = 0; idx < 3; idx++)
{

transform_type_t type = ADDITIONAL_KEY_EXCHANGE_1 + idx;
if (proposal->get_algorithm(proposal, type, &alg, &key_size))
{

(void)key_size;

name = enum_to_name (key_exchange_method_names, alg);

if (name && *name)

{

push_env(envp, countof (envp),
"PLUTO_IKE_KEY%d=%s", idx + 1, name);

Consequently, each authorisation decision receives an environment containing:

e IKE identities (IKE_LOCAL_ID, IKE_REMOTE_ID);
e the negotiated PRF (PLUTO_IKE_PRF);
e the negotiated key exchange / DH group (PLUTO_IKE DH);

e up to three additional key exchange identifiers (PLUTO_IKE KE1, PLUTO_IKE KE2, PLUTO_
IKE KE3);

e the peer certificate in PEM form.

Informations used by OPA to compute the security level, as described in the policy modules.

B.2.2 OPA hints and REQUIRED LEVEL notify

The exchange between OPA and the gateway is intentionally richer than a simple boolean allow/-
deny outcome. The helper script may also emit an ”OPA hint” indicating the required level for
a given IKE_SA. The patched ext_auth listener parses this hint and stores it in a hint_entry_t
structure:

Listing B.5. Parsing OPA hints from the helper script

118

Developer’s Reference Guide

char *hint = strstr(resp, "OPA_HINT");
if (hint)
{
uint32_t hint_id = O;
hint_level[0] = ’\0’;
if (sscanf(hint, "OPA_HINT unique_id=%u required_ke=J31s",
&hint_id, hint_level) >= 2)

{
DBG1(DBG_CHD, "ext-auth: parsed OPA hint unique_id=%u (local=Yu) level
’%S,",
hint_id, unique_id, hint_level);
if (hint_id == unique_id)
{
DBG1(DBG_CHD, "ext-auth: parsed hint for IKE_SA %u (hint=Y%u) level
J%SJII’
unique_id, hint_id, hint_level);
store_required_ke(this, hint_id, hint_level);
}
}

If the script returns a failure code (i.e. the policy engine rejects the current level), the listener

marks the hint as pending and defers the actual notification to the next outbound IKE_AUTH
message:

Listing B.6. Scheduling and attaching the REQUIRED_LEVEL notify
if (*success)

{
clear_hint(this, unique_id);
}
else
{
set_pending_notify(this, unique_id, TRUE);
}
/* ... x/

METHOD (listener_t, message, bool,
private_ext_auth_listener_t *this, ike_sa_t *ike_sa, message_t *message,
bool incoming, bool plain)

uint32_t unique_id = ike_sa->get_unique_id(ike_sa);

if (!plain)
{

return TRUE;
}

if (incoming && message->get_exchange_type(message) == IKE_AUTH)

{
/* incoming REQUIRED_LEVEL notify: store the required level */
notify_payload_t #*notify = message->get_notify(message,

NOTIFY_REQUIRED_LEVEL) ;

/* parse value and call store_required_ke(...) */
/% .. %/
return TRUE;

119

Developer’s Reference Guide

}

if (!incoming && message->get_exchange_type(message) == IKE_AUTH)
{

hint_entry_t *entry;

this->mutex->lock(this->mutex) ;
entry = find_hint(this, unique_id);

if (entry && entry->pending notify && entry->required_ke &&
entry->required_ke[0])

{
chunk_t payload = chunk_create(entry->required_ke,
strlen(entry->required_ke));
DBG1(DBG_CHD, "ext-auth: attaching required level ’%s’ for IKE_SA
u",
entry->required_ke, unique_id) ;
message->add_notify(message, FALSE,
NOTIFY_REQUIRED_LEVEL, payload);
this->hints->remove (this->hints, entry, NULL);
this->mutex->unlock(this->mutex) ;
destroy_hint_entry(entry);
return TRUE;
}

this->mutex->unlock (this->mutex) ;
}
return TRUE;

