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Abstract

Robotic manipulation is widely adopted in industry but typically assumes
predictable, tightly structured workspaces, where classical motion-planning pipelines
can work safely, reducing as much as possible the occurrence of failures when used
to control robots. However, when a failure occurs e.g. missed grasps, object
slippage, or unforeseen perturbations, explicit detection and handling are required,
making this approach fragile in unstructured settings. In parallel, advances in
hardware such as graphics processing units (GPUs) and in machine learning have
made Reinforcement Learning (RL) a practical option to learn, via trial and error,
policies that directly plan and control motion while exhibiting recovery behaviors.
In fact, unlike classical pipelines, an RL policy acts as a closed-loop controller
that adapts online to perturbations and unexpected events without the need to
exhaustively hard-coding failure cases.

This thesis presents an end-to-end pipeline for training, simulation-based valida-
tion, and deployment to a real robot of manipulation policies for a UR10e with
a Robotiq 2F-140 gripper. In simulation, training is performed in Isaac Lab/Sim
using the Proximal Policy Optimization (PPO) algorithm implemented in the
RSL-RL library on three tasks of increasing complexity (Reach, Lift, OpenDrawer).
The approach leverages manager-based environments for reusability and portability,
and domain randomization to improve policy robustness. Intermediate validation
uses a containerized digital environment based on URSim, orchestrated with Docker
and ROS 2, which mirrors the controller-level stack and enables deterministic policy
replay without hardware. Finally, deployment to the physical robot reuses the same
code used for simulation validation, with minor adjustments for gripper integration,
on a host running a real-time Linux kernel to improve timing determinism.

The results demonstrate successful transfer of the reach and lift task policies,
with effective execution of the tasks on the real robot. The open-drawer tasks show
promising initial results, with successful policy execution in simulation indicating
potential for further development. Overall, this work beypond demonstrating a
zero-shot RL pipeline from simulation to reality, highlight that sequential reward
terms can interact and conflict as task complexity increases. Future work will
therefore explore Imitation Learning and Inverse Reinforcement Learnin to reduce
manual reward design and assess UR’s new direct torque control interface for
torque-level, contact-aware control.
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Chapter 1

Introduction

Industrial robotic manipulators are most effective when they operate in structured
workspace, where the environment, the obstacles, the objects, and the sequence of
actions are known in advance and motion can be generated with classical planning
and control pipelines [1, 2, 3, 4, 5]. In these scenarios, inverse kinematics and
sampling-based planners provide safe and repeatable trajectories and have therefore
become the default solution in industrial practice and in ROS-based frameworks
such as MoveIt [2]. The success of these pipelines, however, relies on the assumption
that the scene does not change in unexpected ways and that the task can be fully
encoded in advance. Recent surveys on motion planning for industrial manipulators
and on intelligent control report that, as soon as the robot must tolerate small
variations such as slightly displaced objects, imperfect grasps, contacts with the
environment, purely pre-programmed solutions become harder to maintain, because
every possible deviation must be explicitly detected and handled [1, 6, 7]. Classical
model-based controllers are accurate but mathematically heavy and not always
convenient in dynamic environments; for this reason, data-driven or learning-based
techniques are increasingly adopted to cope with nonlinearities, uncertainties, and
changing conditions [6]. At the same time, integrated task-and-motion planning
approaches show that, when manipulation becomes multi-stage, the amount of
explicit logic the engineer has to write grows quickly [8]. This is exactly the type
of brittleness that motivates learning-based, closed-loop policies. In parallel, the
availability of high-fidelity, GPU-accelerated simulators such as NVIDIA Isaac Sim
[9] and the robot-learning framework Isaac Lab [10] has made it practically feasible
to train manipulation policies directly in simulation and then validate them before
deployment on the real platform. On the learning side, modern deep reinforcement
learning (DRL) algorithms such as Proximal Policy Optimization (PPO), a well-
known on-policy actor–critic method, provide a stable and widely adopted way
to learn closed-loop controllers from trial and error [11]. PPO and closely related
variants have been successfully used in several recent works that achieve non-trivial
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Introduction

real-world performance in contact-rich manipulation, e.g. industrial assembly [12]
and dexterous in-hand object reorientation [13, 14]. Unlike classical pipelines, a
DRL policy observes the current state and can react online to modest perturbations
or execution inaccuracies, without exhaustively hard-coding all exceptional cases, as
already demonstrated in learning-based manipulation works on visuomotor control
and robust grasping [15, 16]. Very recent surveys on DRL in real robotic settings
further report that the most mature applications follow exactly this simulator-
centric, dense-reward workflow, which aligns with the approach adopted in this
thesis [17]. At the same time, classic overviews of RL in robotics emphasize that
reward shaping and sample collection remain key practical bottlenecks [18]. In
this perspective, the thesis aims to demonstrate that it is possible to start from
policies trained entirely in Isaac Lab on top of Isaac Sim and bring them, with
minimal changes, onto a real UR10e. Concretely, the three manipulation policies
are first trained and checked inside Isaac Lab, where the full task environment
(e.g. objects, rewards, terminations) is available. Once their general behavior is
verified in simulation, the same policies are executed in a containerized Universal
Robot Simulator (URSim) instance integrated with the Robot Operating System
(ROS 2): this step does not reproduce the task environment,but it allows us to
develop and test the deployment code that will later communicate with the real
robot through ROS 2 nodes, and to verify that the UR controller executes the
arm motion consistently, without risking damage to equipment or harm to people.
After this controller-level validation, the very same code is run on the physical
UR10e, adding only the ROS 2 node that manages the Robotiq gripper. The main
contributions of this thesis are threefold.

First, as previously mentioned, it implements a complete training-to-deployment
workflow that starts from policy training and task definition in Isaac Lab/Sim,
continues with a first functional check in the same simulator, and then reuses the
learned policies inside a containerized URSim instance integrated with ROS 2.
Once the deployment code is tested on the simulator it’s directly executed on the
real UR10e.

Second, it defines three classes of manipulation tasks with increasing complexity
in terms of required observations, reward shaping, and training time. Two of these
tasks (Reach and Lift) are taken all the way through the pipeline up to the real
robot, thus validating the proposed workflow end-to-end, while the third task
(OpenDrawer) is validated only in simulation and serves to motivate future work.

Third, it provides a detailed analysis of the training dynamics, sim-to-sim
transfer, and sim-to-real transfer for each task, discussing the main challenges
encountered and the lessons learned during the project.
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1.1 Thesis outline
This work is structured as follows:

• Chapter 2 introduces the theoretical background on reinforcement learning
and robotic manipulation, and surveys the literature most relevant to this
work.

• Chapter 3 presents the methodological framework, describing the simulation
and deployment tools, the PPO-based learning setup, and the manager-based
environment design in Isaac Lab.

• Chapter 4 details the training in simulation, including the agent configuration
and the definition of the three manipulation tasks (Reach, Lift, OpenDrawer),
together with their observation, action, reward, and termination models.

• Chapter 5 describes the validation pipeline and the sim-to-real transfer
strategy, from policy replay in Isaac Sim to controller-level tests in URSim
and deployment on the physical UR10e.

• Chapter 6 reports the experimental results, comparing performance across
simulation and the real robot. Furthermore, it analyzes sim-to-real discrepan-
cies.

• Chapter 7 summarizes the main conclusions and contributions of the thesis. It
also outlines possible directions for future work and extensions of the proposed
pipeline.

3



Chapter 2

Background and Literature
Review

The goal of this chapter is to provide the theoretical and methodological background
needed to frame the thesis within the broader landscape of learning-based robotic
manipulation. Rather than giving a purely historical survey, the material is
organized around three questions: (i) what makes Reinforcement Learning (RL)
different from other machine-learning paradigms, (ii) which classes of RL algorithms
are practically relevant for robotic control, and (iii) how existing deep RL approaches
have been used for manipulation, and where this thesis fits within that space.

We begin with an overview of RL, highlighting its main characteristics in
comparison with supervised and unsupervised learning, and introducing the key
elements of any RL problem. We then move to a more formal treatment based
on multi-armed bandits and Markov Decision Processes (MDPs), introducing the
notions of return, value functions, and Bellman equations. These concepts will
later be used to explain how actor-critic methods, and PPO in particular, estimate
and exploit value information during training.

Building on this foundation, the chapter reviews a taxonomy of RL algorithms
that is commonly adopted in robotics, distinguishing model-free from model-based
approaches, and value-based from policy-based (policy-gradient) methods. Within
this taxonomy, we motivate the choice of Proximal Policy Optimization (PPO) as
the learning algorithm used in this thesis, and we summarize its main ingredients:
policy gradients with advantage estimation, trust-region ideas, the clipped surrogate
objective, and entropy regularization. The focus is on the aspects that are most
relevant for training continuous-control policies for robotic manipulators.

The last part of the chapter connects this algorithmic view with recent applica-
tions of deep RL to robotic manipulation. Drawing on recent surveys on real-world
DRL [17], we outline the main dimensions along which manipulation tasks are
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classified and we position the present work. Finally, a brief recap of manipulator
kinematics is provided, to fix the notation used in later chapters when defining
task frames and targets for the considered manipulation tasks.

2.1 Reinforcement Learning Overview
To learn, one must experiment and learn from the feedback provided by the
environment. This is the idea behind any learning mechanism we are familiar with,
and Reinforcement Learning (RL) translates this idea into a computational form.
It enables an agent to learn how to perform the best action given its current state,
with the goal of maximizing a reward defined with respect to a particular objective
to be achieved. RL represents the third paradigm of machine learning and its two
main characteristics that differentiate it from the other two (Supervised Learning
and Unsupervised Learning) are:

• Trial-and-error search: the agent is not given the correct actions that
maximize its reward; instead, it discovers them by trying.

• Delayed reward: in more interesting and complex cases, the agent’s choice
of an action affects not only the immediate reward but also all the rewards it
may obtain in the future.

The concept of delayed reward brings a non-trivial problem: the agent must be
induced not to always prefer actions that deliver immediate reward, because such
behavior does not necessarily maximize the total return. Rather, it must choose
actions that, in the long term, lead to maximal return. To see why, note that in
non-trivial cases certain action choices can preclude the agent from achieving the
maximum reward, even if up to that point it has always selected the action yielding
the highest immediate reward.

This problem is one of the major challenges in reinforcement learning and is
addressed by balancing two key aspects when choosing actions:

• Exploitation: the agent should select actions it has already tried in order to
obtain rewards;

• Exploration: the agent should search for new actions that may lead to a
larger cumulative reward.

2.1.1 Learning Paradigms in Comparison
What has been said about reinforcement learning helps clarify that the well-known
paradigms of Supervised and Unsupervised Learning share some traits with RL
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but also have substantial differences. This supports the view that RL constitutes
a third paradigm of Machine Learning. Supervised Learning trains on a set
of labeled examples provided by an expert. The goal is to learn a general rule
that enables correct responses even on examples not present in the training set. In
Reinforcement Learning, by contrast, where learning occurs via interaction, it is
often impossible to obtain examples of a desired behavior that are both correct
and representative of all the possible situations in which the agent may find itself
interacting. As noted above, with Reinforcement Learning we aim to maximize a
given reward without initially knowing which actions are correct. At first glance
this might seem similar to Unsupervised Learning, but the objective is different:
unlabeled examples are not used to find actions that maximize a reward function;
rather, they are used to categorize and group data.

In the Table 2.1, we summarize the main differences among the three learning
paradigms.

SL UL RL

Input Labeled data Unlabeled data Environment
state

Objective Minimize predic-
tion error

Discover latent
structure in data

Maximize cumu-
lative reward

Feedback Direct (label) No external feed-
back

Scalar reward
from the environ-
ment

Example Image classifica-
tion

Customer clus-
tering Training a robot

Table 2.1: Comparison among supervised, unsupervised, and reinforcement
learning.

2.1.2 Key Elements of Reinforcement Learning
Below are the key elements underlying any RL algorithm. As noted, an RL system
consists of an agent interacting with an environment. In addition to these two
core components, we have:

• Policy (π): maps the current state of the environment to an action to be
executed. The policy can be deterministic (maps a state to a single action)
or stochastic (maps a state to a probability distribution over actions). The
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agent’s goal is to learn an optimal policy that maximizes the sum of future
rewards.

