{

\\
\\ 1859 s

\\.\ %d‘

POLITECNICO DI TORINO

Master’s degree course in Cybersecurity

Master’s Degree Thesis

Post-Quantum IPsec Gateway: Policy
Enforcement Point

Supervisors
Prof. Antonio Lioy
Dott. Flavio Ciravegna

Candidate
Leonardo RIZZO

ACADEMIC YEAR 2024-2025

Summary

The emergence of large-scale quantum computing poses a significant threat to the Public Key
Infrastructure (PKI) that secures modern communications. Protocols such as Internet Protocol
Security (IPsec), which rely on Internet Key Exchange version 2 (IKEv2) for key establishment,
are fundamentally vulnerable to Shor’s algorithm. This vulnerability creates an immediate Har-
vest Now, Decrypt Later (HNDL) attack vector, where encrypted data harvested today can be
retrospectively decrypted once a sufficiently powerful quantum computer is available.

While the National Institute of Standards and Technology (NIST) Post-Quantum Cryptogra-
phy (PQC) standardisation process has produced new quantum-resistant algorithms, a simple “rip
and replace“ migration strategy is untenable. The volatility of new cryptographic assumptions,
exemplified by the catastrophic failure of SIKE and the practical threat of implementation-specific
Side-Channel Attacks (SCAs), demands a new architectural paradigm: cryptographic agility.

This thesis presents the design, implementation, and evaluation of a PQC-Agile IPsec Gateway.
The core contribution is a novel architecture that decouples cryptographic policy enforcement
from the protocol’s core logic. The solution leverages strongSwan as a high-performance Policy
Enforcement Point (PEP) and Open Policy Agent (OPA) as a centralised, declarative Policy
Decision Point (PDP).

The strongSwan ext-auth plugin is modified and patched to intercept IKEv2 negotiations,
gathering the peer’s cryptographic proposal and certificate metadata. This context is sent as a
structured JSON query to the OPA engine, which evaluates it against fine-grained Rego policies.
These policies enforce minimum security levels (KE and SIG) and validate a diverse cryptographic
portfolio-including Module-Lattice-Based Key-Encapsulation Mechanism (ML-KEM), Module-
Lattice-Based Digital Signature Algorithm (ML-DSA), Bit-Flipping Key Encapsulation (BIKE),
and Hamming Quasi-Cyclic (HQC), to provide resilience against the failure of a single algorithm
family.

Policy decisions are applied through asynchronous helper services, using strongSwan’s VICI
interface to manage the Child Security Association (CHILDSA) lifecycle.

The result is a resilient and operationally flexible gateway that supports auditable and incre-
mental migration to PQC. Administrators can dynamically update cryptographic policy, disable
compromised algorithms, or enforce hybrid deployments in real time, without service interruption
or gateway redeployment.

Acknowledgements

This thesis project was conducted in collaboration with my colleague, Simone Sambataro.

Contents

1 Introduction

1.1
1.2
1.3
1.4

The Dawn of the Quantum Threat
The “Harvest Now, Decrypt Later” Urgency
Problem Statement and Thesis Goal

Thesis Structure e

2 State of the Art

2.1

2.2

2.3

2.4

3.1

3.2

The Post-Quantum Cryptography Landscape
2.1.1 The Quantum Threat and Foundational Algorithms
2.1.2 The NIST PQC Standardization Process.
2.1.3 Foundations of Key Cryptographic Families
2.1.4 The Challenge of a Post-Quantum PKI
2.1.5 The Need for Crypto-Agility
Securing Networks with IPsec and IKEv2
2.2.1 The IPsec Protocol Suite: Data Plane
2.2.2 IKEv2 Protocol (RFC 7296)
2.2.3 Integrating PQC into IKEv2 0.
Enabling Technologies and Architectures
2.3.1 strongSwan: The Chosen IPsec Platform
2.3.2 Open Quantum Safe (OQS): PQC Algorithm Integration
2.3.3 Policy-Based Control Architectures and Engines
Performance of PQC in IKEv2: A Literature Review

Design of the PQC-Agile Gateway

From Requirements to Design Principles
3.1.1 Security Objectives e
3.1.2 Functional Scope
3.1.3 Operational Constraints
Logical Architecture L
3.2.1 Component Overview

3.2.2 Interaction View e e e

10
10

11
11
11
13
15
16
17
19
19
21
23
29
29
31
33
35

3.2.3 Trust and Threat Posture, 42

3.3 Crypto-Agility Strategy 43
3.3.1 Algorithm Portfolio and Hybrid Policy Intent 43
3.3.2 Policy Segmentation 44
3.3.3 Decision Table Examples o 0oL 44

3.4 Control Plane Design e 45
3.4.1 Ext-auth Integration Blueprint 45
3.4.2 Runtime Data Extraction and Policy Request 46
3.4.3 Policy Decision Cycle and Enforcement 47
3.4.4 Failure Modes and Resilience L. 48

3.5 Data Plane and SA Layout 48
3.5.1 Naming and Traffic Selector Strategy 48
3.5.2 Rekey and Lifetime Policy 49
3.5.3 Observability and Audit Trail 0. 49

3.6 Design Summary and Traceability L oL 50

Implementation 52

4.1 TImplementation Overview L e 52
4.1.1 Compose Stack and Runtime Topology 52
4.1.2 Control-plane automation 53
4.1.3 Bootstrap order and dependencies 54

4.2 Gateway Build and Bootstrap Lo o 55
4.2.1 Dockerfile pipeline 55
4.2.2 startup.sh responsibilities oo o000 55

4.3 Data-plane Configuration L o 55
4.3.1 Gateway templates and naming discipline 56
4.3.2 Partner endpoint configuration Lo o L. 56
4.3.3 Selector symmetry and routing glue oL 56
4.3.4 Policy and decision-store integration 0oL 56

4.4 Policy, CTI, and Decision Store i 57
4.4.1 Rego modules and service mapping oL 57
4.4.2 CTI bundle distribution and verification 57
4.4.3 Decision store layout L oL o 58

4.5 Vendor notifier patch (0xA001) 58
4.5.1 Listener data structures and initialisation 58
4.5.2 Environment enrichment and hint capture 58
4.5.3 Message hook and payload injection L. 59
4.5.4 Log signals and troubleshooting 0. 59

4.6 Observability and Monitoring L 60
4.6.1 Decision-logger service L L L 60
4.6.2 Prometheus and Grafana wiring oL Lo 60
4.6.3 Gateway logs and audit trail L oo 61

5 Test
5.1
5.2

5.3

Testbed
Functional tests L
5.2.1 IKE SA establishment,
5.2.2 IKE SA establishment denial due to insufficient security level
5.2.3 Child SA installation
5.2.4 Child ex-post validation
5.2.5 Rekey validation gate Lo oL
Performance testso
5.3.1 Unauthenticated multi-KEM overhead in IKE establishment
5.3.2 Legacy IKE establishment: normal versus childless mode
5.3.3 Policy evaluation timing analysis 0L

5.3.4 Comprehensive evaluation across security levels

6 Conclusion

Bibliography

A User Manual

Al

A2

A3

A4

Ab

A6
AT

System setup
A.1.1 Software prerequisites
Building and starting the system o oo
A.2.1 Building Docker images L L
A.2.2 Launching the environment
A.2.3 Inspecting container status L oo
Loading strongSwan configuration 0oL
A.3.1 Loading configurations and credentials
A.3.2 Listing available connection profiles
Establishing VPN tunnels o
A.4.1 Initiating the IKE SA
A.4.2 Inspecting Security Associations L.
A.4.3 Testing connectivity
Inspecting logs and OPA decisions 0.
A.5.1 Gateway authorisation logs L
A.5.2 Child SA installation logs L o oo
A5.3 OPA auditlogs
Visualising metrics with Grafana 0oL 0L
Testing and troubleshootingo oo
A.7.1 Performance Tests
A.7.2 Rebuilding and cleaning the environment

A.7.3 Diagnosing connection issueso

62
62
62
63
64
65
67
69
69
70
71
72
73

76

78

B Developer’s Reference Guide 87

B.1
B.2

B.3

B.4

B.5

B.6

strongSwan—OPA integration L L L 87
strongSwan ext_auth patch 87
B.2.1 File location and high-level responsibilities 87
B.2.2 OPA hints and REQUIRED_LEVEL notify 90
opa-check-auth and helper scripts Lo o L 93
B.3.1 Authorisation script interface o L. 93
Connection naming and tunnel provisioning 93
B.4.1 Naming conventions for connections and hosts 93
OPA policy modules 94
B.5.1 service_classes.rego 94
B.5.2 ike_establishment.rego 95
B.5.3 certificate_validation.rego 96
Applying patches and extending the system 98
B.6.1 Patch directory in pep-gateway 98
B.6.2 Adding new connections and hosts oL 98

Chapter 1

Introduction

1.1 The Dawn of the Quantum Threat

The fabric of modern digital security is woven from complex mathematical problems, long believed
to be intractable for classical computers. Our entire ecosystem of secure communication, ranging
from the protocols that protect web traffic, such as Transport Layer Security (TLS), to the digital
signatures that verify software and the Virtual Private Networks (VPNs) that secures corporate
access, is built upon this foundation [1]. Specifically, the security guarantees of most contemporary
Public-Key Cryptography (PKC) systems, including industry cornerstones like RSA and Elliptic-
Curve Cryptography (ECC), depend directly on the computational difficulty of two core problems:
integer factorisation and the discrete logarithm problem, respectively. The asymmetric nature of
these problems, where they are easy to compute in one direction but extremely difficult to reverse,
has provided robust assurance of data confidentiality, integrity, and authenticity for decades.

This long-standing security paradigm, however, is facing an existential challenge. The emer-
gence of quantum computing marks a fundamental shift in computational power. Unlike classical
bits, which exist as either a 0 or a 1, a quantum bit (or ’qubit’) can leverage the quantum-
mechanical principles of superposition and entanglement to represent multiple states simultane-
ously. This capability allows a quantum computer to perform parallel computations on a massive
scale, moving certain types of problems from the realm of the computationally intractable to the
feasible [2].

This is not merely a theoretical exercise. In 1994, a seminal paper by Peter Shor demonstrated
an algorithm that, if run on a sufficiently large-scale and stable quantum computer, could solve
both integer factorisation and the discrete logarithm problem in polynomial time [3]. The impli-
cations of this discovery are profound: a machine capable of executing Shor’s algorithm would
render the vast majority of our current public-key infrastructure obsolete. Security guarantees
that would take a classical computer millennia to break could be compromised in a matter of
hours or days.

1.2 The “Harvest Now, Decrypt Later” Urgency

While the precise timeline for the construction of such a ’cryptographically relevant’ quantum
computer remains a subject of intense debate, the threat possesses an urgency that is independent
of that timeline. This urgency is defined by the HNDL attack vector [4]. In this scenario, an
adversary can intercept and store large volumes of currently encrypted data today. Even if this
data is protected by strong, classical cryptography, the adversary can simply hold it, waiting for
the day a viable quantum computer becomes available. At that point, they can retrospectively
decrypt years’ worth of sensitive, captured information [1].

This HNDL threat model creates an immediate and critical problem for any infrastructure
that protects long-lived, sensitive information. Government communications, corporate intellec-
tual property, medical records, and critical infrastructure commands, all of which are frequently

9

Introduction

secured by VPN tunnels, are prime targets. Data that must remain confidential for 10, 20, or 50
years is already at risk of being harvested.

1.3 Problem Statement and Thesis Goal

This specific vulnerability directly impacts the core protocols of modern secure networking. The
IPsec protocol suite, which forms the backbone of most VPNs, relies on the IKEv2 protocol for
key exchange and mutual authentication. These IKEv2 negotiations were designed around ECC
and RSA-based mechanisms and are therefore fundamentally vulnerable to both Shor’s algorithm
and the HNDL attack scenario. It is consequently imperative to begin migrating these critical
network gateways to quantum-resistant standards.

However, a simple “rip and replace” migration is not a viable strategy. The PQC landscape
is still in flux; the NIST standardisation process is ongoing, new algorithms are being finalised,
but existing ones may yet be found to have weaknesses or performance issues. This uncertainty
demands a more sophisticated, flexible, and forward-looking approach.

The goal of this thesis is therefore to design, implement, and evaluate a Post-Quantum
Crypto-Agile Gateway. This solution aims to provide a robust IPsec endpoint, based on the
well-regarded strongSwan platform, that not only implements emerging PQC algorithms but also
possesses the agility to adapt to changing cryptographic standards dynamically. This agility will
be achieved by externalising cryptographic policy decisions from the gateway’s core logic to a
dedicated, centralised policy engine. This architecture allows administrators to enforce granular
rules (e.g., mandating PQC for high-security users, permitting classical algorithms for legacy
clients, or immediately disabling a newly compromised algorithm) without service disruption or
complex reconfiguration of the gateway itself.

1.4 Thesis Structure

To achieve this goal, this thesis is structured as follows. Chapter 2 provides a comprehensive review
of the background and state of the art. It covers the PQC landscape and the NIST standardisation
process, delves into the IPsec and IKEv2 protocols and their new PQC-related extensions, and
introduces the key technologies used in our solution, such as the strongSwan platform and the
OPA. Chapter 3 (insert ref here) details the architectural design of our proposed crypto-agile
gateway, focusing on the separation of concerns and the interaction between the PEP and PDP
components. Chapter 4 (insert ref here) presents the practical implementation of the system,
detailing configuration, policy-writing, and the validation of key use cases. This chapter also
includes a quantitative analysis of the system’s performance, specifically focusing on connection
latency and policy-decision overhead. Finally, Chapter 5 (insert ref here) concludes the thesis by
summarising the results achieved, discussing the limitations of the current work, and proposing
potential avenues for future research and development.

10

Chapter 2

State of the Art

As introduced in the previous chapter, the emergence of quantum computing threatens to render
the entire infrastructure of modern cryptographic security obsolete. To fully comprehend the
nature of this threat and, consequently, the foundations of PQC, it is essential to analyse not only
the cryptographic protocols themselves but also the quantum algorithms that undermine their
security. This chapter analyses the state of the art of the technologies fundamental to this thesis.

We begin by establishing the quantum threat landscape, before moving to the networking
technologies (IPsec) and software platforms (strongSwan, OPA) that form the basis of our solution.

2.1 The Post-Quantum Cryptography Landscape

The field of PQC was not born in a vacuum; it is a direct and necessary response to the capa-
bilities demonstrated, at least theoretically, by quantum algorithms. The quantum threat is not
monolithic: it impacts different types of cryptography (symmetric and asymmetric) in different
ways and with varying degrees of severity.

2.1.1 The Quantum Threat and Foundational Algorithms

For decades, public-key cryptography has relied upon the computational difficulty of problems
such as the factorisation of large integers or the calculation of the discrete logarithm [5]. These
problems are considered intractable for classical computers, meaning the time required to solve
them grows exponentially with the size of the input (the key length). Quantum algorithms,
however, operate under a different computational model, leveraging the principles of quantum
mechanics to achieve computational advantages that, in some cases, prove to be exponential.

Shor’s Algorithm: The Asymmetric Cryptography Breaker

The algorithm that initiated the race toward PQC was published by Peter Shor in 1994 [3]. The
impact of this work cannot be overstated, as it demonstrated that a sufficiently powerful quantum
computer would be capable of solving the two mathematical problems that underpin all modern
public-key cryptography in polynomial time:

1. Integer Factorisation Problem (IFP): This is the problem upon which the security of
the RSA algorithm is based. Given an integer N, find its prime factors p and q.

2. Discrete Logarithm Problem (DLP): This is the problem that underpins the Diffie-
Hellman (DH) key exchange and the ECC algorithm.

11

State of the Art

Whilst the best-known classical algorithms, such as the General Number Field Sieve (GNFS),
require super-polynomial (almost exponential) time to solve these problems, Shor’s algorithm
provides a solution in polynomial time, O((log N)?). It achieves this by leveraging the power of
the Quantum Fourier Transform (QFT) to find the period of a function, which can then be used
to determine the factors of N [5].

The impact is catastrophic: the entire ecosystem of TLS, digital signatures, PKIs, and, most
critically for the context of this thesis, IKEv2 key exchanges based on DH and ECC, would be
completely compromised. It is this exponential speed-up that makes Shor’s algorithm the primary
threat and the main driver of PQC standardisation.

Grover’s Algorithm: The Symmetric Cryptography Accelerator

The second major algorithmic threat, albeit of a different nature, is Lov Grover’s algorithm from
1996 [6]. Unlike Shor’s, Grover’s algorithm does not attack the underlying mathematical structure
of a problem but instead focuses on a much more generic task: searching an unstructured database.

A classical brute-force attack against, for example, a 128-bit Advanced Encryption Standard
(AES) key requires, on average, 2127 attempts to find the correct key within a search space of
N = 2'28 elements. Grover’s algorithm dramatically reduces this time.

It operates as a process of amplitude amplification. Starting from a uniform superposition
of all possible states (all possible keys), the algorithm iteratively applies an “oracle” operation
(which “marks” the correct solution) and a “diffusion” operation (which amplifies the probability
amplitude of the marked state). The result is that Grover’s algorithm can find the target item in
only O(v/N) steps [6, 5].

The impact, in this case, is not an exponential speed-up, but ”only” a quadratic one. Never-
theless, the consequences are significant:

e An AES-128 key, which offers 128 bits of security against a classical computer, provides
only 64 bits of security against a quantum computer running Grover’s algorithm (since

264 ~ 1/2128),

e An AES-256 key, on the other hand, provides 256/2 = 128 bits of quantum security.

This means that whilst Grover’s algorithm weakens symmetric cryptography, it does not
“break” it in the way Shor’s breaks PKC. The countermeasure is straightforward and already
available: double the symmetric key length. For this reason, PQC standards (including NIST)
recommend the use of AES-256 to guarantee long-term security (at least 128-bit) in the post-
quantum era.

Brassard et al.: Amplitude Amplification and Counting

Grover’s algorithm is not an isolated case, but rather the most famous example of a broader class
of algorithms based on Amplitude Amplification. Gilles Brassard and his colleagues generalised
Grover’s technique in a foundational work [7].

Whereas Grover’s algorithm applies to a search where a single (or known number of) solution
exists, Quantum Amplitude Amplification (QAA) is a more general framework. It can be applied
to any heuristic quantum algorithm that has some probability p of success. QAA can "boost”
this algorithm to find the solution in a time proportional to 1/,/p, greatly enhancing its efficiency
[7].

A direct application of this technique is Quantum Counting, which allows one to not only find
an item, but to estimate how many marked items exist in the database. This has implications for
more sophisticated cryptanalytic attacks, such as collision attacks, which are the basis for attacks
on hash functions (like SHA-256). Here too, the impact is quadratic, meaning that SHA-256
(offering 128-bit collision security) is still considered sufficiently robust for post-quantum use.

12

State of the Art

In summary, whilst Shor’s algorithm devastates asymmetric cryptography, the impact of
Grover and Brassard on symmetric cryptography and hash functions is manageable and requires a
simple (but mandatory) increase in security parameters. Our gateway architecture will therefore
need to account for both of these threats.

2.1.2 The NIST PQC Standardization Process

Recognising the profound and existential threat posed by Shor’s algorithm, the U.S. National
Institute of Standards and Technology (NIST) took a proactive and globally-leading role. Rather
than waiting for the threat to materialise, NIST initiated an open, collaborative, and transparent
process to solicit, evaluate, and standardise a new suite of quantum-resistant public-key crypto-
graphic algorithms. This process formally began in 2016 with a public call for proposals [8].

This was not a typical standardisation effort; it was effectively a global competition, drawing
submissions from leading cryptographers, academic institutions, and private sector researchers
worldwide. The goal was to identify and standardise algorithms for two primary functions:

e Public-Key Encryption (PKE) and Key Encapsulation Mechanisms (KEMs):
Algorithms to replace Diffie-Hellman and ECC for establishing shared secrets over insecure
channels.

e Digital Signatures: Algorithms to replace RSA and ECDSA for verifying authenticity
and integrity.

Evaluation Criteria and Security Levels

NIST did not simply ask for ‘secure’ algorithms; it defined a rigorous set of evaluation criteria,
prioritising security above all else, followed by performance and implementation characteristics

8].

The most critical part of this framework was the definition of security categories. Instead of
relying on abstract complexity, NIST benchmarked the required quantum-resistance against the
known costs of breaking established symmetric algorithms using Grover’s algorithm (as discussed
in Section 2.1.1). This created five distinct security levels:

e Level 1: At least as hard to break as finding an AES-128 key using Grover’s algorithm
(approx. 2%% quantum operations).

e Level 2: At least as hard to break as finding a SHA-256 collision using Grover’s (approx.
2128 quantum operations).

e Level 3: At least as hard to break as finding an AES-192 key using Grover’s (approx. 2%
quantum operations).

e Level 4: At least as hard to break as finding a SHA-384 collision using Grover’s (approx.
2192 quantum operations).

e Level 5: At least as hard to break as finding an AES-256 key using Grover’s (approx. 2128

quantum operations).

It is important to note the apparent non-linearity: Level 2 and Level 5 both correspond to
a 2'2% computational cost. However, Level 2 refers to the cost of a pre-quantum attack on a
(hypothetical) algorithm, whilst Level 5 refers to the cost of a quantum attack (Grover’s) on
AES-256. In practice, the process focused primarily on achieving security at Levels 1, 3, and
5, which correspond to the quantum security of AES-128, 192, and 256, respectively.

13

State of the Art

The Competing Cryptographic Families

The 69 submissions accepted into Round 1 of the NIST process were not built on arbitrary
principles. They were derived from a handful of mathematical families whose underlying problems
are believed to be resistant to quantum attacks [9]. The entire standardisation process was, in
effect, a ”battle” between these families, each with distinct performance trade-offs.

Lattice-based Cryptography: This family is based on the difficulty of problems on “lattices”,
such as the Learning With Errors (Learning With Errors (LWE)) problem. These algo-
rithms emerged as the clear front-runners, offering a balanced “all-rounder” profile: strong
security proofs, relatively small key/signature sizes, and very fast computation. Kyber and
Dilithium are the most prominent examples.

Code-based Cryptography: This is one of the oldest PQC families, based on the McEliece
cryptosystem (1978). Its security relies on the difficulty of decoding a general linear error-
correcting code. Its primary advantage is its long history and confidence in its security. Its
major disadvantage, however, is the very large size of the public keys, often measured in
hundreds of kilobytes or even megabytes.

Hash-based Cryptography: This family builds security relying only on the properties of a
secure cryptographic hash function (like SHA-256). This is a significant advantage, as its
security is well-understood and not dependent on novel mathematics. Its main drawback
is that signatures are either “stateful” (requiring the signer to remember which state was
used, which is dangerous if not handled perfectly) or “stateless” (like SPHINCS+), which
results in very large signatures and slow signing operations.

Multivariate Cryptography: This family bases its security on the difficulty of solving systems
of non-linear (multivariate) polynomial equations over a finite field. These schemes often
feature very small signatures, but many candidates proved difficult to design securely, with
several prominent submissions being broken during the NIST process.

Isogeny-based Cryptography: This was once a promising family that uses the properties of
“isogenies” (maps between elliptic curves). Its main advantage was the potential for very
small key sizes, reminiscent of classical ECC. However, the leading Key Encapsulation
Mechanism (KEM) candidate in this family (SIKE) was dramatically and practically broken
in 2022, effectively removing this family from the main competition and highlighting the
volatility of the PQC landscape.

This competition between families explains NIST’s final selection. They chose the high-
performance “all-rounders” from the lattice family as the primary standards, while also selecting
a hash-based scheme as a more conservative, well-understood backup, should any systemic flaw
in lattices be discovered.

The Selection Rounds and Finalised Standards

The standardisation process was structured as a multi-round “tournament” designed to progres-
sively filter the submissions through intense public cryptanalysis, informed by the trade-offs of
the families discussed above.

e Round 1 (2017-2018): Began with 69 initial valid submissions. This phase focused on
initial security analysis, and many submissions were broken or found to be insecure.

e Round 2 (2019-2020): Advanced with 26 candidates, focusing on deeper analysis and
initial performance benchmarking.

e Round 3 (2020-2022): Focused on 7 “finalists” and 8 “alternates”. This phase involved
intensive implementation, performance testing on various platforms (from servers to micro-
controllers), and deep cryptanalysis.

14

State of the Art

In July 2022, NIST announced its landmark decision, selecting the first four algorithms for
standardisation [10]. This selection was finalised in August 2024 with the publication of the official
Federal Information Processing Standards (FIPS) drafts. The selected algorithms are summarised
in Table 2.1.

Table 2.1. Finalised NIST PQC Standards (as of August 2024)

Standard Algorithm Name Function Cryptographic
Family
FIPS 203 ML-KEM (Kyber) KEM / PKE Lattices (LWE)
FIPS 204 ML-DSA (Dilithium) Signature Lattices (MLWE)
FIPS 205 SLH-DSA Signature Hash-Based
(SPHINCS+)

This selection highlights the dominance of lattice-based cryptography, which forms the basis
for the primary KEM and signature standards.

Primary Standards (FIPS 203 & 204): For general-purpose use, NIST selected two primary
algorithms: CRYSTALS-Kyber (standardised as ML-KEM) and CRYSTALS-Dilithium
(standardised as ML-DSA) [11, 12]. Both are based on the difficulty of problems over module
lattices. They were chosen for their excellent all-around performance, offering small key and sig-
nature sizes combined with fast operation, making them suitable for a wide range of applications,
including network protocols like IKEv2.

Additional Standard (FIPS 205): Recognising the need for diversity, NIST also standard-
ised SPHINCS+ (as SLH-DSA) [13]. SPHINCS+ is a stateless hash-based signature scheme.
Its primary advantage is that its security is not based on novel mathematical problems (like lat-
tices) but relies only on the security of the underlying hash function. This provides a valuable,
albeit slower, alternative in the event that unforeseen weaknesses are discovered in lattice-based

cryptography.

The Fourth Round (Ongoing KEMs): NIST also initiated a Fourth Round to further eval-
uate additional KEM candidates, primarily to find algorithms based on different mathematical
principles (code-based, isogeny-based) for greater cryptographic diversity. This indicates that
whilst the first standards are finalised, the PQC landscape continues to evolve, a fact that di-
rectly motivates the need for the crypto-agile gateway proposed in this thesis.

2.1.3 Foundations of Key Cryptographic Families

The standards selected by NIST (Table 2.1) provide the primary approved algorithms, but they do
not represent the entire state of the art. A critical aspect of the PQC transition is “cryptographic
diversity”, the strategy of relying on multiple, mathematically distinct hard problems to hedge
against the risk that an unforeseen breakthrough could weaken an entire family (such as lattices).

The NIST process itself championed this diversity by advancing algorithms from different fam-
ilies to the final round. By understanding the foundations of the lattice-based winners, alongside
the most prominent code-based finalists, is essential to grasp the trade-offs available for building
a truly resilient crypto-agile system.

Lattice-Based Standards (ML-KEM and ML-DSA) The core of the modern PQC land-
scape is built upon the two primary NIST standards, ML-KEM (Kyber) [11] and ML-DSA
(Dilithium) [12]. These are “sister” algorithms founded on the difficulty of the Module Learning
With Errors (MLWE) problem, an efficient variant of the foundational LWE problem [14].

15

State of the Art

¢ ML-KEM (Kyber): This IND-CCA2-secure KEM is designed to directly replace the
Diffie-Hellman key exchange. The receiver’s public key defines a system of “noisy” equations
over a module lattice. The initiator encapsulates a shared secret using this public key,
creating a ciphertext. Due to the injected noise, only the receiver (holding the private key,
or the “solution” to the equations) can remove the noise and decapsulate the identical shared
secret.

e ML-DSA (Dilithium): This signature scheme uses the Fiat-Shamir transform with “re-
jection sampling.” The private key consists of statistically “short” vectors (polynomials).
To sign a message, the signer must produce a signature that is also verifiably “short” and
solves a public equation. This “proof of shortness” is computationally infeasible without
the private key.

Code-Based Diversity (HQC and BIKE) To provide a robust alternative to the lattice-
based family, the NIST process also identified code-based KEMs as strong candidates. These
algorithms derive their security from the difficulty of decoding error-correcting codes, a problem
that is mathematically unrelated to lattices. Two of the most prominent finalists in this category
were HQC and BIKE.

¢ HQC (Hamming Quasi-Cyclic): HQC is a code-based KEM that builds on the principles
of the McEliece cryptosystem [15]. Its security is based on the difficulty of decoding a random
quasi-cyclic code, a well-understood problem in cryptography.

e BIKE (Bit-Flipping Key Encapsulation): BIKE is also a code-based KEM, but it
relies on a different class of codes: Quasi-Cyclic Moderate-Density Parity-Check
(QC-MDPC) codes [16]. Its name derives from its efficient decapsulation process, which
uses an iterative “bit-flipping” decoder.

The existence of these distinct and viable cryptographic families (lattices, codes) provides the
building blocks for a truly crypto-agile architecture. The design choices are no longer limited to a
single algorithm, but can instead involve creating hybrid or composite schemes that leverage the
strengths of each, a core concept that will be explored in the design of our gateway.

2.1.4 The Challenge of a Post-Quantum PKI

While the finalisation of these standards [11, 12, 13] provides the necessary cryptographic prim-
itives, it simultaneously introduces significant engineering challenges for integration. The most
acute of these, directly impacting the IKE_AUTH exchange [17], is the incompatibility of the new
signature schemes with the existing X.509 PKI.

The core of this challenge lies in the disparity in size. Classical public keys (like ECDSA
P-256) and their signatures are measured in tens of bytes. In contrast, the new PQC public keys
and signatures are orders of magnitude larger. For example, an “ML-DSA-44“ public key is over
1.3 KB, while an “SLH-DSA“ (SPHINCS+) signature can be 8 KB or larger, depending on the
security level [12, 13].

This size increase directly conflicts with the assumptions baked into the X.509 PKI stan-
dard [18], which was not designed to embed multi-kilobyte public keys. This, in turn, creates
a significant challenge for network protocols like IKEv2, which were not designed to transport
multi-kilobyte CERT and AUTH payloads [17]. As will be discussed in detail in Section 2.4, this size
problem leads to critical, practical networking issues such as IP fragmentation, which can cause
interoperability failures.

To address this challenge and to hedge against future breaks, the IETF is standardising mecha-
nisms for composite or hybrid authentication [19]. In this model, a single certificate or signature
payload contains both a classical primitive (e.g., “Ed448) and a PQC primitive (e.g., ‘ML-DSA-
87¢). A verifier must validate both signatures to accept the authentication.

16

State of the Art

This composite approach is the precise mechanism that underpins the signature-level policies
(such as “SIG-L3-SUF“) discussed in this thesis’s design. It illustrates that migration is not
a simple algorithm swap. This complex, multi-layered authentication landscape creates another
powerful driver for crypto-agility, as gateways must be able to parse, validate, and enforce policies
on these new hybrid structures.

2.1.5 The Need for Crypto-Agility

The finalisation of the first FIPS standards by NIST does not represent an end-point, but rather
the beginning of a long and complex migration. The history of cryptography has taught us that
statically embedding algorithms into protocols and infrastructure, a practice known as “hard-
coding”, is a critical vulnerability. The transition to PQC is not a simple “rip and replace”
operation; it is a dynamic and uncertain process that demands a new architectural paradigm:
cryptographic agility.

Defining Cryptographic Agility

Cryptographic agility (or “crypto-agility”) is a concept that extends beyond merely supporting
multiple algorithms. NIST defines it as the capacity for a system to be rapidly updated to support
new cryptographic algorithms, standards, and parameters, ideally without requiring significant
changes to the system’s core infrastructure [20].

In a truly agile system, the specific cryptographic mechanisms (such as the key exchange algo-
rithm, the signature scheme, or the symmetric cipher) are not deeply embedded in the application
logic. Instead, they are treated as replaceable modules or as parameters that can be defined and
enforced by an external policy. This separation of “mechanism” from “policy” is the cornerstone
of agility and allows an organisation to:

e React quickly to the discovery of a new vulnerability in a deployed algorithm.
e Adopt new, more efficient, or more secure standards as they become available.

e Enforce different cryptographic policies for different users, data types, or communication
partners.

The Rationale: Why Agility is Non-Negotiable in the PQC Era

In the context of the PQC migration, this abstract concept becomes a concrete and non-negotiable
requirement. The landscape is too new, and the stakes are too high, to risk being “locked in” to
a single set of algorithms. The rationale for this is multi-faceted:

1. The Volatility of New Standards (The SIKE Precedent): As discussed in Section
2.1.2, the NIST competition hosted algorithms from several different mathematical families.
The isogeny-based family was, for a long time, a promising contender due to its very small
key sizes. The leading KEM candidate, SIKE (Supersingular Isogeny Key Encapsulation),
was a Round 3 alternate and was being actively researched.

In August 2022, in an event that shocked the cryptographic community, researchers Wouter
Castryck and Thomas Decru published a paper detailing a complete and practical key
recovery attack on SIKE [21]. The attack, which used classical computer techniques, was
devastatingly efficient and effectively broke the entire scheme.