The constructor for the ext_auth listener is extended to allocate and initialise both the hint
list and its mutex:

Listing B.7. Listener creation with hint list initialization

METHOD (ext_auth_listener_t, create, ext_auth_listener_tx,
char *script)

{
private_ext_auth_listener_t *this;
INIT(this,
.public = {
.listener = {
.authorize = _authorize,
.message = _message,
},
.destroy = _destroy,
},

.script = script,
.hints = linked_list_create(),
.mutex = mutex_create (MUTEX_TYPE_DEFAULT),

)
if (!this->hints || !this->mutex)
{
if (this->hints)
{
this->hints->destroy(this->hints);
}

120

Developer’s Reference Guide

if (this->mutex)

{

this->mutex->destroy(this->mutex) ;
}
free(this);

return NULL;

return &this->public;

The corresponding destroy method is responsible for releasing any remaining hint entries and
deallocating the synchronisation primitives.

B.3 opa-check-auth and helper scripts

B.3.1 Authorisation script interface

The opa-check-auth script is called by ext_auth with the environment described above. From
a developer’s viewpoint, the essential contract is:

e exit code 0 = authorisation granted;

e non-zero exit code = authorisation denied;

e optional diagnostic and hint lines printed on stdout, for example:

Listing B.8. Example output from opa-check-auth

OPA_DECISION allow=true level="L2"
OPA_HINT unique_id=42 required_ke=L3 required_sig=L2

The OPA_HINT line is parsed by the ext_auth patch as shown in Listing B.5, eventually leading
to a REQUIRED_LEVEL notify being attached to an outbound IKE_AUTH.

B.4 Connection naming and tunnel provisioning

B.4.1 Naming conventions for connections and hosts

To simplify routing and provisioning logic, connection names in the strongSwan configuration
are chosen with specific semantics rather than arbitrarily. The project adopts the following
conventions:

e connections between the legacy host and the gateway explicitly contain the string "legacy"
in their name;

e connections between the gateway and external peers explicitly encode the direction using
suffixes such as "outbound" or "inbound".

These conventions are consumed by:

e the tunnel-provisioning logic, which use this information, and also the knowledge of the
traffic selectors, to understand that, there is an opening for an outbound connection from
the legacy subnet and provide a ”just-in-time” post-quantum tunnel counterpart;

121

Developer’s Reference Guide

e the policy layer, which use this information as additional helper to map connection names
and peer identifiers to service classes and security levels.

Moreover, thanks to this technique, due to encoding semantic information directly into con-
nection names (e.g. legacy vs. peer, inbound vs. outbound), the provisioning logic avoids relying
exclusively on IP addressing to determine the role and direction of each tunnel.

B.5 OPA policy modules

The core IKE establishment policy logic is expressed in four Rego modules under the ike names-
pace:

e ike.service_classes (service_classes.rego);

e ike.establishment (ike_establishment.rego);

e ike.child templates (child_templates.rego);

e ike.certificates (certificate_validation.rego).

Collectively, these modules:

—

. classify internal subnets and external partners into service classes;
2. define the required IKE key exchange level (KE-Lx) for each internal-external pair;
3. choose the appropriate CHILD_SA template;

4. validate the peer certificate according to post-quantum signature and public-key require-
ments.

B.5.1 service_classes.rego

The module ike.service_classes defines a declarative mapping from IP prefixes and peers to
service classes and cryptographic requirements:

Listing B.9. Top-level mapping in service_classes.rego

package ike.service_classes

import rego.vl

INTERNAL SERVICE CLASSES - Subnet-based Classification
internal_service_classes := {

"legacy_internal": {
"subnet": "10.200.0.0/24",

"security_profile": "legacy",
"crypto_capabilities": ["RSA-2048", "ECDH-P256", "ECDSA-P256"],
"description": "Internal legacy hosts using traditional cryptography",
+s
b
external _partner_classes := {
"bankA": {