• Reward (r): a scalar sent by the environment to the agent as feedback for
the action executed at the current step. The agent aims to maximize the sum
of future rewards. If, following an action, the agent receives a negative reward,
the policy is updated to reduce the probability of choosing that action in the
future.

• Value functions (V , Q): while the reward indicates the agent’s immediate
gain, the value function estimates the expected future return from a state (V )
or from a state-action pair (Q), under a given policy. A state could yield high
immediate reward yet lead to low-reward states later, whereas a state with
low immediate reward could lead to states with high future rewards. Value
functions help the agent make more informed decisions than those based on
immediate reward alone.

• Model: when available, it predicts transition dynamics and rewards. Model-
based methods can plan by simulating the environment, whereas model-free
methods learn directly from interaction without an explicit model. Hybrid
methods build an approximate model during interaction and use it for planning.

2.1.3 Mathematical Foundations of Reinforcement Learn-
ing

We start from the simplest setting, the multi-armed bandit, in which there is no
notion of state and the agent only has to balance exploration and exploitation.
This allows us to isolate the core learning problem and to emphasize the role
of trial-and-error search. We then move to the more general case of sequential
decision making, modeled as a Markov Decision Process (MDP), where the agent
interacts with an evolving environment over multiple time steps and the return
is the discounted sum of future rewards. This framework naturally leads to the
definition of value functions and Bellman equations, which underpin most modern
RL algorithms, including the actor-critic methods used in this thesis.

Multi-Armed Bandits

The multi-armed bandit problem represents the simplest form of reinforcement
learning. An agent repeatedly chooses among k actions (slot-machine arms), each
associated with an unknown reward distribution. The objective is to maximize the
sum of obtained rewards.
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Let at ∈ {1, . . . , k} be the action chosen at time t and rt the reward obtained;
the expected value of an action is

q∗(a) = E[rt | at = a].

The agent’s task is to estimate q∗(a) and choose the best action.
This setting naturally introduces the exploration-exploitation dilemma:

• exploitation: choose the action with the highest estimated value;

• exploration: try other actions to improve the value estimates.

Classic strategies include:

• ϵ-greedy: with probability 1 − ϵ choose the best action; with probability ϵ
choose a random action;

• Upper Confidence Bound (UCB): balances exploitation and exploration via a
statistical confidence bonus.

Although the manipulation tasks considered in this thesis are far more complex
than bandits, the same tension between exploiting known good behaviors and
exploring new ones remains central, and will reappear in the discussion of entropy
regularization in PPO.

Markov Decision Processes (MDPs)

A general RL problem is modeled as a Markov Decision Process (MDP) defined
by the tuple

M = (S, A, P, R, γ)
where:

• S: set of possible states;

• A: set of possible actions;

• P (s′ | s, a): transition probability to state s′ when taking action a in state s;

• R(s, a): expected reward for taking a in s;

• γ ∈ [0,1]: discount factor balancing immediate and future rewards.

At each time step t, the agent observes a state st ∈ S, selects an action at ∈ A
according to its policy, receives a scalar reward rt+1, and transitions to a new state
st+1 according to P . The expected return from time t is defined as

Gt =
∞Ø

k=0
γkrt+k+1.

8
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Figure 2.1: The agent-environment interaction in an MDP [19].

The objective is to find a policy π(a | s) that maximizes the expected return. A
comprehensive figure illustrating the MDP framework is shown in Figure 2.1.

In the manipulation tasks studied in this thesis, st contains low-dimensional
proprioceptive and task-related features (e.g., joint positions and object pose), at is
a continuous joint-space command suitable for the UR10e controller, and rewards
are designed to encode intermediate and final task objectives.

To reason about long-term performance in an MDP, it is convenient to introduce
the value functions associated with a given policy π. The state-value function V π

and the action-value function Qπ are defined as

V π(s) = Eπ

è
Gt

--- st = s
é

= Eπ

C ∞Ø
k=0

γkrt+k+1

---- st = s

D
, (2.1)

Qπ(s, a) = Eπ

è
Gt

--- st = s, at = a
é

= Eπ

C ∞Ø
k=0

γkrt+k+1

---- st = s, at = a

D
. (2.2)

Intuitively, V π(s) measures how good it is to start from state s and then follow
π, while Qπ(s, a) measures how good it is to take action a in s and then continue
according to π.

These functions satisfy a set of recursive relations known as Bellman equations.
For the state-value function, the Bellman expectation equation are:

V π(s) = Ea∼π(·|s)Es′∼P (·|s,a)

5
R(s, a) + γ V π(s′)

6
. (2.3)

Similarly, the Bellman equation for Qπ is

Qπ(s, a) = Es′∼P (·|s,a)Ea′∼π(·|s′)

5
R(s, a) + γ Qπ(s′, a′)

6
. (2.4)

The optimal value functions V ⋆ and Q⋆ are defined as V ⋆(s) = maxπ V π(s) and
Q⋆(s, a) = maxπ Qπ(s, a). They satisfy the Bellman optimality equations:

V ⋆(s) = max
a∈A

Ø
s′∈S

P (s′ | s, a)
è
R(s, a) + γ V ⋆(s′)

é
, (2.5)

9
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Q⋆(s, a) =
Ø
s′∈S

P (s′ | s, a)
è
R(s, a) + γ max

a′∈A
Q⋆(s′, a′)

é
. (2.6)

These relations form the basis of dynamic programming algorithms such as value
iteration and policy iteration. In model-free deep RL, and in actor-critic methods in
particular, a critic network is trained to approximate V π so that they approximately
satisfy the corresponding Bellman equations, while the actor (policy) is updated
using these value estimates as a training signal.

2.2 Taxonomy of reinforcement learning algo-
rithms

A common way to organize reinforcement learning (RL) methods in robotics is to
use a layered taxonomy that clarifies which families of algorithms are practical for
real or sim-to-real manipulation tasks. A possible taxonomy is the one discussed in
[20] where RL algorithms are divided into model-free and model-based.

Figure 2.2: Taxonomy of reinforcement learning algorithms proposed by [20]

10
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Model-free methods learn a control policy or a value function directly from
interaction, without explicitly constructing a dynamics model. This makes them
attractive for robotics, where accurate models are not always available but large
amounts of data can be generated in simulation. Within model-free RL, two main
subfamilies are typically distinguished:

• Value-based methods learn an action-value function Q(s, a) (or a state-value
function V (s)) and derive the policy by selecting the action that maximizes
this value. Classical examples include Q-learning, DQN, and Double DQN.
These methods have been very successful in discrete-action domains, but
become less natural when the robot has to output continuous joint commands
[18].

• Policy-based (or policy-gradient) methods directly parametrize the policy
πθ(a | s) and optimize it with respect to the expected return1. Algorithms
such as REINFORCE, A2C/A3C, DDPG, TRPO, and PPO belong to this
branch. They are generally better suited for robotic manipulation because
they handle continuous action spaces and produce smoother control signals,
which match the requirements of industrial and collaborative arms [18, 11].

Model-based methods, on the other hand, assume that a dynamics model
p(s′ | s, a) is available (“given the model”) or attempt to learn such a model from
data (“learn the model”) and then use it for planning, prediction, or to generate
additional rollouts. While model-based RL can be more sample-efficient, it typically
requires more modeling effort and is less commonly adopted in day-to-day robotic
manipulation pipelines [18].

2.2.1 Proximal Policy Optimization (PPO)
In the rest of this work, and consistently with recent surveys on real-world DRL for
robotics [17], we focus on the model-free, policy-based branch, and in particular on
Proximal Policy Optimization (PPO) [11], which has become the de facto standard
in several simulator-centric robot learning frameworks. PPO, in particular, is
an on-policy actor-critic algorithm: an actor network outputs a distribution over
continuous actions, while a critic network estimates the state value V (s) to compute
advantages and reduce variance. The algorithm optimizes a surrogate objective
designed to keep policy updates within a trust region, thus ensuring stable and

1In the broader RL literature, ’policy-based’ can also refer to methods that optimize a
parameterized policy without explicitly using gradients (e.g., evolutionary strategies). In this
thesis, we only consider gradient-based methods, so we use the terms ’policy-based’ and ‘policy-
gradient’ interchangeably.

11



Background and Literature Review

efficient learning. This is achieved by clipping the probability ratio between the
new and old policies, preventing excessively large updates that could destabilize
training.

Figure 2.3: Schematic overview of the Proximal Policy Optimization (PPO)
update loop, adapted from [21].

Motivation

The evolution of policy-gradient methods has been driven by the need to reduce
variance, improve sample efficiency, and stabilize policy updates. The path leading
to PPO can be summarized as follows.

1) Policy gradient theorem and variance In its simplest form, the policy
gradient theorem states that, for a parametrized policy πθ(a | s), the gradient of
the expected return J(θ) can be written as

∇θJ(θ) = Eπ

5
∇θ log πθ(at | st) Gt

6
, (2.7)

where Gt is the discounted return from time t. This expression is unbiased but typ-
ically exhibits high variance, requiring many trajectories to obtain stable updates.

2) Baseline and advantage To reduce variance without introducing bias, it is
common to subtract a baseline that does not depend on the action, typically the

12
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value function V π(st). This leads to the advantage function

Aπ(st, at) = Qπ(st, at) − V π(st), (2.8)

and to the practical gradient estimator

∇θJ(θ) ≈ Eπ

5
∇θ log πθ(at | st) Aπ(st, at)

6
, (2.9)

which forms the basis of actor-critic methods: a critic network estimates V π (or Qπ),
and the actor is updated in the direction suggested by the estimated advantages.

3) Generalized Advantage Estimation (GAE) In deep RL, advantages
are estimated from sampled trajectories. A widely used estimator is Generalized
Advantage Estimation (GAE) [22], which combines multi-step temporal-difference
residuals to balance bias and variance. Let

δt = rt + γVϕ(st+1) − Vϕ(st) (2.10)

be the TD residual under the current value approximation Vϕ. GAE defines

Ât =
∞Ø

l=0
(γλ)l δt+l, (2.11)

where λ ∈ [0,1] controls the trade-off between low-variance, high-bias (small λ) and
high-variance, low-bias (large λ) estimates. In practice the sum is truncated at the
horizon of the collected trajectories.

4) Trust regions and TRPO Standard policy-gradient updates can still be
unstable if the policy changes too much in a single step. Trust-region methods
such as TRPO [23] address this by explicitly constraining the Kullback–Leibler
(KL) divergence between the old and new policy, ensuring that each update stays
within a small region in policy space.

PPO was introduced to mitigate this complexity. Instead of enforcing a hard KL
constraint, PPO uses a clipped surrogate objective that implicitly limits the size
of policy updates, preserving much of TRPO’s stability while retaining a simple
first-order optimization scheme. Conceptually, PPO belongs to policy-gradient
methods and leverages the same intuition as natural gradients (conservative moves
in distribution space), but without explicitly computing second-order information.
This makes PPO attractive for large neural networks and for simulator-centric
robot learning setups such as the one considered in this thesis.

13
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Clipped surrogate objective

The core idea of PPO is to reformulate the surrogate objective into a shape amenable
to first-order optimization while indirectly controlling the change in the policy. Let

ρt(θ) = πθ(at | st)
πθold(at | st)

(2.12)

be the importance sampling ratio between the new and old policy, and consider
the classical policy gradient surrogate

LCPI(θ) = E
è

ρt(θ) Aπθold (st, at)
é
. (2.13)

Without any constraint, ρt(θ) may drift far from 1, leading to unstable updates.
PPO introduces the clipped objective

LCLIP(θ) = E
5

min
1
ρt(θ) Ât, clip(ρt(θ), 1 − ϵ, 1 + ϵ) Ât

26
, (2.14)

where Ât is an empirical estimate of the advantage (e.g., obtained via GAE) and
ϵ > 0 is a small hyperparameter (in [11] they advise setting this value to 0.2). If
Ât > 0, the increase in probability for the advantageous action is capped once ρt

exceeds 1 + ϵ; if Ât < 0, the decrease is limited once ρt falls below 1 − ϵ. In both
cases, overly aggressive updates are discouraged, and successive policies are kept
sufficiently close, as summarised in Figure 2.3.