This event serves as a powerful and practical reminder: these algorithms, while scrutinised,
are based on mathematical assumptions that are far less battle-tested than RSA or ECC. A
similar flaw could, in theory, be discovered in any of the new standards. A system that has
"hard-coded” an algorithm found to be vulnerable would be catastrophically compromised.
An agile system, by contrast, could disable the broken algorithm via a simple policy change
and transition to an alternative (like the hash-based SLH-DSA) immediately.

17

State of the Art

2. The Threat of Implementation Attacks (Side-Channels): Beyond the mathematical
foundations, agility is also an active defence against implementation flaws. SCA exploit
information leaked from a system’s physical implementation, such as power consumption,
electromagnetic radiation, or timing, rather than attacking the mathematics [22].

The new lattice-based standards, ML-KEM and ML-DSA, are particularly susceptible if not
implemented with extreme care. For example, timing variations in memory access (“cache-
timing attacks”) can leak information about the secret key [22], and the “rejection sampling”
step in ML-DSA can also leak secret data if not implemented in constant time [23].

This threat model is different from SIKE: the algorithm’s mathematics remains secure, but
a specific implementation (like a version of 1ibogs) could be vulnerable. In this scenario, a
static, “hard-coded” gateway would be completely compromised until it could be patched,
recompiled, and redeployed. A crypto-agile architecture, like the one proposed in this thesis,
can react immediately at the policy level. An administrator could disable the compromised
algorithm (e.g., ‘mlkem768‘) and enforce a switch to a non-vulnerable alternative (like the
hash-based SLH-DSA) via a simple policy update, providing an immediate mitigation with-
out service interruption. Agility is therefore not just a migration strategy, but a critical,
real-time defence mechanism.

3. The Prolonged Transitional Period (Hybridisation): (Il tuo testo originale, che prima
era il punto 2) The global migration to PQC will take years, if not decades. During this
time, systems will exist in a “hybrid” state, needing to communicate with both modern,
PQC-capable peers and legacy, classical-only peers [24].

Furthermore, to hedge against the risk of unknown flaws in new algorithms (like the SIKE
break or SCA), many protocols are adopting a hybrid key exchange model. In this model,
a shared secret is established by combining the output of a classical KEM (like ECC) and a
PQC KEM (like ML-KEM). The resulting key is secure as long as at least one of the two
algorithms remains unbroken.

This hybrid, transitional environment demands agility. A gateway must be able to negotiate
and enforce policies like “Must use PQC if available”, “Allow classical-only for legacy client
X7 or “Enforce PQC-ECC hybrid for all traffic”.

4. Performance and Contextual Trade-offs: (Il tuo testo originale, che prima era il punto
3) The new PQC standards are not one-size-fits-all. They present a wide range of trade-offs:

e ML-KEM (Kyber) is very fast and has small keys, making it ideal for general-purpose
protocols like TKEv2.

e ML-DSA (Dilithium) is also fast, with reasonably small signatures.

e SLH-DSA (SPHINCS+) is much slower and has significantly larger signatures (ap-
prox. 8-49 KB, depending on the level) but is based on the robust security of hash
functions.

An agile system can make intelligent, policy-based decisions based on context. A high-
bandwidth, low-latency VPN server (like our gateway) might be required to use ML-KEM.
An ToT device with extreme bandwidth constraints, however, might be forbidden from using
SLH-DSA due to the signature size. A high-assurance system might be required to only
use SLH-DSA due to its conservative security. An agile architecture is required to manage
this complexity.

5. Evolving Compliance and Policy Requirements: (Il tuo testo originale, che prima era
il punto 4) Finally, the policy landscape will evolve. A government or corporation might
initially mandate NIST Level 1, but as quantum computers become more powerful, they
may later mandate a shift to Level 3 or Level 5. An agile system allows these compliance
changes to be implemented as administrative policy updates, rather than as costly and
disruptive software engineering projects.

In the end, the PQC transition is defined by uncertainty, volatility, and a need for gradual,
hybrid adoption. These factors make cryptographic agility the central architectural requirement

18

State of the Art

for any long-lived, secure system. This thesis directly addresses this need by designing a gateway
where the cryptographic “what” (the algorithm) is decoupled from the operational “how” (the
protocol logic) and is instead governed by an external, easily modifiable policy.

2.2 Securing Networks with IPsec and IKEv2

Having established why the PQC migration is necessary, this section analyses where this mi-
gration must take place. Our work focuses on the protection of VPNs, which are predominantly
implemented using the IPsec protocol suite. Unlike application-layer protocols such as TLS, IPsec
operates at Layer 3 (the Network Layer) of the ISO/OSI model. This characteristic makes it trans-
parent to applications, but also a fundamental and sensitive component of the infrastructure.

The IPsec architecture, defined in [25], is not a single protocol but a suite that provides a
comprehensive framework for security at the IP layer. It logically divides its functions into a
“data plane” (how data is protected) and a “control plane” (how the keys and policies to protect
that data are negotiated).

2.2.1 The IPsec Protocol Suite: Data Plane

The IPsec data plane defines the packet formats used to protect traffic. Two primary protocols
fulfill this role: the Authentication Header (AH) and the Encapsulating Security Payload (ESP).

AH: As defined in [26], AH provides data integrity, data origin authentication, and anti-replay
protection. It does this by adding a new header to the IP packet. It is important to note that
AH does not provide confidentiality; the packet payload remains in clear text. Due to
this limitation and its well-known incompatibility with Network Address Translation (NAT),
its use is rare in modern VPN implementations.

ESP: ESP, defined in [27], is the workhorse of modern VPNs. ESP provides all the services
of AH (integrity, authentication, anti-replay) and, critically, adds confidentiality through
encryption of the IP packet’s payload. This is the protocol we will focus on in this thesis.

Transport Mode vs. Tunnel Mode

Both AH and ESP can operate in two distinct modes, which define which part of the original
packet is protected [25].

e Transport Mode: In this mode, only the payload of the original IP packet is protected
(encrypted and/or authenticated). The original IP header is retained. This mode is typically
used for host-to-host communications, where the two endpoints of the communication are
also the cryptographic endpoints.

e Tunnel Mode: In this mode, the entire original IP packet (both header and payload) is
protected and encapsulated within a new IP packet. This mode is the basis for “gateway-
to-gateway” or “client-to-gateway” VPNs. It allows a gateway to act as a cryptographic
"proxy” for an entire network, hiding the internal IP addresses of the protected network.
This thesis focuses exclusively on Tunnel Mode, as we are building a security gateway.

Security Associations and Policy Management

The ESP and AH protocols define what a protected packet looks like, but they do not state
which algorithms or keys to use. This information is held in a logical construct called a Security
Association (SA) [25].

An SA is a simplex (one-way) connection that defines the parameters for secure communi-
cation. For a typical bidirectional ESP connection, two SAs are required (one inbound, one
outbound). Each SA contains, amongst other things:

19

State of the Art

Authenticated
Encrypted

ESP ESP
Reyload Trailer Authentication ESP Transport Mode

Payload
ESP ESP ESP
1P Header ayload Trailer Authentication ESP Tunnel Mode
Encrypted
Authenticated

Figure 2.1. Conceptual illustration of IPsec Transport Mode vs. Tunnel Mode.

e The encryption algorithm (e.g., AES-256).

The integrity algorithm (e.g., SHA-256).

The cryptographic keys for those algorithms.

e A sequence number (for anti-replay protection).

The SA “lifetime” (how long it can be used before renegotiation).
An IPsec host manages two fundamental databases for its operation:

Security Policy Database (SPD): This database, managed by the administrator, defines
which traffic must be protected. It is the “decision maker”. For example, a policy in the
SPD might state: “All traffic from network A to network B must be protected with ESP in
Tunnel Mode”.

Security Association Database (SAD): This database contains the parameters of all active

SAs. It is the “mechanism” that the kernel uses to process packets.

When an outbound packet matches a rule in the SPD and no valid SA yet exists for that flow,
the system determines that a new SA is required. This triggers the IPsec “control plane”.

The Role of IKE (Internet Key Exchange)

The process of manually creating SAs (by setting keys by hand) is complex, unscalable, and
insecure. For this reason, a control plane protocol was created to automate this negotiation: the
Internet Key Exchange (IKE).

IKE is the protocol that two [Psec gateways use to:

1. Authenticate each other (using digital certificates or pre-shared keys).

2. Negotiate the algorithms to be used (e.g., “I support Kyber and AES, what do you sup-
port?”).

3. Perform a key exchange (like Diffie-Hellman, or, in our case, a PQC KEM) to securely
generate session keys.

4. Create the SAs and populate them into the SAD on both sides.

Without IKE, IPsec cannot function automatically. It is here, within the IKE protocol, that
the vulnerability to Shor’s algorithm resides, and it is here that our PQC solution must intervene.
The next section will analyse the modern version of this protocol, IKEv2, in detail.

20

State of the Art

2.2.2 IKEv2 Protocol (RFC 7296)

As introduced in Section 2.2.1, the IKE protocol is the control plane responsible for peer au-
thentication and the automatic negotiation of SAs. The modern and predominant version of this
protocol is IKEv2, defined in [17].

IKEv2 was designed to overcome the significant complexities and ambiguities of its predecessor,
Internet Key Exchange version 1 (IKEv1) [28]. Whilst IKEv1 had two complex ”Phases” with
multiple negotiation modes (Main Mode, Aggressive Mode, Quick Mode), IKEv2 dramatically
simplifies this process. The entire IKEv2 negotiation consists of just two exchanges (totalling
four messages): the IKESA_INIT and the IKE_AUTH exchanges.

The goal of IKEv2 is to establish a secure control channel, called the IKE Security Asso-
ciation (IKESA), and subsequently use that channel to negotiate one or more CHILDSAS,
which correspond to the IPsec SAs (defined in the SAD) used to protect data traffic (the “data
plane”).

The IKESA _INIT Exchange

The first exchange, IKESA_INIT, is intended to establish a secure IKESA. At this stage, the peers
are not yet authenticated, but they negotiate cryptographic parameters and generate a shared
secret. This exchange consists of two messages:

Message 1 (Initiator — Responder): Contains a header (HDR), the Initiator’s cryptographic
proposal (SAil1), its key exchange contribution (KEi), and a nonce (Ni).

The SAil payload is fundamental: it is a proposal listing the algorithms the Initiator is
willing to use for the IKESA. It contains:

Encryption Algorithm (e.g., AES-CBC).
Integrity Algorithm (e.g., SHA-256).
Pseudo-Random Function (Pseudo-Random Function (PRF)) (e.g., HMAC-SHA-256).

Diffie-Hellman (Diffie-Hellman (DH)) Group (e.g., Group 14, a 2048-bit MODP
[29]).

The KEi payload contains the Initiator’s public DH value for the proposed group(s).

Message 2 (Responder — Initiator): Contains the header (HDR), the SAr1 payload (which
selects one of the Initiator’s proposals), the Responder’s DH contribution (KEr), and its
nonce (Nr). It may also contain a CERTREQ if the Responder requires a certificate for au-
thentication.

At the conclusion of this exchange, both peers use the DH contributions (KEi, KEr) to calculate
a shared secret. This secret, combined with the nonces (Ni, Nr), is passed through the negotiated
PRF to generate a master secret key called SKEYSEED.

From SKEYSEED, all necessary cryptographic keying material (Keying Material (SK)) for the
session is derived:

e SK_d: Keying material used to derive all future CHILDSAs.
e SK_e/a: Encryption and authentication keys to protect subsequent IKEv2 messages.

e SK p: Keys used to generate the authentication (AUTH) payloads.

It is crucial to note that at the end of IKESA_INIT, the peers share a secret, but they have
not yet authenticated each other. The entire exchange is vulnerable to a Man-in-the-Middle
(MITM) attack.

21

State of the Art

The IKE_AUTH Exchange

The second exchange, IKE_AUTH, uses the secure channel established by IKESA_INIT (using the
SK_e/a keys) to authenticate the peers and negotiate the first CHILDSA. This exchange also
consists of two messages, which are now fully encrypted:

Message 3 (Initiator — Responder): Contains HDR(SK_e) (encrypted header), and an en-
crypted payload SK { IDi, [CERT], [CERTREQ], AUTH, SAi2, TSi, TSr }.

Message 4 (Responder — Initiator): Contains HDR(SK_e) and an encrypted payload SK {
IDr, [CERT], AUTH, SAr2, TSi, TSr }.

Let us analyse the critical payloads of this exchange:

e IDi / IDr: The identity payloads (e.g., an FQDN, an email address) that declare who the
peers are. Their encryption is a key advantage of IKEv2 over IKEv1, as it protects identities
from eavesdropping.

e CERT / CERTREQ: If using public-key authentication, these payloads carry the X.509 cer-
tificates.

e AUTH: This is the payload that performs authentication. It is typically a digital signature
(e.g., RSA or ECDSA) computed over a block of data that includes the IKESA_INIT messages,
the nonces, and the other peer’s identity. This payload binds the signer’s identity to the
DH exchange that occurred earlier, thereby defeating the MitM attack.

e SAi2 / SAr2: The proposal and response for the first CHILDSA. This is where the
algorithms for ESP (e.g., AES-GCM) are negotiated.

e TSi / TSr: The Traffic Selectors. These payloads define which traffic (as defined in
the SPD) must be protected by this CHILDSA (e.g., ”all traffic from 192.168.1.0/24 to
10.0.0.0/16”).

At the end of this exchange, the IKESA is authenticated, and the first CHILDSA is ready to
protect traffic.

Initiator Responder

IKE_SA_INIT Phase 1: Unencrypted exchange.\nAfter these messages, SKEYSEED and keys are derived.\nPeers NOT authenticated yet.

HDR_SAi1_KEi_Ni

HDR_SAr1_KEr_Nr_CERTREQ H

IKE_AUTH Phase 2: Encrypted exchange.\nAUTH payload verifies identity and binds key exchange.\nFirst CHILD_SA established for data traffic.

HDR_SKe_SK_IDi_CERT_CERTREQ_AUTH_SAi2_TSi_TSr

HDR_SKe_SK_IDr_CERT_AUTH_SAr2_TSi_TSr ‘

Initiator Responder

Figure 2.2. Sequence diagram of the IKESA_INIT and IKE_AUTH exchanges.

22

State of the Art

Summary of PQC Vulnerabilities in IKEv2

This analysis of IKEv2 (RFC 7296) reveals two critical points of failure in the face of a quantum
computer running Shor’s algorithm (as discussed in Section 2.1.1):

1. Confidentiality (Key Exchange): The IKESA_INIT exchange bases its security on the DH
(or ECC) key exchange. An adversary who captures this exchange can use Shor’s algorithm
to retroactively compute the shared secret, decrypt the entire IKE_AUTH negotiation, and
recover all CHILDSA keys. This compromises the entire VPN.

2. Authentication (Signature): The AUTH payload in the IKE_AUTH exchange relies on RSA
or ECDSA digital signatures. A quantum adversary can use Shor’s algorithm to break the
gateway’s public key (obtained from the CERT payload) and compute its private key. This
allows the adversary to impersonate the gateway and launch a MitM attack, successfully
authenticating itself.

Therefore, to migrate IPsec to a PQC standard, it is not sufficient to address only one of
these problems. It is mandatory to replace both the DH key exchange and the digital signature
algorithm with quantum-resistant alternatives. The following RFCs, which are central to this
thesis, define exactly how to achieve this.

2.2.3 Integrating PQC into IKEv2

Addressing the quantum vulnerabilities within IKEv2 (Section 2.2.2) necessitates more than a
simple replacement of algorithms; it requires careful architectural integration into the protocol’s
negotiation logic to handle new cryptographic paradigms like hybridity and the potential for
future algorithmic evolution. The IETF has developed a layered approach, documented across
several key RFCs. RFC 9242 provides the essential mechanisms for integrating PQC KEMs and
signatures directly into the standard IKESA_INIT and IKE_AUTH exchanges [30]. Building upon
this, RFC 9243 introduces the generic IKE_INTERMEDIATE exchange, offering a flexible framework
for adding cryptographic operations [31]. Crucially, RFC 9370 (specifically in its Appendix A)
provides concrete guidance on leveraging this intermediate exchange for incorporating Additional
Key Exchanges (ADDKESs) using PQC KEMs, alongside validating the suitability of PQC-
derived keys for the ESP data plane [32]. Together, these documents provide a comprehensive
and standardised foundation for building resilient, quantum-resistant IPsec tunnels.

RFC 9242: Direct PQC Integration in Initial Exchanges

RFC 9242 [30] lays the groundwork by extending the existing IKEv2 structure. It introduces
new Internet Assigned Numbers Authority (IANA)-registered Transform Types (Type 6 for
PQC KEMs, Type 7 for PQC Signatures) and specifies how existing payloads (KE, AUTH) are
adapted to carry PQC-specific data.

Post-Quantum Key Encapsulation Mechanisms (KEMs): To replace the vulnerable clas-
sical key exchange, RFC 9242 introduces Transform Type 6, specifically for “Post-Quantum Secure
Key Exchange Methods,” distinct from the classical Type 4 (DH Group) [33].

e Negotiation Details: Within the Security Association (SA) payload (SAi1l/SAr1) of the
IKESA_INIT exchange, peers propose cryptographic suites that include transforms of Type
6. Each transform specifies a particular PQC KEM algorithm, identified by a unique TANA-
assigned ID. For instance, the TANA registry includes identifiers for various parameter sets of
ML-KEM (Kyber), such as ML_KEM_512_IPD, ML _KEM_768_IPD, and ML_KEM_1024_IPD (where
"IPD” signifies "IKE Payload Definition”, indicating suitability for direct use in IKE). The
Responder selects a mutually supported Type 6 transform from the Initiator’s proposal list
in SAil1 and includes it in the SAr1 payload [33].

23

State of the Art

e Payload Adaptation for KEM Data: The Key Exchange (KE) payload, traditionally
used for DH public values, is repurposed to transport the PQC KEM-specific data. The
exact structure within the KE payload is defined per KEM algorithm, but for an IND-CCA2
secure KEM like ML-KEM (Kyber), the typical flow as detailed in RFC 9242 is:

1. The Initiator generates a PQC key pair (pk;, sk;) for the negotiated KEM. It sends
its public key (pk;) in the KEi payload.

2. The Responder receives pk;. It then generates a random shared secret ssg and encap-
sulates it using pk; via the KEM’s encapsulation function (Encaps(pk;)), yielding the
shared secret ssp and a ciphertext ct. The Responder securely stores ssp and sends
ct back in the KEr payload.

3. The Initiator receives ct. It uses its private key sk; and the KEM’s decapsulation
function (Decaps(sk;, ct)) to recover the same shared secret ssy, where ss; = ssg. If
decapsulation fails, the exchange terminates.

This sequence establishes a shared secret known only to the two peers, forming the basis for
the IKESA’s cryptographic strength.

e Integration with Key Derivation Function (KDF): The shared secret ss (from the
PQC KEM decapsulation) directly replaces the classical DH shared secret as a source of
entropy. This ss, combined with the nonces (Ni, Nr), is fed into the negotiated PRF to
compute the master secret SKEYSEED, following the standard IKEv2 KDF defined in RFC
7296 [17, 33]. From SKEYSEED onwards, the derivation of all subsequent keying material
(SK_d, SK_e, SK_a, SK_p) proceeds without modification, showcasing a seamless integration
into the existing key hierarchy.

Post-Quantum Digital Signatures: The second critical vulnerability is the reliance on clas-
sical digital signatures (RSA, ECDSA) within the AUTH payload of the IKE_AUTH exchange. RFC
9242 addresses this by introducing Transform Type 7 for ” Post-Quantum Secure Authentication
Methods” [33].

e Negotiation and Identifiers: While the specific choice of signature algorithm is often
tied to the certificate presented and the ” Authentication Method” field in the SA payload,
Transform Type 7 provides formal TANA identifiers for PQC signature schemes (e.g., for
various variants of ML-DSA and SLH-DSA). This allows peers to explicitly signal their
capabilities and preferences, crucial for cryptographic agility [33].

e AUTH Payload Calculation: The process for calculating the AUTH payload remains
consistent with RFC 7296 [17]. A canonical data block, comprising elements from the
IKESA_INIT messages, the peer’s nonce, and the signer’s own identity payload (IDi or IDr),
is constructed. The signer then computes a digital signature over this data block using
their PQC private key, which corresponds to the negotiated PQC signature algorithm. The
resulting signature value is then placed in the AUTH payload [33].

e Verification and PQC Certificates: The receiver verifies the signature using the sender’s
PQC public key, typically obtained from an X.509 certificate conveyed in the CERT payload
during the IKE_AUTH exchange. RFC 9242 anticipates that PQC public keys and signatures
can be significantly larger than their classical counterparts. This necessitates new certificate
formats or extensions (e.g., using specific OIDs for PQC public keys and signature algorithms
within X.509 structures, a topic addressed by parallel PKI standardisation efforts). Regard-
less of the certificate format, successful verification confirms a strong cryptographic binding:
the entity possessing the private key corresponding to the certified public key did indeed
participate in and endorse the IKESA_INIT exchange, thereby effectively thwarting MitM
attacks [33].

24

State of the Art

Formalising and Detailing Hybrid Key Exchange: The dynamic and uncertain nature of
the PQC transition (as discussed in Section 2.1.5) makes hybrid key exchange a cornerstone of
robust security. RFC 9242 provides specific mechanisms for combining classical (DH/ECC) and
PQC KEMs during the IKESA_INIT exchange.

e Negotiation of Multiple Key Exchange Methods: To establish a hybrid IKESA, the
Initiator proposes multiple key exchange transforms within its SAi1 payload. This includes
both a classical transform (e.g., Type 4, specifying a well-known ECC group like P-384) and
a PQC KEM transform (Type 6, specifying e.g., ML_KEM_768_IPD). The Responder indicates
agreement by returning the selected classical and PQC transforms in its SAr1 payload [33].

e Transporting Multiple KE Payloads: The IKESA_INIT messages are designed to carry
multiple KE payloads. RFC 9242 specifies that these payloads are ordered consistently
with the negotiation. For a hybrid exchange, KEi would contain the Initiator’s classical
public value followed by its PQC KEM public key, and KEr would contain the Responder’s
corresponding contributions [33].

e Combining Shared Secrets (The Concatenation Method): Once both the classical
and PQC key exchanges are successfully completed, yielding two distinct shared secrets
(SSclassical a0 SSpgc), these are combined. RFC9242 [33] mandates a simple, cryptograph-
ically sound concatenation: $Scompined = SSclassical||SSpqe (Where || denotes bit string con-
catenation). This S$Scombined then serves as the input to the negotiated PRF for deriving
SKEYSEED [33]. This technique ensures that the final keying material benefits from the
entropy of both algorithms.

Parallel Key Exchanges

Concatenation (||) SScombined = SSctussicnt||35pac

Figure 2.3. Conceptual illustration of Hybrid Key Exchange secret combination.The shared secrets
from both classical (DH/ECC) and PQC (KEM) exchanges are concatenated before being fed into
the PRF (Pseudo-Random Function) for SKEYSEED derivation, along with nonces (IV;||N;.).

e Security Rationale for Hybridisation: The profound security advantage of this hybrid
approach is its resilience against evolving threats. The resulting SKEYSEED (and all subse-
quent derived keys) remains secure as long as at least one of the component key exchange
mechanisms resists attack. This strategy offers ”multi-factor security”: it protects against
quantum adversaries (assuming the PQC KEM is secure) while simultaneously providing
continued security against classical cryptanalysis even if the PQC KEM were to be unex-
pectedly broken by classical means. This ”defense-in-depth” is critical during the uncertain
transition period to PQC [33, 24]. Our gateway implementation explicitly leverages this
hybrid capability to provide robust, forward-looking security.

In essence, RFC 9242 meticulously details how PQC algorithms can be woven into the exist-
ing IKEv2 fabric, enabling both direct replacements and robust hybrid solutions. However, the
IETF recognized that sometimes a more dynamic approach for adding cryptographic strength or
algorithms after an initial secure channel is established might be necessary.

RFC 9243 and RFC 9370 (Appendix A): Intermediate Exchanges for Additional PQC
KEMs

While RFC 9242 provides a complete method for establishing a PQC-secured or hybrid IKESA
from the outset, it doesn’t cover all possible scenarios for incorporating quantum-resistant cryp-
tography, especially when additional algorithmic layers or dynamic updates are desired. This

25

State of the Art

is where RFC 9243 [34] introduces a pivotal concept: the IKEv2 Intermediate Exchange
(IKE_INTERMEDIATE). This exchange type allows for a flexible insertion of additional messages
after the initial IKESA_INIT but before the final IKE_AUTH exchange is completed, or even later
during rekeying.

Crucially, RFC 9370, particularly in Appendix A, provides concrete guidance and de-
tailed examples demonstrating how this generic IKE_INTERMEDIATE exchange can be leveraged
specifically for performing ADDKESs using PQC KEMs [35]. This addresses scenarios beyond
the initial hybrid setup defined in RFC 9242, enabling layered and iterative security enhancements.

Purpose and Flexibility of IKE INTERMEDIATE for PQC: The primary purpose of
IKE_INTERMEDIATE (as enabled for PQC by RFC 9370 Appendix A) is to allow peers to perform
Additional Authenticated Key Exchanges (AAKESs) or other cryptographic computations
that dynamically extend the IKESA’s security or capabilities [34, 35]. This is particularly relevant
for PQC in several scenarios:

e Adding PQC to Existing Classical IKESA: If an IKESA was initially established with
only classical cryptography, an IKE_INTERMEDIATE exchange could be used to perform a
separate PQC KEM and mix its shared secret into the existing IKESA keying material,
effectively ”upgrading” its security to hybrid without tearing down the entire session.

e Separating PQC KEM from Authentication: In some architectures, it might be de-
sirable to perform a (potentially large and slow) PQC KEM in a separate exchange before
the final AUTH step. This can improve the responsiveness of the initial IKE_AUTH phase or
provide more granular control over cryptographic elements, especially when dealing with
the latency associated with some PQC primitives.

e Multiple PQC KEMs / Layering: For very high-security requirements or to lever-
age cryptographic diversity (e.g., combining lattice-based and code-based PQC KEMs), an
IKE_INTERMEDIATE exchange could allow for the negotiation and execution of multiple dis-
tinct PQC KEMs (even from different cryptographic families) to further enhance quantum
resistance through diversity and provide a greater ”security budget”.

e Post-Quantum Rekeying: When the IKESA or CHILDSAS are rekeyed (e.g., for Perfect
Forward Secrecy or to refresh cryptographic material), IKE_LINTERMEDIATE can be used to
perform a fresh PQC KEM to generate new quantum-resistant keys. This is crucial for
protecting against future quantum attacks even if previous traffic was harvested and later
decrypted.

Negotiating Additional Key Exchanges (ADDKE): Support for these additional ex-
changes is negotiated upfront during the IKESA_INIT phase, extending the ‘SA‘ payload nego-
tiation, as detailed in RFC 9370 Appendix A [35]:

e New Transform Types for ADDKESs: Specific Transform Types are defined for sig-
nalling additional key exchanges (e.g., ADDKE1, ADDKE2, etc.). These are included in the
SAi1/SAr1 payloads alongside the primary key exchange (KE) transform.

e Proposing Options including NONE: Within each ADDKE transform type, the Initiator
proposes one or more specific PQC KEM algorithm identifiers (e.g., proposing PQ_KEM_1
or PQ_KEM_2 for ADDKE1). Critically, the proposal for each ADDKE type must also explicitly
include NONE as a mandatory option. This mechanism allows the Responder to gracefully
decline any specific additional exchange without failing the entire SA negotiation [35].

e Responder Selection: For each ADDKE type proposed, the Responder must select exactly
one algorithm identifier (which can be NONE) and include these selections in the SAr1 payload
[35].

e Signalling General Support for Intermediate Exchanges: Beyond specific ADDKE
negotiation, both peers must also signal their general capability to handle intermediate ex-
changes by including the INTERMEDIATE_EXCHANGE_SUPPORTED notification payload in their
respective IKESA_INIT messages [34].

26

State of the Art

Performing the Additional Key Exchange(s) via IKE INTERMEDIATE: For every
ADDKE transform successfully negotiated with a specific PQC KEM (i.e., not NONE), the peers
execute a dedicated IKE_INTERMEDIATE exchange. These exchanges occur sequentially after
IKESA_INIT is complete and before the IKE_AUTH exchange begins [35].

e Each IKE_INTERMEDIATE exchange comprises a request/response pair and is fully protected
(encrypted and authenticated) using the keys (SK_e/SK_a) derived from the currently es-
tablished keying material (initially from the IKESA_INIT, and subsequently from any prior
ADDKE updates) [34].

e The purpose of each exchange is to perform one specific ADDKE. The messages carry the
PQC KEM public key (e.g., in KEi(n)) and the resulting ciphertext (e.g., in KEr(n)), where
'n’ uniquely identifies which additional exchange is being performed (e.g., KEi (1) for ADDKE1,
KEi(2) for ADDKE2, etc.) [35].

e Upon successful completion of an IKE_INTERMEDIATE exchange for an ADDKE, a new shared
secret (SK(n)) is obtained from that specific PQC KEM.

Iterative Keying Material Update (SKEYSEED): A core aspect detailed in RFC 9370
Appendix A is how the entropy from these additional exchanges is iteratively incorporated into
the master secret SKEYSEED [35]. Each new shared secret SK (n) derived via an IKE_INTERMEDIATE
exchange is immediately used to update and strengthen the current SKEYSEED through a well-
defined KDF procedure:

1. Let SKEYSEED(0) be the master secret derived from the initial IKESA_INIT exchange (which
might itself be hybrid per RFC 9242). Let SK_d(0) be the corresponding key derivation key.

2. After the first ADDKE yields secret SK(1):
SKEYSEED(1) = prf(SK_d(0), SK(1) | Ni | Nr)

3. Derive new keys from SKEYSEED(1):
{SK_.d(1) | SK.ax(1) | SK.ar(1) | SKei(1l) | SKer(1) | SKpi(1) | SKpr(1)}
prf+(SKEYSEED(1), Ni | Nr | SPIi | SPIr)

4. After the second ADDKE yields secret SK(2):
SKEYSEED(2) = prf(SK_d(1), SK(2) | Ni | Nr)
{SK_d(2) | SK_ax(2) | SK.ar(2) | SKei(2) | SKer(2) | SKpi(2) | SKpr(2)}
prf+(SKEYSEED(2), Ni | Nr | SPIi | SPIr)

This process repeats for every completed ADDKE. The keys derived after the final update
(SK_p*(last), SK_e*(last), etc.) are those used for the subsequent IKE_AUTH exchange and for
deriving CHILDSA keys [35]. This ensures that the final IKESA incorporates entropy from the
primary key exchange and all successfully negotiated additional PQC key exchanges, significantly
enhancing resilience.

Example Exchange Flow (Based on RFC 9370 Appendix A.1): Consider the scenario
from [35] where the Initiator proposes a primary classical key exchange (KE=Curve25519) and
three optional additional PQC KEM exchanges (ADDKE1, ADDKE2, ADDKE3). The negotiation and
subsequent exchanges proceed as follows:

HDR(IKESA_INIT), SAil(KE=Curve25519,
ADDKE1=PQ_KEM_1|PQ_KEM_2|NONE,
ADDKE2=PQ_KEM_3|PQ_KEM_4 | NONE,
ADDKE3=PQ_KEM_5 |PQ_KEM_6|NONE, ...),

KEi (Curve25519), Ni, N(INTERMEDIATE_EXCHANGE_SUPPORTED) --->

27

State of the Art

<--- HDR(IKESA_INIT), SAr1(KE=Curve25519,
ADDKE1=PQ_KEM_2,
ADDKE2=NONE,
ADDKE3=PQ_KEM_5, ...),
KEr (Curve25519), Nr, N(
INTERMEDIATE_EXCHANGE_SUPPORTED)

<-- Peers calculate SKEYSEED(0O) based on Curve25519 shared secret -->
<-- Peers derive initial SK_d(0), SK_e(0), SK_a(0), SK_p(0) -->

HDR (IKE_INTERMEDIATE), SK {KEi(1) (PQ_KEM_2)} ---> [Protected with SK_e(0)/SK_a
(0]
<--- HDR(IKE_INTERMEDIATE), SK {KEr(1) (PQ_KEM_2)}

<-- Peers obtain SK(1) from PQ_KEM_2 -->
<-- Peers update SKEYSEED: SKEYSEED(1)=prf(SK_d(0), SK(1)|Ni|Nr) -->
<-- Peers derive updated SK_d(1), SK_e(1), SK_a(1), SK_p(1) -->

HDR (IKE_INTERMEDIATE), SK {KEi(2) (PQ_KEM_5)} ---> [Protected with SK_e(1)/SK_a
(D1
<--- HDR(IKE_INTERMEDIATE), SK {KEr(2) (PQ_KEM_5)}

<-- Peers obtain SK(2) from PQ_KEM_5 -->
<-- Peers update SKEYSEED: SKEYSEED(2)=prf(SK_d(1), SK(2)|Ni|Nr) -->
<-- Peers derive final SK_d(2), SK_e(2), SK_a(2), SK_p(2) -->

HDR(IKE_AUTH), SK{ IDi, AUTH, SAi2, TSi, TSr } ---> [Protected with SK_e(2)/
SK_a(2)/SK_p(2)]
<--- HDR(IKE_AUTH), SK{ IDr, AUTH, SAr2, TSi, TSr }

In this example, the Responder opted out of the second additional exchange (ADDKE2=NONE)
but agreed to the first (ADDKE1=PQ_KEM_2) and third (ADDKE3=PQ_KEM_5). Two separate
IKE_INTERMEDIATE exchanges follow IKESA_INIT, each updating the SKEYSEED and derived
keys. The final IKE_AUTH exchange uses the keys derived from the fully updated SKEYSEED(2).
This demonstrates the flexibility and robust, layered security achieved through this mechanism
for incorporating multiple PQC key agreements.