"subnets": ["198.51.100.10/32"],
122

Developer’s Reference Guide

"service_type": "payments",

"min_ke_level": "KE-L3",

"min_sig_level": "SIG-L3",

"min_pubkey_level": "SIG-L3",

"allowed_issuers": {
"C=CH, 0=Cyber, CN=Cyber Root CA",
"0=PQ-Gateway Lab, CN=PQ-Gateway IKE CA PQ",

3,

"description": "External bank A (payments, high assurance)"

Instead of listing every internal host explicitly, internal classes are defined at the level of
subnets (for instance, 10.200.0.0/24 for legacy systems). For each external partner (e.g. bankA,
partnerB, opsC) then specifies:

e one or more IP prefixes;
e a service_type (for example payments, erp, hr);
e minimum levels min ke _level, min_sig level, min_pubkey_level;

e a set of allowed_issuers (distinguished names of trusted CAs).

B.5.2 ike_establishment.rego

The ike.establishment module is the main decision point. It imports the other rego modules,
to enrich the decision, maintain modularity and fast changes.

Listing B.10. Imports in ike_establishment.rego

package ike.establishment

import rego.vl

import data.ike.certificates
import data.ike.child_templates
import data.ike.peer_mapping
import data.ike.service_classes

Mapping IKE suites to KE levels For each IKE_SA, a canonical string representing the full
suite is constructed and used as a key into the ke_suites mapping:

Listing B.11. KE suite mapping in ike_establishment.rego

Each KE level is defined by EXACT suite combinations, not individual
algorithms

ke_suites := {
KE-L1 Suites (NIST Level 1 - HR, low-sensitivity)
"aes128gcm16-sha256-ecp256-mlkem512-none-none": "KE-L1",
"aes128gcm16-sha256-modp2048-mlkem512-none-none": "KE-L1",

KE-L2 Suites (NIST Level 3 - ERP, moderate)
"aes192gcm16-sha384-ecp256-mlkem768-none-none": "KE-L2",

123

Developer’s Reference Guide

"aes192gcm16-sha384-ecp384-mlkem768-none-none": "KE-L2",
"aes192gcm16-sha384-x25519-mlkem768-none-none": "KE-L2",

KE-L3 Suites (NIST Level 3+ - Payments, enhanced classic)
"aes256gcml6-shab12-ecp384-mlkem768-none-none": "KE-L3",
"aes256gcml6-shab12-ecp521-mlkem768-none-none": "KE-L3",

A specific helper function, build suite_string(input.ike), then concatenates the negoti-
ated algorithms into the string used to query ke_suites, leading to the achieved level, ke_achieved.

Partner-specific templates For each partner and level, fully specified templates are provided.

Listing B.12. Example inbound template for partnerB

responder_templates := {
"partnerB": {
"KE-L2": {
"name": "inbound-legacy-erp-L2",

"local_ts": "10.200.0.0/24",

"remote_ts": "198.51.100.11/32",

"child_level": "CHILD-L2",

"esp_proposals": child_security_levels["CHILD-L2"].esp_proposals,
"rekey_time": "90s",

"reqid": 103,
"start_action": "none",
"updown": "/usr/local/sbin/updown-verifier.sh",
"description": "PartnerB inbound ERP tunnel (L2 security)",
T,
"KE-L3": {
"name": "inbound-legacy-erp-L3",
T,

1,

This architecture permits the introduction of additional partners or child levels without re-
quiring alterations to the overall template configuration, hence enabling modifications to minor
components without compromising the integrity of the whole system.

B.5.3 certificate_validation.rego

The ike.certificates module encodes the post-quantum requirements for X.509 certificates
used during IKE exchanges.