Exploration vs. Exploitation in PPO

PPO trains a stochastic policy in an on-policy regime: the same policy that is
used to collect trajectories is also updated by gradient ascent. At the beginning
of training, the policy typically has high stochasticity and therefore explores a
wide region of the state-action space. As optimization progresses and the policy
is repeatedly updated in the direction of the estimated advantages, its action
distribution tends to become more peaked around high-advantage actions, i.e.,
more deterministic.

This gradual loss of stochasticity is desirable up to a point (it corresponds to
exploitation), but if it happens too quickly the agent may get stuck in suboptimal
behaviors. To counteract this effect, PPO includes an entropy bonus that explicitly
encourages the policy to retain some randomness during training. The entropy of
a discrete distribution P is defined as

H(P ) = Ex∼P

è
− log P (x)

é
, (2.15)

and measures how spread out the distribution is. For a stochastic policy πθ(· | s),
high entropy means that multiple actions are still assigned non-negligible probability.
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In practice, PPO combines three terms in a single loss function: the negative of
the clipped surrogate objective, a value-function regression loss, and an entropy
bonus term. Denoting by Ĝt the estimated return (used as target for the value func-
tion) and by LCLIP(θ) the clipped objective in Eq. (2.14), the total loss minimized
during training can be written as

L(θ, ϕ) = −Êt

è
LCLIP(θ)

é
+ cv Êt

è1
Vϕ(st) − Ĝt

22é
− ce Êt

è
H(πθ(· | st))

é
, (2.16)

where cv and ce are scalar coefficients that weight the value loss and the entropy
bonus, respectively, and Êt[·] denotes the empirical average over time steps and
trajectories. The last term encourages higher-entropy policies, thereby sustaining
exploration and preventing the policy from collapsing too early to a nearly deter-
ministic mapping. In all the experiments of this thesis, the entropy coefficient ce is
kept fixed and chosen empirically so as to maintain a reasonable level of exploration
without destabilizing training.

2.3 Applications of Deep Reinforcement Learning
to robotic manipulation

Recent surveys on real-world deep reinforcement learning for robotics show that
manipulation tasks solved with DRL can be described along a small set of recurring
dimensions [17]:

• Platform and task scope: single-robot manipulation vs. multi-robot set-
tings.

• Problem formulation: MDP/POMDP formulations with either full-state or
partial observations.

• Action space: low-level, continuous actions (e.g., joint torques, joint velocities,
Cartesian velocities) vs. higher-level or skill actions (e.g., ”go from A to B”).

• Observation space: low-level proprioceptive/task features vs. high-dimensional
vision.

• Reward design: dense rewards (e.g., a reward inversely proportional to the
distance between the end effector and the object) vs. sparse or success-only
rewards (e.g., a reward is given only if the object is reached).

• Data source and transfer: real-world training, pure simulation, or zero-shot
sim-to-real.

• Learning paradigm: model-free vs. model-based; policy-optimization vs.
value-based; on-policy vs. off-policy.
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• Policy representation: lightweight MLPs vs. vision-based encoders (CNN/-
Transformer) when images are used.

Within this grid, many successful robotic manipulation systems reported in [17] fall
into the model-free branch and use policy-optimization methods, often with dense
rewards and simulator support, because this combination offers stable training and
direct closed-loop control.

2.3.1 Position of this thesis in the taxonomy
According to the above classification, the work presented in this thesis can be
placed very precisely:

• Platform and task scope: single-robot manipulation on a UR10e with a
Robotiq 2F-140 gripper.

• Problem formulation: tasks are modeled as MDP instances in Isaac Lab,
with structured low-level observations (robot state + task features).

• Action space: low-level, continuous actions compatible with the UR controller
(the policy outputs directly the control to be sent through ROS 2).

• Reward design: manually designed dense rewards, which is the regime in
which sim-to-real DRL has been reported to work most reliably [17].

• Data source / transfer: training entirely in a high-fidelity simulator (Isaac
Lab/Sim), functional check in simulation, controller-level validation in a
containerized URSim, and then zero-shot deployment on the real UR10e.

• Learning paradigm: model-free, policy-optimization, on-policy, using PPO
as implemented in the Isaac Lab / RSL-RL stack [11].

• Policy representation: MLP-based actor-critic with shared backbone, which
is sufficient because observations are low-dimensional.

In other words, this thesis targets the same quadrant highlighted as the most
mature in [17]: model-free, policy-based, simulator-supported manipulation with
dense rewards, transferred zero-shot to real hardware.

2.4 Kinematic of Manipulators
This section provides a brief overview of the kinematic modeling of robotic manip-
ulators, knowledge that will be useful in Chapter 4 when defining the target frame
for reach task for the UR10e robot.
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The kinematics of a robotic manipulator put in relationships the internal state of
the robot expressed in the joint space that can be easily measured (joint positions)
with the position and orientation (pose) of the end-effector in the workspace. This
relationship is irrespective of the forces and torques acting on the robot, which are
instead studied in the field of dynamics.

We can define two types of kinematics:

• Forward kinematics: given the joint parameters (angles for revolute joints,
displacements for prismatic joints), it computes the position and orientation
of the end-effector.

• Inverse kinematics: given a desired position and orientation of the end-
effector, it computes the necessary joint parameters to achieve that pose.

Since the Inverse Kinematics will not be directly used in this thesis, we will
focus on the Forward Kinematics only.

2.4.1 Forward Kinematics
Every robot can be represented as a series of rigid links connected by joints that
can be mainly divided in 2 classes:

• Revolute joints: allow rotational movement around a fixed axis.

• Prismatic joints: allow linear movement along a fixed axis.

Focusing on the Denavit-Hartenberg (DH) convention for representing the spatial
relationships between consecutive links.

The DH convention assigns a coordinate frame to each link of the manipulator,
allowing for a systematic description of the robot’s geometry. Each frame is defined
by four parameters:

• ai: the length of the common normal (distance between Zi−1 and Zi axes).

• αi: the angle between Zi−1 and Zi axes, measured about the Xi axis.

• di: the offset along the previous Zi−1 axis to the common normal.

• θi: the angle between Xi−1 and Xi axes, measured about the Zi−1 axis.

Using these parameters, the transformation matrix from frame i − 1 to frame i
can be expressed as:

T i−1
i =


cos θi − sin θi cos αi sin θi sin αi ai cos θi

sin θi cos θi cos αi − cos θi sin αi ai sin θi

0 sin αi cos αi di

0 0 0 1


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The overall transformation from the base frame to the end-effector frame is
obtained by multiplying the individual transformation matrices:

T 0
n = T 0

1 T 1
2 · · · T n−1

n

This transformation matrix encapsulates both the position and orientation of
the end-effector relative to the base frame, which is essential for tasks such as
reaching, grasping, and manipulating objects in the robot’s workspace. For more
detail about the kinematic of robotic manipulators, refer to [24].

The FK of the UR10e robot can be computed using the DH parameters provided
in Table 2.2 , those values and the figure 2.4are taken from the official documentation
[25].

Joint a [m] d [m] α [rad] θ

Joint 1 0 0.1807 π/2 q1
Joint 2 −0.6127 0 0 q2
Joint 3 −0.57155 0 0 q3
Joint 4 0 0.17415 π/2 q4
Joint 5 0 0.11985 −π/2 q5
Joint 6 0 0.11655 0 q6

Table 2.2: Denavit Hartenberg parameters for UR10e provided by Universal
Robots

The FK can then be computed by multiplying the transformation matrices
for each joint using the DH parameters from Table 2.2. This results in a final
transformation matrix that describes the position and orientation of the end-effector
in the base frame, given the joint angles q1 to q6.
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Figure 2.4: Denavit-Hartenberg coordinate frames for UR10e taken from [25]
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Chapter 3

Methodologies

In this chapter, we describe the methodologies and tools employed throughout this
thesis for training, validating, and deploying deep reinforcement learning policies for
robotic manipulation tasks. The section is organized as follows: first, we introduce
the training tools and the architecture used to train the policies in simulation;
next, we discuss the deployment architecture and tools that facilitate the transfer
of learned policies to the real UR10e robotic arm.

3.1 Training Architecture and Tools
The training phase of this work relies on NVIDIA Isaac Sim [9] and the Isaac
Lab framework [10] to create realistic simulation environments and to implement
the reinforcement learning pipeline. The overall training architecture is shown in
Figure 3.1, while the main components used in this process are briefly introduced
below.

The components of this architecture are summarised in the following para-
graphs. A more detailed configuration of the two main blocks, the Agent and the
Environment, is provided in Chapter 4 for each of the three tasks.

3.1.1 Isaac Sim
Isaac Sim[9] is NVIDIA’s robotics simulator built on Omniverse, designed to
develop, test, and validate robots and control algorithms in physically plausible
virtual environments. At its core is USD (Universal Scene Description), which
makes it straightforward to compose complex scenes, version assets, and integrate
models from common formats such as URDF and MJCF. Dynamics are handled
by PhysX[27] with GPU support for large-scale parallel simulations, enabling rapid
data collection for training machine-learning models. Isaac Sim also includes a
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Figure 3.1: Manager-based training architecture in Isaac Lab, reproduced
from [26].

suite of tools for sensor simulation, robot kinematics, control, and tuning, making
it a comprehensive platform for robotics research and development.

Universal Scene Description (USD) Overview

The Universal Scene Description (USD) is a modern framework originally developed
by Pixar to manage the creation and exchange of complex 3D scenes. It was designed
to address a fundamental challenge in computer graphics and simulation: allowing
different applications and users to collaborate on the same virtual world without
losing data fidelity or structural consistency. USD provides a flexible and extensible
format capable of representing geometric models, materials, lights, animations, and
even physical simulation parameters in a unified way.

NVIDIA Isaac Sim adopts USD as its foundational layer for representing every
element of the simulation world — from robotic manipulators and sensors to objects,
environments, and physics materials. This choice is not accidental: USD offers a
non-destructive and highly modular data model that allows individual components
to be edited, replaced, or extended without altering the integrity of the whole scene.
This makes it particularly suited for robotics, where assets such as arms, grippers,
cameras, and fixtures must be combined, configured, and reused across multiple
experiments.

In its open form, known as OpenUSD, the framework is evolving under the
governance of the Alliance for OpenUSD (AOUSD) [28]. This open standard extends
Pixar’s original design and promotes USD as a cross-industry ecosystem for 3D data
exchange and collaboration. OpenUSD emphasizes three key principles: it enables
non-destructive editing, where modifications to a scene do not overwrite existing
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data; it supports collaborative workflows, allowing multiple users or applications
to work concurrently on the same project; and it is inherently standardized,
ensuring interoperability across different software and hardware platforms.

Within this research, USD serves as the backbone of the entire simulation and
training workflow. It enables the UR10e and the Robotiq 2F-140 to be combined
into a single, coherent model, while maintaining the ability to edit, parameterize,
or replace each component independently. In practice, this means that the same
USD structure can be used seamlessly for visualization, physics-based simulation,
reinforcement learning, and deployment—making it a cornerstone technology for
modern robotics research in virtual environments.

Assembler

To define the robotic model used within the simulation environment, it was necessary
to integrate the UR10e robotic arm and the Robotiq 2F-140 gripper into a single
USD asset. This operation was performed using the Assembler Tool provided by
NVIDIA Isaac Sim, a graphical interface that allows the modular composition of
robotic manipulators starting from individual components available in the asset
library. The reference procedure is described in the official documentation provided
by NVIDIA [29].

The assembler makes it possible to import the manipulator model (in this
case, the UR10e) as the base of the system and subsequently add a compatible
end-effector, either selected from the available grippers catalog or loaded from an
external USD file. Once both components are loaded, the interface allows the user
to specify the mounting point, i.e., the joint or flange of the robot on which the
gripper should be attached. In the case of the Robotiq 2F-140, the operation was
carried out by selecting the terminal wrist link (ee_link) of the UR10e as the
attachment point, ensuring proper spatial alignment between the two models.