RFC 9370 (Main Body): Reconfirming ESP Key Suitability

Finally, the main body of RFC 9370 performs the essential validation regarding the suitability
of keys derived through these potentially complex, multi-stage KDF processes for use within the
ESP data plane [35]. The concern centres on whether the final derived keys possess sufficient
pseudorandomness and quality to meet the stringent demands of modern ESP ciphers, particu-
larly Authenticated Encryption with Associated Data (AEAD) (Authenticated Encryption with
Associated Data) algorithms.

AEAD modes, such as AES-GCM [27], are the cornerstone of contemporary ESP security,
offering both confidentiality and integrity in a single cryptographic primitive. Their security
relies on stringent assumptions about the randomness and uniqueness of the keys and initialization
vectors (IVs) used. A KDF that produces statistically weak or predictable keys from its input
could undermine these assumptions, even if the underlying AEAD cipher itself is strong.

RFC 9370 specifically investigates the robustness of the IKEv2 Key Derivation Function
(KDF), which uses the negotiated PRF (e.g., HMAC-SHA256) in a ”prf+” construction, when its
initial entropy source (SKEYSEED) incorporates shared secrets from PQC KEMs (via RFC 9242)
or from the iterative updates involving multiple PQC secrets (via the ADDKE mechanism described
in RFC 9370 Appendix A) [35]. The ”prf+” construction is defined as an iterative application of

28

State of the Art

the PRF to expand and mix entropy from the (potentially updated) SKEYSEED with other context
(e.g., nonces, SPI values) to generate arbitrary amounts of keying material for CHILDSAs. For
example: Key Material = prf(SK_d, N|S|SPI|...) where SK_d is derived from SKEYSEED.

The analysis in RFC 9370 arrives at key conclusions regarding this process [35]:

o PRF Robustness: The security of the derived keys fundamentally depends on the strength
of the underlying PRF. As standard PRF's like HMAC-SHA256 are believed to be quantum-
resistant (with their security level only quadratically reduced by Grover’s algorithm, a man-
ageable effect), the KDF itself remains robust in the quantum era.

o Entropy Mixing and Expansion: The iterative ”prf+” process is highly effective at mix-
ing and expanding the initial entropy from the (potentially iteratively updated) SKEYSEED.
Even if a raw shared secret from a PQC KEM were to exhibit subtly different statistical
properties compared to a classical DH secret, the cryptographic strength of the PRF ef-
fectively randomises the output. This ensures that the derived keys are computationally
indistinguishable from random for use in AEAD ciphers.

e No KDF Modifications Needed: Crucially, RFC 9370 concludes that no modifications
are required for the standard IKEv2 key derivation procedures when generating ESP keys
from PQC KEMs (or hybrid combinations, or multiple ADDKE updates), as long as these are
integrated according to RFC 9242, RFC 9243, and the guidelines in RFC 9370 Appendix A.

In essence, RFC 9370 provides the critical validation that the secure key establishment pro-
vided by RFC 9242 (direct integration) and RFC 9243/9370 Appendix A (flexible additions)
seamlessly translates into robust keying material for the ESP data plane. This completes the
end-to-end security picture, confirming that IPsec can be fully quantum-resistant from initial key
negotiation to data encryption, accommodating various levels of cryptographic layering.

With these standardised mechanisms (direct integration, flexible additions via intermediate
exchanges, and validated key derivation) providing a comprehensive and versatile toolkit, the
focus shifts to the practical software components and architectural patterns available for building
such systems. We begin this exploration by discussing the specific IPsec implementation chosen
as the foundation for this thesis: strongSwan.

2.3 Enabling Technologies and Architectures

Having established the theoretical underpinnings of PQC and the protocol-level mechanisms for
its integration into IPsec via IKEv2, we now turn our attention to the practical software compo-
nents and architectural patterns required to build a functional PQC-agile gateway. This section
provides an overview of the key technologies selected for this thesis work: the strongSwan IPsec
implementation, the Open Quantum Safe (OQS) project for providing PQC algorithm implemen-
tations, and the Open Policy Agent (OPA) for externalised policy management.

2.3.1 strongSwan: The Chosen IPsec Platform

The choice of a foundational IPsec platform is a critical design decision. In the Linux ecosystem,
the primary open-source contenders, strongSwan and Libreswan, both trace their lineage to the
FreeS/WAN project [36]. However, their modern architectures diverge significantly. Libreswan,
the default in many RHEL-based distributions, is architecturally monolithic in its cryptography,
integrating deeply with the Network Security Services (NSS) library and delegating all IKE
crypto functions to it [37]. While this approach is stable and simplifies FIPS compliance [38], it
makes adding new or experimental cryptographic primitives (like PQC) a complex undertaking
that would require modifying the core NSS integration.

In sharp contrast, strongSwan was redesigned with a highly extensible, multi-threaded archi-
tecture built around a powerful plugin system [39, 36]. This modularity is its key strategic

29

State of the Art

advantage and the principal reason for its selection in this thesis. It allows third-party features
to be added as discrete plugins without altering the core daemon. This very flexibility is what
the Open Quantum Safe (OQS) project leverages to provide ‘libogs‘ as a dedicated “ogs” plugin
[40], and it is the same mechanism that enables the external authorisation hook central to our
policy-based design.

Several other key factors reinforce this choice:

e Open Source and Transparency: As an open-source project, strongSwan’s codebase is
freely available for inspection, modification, and extension [41]. This was vital for under-
standing its internals, debugging integration, and developing the custom patches and scripts
for our policy hook.

o Standards Compliance and Feature Richness: The platform has a strong reputation
for adhering closely to IETF standards, including IKEv2 [42] and its many extensions.

e Active Development: The project is actively maintained with regular updates and a
responsive community [41]. This is crucial in the rapidly evolving PQC field, ensuring the
platform does not become a security liability.

This combination of an extensible plugin architecture, robust standards compliance, and active
development made strongSwan the only viable platform for building a flexible, forward-looking,
PQC-agile gateway.

Core Architecture

strongSwan’s architecture separates the key negotiation (control plane) from the packet processing
(data plane), aligning well with the conceptual model of IPsec itself [43].

IKE Daemon (charon): The central component is the IKE daemon, named ‘charon‘. This
user-space daemon is responsible for handling all IKEv1 and IKEv2 negotiations. It man-
ages the IKESA and CHILDSA states, performs cryptographic operations (key exchange,
encryption/decryption of IKE messages, signature generation/verification), interacts with
authentication backends (e.g., certificate stores, EAP methods), and crucially, configures
the Operating System (OS) kernel’s IPsec stack [43].

Kernel IPsec Stack (Data Plane): strongSwan itself does not typically perform the per-
packet encryption/decryption of user data (ESP processing). Instead, once ‘charon’
establishes a CHILDSA, it configures the underlying OS kernel’s native IPsec implemen-
tation to handle the data plane operations. On Linux, this is typically done via the
XFRM/NETKEY interface. The kernel is highly optimised for this task, ensuring
efficient packet processing. ‘charon‘ installs the negotiated cryptographic keys, algorithms,
and traffic selectors (SPD rules) into the kernel, which then automatically intercepts,
encrypts/decrypts, and forwards traffic matching those policies [43].

Plugin System: The functionality of the ‘charon‘ daemon is heavily augmented by plugins.
These dynamically loaded libraries provide implementations for specific cryptographic al-
gorithms (e.g., AES-GCM, SHA-256, RSA), authentication methods (EAP types, public
key infrastructure handling), network interfaces, logging mechanisms, and advanced fea-
tures. This modularity allows administrators to load only the necessary components and,
more importantly, allows developers (including researchers) to add new capabilities by writ-
ing custom plugins [43]. The integration of PQC algorithms via the OQS project and the
external policy hook used in this thesis are both realised through this plugin mechanism.

In summary, strongSwan provides a robust, standards-compliant, and highly extensible plat-
form for implementing IPsec-based VPNs. Its open-source nature and powerful plugin architecture
make it an ideal choice for integrating and experimenting with emerging technologies like Post-
Quantum Cryptography and externalised policy control, forming the practical foundation upon
which the system described in this thesis is built. The following sections will delve into the specific
plugins and external systems that enable the PQC and crypto-agile capabilities of our gateway.

30

State of the Art

User Space

Auth Crypto
Plugins Plugins
charon (IKE Daemon)

y §

Policy
Plugins

IKE Message Processing /
SA Manhgement

'SR
=
=
o
"
=
o
=]
o

¥
=
&
g
S~
Z
&
H
=
S
=
—

Figure 2.4. Simplified architectural overview of strongSwan, highlighting the user-space IKE
daemon (‘charon‘) with its plugin system and its interaction with the kernel’s IPsec data plane.

2.3.2 Open Quantum Safe (0QS): PQC Algorithm Integration

While strongSwan provides the robust and standards-compliant framework for IPsec and IKEv2
negotiations, the platform itself does not inherently contain implementations of the novel PQC
algorithms necessary to counter the quantum threat. The complex task of implementing, testing,
and optimising these sophisticated cryptographic primitives requires dedicated effort. Integrating
such algorithms into existing, complex communication protocols like IKEv2 demands secure,
reliable, and well-vetted implementations, preferably accessible through a stable and consistent
interface. This crucial role of providing accessible and high-quality PQC implementations is
fulfilled admirably by the Open Quantum Safe (OQS) project [44].

The Mission and Architecture of the OQS Project: The OQS project is a collabora-
tive, open-source initiative with a clear mission: to support the development and prototyping
of quantum-resistant cryptography [44]. It aims to be a central resource for developers and re-
searchers, facilitating the transition towards PQC by offering readily usable implementations of
candidate and standardised algorithms. This facilitates experimentation, benchmarking, and ul-
timately, the integration of PQC into real-world applications and protocols. The project is not
developing new cryptographic schemes itself, but rather curating and integrating implementations
from the global cryptographic community, particularly those submitted to the NIST standardis-
ation process [45].

31

State of the Art

OQS achieves its goals through a carefully designed layered architecture:

e libogs: The Core Cryptographic Library: At the heart of the project lies 1ibogs, a
C library designed for portability and ease of use [45]. Its primary contribution is providing
a unified Application Programming Interface (API) across a wide spectrum of PQC KEMs
and digital signature schemes. This abstraction layer is invaluable; it allows developers
to experiment with or switch between different PQC algorithms (e.g., from lattice-based
Kyber to hash-based SPHINCS+) with minimal changes to their application code. 1ibogs
encapsulates optimised implementations, often incorporating contributions directly from the
algorithm designers or leveraging platform-specific optimisations (like AVX2 instructions
where available) to enhance performance. It diligently tracks the NIST process, providing
implementations not only for the finalised standards (ML-KEM, ML-DSA, SLH-DSA) but
also for many candidates from earlier rounds and the ongoing fourth round, making it an
essential tool for comparative research and for maintaining crypto-agility [45].

e Language Wrappers: Recognising that not all development occurs in C, the OQS project
provides wrappers for several popular programming languages (including Python, Java, C#,
Go). These wrappers expose the functionality of 1ibogs to a broader developer community,
further lowering the barrier to entry for PQC integration.

e Integration Demonstrators (Forks): To prove feasibility and provide practical exam-
ples, OQS maintains integrated ”forks” or patched versions of widely-used network secu-
rity protocols and libraries. These demonstrators showcase how PQC can be incorporated
into existing ecosystems. Notable examples directly relevant to network security include
ogs-0penSSL (a modified branch of the ubiquitous OpenSSL library enabling PQC in TLS
1.3) and, crucially for this thesis, ogs-strongSwan (a branch of strongSwan demonstrat-
ing PQC integration within IKEv2/IPsec) [46]. While these forks serve as vital prototypes
and research tools, they often lag behind the main development branches of the upstream
projects and require careful management regarding updates and security patches.

Mechanism of OQS Integration within strongSwan: The integration of OQS’s capabili-
ties into the strongSwan platform, as demonstrated by the ‘ogs-strongSwan‘ fork and potentially
through dedicated plugins in future official releases, is pivotal for constructing a PQC-capable
gateway. This integration masterfully leverages strongSwan’s modular plugin architecture (de-
tailed in Section 2.3.1) to seamlessly incorporate the suite of PQC algorithms provided by 1ibogs
directly into the cryptographic operations managed by the ‘charon‘ IKE daemon.

The primary component facilitating this is typically an ogs plugin (or a similarly named
component). This plugin acts as a crucial bridge:

e Linking and Registration: The plugin links against the compiled 1ibogs C library.
Upon initialisation, it interacts with strongSwan’s cryptographic API to register the PQC
algorithms available within 1iboqs (e.g., various parameter sets of ML-KEM, ML-DSA,
SLH-DSA, and potentially others) as named cryptographic primitives that ‘charon‘ can
understand and negotiate. This registration associates the algorithm names used in
strongSwan’s configuration (e.g., ‘kyber768‘) with the corresponding functions provided by
the ogs plugin.

e Dispatching Operations: When an IKEv2 negotiation requires a PQC operation, for
instance, generating a key pair for ML-KEM, encapsulating a secret, decapsulating a ci-
phertext during IKESA_INIT or IKE_INTERMEDIATE, or signing/verifying data for the AUTH
payload using ML-DSA, the ‘charon‘ daemon identifies the required algorithm as being
provided by the ogs plugin. It then dispatches the specific cryptographic task (e.g., ”en-
capsulate using this public key”) to the plugin.

e Invoking libogs: The ogs plugin receives the request from ‘charon‘, translates it into
the corresponding API call defined by 1ibogs, invokes the appropriate function within
the libogs library (which performs the actual PQC computation), and then returns the
result (e.g., the ciphertext, the shared secret, the signature, or a verification status) back to
‘charon‘.

32

State of the Art

While some highly specialised PQC algorithms might necessitate their own dedicated strongSwan
plugins for optimal integration or to handle unique protocol interactions, the general ogs plugin
provides a versatile and unified interface for the majority of schemes supported by libogs.

This plugin-based integration empowers a ‘libogs‘-enabled strongSwan daemon (‘charon‘) with
the necessary capabilities to fully support quantum-resistant IKEv2 as defined by the relevant
standards:

e It can correctly advertise support for specific PQC KEMs (Type 6 transforms) and sig-
nature schemes (Type 7 transforms or via Authentication Method) during the SA payload
negotiation in IKESA_INIT, using the appropriate IANA-assigned identifiers.

e It can execute the required PQC KEM operations (key generation, encapsulation, de-
capsulation) for both direct integration (RFC 9242) and additional key exchanges via
IKE_INTERMEDIATE (RFC 9243/9370), handling the specific data formats within the KE pay-
loads.

e It can generate and verify PQC digital signatures (e.g., ML-DSA, SLH-DSA) for the AUTH
payload within the IKE_AUTH exchange, ensuring quantum-resistant peer authentication.

e It can seamlessly facilitate hybrid key exchanges by performing both a classical and a PQC
key exchange and providing both resulting shared secrets to ‘charon‘’s core KDF logic for
concatenation and subsequent SKEYSEED derivation, as detailed in Section 2.2.3.

2.3.3 Policy-Based Control Architectures and Engines

The cryptographic agility necessitated by the quantum threat, as discussed in Section 2.1.5,
requires more than just support for multiple algorithms within the gateway. It demands an
architectural shift towards dynamic, externally manageable security decision-making. Static con-
figurations embedded within the gateway logic are too rigid to adapt quickly to new standards,
vulnerabilities, or operational requirements. This leads us to the paradigm of Policy-Based
Network Control (Policy-Based Network Control (PNC)), specifically focusing on its ap-
plication to access control and cryptographic negotiation through the PDP/PEP model, and the
role of modern policy engines like Open Policy Agent (OPA) in realising this model effectively.

The PDP/PEP Model for Access and Cryptographic Control

Policy-Based Network Control moves away from imperative configuration (”do this”) towards a
declarative approach (”this is the desired state”). At its core lies a well-defined architectural sep-
aration of concerns, formalised by the IETF in frameworks like the one for policy-based admission
control [47], and often visualised in access control models (see, for example, the XACML reference
model discussed in [48]). This separation is primarily embodied by two key functional roles:

e Policy Enforcement Point (PEP): This component acts as the gatekeeper, situated
directly in the path of execution or communication. In our context, the strongSwan gateway
itself functions as the PEP. Its primary responsibilities are to intercept relevant events (e.g.,
an incoming IKEv2 connection request, specifically the IKESA_INIT or IKE_AUTH messages
containing cryptographic proposals), gather contextual information about the event, request
a policy decision from the PDP, and then rigorously enforce the received decision [48]. For
instance, if the PDP mandates the use of a specific hybrid PQC suite, the PEP (strongSwan)
must ensure that the subsequent negotiation adheres to this mandate, potentially rejecting
incompatible proposals or forcing the selection of compliant algorithms. The PEP does not
interpret the policies itself; it merely acts upon the authoritative decision it receives [47].

e Policy Decision Point (PDP): This component serves as the centralised logic engine
where policies are stored, interpreted, and evaluated. It receives decision requests from one
or more PEPs; analyses these requests against the configured policy set (considering all
relevant contextual data provided by the PEP, such as peer identity, proposed algorithms,

33

State of the Art

time of day, etc.), and returns a clear, actionable decision (e.g., Permit, Deny, Permit with
specific cryptographic parameters) [47, 48]. Crucially, the PDP is decoupled from the en-
forcement mechanism. This decoupling allows policies to be managed and updated centrally
without modifying the PEPs, providing significant operational flexibility and agility. While
historically implemented using various technologies, modern PDPs often leverage dedicated
policy engines.

Optionally, this core model can be augmented by other components often found in compre-
hensive policy frameworks like XACML [48]:

e Policy Information Point (Policy Information Point (PIP)): Responsible for re-
trieving additional attributes or context needed for policy evaluation (e.g., user roles from
an LDAP directory, device posture information) that might not be directly available to the
PEP.

e Policy Administration Point (Policy Administration Point (PAP)): The compo-
nent or interface used by administrators to author, manage, store, and distribute policies to

the PDP.
2
1.8,0, T
T
- 8. authorised/denied
subject <

repository

0. write

5. retrieve
policy

© A.Lioy (Politecnico di Torino, 2008-2023)

Figure 2.5. Reference architecture for policy-based access control, illustrating the roles of PEP,
PDP, PIP, and PAP, inspired by the XACML model (Adapted from [48]).

While PIP and PAP are important for a complete system, the fundamental interaction enabling
crypto-agility in our gateway focuses on the dynamic dialogue between strongSwan (PEP) and
an external PDP. This architecture allows us to move the complex logic of selecting appropriate
PQC algorithms, enforcing hybrid modes, or reacting to newly discovered vulnerabilities out of
strongSwan’s core configuration files and into a dedicated, more flexible policy engine.

Open Policy Agent (OPA) as a Modern PDP Implementation

To implement the PDP role effectively, particularly in a cloud-native or modern infrastructure
context, a versatile and powerful policy engine is required. Open Policy Agent (OPA) [49] has
gained significant prominence as an open-source, general-purpose policy engine designed precisely
for this kind of decoupled policy decision-making. OPA is not specific to network security but
can enforce policies across a vast array of software systems, including microservices, Kubernetes
clusters, Continuous Integration/Continuous Deployment (CI/CD) pipelines, and, crucially for
us, custom integrations with network gateways like strongSwan [50].

34

State of the Art

Several key features make OPA an excellent choice for implementing the PDP in our PQC-agile
architecture:

e Declarative Policy Language (Rego): OPA policies are written in Rego, a high-level
language designed specifically for expressing policies over complex, hierarchical data struc-
tures (like JavaScript Object Notation (JSON)). Rego focuses on querying input data and
existing policy data to produce decisions, making policies relatively straightforward to read,
write, and reason about. This allows administrators to define rules like, "For an IKEv2
connection, if the peer proposes ML_KEM_768_IPD and ECDH_P384, the decision is ’permit’
and the selected algorithms must include both,” in a clear, declarative manner, separate
from the enforcement code.

e Contextual Decision-Making with Structured Data: OPA excels at consuming ar-
bitrary JSON (or YAML Ain’t Markup Language (YAML)) data as input to its policy
evaluations. This is ideal for our use case, where strongSwan (the PEP) can formulate a
detailed JSON object containing all relevant information from the IKEv2 negotiation (e.g.,
proposed transforms for encryption, integrity, PRF, classical Key Exchange Payload (KE),
PQC KEM, peer identity certificates, source Internet Protocol (IP) address) and send it to
OPA. OPA’s Rego policies can then parse this rich context to make fine-grained decisions,
far beyond simple allow/deny verdicts.

e Decoupling and Agility: OPA embodies the PDP/PEP separation. strongSwan only
needs to know how to query OPA (typically via a simple RESTful Application Programming
Interface (API) call) and how to interpret the JSON decision returned. All the complex logic
regarding algorithm selection, hybrid mode enforcement, risk assessment based on peer
identity, or cryptographic deprecation resides within OPA’s Rego policies. These policies
can be updated dynamically, often without restarting strongSwan, providing the essential
mechanism for cryptographic agility. If a vulnerability is found in, say, ML_KEM_512_IPD, an
administrator can update the OPA policy to disallow its negotiation, and this change takes
effect immediately across all gateways querying that OPA instance.

e Performance and Deployment Flexibility: OPA is designed to be lightweight and per-
formant. Policies can be compiled for efficient evaluation. It can be run as a standalone
daemon, a sidecar container, or even embedded as a library, offering flexibility to suit dif-
ferent deployment architectures and latency requirements. For an IPsec gateway, running
OPA as a co-located service often provides the necessary low-latency responses for real-time
IKEv2 decisions.

By leveraging the standardised PDP/PEP architecture and employing OPA with its powerful
Rego language as the PDP, we can construct a strongSwan-based gateway where the selection
and enforcement of cryptographic algorithms, including complex PQC and hybrid configurations,
are governed by external, dynamically updatable policies. This architecture forms the core of the
crypto-agile solution developed in this thesis.

2.4 Performance of PQC in IKEv2: A Literature Review

The transition to PQC is not purely a question of security; it is also one of practical performance.
The algorithms discussed in Section 2.1.3 present significant operational trade-offs compared to
their classical ECC counterparts. Well understanding these trade-offs is essential, as they di-
rectly influence which algorithms can be deployed and serve as the baseline for the experimental
validation in Chapter 4 of this thesis.

The academic literature has focused on quantifying this overhead, primarily using the same
software stack as this project: strongSwan [41] integrated with 1ibogs [45]. The performance
impact can be analysed in two main categories: computational overhead and bandwidth overhead.

35

State of the Art

Computational Overhead (Latency) For a latency-sensitive protocol like IKEv2 [42], the
computational cost of the key exchange (IKESA_INIT [42]) and authentication (IKE_AUTH [42]) is
critical. Multiple studies have benchmarked this, reaching a broad consensus [51, 52

e Lattice-based KEMs (Kyber/ML-KEM): Counter-intuitively, the primary PQC
KEMs are exceptionally fast. Several analyses show that ML-KEM (Kyber) often outper-
forms high-security classical ECC (like P-521) and is at least comparable to the common
P-256 [51]. This means that for the key exchange, the computational bottleneck is not
PQC.

e Lattice-based Signatures (Dilithium/ML-DSA): Similarly, ML-DSA is computation-
ally very efficient for both signing and verifying.

e Hash-based Signatures (SPHINCS+/SLH-DSA): This is the exception. While verifi-
cation is fast, the signing operation is computationally intensive and slow [52]. This directly
impacts the gateway (as the responder in the IKE_AUTH exchange), which must perform this
slow operation, potentially increasing handshake latency or opening a vector for Denial of
Service (DoS) attacks.

Bandwidth Overhead (Fragmentation) The most significant and problematic finding in the
literature is not computation, but data size [53]. As introduced in Section 2.1.4, PQC public
keys and signatures are orders of magnitude larger than their classical counterparts.

This directly impacts the IKEv2 protocol [42], which runs over UDP. The KE, CERT, and
AUTH payloads become so large that the IKEv2 messages exceed the standard Ethernet Maximum
Transmission Unit (MTU) (1500 bytes), resulting in IP fragmentation [51, 53]. This is a critical,
practical failure point. Many firewalls, NAT devices, and network providers are configured to drop
fragmented UDP packets as a security measure. Consequently, a PQC-enabled IKEv2 handshake
may fail entirely, not due to a cryptographic error, but due to incompatible network infrastructure
[53].

This confirms that that a successful PQC migration is not as simple as “swapping” algorithms.
It requires an agile architecture, like the one proposed in this thesis, that can make intelligent,
policy-based decisions. Such a system must be able to manage the trade-offs between the high-

security but large SLH-DSA and the fast, smaller ML-DSA, and potentially negotiate different
suites based on network paths or peer capabilities to avoid failures from fragmentation.

36

Chapter 3

Design of the PQC-Agile Gateway

Chapter 2 closed by translating the quantum threat into a concrete set of technologies and stan-
dards: lattice-based KEMs and signatures now formalised by NIST, the RFC extensions that
carry them within IKEv2, the strongSwan architecture that handles modern IPsec, and the pol-
icy engines capable of externalising trust. The purpose of this chapter is to map that theoretical
foundation onto the artefacts that constitute our system. We move from “what must be done“ to
“how the gateway is structured so that it can do it “, focusing on architectural commitments, policy
partitioning, and the control- and data-plane contracts that bind the implementation together.

3.1 From Requirements to Design Principles

The design phase began by aligning the abstract requirements captured in the previous chapters
with the practical constraints of our deployment. Each principle documented below corresponds
to tangible code or configuration that appears later in this thesis, ensuring that the logical model
is traceable all the way down to the implementation described in Chapter 4.

3.1.1 Security Objectives

The first objective is to mitigate the “harvest now, decrypt later“ threat by ensuring that every
IKE negotiation is checked against a quantum-aware policy before an SA reaches the kernel.
Operationally, the gateway prefers the PQC suites offered by the peer, and the policy engine can
encode thresholds such as the minimum NIST security level or explicit whitelists and blacklists.
Sessions that fail these rules are rejected during negotiation, which prevents the quiet regression
that often accompanies transitional deployments [1].

The second objective is resilience. Confidentiality and authenticity must survive even if a
single primitive is broken in future, as emphasised in Section 2.1.5. For peers that support it, the
policy can insist on hybrid mode so that the derived keys inherit strength from both classical and
lattice-based contributions. Rekeying follows the same approach, keeping the negotiated posture
over time so that compromise of one family does not cascade into a systemic failure.

The third objective is accountability. Embedding trust choices in swanctl.conf would not
give administrators the speed or audit trail required in the PQC transition. Instead, strongSwan
acts as a PEP and delegates the final decision to Open Policy Agent as the PDP. The patched
ext-auth listener extracts the runtime proposal, forwards it to OPA, and records the outcome
together with the policy rationale. Every permit, deny, or forced renegotiation can therefore be
traced back to an explicit declarative rule, which fulfils both compliance and operational needs.

3.1.2 Functional Scope

The gateway fulfils its mandate by handling two complementary families of flows that traverse
exactly the same enforcement stack. Inbound traffic originates on the partner side, terminates

37

Design of the PQC-Agile Gateway

on the enforcement gateway, and is delivered to the internal services once policy approval is
obtained. Outbound traffic follows the reverse path: it starts on the legacy estate, is normalised
through the same controls, and reaches the partner environments only when the policy allows
it. This symmetry ensures that a single declarative policy governs both directions, even when
the underlying selectors and forwarding logic diverge. Chapter 4 will describe how these abstract
responsibilities map onto concrete containers and network segments.

The control plane acts as the liaison between requirements and enforcement. The external
authorisation hook captures every IKE negotiation, enriches it with certificate and context meta-
data, and submits the bundle to Open Policy Agent. The suite publisher records the negotiated
primitives so that the decision store can expose them to downstream consumers, while the child
manager translates the policy response into deterministic CHILD_SA operations. Because each
actor shares a consistent view of the negotiation, the resulting audit trail spans the policy decision,
the negotiated suite, and the installed state inside strongSwan.

Hybrid readiness remains within scope for every connection profile. The gateway is able to
advertise the additional key exchanges defined in Section 2.2.3 so that peers capable of lattice-
based encapsulation can contribute it without bespoke overlays. When a peer falls back to purely
classical primitives, the same policy path still records the downgrade and can instruct the gateway
to proceed or to reject the session altogether. This design keeps the migration to post-quantum
cryptography incremental and reversible.

Finally, legacy interoperability and observability are treated as first-class outcomes. Classical-
only partners continue to authenticate with their existing credentials yet still traverse the external
policy checks. The decision store feeds both real-time dashboards and automated validation
harnesses, so the evidence collected during testing mirrors the artefacts available in operations.
This closes the loop between the requirements asserted here and the practical workflow that
sustains them, ready for the architectural breakdown that follows in the rest of Chapter 3.

3.1.3 Operational Constraints

The design must respect the boundaries imposed by a containerised deployment. The gateway,
its helpers, the partner simulators, and the policy backends are orchestrated through the same
compose stack that will be reused in Chapter 4, so every component has to tolerate rebuilds and
restarts without manual intervention. The bootstrap script binds the public interface, reinstalls
the static routes, and primes the credential stores each time the container comes up; design choices
therefore favour deterministic configuration over ad hoc tuning.

Automation further constrains timing and state management. The strongSwan commands
invoked by the validation harness expose timeouts that have already been tuned to match the
behaviour of hybrid IKE handshakes. Any new logic introduced in the control plane must com-
plete within those windows or be able to signal failure in a way that the harness can capture.
Similarly, helper processes such as the suite publisher and the child manager assume that negoti-
ation artefacts appear in a predictable order; the design avoids out-of-band mutations that would
invalidate that assumption.

The decision store is the coordination point for asynchronous workers and for observ-
ability. Besides the policy verdicts (ike-< id >.json), it now holds the negotiated-suite
cache (suite-cache/), pending extraction requests (suite-requests/), CHILD snapshots cap-
tured by child_suite_cache.py (child-suites/), and outbound provisioning state (tunnel
-provisioning/). Components that write to or read from those directories must obey the
naming convention and hand-off rules already established, otherwise downstream consumers
would miss state transitions or report false anomalies; the same conventions feed the dashboards
and forensic workflows described later in this chapter.

Finally, the audit and monitoring requirements dictate how the system surfaces its internal
state. Operational tooling depends on structured logs emitted by the external authorisation hook,
the child manager, and the decision logger; the design therefore keeps those channels authorita-
tive and refrains from duplicating their content elsewhere. Any extension to the gateway must
integrate with the same logging scheme so that incident responders can follow a single, consistent
trail from the initial negotiation to the installed security association.

38

Design of the PQC-Agile Gateway

3.2 Logical Architecture

This section assembles the logical view of the gateway by enumerating the components that
implement the control and policy layers. It highlights how the building blocks interact so that
later sections can drill into flows, trust boundaries, and enforcement mechanics.

Dashed boxes denote logical groupings.

strongSwan
charon

IKE metadata

Policy plane
Y T mmm s \

LW External authorisation OPA queryI Open Policy Agent}

orker (opa-auth-check.py) Policy decision
J

1

:

1

N 1

A 1 !
1 1

B Events : :
\ :

1

1

1

1

1

1

1

Cached suite| Dersist decision

2 Monitoring X
\4 é s M :
Decision store %3;,. ! Prometheus :
/run/opa-ike/ % L !
' "Dashboardsl
: e M :
/ Events \ Grafana '
Ca?update Work 1tems\ / : L) :
L Suite publisher } L Child manager
(vici-suite-publisher.py) (vici-child-manager. py)

Figure 3.1. Logical architecture of the PQC-agile gateway, showing control, policy, and observ-
ability components.

3.2.1 Component Overview

The strongSwan stack remains the authoritative IKE and IPsec engine, with charon managing
security associations and exposing lifecycle hooks that the rest of the system relies upon. The
daemon operates with the standard plugin set and relies on the patched external authorisation
interface to delegate policy decisions instead of embedding static rules inside swanctl.conf.

The external authorisation worker is implemented by the Python script opa-auth-check
.py. It runs inside the gateway container, gathers the negotiation context via the PLUTO_* envi-
ronment variables, and orchestrates suite extraction before calling Open Policy Agent. Its output
is the decision file stored under the shared state directory that other helpers consume.