The module defines mappings from OIDs to signature and public-key algorithms and their
base levels:

Listing B.13. Example OID — algorithm/level mapping

sig_alg_base_level := {
Pure ML-DSA (NIST standardized)
"mldsa44": "SIG-L1",
"mldsa65": "SIG-L2",

124

Developer’s Reference Guide

"mldsa87": "SIG-L3",

ML-DSA44 composites (NIST Level 2 - HR, low-sensitivity)
"mldsa44-rsa2048-pss-sha2566": "SIG-L1",
"mldsa44-rsa2048-pkcs15-sha256": "SIG-L1",
"mldsa44-ecdsa-p256-sha256": "SIG-L1",
"mldsa44-ed25519-shab12": "SIG-L1-SUF",

}

sig_level_hierarchy := {
"SIG-LO": O,
"SIG-Li": 1,
"SIG-L1-SUF": 2,
"SIG-L2": 3,
"SIG-L3": 4,

"SIG-L3-SUF": 5,

The functions get_sig alg(oid) and get_pubkey_alg(oid) map the OIDs present in the
certificate to canonical algorithm names.

Per-peer requirements (minimum signature and public-key levels) are derived from the previ-
ously described entries in service_classes.external partner_classes. The module exposes,
among others, the following helper:

Listing B.14. Peer requirements in certificate_validation.rego

get_cert_requirements(peer_name) := reqs if {
partner := service_classes.external_partner_classes [peer_name]
regs := {

"min_sig_level": partner.min_sig_level,
"min_pubkey_level": partner.min_pubkey_level,
"allowed_issuers": partner.allowed_issuers,

Evolving the security model To adjust the ordering of levels or the algorithms associated
with each level, it is sufficient to update:

e ke _suites and the KE level associations in ike_establishment.rego;
e child security_levels and ke_to_child level in child templates.rego;

e sig alg base_level, pubkey_base_level and sig-level _hierarchyin certificate_val.rego.

The base policy logic that combines these levels remains unchanged. Only the configuration
tables are modified, keeping the system extensible and relatively easy to maintain. This makes it
possible to refine the security profile (e.g. by deprecating an algorithm or promoting a stronger
suite) without touching the strongSwan patch or the control-plane scripts.

B.6 Applying patches and extending the system

B.6.1 Patch directory in pep-gateway

The pep-gateway container includes an internal patches directory which holds all modifications
applied on top of the upstream strongSwan sources.

125

Developer’s Reference Guide

During the Docker image build process, these patches are applied to the strongSwan source
tree before compilation.

To introduce a new C-level modification (e.g. extending the notifier behaviour or adjusting
the exported environment), the recommended workflow is:

1. locate the source file to be modified within the container build context;
2. copy it to a ”_mod” variant, apply the desired edits, and generate a unified diff;
3. store the resulting patch under pep-gateway/patches;

4. rebuild the Docker image so that the patch is applied during the build.
A generic pattern is:

Listing B.15. Generic patch creation workflow

cd /tmp

git clone --depth 1 --branch 6.0.0beta6 \
https://github.com/strongswan/strongswan.git

cd strongswan

cp src/libcharon/plugins/ext_auth/ext_auth_listener.c \
src/libcharon/plugins/ext_auth/ext_auth_listener_mod.c

Apply your modifications to ext_auth_listener_mod.c
diff -Naur \
src/libcharon/plugins/ext_auth/ext_auth_listener.c \

src/libcharon/plugins/ext_auth/ext_auth_listener_mod.c \
> ext-auth-listener.patch

mv ext-auth-listener.patch /path/to/pep-gateway/patches/
cd /tmp && rm -rf strongswan
rebuild the Docker image to apply the patch

cd /path/to/pep-gateway
docker build -t pep-gateway

B.6.2 Adding new connections and hosts

From a configuration perspective, adding a new legacy subnet or external peer involves:

1. defining the connection in strongSwan, be compliant to the naming conventions;
2. updating service_classes.rego to:

e register the new legacy subnet or partner;
e configure its default and permissible security levels;

e optionally define per-subnet and per-partner requirements.