After completing the assembly, the tool automatically generates a composed
USD file that includes the full link hierarchy, joint definitions, and the necessary
transformation references to maintain kinematic consistency throughout the system.
This assembled asset was then exported and used as the reference model for
defining the training scenes within Isaac Lab, thus enabling realistic simulation of
the interaction between the UR10e arm and the Robotiq 2F-140 gripper.

To ensure proper dynamic and kinematic compatibility between the two elements,
the correspondence of reference frames (particularly among tool0, ee_link, and
base_link) was verified, and appropriate rotation offsets around the Z-axis were
applied to harmonize the coordinate conventions used by the ROS2 driver and the
real robotic setup.

The final result is a single, modular USD file that can be easily reused and
configured, serving as the foundation for all the Reinforcement Learning training
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and validation experiments described in the following chapters.

3.1.2 Isaac Lab
Isaac Lab is the robot-learning framework built on top of Isaac Sim. It was chosen
for its capability to define modular observations, actions, rewards, curriculum,
and termination conditions, improving code reuse across different scenarios. Fur-
thermore, it provides ready-to-use functions for domain randomization and native
integrations. Most importantly, it includes the RSL-RL library [30] within its
ecosystem, reducing the likelihood of implementation errors when using the PPO
algorithm. These goals and capabilities are described in the Isaac Lab whitepaper
[31]. Importantly, Isaac Lab is the successor to the deprecated Isaac Gym frame-
work, which offered an high performance platform for robot learning as shown in
[32].

Agent

In Isaac Lab, the PPORunnerCfg defines the agent as the combination of (i) a rollout
runner, (ii) an actor-critic policy architecture, and (iii) a PPO learning algorithm.
In the notation of Section 2.2.1, the policy parameters are denoted by θ and the
value-function parameters by ϕ, and the various hyperparameters below control
how the empirical expectations Êt[·], the advantages Ât and the total loss L(θ, ϕ)
are instantiated in practice.

Runner / Rollout (data collection) The runner specifies how trajectories
are collected from the environment before each PPO update. Together with the
number of parallel environments, these settings determine the batch size used to
approximate the on-policy expectations Êt[·] in the policy gradient and in the loss
of Eq. (2.16).

• num_steps_per_env: on-policy horizon per update (steps collected in each
parallel environment before a PPO update, i.e., the time span over which Êt[·]
is computed).

• max_iterations: maximum number of training updates (overall training
budget).

• save_interval: checkpoint frequency for reproducibility and resume.

• experiment_name: identifier used for logging and artifact paths.

• empirical_normalization: whether to normalize observations based on
empirical statistics, which can help the optimization of both πθ and Vϕ.

23



Methodologies

Policy architecture As discussed in Section 2.2.1, PPO is based on an actor-
critic setup where the policy (actor πθ) and the value function (critic Vϕ) are
modeled as multilayer perceptrons. The policy network implements the stochastic
mapping πθ(at | st), while the critic network approximates the state value Vϕ(st)
used to construct the TD residuals δt and advantages Ât.

• actor_hidden_dims, critic_hidden_dims: widths/depths of the multilayer
perceptrons that parametrize the actor πθ and critic Vϕ.

• activation: nonlinearity used in the MLPs which affects the expressiveness
of both πθ and Vϕ. In this case we use the ELU[33] activation function, please
refer to the Appendix E for more details.

• init_noise_std: initial standard deviation of the Gaussian action head, i.e.,
the initial exploration level of the stochastic policy πθ.

Learning algorithm (PPO) The learning block specifies how the empirical data
are turned into gradient updates for θ and ϕ. In particular, these hyperparameters
instantiate the clipped surrogate objective LCLIP(θ) and the total loss L(θ, ϕ) of
Eq. (2.16), including the coefficients cv and ce and the trust-region behaviour via ϵ
and the KL target.

• clip_param: surrogate ratio clipping parameter ϵ in the PPO objective of
Eq. (2.14).

• value_loss_coef: weight cv of the critic loss cvÊt[(Vϕ(st) − Ĝt)2] in the total
objective.

• use_clipped_value_loss: optionally applies value prediction clipping to Vϕ

for additional stability.

• entropy_coef: weight ce of the entropy bonus term −ceÊt[H(πθ(· | st))],
which controls the exploration pressure.

• num_learning_epochs: number of passes over the collected batch per update
(how many times L(θ, ϕ) is optimized on the same data).

• num_mini_batches: partitioning of the batch into mini-batches for stochastic
optimization.

• learning_rate: optimizer step size for the gradient updates of θ and ϕ.

• schedule: learning-rate and/or KL adaptation strategy (e.g., fixed or adaptive
around a target KL).
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• desired_kl: target KL-divergence per update, used in adaptive schedules to
moderate policy shifts in the space of πθ.

• max_grad_norm: global gradient clipping threshold applied to ∇θL and ∇ϕL.

• gamma, lam: discount factor γ and GAE parameter λ used in the construction
of the TD residuals δt and of the advantage estimates Ât.

Manager-based environments

In Isaac Lab, manager-based environments[34] instantiate seven managers that,
at each step, follow a stable operational order and exchange only typed tensors.
This design improves reproducibility and code reuse across tasks and robots. The
managers are described below with the relative configuration classes [35]. It is easy
to see that the names of some managers correspond to the main components of a
Markov Decision Process (MDP), such as Observation (or State), Action, Reward.

Observation Manager The ObservationManager builds the agent’s observation
vector ot by evaluating a set of terms (typically ObservationTermCfg) organized
in groups (e.g., policy, critic, eval). Each term is a callable that returns a tensor
(one ot per parallel environment); optional modifiers and noise models can corrupt
signals for robustness, followed by clipping and scaling.

Action Manager The ActionManager receives the action tensor (one at per
parallel environment) from the learning library, splits it across the registered terms
(e.g., joint position/velocity/effort commands, binary gripper commands, configured
via ActionTermCfg), applies any pre-processing (offsets, scaling, clipping), and
then applies the processed actions to the scene assets before the physics step.

Reward Manager The RewardManager computes the scalar reward rt as a
weighted sum of the registered terms (RewardTermCfg). Each term is configured
through its own term config and is evaluated at every step; by design, Isaac
Lab multiplies each term’s weight by the control time step dt so that reward
magnitudes remain consistent across different control frequencies. The manager
supports per-term getters/setters and returns episodic accumulators for logging.

Curriculum Manager The CurriculumManager adapts environment quantities
over time (e.g., goal tolerances, mass/friction ranges, initial-state dispersions)
through a list of terms (CurriculumTermCfg). Terms are evaluated to progressively
harden the task as performance improves, stabilizing learning and enabling difficulty
schedules without entangling curriculum logic with rewards or resets.
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Event Manager The EventManager orchestrates operations bound to different
simulation modes via EventTermCfg terms.

• prestartup: applied once before the simulation is instantiated. This mode is
used to randomize USD-level properties of the stage (e.g., swapping assets,
modifying materials or geometric parameters) before any physics step is taken.

• startup: applied once after the simulator has been brought online. Typical
uses include initialization that requires a running physics context, such as
setting controller gains, seeding random number generators, or configuring
run-time properties of the scene.

• reset: applied at every environment reset. This mode is used to randomize
episode-level conditions (initial joint configurations, object poses, friction coef-
ficients, etc.), so that each rollout starts from a slightly different configuration.

• interval: applied periodically at fixed simulation intervals, enabling slower
perturbations or periodic interventions when needed.

Typical uses include random pushes, asset swapping, or changes to physical and
material parameters. Terms are grouped by mode and applied with optional
per-term parameters, so that different sources of variability can be controlled
independently.

Command Manager The CommandManager generates and updates high-level
commands/goals (e.g., target poses) through CommandTermCfg terms. It can re-
sample commands in regular intervals, expose commands as part of the observation
(when useful), and provides shared descriptors that other managers (primarily
Observation and Reward) can reference to build signals consistent with the current
objective.

Termination Manager The TerminationManager produces the episode-end
signal (the dones tensor) by taking the logical OR over the registered terms
(TerminationTermCfg). In line with the Gymnasium API, it separates truncated
(exogenous limits, e.g., max steps) from terminated (MDP terminal states such as
success, failure, or safety violations). Each term declares whether it contributes to
truncation or termination, and per-term counters are exposed for diagnostics.

Actuators

In Isaac Lab, actuators bridge desired joint commands and the simulated articula-
tion. They define the control law that maps commands to joint efforts/targets and
intrinsic joint properties like friction, armature and limits. Actuators come in two
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families (implicit and explicit) and can be configured per joint or per joint group
within the same articulation.

The Explicit actuators compute the control effort in the actuator code (discrete-
time PD and variants) and then apply it to the solver. This mirrors many real
controllers and gives fine-grained access to the commanded effort (useful for logging,
custom saturation, delays, or additional control logic). However, the explicit loop
is more sensitive to the integration step and can require careful stability tuning,
especially under contact or with aggressive gains.

The Implicit actuators were the choosen one for this work. They delegate
PD regulation to the PhysX joint drives. Stiffness and damping set the position
tracking behavior. Because the PD law is integrated within the physics solver,
constraint handling (including velocity/effort limits) and contact dynamics are
resolved consistently at each substep. This often yields superior numerical stability
at larger control time steps and more faithful behavior in contact-rich regimes that
are central for this work.

In terms of configuration, the values of stiffness and damping were chosen to
achieve a good trade-off between tracking accuracy and smoothness of motion, as
will be discussed in more detail in the dedicated Section 3.3. The velocity_limit
and effort_limit parameters, instead, were set according to the UR10e joint
specifications reported in Appendix C. For practical reasons, the final velocity and
effort limits used in simulation are summarized in Table 3.1.

Joint q̇max [rad/s] τmax [N m]

shoulder_pan 2.0944 330
shoulder_lift 2.0944 330
elbow 3.1416 150
wrist_1 3.1416 56
wrist_2 3.1416 56
wrist_3 3.1416 56
gripper_finger 2.0 200

Table 3.1: Velocity and effort limits used for the UR10e joints and the gripper
actuator in the simulation setup.

3.1.3 Workstation
All experiments were carried out on a dedicated workstation used both for neural
network training and for large-scale physics simulation. The machine is equipped
with a multi-core CPU, and an NVIDIA GPU, providing enough compute and
memory bandwidth to sustain thousands of parallel Isaac Lab environments and
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to complete PPO training runs within practical time. This setup was crucial to
support the training of the task with 4,096 concurrent environments. The complete
technical specifications of the workstation are reported in Appendix A.

Figure 3.2: Workstation used for the training part

3.2 Deployment Pipeline and Tools
The deployment part of this work relies on a combination of software tools and
frameworks to enable the transfer of learned policies from simulation to the real
UR10e robotic arm. The overall pipeline is shown in Figure 3.3 and is organised
into three layers:

1. First layer: the policy is tested on the same simulator in which it was
trained (Isaac Lab/Isaac Sim), in order to verify that the learned behaviour is
consistent and safe within the original training environment.

2. Second layer: the policy is tested on URSim, the official simulator provided
by Universal Robots. This layer not only provides an additional safety check
in a controller-accurate simulation, but also allows us to develop and validate
the deployment code that will control the real robot (with the exception of
the gripper integration, which is not available in URSim).

3. Third layer: the policy is finally deployed and tested on the real UR10e
robot.

Both the first and the second layer fall into the Simulation-to-Simulation
(Sim2Sim) category: the trained policy is first validated in the same environ-
ment in which it was learned, and then exercised on a different simulator to assess
whether the resulting motion can be considered safe. The policy is promoted to
the next layer of the pipeline only if the results at the current stage are deemed
satisfactory.
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Figure 3.3: Deployment pipeline from Sim2Sim validation in Isaac Sim to
URSim and final Sim2Real deployment

The main components of this pipeline are summarised in the following sections,
while a more in-depth discussion of the Sim2Sim and Sim2Real validation procedures
is provided in Chapter 5.