The patched listener also captures the “OPA_HINT“ lines that the hook emits whenever a
negotiation is denied. Each hint stores the IKE unique identifier together with the minimum key-
exchange and certificate levels that OPA demanded, so the listener can deliver a deterministic
response back to the peer on the next IKE_AUTH. This notifier does not alter the enforcement
path denied negotiations still fail closed-but it prevents initiators from guessing which profile they
must adopt when the gateway tightens its policy.

39

Design of the PQC-Agile Gateway

Two dedicated VICI-based helpers insulate charon from long-running tasks. The
vici-suite-publisher.py service resolves negotiated primitives either through VICI queries
or by parsing the live charon log and then publishes cache entries for the authorisation hook.
The vici-child-manager.py service watches the decision store, reconciles pending actions with
the live IKE inventory, and initiates or tears down CHILD_SAs with deterministic reqids and
bounded back-off. It also tracks the active IKE pair for each service and mapped peer, probes
/vl/data/rekey/ike _sa/decision with the old-versus-new suites, and emits REKEY_ALLOW or
REKEY_DENY events based on the OPA verdict. When the policy approves the upgrade the helper
terminates the predecessor IKE and promotes the newcomer; when the verdict rejects a down-
grade it kills the new IKE, keeps the previous one pinned in /run/opa-ike/ike-< id >.json,
and records the failure for audit.

The child-suite cache helper is implemented by child_suite_cache.py. It subscribes to
up/down notifications for each CHILD_SA, snapshots the AEAD and DH identifiers together with
both traffic selectors, and persists JSON artefacts under /run/opa-ike/child-suites/ so that
verifiers can recover the exact suite even after the tunnel is torn down.

The companion tunnel provisioner, vici-tunnel-provisioner.py, scans the legacy con-
nections exposed by swanctl --list-sas, queries the OPA policy tunnel _provisioning.rego
for the outbound gw-wan-out-* profile to initiate, and records outcomes under /run/opa-ike
/tunnel-provisioning/.

The decision store under /run/opa-ike/ collects every artefact exchanged between syn-
chronous and asynchronous workers: the OPA verdicts (ike-< id >. json), the negotiated suite
cache (suite-cache/), pending extraction requests (suite-requests/), the per-CHILD ESP
snapshots maintained by child_suite_cache.py, and the tunnel-provisioning state emitted by
the outbound watcher (tunnel-provisioning/). Its structure lets helpers restart without losing
context while keeping the working set bounded.

The Open Policy Agent service executes the declarative policies that drive the gateway. It
runs as a dedicated container that exposes the REST endpoint used by the authorisation worker
and loads policy bundles that encode cryptographic thresholds, traffic selectors, and certificate
requirements.

The decision logger collects structured events emitted by the hook and by the child manager.
It preserves an immutable audit trail, exports Prometheus metrics, and feeds the dashboards that
operators use to cross-check policy evaluations against the installed state of the gateway.

The monitoring layer complements the control plane with visibility tooling. Prometheus
scrapes the decision logger and other exporters, while Grafana provides prebuilt dashboards that
correlate policy responses, suite choices, and tunnel status with the compose services that im-
plement the gateway. Together they ensure that operational staff can trace an IKE negotiation
from the original request through to the final enforcement action without leaving the monitored
surface.

3.2.2 Interaction View

A typical inbound negotiation starts the moment charon selects a proposal for a partner peer
and raises the external authorisation hook. The hook inspects the PLUTO_* environment, trans-
lates ephemeral identifiers into the canonical connection names, and immediately asks the suite
publisher whether the negotiated primitives have already been cached. If the cache is empty the
hook emits a suite request, but it does not block: instead it begins assembling the payload for
Open Policy Agent using the certificate metadata, the negotiated suite (either retrieved instantly
or read back from the cache on the next iteration), the traffic selectors, and the connection role.
The result is a JSON document that captures the entire context of the IKE negotiation and is
sent via HTTP to OPA. A positive policy response contains both the allow/deny verdict and the
child profile that must be enforced; the hook persists that decision to /run/opa-ike/, removes
any stale files with the same unique identifier, and queues an event for the decision logger so the
audit trail starts with the exact payload accepted by the gateway.

40

Design of the PQC-Agile Gateway

The decision store is the rendezvous point for every component that contributes to enforcement.
As soon as the authorisation hook writes ike-<id>. json, the child manager notices a new entry
and checks whether it has already been installed. If not, it reconciles the decision with the live
IKE inventory through VICI. Installations that require a childless phase first see the manager
waiting for the base IKE to settle, then issuing the CREATE_CHILD_SA using the reqid range
reserved for that profile. The same watchdog is responsible for retries: should the CHILD creation
fail because the gateway and peer raced to install the tunnel, the manager retries with exponential
backoff and records the outcome by rotating the state file to .done or .failed. Each transition
produces a structured log entry containing the unique identifier, the command issued, and the
reason for success or failure; these CHILD_MANAGER_EVENT lines remain in the local logs and are
made available to dashboards via file tailing. When the CHILD comes up the up/down hook
reads the cached AEAD/DH pair and traffic selectors from /run/opa-ike/child-suites/ before
invoking child.create, so the audit trail always references the exact suite that charon installed.

Inbound data-plane readiness is therefore a collaborative effort. The hook records the prove-
nance of the OPA verdict; the suite publisher supplies cryptographic context; the child man-
ager enforces the decision and confirms the kernel state; the decision logger captures every
step as a machine-readable audit stream. Operators can replay this sequence after the fact
by correlating the decision file stored in /run/opa-ike/, the suite cache entry produced under
/run/opa-ike/suite-cache/, and the structured log entries ingested by Prometheus. Should an
inbound negotiation fail, those artefacts reveal whether the fault lies with policy evaluation, suite
extraction, VICI orchestration, or the peer itself.

Outbound flows reuse the exact same contracts even though the gateway acts as ini-
tiator. Legacy traffic is detected automatically by vici-tunnel-provisioner.py, which
scans swanctl --list-sas for the classic gateway-legacy-* profiles, asks the OPA policy
tunnel provisioning.rego which gw-wan-out-* profile to raise, and seeds the decision store
before calling swanctl --initiate. Manual tooling such as new-outbound-decision.sh re-
mains available for ad hoc tests, but the steady-state path is now driven by the provisioner. The
authorisation hook still invokes OPA, but this time the role is “initiator“ and the peer metadata
is derived from the outbound connection template rather than a remote certificate. Because the
decision file already exists, the child manager does not wait for a new entry; instead it watches
the state transition from .json to .done once the outbound child has been created successfully.
Any transient failures-missing suite, slow VICI response, or partner rejection-follow the same
retry and logging logic as inbound negotiations, keeping the operational model uniform across
directions.

When OPA denies a negotiation the external authorisation worker also emits an “OPA_HINT ¢
describing the required key-exchange and certificate posture. The listener caches that hint along-
side the IKE unique identifier and, if the peer retries, attaches a vendor notify (ID “0xA001%)
to the next outbound IKE_AUTH with payload required ke=<KE-Lx>;cert=<SIG-Ly>. Peers
that understand the extension can adjust their suite or certificate before reattempting, while
legacy peers ignore the notify without affecting interoperability-the enforcement decision remains
governed entirely by the policy verdict stored under “/run/opa-ike/“.

Rekeys reuse the same instrumentation. When strongSwan raises a new IKE_SA while the
previous tuple for that service still exists, the child manager treats the pair as a candidate make-
before-break event. It collects the PRF, DH, and hybrid KEM identifiers from both SAs, posts
them together with service and peer metadata to data.rekey.ike _sa.decision, and waits for the
verdict. An allow response produces a REKEY_ALLOW log, the manager terminates the predecessor,
and the decision file keeps only the new identifier. A deny response causes a REKEY DENY line, the
helper deletes the new IKE, and the old SA remains active until the peer retries with compliant
primitives.

The monitoring stack consumes the resulting event stream. The decision logger exposes high-
cardinality labels such as peer name, service, policy outcome, and suite source, which Prometheus
scrapes at regular intervals. Grafana dashboards then correlate those metrics with the raw decision
files and the strongSwan state to provide a live view of which connections are pending, which have
completed, and which have failed. Because every helper reports its own progress, an operator can
see, for any given unique identifier, when the policy decision was recorded, when the suite was

41

Design of the PQC-Agile Gateway

published, when the child manager attempted installation, and whether the result propagated
to the kernel. This interaction view therefore closes the loop between the policy engine, the
enforcement components, and the observability layer, ensuring that each negotiation can be traced
and reasoned about end to end.

3.2.3 Trust and Threat Posture

The gateway deliberately separates responsibility into three trust zones. The enforcement sur-
face lives inside the pep-gateway container where strongSwan, the external authorisation hook,
the suite publisher, the child-suite cache helper, the tunnel provisioner, and the child man-
ager share the decision store under /run/opa-ike/ (including suite-cache/, suite-requests/,
child-suites/, and tunnel-provisioning/). That directory is created with root ownership
and is not bind-mounted outside the container, so only the helper processes can touch the state
files. Everything beyond that boundary-Open Policy Agent, the decision logger, the CTI bun-
dle service, Prometheus, and Grafana-resides on the isolated “opa-network“ bridge defined in
docker-compose.yml. The policy plane (OPA + decision logger) trusts the gateway only to
forward well-formed requests; it never assumes that local configuration is correct and therefore
revalidates every suite, certificate, and traffic selector before returning an allow. During rekeys
the child manager also consults the rekey_ike_sa.rego decision to ensure the new IKE suite
meets or exceeds the service minimum before promoting it. External peers sit outside the trust
domain completely: they authenticate with certificates rooted in the PQ gateway PKI, and any
mismatch in issuer, service, or selector is denied before the kernel sees the CHILD_SA.

Security-hardening in the compose stack reinforces these boundaries. The OPA, decision-
logger, CTI updater, and Prometheus containers all run as non-root users with
no-new-privileges=true, cap_drop: [ALL], and read-only filesystems backed by tmpfs scratch
space. Prometheus and Grafana export only their HT TP dashboards; the policy plane is reachable
exclusively on the internal bridge, so a compromised peer cannot talk to OPA directly. Within the
gateway container, the authorisation hook is fail-closed: if suite extraction times out or OPA does
not answer, the negotiation is denied and logged. The child manager persists “.done*/“.failed“
markers to prevent replay of stale decisions, while the verifier script pulls the cached AEAD/DH
and selectors from /run/opa-ike/child-suites/, revalidates them with child.create, and
(when ENFORCE_TEARDOWN=true) tears down any CHILD that drifts from policy.

Threat intelligence and policy bundles are treated as untrusted input even though they orig-
inate from internal services. The CTI unified service signs each bundle with JWT ES512 and
exposes it behind bearer-token authentication, and OPA validates those signatures before loading
new data. At evaluation time OPA blends the CTI verdicts with the peer certificate and negoti-
ated suite to enforce minimum KE/SIG levels per service. That approach mitigates harvest-now-
decrypt-later risks by refusing to settle for weaker algorithms and rejecting rekeys that would
downgrade the tunnel. Operational tooling closes the loop: the decision logger emits immutable
events consumed by Prometheus, and Grafana dashboards correlate decisions, suite selections,
and rekeys so that operators can spot anomalies (unexpected denials, repeated retries, suspicious
source IPs) and respond before they turn into incidents. The tunnel provisioner and child-suite
cache write their own structured logs under /var/log/ so anomalies in outbound bootstrap or
ESP capture appear alongside the existing ext-auth and child-manager streams.

Residual risk is explicitly bounded. If an attacker breached the gateway container, they could
attempt to tamper with /run/opa-ike/, but the helper processes would record the inconsistency
in their structured logs and Prometheus metrics (missing “.done* files, duplicate reqids, or verifier
failures). If OPA were compromised, the fail-closed enforcement path would still prevent an
unapproved tunnel from reaching the kernel, and the audit trail would show the unexpected
decisions. Finally, policy updates and CTTI bundles are versioned and logged, so every change to
the trust policy is traceable and can be rolled back if a regression is detected.

42

Design of the PQC-Agile Gateway

3.3 Crypto-Agility Strategy

3.3.1 Algorithm Portfolio and Hybrid Policy Intent

The gateway negotiates hybrid suites that combine classical DH with ML-KEM while keeping
BIKE and HQC in reserve for CHILD SAs. In pep-gateway/swanctl/swanctl.conf the propos-
als appear with the strongSwan naming (kel_kyber{1,3,5} etc.), but the policy bundle expresses
the same suites as ML-KEM-{512,768,1024} and relies on crypto_mapper.py to translate between
the two. Child templates defined in policy/cti/child_templates.rego expand each level into
full multi-KEM ESP combinations (ML-KEM + BIKE + HQC) so that the verifier can check
every component. The suite publisher still snapshots the negotiated PRF/DH/ADDKE tuple into
/run/opa-ike/suite-cache/, ensuring OPA receives the exact primitives that charon accepted.

Security levels remain defined by the policy (Table 3.1), but they now drive several consumers:
ike_establishment.rego classifies the IKE suite for the ext-auth hook, child_create.rego
maps the level to the canonical template, and rekey_ike_sa.rego ensures successor IKESA never
regress. The child manager cross-references the level returned by OPA with the StrongSwan tem-
plates (for example inbound-legacy-pay-L3 or to-bankA-L3) and refuses to install a profile that
does not match the requirement; during rekey it also obeys the action returned by rekey_ike_sa
so that KE-L3 tunnels cannot be replaced by KE-L2. As before, both achieved and required levels
are written to the decision logger so operators can audit the cryptographic posture over time.

Table 3.1. Key exchange levels enforced by the gateway

Level Classical core PQC additions Services

KE-L1 SHA-256; ECP-256 or ML-KEM-512; optional HR, low-risk
X25519 BIKE-1/HQC-128 tests

KE-L2 SHA-384; ECP-256 or ML-KEM-512/768; ERP partners
ECP-384 BIKE-1/3; HQC-128/192

KE-L3 SHA-384; ECP-384 or ML-KEM-768; BIKE-3; Payments (de-
ECP-521 HQC-192 fault)

KE-L4 SHA-384; ECP-521 ML-KEM-1024; BIKE-5; Payments (ele-

HQC-256 vated); guest

Certificate validation follows the same layered approach. The policy classifies signature
schemes into signature levels (SIG-L1 to SIG-L4-SUF) based on the ML-DSA variant and
any classical companion algorithm. Payments insist on SIG-L3-SUF (ML-DSA-87 with Ed448),
ERP requires SIG-L2, and HR accepts SIG-L1. opa-auth-check.py extracts certificate meta-
data at runtime, normalises issuer names, and forwards the OID to OPA; the policy verifies
both the signature algorithm and the subject DN against the service-specific allow-lists. If
a peer presents a lower-grade certificate or an unexpected issuer, the decision logger records
sig_level_insufficient and the hook denies the negotiation, ensuring that PKI regressions
cannot slip through configuration drift.

Hybrid intent is therefore enforced end to end. The strongSwan templates expose the full
hybrid portfolio so that capable peers can bring ML-KEM, BIKE, and HQC to the table without
manual changes. The policy engine codifies the intent by translating business requirements (which
partner accesses which service) into minimum KE and SIG levels, while also flagging attempted
downgrades, revoked issuers, or suites that fall outside the approved combinations. Because the
decision logger captures both the achieved and required levels for every negotiation, operators can
audit uptake of PQC algorithms and confirm that the migration stays aligned with the defined
roadmap. This structure keeps the gateway adaptable to future algorithm updates: adding a new
KEM or raising a service requirement only requires updating the policy tables and the associated
strongSwan proposals, leaving the rest of the control plane unchanged.

43

Design of the PQC-Agile Gateway

3.3.2 Policy Segmentation

The policy repository is split into orthogonal packages so that cryptographic requirements can
evolve without touching identity checks or automation rules. policy/cti/ike_establishment.rego
enforces service-level minima (KE and SIG), applies CTI verdicts, and derives peer context from
the subnet metadata in service_classes.rego and peer mapping.rego. The companion
module policy/cti/child _create.rego consumes the canonical child templates defined in
child templates.rego, checking that the template chosen by the gateway matches the autho-
rised level and that the traffic selectors correspond to the subnet described in the routing docu-
mentation. Additional packages handle certificate parsing (certificate_validation.rego),
dynamic outbound provisioning (tunnel provisioning.rego), and downgrade-safe rekeys
(rekey_ike_sa.rego), each focused on its own concern.

Each package exposes a small interface consumed by the helpers. During the estab-
lishment phase the external authorisation worker calls data.ike.establishment.decision
and receives allow, child profile, and diagnostic fields such as required ke level and
sig_level_achieved. The child manager and verifier invoke data.child.create.decision and
data.child.create.enforce to replay the cached configuration before creating or deleting a
CHILD_SA, while the data.rekey.ike_sa.decision endpoint returns allow, reason, action,
and required_level whenever two IKE tuples overlap during make-before-break. The tunnel pro-
visioner queries data.ike.tunnel provisioning.decision to discover which gw-wan-out-* pro-
file to initiate whenever legacy traffic is detected, and data.certificate_validation.inspect
stays callable on its own so that the CTI updater can pre-flight issuers without touching the rest
of the bundle.

Policy segmentation also underpins the migration strategy. The KE/SIG tables reference the
change log for historical decisions, so raising payments to KE-L4 requires only an update to
the level mapping and the addition of the corresponding strongSwan template (a template for
outbound trials is already available). Identity and routing rules stay untouched because they
live in a different module. Similarly, adding a new partner means updating the issuer allow-list
and the service ACLs without touching the cryptographic tables, while the CTI package can
blacklist an address range on its own. Prometheus metrics exported by the decision logger mirror
this segmentation: counters are labelled with phase=establishment or phase=child create,
and dashboards show which layer rejected a negotiation, making it clear whether a failure is
cryptographic, identity, or threat-intel driven.

3.3.3 Decision Table Examples

The decision logger captures every evaluation in a structured line so that operators can replay
what OPA decided and why. Table 3.2 summarises three representative scenarios observed during
the latest validation runs.

Each row exposes the relationship between runtime inputs and the policy artefacts stored
in the repository. The ext-auth hook collects the negotiated suite, certificate metadata, and
connection role, then OPA validates those attributes against the KE/SIG tables defined in the
policy bundle. When the decision is allow, the hook persists ike-< ¢d >.json and the child
manager progresses it to .done once the CHILD is installed. When the decision is deny, the file
remains with the failure reason and the validation scripts surface the cause so that operators can
respond. The Prometheus dashboards mirror the same segmentation: counters are labelled by
result, reason, and service, allowing teams to prove that PQ-capable partners consistently
land on the expected hybrid profiles while legacy peers are contained until they upgrade.

44

Design of the PQC-Agile Gateway

Table 3.2. Representative policy decisions captured by the decision logger

Scenario

Context collected by ext-
auth

Policy outcome

Evidence /
notes

PQ-capable part-
ner (bankA in-
bound)

mlkem768, bike3, hqcl92;
SHA-384 + ECP-521; cer-
tificate SIG-L3-SUF; service
payments

allow; profile
inbound-legacy-pay-

L3; KE level satisfied

(KE-L3)

Logger: DECI-
SION ALLOW
... KE: KE-L3,
CERT_-SIG: SIG-
L3-SUF; child
manager installs
SA #27 (swanctl
-list-sas)

Legacy-only peer
(opsc inbound)

Classical DH ECP-256;
no PQ addKE; certificate
SIG.L1 (legacy ML-DSA-44)

deny; reason =
ike_requirements
_fail KE-L1;
negotiation aborted

Logger: DENY

- reason =
ike_requirements_fail;
ext-auth logs
“Fail-closed:

OPA deny*;

peer receives
AUTHENTICA-
TION_FAILED

Legacy flow trig-
gers tunnel provi-
sioner

IKE child detected on
gateway-legacy-auth;
legacy TP 10.200.0.3 talk-
ing to 198.51.100.10;
provisioner queries

tunnel _provisioning.rego

allow; reason =
Tunnel provision-
ing authorised;
outbound IKE
gw-wan-out-bankA
initiated

Logger: phase =

tunnel provisioning,
result = allow;
provisioner

log records
LEGACY_TRAFFIC_DETECTED;
decision store

shows
tunnel-provisioning/

Outbound guest
rehearsal (to-
bankA-1.4)

Requested KE-L4 / SIG-L4-
SUF; negotiated suite KE-
L3; certificate SIG-L3-SUF
(gateway initiator)

deny; reason
rekey_regression;
existing tunnel kept
active

Logger:

DENY - rea-
son=rekey_regression;
child manager
leaves state with-
out .done; metric
ike_decisions_
total{result=
"deny",reason=
"rekey _
regression"}
increments

3.4 Control Plane Design

3.4.1 Ext-auth Integration Blueprint

The external authorisation hook is introduced through the patch stored in the file
multi-host-pep/pep-gateway/patches/ext-auth-runtime-cert.patch.
ments the strongSwan ext-auth plugin so that every IKE negotiation triggers the Python
entrypoint opa-auth-check.py with the full set of PLUTO_* variables. At runtime the script is
invoked by charon just after the IKE_SA proposal is selected, giving us a synchronous point in
which to apply policy before the kernel sees any CHILD_SA.

That patch aug-

The same listener now relays policy feedback back to the peer. When opa-auth-check.py
denies a negotiation it logs an OPA_HINT line containing the gateway’s unique identifier, the
minimum key-exchange level, and the certificate level required by OPA. The patched listener

45

Design of the PQC-Agile Gateway

parses that hint, caches both thresholds, and, if the negotiation remains in a denied state,
attaches a vendor-specific notify (0xA001) to the next outbound IKE_AUTH with payload
required ke=<level>;cert=<SIG-Lx>. As a result, the initiator immediately learns which
posture it must adopt before retrying, avoiding blind guesswork.

The bootstrap script multi-host-pep/pep-gateway/startup.sh ensures that the hook envi-
ronment is prepared each time the container starts. It discovers the public interface, refreshes the
PKI material under /usr/local/etc/swanctl/, and exports the variables that the hook expects
(for example OPA_URL, OPA_SUITE_CACHE_DIR, and OPA_SUITE REQUEST.DIR). The Dockerfile adds
the script and its dependencies into the gateway image, pins the Python interpreter, and sets
the entrypoint so that charon loads the patched plugin when the container comes up, then
starts vici-child-manager.py, vici-suite-publisher.py, vici-tunnel-provisioner.py,
and child_suite_cache.py so that outbound provisioning and CHILD-suite capture are already
running before traffic arrives.

When charon calls the hook, opa-auth-check.py collects the negotiation context, normalises
host names, and extracts certificate metadata using openssl. It produces a structured payload
that contains the negotiated suite, the peer address, the service derived from the connection
template, and the certificate OID. Before contacting OPA the script checks the suite cache under
/run/opa-ike/suite-cache/; if the cache is empty it emits a suite request to be resolved by the
background publisher.

The HTTP request to OPA is issued against the /vi/data/ike/establishment/decision
endpoint. The response is persisted to /run/opa-ike/ike-<id>.json along with the policy
rationale and the computed child profile. If anything fails, OPA timeout, missing suite, malformed
payload, the script denies the negotiation, logs the reason to /var/log/ext-auth.log, and exits
with a non-zero status so that charon aborts the IKE_SA. Successful decisions append a record
to the decision logger so that the observability stack can ingest the outcome over HTTP.

This blueprint keeps the integration deterministic: the patch guarantees that every negotiation
goes through the Python layer; the startup script makes the environment predictable; the hook
itself enforces a fail-closed posture while delegating the final verdict to OPA; the listener surfaces
policy hints back to the peer via the vendor notify; and the decision store in /run/opa-ike/
provides the rendezvous point for the asynchronous workers described in the following sections.

3.4.2 Runtime Data Extraction and Policy Request

The ext-auth worker relies on the environment that charon exports for each negotiation. When the
hook starts it reads the PLUTO_* variables, normalises peer identifiers, and maps connection names
to the services. The helper functions of opa-auth-check.py collapse hostnames to lowercase,
derive the logical service (payments, ERP, HR), and reconcile responder-side labels with the
gateway naming convention.

Suite extraction follows the tiered approach. Before contacting the policy engine the script
checks the cache under /run/opa-ike/suite-cache/. If the cache is empty it emits a request file
in /run/opa-ike/suite-requests/; vici-suite-publisher.py watches that directory, queries
charon via VICI, and tails /var/log/charon.log as a fallback. Every attempt is logged with the
data source (cache, VICI, or charon log), and the hook simply waits for the publisher to fulfil the
request; vici-suite-publisher.py polls the entry until SUITE_PUBLISHER REQUEST_TTL expires
(25 s by default), sleeping 250 ms between checks and tailing /var/log/charon.log if VICI stalls.
When the TTL elapses the helper removes the stale request, which causes the hook to fail closed
and log a suite_timeout.

Once the suite is available the hook assembles the JSON payload for Open Policy Agent.
The payload includes the IKE role, peer address, service, negotiated PRF/DH/ADDKE values,
certificate metadata extracted via openssl, and traffic selectors parsed from PLUTO_*. The re-
quest is sent to /vl/data/ike/establishment/decision with the timeout configured through
OPA_TIMEQUT. OPA responds with the verdict, the child profile, and diagnostic fields such as
the achieved level, required ke _level, and required _cert_level; the hook persists the full
structure to /run/opa-ike/ike-<id>. json, leaves the suite cache entry in place for downstream

46

Design of the PQC-Agile Gateway

helpers, and posts a structured record to the decision logger. Before finalising an allow, the
hook now converts the child_sa config returned by OPA into the StrongSwan naming (via
crypto-mapper.py) and calls validate_child_config match(..., strict=true) to compare it
against the actual entry in swanctl.conf. Any mismatch in ESP proposals, traffic selectors, or
auxiliary fields causes the hook to override OPA’s verdict with child_config mismatch, ensuring
the repository configuration and the policy bundle remain in lockstep.

If OPA denies the request or the HTTP call times out the script removes any pending suite
request, writes the failure reason to /var/log/ext-auth.log, and exits with a non-zero status
so that charon aborts the negotiation. Before returning, the hook extracts the minimum KE and
certificate levels from the response or the policy reason (functions extract_required ke_level()
and extract_required cert_level()), then logs an OPA_HINT record with the unique identifier,
both thresholds, and the affected service so that the listener can notify the peer.

This data path keeps policy evaluation deterministic while exposing enough instrumentation
for troubleshooting. The suite cache and request directories provide clear artefacts for the suite
publisher and child manager, the decision store snapshots every OPA response together with its
diagnostic fields, and the ext-auth log records both successes and failures alongside the context
that was sent to the policy engine.

3.4.3 Policy Decision Cycle and Enforcement

Once an establishment decision is written under /run/opa-ike/, the asynchronous helpers turn
the policy intent into concrete state inside strongSwan. vici-child-manager.py polls the deci-
sion directory (functions around lines 640-760) and builds an in-memory queue of entries that are
marked allow but are not yet paired with a .done or .failed suffix. For each entry the manager
queries charon via VICI to confirm that the parent IKE_SA is active, compares the requested
child profile with the live configuration, and issues the appropriate ——initiate or --terminate
through swanctl. Retries follow a bounded exponential backoff: counters are stored alongside
the decision file, and a decision turns into .failed only after the configured number of attempts
have been exhausted.

After a CHILD_SA succeeds, the manager renames the decision to .done, records the SPI pair,
and emits a structured log entry such as CHILD_MANAGER_EVENT "child": "...", "event":
"INIT_SUCCESS" to /var/log/vici-child-manager.log. If strongSwan reports a duplicate, se-
lector mismatch, or negotiation failure, the manager preserves the original file with a .failed suf-
fix and logs the reason, which the decision logger picks up as a denial with phase = child_create.
The hook also triggers the verifier script (see scripts/updown verifier.py) so that the installed
selectors match the routing policy defined for each service.

The decision logger (decision-logger/server.js) ingests the establishment verdicts posted
by opa-auth-check.py and the post-installation checks reported by updown_verifier.py, while
the child manager contributes CHILD_MANAGER_EVENT lines that remain in the local logs. Each
record includes the service, peer address, KE and SIG levels achieved, and the reason for success
or failure. Prometheus scrapes these records via the /logs endpoint, exposing counters such as
ike decisions_total{phase="establishment",result="allow"} and
ike decisions_total{phase="child create",result="deny",reason="profile mismatch"}.
Grafana dashboards reuse the same labels to show whether denials originated from the policy
engine, from suite extraction, or from enforcement inside the gateway.

Downstream components therefore see a consistent life cycle. Establishment decisions origi-
nate in opa-auth-check.py, are evaluated by OPA, persisted under /run/opa-ike/, enforced by
vici-child-manager.py, and finally recorded by the decision logger along with their Prometheus
labels. If any step fails, the corresponding artefacts remain in place for inspection (decision file
with .failed, child manager log, ext-auth log), allowing operators to retrace the entire policy
decision cycle.

47

Design of the PQC-Agile Gateway

3.4.4 Failure Modes and Resilience

The deployment treats every failure path as a fail-closed event while leaving sufficient artefacts
for diagnosis. If suite extraction cannot satisfy a request before SUITE_PUBLISHER REQUEST_TTL
elapses (25 s by default), vici-suite-publisher.py removes the corresponding stale entry from
/run/opa-ike/suite-requests/. Then, the hook logs a suite_timeout before denying the nego-
tiation, so the peer still receives AUTHENTICATION_FAILED. OPA outages follow the same pattern:
the HTTP client honours OPA_TIMEQUT, and any non-200 response or connection error produces a
denial tagged reason=opa_timeout in the decision logger, allowing operators to distinguish policy
rejections from infrastructure incidents.

Downstream helpers continue the resilience chain. vici-suite-publisher.py alternates be-
tween VICI queries and charon-log parsing, so a transient VICI stall does not block the suite
cache. vici-child-manager.py retries failed CREATE_CHILD_SA operations with exponential
backoff, caps the number of attempts to avoid livelock, and renames the decision file to .failed
once all tries are exhausted. This behaviour keeps the original payload available for forensic anal-
ysis while preventing the queue from looping on a hopeless negotiation. The up-down verifier
enforces selector and profile integrity, rejecting any deviation even if strongSwan installs a tunnel,
which protects against misconfiguration and malicious attempts to widen access.

Observability closes the loop. The decision logger exposes counters and structured events so
that Prometheus can alert on repeated opaque failures such as suite extraction timeouts, OPA
timeouts, or profile mismatches. Grafana dashboards correlate these metrics with the raw decision
files in /run/opa-ike/, the suite cache entries, and the child manager log stream. Because
every failure leaves artefacts in predictable locations ext-auth log, decision file, suite cache, child
manager state operators can trace the issue back to its root cause and re-run the negotiation once
the underlying fault has been resolved.

3.5 Data Plane and SA Layout

3.5.1 Naming and Traffic Selector Strategy

The layout of the CHILD_SA catalogue mirrors the physical topology shown in Figure 3.2. Three
external partners (bankA, partnerB, opsC) each terminate a VPN tunnel on the gateway’s WAN
address 203.0.113.2/29, which is reached via the edge router at 203.0.113.3. On the inside,
the gateway exposes three legacy hosts that represent the service enclaves: 10.200.0.3/32 for
payments, 10.200.0.4/32 for ERP, and 10.200.0.5/32 for HR.

Every CHILD profile now advertises the shared legacy subnet (10.200.0.0/24) on the local
side so that policy decisions apply to the whole enclave, while the remote selector stays pinned
to a single partner host (198.51.100.10/32, .11/32, .12/32). This lets OPA authorise flows at
subnet granularity yet keeps the peer view deterministic.

IKE parent profiles follow the convention gw-wan-in-< peer > for responder-side (inbound)
tunnels and gw-wan-out-< peer > for initiator-side (outbound) tunnels. They publish only the
WAN IP of the gateway and reserve unique reqids: values in the 100 range are used for inbound
CHILD_SAs, values in the 200 range are used for outbound CHILD_SAs. This makes the output
of swanctl --list-sas unambiguous: the parent name identifies who initiated the negotiation
and the reqid range reveals the direction of the associated child.

CHILD profiles inherit the same structure. Inbound templates are named inbound-legacy-<
service >-L< n >, where the service tag (pay, erp, hr) identifies the legacy subnet and the suffix
L< n > matches the minimum key-exchange level enforced by policy. Outbound templates use
to-< peer >-L< n >, binding the gateway to a specific partner host. On inbound profiles the
unique flag is left unset because the child manager governs overlap during rekey, whereas out-
bound templates keep unique = keep so two generations can coexist while the tunnel provisioner
promotes a successor. The figure highlights that local selectors are /24 while remote selectors
remain /32.