126

	List of Figures
	List of Tables
	Introduction
	Quantum technology and cybersecurity
	Quantum computing: principles, promise and practical limits
	The quantum threat to cryptography
	X-Keyscore: a real-world example of data harvesting

	Quantum impact on current technologies
	Shor's algorithm
	Grover's algorithm
	Cryptographic schemes affected

	Migration to a quantum-safe state
	Migration challenges
	Cryptographic agility
	Hybrid schemes

	Post-Quantum Cryptography
	Post-Quantum families
	NIST selected algorithms

	Internet Protocol Security (IPsec)
	IPsec architecture
	Security Association (SA)
	Processing model for IPsec packets
	Operating modes
	Transport mode
	Tunnel mode

	Protection mechanisms
	Authentication Header (AH)
	Encapsulating Security Payload (ESP)

	IPsec (partial) replay protection
	Mode of use
	End-to-end security
	Basic VPN (site-to-site)
	End-to-end security with basic VPN
	Secure gateway
	Secure remote access

	IPsec version 3
	Key management
	Internet Key Exchange (IKEv1)
	Internet Key Exchange (IKEv2)
	Intermediate Exchange and Additional Key Exchanges

	StrongSwan
	Daemon and modular architecture
	Out-of-band control: VICI and swanctl
	Configuration files and directory layout

	Open Policy Agent
	Design
	Philosophy
	The document model

	Policy Language
	Rego at a glance
	Values and collections
	Variables and references
	Comprehensions
	Rule styles
	Functions
	Negation and universal quantification
	Built-ins and error handling

	Control and management
	Deployment models
	Management APIs

	Deployment
	Deploying OPA with Docker

	Post-Quantum IPsec Gateway: design
	Architectures evaluation
	A Minimalist Approach to Hybrid Key Exchange

	IKE-less IPsec
	Industry solutions
	The proposed solution
	Policy Enforcement Point
	Policy Decision Point
	Modularity and maintenance
	Decision logger
	Metrics and dashboards

	Post-Quantum IPsec Gateway: implementation
	Network topology
	StrongSwan modifications
	ext-auth plugin script: opa-auth-check.py
	Child manager: vici-child-manager.py
	Tunnel provisioner
	Legacy subnet implementation
	External post-quantum safe peers

	The PDP implementation
	Policies structure
	service_classes.rego
	ike_establishment.rego
	child_templates.rego
	Auxiliary validation modules
	Policy network services

	Test
	Testbed
	Functional tests
	IKE SA establishment
	IKE SA establishment denial due to insufficient security level
	Child SA installation
	Child ex-post validation
	Rekey validation gate

	Performance tests
	Unauthenticated multi-KEM overhead in IKE establishment
	Legacy IKE establishment: normal versus childless mode
	Policy evaluation timing analysis
	Comprehensive evaluation across security levels

	Conclusions
	Bibliography
	User Manual
	System setup
	Software prerequisites

	Building and starting the system
	Building Docker images
	Launching the environment
	Inspecting container status

	Loading strongSwan configuration
	Loading configurations and credentials
	Listing available connection profiles

	Establishing VPN tunnels
	Initiating the IKE SA
	Inspecting Security Associations
	Testing connectivity

	Inspecting logs and OPA decisions
	Gateway authorisation logs
	Child SA installation logs
	IKE SA denial with vendor-specific notification
	OPA audit logs

	Visualising metrics with Grafana
	Testing and troubleshooting
	Performance Tests
	Rebuilding and cleaning the environment
	Diagnosing connection issues

	Developer's Reference Guide
	strongSwan–OPA integration
	strongSwan ext_auth patch
	File location and high-level responsibilities
	OPA hints and REQUIRED_LEVEL notify

	opa-check-auth and helper scripts
	Authorisation script interface

	Connection naming and tunnel provisioning
	Naming conventions for connections and hosts

	OPA policy modules
	service_classes.rego
	ike_establishment.rego
	certificate_validation.rego

	Applying patches and extending the system
	Patch directory in pep-gateway
	Adding new connections and hosts