3.2.1 Universal Robots Simulator (URSim)
Universal Robots provides a software package, called URSim, that reproduces
the control environment of a UR robot on a standard PC. URSim runs the same
PolyScope interface and the same controller software that are available on the phys-
ical e-Series robots, but without requiring the actual manipulator to be connected.
In practice, it exposes the same communication endpoints and accepts the same
program structures that would be executed on the real controller. For this reason
it is a convenient tool to verify that external applications, like ROS 2 nodes or
custom drivers, can connect to the UR control stack and exchange data in the
expected format before putting the real hardware at risk.

In this work URSim was deployed inside a Docker1 container and connected to
a second container hosting the ROS 2 stack through a dedicated virtual network.
This setup mirrors the final deployment in which the ROS 2 nodes run on a separate
machine and communicate with the robot over Ethernet. Once the URSim instance
is running, the ROS 2 driver can establish an exchange session where, publish the
robot state, and forward joint trajectories exactly as it would do with a physical
UR10e. In other words, URSim allows us to validate the whole “southbound”
part of the control pipeline (network reachability, driver configuration, controller

1Docker is a containerization platform that runs applications inside lightweight, isolated
containers for reproducible deployment

29



Methodologies

selection, topic names) without requiring access to the laboratory robot.
It is important to note, however, that URSim emulates the controller, not the full

dynamics of the robot: there is no rigid-body simulation, no realistic collision model,
and no physical gripper attached. Motions that in URSim appear to run smoothly
may still trigger protective stops on the real arm if they violate safety settings or if
the real payload and friction differ from the nominal ones. Likewise, additional
devices such as the Robotiq 2F-140 must be integrated separately on the ROS 2
side, because the simulator does not provide a simulated end-effector. Despite
these limitations, URSim remains an essential intermediate step in the validation
pipeline adopted in this thesis: it guarantees that the software components can talk
to the official UR control stack, and that switching from the simulated controller
to the physical one is reduced to a change of IP address and safety parameters.

3.2.2 Robot Operating System 2
The deployment pipeline developed in this work relies on Robot Operating System 2
(ROS 2), the second generation of the widely used open-source middleware for
robotics. ROS 2 was introduced to overcome several structural limitations of
ROS 1, such as the single-master communication model and the limited support for
distributed and heterogeneous deployments [36]. In addition, ROS 2 has become
the de facto standard for new developments in the ROS ecosystem, and most
actively maintained drivers and tools now target ROS 2 first.

In this thesis, ROS 2 is used as a common abstraction layer between three
classes of components: (i) the Universal Robots controller (simulated or real),
accessed through the ROS 2 UR driver and exposing the robot state and trajectory
interfaces; (ii) the control and integration nodes, which run the ROS 2 driver, the
joint trajectory controller and the auxiliary interfaces (e.g., for the gripper); and
(iii) the learning component, which publishes joint targets or short trajectories
generated by the policy. The choice of ROS 2 is therefore mainly driven by practical
deployment aspects: it simplifies communication across multiple containers and
machines, and it provides a stable and well-supported interface to both URSim
and the physical UR10e controller.

Alternative solutions based on direct communication with the UR controller
via its Real-Time Data Exchange (RTDE) interface were also considered. A pure
RTDE-based architecture would have been feasible and is commonly adopted in
industrial applications. However, in the context of this thesis it would have required
developing and maintaining a dedicated communication layer for streaming robot
state, sending commands, handling errors and logging data, as well as separate
integration code for additional devices such as the gripper. By contrast, the ROS 2
driver for Universal Robots and the ROS 2 adapter for the Robotiq gripper already
expose these capabilities through standard topics and services, so that both the
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arm and the end-effector can be treated as ROS entities and their data can be
recorded or replayed with standard tooling [37, 38]. For these reasons, ROS 2 was
adopted as the main integration layer, while RTDE is used indirectly through the
UR ROS 2 driver.

3.2.3 UR10e robotic arm
The robotic arm used in this work is the Universal Robots UR10e, a 6-DOF
collaborative manipulator belonging to the e-Series family. It offers a payload
of 10 kg, a reach of approximately 1300 mm and a repeatability of ±0.05 mm,
which makes it suitable both for industrial manipulation and for research scenarios
that require accurate positioning over a relatively large workspace [39]. Being a
collaborative robot, the UR10e integrates force/torque sensing at the tool and a set
of safety functions (speed and separation monitoring, reduced mode, configurable
safety planes) that can limit its motion when operating close to humans or when
external control inputs are not fully trusted.

From the perspective of this thesis, the UR10e is relevant for two main reasons.
First, it is natively supported by the official UR ROS 2 driver, so that joint
states, trajectories and IO can be accessed through standard ROS topics without
writing a vendor-specific client. Second, the kinematic structure of the UR10e
is well documented and widely used in robotics literature, which simplifies the
derivation of Denavit-Hartenberg (DH) parameters, the definition of tool frames
consistent with simulation, and the comparison between simulated and real joint
configurations. The same USD model of the UR10e was imported in Isaac Sim, so
that the articulated structure in simulation matches the physical arm, reducing
discrepancies at deployment time. For further details on the UR10e, please refer to
the Appendix C.

Figure 3.4: UR10e robotic arm
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3.2.4 Robotiq 2F-140 gripper
The end-effector mounted on the UR10e is a Robotiq 2F-140, a two-finger adaptive
gripper with a maximum stroke of 140 mm, intended for general-purpose grasping
of objects with different sizes [40]. The gripper is position-controlled and is designed
to be integrated with UR robots through URCaps, so that open/close actions can
be triggered directly from the robot controller. In the experimental setup used in
this thesis, the gripper is commanded from ROS 2 through the dedicated adapter
discussed in Section 5.2. This keeps the arm and the end-effector on the same
communication layer (ROS 2) and allows the learned policy to trigger open/close
commands in synchrony with the generated joint trajectories.

The 2F-140 is particularly suitable for the reach-and-grasp and lift tasks con-
sidered in this thesis, since its large stroke makes it possible to grasp a large
variaty of objects without changing fingers or tooling, while keeping the control
interface simple (open/close or target position). In addition, its documentation
provides precise dimensions and mounting interfaces, which are replicated in the
USD asset used in Isaac Sim. Further details on the Robotiq 2F-140 are reported
in Appendix D.

Figure 3.5: Robotiq 2F-140 gripper mounted on UR10e

3.3 Gain tuning
To allow the robot to effectively learn the desired manipulation tasks we splitted
the training process into multiple stages, each focusing on a specific sub-task. This
progressive approach allow to define custom and specific reward functions for each
stage, facilitating the learning process.

As previously mentioned, our robotic arm consists of six actuated joints, also
referred to as its degrees of freedom (DOF). Each of them are actuated through an
electric motor which introduce nonlinear characteristics into the system, including
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actuation delays, torque saturation, and velocity limits, which shape the robot’s
overall dynamic response.

In simulation, joint actuation is defined as position-controlled, for which the
physics engine internally implements PD controller that computes the torques
applied on the actuated joints.

In particular, each joint in Isaac Lab is associated with an ImplicitActuatorCfg
object, which defines its drive behavior by specifying the stiffness and damping
coefficients of the implicit PD controller. This controller computes the actuation
torque as

τ = Kp(q − qtarget) + Kd(q̇ − q̇target), (3.1)

where Kp represents the stiffness gain and Kd the damping gain and generally
q̇target = 0.
The stiffness determines how aggressively the joint reacts to positional errors, while
the damping smooths oscillations and adds numerical stability to the system. The
implicit actuator model is provided by the underlying physics engine (PhysX),
which adds an additional layer of numerical damping to ensure stable integration
at high stiffness values.

A correct tuning of these gains is essential, since they directly influence the
robot’s simulated dynamics. If the joint drives are poorly tuned, the robot may
behave unrealistically or even become unstable, making reinforcement-learning
training ineffective.

3.3.1 Manual tuning procedure
We manually tuned the joint gains using Isaac Sim’s Gain Tuner, applying sinusoidal
position references and observing the resulting motion. The goal was to identify,
for each joint, a pair of stiffness and damping coefficients that provided a fast and
stable response consistent with the UR10e’s physical dynamics.

We decide to create a position drive, in other terms given Eq. (3.1) we set Kp > 0
and Kd can be any value. The joint drives were configured in position mode with
type = force. In this configuration, each drive interprets the command as a desired
joint position and applies the corresponding torque according to Eq. (3.1). Using
the force type means that the computed effort is directly applied as torque, resulting
in a more realistic reproduction of the UR10e’s physical actuation compared to the
acceleration-normalized alternative. After selecting the appropriate configuration
for each joint drive, the tuning procedure was carried out in two main stages.
First, the stiffness and damping parameters were tuned individually for each joint,
testing one degree of freedom at a time. This allowed precise observation of
the local dynamic response and facilitated isolating the effect of each parameter
on the corresponding actuator. Once satisfactory values were obtained for all
joints, a global validation test was performed in which all joints were actuated
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simultaneously, rather than in sequential order. This second stage ensured that
the chosen parameters also provided stable and coherent behavior under coupled
multi-joint motion, confirming the robustness of the tuning for full-arm operation
as shown in figure3.6.

To ensure feasibility for the real robot, the sinusoidal references were chosen so
that the needed joint velocities did not exceed the UR10e’s maximum joint velocity
limits:

• For base and shoulder joints with q̇max = 120◦/s: period T = 19 s.

• For lift, wrist 1/2/3 joints with q̇max = 180◦/s: period T = 13 s.

More generally, for a sinusoidal reference q(t) = A sin(ωt), a conservative
feasibility condition that avoids velocity saturation is

T ≥ 2πA

q̇max
,

where A in this case is 360°. This ensures that the maximum velocity Aω remains
within the joint’s capabilities.

3.3.2 Final gain values and unit conventions
The table below distinguishes the gains set in the robot USD (expressed in degrees)
from the gains used in the ImplicitActuatorCfg (expressed in radians). The
conversion formula are available in the Appendix B

Joint KUSD
p KUSD

d KAt
p KAt

d

shoulder_pan 17.44 1.39 1000 80
shoulder_lift 15.70 1.13 900 65
elbow 13.96 0.78 800 45
wrist_1 12.21 0.61 700 35
wrist_2 11.34 0.52 650 30
wrist_3 10.47 0.44 600 25
gripper 5.23 0.17 300 10

Table 3.2: Joint-drive gains: values set in USD vs ImplicitActuatorCfg

The resulting joint trajectories are shown in Fig. 3.6: for all joints the measured
position closely follows the reference with limited overshoot and no visible oscilla-
tions, indicating that the chosen stiffness-damping pairs provide a good trade-off
between tracking accuracy and smoothness.
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(a) Shoulder joints, period 19 s

(b) Elbow and wrist joints, period 13 s

(c) All joints together, period 19 s

Figure 3.6: Sinusoidal response of the tuned UR10e
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Chapter 4

Training in simulation

In this chapter we describe how the three manipulation policies (Reach, Lift, and
OpenDrawer) are trained in NVIDIA Isaac Lab, starting from the environments
provided in the Isaac Lab library [41] and then adapting them to our specific setup.
Our goal is to highlight which elements of the training pipeline are shared across
tasks and which ones must be specialised as the manipulation problem becomes
more constrained. The Reach task is first used to define the core components of the
training environment (scene, action and observation spaces, command structure,
and reward design), which then serve as a template for the subsequent tasks.

Throughout the chapter we follow a common structure: we first present the
agent configuration, i.e. the PPO-based learning setup shared by all experiments,
and then we detail, in separate sections, the environment-specific choices for each
task (scene, observations, rewards, terminations, and any curriculum terms).

(a) Reach Environment (b) Lift Environment (c) OpenDrawer Environment

Figure 4.1: Initial configuration of the three simulated environments used in this
work
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4.1 Agent configuration
All tasks are optimized with the same on-policy algorithm, Proximal Policy Opti-
mization (PPO), using the implementation shipped with rsl-rl[42]. Training is
run with a large number of parallel environments (4096) so that each policy update
can exploit a sizeable batch of fresh on-policy data, which is particularly convenient
in Isaac Lab where environment stepping is GPU-accelerated. Across all tasks we
use the same discount factor and advantage estimation parameters:

γ = 0.99, λ = 0.95,

and we adopt the clipped surrogate objective with ratio clip ϵ = 0.2. Actor and
critic are both implemented as feed-forward multilayer perceptrons with ELU
activations as shown in Figure 4.2. In the figure, n1 = dim(o), where o denotes the
observation (or state) vector, while n2, n3 and n4 represent the number of neurons
in each hidden layer of the MLP, whose values differ depending on the specific
task(see Table 4.1), whereas the number of layers is kept fixed across all tasks.