48

Design of the PQC-Agile Gateway

For example, inbound-legacy-pay-L3 and to-bankA-L3 both map the payments subnet
10.200.0.0/24 to bankA’s host 198.51.100.10/32; inbound-legacy-erp-L2 and to-partnerB-L2
do the same for the ERP subnet 10.200.0.0/24 and 198.51.100.11/32; inbound-legacy-hr-L1
and to-opsC-L1 connect the HR subnet 10.200.0.0/24 to 198.51.100.12/32.

bankA

198.51.100.10/32
Legacy payments
/ 10.200.0.3/32
partnerB Edge router Gateway WAN Legacy ERP
198.51.100.11/32 203.0.113.3/29 203.0.113.2/29 10.200.0.4/32
\ Legacy HR
10.200.0.5/32

opsC
198.51.100.12/32

A

Figure 3.2. CHILD SA layout: each profile exposes the legacy subnet 10.200.0.0/24 to the
partner host 198.51.100.x%/32 through the gateway WAN address 203.0.113.2.

3.5.2 Rekey and Lifetime Policy

The rekey cadence is embedded in the pep-gateway/swanctl/swanctl.conf templates. All
inbound and outbound profiles inherit the same lifetime hierarchy: IKE SAs carry a shorter
rekeytime than lifetime, giving the child manager time to install the successor before the
kernel removes the predecessor. Outbound CHILD SAs retain unique = keep so two generations
can coexist while traffic migrates, whereas inbound templates rely on the child manager (and the
policy decision files) to coordinate make-before-break without setting that flag explicitly. Because
the templates are shared across inbound and outbound scenarios, the gateway can renegotiate
keys without forcing the peer to reconnect or disrupting state in the decision store.

Rekey events are handled cooperatively. When charon initiates a rekey, the external authori-
sation hook repeats the full OPA evaluation, writing the new verdict under
/run/opa-ike/ike-<id>. json. vici-child-manager.py notices the new file, installs the suc-
cessor CHILD, and leaves the previous decision marked as .done while the new file carries the
updated state. If the rekey attempt weakens either the KE or SIG level compared with the exist-
ing tunnel, the policy returns deny and the manager preserves the original CHILD until the peer
retries with acceptable parameters. This behaviour prevents downgrade attacks and ensures that
a single slow partner does not block the rest of the site.

Failure handling mirrors the normal negotiation path. Should a rekey stall because the suite
cannot be extracted, the hook removes the pending cache request and the child manager keeps the
previous CHILD alive until the next attempt. Repeated failures show up in the decision logger
as reason=rekey._regression or reason=opa_timeout, allowing operators to diagnose whether
the issue stems from cryptographic policy or from a transient dependency. By keeping both SA
generations in place during handover and by treating denials as non-destructive events, the gate-
way maintains continuous protection even when a peer renegotiates under load or over lossy links.
Every make-before-break handshake feeds data.rekey.ike_sa.decision so that cryptographic
downgrades or CTI flags prevent the successor from replacing the active tunnel. Upon approval
the child manager logs REKEY_ALLOW, deletes the predecessor IKE, and keeps the new reqids,
whereas a rejection emits REKEY_DENY, tears down the new SA, and leaves the earlier generation
serving traffic until a compliant rekey arrives.

3.5.3 Observability and Audit Trail

Every negotiated SA leaves a paper trail across three layers: the control-plane logs, the de-
cision store, and the metrics pipeline. During establishment the ext-auth hook writes a
JSON decision file under /run/opa-ike/ containing the peer address, service, negotiated

49

Design of the PQC-Agile Gateway

suite, policy verdict, child profile, and the thresholds returned by OPA (required ke level
and required_cert_level). When the child manager installs (or rejects) the correspond-
ing CHILD_SA it renames that file to .done or .failed and records a structured line in
/var/log/vici-child-manager.log. These files form the primary audit artefacts: they can be
replayed to understand which tunnel was requested, which policy rule was applied, and how the
enforcement worker reacted.

The decision logger aggregates the establishment records posted by opa-auth-check.py
and the post-installation checks emitted by updown_verifier.py. It also records phase =
rekey decisions from rekey_ike_sa.rego and phase = tunnel provisioning events whenever
vici-tunnel-provisioner.py brings up an outbound profile.

Each OPA evaluation produces a record with phase, result, reason, service, ke_level,
sig_level, required ke_level, required cert_level, and a timestamp; when the CHILD is
raised or torn down, updown_verifier.py appends phase = child.up / phase = child_down
entries with the final outcome, while the child manager keeps its CHILD_MANAGER_EVENT
lines in the local logs. Prometheus scrapes the decision logger and exposes counters (e.g.
ike decisions_total), gauges (number of pending decisions), and latency histograms. Grafana
dashboards combine those metrics with selective log excerpts so that operators can drill down
from a spike in reason=rekey_regression to the exact JSON decision and, if needed, to the
underlying suite-cache request that preceded it.

Operational tooling closes the loop on the data plane as well. Structured logs from
vici-tunnel-provisioner.py and child _suite_cache.py are shipped in the same dashboard
so operators can correlate outbound bootstrap attempts and ESP snapshots with the primary
OPA decisions.

StrongSwan’s swanctl --list-sas output is captured after automated test runs and stored
alongside the decision files to prove that the installed CHILD selectors match the policy. The
up/down verifier emits dedicated log lines whenever a mismatch is detected, ensuring that a
tunnel cannot silently widen its selectors. Taken together, these artefacts provide a complete
audit trail from policy decision to kernel-state installation and deliver enough signals for alerting,
troubleshooting, and long-term compliance reporting.

3.6 Design Summary and Traceability

The design choices introduced throughout Chapter 3 map directly to the initial requirements:
each objective is enforced by a specific architectural commitment, captured by tangible artefacts
in the repository, and observable through the audit trail described earlier. Table 3.3 consolidates
these links so reviewers can verify how the gateway satisfies every requirement and where the
supporting evidence resides.

This synthesis shows how the OPA-driven control plane, the naming and selector discipline,
the rekey policy, and the observability stack jointly deliver quantum-aware enforcement, resilience,
and accountability while staying fully traceable to code and configuration.

50

Design of the PQC-Agile Gateway

Table 3.3. Traceability between requirements, design decisions, and implementation artefacts

Requirement Design commitment Implementation artefacts Sections
Quantum- Ext-auth hook defers ev- scripts/opa-auth-check. 3.1.1,
aware enforce- ery IKE_SA to OPA; hy- Py, pep-gateway/swanctl/ 3.3.1
ment brid profiles advertise ML- swanctl.conf, policy/cti/
KEM/BIKE/HQC and en- ike_establishment . rego,
force KE-L(n) levels policy/cti/certificate_
validation.rego
Resilient ne- Fail-closed error paths, suite scripts/vici- suite- 3.4.4,
gotiation and cache with retries, child man- publisher.py, scripts/ 3.4.2,
rekeying ager backoff, dual-generation = vici-child-manager . py, 3.5.2
rekeys (unique = keep) scripts/child_suite_
cache . py, decision files in
/run/opa-ike/, lifetimes in
swanctl.conf
Operator ob- Structured decision store, decision-logger/server. 3.2.2,
servability decision logger metrics js, /var/log/ext-auth.log, 3.5.3
(including phase=tunnel /var/log/vici-child-
_provisioning), manager . log, /var/log/
Prometheus/Grafana dash- vici-tunnel-provisioner.
boards, up/down verifier for log, /var/log/opa-ext-
selectors auth/updown-verifier.log,
scripts/updown_verifier.
py
Deterministic Naming convention pep - gateway /swanctl/ 3.5.1
data-plane gw-wan-in/out-*, child pro- swanctl . conf, static routes
layout files inbound-legacy-*/ in pep-gateway/startup.sh,
to-*, three fixed legacy sub- Figure 3.2
nets (10.200.0.0/24 lo-
cals, state in /run/opa-ike
/tunnel-provisioning/),
partner selectors at /32
Policy/code Repository patches embed pep-gateway/patches/ext- 3.4.1,
alignment ext-auth blueprint; Docker- auth-runtime-cert.patch, 3.4.3

file/startup scripts preload
environment variables and
bind the decision store

pep-gateway/Dockerfile,
pep-gateway/startup. sh,
docker-compose.yml

51

Chapter 4

Implementation

4.1 Implementation Overview

4.1.1 Compose Stack and Runtime Topology

The implementation lives inside a single docker-compose.yml, so the first step was to give the
entire gateway its own self-contained runtime and to wire the supporting services around it. The
compose file declares four bridge networks: lan-net, wan-net, external-net, and opa-network.
They mirror the three zones introduced in Chapter 3 plus the partner segment. Each network
carries a deterministic IP plan, which keeps the container addresses stable from one run to the
next. That choice is deliberate; it means the configuration of strongSwan and the routing rules
inside the containers never need to guess which interface or address they will get.

Service-wise, the stack is grouped into three clusters.

e Enforcement plane: pep-gateway is the strongSwan router, bound to lan-net and
wan-net and, via the edge router, to the partner segment on external-net. The part-
ner simulators (banka, partnerb, opsc) attach only to external-net, while the dedicated
edge-router container bridges wan-net and external-net so that traffic follows exactly
the L3 path documented earlier. The host-legacy container represents the internal initiator
on lan-net.

e Policy and monitoring plane: Open Policy Agent (opa), the decision logger, the CTI
bundle service, Prometheus, and Grafana all reside on opa-network. Keeping them off
the enforcement bridges prevents an external peer from ever talking directly to the policy
components and keeps the monitoring traffic isolated.

e Shared state and telemetry: consistent logging and bundle data are handled through
dedicated volumes. The shared logs bind mount lets every component append to /var/log
so that the validation scripts later in the thesis can collect artefacts from the host. Policy
bundles, OPA data, and CTI cache use separate named volumes, which avoids cross-run
contamination.

The compose file encodes the orchestration order through depends_on: policy services start
first, the gateway waits for them, and only then do the partners come up. The result is a
deterministic lab: bringing the stack online with docker compose up -d produces a gateway
that already knows which networks it inhabits, which certificates it must load, and which helper
scripts must run in the background. The next subsections describe how each of those components
is built and how they interact.

52

Implementation

4.1.2 Control-plane automation

The gateway relies on a thin set of Python helpers to keep the control plane predictable while
charon negotiates IKE. Each helper plays a specific role and all of them follow the instrumentation
conventions introduced in Chapter 3.

opa-auth-check.py: synchronous policy gate

opa-auth-check.py is invoked by the patched ext-auth plugin as soon as charon selects an
IKE proposal. The script reads the full PLUTO_* context, normalises peer identifiers, and
maps the connection name to the logical service described in the design chapter. It refreshes
the strongSwan certificate chain on demand by shelling out to openssl so that the OPA
payload always carries the current signature OID and validity window. Suite discovery fol-
lows a stepped path: the script first inspects /run/opa-ike/suite-cache/, then emits a
request file under /run/opa-ike/suite-requests/, and finally waits for the publisher to fill
the gap. Once the negotiated parameters are available the script assembles the JSON body
for /vi/data/ike/establishment/decision, including role, service, negotiated PRF and hy-
brid KEs, certificate attributes, and the planned traffic selectors. A successful response is
written to /run/opa-ike/ike-< id >.json, posted to the decision logger, and echoed in
/var/log/ext-auth.log with a short status line. If OPA times out or denies the request the
script exits with a non-zero status, ensuring that the gateway fails closed and leaves a reasoned
artefact behind. Before returning it parses any required_ke_level or certificate hints so the
notifier can feed the guidance back to the peer.

vici-suite-publisher.py: asynchronous suite resolver

vici-suite-publisher.py watches the suite-request directory and resolves every entry that
the hook could not satisfy synchronously. It opens a VICI session against charon, queries
the live IKE_SA by unique identifier, and persists the negotiated algorithms to /run/opa-ike
/suite-cache/ike-< id >.json. When VICI stalls the worker tails /var/log/charon.log as
a fallback, parsing the selected proposal lines and caching the tuple of PRF, DH, and post-
quantum KEs. Each attempt is timestamped and logged under /var/log/vici-suite-publisher
.log together with the source (cache, VICI, charon), the retry counter, and the elapsed time. The
worker keeps polling the request file until the SUITE_PUBLISHER_REQUEST_TTL (25 s by default)
expires, sleeping 250 ms between checks so latency and log volume stay bounded. By isolating
suite extraction in this helper we avoid blocking the IKE thread, reduce contention on the VICI
socket, and maintain a permanent record of the suites that were actually accepted in production.

vici-child-manager.py: decision enforcement

vici-child-manager.py polls /run/opa-ike/ for files marked "result": "allow" that still
lack a .done or .failed suffix. For each decision it checks that the parent IKE_SA is alive,
reconciles the requested child profile with the static templates defined in swanctl.conf, and issues
the matching swanctl --initiate. Inbound profiles use reqids in the 101-103 range, outbound
ones start at 201, so the manager can detect duplicates and stale entries by simply reading the
kernel view of the SAs. Retries follow a bounded exponential backoff and every attempt results
in a structured CHILD_MANAGER_EVENT line with outcome, reqid, and SPI pair. On success the file
gains a .done suffix and carries the issued SPIs for later audits. On failure the manager writes a
.failed twin that preserves the policy body together with the final error, so operators can replay
the same payload after fixing the underlying issue. The worker also looks after deletions: when
OPA or the verifier requests a teardown the manager calls swanctl --terminate and records the
result in the same log stream.

Rekeys follow the same code path. Whenever a new IKE_SA appears while the previous tuple
for the same service and mapped peer is still alive, the helper collects both suites, posts the pay-
load to /v1/data/rekey/ike_sa/decision, and waits for the policy/cti/rekey_ike _sa.rego

53

Implementation

verdict. An allow response produces a REKEY_ALLOW event, the manager terminates the predeces-
sor via VICI, and the decision file keeps only the successor’s identifier, whereas a denial triggers
REKEY DENY, the new IKE_SA is torn down, and the old generation keeps servicing traffic until
the peer retries with compliant primitives. The same logic preserves the .json/.done/.failed
trail so auditors can replay which tuple was accepted and why.

updown-verifier.py: selector integrity checks

StrongSwan invokes updown-verifier.sh, a tiny wrapper that execs updown_verifier.py;
the Python helper reads the up/down events and validates every installed CHILD against the
selectors agreed during design. It reads the negotiated selectors and compares them against
the authorised values stored in the decision file (/run/opa-ike/ike-<id>.json) and the cached
ESP snapshot in /run/opa-ike/child-suites/; any widening or mismatch triggers an im-
mediate teardown. The verifier records both successful inspections and mismatches under
/var/log/opa-ext-auth/updown-verifier.log, tagging each line with service, peer, and reqid.
These entries are shipped to the decision logger so that Prometheus and Grafana mirror the
same pass or fail posture seen on the gateway. Although the script is short it closes the loop
between design intent and live kernel state, which is why it sits alongside the heavier helpers in
this subsection.

child suite_cache.py: CHILD suite snapshots

child_suite_cache.py listens to the child-updown event stream, captures the AEAD/DH
identifiers and both traffic selectors for every CHILD, and writes JSON artefacts under
/run/opa-ike/child-suites/. By caching the suite independently of swanctl --list-sas,
the verifier can retrieve the exact ESP parameters even after the tunnel is torn down, and the
decision logger can link policy verdicts to the ciphers actually installed in the kernel.

vici-tunnel-provisioner.py: legacy-to-PQ bridge

vici-tunnel-provisioner.py scans the classic ‘gateway-legacy-*‘ connections via swanctl
--list-sas, detects when a legacy CHILD is active toward a partner, and asks the tunnel
_provisioning.rego policy which outbound gw-wan-out-* profile to raise. When authorised it
writes a marker under /run/opa-ike/tunnel-provisioning/ and issues swanctl --initiate,
ensuring PQ tunnels are created just-in-time without manual intervention; denial reasons (unap-
proved partner, insufficient level) are logged alongside the request.

4.1.3 Bootstrap order and dependencies

The docker-compose.yml encodes a strict startup sequence so the lab always boots into a known-
good state. Policy services come first: Open Policy Agent, the decision logger, and the CTI
bundle distributor are marked as prerequisites for the gateway, and each ships a health check
that asserts the API is reachable before the rest of the stack proceeds. Only when those checks
report “healthy“ does Docker schedule pep-gateway, whose entrypoint startup.sh performs the
routing bootstrap, loads the certificates, and starts the StrongSwan helpers. The edge router
and the partner simulators (‘banka‘, ‘partnerb‘, and ‘opsc‘) are chained after the gateway so
their first IKE attempts always land on a ready responder instead of racing against the policy
plane. Prometheus, Grafana, and the auxiliary exporters sit at the tail of the dependency graph;
they start once the log directories exist and the decision logger exposes its ‘/logs’ endpoint. This
choreography prevents spurious failures during compose up: no peer timeouts while OPA loads its
bundles, no missing decision store when the child manager comes alive, and no monitoring alerts
caused by empty endpoints. A single docker compose up -d therefore yields a reproducible
environment where every container knows its role, its peers, and the shared state it must mount
before the validation scripts begin.

54

Implementation

4.2 Gateway Build and Bootstrap

The gateway runs inside a dedicated container so every compose cycle reuses the same
StrongSwan build, helper scripts, and credentials. The image is produced from multi-host-pep/
pep-gateway/Dockerfile, while the runtime is initialised by startup.sh in the same directory.

4.2.1 Dockerfile pipeline

The Dockerfile is multi-stage and keeps both build and runtime layers on ubuntu:22.04.
Stage one installs the toolchain (build-essential, cmake, ninja-build, OpenSSL head-
ers, autotools) and compiles libogs 0.10.0 with shared libraries so Dilithium, ML-KEM,
BIKE, and HQC are available to StrongSwan. When the optional flag ENABLE_0QS_PROVIDER
=true is set the same stage also builds ogs-provider 0.6.1 and places ogsprovider.so
under /usr/local/lib/ossl-modules/. Stage two clones StrongSwan 6.0.0beta6, ap-
plies ext-auth-runtime-cert.patch, runs autogen.sh, and configures the daemon with
--disable-ikevl, --enable-oqs, ——enable-openssl, —--enable-frodo, —--enable-ext-auth,
and --enable-vici before installing it to /usr/local/ and saving the configure log for au-
dits. Stage three assembles the runtime image: it copies the StrongSwan tree and libogs
artefacts into /usr/local/, installs the networking utilities (iproute2, iptables, iputils, tracer-
oute, tcpdump), and uses pip to add the Python dependencies requests and vici. The
curated configuration set from pep-gateway/swanctl/, the patched strongswan.conf, and
the helper scripts (opa-auth-check.py, vici-child-manager.py, vici-suite-publisher.py,
updown-verifier.sh, new-outbound-decision.sh) are copied into place and marked exe-
cutable. Environment defaults (DPENSSLJVIDDULES, OPENSSL_CONF, LD_LTBRARY_PATH, OPA_URL,
OPA_TIMEQUT, OPA_FAIL OPEN) are declared so operators can override them via compose with-
out rebuilding the image. The image exposes UDP 500, UDP 4500, and TCP 4502, creates
/run/opa-ike with restrictive permissions, and sets /opt/gateway/bin/startup.sh as entry-
point so every container boot performs the same preparation sequence before charon starts.

4.2.2 startup.sh responsibilities

startup.sh gives the container a deterministic boot path before StrongSwan begins handling
IKE traffic. It first prints the policy endpoint in use, clears any stale /var/run/charon.pid, and
exports EXT_AUTH DISABLE VICI=0 so the patched ext-auth plugin can call back into VICI. The
script launches /usr/local/sbin/charon --use-syslog in the background and records the PID
to detect early failures. It then derives the public interface either from GATEWAY PUBLIC_IFACE
or by calling discover_interface_for_ip on GATEWAY PUBLIC_IP and binds the /32 address
with ip addr add. Once the WAN endpoint is in place it installs a static route towards
EDGE_EXTERNAL_SUBNET via EDGE_ROUTER_IP, which matches the compose topology and keeps
partner traffic flowing through the edge router. After a short grace period the script con-
firms that the charon PID is alive, warns if UDP 500 or UDP 4500 are not listening yet, and
pushes the full configuration into the daemon with swanctl --load-all. The two Python
helpers vici-child-manager.py and vici-suite-publisher.py are started via /usr/bin/env
python3, inheriting the same environment so they can reach /run/opa-ike. Finally the script
prints “IPsec Gateway ready with OPA automation* and tails /dev/null to keep the container
running, leaving charon and the helpers to service negotiations. Every step mirrors the expecta-
tions encoded in the compose environment variables and guarantees that a fresh container reaches
operational state before any test drives the control plane.

4.3 Data-plane Configuration

The runtime topology hinges on a set of strongSwan templates that keep every tunnel aligned
with the routing plan introduced in Chapter 3. All responder and initiator profiles live un-
der multi-host-pep/pep-gateway/swanctl/swanctl.conf, while each partner simulator loads

55

Implementation

a mirrored file from multi-host-pep/external-peers/peer/swanctl/swanctl.conf. This sec-
tion walks through the gateway catalogue, the partner-side configuration, and the glue that keeps
selectors and routes symmetric across the WAN.

4.3.1 Gateway templates and naming discipline

Responder profiles follow the naming pattern gw-wan-in-peer, pinning local_addrs =
203.0.113.2 and the matching remote_addrs drawn from the partner block (198.51.100.10
for BankA, 198.51.100.11 for PartnerB, 198.51.100.12 for OpsC). Every inbound connection
sets childless = force so the first IKE_SA comes up without payload selectors, leaving the
child manager to install only the children sanctioned by OPA. Child definitions adopt the schema
inbound-legacy-service-Llevel, advertise the legacy subnet 10.200.0.0/24 as the local se-
lector, keep the partner host on /32, and attach deterministic reqids (101 through 105) that mark
inbound flows. Outbound templates mirror the scheme with gw-wan-out-peer parents and child
profiles titled to-peer-Llevel; they reuse the same /24 local selector, keep the partner on /32,
and use reqids starting at 201 so tooling can tell direction at a glance. Only outbound templates
set unique = keep; inbound ones leave the flag unset because the child manager (and the policy
decision files) already govern make-before-break during rekeys. Certificate references point to
the Dilithium chain staged under /usr/local/etc/swanctl/x509/, while classical counterparts
remain available so that legacy scenarios (for example gateway-legacy-auth) can still be exer-
cised without replumbing the repository. By centralising this naming discipline, the verifier, the
up/down hook, and the decision store all speak the same language, making troubleshooting a
matter of matching strings rather than translating between bespoke labels.

4.3.2 Partner endpoint configuration

Each partner simulator ships its own copy of swanctl.conf under multi-host-pep/external
-peers /< peer >/swanctl/, fixing local_addrs to its host IP (198.51.100.10, .11, .12)
and remote_addrs to the gateway’s WAN 203.0.113.2. The child profiles mirror the gateway
naming (e.g. peer-bankA-to-gw-wan), reuse the same /24 subnet on the gateway side, and
keep the partner selector at /32 so that selectors remain symmetric when the tunnel provisioner
raises outbound flows. Each container mounts the shared Dilithium credentials read-only and sets
EXT_AUTH_DISABLE=1 so the patched hook stays focused on the gateway; static routes (‘ip route
replace 203.0.113.0/29 via 198.51.100.2¢ and ‘ip route replace 10.200.0.0/16 via 198.51.100.2¢) are
programmed at boot so all partner traffic transits the edge router at 198.51.100.2. Centralising
the partner configs here keeps the test harness deterministic: the same template can be exercised
as responder or initiator simply by pointing swanctl --initiate at the relevant profile.

4.3.3 Selector symmetry and routing glue

Selector symmetry is enforced end to end: every inbound template publishes the legacy
subnet 10.200.0.0/24 as the local TS while every partner template pins its remote se-
lector to 198.51.100.x/32, so the verifier and OPA see identical tuples regardless of di-
rection. Static routes keep the overlay deterministic: startup.sh programs ip route add
198.51.100.0/28 via 203.0.113.3 on the gateway, while each partner container replaces
routes toward 203.0.113.0/29 and 10.200.0.0/16 via the edge router at 198.51.100.2, ensur-
ing all traffic crosses the same L3 hop documented in Chapter 3. Because both sides honour the
same naming discipline and routing glue, the child manager, tunnel provisioner, and verifier can
reason about requests purely from the profile name and the cached selectors, reducing the risk of
asymmetric configurations.

4.3.4 Policy and decision-store integration

All helpers share /run/opa-ike/ as the rendezvous point. startup.sh recreates the directory tree
on every boot with root ownership, ensuring the state remains ephemeral yet ready for the Python

56

Implementation

workers. opa-auth-check.py writes ike-< ¢d >.json verdicts, vici-child-manager.py ro-
tates them to .done or .failed, vici-suite-publisher.py populates suite-cache/ and drains
suite-requests/, child_suite_cache.py appends ESP artefacts under child-suites/, and
vici-tunnel-provisioner.py leaves breadcrumbs inside tunnel-provisioning/. Make-before-
break tracking reuses the same namespace: every overlapping IKE pair is logged side-by-side until
the rekey policy decides whether to promote the newcomer or keep the predecessor. Because each
directory has a single writer and a predictable naming scheme, log shippers and validation scripts
can scrape the files straight from the host bind mount without racing the helpers.

4.4 Policy, CTI, and Decision Store

4.4.1 Rego modules and service mapping

The policy bundle under policy/cti/ is organised so that every control-plane phase consults only
the logic it needs while still sharing the same data sources. ike_establishment.rego receives
the payload assembled by opa-auth-check.py, blends the certificate metadata with the peer cat-
alogue maintained in peer mapping.rego, looks up the target service in service_classes.rego,
and evaluates the negotiated PRF/DH/PQC tuple against the KE/SIG tables; it returns allow,
the canonical child profile, and diagnostic fields (required ke_level, sig level_achieved, CTI
flags) so that the hook and decision logger can preserve the rationale. child_create.rego
is invoked asynchronously by vici-child-manager.py before every CREATE_CHILD_SA
and again by updown_verifier.py: it replays the selectors and template details recorded
in swanctl.conf, ensuring that stale or tampered decision files cannot install a CHILD
whose CIDRs or ESP proposals diverge from the approved profile. rekey_ike_sa.rego
compares the suites of overlapping IKE generations during make-before-break, applies the
same KE tables plus downgrade matrices for ML-KEM, BIKE, and HQC, and emits an
action field (promote new delete_old or terminate new keep_old) that the child man-
ager logs as REKEY_ALLOW/REKEY DENY. certificate validation.rego isolates the parsing
of issuer DNs and signature OIDs harvested at runtime, grouping them by trust level so
that new issuers or revoked signers can be rolled out independently of the rest of the pol-
icy. Finally, tunnel _provisioning.rego and its helpers ingest the outbound telemetry that
vici-tunnel-provisioner.py writes under /run/opa-ike/tunnel-provisioning/ and autho-
rise only the gw-wan-out-* profile that matches the detected legacy flow, which keeps automated
initiations aligned with the same ACLs enforced inbound. Together these modules let the compose
lab raise or deny tunnels based on declarative requirements while keeping the interfaces between
helpers small and well-defined.

4.4.2 CTI bundle distribution and verification

Threat intelligence arrives through the dedicated cti-unified-service container, which polls
upstream feeds, normalises the indicators, and publishes signed bundles under /bundles/cti/.
Each bundle carries semantic metadata (version, generation timestamp, source hashes) plus the
consolidated artefacts themselves: malicious IPv4/v6 ranges, TOR exit nodes, revoked certificate
issuers, partner-specific overrides, and manual quarantines that operators can raise during an
incident. Before exposing a bundle the service composes the JSON tree, signs it with JWT ES512,
and serves it over HT'TPS behind bearer-token authentication; the compose file keeps this service
ahead of the gateway so that fresh intelligence is available before any IKE negotiation starts. OPA
mounts the bundle directory read-only, fetches the manifest at start-up, and refuses to load a
revision unless the signature matches the trusted public key baked into the image, which prevents
a compromised updater from injecting arbitrary data. Once validated, the indicators become
part of the data.cti namespace that ike_establishment.rego and rekey_ike_sa.rego consult:
malicious peers trigger reason = threat_ip_blocked, TOR exits downgrade guest access, and
revoked issuers cause sig_level_insufficient even if the certificate chain would otherwise pass.
Health checks on the CTI container expose the bundle age via Prometheus so dashboards can
alert whenever the feed drifts beyond the acceptable staleness window, keeping the lab faithful to
the operational posture it emulates.

57

Implementation

4.4.3 Decision store layout

The shared directory under /run/opa-ike/ acts as the rendezvous point for every helper and
mirrors the life cycle of an IKE negotiation. Fresh OPA verdicts arrive as ike-< id >. json files
containing the peer metadata, negotiated suite, diagnostic fields, and the child profile that must be
enforced; once vici-child-manager.py succeeds it renames them to ike-< id >. json.done and
appends the SPI pair, while failures become .failed siblings that operators can replay after fixing
the root cause. suite-cache/ holds the negotiated PRF/DH/PQC tuple for each IKE identifier,
suite-requests/ queues cache misses, and child-suites/ stores the ESP snapshots emitted by
child_suite_cache.py, so verifiers and validation scripts can recover the exact algorithms even
after the tunnel is torn down. Outbound automation keeps its state in tunnel-provisioning/,
where the provisioner records the legacy trigger, the authorised gw-wan-out-* profile, and the
eventual result, preserving the intent that led to each initiation. Because startup.sh recreates
the tree on every boot with root ownership and deterministic permissions, helpers never race for
access, artefacts remain tied to a single compose run, and log shippers can mount the directory
read-only from the host to collect evidence without perturbing the control plane.

4.5 Vendor notifier patch (0xA001)

4.5.1 Listener data structures and initialisation

The behaviour is baked into src/libcharon/plugins/ext_auth/ext_auth listener.c via
multi-host-pep/pep-gateway/patches/ext-auth-runtime-cert.patch. The patch extends
the private state with a linked list of hints and a mutex so concurrent hook invocations cannot
trample each other:

typedef struct {
uint32_t unique_id;
char *required_ke;
bool pending_notify;
} hint_entry_t;

typedef struct private_ext_auth_listener_t {
linked_list_t *hints;

mutex_t *mutex;
} private_ext_auth_listener_t;

Helper routines such as ensure hint _locked(), store required ke (), set_pending notify(),
and clear hint() manage that list while holding the mutex, guaranteeing that every IKE_SA
has at most one hint entry regardless of how many worker threads charon schedules. The listener
constructor now initialises hints and mutex, wiring them into the public vtable so the new message
hook can inspect outbound packets.

4.5.2 Environment enrichment and hint capture

Before launching opa-auth-check.py the listener now exports richer context: it serialises the
negotiated PRF, DH group, and up to three PQ KEM identifiers into PLUTO_IKE_* variables, and
it calls acquire_peer_cert () to drop the responder certificate (PEM plus a temporary file) into
the environment. Once the Python script returns, the patch scans each line for OPA_HINT, which
the helper emits whenever it denies a negotiation. The relevant fragment looks like:

char *hint = strstr(resp, "OPA_HINT");
if (hint && sscanf (hint,

58

Implementation

"OPA_HINT unique_id=%u required_ke=%31s",
&hint_id, hint_level) >= 2)

{
if (hint_id == unique_id)
{
store_required_ke(this, hint_id, hint_level);
}
}

If the hook succeeded the listener calls clear hint() to drop any cached guidance for that
IKE_SA. If it failed, it flips the pending flag via set_pending notify(..., TRUE) so the next
outbound AUTH will carry a vendor notify.

4.5.3 Message hook and payload injection

The patch also registers a bespoke message() callback. For inbound IKE_AUTH requests it
watches for notify 0xA001 and, if present, stores the peer’s advertised requirement so the gateway
can log it symmetrically. For outbound messages it injects the hint whenever the pending flag is
set:

if (lincoming && type == IKE_AUTH)

{
entry = find_hint(this, unique_id);
if (entry && entry->pending notify && entry->required_ke)
{
chunk_t payload = chunk_from_str(entry->required_ke) ;
DBG1(DBG_CHD, "ext-auth: attaching required level ’%s’ for IKE_SA Yu",
entry->required_ke, unique_id);
message->add_notify(message, FALSE,
NOTIFY_REQUIRED_LEVEL, payload) ;
this->hints->remove (this->hints, entry, NULL);
destroy_hint_entry(entry) ;
}
}

The notify uses the vendor ID 0xA001 and the ASCII payload required ke=KE-L3;cert=SIG-L3
-SUF, which even legacy peers can parse without understanding PQ naming. Because hints are
deleted as soon as the notify goes out (or when the IKE_SA dies), the list stays bounded during
load tests.

4.5.4 Log signals and troubleshooting

Each stage leaves breadcrumbs.

/var/log/ext-auth.log records lines such as OPA_HINT unique_id=37 required_ke=KE-L3
cert=SIG-L3-SUF reason=rekey_regression. The listener mirrors every action with DBG1 state-
ments (saved required level, scheduling notify, attaching required level), so charon’s
syslog stream reveals exactly when the patch cached a hint or sent a vendor notify. If a partner
supports the extension it will echo the same payload back when it retries; the inbound half of
the message hook parses that response and logs received required level ’KE-L3’ for IKE_SA
37, showing that both sides agree on the threshold. These signals are also forwarded to the decision
logger: denials carry labels required ke_level and required_cert_level, allowing Prometheus
to alert on repeated downgrades, while packet captures show the binary notify, tying together wire
data, policy rationale, and helper logs. Taken together, the patch turns opaque AUTH failures
into actionable guidance without modifying partner templates or exposing internal policy services.

59

Implementation

4.6 Observability and Monitoring

4.6.1 Decision-logger service

The decision-logger container is a hardened Express application (decision-logger/server
.js) that ingests every structured event emitted by the helpers, stores it on disk, and exposes
the derived metrics that Prometheus and Grafana consume. Security middleware loads first:
helmet; restrictive CORS rules; HTTP parameter-pollution protection; JSON body size limits;
and dual rate limiters (a general 3000 requests/min bucket plus a stricter /logs limiter) to prevent
noisy helpers from overwhelming the logger, while a sanitizer strips control characters before they
reach the filesystem. Every POSTed batch must satisfy the decisionLogSchema built with Joi;
malformed entries are rejected with a 400 and never pollute the audit trail.

Once validated, the payload is passed through a Winston pipeline with three rotating trans-
ports: a JSON archive for raw records (decisions-%DATEY%.log), an error-specific file, and a
human-readable audit stream that renders synthetic lines such as ‘2024-03-18T10:22:53.1847%
[Tfc2cabc] DECISION: DENY — REMOTE: 198.51.100.10 — SERVICE: payments — REASON:
sig_level_insufficient‘. Sensitive fields (passwords, API keys) are redacted by the redactor () for-
mat before the record ever hits disk. The same log is forwarded to stdout for quick inspection, so
a failing helper can be diagnosed directly from docker logs decision-logger.

Counters live inside the stats structure: total decisions, allowdeny split, threat detec-

tions, fail-open fallbacks, per-level IKECHILD counts, rekey outcomes, and the distribution of
AEADPFS primitives captured by child _suite_cache.py. Prometheus scrapes /metrics to ob-
tain the exposed opa-decision_logger_x series (e.g., opa_decision_logger_total_decisions,
...,allowed_decisions, ..._policy._decisions_by_type, ..._rekey_operations_total,
..._child crypto_aead_total/..._child crypto_pfs_total), while /health and /stats ex-
pose JSON snapshots (uptime, last log time, decision rate) that the compose health checks use
to confirm the service is alive before the gateway starts. Dashboard filters therefore operate on
these outcome, and algorithm-based counters, not on per-message tags like phase or reason.

Ingress is tightly controlled. Only the gateway container is whitelisted in CORS, each
request carries a UUID for traceability, and bulk uploads are limited to 1MB so an errant
helper cannot wedge the process. In return the service provides a single, tamper-evident
timeline that mirrors the control plane: synchronous decisions from opa-auth-check.py,
asynchronous enforcement from vici-child-manager.py, provisioning attempts logged by
vici-tunnel-provisioner.py, and selector verdicts from updown verifier.py. All of them
land under /var/log/decision-logger.log (bind-mounted to the host), giving the validation
scripts and Grafana dashboards the same ground truth that operators would rely on in production.

4.6.2 Prometheus and Grafana wiring

Prometheus runs on the same opa_network bridge as the decision logger and scrapes only the log-
ger’s /metrics endpoint (no custom gateway exporter is defined in this compose; a node-exporter
could be added separately if needed). The scrape jobs live in prometheus/prometheus.yml
and use relabel rules to enforce TLS-free, bridge-local access so nothing on external-net can
query those endpoints directly. Dashboards therefore work off the actual opa_decision_logger_ *
series, e.g. opa_decision_logger_rekey_operations_totaloutcome="denied" to spot make-
before-break downgrades or opa_decision_logge_child validation failures_total for strict
up/down hits, rather than per-message labels like phase/result/reason.

Grafana (under grafana/provisioning/) ships with prebuilt dashboards that overlay those
metrics with extracts from the logs bind-mount. Panels show the end-to-end path for any iden-
tifier: the establishment verdict from OPA, the child manager’s INIT/FAIL events, the verifier
result, and the decision-logger latency histogram. Alert rules fire when suite extraction times out
repeatedly, when the number of pending decisions exceeds a threshold (indicating a stuck helper),
or when Prometheus stops seeing heartbeats from the CTI service. Because the compose stack
bind-mounts /var/log from every container into the host’s logs/ directory, Grafana’s Explore

60

Implementation

view can pull the matching JSON snippet for any alert, giving operators the text they would
otherwise have to read from the terminal. Together Prometheus and Grafana turn the structured
events produced by the helpers into a live map of the control plane, complete with historical
trends so regression tests can prove that a new patch maintains the desired failure posture.

4.6.3 Gateway logs and audit trail

Every helper keeps its own log under /var/log/ inside the gateway container, and compose
bind-mounts that directory back to the host so the validation scripts and dashboards see exactly
what an operator would collect in production. /var/log/ext-auth.log is the authoritative trace
of synchronous decisions: each invocation prints the unique identifier, peer metadata, suite source
(cache, VICI, or charon), the OPA verdict with required ke level/required cert_level,
and any OPA_HINT lines that drive the vendor notifier. /var/log/vici-suite-publisher.log
records every suite extraction attempt with latency and retry count, making it easy to spot
VICI stalls or gaps in charon’s log; /var/log/vici-child-manager.log mirrors the CRE-
ATE_CHILD_SA lifecycle (INIT_-REQUEST, INIT_SUCCESS, TEARDOWN, retry backoffs) and lists the
reqid/SPI pair so auditors can match it against swanctl --list-sas. Selector enforcement lives
in /var/log/opa-ext-auth/updown-verifier.log, where each entry shows the CHILD name,
negotiated selectors, expected selectors, and the action taken (allow, teardown). The outbound
helpers add their own streams: /var/log/vici-tunnel-provisioner.log documents which
legacy profile triggered the OPA decision, while /var/log/child-suite-cache.log links each
CHILD to the AEAD/DH tuple captured for later replay.

Because all of these files sit under a single bind mount (Logs/ at the repository root), the
automated test harness can bundle them into artefacts, Grafana’s Explore view can display the
surrounding context for any alert, and developers can diff runs to prove that a patch did not
introduce spurious retries or silent downgrades. Combined with the decision logger’s structured
feed, these local logs complete the audit trail: a denial appears in ext-auth, the same identifier
shows up in decision-logger with the policy rationale, the helper logs capture the retries or tear-
downs, and swanctl --list-sas (captured after each scenario) proves whether the kernel state
matched the policy.

61

Chapter 5

Test

This chapter contains the description of several tests conducted on the implemented solution.

The first part outlines the capabilities provided by the implemented system, followed by a per-
formance assessment examining execution time and the volume of packets and bytes exchanged
during operation. Subsequently, a practical demonstration is presented to illustrate the DoS ex-
posure inherent in enabling multiple unauthenticated multi-ADDKE exchanges during the initial
IKE SA negotiation. A comparative analysis is then performed between a conventional legacy
IKE configuration, where the CHILD SA is instantiated directly following the IKE_AUTH exchange,
and the legacy childless procedure, which serves as the reference baseline against which our post-
quantum establishment method is evaluated.

The evaluation further quantifies the overhead introduced by OPA, considering the cumulative
duration attributed to input parsing, query compilation, query evaluation, and auxiliary processing
within each PDP decision cycle.

Finally, a comprehensive analysis of the entire session-establishment workflow is provided.
For every phase, we report the elapsed time, the OPA evaluation latency, the delay between
the PDP decision and the subsequent CHILD SA installation, the child creation duration itself,
and the number of packets, fragments and bytes exchanged. The additional cost of the ex-post
CHILD validation, after which the secure tunnel is considered fully operational, is also included.
This examination is repeated for all defined post-quantum security levels, enabling a detailed
comparison of their respective performance characteristics.

5.1 Testbed

The experiments were conducted on an HP Pavilion Gaming 15-dk0000 Laptop PC with
the following specifications:

e CPU: Intel Core i5-9300H @ 2.40 GHz;

e GPU: NVIDIA GeForce GTX 1650 4 GB GDDR6 Dedicated VRAM;
¢ RAM: 8GB DDR4;

e Storage: 256 GB SSD, 500 GB HDD;

e OS: Ubuntu 22.04 LTS, 64-bit.

5.2 Functional tests

Different tests have been executed to check the correctness of the features introduced.

62

Test

In sequence, the section covers the establishment of the IKE SA; followed by the scenario in
which the initial setup is rejected because the negotiated security level is insufficient, thereby
activating the additional vendor-specific Notifier. Subsequently, the parameters of the installed
child are further examined with ex-post validation to ensure that the installed child corresponds
exactly to the configuration mandated by OPA for the relevant security level. Finally, the rekey
downgrade validation mechanism is analysed.

5.2.1 IKE SA establishment

The first experiment illustrates the correct establishment flow of an IKE SA. The procedure be-
gins with the IKE_INIT exchange, followed by an IKE_INTERMEDIATE round, which in this scenario
is fragmented into two parts due to the sizeable ML-KEM —1024 (Kyber_L5) key exchange pay-
loads. Subsequently, the peers proceed with the IKE_AUTH exchanges, which themselves appear
in multiple fragments in both directions. This fragmentation is primarily caused by the certifi-
cate transmission, which represents the dominant contributor to message size in this phase. In
this testbed, the end-entity certificate relies on ML-DSA —65 (Dilithium_3) for its public key and
issuer’s signature algorithms.

initiating IKE_SA banka-responder[4] to 203.0.113.2

generating IKE_SA_INIT request @ [SA KE No N(NATD_S_IP) N(NATD_D_IP) N(FRAG_SUP) N(HASH_ALG) N(REDIR_SUP) N(IKE_INT_SUP) V]
sending packet: from 198.51.100.10[500] to 203.0.113.2[500] (384 bytes)
received packet: from 203.0.113.2[500] to 198.51.100.10[500] (461 bytes)
parsed IKE_SA_INIT response @ [SA KE No N(NATD_S_IP) N(NATD_D_IP) CERTREQ N(FRAG_SUP) N(HASH_ALG) N(CHDLESS_SUP) N(IKE_INT_SUP) N(MULT_AUTH) V 1
received strongSwan vendor ID

selected proposal: IKE:AES_GCM_16_256/PRF_HMAC_SHA2_512/ECP_521/KE1_KYBER_L5
remote host is behind NAT

received cert request fo 'Q-Gateway Root CA"

received cert request fo PQ-Gateway Lab, CN=PQ-Gateway IKE CA P

received cert request fo PQ-Gateway Lab, CN=PQ-Gateway Root CA PQ"
received cert request for "CN=Post-Quantum CA, OU=strongSwan, O=Linux strongSwan"
generating IKE_INTERMEDIATE request 1 [KE 1

splitting IKE message (1633 bytes) into 2 fragments

generating IKE_INTERMEDIATE request 1 [EF(1/2)]

generating I request 1 [EF(2/2)]

sending pack .51.100.10[4500] to 203.0.113.2[4500] (1248 bytes)
sending pack .51.100.10[4500] to 203.0.113.2[4500] (450 bytes)
received packet: from 203.0.113.2[4500] to 198.51.100.10[4500] (1248 bytes)
parsed IKE_INTERMEDIATE response 1 [EF(1/2) 1]

received fragment #1 of 2, waiting for complete IKE message

received packet: from 203.0.113.2[4500] to 198.51.100.10[4500] (450 bytes)
parsed IKE_INTERMEDIATE response 1 [EF(2/2) 1

received fragment #2 of 2, reassembled fragmented IKE message (1633 bytes)
parsed IKE_INTERMEDIATE response 1 [KE]

sending cert request for "0=PQ-Gateway Lab, CN=PQ-Gateway Root CA PQ"
authentication of 'banka' (myself) with DILITHIUM_3 successful

sending end entity cert "CN=banka"

generating IKE_AUTH request 2 [IDi CERT N(INIT_CONTACT) CERTREQ IDr AUTH N(MOBIKE_SUP) N(NO_ADD_ADDR) N(MULT_AUTH) N(EAP_ONLY) N(MSG_ID_SYN_SUP)]
splitting IKE message (9056 bytes) into 8 fragments

generating IKE_AUTH request EF(1/8)

generating IKE_AUTH request EF(2/8)

generating IKE_AUTH request EF(3/8)

generating IKE_AUTH request EF(4/8)

generating IKE_AUTH request EF(5/8)

generating IKE_AUTH request EF(6/8)

generating IKE_AUTH request EF(7/8)

generating IKE_AUTH request EF(8/8)

sending .51.100.10[4500] to 0 .2[4500] (1248 bytes)
sending .10[4500] to .2[4500] (1248 bytes)
sending .10[4500] to .2[4500] (1248 bytes)
sending .10[4500] to .2[4500] (1248 bytes)
sending .10[4500] to .2[4500] (1248 bytes)
sending .10[4500] to .2[4500] (1248 bytes)
sending .10[4500] to .2[4500] (1248 bytes)
sending .51.100.10[4500] to 0 .2[4500] (751 bytes)
retransmit 1 of request with message ID 2

sending packet: from 198.51.100.10[4500] to .2[4500] (1248 bytes)
sending packet: from 198.51.100.10[4500] to

Figure 5.1. Initial IKE SA exchanges

After authentication concludes, but before the IKE SA is fully installed, the ext-auth plugin
intercepts the workflow. At this point, the state machine is deliberately paused while the plugin’s
script extracts all relevant metadata, including the peer identity, source address, negotiated cryp-
tographic suite and certificate attributes. These are transmitted to the PDP (OPA) for policy
evaluation.

63

Test

"oid": "1.3.6.1.4.1.2.267.7.6.5"
¥
3,
"not_before": "Oct 13 15:21:24 2025 GMT",
“not_after": "Oct 12 15:21:24 2028 GMT"
3
}

)

[2225—11 18T10:27:04.463515] [OPA-RESPONSE] Received from OPA: {
declslon "'527729c5-822e-40b6-82ee-721013bcdacl",

"child_profil nbound-legacy-pay-L3",
“child_sa_con {
”chlld leve HILD-L3",
"descriptio anka inbound payments tunnel (L3 security)",
"esp_proposals":
"aes256gcm16-ecp521-kel_mlkem1024-ke2_none-ke3_hqc5",
"'aes256gcml6-ecp521-kel_mlkem1@24-ke2_bike5-ke3_none"
""aes256gcm16-ecp384-kel_mlkem1024-| Kke2_bike5-| ke3,hqc5

0.200.0.0/24'
1t

nka inbound payments tunnel (L3 security)", " aesZSSgcmlG—ecpSZl—kel
84-ke1_mlkem1024-ke2_bikeS-ke3_hqc5"1, " z
art_actiol one", “updown": */usr/local/sbin/upd
ve scription nka inbound payments tunnel (L3 securit
aesZSchmlG—ecpSZl —kel_| kyberS —ke2_| blkes—ke3 none" 52569Cm16-ecp384-kel_kyber5-ke2_bike5-ke3_hqc5"1, "local_f '10.200.0.0/. : "inbound-lega)
“renote_ts": "198.51,100.10/32", “reqid": 101, _action": "none", "updown": "/usr/local/sbin/updown-veri

[2025-11-18T10 1465976] Persisted decision state unique_id=5 path=, /run/opa—lke/lke—s.json
[2025-11-18T10 .477594] OPA allow: resolved_peer=banka reason=allow child_profile=inbound-legacy-pay-L3

Figure 5.2. IKE SA metadata collection via ext-auth

Based on this input, the PDP returns a decision that includes both the approved security
level and the complete child SA configuration template to be enforced. Before finalising the
installation of the IKE SA, the returned template is validated against the locally defined swanctl
configuration to ensure that the child to be installed corresponds exactly to the policy mandated
one. Once this final consistency check succeeds, the ext-auth plugin issues an authorisation
success verdict and the IKE SA is installed.

[ENC] received fragment #13 of 13, reassembled fragmented IKE message (14593 bytes)

[ENC] parsed IKE_AUTH response 2 [IDr CERT CERT AUTH N(MOBIKE_SUP) N(ADD_4_ADDR) N(ADD_4_ADDR) 1
[IKE] received end entity cert '"CN=pep-gateway"

[IKE] received issuer cert '"0=PQ-Gateway Lab, CN=PQ-Gateway IKE CA PQ"

[CFG] using trusted certificate "CN=pep-gateway"

[CFG] using trusted intermediate ca certificate "0=PQ-Gateway Lab, CN=PQ-Gateway IKE CA PQ"
[CFG] using trusted ca certificate "0=PQ-Gateway Lab, CN=PQ-Gateway Root CA PQ"

[CFG] reached self-signed root ca with a path length of 1

[IKE] authentication of 'pep—gateway' with DILITHIUM_3 successful

[IKE] peer supports MOBIKE

[IKE] IKE_SA banka-responder[4] established between 198.51.100.10[bankal...203.0.113.2[pep—gateway]
[IKE] scheduling rekeying in 112s

[IKE] maximum IKE_SA lifetime 124s

initiate completed successfull

Figure 5.3. IKE SA successfully installed

5.2.2 IKE SA establishment denial due to insufficient security level

When the PDP rejects an incoming IKE SA request because the negotiated parameters do not
satisfy the minimum security requirements, the gateway halts the establishment process. In this
case, the PDP response includes both the reason for the denial and the minimum KE and signature
levels expected for that specific peer. Consequently, the responder returns a failure during the
IKE_AUTH exchange: besides the standard AUTH_FAILED notification, the gateway also emits a
vendor-specific notification whose payload explicitly encodes the required KE and signature levels.

[NET] sending packet: from 198.51.100.11[4500] to 203.0.113.2[4500] (760 bytes)
[INET] received packet: from 203.0.113.2[4500] to 198.51.100.11[4500] (9@ bytes)
[ENC] parsed IKE_AUTH response 2 [N(AUTH_FAILED) N(BEET_MODE)]

[IKE] received AUTHENTICATION_FAILED notify error
initiate failed: establishing IKE_SA 'partnerb-responder' failed

Figure 5.4. IKE SA establishment denied owing to an insufficient security level

64

Test

The remote peer, which also includes the corresponding parsing patch, is capable of recognising,
decoding, and logging this additional notification. As illustrated in fig. 5.5, the peer processes the
vendor-specific payload and records the required cryptographic levels, thereby enabling diagnostic
feedback and future renegotiations that comply with the advertised security policy.

@8 [ENC] <partnerb-responder|2> parsing NOTIFY payload, 33 bytes left

08 [ENC] <partnerb-responder|2> parsing payload from => 33 bytes @ @xffff700lac28

08 [ENC] <partnerb-responder |2> 0: 29 00 00 08 00 00 00 18 00 00 00 19 00 00 A® 01)..

08 [ENC] <partnerb-responder|2> 16: 4B 45 2D 4C 32 3B 63 65 72 74 3D 53 49 47 2D 4C KE-L2;cert=SIG-L
08 [ENC] <partnerb-responder|2> 32: 32 2

@8 [ENC] <partnerb-responder|2> parsing rule @ U_INT_8

@8 [ENC] <partnerb-responder |2> => 41

@8[ENC] <partnerb-responder|2> parsing rule 1 FLAG

@8 [ENC] <partnerb-responder |2> =0

@8 [ENC] <partnerb-responder|2> parsing rule 2 RESERVED_BIT
=> 0

Figure 5.5. Peer-side parsing of vendor-specific notification indicating required security levels

5.2.3 Child SA installation

As already noted, in the final phase of the exchange, once the PDP returns the authorised child
template, the gateway verifies that this configuration exactly matches the corresponding entry in
swanctl.conf. If the template is consistent with the locally declared policy, it is persisted under
/run/opa-ike/ike-<id>. json, thereby recording both the decision and the full set of parameters
required for subsequent enforcement.

65

Test

~sAVIR AR 1y T grriarapans docker exec pep-gateway cat /run/opa-ike/ike-2.7json.done

"schema_version": 3,
"created_by": "opa-auth-check",
"timestamp": 1763461322.9229274,
"ike_unique_id": "2",
"role": "initiator",
"service'": "payments",
"service_hint": "payments",
"allow": true,
"reason": "allow",
"required_ke_level": "unknown",
"required_cert_level"™: "unknown",
"child_profile": "to-banka-L3",
"child_sa_config
"child_level" HILD-L3",
"description": "BankA outbound payments tunnel (L3)",
"esp_proposals": [
"aes256gcml6-ecp521-kel_kyber5-ke2_none-ke3_hqc5",
"aes256gcml6-ecp521-kel_kyber5-ke2_bike5-ke3_none",
"aes256gcml6-ecp384-kel_kyber5-ke2_ bike5-ke3 hqc5"
1,
"local_ts": "10.200.0.0/24",
“name": "to-banka-L3",
"rekey_time": "9@s",
"remote_ts": '"198.51.100.10/32",
"reqid": 201,
"start_action": "none",
"updown": "/usr/local/sbin/updown-verifier.sh"
H
"child_sa_config_opa": {
"child_leve HILD-L3",
"description' BankA outbound payments tunnel (L3)",
"esp_proposals": [
"aes256gcml6-ecp521-kel_mlkem1024-ke2_none-ke3_hqc5",
"aes256gcml6-ecp521-kel_mlkem1l@24-ke2_bike5-ke3_none",
"aes256gcml6-ecp384-kel_mlkem1024-ke2_bike5-ke3_hqc5"

r
"local_ts": "10.200.0.0/24",
"“name": "to-banka-L3",
"rekey_time": "90s",
"remote_ts": '"198.51.100.10/32",
"reqid": 201,
"start_action": "none",
"updown": "/usr/local/sbin/updown-verifier.sh"

Figure 5.6. Persisted OPA decision and child template

From this point, the vici-child-manager retrieves the approved child profile name from the
stored decision file and triggers its installation. The ensuing CHILD SA negotiation follows the
standard strongSwan flow. However, in this instance the level-4 child requires multiple fragments,
reflecting the computational weight and message size associated with the HQC-5 component of
the multi-KEM ESP proposal.

66

Test

Figure 5.7. Authorised CHILD SA being initiated via VICI

Once installed, the CHILD SA is formally associated with the pre-existing corresponding IKE
SA, completing the childless workflow in which the child is created only after the IKE SA has
been authorised and validated.

gw-wan-in-bankA: #20, ESTABLISHED, IKEv2, 9fclf57fea2d6b7a_ix fe8f329fbl54c208_r
local ‘'pep-gateway' @ 203.0.113.2[4500]
remote 'banka' @ 198.51.100.10[4500]
AES_GCM_16-256/PRF_HMAC_SHA2_512/ECP_521/KE1_KYBER_L5
established 18s ago, rekeying in 100s

inbound-legacy-pay-L3: #29, reqid 101, INSTALLED, TUNNEL-in-UDP, ESP:AES_GCM_16-256/ECP_521/KE1_KYBER_L5/KE3_HQC_L5
installed 50s ago, rekeying in 34s, expires in 51s
in ¢597d61f, 0 bytes, 0 packets
out ca@cbé@c, 0 bytes, 0 packets
local 10.200.0.3/32
remote 198.51.100.10/32

Figure 5.8. Final CHILD SA bound to the IKE SA after installation

5.2.4 Child ex-post validation

After the CHILD SA has been successfully installed, the updown verification hook performs an
ex-post consistency check, consulting again the PDP. Using the parameters obtained via VICI,
it inspects the effectively negotiated ESP suite and traffic selectors, ensuring that they precisely
correspond to the configuration authorised by the PDP for that specific connection. Any deviation,
whether a weaker cryptographic proposal, an unexpected selector, or an omitted KEM component,
would trigger a controlled teardown of the tunnel to prevent the establishment of a non-compliant
security association.

Once the verification stage completes, the outcome is forwarded to the decision logger, which
records both the authoritative OPA mandate and the parameters of the CHILD SA as actually
instantiated on the gateway. This produces an auditable, time-stamped record of the enforcement
pipeline, capturing the achieved level, and the result of the ex-post validation.

Z updown[16] D Resolved service=payments (source=st 3 > 10 (source=pee
child_profile=inbound-legacy-pay-L3
16 Child payload addke (converted to OPA format): { oo € ‘none’',
d.cre {"child": {" 5 A m10 ki one' ke3": "none"},
inbound C
"child_i

updown [response
['resu {"all "level": "CHILD-L3!
updown[16] INFO OPA allow for inbound-legacy-pay-L3: reason=allow

Figure 5.9. Ex-post validation performed by the updown hook

67

Test

2025-11-18T710:59:30.522Z [108e8676-able-4733-8de/-07e5942d9687] DECISION: ALLOW | REMOTE: 198.51.100.10 | PATH: ike/establishment/decision | LEVEL: KE-L4 | DURATION: 27.41ms
5.489Z [INFO] POST /logs - RequestID: 4f5e4e@2-4103-49eb-9ea8-0bf817339a2e
5.475Z [child-16-1763463585] DECISION: ALLOW | SERVICE: payments | PATH: child/create/decision
8.010Z [INFO] POST /logs - RequestID: e957af25-916b-4b2d-af6b-b79c647fd54e
5.473Z [0ed7191b-0858-454c-89ca-fdb77a96a349] DECISION: ALLOW | REMOTE: 198.51.100.1@ | SERVICE: payments | PATH: child/create/decision | LEVEL: CHILD-L3 | DURATION: 3.

ms
2025-11-18T11:01:41.773Z [INFO] POST /logs - RequestID: 190890c2-833b-4eae-804b-e970e8dfba68
2025-11-18T11:01:33.504Z [d6fdalc0-993b-4dfc-9ael-762eb3084a17] DECISION: ALLOW | REMOTE: 198.51.100.10 | SERVICE: banka | PATH: rekey/ike_sa | DURATION: 8.71ms

Figure 5.10. Decision Logger entry for validated CHILD SA

Selector mismatch enforcement

To validate that the ex-post validation truly prevents non-compliant CHILD SAs, we crafted a
tampering scenario using the tamper-updown.sh script. The test deliberately poisons the cached
metadata used by the updown hook so that the traffic selectors authorised by the PDP differ from
those negotiated on the wire.

What the script does

e Restarts gateway and banka, reloads swanctl and establishes the baseline IKE/CHILD
(gw-wan-out-bankA / to-banka-L3).

e Suspends the helper processes (vici-suite-publisher, child_suite_cache, vici-child
-manager) to freeze metadata updates.

e Locates the cached child metadata (/run/opa-ike/child-suites/ike-*-to-banka-L3
.json) and tampers it: ts.local is forced to 10.200.0.0/24 while the on-wire child
negotiation proposes 10.200.0.3/32.

e Creates a fail-close flag (/run/opa-ike/fail on mismatch) so the updown hook will tear
down the CHILD on any mismatch.

e Forces a fresh IKE/CHILD negotiation (terminate and re-initiate) so that updown reads the
tampered metadata during validation.

e Removes the flag and resumes the helper processes after the test.

Expected behaviour When the negotiated selectors differ from the cached OPA decision, the
updown hook, running in fail-close mode, must immediately terminate the CHILD SA and log the
mismatch, rather than allowing an out-of-policy tunnel to persist.

Observed result The log in fig. 5.11 shows cache hits for the tampered metadata, a clear
diff between meta_local/meta_remote and config local/config remote, and the hook reacting
with an immediate teardown:

® Child config TS differ from metadata (meta_local=[’10.200.0.0/24’] ... config_local
= [210.200.0.3/32°1)

ERROR Selector mismatch detected and UPDOWN_FAIL_ON_MISMATCH enabled; terminating
child immediately

® WARN Terminating child to-banka-L3 due to policy deny

e INFO action=down

Each attempt to establish the child in this poisoned state is denied and torn down, demon-
strating that any deviation from the PDP-approved selectors is blocked at install time.

1875-2025-11-18T17:47:30.639996Z updown[3] DEBUG Cache hit for unique_id=3 child=to-banka-L3 timestamp=2025-11-18T17:04:16.289865Z

1876-2025-11-18T17 0.640298Z updown[3] DEBUG Using cached metadata for unique_id=3 child=to-banka-L3

1877-2025-11-18T17:47:30.640649Z updown[3] DEBUG Child config TS differ from metadata (meta_local=['10.200.0.3/32'] config_local=['10.200.0.0/24'] meta_remote=['198.51.100.10/32'] config
_remote=['198.51.100.10/32"'] source=cache)

1878:2025-11-18T17: 47:30.640913Z updown[3] ERROR Selector mismatch detected and UPDOWN_FAIL_ON_MISMATCH enabled; terminating child immediately
1879-2025-11-18T17:47:30.641161Z updown[3] WARN Terminating child to-banka-L3 due to policy deny

1880-2025-11-18T17:51:39.692329Z updown[2] INFO action=down unique_id=2 child=in-banka-L3 local_ts=None remote_ts=None
1881-2025-11-18T17:51:39.703092Z updown[2] INFO Skipping verification for action=down

Figure 5.11. Updown hook detecting selector mismatch (OPA metadata vs negotiated TS) and
tearing down the CHILD SA

68

Test

5.2.5 Rekey validation gate

A final validation stage is executed during the lifetime of an established IKE SA in order to
prevent any form of cryptographic downgrade when rekeying occurs. When strongSwan signals
that an IKE rekey is imminent, the vici-child-manager intercepts the event and leverages the
native make-before-break mechanism to retrieve both the ”old” and the ”new” cryptographic suites
associated with the rekey attempt. The suites, are packaged and submitted to OPA through the
dedicated rekey policy endpoint.

2025-11-18 12:14:42,626 - INFO - IKE REKEY detected for gw-wan-out-bankA: uniqueid 9 -> 1@
20925-11-18 12:14:42,626 - INFO - Preparing OPA rekey validation for gw-wan-out-banka
20925-11-18 12:14:42,626 - INFO - 0ld suite: {"aead': "aes256gcmi6’, "prf': ‘shas12’, 'dh': ‘ecps21°’,
‘addke’: {'kel’: 'mlkem1@24°, ‘ke2': "none', “ke3': 'none’
2025-11-18 12:14:42,626 - INFO - New suite: {'aead': "aes256gcml6’, "prf': ‘shas512’, 'dh': ‘ecps21’,
‘addke’: {'ke1l': 'mlkem1@24’, 'ke2': 'none’, 'ke3 ‘none’}}
2025-11-18 12:14:42,627 - INFO - Calling OPA rekey policy: http://opa-server:8181/vl/data/rekey/ike sa
2025-11-18 12:14:42,627 INFO - Payload: {
"input™: {
"service": "banka",
"connection name": "gw-wan-out-bankA”,
"peer_addr”: "198.51.100.18",
"old": {
"aes256gcml6”,
shas12",

"addke [
"ke1": "mlkem1@24",

"ke2": "none”,
"ke3™: “none”

1 "aes256gcmle”,
"sha512",
"dh": "ecp521”,
"addke": {
"ke1": "mlkem1@©24",
"ke2": "none",
"ke3": “"none”

114:42,644 - INFO - OPA rekey decision: allow=True, reason=allow, action=promote_new_delete_old
114:42,645 - INFO - IKE rekey ALLOWED by OPA for gw-wan-out-bankA

Figure 5.12. Rekey request intercepted and evaluated against PDP policy

The PDP evaluates whether the proposed replacement satisfies the minimum security require-
ments for the associated service. If the new suite preserves or improves the previously achieved
level, the vici-child-manager promotes the fresh IKE SA and subsequently tears down the old
instance. Conversely, if the rekey attempt results in a weaker configuration, the new IKE SA is
rejected and the existing one is retained, thus preventing any inadvertent or malicious downgrade.

:44.1257 [INFO] POST /logs - RequestID: 73c82387-f79b-4794-bAc5-29a74e91406a

:42.6387 [701befen-7fc3-4f81-b57c-fe@3793111a5] DECISION: ALLOW | REMOTE: 198.51.100.1@ | SERVICE: banka | PATH: rekey/ike sa | DURATION:

3.29ms

Figure 5.13. Audit entry showing the validated rekey decision and resulting action

5.3 Performance tests

In this section, we present the performance evaluation of the proposed solution and contrast it
with a classical baseline composed of a standard IKE exchange followed by immediate CHILD SA

69

Test

creation. The analysis examines the latency introduced throughout the entire establishment work-
flow, the additional computational effort required for post-quantum primitives, and the resulting
increase in packet count, fragmentation and byte overhead.

Furthermore, the evaluation isolates the delay attributable to PDP consultation at each stage
of the negotiation process, from the initial policy query to the moment at which a functional
protected channel becomes available. A detailed breakdown of the policy evaluation pipeline
is also provided, highlighting the contribution of each component, parsing, compilation, rule
matching and final decision synthesis, to the overall OPA processing time observed during the
establishment procedure.

5.3.1 TUnauthenticated multi-KEM overhead in IKE establishment

This experiment quantifies the cost of adding multiple KEMs during the unauthenticated IKE
SA setup, highlighting the DoS exposure that motivates the use of a single KEM in the IKE
establishment and the use of the childless design adopted in this work. Two runs are compared: a
baseline configuration in which the gateway negotiates a single post-quantum KE (ML-KEM-1024)
and a multi-KEM configuration that adds BIKE-5 and HQC-5 in ADDKE #2 and ADDKE #3,
respectively. Even though only three out of the seven additional KEM slots envisaged by RFC-
9370 are exercised, the overall exchange time more than doubles (from roughly 100 ms to 217 ms),
and the total UDP volume and packet count increase by factors of approximately 2.16 and 2.11,
as illustrated in figs. 5.14 to 5.16. The bulk of the extra cost stems from the HQC exchange,
which alone accounts for over 40 % of the total duration in the multi-KEM case.