Figure 4.2: Actor and critic architecture used for all the experiments

The Table 4.1 reports, in the first half, the settings that are shared and the
task-specific, in the second half.

In practice, the reach task can afford a higher learning rate and a smaller
network because the observation vector only contains robot state and the generated
target pose. The lift task increases the rollout horizon and the network capacity
to encode object-related features and to let PPO see complete grasping episodes in
each batch. The open-drawer task reuses the lift configuration, and augments
only the environment-side definition adding observations and multi-stage rewards.

4.2 Environment configuration
In this section we describe the environment-side configuration for each task, focusing
on the parts that do change from one task to another. What changes from task to
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Reach Lift OpenDrawer

Algorithm PPO (rsl-rl) PPO (rsl-rl) PPO (rsl-rl)
Num. environments 4096 4096 4096
Discount γ 0.99 0.99 0.99
GAE λ 0.95 0.95 0.95
Clip parameter ϵ 0.2 0.2 0.2
Entropy coefficient 0.005 0.005 0.005
Max iterations 1500 1500 1500
Steps per environment 32 64 96
Actor-critic MLP [64, 64, 32] [256, 128, 64] [256, 128, 64]
Learning rate 1 × 10−3 1 × 10−4 1 × 10−4

Policy epochs / update 5 16 16
Mini-batches / update 4 64 64

Table 4.1: PPO agent settings common to all tasks and task-specific deviations.

task is therefore not how we command the robot, but what we ask it to track (the
command), what we show to the policy (the observations), and how we pay it (the
reward). The action interface in fact kept the same across all tasks, so that
policies can be trained and deployed with a single, fixed control head.

Common action interface

All environments expose to the agent a fixed, low-dimensional action space composed
of:

• a joint-position action on the six UR10e joints, numbered from the base (1)
to the last wrist joint (6),

aarm
t = (a1

t , a2
t , a3

t , a4
t , a5

t , a6
t ),

which is first scaled and then added to a task-specific default posture qarm
0 ∈ R6.

Given a fixed scale factor s > 0 (e.g., s = 0.5), the joint commands sent to
the controller are:

qarm
t = qarm

0 + s aarm
t ; (4.1)

• a scalar binary joint-position action for the Robotiq finger joint,

agr
t ,
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which is mapped to a discrete open/close command. In particular, the com-
manded finger position qgr

t is obtained as:

qgr
t =

0.7 if agr
t < 0 (closed gripper),

0.0 if agr
t ≥ 0 (open gripper).

(4.2)

Keeping this interface fixed has the advantage that the same seven-dimensional
action vector at = (aarm

t , agr
t ) ∈ R7 and the corresponding command vector qt =

(qarm
t , qgr

t ) ∈ R7 are used consistently throughout training and deployment for all
three tasks.

Reference frames and notation

Unless otherwise stated, all positions and orientations are expressed in the world
frame. In particular, we denote by pt ∈ R3 the Cartesian position of a point at
time t and by qt ∈ R4 its orientation, represented as a unit quaternion in scalar-first
form. Whenever a quantity is naturally defined in a different frame (for instance, a
command expressed in the robot base frame), it is internally transformed to the
world frame before computing distances or tracking errors. As a consequence, all
rewards that involve Euclidean distances or pose errors are implicitly assumed to
operate on quantities represented in a common reference frame.

4.2.1 Reach
The Reach environment is the minimal setup used to train a manipulation policy.
At the beginning of each episode, a target end-effector pose is sampled in a small
region of the robot workspace, and the policy must drive the arm so that the
current Tool Center Point (TCP) pose matches the commanded one. In other
words, the robot has to:

1. move the TCP to the desired Cartesian position;

2. align the TCP orientation with the target pose.

This task can be used to put the robot in a good initial configuration for the
subsequent, more complex tasks (for example, training the robot to reach a specific
pose near the object to be grasped can be used as a starting point for the Lift
task).

Scene and robot instantiation. In the Reach task only the UR10e manipulator
is instantiated as an active element in the scene, with no additional movable
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objects. At the beginning of each episode, the robot joints are reset to the nominal
configuration

q0 = (qarm
0 , qgr

0 ) = (0.0, −1.712, 1.712, 0.0, π
2 , 0.0, 0.0) rad,

with small random perturbations around this pose, so that the policy does not
overfit to a single exact joint configuration. The robot is mounted on a fixed
aluminium pedestal, which raises the base to a convenient working height and
reproduces the mounting configuration used in the real setup. Finally, the TCP is
provided with a dedicated reference frame, as illustrated in Figure 4.3. We denote
the pose of this point at time t by

rT CP
t = (pTCP

t , qTCP
t )

where pTCP
t ∈ R3 and qTCP

t ∈ R4.

Figure 4.3: Reference frame associated with the Tool Center Point of the robot

Command. The command represents the target pose generated by the environ-
ment, i.e., the pose that the policy is required to track. Since each episode lasts
8 s and the command is resampled every 4 s, the policy must be able to reach two
different targets within a single episode. This also means that, from the policy’s
point of view, the target is non-stationary within the episode: a controller that
only works for a single fixed goal would not solve this environment.

The command at time t is a 7-dimensional pose

ct = (pcmd
t , qcmd

t ),

where pcmd
t ∈ R3 denotes the Cartesian target position expressed in metres, and
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qcmd
t ∈ R4 is the unit quaternion1 encoding the desired end-effector orientation in

the world frame.
At every resampling, the target position is drawn uniformly from

x ∈ [0.55, 0.85] m, y ∈ [−0.2, 0.2] m, z ∈ [0.35, 0.7] m,

while the orientation is sampled by fixing

roll = 0 rad, pitch = π
2 rad, yaw ∈ [−π, π] rad.

Observations. The policy observation is the concatenation of:

• qt − q0: arm and gripper joint positions expressed as offsets from the initial
configuration;

• q̇arm
t − q̇arm

0 : arm joint velocities expressed as offsets from the initial rest state,
with q̇arm

0 = 0;

• ct: the current command pose;

• at−1: the action applied at the previous step.

The overall, noise-free observation vector at time t is therefore defined as

ôt =
1
(qt − q0)⊤, (q̇arm

t − q̇arm
0 )⊤, c⊤

t , a⊤
t−1

2⊤
∈ R27.

To improve robustness, the actual observation fed to the policy is obtained by
adding elementwise uniform noise to joint positions and velocities,

ot = ôt + ηt,

where the components of ηt corresponding to joint positions and velocities are
independently sampled from the uniform distribution U [−0.01, 0.01], and set to
zero for all other entries. The gripper velocity is excluded from the observation
because it is not directly available on the real robot.

Rewards. The reach task combines five terms; each term returns a non-negative
quantity, and the final sign is given by its weight in the configuration:

rt = wposr
pos
t + wpos-finer

pos-fine
t + worir

ori
t + wactr

act
t + w∆actr

∆act
t (4.3)

1In Isaac Lab quaternions are represented in scalar-first form, qt = (wt, xt, yt, zt).
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(1) Coarse position tracking. This term penalises the Euclidean distance
between the current TCP position and the commanded target position. The coarse
position error is:

rpos
t =

...pTCP
t − pcmd

t

...
2

(4.4)

(2) Fine position tracking. The same distance is passed through a bounded
kernel to provide a stronger reward signal when the TCP is already close to the
target:

dt =
...pTCP

t − pcmd
t

...
2

(4.5)

rpos-fine
t = 1 − tanh

A
dt

σpos

B
(4.6)

with σpos = 0.1 m in the experiments. For small distances dt ≪ σpos the term
approaches 1, while it smoothly decays towards 0 as dt increases. For more details
about the tanh(x) function, please refer to Appendix E.

(3) Orientation tracking. The orientation error is computed from the quater-
nion that maps the current TCP orientation to the commanded one. The quaternion
error is:

qerr
t = qcmd

t ⊗
1
qTCP

t

2−1
(4.7)

and the corresponding angular error is obtained from its scalar part:

rori
t = 2 arccos

1
|wt|

2
(4.8)

where wt denotes the scalar component of the unit quaternion qerr
t = (wt, xt, yt, zt).

(4) Action magnitude. This term penalises large actions by applying an
L2-squared penalty to the full action vector, including both arm and gripper
components:

ract
t =

...at

...2

2
(4.9)

(5) Action rate. This term penalises rapid changes in the action by applying
an L2-squared penalty to the difference between consecutive actions:

r∆act
t =

...at − at−1
...2

2
(4.10)

Each of the previously defined reward terms is then multiplied, at each step
t, by its corresponding weight as shown in Equation (4.3). All weight values are
reported in Table 4.2.
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Term Eq. Weight Type
Coarse position tracking rpos

t −0.4 Penalty
Fine position tracking rpos-fine

t 0.6 Reward
Orientation tracking rori

t −0.4 Penalty
Action magnitude ract

t −5 × 10−3 Penalty
Action rate r∆act

t −5 × 10−3 Penalty

Table 4.2: Reward weights for the Reach task

Events. At every episode reset the environment applies the following randomi-
sations:

• the robot joints are reset around the nominal configuration, by adding inde-
pendent offsets uniformly sampled in the range [−0.125, 0.125] to each joint
and setting all joint velocities to zero;

• the actuator gains of the robot are randomly scaled, with stiffness uniformly
sampled in [0.9, 1.1] and damping in [0.75, 1.5].

These perturbations help prevent the policy from overfitting to a single initial pose
and a single set of actuator gains.

Terminations. The environment uses only a time-out condition, in other words,
the episode is terminated after 8 s.

4.2.2 Lift
The Lift environment extends the previous Reach task by adding a table and a
graspable object on it. The policy has to execute, in a short episode (2.5 s), a
typical manipulation micro-sequence:

1. reach the object with the end-effector,

2. close the gripper while staying close to the object,

3. lift the object above the table,

4. move the object towards a commanded goal pose.

The scene is randomized at reset so that the learned policy does not overfit a single
configuration.
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Scene and robot instantiation. The object used in this environment is a rigid
cube taken from the Isaac Sim asset library, spawned at

pobj
0 = (0.5, 1.0, −0.095) m, qobj

0 = (0.7071068, 0, 0, −0.7071068) rad,

on top of a table. This pose is then slightly perturbed at reset time by a dedicated
Event to increase variability. The table itself is instantiated as a static asset
positioned at

ptab
t = (0.3, 1.0, −0.15) m, qtab

t = (0.707, 0, 0, 0.707) rad,

with a scaled reduced height of a factor 0.9. It acts as a fixed support surface for
the cube and as a collision object for the robot, without introducing any additional
dynamics or control inputs.

At the beginning of each episode the UR10e joints are initialised around the
nominal configuration

qarm
0 = (1.0, −1.0, 1.4, 0.0, π

2 , 0.0) rad,

corresponding to the six arm joints, with small random perturbations applied by
the Event to improve robustness.

Finally, the end-effector is provided with a dedicated reference frame located
between the two fingertips of the gripper pads, as illustrated in Figure 4.4. We
denote the pose of this point at time t by

rgr
t =

1
pgr

t , qgr
t

2
,

where pgr
t ∈ R3 and qgr

t ∈ R4. In the implementation, this frame is realised
in Isaac Lab as a FrameTransformer attached to the TCP link, with a fixed
translational offset of 0.2068 m along the local its z-axis.

Command. Each episode a single command is sampled. It represents the desired
object position and, as the previous case, it is expressed in the robot frame. Only
the position, while not the orientation, is randomized in the intervals:

x ∈ [0.4, 0.6] m, y ∈ [0.7, 0.9] m, z ∈ [0.0, 0.25] m,

and obviously, with

roll = 0 rad, pitch = 0 rad, yaw = 0 rad.
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Figure 4.4: Reference frame associated with the end-effector of the robot

Observations. The observation vector reuses the same four components as in
the Reach task (see Section 4.2.1), but, it also includes the object position pobj

t

expressed in the robot base frame. The overall, noise-free observation vector at
time t is therefore defined as:

ôt =
1
(qt − q0)⊤, (q̇arm

t − q̇arm
0 )⊤, pobj

t

⊤
, c⊤

t , a⊤
t−1

2⊤
∈ R30.

To improve robustness, the actual observation fed to the policy is obtained by
adding elementwise uniform noise to selected components:

ot = ôt + ηt,

where the components of ηt corresponding to joint positions and arm joint velocities
are independently sampled from U [−0.01, 0.01], those corresponding to the object
position pobj

t are sampled from U [−0.05, 0.05], and all other entries are set to zero.
Also in this case the gripper velocity is excluded from the observation because it is
not directly available on the real robot.

Reward. The total reward is defined as:

rt = wreachrreach
t + wgrasprgrasp

t + wliftr
lift
t

+ wgoalr
goal
t + wgoal-finer

goal-fine
t

+ w∆actr
∆act
t + wactr

act
t + wjointr

joint
t

(4.11)
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Each term corresponds to a specific phase of the task (reach, grasp, lift, move-to-
goal) or to a regularization component (action and joint penalties). All the weights
are reported in the Table 4.3

(1) EE-object reaching. This term encourages bringing the end-effector frame,
on top of the cube frame. Let pgr

t ∈ R3 denote the position of the end-effector
frame and pobj

t ∈ R3 the position of the cube frame. The instantaneous distance
between the two is

dee-obj
t =

...pgr
t − pobj

t

...
2
, (4.12)

and the corresponding reward term is defined as the bounded kernel

rreach
t = 1 − tanh

A
dee-obj

t

σee

B
, σee = 0.05 m. (4.13)

As in the reach task, this kernel takes values close to 1 only when the end-effector
is very close to the object (within a few centimetres), and smoothly decays towards
0 as the distance increases, thus providing a dense but bounded signal throughout
the approach phase.

(2) Grasp proximity and closure. This term encourages the agent to close
the gripper only when the end-effector is already close to the object. Let rreach

t

denote the proximity component already defined in Equation (4.13), let qgr
t be the

gripper joint position, and let qmax
gr = π/6 rad be the reference closed value used

for normalization. We define the closure factor as:

rclose
t = min

A
1, max

A
0,

qgr
t

qmax
gr

BB
, (4.14)

which increases from 0 (fully open gripper) to 1 (closed around the reference value).
The overall grasping reward is then given by

rgrasp
t = rreach

t · rclose
t . (4.15)

In this way the term becomes significant only when the end-effector is close to the
object and the gripper is closing, discouraging premature closures far from the
target.

(3) Object lifted. This term provides a sparse binary reward as soon as the
cube is lifted above a given height. Let pobj

t = (xobj
t , yobj

t , zobj
t ) denote the object

position, and let hmin = −0.05 m be the minimal height threshold. The lifting
reward is defined as

rlift
t =

1, if zobj
t > hmin,

0, otherwise.
(4.16)
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Once the object has been lifted above hmin, the agent keeps receiving this unit
reward at every step as long as the condition remains satisfied.

(4) Coarse object-to-goal tracking. Once the object has been lifted, the
policy is encouraged to move it towards the commanded goal position. Let rlift

t

denote the binary lifting reward already defined in Equation (4.16), and let pgoal
t ∈

R3 and pobj
t ∈ R3 be the goal and object positions, respectively. The distance

between the object and the goal is

dgoal
t =

...pgoal
t − pobj

t

...
2
. (4.17)

Let σgoal = 0.3 m be the kernel scale. The reward term is then defined as:

rgoal
t = rlift

t

A
1 − tanh

A
dgoal

t

σgoal

BB
. (4.18)

Since rlift
t is zero when the object is still below the lifting threshold, this contribution

becomes active only once the cube has been lifted, and it is therefore associated
exclusively with the goal-reaching phase.

(5) Fine Object-to-goal tracking. A second object-to-goal term uses the
same distance dgoal

t defined in Equation (4.18), but with a tighter scale to refine
the final placement of the cube once it is close to the target. Let σgoal-fine = 0.05 m
be the fine kernel scale. The reward is defined as:

rgoal-fine
t = rlift

t

A
1 − tanh

A
dgoal

t

σgoal-fine

BB
, (4.19)

so that it only becomes active when the object has already been lifted and provides
a sharper shaping signal around the desired goal position.

(6) Regularization terms. To keep the commanded motion smooth and to
avoid overly aggressive control, three quadratic penalty terms are added to the
reward:

r∆act
t =

...at − at−1
...2

2
, (4.20)

ract
t =

...at

...2

2
, (4.21)

rjoint
t =

...q̇arm
t

...2

2
. (4.22)

The first two terms, r∆act
t and ract

t , are identical to those used in the Reach task
(see Section 4.2.1) and penalise, respectively, rapid changes in the action and large
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action magnitudes. The additional term rjoint
t penalises large arm joint velocities,

encouraging smoother trajectories of the manipulator.
Each of the previously defined reward terms is then multiplied, at each step t,

by its corresponding weight as shown in Equation (4.11). All weight values are
reported in Table 4.3

Term Eq. Weight Type
EE-object reaching rreach

t 2.0 Reward
Grasp proximity and closure rgrasp

t 15.0 Reward
Object lifted rlift

t 10.0 Reward
Coarse object-to-goal tracking rgoal

t 50.0 Reward
Fine object-to-goal tracking rgoal-fine

t 70.0 Reward
Action rate r∆act

t −5 × 10−3 Penalty
Action magnitude ract

t −5 × 10−3 Penalty
Joint velocities rjoint

t −1 × 10−4 Penalty

Table 4.3: Reward weights for the Lift task.

Events. At every episode reset the environment applies a fixed sequence of
active events:

• the whole scene is restored to its default state;

• the object root pose is resampled on the table, with x, y ∈ [−0.1, 0.1] and
z = 0;

• the robot joints are reset around the nominal configuration, with joint positions
scaled in (0.75, 1.25) and zero joint velocity;

• the actuator gains of the robot are randomly scaled, with stiffness sampled in
[0.9, 1.1] and damping in [0.75, 1.5].

In addition, at prestartup the object scale is randomized uniformly with
x, y ∈ [0.8, 1.2] and z ∈ [1.0, 2.0]. Furthermore at startup the object mass is
randomized in [0.200, 2.0] kg with inertia recomputation. These geometric and
inertial perturbations, together with the reset-time randomizations, make the policy
less sensitive to a single initial pose and to a single object inertia.

Curriculum. To avoid constraining exploration too early, the penalty weights
are initially set to the values reported in Table 4.3 and then, after Ndes environment
steps, they are made stricter through two curriculum terms.
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Let kdes denote the PPO iteration at which we desire to switch the weights,
and let H be the number of steps per environment collected at each iteration
(see Table 4.1). The corresponding number of environment steps Ndes can be
approximated as

Ndes ≈ H × kdes. (4.23)

In our experiments we chose kdes ≈ 470, and the resulting curriculum schedule
is summarised in Table 4.4. In this way the agent can first discover a successful
grasp-and-lift sequence under relatively mild regularization, and only afterwards is
it encouraged to produce smoother actions and joint trajectories.

Term Symbol Initial weight Final weight Steps Ndes

Action rate penalty r∆act
t −5 × 10−3 −1 × 10−2 30 000

Joint velocity penalty rjoint
t −1 × 10−4 −1 × 10−3 30 000

Table 4.4: Curriculum schedule for the Lift task.

Terminations. Two termination conditions are:

• time-out: the episode terminates after 2.5 s;

• object dropping: if the object root frame goes below −0.2 m along the
z-axis, the episode ends early, since this corresponds to the cube falling off
the table.

4.2.3 OpenDrawer

The OpenDrawer environment extends the previous Reach task by adding a cabinet
with a drawer in front of the robot. In an 8 s episode the policy must execute a
manipulation micro-sequence that involves:

1. reaching the drawer handle with the end-effector,

2. grasping the handle,

3. pulling the drawer along its opening direction.

As in the other tasks, the scene is randomized at reset so that the learned policy
does not overfit a single cabinet and robot configuration.
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Scene and robot instantiation. At the beginning of each episode the arm
joints are reset to the same nominal configuration used for the Reach task,

qarm
0 = (0.0, −1.712, 1.712, 0.0, π

2 , 0.0) rad.

The cabinet is instantiated as an articulated object from the Isaac Sim asset
library, with root pose

pcab
0 = (1.5, 0.0, −0.35) m, qcab

0 = (0.0, 0.0, 0.0, 1.0) rad,

and with all door and drawer joints initially closed. In the implementation four
joints are modelled, but for the purpose of this task only the prismatic joint qdr

t

associated with the top drawer is considered, and it is used to measure the drawer
opening. We also define a reference frame attached to the drawer handle, whose
pose at time t is denoted by

rh
t =

1
ph

t , qh
t

2
,

where ph
t ∈ R3 and qh

t ∈ R4.
Similarly to the Lift task, the end-effector is provided with a dedicated reference

frame located between the two fingertips of the gripper pads; in addition, two
further frames are defined, one for each pad. We denote the poses of these three
frames by

rpad-r
t =

1
ppad-r

t , qpad-r
t

2
, rpad-l

t =
1
ppad-l

t , qpad-l
t

2
, rgr

t =
1
pgr

t , qgr
t

2
.

In the implementation these frames are realised in Isaac Lab as a FrameTransformer
attached to the TCP link, with a fixed translational offset along its local z-axis for
the gripper-centre frame, and additional target frames attached to the inner pads
of the left and right fingers to monitor the contact configuration with the drawer
handle. The Figure 4.5 show such reference frame

Observations. The observation vector is the concatenation of six terms:

• qt − q0: arm and gripper joint positions expressed as offsets from the initial
configuration;

• q̇arm
t − q̇arm

0 : arm joint velocities expressed as offsets from the initial rest state
(with q̇arm

0 = 0);

• qdr
t , q̇dr

t : the prismatic joint position and velocity of the top drawer, so that
the agent knows how much the drawer has been opened and how fast it is
moving;

• dgr-h
t : a custom term encoding the relative gripper-handle displacement, built

from the two frame transformers;
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(a) End-effector frames (b) Drawer-handle frame

Figure 4.5: Reference frames used for the gripper and the drawer handle in the
manipulation tasks.

• at−1: the last action, to help the policy smooth the command sequence.

Where the only component that can be useful to explain is the distnace between
the FrameTransformer of the end-effector and the handle, defined as:

dgr-h
t = ph

t − pgr
t ∈ R3

The overall, noise-free observation vector at time t is defined as

ôt =
1
(qt − q0)⊤, (q̇arm

t − q̇arm
0 )⊤, qdr

t , q̇dr
t , (dgr-h

t )⊤, a⊤
t−1

2⊤
∈ R25,

To improve robustness, the actual observation fed to the policy is obtained by
adding elementwise uniform noise to selected components:

ot = ôt + ηt,

where the components of ηt corresponding to joint positions and velocities (for
both the robot and the drawer joint) are uniformly and independently sampled
from U [−0.01, 0.01], those corresponding to the relative gripper-handle term ogr-h

t

are uniformly sampled from U [−0.05, 0.05], and all other entries, are left noise-free.

Rewards. The total reward is defined as:

rt = wreach rreach
t + walign ralign

t + wwrap rwrap
t

+ wgr-app rgr-app
t + wgrasp rgrasp

t + wopen ropen
t

+ wstage rstage
t + w∆act r∆act

t + wact ract
t + wjoint rjoint

t ,

(4.24)

with weights reported in Table 4.5.
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(1) Approach EE–handle. This term rewards bringing the gripper close to
the drawer handle. Let dgr-h

t ∈ R3 be the vector from the gripper frame to the
handle frame (defined as in the observation term), and let:

dt =
...dgr-h

t

...
2

(4.25)

be its Euclidean norm. We first define the shaping function

ϕ(dt) =
A

1
1 + d2

t

B2

, (4.26)

and then express the reward as

rapproach
t =

2 ϕ(dt), dt ≤ τ,

ϕ(dt), dt > τ,
(4.27)

with τ = 0.05 m the proximity threshold. In this way the agent is gently pulled
toward the handle at larger distances, and receives an additional boost once it
enters the small neighbourhood of radius τ around it.