The measurements are obtained by capturing the full IKE traffic on the gateway container
using the helper script:

&& ./scripts/capture-and-analyze-ike.sh \
pep-gateway gw-wan-out-bankA 198.51.100.2

The script first terminates any existing IKE SA, then starts tcpdump inside the container to
record packets on UDP ports 500/4500. The resulting PCAP is copied to the host and analysed
by analyze-pcap-timing.py, which invokes tshark to extract timestamps, message types and
lengths, groups packets into phases (IKE_SA_INIT, IKE INTERMEDIATE #1-#3, IKE_AUTH), and
computes, for each phase, the duration, number of packets and bytes sent/received at the UDP
level.

Data Transfer Comparison by Phase (UDP level)
Received
38,563 B

40000 (Solid bars = Sent | Hatched bars = Received]

35000
30000 Sent
24,984 B

. -

Received
20000 17,642 B
15000 Sent
11,725 B

10000

Bytes

5000

ML-KEM-1024 Only ML-KEM-1024 + BIKE5 + HQC5
mm IKE_SA_INIT s ADDKE #1 (ML-KEM) ADDKE #2 (BIKE) == ADDKE #3 (HQC) mm KE_AUTH

Figure 5.14. Comparison of transmitted and received data volumes for single-KEM and multi-
KEM IKE establishment

70

Test

IKE Exchange Packet Count Comparison

ML-KEM-1024 Only\nPacket Count per Phase ML-KEM-1024 + BIKE5 + HQC5\nPacket Count per Phase
= Sent = Sent

1, ®E Received 1o W Received

10- 10-
0)
© ©
]]
o 8- 8 8-
o o
w“ w“
o o
T 6- g 6-
-3 2
E 3
3 3
Z 4- 2 4-

2- 2 2-

i : -
0- o=
IKE_SA_INIT ADDKE #1 IKE_AUTH n<e _SA_INIT ADDKE #2 ADDKE #3 IKE_AUTH
(ML-KEM-1024) ML KEM 1024) (BIKE)
Phase Phase

Figure 5.15. Packet count distribution across IKE phases for ML-KEM only versus multi-KEM
setups

IKE Exchange Timing Comparison

ML-KEM-1024 Only (99.84 ms) ML-KEM-1024 + BIKE5 + HQC5 (216.69 ms)

IKE_AUTH - 78.7 ms (36.3%)
IKE_AUTH 80.5 ms (80.6%)
Pl 7— 203 me i

(HQC)

ADDKE #1 10.8 10.8% ADDKE #2 | 29.1 13.4%
(ML-KEM-1024) I Tt i (BIKE) IpRitiZ:d0e)
ADDKE #1 | o
PR E et . 10.9 ms (5.0%)
IKE_SA_INIT 8.6 ms (8.6%)

IKE_SA_INIT . 7.8 ms (3.6%)

0 10 20 30 40 50 60 70 8 0 20 40 60 80
Duration (ms) Duration (ms)
Figure 5.16. Phase-level timing comparison between ML-KEM only and multi-KEM IKE negoti-
ations

5.3.2 Legacy IKE establishment: normal versus childless mode

A second experiment contrasts a conventional legacy IKE setup, in which a CHILD SA is cre-
ated immediately during IKE_AUTH, with a childless initial exchange where only the IKE SA is
established. As specified by RFC-7296, in the normal case the first CHILD SA is derived directly
from the key material negotiated in IKE_SA_INIT. The IKE_AUTH message carries, in addition to
the authentication payloads, also the ESP proposal and traffic selectors for that child. While
additional effective independent key exchanges are used solely for subsequent CREATE_CHILD_SA
operations to provide PFS.

The experiment is automated by the simple-ike-comparison.sh script, which alternates
between the normal and childless configurations of the gateway and host-legacy containers. For
each mode the script restarts the containers, reloads the swanctl configuration, captures the full
handshake on the gateway with tcpdump, and derive the total establishment time and the number
of bytes observed on the wire. The two JSON reports are finally compared, which computes the
incremental overhead introduced by negotiating a CHILD SA within IKE_AUTH.

The results, summarised in fig. 5.17, show that embedding a CHILD SA directly within the
IKE handshake introduces a measurable increase in both data transfer and processing time. From
a bandwidth perspective, the handshake grows by approximately 7 %, a consequence of the addi-
tional payloads carried in the final IKE_AUTH response. Specifically, the response size increases
by roughly 80 B, consisting of the ESP SA payload, the TSi and TSr payloads, and a small amount
of padding and alignment overhead.

71

Test

On the request path, the overhead is more pronounced (476 B), as the initiator must transmit
the full CHILD SA proposal and the associated traffic selectors, and additional notify payloads.
In our measurements, this request is split across multiple IP-level fragments, which increases the
number of packets on the wire and the per-packet processing overhead on both peers.

In terms of latency, the impact is more substantial: the full establishment time more than
triples, increasing from approximately 157 ms in the childless case to around 539 ms when the
CHILD SA is negotiated in-band. This slowdown arises almost entirely from the additional
processing and fragmentation required to negotiate the child proposal during IKE_AUTH.

These results show the security hardening ensured by our architecture, in which the gateway
deliberately adopts the childless mode for the initial IKE SA, and subsequently creates a fresh
CHILD SA with dedicated post-quantum key exchanges once the PDP has authorised the con-
nection. This separates the tunnel keys from the initial IKE negotiation, keeps the IKE proposal
itself lightweight (single standardised KEM), and shifts the additional post-quantum cost into an
explicitly authorised and tightly controlled CHILD establishment step, assuring a comprehensive
supplementary exchange even for the initial child creation.

IKE Child SA Overhead Analysis

Data Transfer Establishment Time

8,237 6007 539.0
bytes 7,681
bytes

8000 -
500 -

w
6000 - £ 400
= o
Q £
= = 300~
8 -
4 4000 g
[
200 - 156.6
ms
2000 -
100 -
0= g g 0- g "
Normal Childless Normal Childless
(with Child SA) (IKE_SA only) (with Child SA) (IKE_SA only)

Figure 5.17. Data and time overhead of a normal IKE establishment with CHILD SA versus
childless mode

5.3.3 Policy evaluation timing analysis

To quantify the computational cost introduced by the policy-driven control plane, we analyse the
evaluation time of each OPA rule involved in the security workflow: the ike/establishment deci-
sion, the child/create decision, and the rekey/ike_sa downgrade prevention gate. Figure 5.18
reports the breakdown of the average latency observed for each policy phase, distinguishing the
time spent parsing the input, compiling the Rego query, evaluating the policy logic, and the
residual runtime overhead.

The evaluation of the IKE establishment policy is, by design, the most time-consuming stage.
This rule constitutes the core of the PDP’s security assessment and therefore performs the most
extensive set of checks. Specifically, the decision must:

e authenticate and classify the remote peer identity;

e determine whether the requested connection is admissible given the declared policy set;

e assess whether the negotiated IKE security level satisfies the minimum requirements for that
peer or service;

validate the remote certificate, including level requirements and subject matching;

derive the authorised child template to be enforced by the gateway.
72

Test

For these reasons, its cost dominates the evaluation process, averaging 10.48 ms, with more
than 92 % of this time attributed to actual query evaluation.

By contrast, the subsequent phases, child/create and rekey/ike_sa, are structurally lighter.
Both rules primarily act as consistency checks that resemble pattern-matching over previously
authorised state. For child creation, the rule requires substantially fewer logical operations and
averages 4.15ms.

Similarly, the rekey rule, as this logic is predominantly a structural comparison, it exhibits
the smallest evaluation cost, averaging 3.70 ms across runs.

OPA Policy Evaluation Timing Analysis

Evaluation Time Breakdown by Phase Total Evaluation Time

10.48 ms
N Input Parse 124
10- = Query Compile
W Query Evaluation 10.48 ms
Overhead

Time (ms)

4.15 ms

3.70 ms 4.15 ms

Total Time (ms)
o

3.70 ms

Average Breakdown:
Input Parse: 4.1%
Query Compile: 4.6%
Query Eval: 81.9%
Overhead: 9.4%

IKE Child Rekey IKE Child Rekey
Establishment Create IKE Establishment Create IKE
Figure 5.18. Breakdown of OPA evaluation times across the IKE establishment, child creation
and rekey security gates

5.3.4 Comprehensive evaluation across security levels

This section consolidates the multi-level performance analysis by examining, in a unified manner,
the timing characteristics, network overhead, and fragmentation behaviour observed across the
four security levels. The measurements derive from controlled experiments conducted through
the benchmarking framework executed via the run_benchmark_suite.sh script. Packets are cap-
tured on the gateway with tcpdump into PCAP traces, then parsed with tshark and correlated
with vici and OPA audit logs to extract timing and traffic metrics. Although, it is important
to highlight that the timing values exhibit a degree of non-determinism. Such variability pri-
marily stems from the packet capture methodology, the behaviour of the Docker-based execution
environment, and short-lived network congestion during the exchange phases. Consequently, the
collected timings should be regarded as representative rather than absolute. It is worth noting
that, across all evaluated configurations, the required signature strength is fixed at level 2. This
choice provides a satisfactory level of assurance for authentication while avoiding the heavier
level 3 option, whose cost is dominated by certificate exchange. At the same time, level 2 remains
sufficient to study the differences between security levels arising from the distinct Additional Key
Exchanges (ADDKEs) used in each case. However, this decision is easily reversible: since the
security level of the KE is decoupled from that of the signature, it is sufficient to adjust the sig-
nature level in service_classes.rego for the relevant external service, and the new requirement
will be propagated automatically during the validation phase.

Traffic, bytes and fragmentation

The aggregate network statistics in figs. 5.19 and 5.20 reflect the intrinsic cost of increasing post-
quantum security levels. Packet counts, transferred bytes and the number of IKE fragments all
grow consistently from L1 through L4. This trend is especially visible for the child installation
stage, where the cryptographic workload directly influences the payload size and fragmentation

73

Test

ratio. At level 4, where ML-KEM-1024, BIKE-5, and HQC-5 are jointly negotiated, the child
establishment accounts for the highest number of fragments (34 fragments in total), and a cor-
responding traffic volume of approximately 37.1 KiB. Such growth is entirely expected as larger
post-quantum public keys and ciphertexts must be transmitted during the ESP negotiation.

Network Traffic Comparison Across Security Levels

Packet Count Distribution Data Volume Distribution IKE

- KE SA 36 - IKE SA 37.1 35 ke sa 34
359 1 Child SA 35| 0 Child SA W Child SA

30

N
b

Packets
Data Volume (KiB)
Fragment Count

L1 L2 L3 L L3
Total Packet Count

L2 L3
Total IKE Fragmentation

63 60

50

B

Total Packets

Total Data (KiB)

Total Fragments
8

N
8

Figure 5.19. Network traffic comparison across all security levels

IP Fragmentation Analysis by Direction

IKE SA Fragmentation Child SA Fragmentation
W Outbound 15 20.0{ ™= Outbound 20
14| == nbound = Inbound
13 13 17.5
12
15.0 e
14
10
E § 12,5
o o
v o
E ¢ E 10.0
£ E 9
o o
£ £ 8
7.5
6
A 5.0
4
2 25
0 0.0
2 13 L1 L2 13 L4
Total Fragmentation Breakdown Fragmentation Intensity
W |KE Outbound 0.88
0.85
0.81
0.8
@ 0.6
‘g 4
M
8 2
- 0
-} E o4
£ g
I
0.2
0.0
2 13 L4

Figure 5.20. IP fragmentation comparison across security levels

74

Test

Macroscopic timing behaviour

Although the cryptographic payload grows with the level, the global timing bottlenecks remain
consistent across all tiers. The most significant contributor to the total duration is the IKFE
authentication phase, dominated by certificate exchange and signature verification. A second non-
negligible component is the delay between the PDP’s decision and the start of child negotiation,
which varies according to system load, scheduling of the vici-child-manager, and transient
conditions within the Docker network stack.

The child negotiation time (purple bar in fig. 5.21) increases monotonically with the security
level, as anticipated, and reaches its maximum at level 4. This reflects the cumulative cost of
negotiating three post-quantum KEMs sequentially. The evaluation also accounts for the ex-post
validation performed by the updown mechanism to ensure that the installed suites strictly match
the authorised template, to consider complete the entire secure tunnel establishment.

Performance Timing Breakdown Across Security Levels

3.5
wsm |KE SA Establishment
=== OPA IKE SA Evaluation 2.907
.907s
wsw IKE-Child Transition Delay -
3.01 mmm Child SA Establishment [~oms]
mmm OPA Child SA Evaluation
15.9%
2.5
(2:2525) o
m
| 1.8ms | (0.273s)
@ 1.880s 13.0% 30.4%
T 201 —— (0. 2018) (0.8825)
o 25.2%
g (0.185s) (0.591s)
) 25.3%
‘; (0.545s)
28.3%
£ 159 (0.5323)
=
| 43ms |
1.0 4
53.5%
63.0%
61.3% (1.478s) (1.554s)
61.6% (1.319s)
0.51 (1.158s)
0.0-

Security Level

Figure 5.21. Performance timing breakdown across security levels

Overall interpretation

Despite a clear increase in establishment time relative to the classical legacy scenario, where the
first child is derived immediately after IKE_AUTH with negligible additional negotiation, the pro-
posed solution offers a qualitatively different security posture. The policy-driven approach enables
complete control over the negotiation pipeline: the PDP can enforce the precise KE, signature
and child-level combinations required for each service, while decoupling the establishment of the
transmission tunnel from the IKE SA itself. The resulting overhead represents a one-time cost
incurred only during the initial establishment, and is justified by the stringent security guarantees
needed in the target deployment environment.

75

Chapter 6

Conclusion

This document has introduced and evaluated a policy-centric, post-quantum aware IPsec gate-
way. The proposed system is designed to shield legacy infrastructures that cannot yet adopt
post-quantum schemes natively, while still allowing them to benefit from quantum-resistant pro-
tections. Informed by the analysis of the quantum threat landscape, the NIST PQC standard-
isation process and the practical obstacles of migrating IPsec and IKEv2, the gateway operates
as a translation point: it terminates conventional IKEv2 sessions with a legacy LAN and re-
establishes connectivity towards post-quantum capable peers on an external network, enforcing
centrally defined cryptographic policies and target security levels along the way.

A central premise of this work is that cryptographic agility, rather than the selection of one
specific algorithm, is the main design requirement for systems expected to face both classical
and quantum-capable adversaries over time. To this end, the gateway does not embed fixed
cryptographic choices in its data plane. Instead, it follows a policy-driven architecture in which
an external Policy Decision Point (PDP), realised with Open Policy Agent (OPA), determines
admissible algorithms, key exchange patterns, signature schemes and per-service security levels.
The strongSwan-based gateway acts as a Policy Enforcement Point (PEP), terminating tunnels
on both sides and consulting the PDP, before allowing security relevant state changes. This
clean separation of roles decouples policy evolution from packet processing, so that changes in
security posture can be realised by updating policy modules and data bundles, without modifying
or restarting the enforcement component.

The prototype has been validated through functional tests that exercise the full negotiation
workflow. The experiments show that the gateway correctly intercepts authenticated Internet
Key Exchange (IKE) exchanges, submits a rich context to the PDP, and proceeds only when
an internally consistent child configuration is authorised. When a proposed cryptographic suite
fails to meet the minimum requirements, the gateway rejects the IKE association and returns a
diagnostic notification that can be logged and interpreted by the peer. Child SA installation is
shown to derive exclusively from OPA-approved templates, which are recorded and cross-checked
against the actually negotiated traffic selectors and ESP transforms. Any deviations cause a fail-
closed teardown. Rekey validation further confirms that downgrade attempts are systematically
blocked, and that new IKE SAs are accepted only when they preserve or raise the previously
achieved security level.

Furthermore, the performance evaluation provides a quantitative perspective on the costs of
adopting post-quantum primitives and policy-driven control. Measurements show that performing
multiple unauthenticated ADDKE rounds during IKE SA setup substantially increases handshake
latency and traffic volume, and makes the protocol more exposed to denial-of-service. This ob-
servation justifies constraining IKE itself to a single standardised KEM while moving additional
post-quantum work into an authenticated, policy-gated child establishment phase. Additional
benchmarks quantify the contribution of the PDP: even for the most complex rule, which per-
forms peer classification, admissibility checks, level verification, certificate validation and child-
template derivation, the average evaluation time remains in the order of a few tens of milliseconds,
with lighter rules incurring only a few milliseconds. Across four configured security levels, packet

76

Conclusion

counts, bytes and fragmentation grow as larger post-quantum keys and ciphertexts are used, yet
the overall timing profile remains dominated by certificate handling and the actual delay from
the OPA response to the mandated child initialisation, with PDP evaluations contributing only
a modest fraction. These results suggest that a policy-driven, post-quantum IPsec gateway is
practically deployable, with overheads that are visible but acceptable for many site-to-site and
high-value service scenarios.

This work demonstrates comprehensively that it is both technically and operationally achiev-
able to build a post-quantum IPsec gateway that combines crypto-agility, fine-grained policy
control and rich observability, while still maintaining interoperability with existing IKEv2 deploy-
ments. At the same time, the evaluation has been limited to a controlled laboratory setting. Real-
world deployments will need to consider a broader range of hardware platforms, traffic profiles,
failure modes, long-term data-plane performance and highly available, horizontally scalable PDP
designs. Addressing these aspects, and generalising the policy-centric pattern beyond IPsec, for
example to post-quantum aware TLS termination, service meshes and application-layer gateways,
defines a natural agenda for future work and a coherent route towards quantum-safe, crypto-agile
network security at scale.

77

Bibliography

(1]

(4]
5]

(6]

[7]

European Union Agency for Cybersecurity (ENISA), “Post-Quantum Cryptography: Current
state and quantum mitigation.” ENISA Report, December 2021, https://www.enisa.
europa.eu/publications/post-quantum-cryptography-current-state-and-quantum-
mitigation

L. Chen, S. Jordan, Y.-K. Liu, D. Moody, R. Peralta, R. Perlner, and D. Smith-Tone,
“Report on Post-Quantum Cryptography.” NIST Internal Report 8105, April 2016, DOI
10.6028/NIST.IR.8105

P. W. Shor, “Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms
on a Quantum Computer”, 35th Annual Symposium on Foundations of Computer Science,
Santa Fe (NM, USA), Nov 20-22, 1994, pp. 124-134, DOI 10.1109/SFCS.1994.365700

D. Harkins and P. Kampanakis, “Mixing Preshared Keys in IKEv2 for Post-quantum Secu-
rity.” RFC-8784, May 2020, DOI 10.17487/RFC8784

M. A. Nielsen and I. L. Chuang, “Quantum Computation and Quantum Information”, Cam-
bridge University Press, 10th anniversary ed., 2010, ISBN: 978-1-107-00217-3

L. K. Grover, “A fast quantum mechanical algorithm for database search”, 28th Annual ACM
Symposium on Theory of Computing, Philadelphia (PA, USA), May 22-24, 1996, pp. 212—
219, DOI 10.1145/237814.237866

G. Brassard, P. Hgyer, M. Mosca, and A. Tapp, “Quantum Amplitude Amplification and
Estimation”, Quantum Computation and Information (S. J. J. Lomonaco and H. E. Brandt,
eds.), vol. 305 of Contemporary Mathematics, pp. 53-74, American Mathematical Society
(AMS), 2002. http://www.ams.org/books/conm/305/

National Institute of Standards and Technology (NIST), “Post-Quantum Cryptography
Standardization Call for Proposals.” NIST Call for Proposals, December 2016, https :
//csrc.nist.gov/csrc/media/projects/post-quantum- cryptography/documents/
call-for-proposals-final-dec-2016.pdf

D. J. Bernstein and T. Lange, “Post-quantum cryptography”, Nature, vol. 549, no. 7671,
2017, pp. 188-194, DOT 10.1038 /nature23461

G. Alagic, D. C. Apon, D. A. Cooper, Q. H. Dang, T. T. Dang, J. M. Kelsey, Y.-K. Liu, C. A.
Miller, D. Moody, R. Peralta, R. A. Perlner, A. J. Regenscheid, D. S. Robinson, and D. Smith-
Tone, “Status Report on the Third Round of the NIST Post-Quantum Cryptography Stan-
dardization Process.” NIST Internal Report 8413, July 2022, DOI 10.6028 /NIST.IR.8413
National Institute of Standards and Technology, “Module-Lattice-Based Key-Encapsulation
Mechanism Standard.” FIPS 203, August 2024

National Institute of Standards and Technology, “Module-Lattice-Based Digital Signature
Standard.” FIPS 204, August 2024

National Institute of Standards and Technology, “Stateless Hash-Based Digital Signature
Standard.” FIPS 205, August 2024

O. Regev, “On Lattices, Learning with Errors, Random Linear Codes, and Cryptography”,
Proceedings of the Thirty-seventh Annual ACM Symposium on Theory of Computing, 2005,
pp. 84-93, DOI 10.1145/1060590.1060603

C. A. Melchor, N. Aragon, S. Bettaieb, L. Bidoux, O. Blazy, J.-C. Deneuville, P. Gaborit,
A. Joux, M. Lachartre, S. Puchinger, and G. ZA@mor, “HQC: Hamming Quasi-Cyclic”,
Post-Quantum Cryptography — 10th Int. Conference (PQCrypto 2019), 2019, pp. 3-23, DOI
10.1007/978-3-030-25510-7_1

N. Aragon, P. S. L. M. Barreto, S. Bettaieb, L. Bidoux, O. Blazy, J.-C. Deneuville, P. Gaborit,
S. Gueron, T. Guneysu, A. Joux, A. Keren, C. A. Melchor, R. Misoczki, E. Persichetti,

78

https://www.enisa.europa.eu/publications/post-quantum-cryptography-current-state-and-quantum-mitigation
https://www.enisa.europa.eu/publications/post-quantum-cryptography-current-state-and-quantum-mitigation
https://www.enisa.europa.eu/publications/post-quantum-cryptography-current-state-and-quantum-mitigation
https://doi.org/10.6028/NIST.IR.8105
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.17487/RFC8784
https://doi.org/10.1145/237814.237866
http://www.ams.org/books/conm/305/
https://csrc.nist.gov/csrc/media/projects/post-quantum-cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/csrc/media/projects/post-quantum-cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/csrc/media/projects/post-quantum-cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://doi.org/10.1038/nature23461
https://doi.org/10.6028/NIST.IR.8413
https://doi.org/10.1145/1060590.1060603
https://doi.org/10.1007/978-3-030-25510-7_1

Bibliography

[17]

[18]

[19]

[20]

[21]

S. Puchinger, J.-P. Tillich, and G. ZA@mor, “BIKE: Bit Flipping Key Encapsulation”,
Post-Quantum Cryptography — 10th Int. Conference (PQCrypto 2019), 2019, pp. 24-45,
DOI 10.1007/978-3-030-25510-7_2

C. Kaufman, P. Hoffman, Y. Nir, P. Eronen, and T. Kivinen, “The Internet Key Exchange
Protocol Version 2 (IKEv2).” RFC-7296, October 2014, DOI 10.17487/RFC7296

D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and W. Polk, “Internet X.509
Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile.” RFC-
5280, May 2008, DOI 10.17487/RFC5280

S. Kent and R. Housley, “Composite Signatures for Use in Internet PKI.” RFC-9510, Febru-
ary 2024, DOI 10.17487/RFC9510

W. T. Polk, D. F. Dodson, J. M. O’Rourke, M. P. Souppaya, and W. C. Turner, “Guideline
for Using Cryptographic Standards.” NIST Special Publication 800-175B Revision 1, May
2020, DOI 10.6028 /NIST.SP.800-175Br1

W. Castryck and T. Decru, “An efficient key recovery attack on SIDH (preliminary version)”,
Eurocrypt 2023, Lyon (France), April 23-27, 2023, pp. 423-453, DOI 10.1007/978-3-031-
30589-4_15

J.-P. D’Anvers, L. Batina, S. Bhasin, F. Vercauteren, I. Verbauwhede, and A. Jati, “Cache-
timing attacks on the modular lattice-based KEM Kyber”, Cryptographic Hardware and
Embedded Systems — CHES 2019, 2019, pp. 416435, DOI 10.1007/978-3-030-25204-5_22
R. Prates, G. F. T. Z’aba, F. T. de Mello, J.-P. D’Anvers, L. Batina, and E. Oztiirk, “Dude, is
my code constant-time?: a cache-timing analysis of ML-DSA (Dilithium)”, 2022 34th Inter-
national Symposium on Computer Architecture and High Performance Computing (SBAC-
PAD), 2022, pp. 386-394, DOI 10.1109/SBAC-PAD55450.2022.00062

European Telecommunications Standards Institute (ETSI), “Migration strategies and recom-
mendations to quantum-safe schemes.” ETSI White Paper No. 38, June 2020, https://www.
etsi.org/images/files/ETSIWhitePapers/ETSI_WP38_PQC_Migration_Strategies.pdf
S. Kent and K. Seo, “Security Architecture for the Internet Protocol.” RFC-4301, December
2005, DOI 10.17487/RFC4301

S. Kent, “IP Authentication Header.” RFC-4302, December 2005, DOI 10.17487 /RFC4302
S. Kent, “IP Encapsulating Security Payload (ESP).” RFC-4303, December 2005, DOI
10.17487/RFC4303

D. Harkins and D. Carrel, “The Internet Key Exchange (IKE).” RFC-2409, November 1998,
DOI 10.17487/RFC2409

T. Kivinen and M. Kojo, “More Modular Exponential (MODP) Diffie-Hellman groups for
Internet Key Exchange (IKE).” RFC-3526, May 2003, DOI 10.17487/RFC3526

S. Fluhrer, P. Kampanakis, and N. M, “Post-Quantum Authentication and Key Exchange
for IKEv2.” RFC-9242, May 2022, DOI 10.17487/RF(C9242

B. Berger, Y. Nir, P. Schwabe, and C. J. Tjhai, “IKEv2 Intermediate Exchange.” RFC-9243,
July 2022, DOT 10.17487/RFC9243

C. J. Tjhai, “Using Post-Quantum Cryptography (PQC) in Encapsulating Security Payload
(ESP).” RFC-9370, March 2023, DOI 10.17487/RFC9370

S. Fluhrer, P. Kampanakis, and N. M, “Post-Quantum Authentication and Key Exchange
for IKEv2.” RFC-9242, May 2022, DOI 10.17487/RF(C9242

B. Berger, Y. Nir, P. Schwabe, and C. J. Tjhai, “IKEv2 Intermediate Exchange.” RFC-9243,
July 2022, DOT 10.17487/RF(C9243

C. J. Tjhai, “Using Post-Quantum Cryptography (PQC) in Encapsulating Security Payload
(ESP).” RFC-9370, March 2023, DOI 10.17487/RFC9370

R. Burkholder, “IPsec for Linux - strongSwan vs Openswan vs Libreswan vs other?.” Server
Fault, August 2016, https://serverfault.com/a/798638

The Libreswan Project, “HOWTO: Using NSS with libreswan”, 2024, https://libreswan.
org/wiki/HOWTO: _Using NSS_with_libreswan

Oracle Corporation, “FIPS 140-2 Non-Proprietary Security Policy: Oracle Linux 7 Li-
breswan Cryptographic Module.” NIST CMVP Security Policy Document, 2020, https:
//csrc.nist.gov/CSRC/media/projects/cryptographic-module-validation-program/
documents/security-policies/140sp3699.pdf

The strongSwan Project, “Plugin List - strongSwan Documentation”, 2024, https://docs.
strongswan.org/docs/latest/plugins/plugins.html

79

https://doi.org/10.1007/978-3-030-25510-7_2
https://doi.org/10.17487/RFC7296
https://doi.org/10.17487/RFC5280
https://doi.org/10.17487/RFC9510
https://doi.org/10.6028/NIST.SP.800-175Br1
https://doi.org/10.1007/978-3-031-30589-4_15
https://doi.org/10.1007/978-3-031-30589-4_15
https://doi.org/10.1007/978-3-030-25204-5_22
https://doi.org/10.1109/SBAC-PAD55450.2022.00062
https://www.etsi.org/images/files/ETSIWhitePapers/ETSI_WP38_PQC_Migration_Strategies.pdf
https://www.etsi.org/images/files/ETSIWhitePapers/ETSI_WP38_PQC_Migration_Strategies.pdf
https://doi.org/10.17487/RFC4301
https://doi.org/10.17487/RFC4302
https://doi.org/10.17487/RFC4303
https://doi.org/10.17487/RFC2409
https://doi.org/10.17487/RFC3526
https://doi.org/10.17487/RFC9242
https://doi.org/10.17487/RFC9243
https://doi.org/10.17487/RFC9370
https://doi.org/10.17487/RFC9242
https://doi.org/10.17487/RFC9243
https://doi.org/10.17487/RFC9370
https://serverfault.com/a/798638
https://libreswan.org/wiki/HOWTO:_Using_NSS_with_libreswan
https://libreswan.org/wiki/HOWTO:_Using_NSS_with_libreswan
https://csrc.nist.gov/CSRC/media/projects/cryptographic-module-validation-program/documents/security-policies/140sp3699.pdf
https://csrc.nist.gov/CSRC/media/projects/cryptographic-module-validation-program/documents/security-policies/140sp3699.pdf
https://csrc.nist.gov/CSRC/media/projects/cryptographic-module-validation-program/documents/security-policies/140sp3699.pdf
https://docs.strongswan.org/docs/latest/plugins/plugins.html
https://docs.strongswan.org/docs/latest/plugins/plugins.html

Bibliography

[40]

U. Safdar, “Post Quantum Secure Strongswan with Libogs.” Medium, November 2023,
https://medium . com/@umairsafdar768/post - quantum- secure - strongswan - with-
1libogqs-9659141ffbf9

The strongSwan Project, “strongSwan - The OpenSource IPsec-based VPN Solution.” https:
//www.strongswan.org/

C. Kaufman, P. Hoffman, Y. Nir, P. Eronen, and T. Kivinen, “The Internet Key Exchange
Protocol Version 2 (IKEv2).” RFC-7296, October 2014, DOI 10.17487/RFC7296

The strongSwan Project, “strongSwan Architecture Overview.” https://wiki.strongswan.
org/projects/strongswan/wiki/ArchitectureQverview

Open Quantum Safe, “Open Quantum Safe project website.” Website, 2025, https://
openquantumsafe.org/

Open Quantum Safe, “libogs: C library for quantum-safe cryptography.” GitHub Repository,
2025, https://github.com/open-quantum-safe/libogs

Open Quantum Safe, “OQS forks: OpenSSL, strongSwan, and others.” GitHub Organization,
2025, https://github.com/open-quantum-safe/

R. Yavatkar, D. Pendarakis, and R. Guerin, “A Framework for Policy-based Admission Con-
trol.” RFC-2753, January 2000, DOI 10.17487/RFC2753

A. Lioy, “Electronic identity: delegated and federated authentication, policy-based access
control.” Lecture Slides, Politecnico di Torino, 2023, Internal course material.

Open Policy Agent Project, “Open Policy Agent (OPA).” Website, 2023, https://www.
openpolicyagent.org/

T. Scott and T. Fisher, “Securing Kubernetes with OPA (Open Policy Agent).” Presentation
at KubeCon + CloudNativeCon, November 2019

C. Paquin, D. Stebila, and G. Tamvada, “Benchmarking Post-Quantum Cryptography in
TLS and IKEv2”, Post-Quantum Cryptography — 10th Int. Conference (PQCrypto 2019),
2019, pp. 250272, DOI 10.1007/978-3-030-25510-7_14

P. Kampanakis, D. Harkins, and S. Fluhrer, “Post-quantum IKEv2: An Experimental Eval-
uation”, 2018 Network and Distributed System Security Symposium (NDSS), 2018, pp. 1-13,
DOI 10.14722/ndss.2018.23197

M. Wiggers, J.-F. Grote, C. Kiihn, S. Ziegldrum, O. Garcia-Morchén, and T. Giineysu,
“Post-Quantum Cryptography in Practice: A TLS and IKEv2 Performance Analysis”, 2020
IFIP Networking Conference (Networking), 2020, pp. 577-585, DOI 10.23919/Network-
ing49061.2020.9141756

80

https://medium.com/@umairsafdar768/post-quantum-secure-strongswan-with-liboqs-9659141ffbf9
https://medium.com/@umairsafdar768/post-quantum-secure-strongswan-with-liboqs-9659141ffbf9
https://www.strongswan.org/
https://www.strongswan.org/
https://doi.org/10.17487/RFC7296
https://wiki.strongswan.org/projects/strongswan/wiki/ArchitectureOverview
https://wiki.strongswan.org/projects/strongswan/wiki/ArchitectureOverview
https://openquantumsafe.org/
https://openquantumsafe.org/
https://github.com/open-quantum-safe/liboqs
https://github.com/open-quantum-safe/
https://doi.org/10.17487/RFC2753
https://www.openpolicyagent.org/
https://www.openpolicyagent.org/
https://doi.org/10.1007/978-3-030-25510-7_14
https://doi.org/10.14722/ndss.2018.23197
https://doi.org/10.23919/Networking49061.2020.9141756
https://doi.org/10.23919/Networking49061.2020.9141756

Appendix A

User Manual

A.1 System setup

This appendix describes how to install, configure, and operate the prototype developed for this
thesis. The system is composed of a set of containerised services that collectively implement a
policy-driven secure network based on strongSwan for IPsec tunnelling and the OPA as PDP.
The deployment includes the policy enforcement gateway (pep-gateway) running strongSwan
with the ext-auth plugin, one or more initiator hosts (e.g. host-legacy), application servers
such as banka, auxiliary peers, and a suite of observability components including Prometheus,
Grafana, and a dedicated decision-logger service.

A.1.1 Software prerequisites
Docker engine and Docker compose

Install Docker using the official repository. The following commands configure the repository,
import Docker’s signing key, and install both docker-ce and the Docker Compose plugin:

sudo apt update

sudo apt install ca-certificates curl

sudo install -m 0755 -d /etc/apt/keyrings

sudo curl -fsSL https://download.docker.com/linux/ubuntu/gpg \
-o /etc/apt/keyrings/docker.asc

sudo install -m 0644 /etc/apt/keyrings/docker.asc \
/etc/apt/keyrings/docker.asc

echo "deb [arch=$(dpkg --print-architecture) \

signed-by=/etc/apt/keyrings/docker.asc] \

https://download.docker.com/linux/ubuntu \

$(. /etc/os-release && echo \"$VERSION_CODENAME\") stable" | \

sudo tee /etc/apt/sources.list.d/docker.list > /dev/null

sudo apt update

sudo apt install docker-ce docker-ce-cli containerd.io \
docker-buildx-plugin docker-compose-plugin

Running Docker without sudo

To execute Docker as an unprivileged user, add your account to the docker group:

81

User Manual

sudo groupadd docker
sudo usermod -aG docker $USER
newgrp docker

Verify the installation:

docker run hello-world

Networking tools

Tools such as tcpdump and tshark are required for packet-level debugging and for later perfor-
mance evaluation:

sudo apt update
sudo apt install tcpdump tshark

Project files

Clone the project repository:

git clone https://github.com/PQ-IPsec-Gateway/thesis.git <DIR>
cd <DIR>

The repository includes a docker-compose.yml file defining all components: the decision-
logger, CTI service, OPA , Prometheus, Grafana, the policy-enforcing gateway, the various hosts,
and auxiliary peers. Each service contains its own configuration directory, which provides the
strongSwan and swanctl profiles for that container, among with certificates and daemon’s scripts.

A.2 Building and starting the system

A.2.1 Building Docker images

From the project root directory, build all service images:

docker compose build

This command reconstructs all Docker images according to the definitions in docker-
compose.yml. Rebuilding is required whenever Dockerfiles or build contexts change.

A.2.2 Launching the environment

Start all services in detached mode:

docker compose up -d

List running services:

82

User Manual

docker compose ps

Stop or tear down the environment:

docker compose stop
docker compose down

A.2.3 Inspecting container status

To confirm correct initialisation:

docker compose logs <service>

Check that all essential components are active.

A.3 Loading strongSwan configuration

Each strongSwan-based component uses swanctl to load IKE/CHILD SA configurations and
credentials via the VICI interface.

A.3.1 Loading configurations and credentials

Run the following inside each strongSwan container:

docker exec <container> swanctl --load-all

A.3.2 Listing available connection profiles

docker exec <container> swanctl --list-conns

This command outputs all configured IKE and CHILD connection definitions, such as legacy-
to-gateway.

A.4 Establishing VPN tunnels

A.4.1 Initiating the IKE SA

As an outbound example, from the host-legacy container, initiate the IKE negotiation:

docker exec host-legacy swanctl --initiate --ike legacy-to-gateway

83

User Manual

A.4.2 Inspecting Security Associations

Check established IKE and CHILD SAs:

docker exec host-legacy swanctl --list-sas
docker exec pep-gateway swanctl --list-sas
docker exec banka swanctl --list-sas

Entries should appear as ESTABLISHED with valid SPI pairs.

A.4.3 Testing connectivity

Verify the encrypted path:

docker exec host-legacy ping -c 4 10.100.0.10

ESP traffic can be inspected using tcpdump or tshark.

A.5 Inspecting logs and OPA decisions

A.5.1 Gateway authorisation logs

The gateway’s ext—-auth module delegates authorisation to OPA. View authorisation events:

docker exec pep-gateway tail -f /var/log/ext-auth.log

A.5.2 Child SA installation logs

strongSwan logs VICI-triggered CHILD SA installations:

docker exec pep-gateway \
grep "VICI initiate" /var/log/vici-child-manager.log

A.5.3 OPA audit logs

The decision-logger stores all PDP decisions. Logs are available under:

docker exec decision-logger \
tail -f /app/logs/decisions-YYYY-MM-DD.log

A.6 Visualising metrics with Grafana

Grafana is provided for real-time observability. After deployment, access: http:// localhost:3000.
The default credentials are admin/pqgw_admin. Import dashboards via:

Dashboards — Import — Upload JSON.

Dashboards display strongSwan metrics, OPA decision statistics and network traffic counters.

84

User Manual

A.7 Testing and troubleshooting

A.7.1 Performance Tests

The performance experiments described in this thesis are each associated with a dedicated branch
of the project repository, namely test-classic, test-ike-fragmentation and test-benchmark.
Each branch contains a minimally adapted variant of the system, together with lightweight in-
strumentation and helper scripts, allowing the corresponding test campaigns to be executed in a
controlled and reproducible manner.

test-classic

The experiment is launched with:
bash scripts/simple-ike-comparison.sh

Internally, the script deploys the appropriate swanctl configuration, restarts the relevant con-
tainers, and reloads the strongSwan settings before triggering the handshake. A packet capture
is started on the gateway, and the resulting PCAP is processed with a small Python script that
extracts packet sizes, IKE message types, and IP fragmentation. The outputs from the normal
and childless runs are then compared to quantify time-level and byte-level differences.

test-ike-fragmentation

This branch provides a tailored environment for analysing fragmentation behaviour and per-phase
timing during the IKE exchange. The suite is executed through:

./scripts/capture-and-analyze-ike.sh pep-gateway gw-wan-out-bankA 198.51.100.2

The script clears existing SAs, initiates a timestamped tshark capture on ports 500/4500, triggers
the handshake, and subsequently parses the PCAP to recover message boundaries, intermediate
ADDKE exchanges, and precise request/response timings. The output provides fine-grained
measurements of per- phase latency and fragmentation, enabling comparisons between multi-
KEM and single-KEM configurations.

test-benchmark

The most comprehensive evaluation is conducted in the test-benchmark branch, which correlates
three independent data sources: raw PCAP captures, strongSwan VICI logs, and OPA audit
records. The benchmark is executed using:

./scripts/run-benchmark.sh

The script resets the environment, and based on the level specified in the code, initiates a full
tunnel establishment, captures all on-wire traffic, and records state transitions via VICI while
OPA produces detailed timing reports for IKE and CHILD policy decisions. These heterogeneous
data streams are then aligned to derive end-to-end timing, traffic volume, fragmentation counts,
and policy-evaluation metrics, all of which are stored in structured JSON format for subsequent
analysis.

85

User Manual

A.7.2 Rebuilding and cleaning the environment

Rebuild images:

docker compose build --no-cache

Remove containers and volumes:

docker compose down --volumes
docker compose up -d

A.7.3 Diagnosing connection issues

e ensure each strongSwan container has reloaded its configuration via swanctl --load-all;
e inspect /var/log/charon.log for negotiation errors;
e verify that OPA policies authorise the requested connection;

e confirm certificate trust chains and identities match on both peers.

86

Appendix B

Developer’s Reference (Guide

This appendix describes the internal organisation of the thesis prototype from a developer’s stand-
point. It concentrates on the integration between strongSwan and Open Policy Agent in the
pep-gateway, the custom patches applied to strongSwan, and the policy model that governs the
creation and adaptation of tunnels.

The aim of this chapter is to equip a future maintainer with sufficient detail to understand
where and how authorisation decisions are enforced, extend the deployment with additional legacy
hosts or external peers, adjust the security levels and cryptographic algorithms enforced by the
gateway and keep the local patches aligned with upstream strongSwan.

B.1 strongSwan—OPA integration

The policy enforcement point is realised in the pep-gateway container. From the perspective of
strongSwan, the integration is built on three main elements:

1. a patched instance of the ext_auth plugin in strongSwan, implemented in src/libcharon/
plugins/ext_auth/ext_auth listener.c;

2. an helper, opa-check-auth, which bridges IKEv2’s execution environment with the PDP;
3. auxiliary scripts and services inside pep-gateway (e.g. vici-child-manager and the

updown hooks) that implement tunnel provisioning and re-provisioning according to OPA’s
decisions.

B.2 strongSwan ext_auth patch

B.2.1 File location and high-level responsibilities
The core of the C-level integration resides in the modified ext_auth_listener implementation:

o file: src/libcharon/plugins/ext_auth/ext_auth_listener.c;

e plugin: ext_auth, loaded by the IKE daemon charon.

The initial part of the patch extends the include set and introduces a small in-memory structure
used to record pending OPA hints, indexed by the IKE unique_id:

87

Developer’s Reference Guide

Listing B.1. Additional includes and hint entry definition in ext_auth listener.c

#include <stdlib.h>
#include <fcntl.h>
#include <string.h>
#include <ctype.h>

#include <utils/chunk.h>

#include <utils/enum.h>

#include <collections/linked_list.h>
#include <threading/mutex.h>

#include <encoding/message.h>
#include <crypto/proposal/proposal.h>
#include <crypto/transform.h>
#include <crypto/prfs/prf.h>

#include <crypto/key_exchange.h>
#include <credentials/certificates/certificate.h>
#include <credentials/auth_cfg.h>

typedef struct {
uint32_t unique_id;
char *required_ke;
bool pending_notify;
} hint_entry_t;

#define NOTIFY_REQUIRED_LEVEL 0xA0OO1
typedef struct private_ext_auth_listener_t private_ext_auth_listener_t;

struct private_ext_auth_listener_t {
ext_auth_listener_t public;

/** Path to authorization program */
char *script;

/** Pending hints (hint_entry_t*) keyed by ike unique_id */
linked_list_t *hints;

/** Protect access to hints */
mutex_t *mutex;

};

The hints list keeps, for each IKE_SA (identified by unique_id), the pending required level
value received from OPA and a boolean flag pending notify which is later consulted when
deciding whether to attach a custom NOTIFY payload to the outbound IKE_AUTH.

Regarding the peer certificate extraction, the helper function acquire_peer_cert() iterates
over the current auth_cfg chain to retrieve the peer’s end-entity certificate, which is then exported
both inline (as PEM in an environment variable) and via a temporary file:

Listing B.2. Peer certificate acquisition from the current auth round

static certificate_t* acquire_peer_cert(ike_sa_t *ike_sa)
{

enumerator_t *enumerator;

auth_cfg_t *cfg;

certificate_t *cert = NULL;

enumerator = ike_sa->create_auth_cfg_enumerator(ike_sa, FALSE);

88

Developer’s Reference Guide

if (!enumerator)

{
return NULL;
}
while (enumerator->enumerate(enumerator, &cfg))
{
cert = cfg->get(cfg, AUTH_RULE_SUBJECT_CERT) ;
if (cert)
{
break;
}
}

enumerator->destroy (enumerator) ;
return cert;

Later in the authorisation path, this certificate is encoded as PEM and exposed to the external
script:

Listing B.3. Exporting the peer certificate to the environment and a temporary file

peer_cert = acquire_peer_cert(ike_sa);
if (peer_cert && peer_cert->get_encoding(peer_cert, CERT_PEM, &pem))
{
push_env(envp, countof(envp), "PLUTO_PEER_CERT_PEM=),.*s",
(int)pem.len, pem.ptr);
char template[] = "/tmp/ext-auth-peer-XXXXXX.pem";
int fd = mkstemp(template);

if (£d >= 0)
{
ssize_t written = write(fd, pem.ptr, pem.len);
close(fd);
if (written == (ssize_t)pem.len)
{

push_env(envp, countof(envp), "PLUTO_PEER_CERT=Ys", template);
tmp_cert_path = strdup(template);

}
else
{
unlink(template) ;
}

}
chunk_free (&pem) ;

The variables PLUTO_PEER_CERT_PEM and PLUTO_PEER_CERT are then consumed by opa-check-auth,
which embed the certificate into the JSON input passed to the PDP.

Moreover, the patch also enriches the authorisation environment with detailed information on

the negotiated algorithms. This information is derived from the proposal_t associated with the
IKE_SA:

Listing B.4. Exporting negotiated PRF and key exchange methods

proposal = ike_sa->get_proposal(ike_sa);
if (proposal)
{

u_int idx;

89

Developer’s Reference Guide

uintl6_t alg = 0, key_size = 0;
const char *name;

if (proposal->get_algorithm(proposal, PSEUDO_RANDOM_FUNCTION,
&kalg, &key_size))

{
(void)key_size;
name = enum_to_name(pseudo_random_function_names, alg);
if (name && *name)
{
push_env(envp, countof(envp), "PLUTO_IKE_PRF=Ys", name);
}
}

if (proposal->get_algorithm(proposal, KEY_EXCHANGE_METHOD,
&alg, &key_size))

{
(void)key_size;
name = enum_to_name(key_exchange_method_names, alg);
if (name && *name)
{
push_env(envp, countof(envp), "PLUTO_IKE_DH=Ys", name);
3
}
for (idx = 0; idx < 3; idx++)
{
transform_type_t type = ADDITIONAL_KEY_EXCHANGE_1 + idx;
if (proposal->get_algorithm(proposal, type, &alg, &key_size))
{
(void)key_size;
name = enum_to_name (key_exchange_method_names, alg);
if (name && *name)
{
push_env (envp, countof (envp),
"PLUTO_IKE_KEY%d=%s", idx + 1, name);
}
}
}

Consequently, each authorisation decision receives an environment containing:

IKE identities (IKE_LOCAL_ID, IKE_REMOTE_ID);

the negotiated PRF (PLUTO_IKE_PRF);

the negotiated key-exchange / DH group (PLUTO_IKE_DH);

up to three additional key-exchange identifiers (PLUTO_IKE_KE1, PLUTO_IKE_KE2, PLUTO_IKE KE3);

e the peer certificate in PEM form.

Informations used by OPA to compute the security level, as described in the policy modules.

B.2.2 OPA hints and REQUIRED LEVEL notify

The exchange between OPA and the gateway is intentionally richer than a simple boolean allow/-
deny outcome. The helper script may also emit an ”OPA hint” indicating the required level for

90

Developer’s Reference Guide

a given IKE_SA. The patched ext_auth listener parses this hint and stores it in a hint_entry_t
structure:

Listing B.5. Parsing OPA hints from the helper script
char *hint = strstr(resp, "OPA_HINT");
if (hint)
{

uint32_t hint_id = O;

hint_level[0] = ’\0’;

if (sscanf(hint, "OPA_HINT unique_id=%u required_ke=%31s",
&hint_id, hint_level) >= 2)

{
DBG1(DBG_CHD, "ext-auth: parsed OPA hint unique_id=%u (local=Ju) level
’%S’",
hint_id, unique_id, hint_level);
if (hint_id == unique_id)
{
DBG1(DBG_CHD, "ext-auth: parsed hint for IKE_SA %u (hint=%u) level
7%5)"’
unique_id, hint_id, hint_level);
store_required_ke(this, hint_id, hint_level);
}
}

If the script returns a failure code (i.e. the policy engine rejects the current level), the listener
marks the hint as pending and defers the actual notification to the next outbound IKE_AUTH
message:

Listing B.6. Scheduling and attaching the REQUIRED_LEVEL notify

if (*success)

{
clear_hint(this, unique_id);
}
else
{
set_pending_notify(this, unique_id, TRUE);
}
/* ... x/

METHOD(listener_t, message, bool,
private_ext_auth_listener_t *this, ike_sa_t *ike_sa, message_t *message,
bool incoming, bool plain)

uint32_t unique_id = ike_sa->get_unique_id(ike_sa);

if (!plain)
{

return TRUE;
¥

if (incoming && message->get_exchange_type(message) == IKE_AUTH)
{
/* incoming REQUIRED_LEVEL notify: store the required level */
notify_payload_t #*notify = message->get_notify(message,

91

Developer’s Reference Guide

NOTIFY_REQUIRED_LEVEL);
/* parse value and call store_required_ke(...) */
/* .. %/
return TRUE;

}
if (!incoming && message->get_exchange_type(message) == IKE_AUTH)
{
hint_entry_t *entry;
this->mutex—>lock(this->mutex) ;
entry = find_hint(this, unique_id);
if (entry && entry->pending notify && entry->required_ke &&
entry->required_ke[0])
{
chunk_t payload = chunk_create(entry->required_ke,
strlen(entry->required_ke)) ;
DBG1(DBG_CHD, "ext-auth: attaching required level ’%s’ for IKE_SA
u",
entry->required_ke, unique_id);
message->add_notify(message, FALSE,
NOTIFY_REQUIRED_LEVEL, payload) ;
this->hints->remove (this->hints, entry, NULL);
this->mutex->unlock(this->mutex) ;
destroy_hint_entry(entry);
return TRUE;
¥
this->mutex—>unlock(this—>mutex) ;
}

return TRUE;

The constructor for the ext_auth listener is extended to allocate and initialise both the hint
list and its mutex:

Listing B.7. Listener creation with hint list initialization

METHOD (ext_auth_listener_t, create, ext_auth_listener_tx,
char *script)

{
private_ext_auth_listener_t *this;
INIT(this,
.public = {
.listener = {
.authorize = _authorize,
.message = _message,
3,

.destroy = _destroy,
},
.script = script,
.hints = linked_list_create(),
.mutex = mutex_create(MUTEX_TYPE_DEFAULT),
);

if (!'this->hints || !'this->mutex)
{

92

Developer’s Reference Guide

if (this->hints)

{

this->hints->destroy(this->hints);
}
if (this->mutex)
{

this->mutex->destroy(this->mutex) ;
}
free(this);

return NULL;

return &this->public;

The corresponding destroy method is responsible for releasing any remaining hint entries and
deallocating the synchronisation primitives.

B.3 opa-check-auth and helper scripts

B.3.1 Authorisation script interface

The opa-check-auth script is called by ext_auth with the environment described above. From
a developer’s viewpoint, the essential contract is:

e exit code 0 = authorisation granted;

e non-zero exit code = authorisation denied;

e optional diagnostic and hint lines printed on stdout, for example:

Listing B.8. Example output from opa-check-auth

OPA_DECISION allow=true level="L2"
OPA_HINT unique_id=42 required_ke=L3 required_sig=L2

The OPA_HINT line is parsed by the ext_auth patch as shown in Listing B.5, eventually leading
to a REQUIRED_LEVEL notify being attached to an outbound IKE_AUTH.

B.4 Connection naming and tunnel provisioning

B.4.1 Naming conventions for connections and hosts

To simplify routing and provisioning logic, connection names in the strongSwan configuration
are chosen with specific semantics rather than arbitrarily. The project adopts the following
conventions:

e connections between the legacy host and the gateway explicitly contain the string "legacy"
in their name;

e connections between the gateway and external peers explicitly encode the direction using
suffixes such as "outbound" or "inbound".

93

Developer’s Reference Guide

These conventions are consumed by:

e the tunnel-provisioning logic, which use this information, and also the knowledge of the
traffic selectors, to understand that, there is an opening for an outbound connection from
the legacy subnet and provide a ”just-in-time” post-quantum tunnel counterpart;

e the policy layer, which use this information as additional helper to map connection names

and peer identifiers to service classes and security levels.

By embedding semantics directly in connection names (legacy vs. peer, inbound vs. outbound),
the provisioning logic avoids relying solely on IP addressing to infer the role and direction of each
tunnel.

B.5 OPA policy modules

The core IKE establishment policy logic is expressed in four Rego modules under the ike names-
pace:

e ike.service_classes (service_classes.rego);

e ike.establishment (ike_establishment.rego);

e ike.child templates (child templates.rego);

e ike.certificates (certificate_validation.rego).

Collectively, these modules:

—_

. classify internal subnets and external partners into service classes;
2. define the required IKE key-exchange level (KE-Lx) for each internal-external pair;
3. choose the appropriate CHILD_SA template;

4. validate the peer certificate according to post-quantum signature and public-key require-
ments.

B.5.1 service classes.rego

The module ike.service_classes defines a declarative mapping from IP prefixes and peers to
service classes and cryptographic requirements:

Listing B.9. Top-level mapping in service_classes.rego

package ike.service_classes

import rego.vl

INTERNAL SERVICE CLASSES - Subnet-based Classification
internal_service_classes := {

"legacy_internal": {
"subnet": "10.200.0.0/24",

"security_profile": "legacy",
"crypto_capabilities": ["RSA-2048", "ECDH-P256", "ECDSA-P256"],
"description": "Internal legacy hosts using traditional cryptography",

94

Developer’s Reference Guide

external_partner_classes := {
"bankA": {

"subnets": ["198.51.100.10/32"],

"service_type": "payments",

"min_ke_level": "KE-L3",

"min_sig_level": "SIG-L3",

"min_pubkey_level": "SIG-L3",

"allowed_issuers": {
"C=CH, 0=Cyber, CN=Cyber Root CA",
"0=PQ-Gateway Lab, CN=PQ-Gateway IKE CA PQ",

3,

"description": "External bank A (payments, high assurance)"

Rather than enumerating each internal host individually, internal classes are defined per subnet
(for example 10.200.0.0/24 for legacy systems). Each external partner (e.g. bankA, partnerB,
opsC) specifies:

e one or more IP prefixes;

e a service_type (for example payments, erp, hr);

e minimum levels min ke level, min _sig level, min pubkey_level;

e a set of allowed_issuers (distinguished names of trusted CAs).

B.5.2

ike_establishment.rego

The ike.establishment module is the main decision point. It imports the other rego modules,
to enrich the decision, maintain modularity and fast changes.

Listing B.10. Imports in ike_establishment.rego

package ike

import
import
import
import
import

rego

data.
data.
data.
data.

.establishment

vl

ike

ike.
ike.

certificates
child_templates

.peer_mapping
ike.

service_classes

Mapping IKE suites to KE levels For each IKE_SA, a canonical string representing the full
suite is constructed and used as a key into the ke_suites mapping:

Listing B.11. KE suite mapping in ike_establishment.rego

Each KE level is defined by EXACT suite combinations, not individual
algorithms

ke_suites

= {

95

Developer’s Reference Guide

KE-L1 Suites (NIST Level 1 - HR, low-sensitivity)
"aes128gcm16-sha256-ecp2656-mlkemb12-none-none": "KE-L1",
"aes128gcm16-sha256-modp2048-mlkemb12-none-none": "KE-L1",

KE-L2 Suites (NIST Level 3 - ERP, moderate)

"aes192gcm16-sha384-ecp256-mlkem768-none-none": "KE-L2",
"aes192gcm16-sha384-ecp384-mlkem768-none-none": "KE-L2",
"aes192gcm16-sha384-x25519-mlkem768-none-none": "KE-L2",

KE-L3 Suites (NIST Level 3+ - Payments, enhanced classic)
"aes256gcml6-shab12-ecp384-mlkem768-none-none": "KE-L3",
"aes256gcm16-shabl12-ecp521-mlkem768-none-none": "KE-L3",

A helper, build _suite_string(input.ike), concatenates the negotiated algorithms into the

string used to query ke_suites. The resulting value is the achieved level, ke_achieved.

Partner-specific templates

Listing B.12. Example inbound template for partnerB

responder_templates := {
"partnerB": {
"KE-L2": {
"name": "inbound-legacy-erp-L2",

1,

"local_ts": "10.200.0.0/24",

"remote_ts": "198.51.100.11/32",

"child_level": "CHILD-L2",

"esp_proposals": child_security_levels["CHILD-L2"].esp_proposals,
"rekey_time": "90s",

"reqid": 103,
"start_action": "none",
"updown": "/usr/local/sbin/updown-verifier.sh",
"description": "PartnerB inbound ERP tunnel (L2 security)",
3,
"KE-L3": {
"name": "inbound-legacy-erp-L3",
3,

This architecture permits the introduction of additional partners or child levels without re-
quiring alterations to the overall template configuration, hence enabling modifications to minor

components without compromising the integrity of the whole system.

B.5.3

The ike.certificates module encodes the post-quantum requirements for X.509 certificates

certificate_validation.rego

used during IKE exchanges.

The module defines mappings from OIDs to signature and public-key algorithms and their
base levels:

96

For each partner and level, fully specified templates are provided.

Developer’s Reference Guide

Listing B.13. Example OID — algorithm/level mapping

sig_alg_base_level := {
Pure ML-DSA (NIST standardized)
"mldsa44": "SIG-L1",
"mldsa65": "SIG-L2",
"mldsa87": "SIG-L3",

ML-DSA44 composites (NIST Level 2 - HR, low—sensitivity)
"mldsa44-rsa2048-pss-sha256": "SIG-L1",
"mldsa44-rsa2048-pkcs15-sha2566": "SIG-L1",
"mldsa44-ecdsa-p256-sha256": "SIG-L1",
"mldsa44-ed25519-shab12": "SIG-L1-SUF",

}

sig_level_hierarchy := {
"SIG-LO": O,
"SIG-Li": 1,
"SIG-L1-SUF": 2,
"SIG-L2": 3,
"SIG-L3": 4,

"SIG-L3-SUF": 5,

The functions get_sig alg(oid) and get_pubkey_alg(oid) map the OIDs present in the
certificate to canonical algorithm names.

Per-peer requirements (minimum signature and public-key levels) are derived from the previ-
ously described entries in service_classes.external partner_classes. The module exposes,
among others, the following helper:

Listing B.14. Peer requirements in certificate_validation.rego

get_cert_requirements(peer_name) := reqs if {
partner := service_classes.external_partner_classes[peer_name]
regs := {

"min_sig_level": partner.min_sig_level,
"min_pubkey_level": partner.min_pubkey_level,
"allowed_issuers": partner.allowed_issuers,

Evolving the security model To adjust the ordering of levels or the algorithms associated
with each level, it is sufficient to update:

e ke _suites and the KE level associations in ike_establishment.rego;

e child security_levels and ke_to_child level in child templates.rego;

e sig alg base_level, pubkey_base_level and sig level hierarchyin certificate validation.rego.
The Rego logic that combines these levels (consistency between IKE, CHILD and certificate

requirements) remains unchanged. Only the configuration tables are modified, keeping the system
extensible and relatively easy to maintain.

The validation logic is deliberately stable: the semantics of ”what counts as L1/L2/L3” are
concentrated in the level lists and OID mappings. This makes it possible to refine the security

97

Developer’s Reference Guide

profile (e.g. by deprecating an algorithm or promoting a stronger suite) without touching the
strongSwan patch or the control-plane scripts.

B.6 Applying patches and extending the system

B.6.1 Patch directory in pep-gateway

The pep-gateway container includes an internal patches directory which holds all modifications
applied on top of the upstream strongSwan sources.

During Docker image construction, these patches are applied to the strongSwan sources prior
to compilation.

To introduce a new C-level modification (e.g. extending the notifier behaviour or adjusting
the exported environment), the recommended workflow is:

1. locate the source file to be modified within the container build context;
2. copy it to a ”_mod” variant, apply the desired edits, and generate a unified diff;
3. store the resulting patch under pep-gateway/patches;

4. rebuild the Docker image so that the patch is applied during the build.
A generic pattern is:

Listing B.15. Generic patch creation workflow

cd /tmp

git clone --depth 1 --branch 6.0.0beta6 \
https://github.com/strongswan/strongswan.git

cd strongswan

cp src/libcharon/plugins/ext_auth/ext_auth_listener.c \
src/libcharon/plugins/ext_auth/ext_auth_listener_mod.c

Apply your modifications to ext_auth_listener_mod.c
diff -Naur \
src/libcharon/plugins/ext_auth/ext_auth_listener.c \

src/libcharon/plugins/ext_auth/ext_auth_listener_mod.c \
> ext-auth-listener.patch

mv ext-auth-listener.patch /path/to/pep-gateway/patches/
cd /tmp && rm -rf strongswan
rebuild the Docker image to apply the patch

cd /path/to/pep-gateway
docker build -t pep-gateway

B.6.2 Adding new connections and hosts

From a configuration perspective, adding a new legacy subnet or external peer involves:

98

Developer’s Reference Guide

1. defining the connection in strongSwan, be compliant to the naming conventions;
2. updating service_classes.rego to:

e register the new legacy subnet or partner;
e configure its default and permissible security levels;

e optionally define per-subnet and per-partner requirements.

99

Insert something here ...

	Introduction
	The Dawn of the Quantum Threat
	The ``Harvest Now, Decrypt Later" Urgency
	Problem Statement and Thesis Goal
	Thesis Structure

	State of the Art
	The Post-Quantum Cryptography Landscape
	The Quantum Threat and Foundational Algorithms
	The NIST PQC Standardization Process
	Foundations of Key Cryptographic Families
	The Challenge of a Post-Quantum PKI
	The Need for Crypto-Agility

	Securing Networks with IPsec and IKEv2
	The IPsec Protocol Suite: Data Plane
	IKEv2 Protocol (RFC 7296)
	Integrating PQC into IKEv2

	Enabling Technologies and Architectures
	strongSwan: The Chosen IPsec Platform
	Open Quantum Safe (OQS): PQC Algorithm Integration
	Policy-Based Control Architectures and Engines

	Performance of PQC in IKEv2: A Literature Review

	Design of the PQC-Agile Gateway
	From Requirements to Design Principles
	Security Objectives
	Functional Scope
	Operational Constraints

	Logical Architecture
	Component Overview
	Interaction View
	Trust and Threat Posture

	Crypto-Agility Strategy
	Algorithm Portfolio and Hybrid Policy Intent
	Policy Segmentation
	Decision Table Examples

	Control Plane Design
	Ext-auth Integration Blueprint
	Runtime Data Extraction and Policy Request
	Policy Decision Cycle and Enforcement
	Failure Modes and Resilience

	Data Plane and SA Layout
	Naming and Traffic Selector Strategy
	Rekey and Lifetime Policy
	Observability and Audit Trail

	Design Summary and Traceability

	Implementation
	Implementation Overview
	Compose Stack and Runtime Topology
	Control-plane automation
	Bootstrap order and dependencies

	Gateway Build and Bootstrap
	Dockerfile pipeline
	startup.sh responsibilities

	Data-plane Configuration
	Gateway templates and naming discipline
	Partner endpoint configuration
	Selector symmetry and routing glue
	Policy and decision-store integration

	Policy, CTI, and Decision Store
	Rego modules and service mapping
	CTI bundle distribution and verification
	Decision store layout

	Vendor notifier patch (0xA001)
	Listener data structures and initialisation
	Environment enrichment and hint capture
	Message hook and payload injection
	Log signals and troubleshooting

	Observability and Monitoring
	Decision-logger service
	Prometheus and Grafana wiring
	Gateway logs and audit trail

	Test
	Testbed
	Functional tests
	IKE SA establishment
	IKE SA establishment denial due to insufficient security level
	Child SA installation
	Child ex-post validation
	Rekey validation gate

	Performance tests
	Unauthenticated multi-KEM overhead in IKE establishment
	Legacy IKE establishment: normal versus childless mode
	Policy evaluation timing analysis
	Comprehensive evaluation across security levels

	Conclusion
	Bibliography
	User Manual
	System setup
	Software prerequisites

	Building and starting the system
	Building Docker images
	Launching the environment
	Inspecting container status

	Loading strongSwan configuration
	Loading configurations and credentials
	Listing available connection profiles

	Establishing VPN tunnels
	Initiating the IKE SA
	Inspecting Security Associations
	Testing connectivity

	Inspecting logs and OPA decisions
	Gateway authorisation logs
	Child SA installation logs
	OPA audit logs

	Visualising metrics with Grafana
	Testing and troubleshooting
	Performance Tests
	Rebuilding and cleaning the environment
	Diagnosing connection issues

	Developer's Reference Guide
	strongSwan–OPA integration
	strongSwan ext_auth patch
	File location and high-level responsibilities
	OPA hints and REQUIRED_LEVEL notify

	opa-check-auth and helper scripts
	Authorisation script interface

	Connection naming and tunnel provisioning
	Naming conventions for connections and hosts

	OPA policy modules
	service_classes.rego
	ike_establishment.rego
	certificate_validation.rego

	Applying patches and extending the system
	Patch directory in pep-gateway
	Adding new connections and hosts