(2) EE–handle alignment. Both the gripper and the handle frames provide
three orthonormal axes; let ex, ey, ez be the unit vectors of the gripper frame and
hx, hy, hz those of the handle frame. The reward averages the three axis-wise
alignments and penalizes anti-alignment by flipping the sign:

ralign
t = 1

3
Ø

a∈{x,y,z}
sign

1
⟨ea, ha⟩

2
⟨ea, ha⟩2. (4.28)

When the corresponding axes are parallel (⟨ea, ha⟩ ≈ +1) the contribution is
strongly positive, whereas anti-parallel axes (⟨ea, ha⟩ ≈ −1) are penalised. This
guides the wrist to approach the handle with the correct orientation to pull the
drawer.

(3) Gripper wrapped around the handle. The frame transformers expose
the fingertip positions of the two pads. Let zpad-l

t , zpad-r
t and zh

t denote, respectively,
the vertical components of the left pad, right pad and handle positions at time t.
We first define a binary indicator that checks whether the handle lies between the
two pads along the z-axis:

rwrap
t =

1, zpad-l
t > zh

t > zpad-r
t ,

0, otherwise.
(4.29)
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so it is active only when the handle is geometrically wrapped by the two fingers.

(4) Gripper approach around the handle. Let rwrap
t be the term previously

defined in Equation (4.29) , a second shaping term encourages bringing the two
pads close to the handle height while they already wrap it from above and below.
Let

dL
t =

---zpad-l
t − zh

t

---, dR
t =

---zpad-r
t − zh

t

---
be the vertical distances of the left and right pads from the handle, and let
δz = 0.04 m be the vertical margin. The reward term in this case is defined as:

rgr-app
t = rwrap

t

è
(δz − dL

t ) + (δz − dR
t )
é
. (4.30)

When the handle is wrapped between the fingertips and both pads are close to its
height, the term is positive and encourages a precise approach. If the handle is
still between the pads but they are far from its height, the contribution becomes
negative and acts as a penalty; when the configuration is not graspable the term is
identically zero.

(5) Gripper closure near the handle. The grasping reward is activated only
if the end-effector is close to the handle and the gripper joint is closing. Let dt

denote the gripper-handle distance as in Equation (4.25), and let τgrasp = 0.05 m
be the distance threshold. Let qgr

t be the gripper joint position and qclose = π/6 rad
the reference closed value. The closure is normalised by qclose and clipped to [0,1]:

rgrasp
t =


min

1
1, max

1
0,

qg
t

qclose

22
, dt ≤ τgrasp,

0, dt > τgrasp.

(4.31)

In practice, the term is zero when the end-effector is far from the handle, increases
linearly with the gripper closure while the joint moves from fully open to qclose.

(6) Continuous drawer opening. Once the grasp around the handle is
established, the agent is encouraged to pull the drawer out. Let qdr

t denote the
position of the top drawer prismatic joint and let rwrap

t be the binary term defined
in Equation (4.29), which is 1 when the handle is wrapped between the two fingers
and 0 otherwise. The implemented reward is:

ropen
t =

1
1 + rwrap

t

2
qdr

t . (4.32)

In other words, the contribution grows proportionally to the drawer opening, and
it is doubled whenever the hand maintains a correct wrap around the handle.
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(7) Multi-stage drawer opening. To make progress visible to the agent, a
piecewise bonus is added at three drawer positions. Let qdr

t denote the top drawer
joint position and rwrap

t the binary wrap term defined in Equation (4.29).The reward
term is defined as the sum of three components:

rstage
t = reasy

t + rmed
t + rhard

t , (4.33)

with

reasy
t =

0.5, qdr
t > 0.01,

0, qdr
t ≤ 0.01,

(4.34)

rmed
t =

rwrap
t , qdr

t > 0.2,

0, qdr
t ≤ 0.2,

(4.35)

rhard
t =

rwrap
t , qdr

t > 0.3,

0, qdr
t ≤ 0.3.

(4.36)

A small opening is always rewarded by reasy
t , while larger openings at 0.2 m and

0.3 m contribute only if the hand is in a plausible grasp configuration around the
handle.

(8) Regularization terms. As in the previous tasks, smoothness is encouraged
through quadratic penalties on the commands and on the joint velocities. A first
term penalises changes in the action between consecutive steps, while a second
term penalises the magnitude of the action itself; a third term penalises large joint
velocities:

r∆act
t =

...at − at−1
...2

2
, ract

t =
...at

...2

2
, rjoint

t =
...q̇t

...2

2
. (4.37)

Their contributions to the total reward are scaled by negative weights.
Each of the previously defined reward terms is then multiplied, at each step t by

its corresponding weight as shown in Equation (4.24). All the values are reported
in Table 4.5:

Events. At every episode reset the environment applies a fixed sequence of
active events:

• the whole scene is restored to its default state;

• the robot joints are reset around the nominal configuration, with joint positions
scaled in (0.75, 1.25) and zero joint velocity;
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Term Eq. Weight

EE-handle approach rapproach
t 1.0

EE-handle alignment ralign
t 0.5

Gripper approach around handle rgr-app
t 5.0

Gripper wrapped around handle rwrap
t 0.5

Gripper closure rgrasp
t 2.0

Continuous drawer opening ropen
t 7.5

Multi-stage drawer opening rstage
t 1.0

Action rate penalty r∆act
t −1 × 10−2

Action magnitude penalty ract
t −5 × 10−3

Joint velocity penalty rjoint
t −1 × 10−3

Table 4.5: Reward weights for the OpenDrawer task.

• the cabinet root pose is resampled, keeping x and y fixed and perturbing only
the height with z ∈ [0.1, 0.2] m.

In addition, at startup the contact material of the drawer handle is randomised: the
static friction coefficient is sampled in [1.0, 1.25], the dynamic friction in [1.25, 1.5],
and the restitution is kept at zero. These reset-time and material perturbations
reduce sensitivity to a single cabinet placement and a single handle-finger friction
value.

Terminations. Also in this case the only active termination term is the timeout
at 8 s.
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Chapter 5

Validation and transfer from
simulation to real robot

This chapter describes how the policies trained in Isaac Lab are validated and
progressively transferred from pure simulation to the physical UR10e robot. Rather
than jumping directly from training to hardware, the deployment is organized as a
sequence of increasingly realistic stages as presented in Section 3.2. Each layer is
designed to detect different classes of issues before they can affect the real system.

5.1 Simulation-to-Simulation
A natural intermediate step between policy training and execution on the real
UR10e consists in replaying the learned policy inside a simulator. This phase,
often referred to as Simulation-to-Simulation (Sim2Sim), is useful to answer a very
concrete question before involving real hardware: does the trained policy actually
solve the task, and does it do so with motion profiles that are acceptable for a real
robot?. As shown in Figure 3.3 this validation is articulated in two layers. First, we
run the policy inside Isaac Sim, which shares the same physics backend used during
training in Isaac Lab and therefore isolates purely execution-related problems (too
fast motions, wrong grasp heights, gripper collisions). Second, we replay the same
policy through a ROS 2 control stack connected to URSim. This second step
is closer to deployment because it tests not only the policy, but also the whole
communication and control pipeline (topics, controller configuration, timing).

5.1.1 Policy validation in Isaac Sim
After the PPO policy has converged in Isaac Lab, the quickest and least invasive
check consists in loading exactly the same task in Isaac Sim and feeding the policy
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outputs to the simulated UR10e. Since training is performed in headless mode,
this is also the first opportunity to visually inspect that the learned behaviour
qualitatively matches the intended task, as illustrated in Figure 5.1.

Since both components rely on the same Omniverse/PhysX[27] simulation stack
and use the same USD-based articulation description, this test removes from the
equation most of the classical sources of domain shift (different friction models,
slightly different damping values, different link inertias). What remains to be
assessed is therefore the execution quality: the manipulator must reach the target,
follow the intended approach strategy, and—most importantly—it must do so
without overly aggressive joint accelerations or undesired contacts between the
gripper fingers and the table or the drawer front.

This point is not marginal. A policy that in training was rewarded mainly for
completing the task, so, it might legitimately converge to solutions that exploit
the simulator: fast wrist swings, sudden changes of direction, or sliding of the
fingertips on the support surface may all be acceptable in Isaac Lab, but the very
same motions would immediately trigger a protective stop on the real UR10e.

5.1.2 Policy validation in URSim
The second part of the Sim2Sim pipeline is more interesting from a deployment
perspective, because it reproduces exactly the same communication architecture
that will later be used with the physical robot. The setup is based on two Docker
containers connected through a dedicated Docker network: one container runs
URSim, which emulates the UR10e controller, while the other runs the ROS 2
stack. The custom network makes the IP addressing stable and lets the ROS 2
nodes talk to the simulated controller as if it were a real UR robot on the LAN.

On the ROS 2 side we adopt the official universal_robots_ros2_driver for
Humble [37] to establish the connection with the URSim instance. This driver
exposes the robot as a standard ROS 2 articulation and provides the usual control
interfaces (joint state publisher, trajectory controllers, IO topics) by internally
using the UR RTDE protocol. From the point of view of our policy node, this is
the key property: sending a command to URSim or to the real UR10e becomes
the same ROS 2 operation. Topic names, controller names, and message types do
not change. This is exactly the benefit anticipated in the introduction: once the
control pipeline work in simulation, the same code can be reused on the real robot
with only minor adjustments to network parameters.

Controller choice. In the ROS 2 setup based on the UR driver we use the
version of the trajectory controller that is aware of the robot’s speed scaling, rather
than a plain joint_trajectory_controller that only relies on wall-clock time.
The standard controller executes joint-space trajectories exactly according to the
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(a) Approach to target (b) Alignment at target

(c) Pre-grasp pose (d) Grasping phase (e) Lifted object

(f) Approach to handle (g) Handle grasp (h) Drawer fully opened

Figure 5.1: Qualitative rollouts of the trained policies in Isaac Sim for the three
tasks: Reach (top row), Lift (middle row), and OpenDrawer (bottom row)

timestamps contained in the incoming message: if the trajectory says that the
target must be reached in 2 s, the controller will advance its internal state over 2 s
of real time [37]. This becomes problematic when the robot itself slows down the
motion (for example because the speed slider is not at 100% or because a safety
mode is active), since the controller has no direct knowledge of this slowdown and
may consider the trajectory completed while the robot is still moving.

The UR driver, instead, exposes the current speed-scaling value coming from
the UR controller and provides a trajectory controller that advances according to
this scaled time [37]. If the robot runs at 50% of the nominal speed, the controller
also progresses at 50%, keeping the ROS 2 side and the UR side synchronised and
avoiding premature completion of the trajectory. It is important to note that this
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mechanism does not reshape the trajectory to satisfy stricter velocity or acceleration
limits; it only ensures that trajectory execution is tracked in the same time base as
the robot.

This behaviour is particularly useful for the reach and lift tasks considered in
this work. In the reach task, the arm must pass near configurations that could
bring the robot close to self-collision. In the lift task, the end-effector moves very
close to the table surface.So in both cases, slowing the motion down to 50% at
controller level provides an additional safety margin against incidental collisions.

Code-level observation handling for the lift task. A small but important
detail emerges when we try to replay the lift policy outside of the original
Isaac Lab environment. The policy was trained assuming that the pose of the cube
was part of the observation vector (typically a 7-dimensional quantity collecting
position and orientation). During deployment, however, we do not have a dedicated
camera in the loop, and the policy still expects that slot in the observation. To
preserve compatibility we implement a simple observation switch at code level:

1. until the grasp event is detected, the policy receives the original “static” 7D
object pose, i.e., the same structure it saw during training;

2. as soon as the grasp succeeds, we overwrite that part of the observation with
the forward kinematics of the end-effector plus a fixed tool offset, under the
assumption that the object is now rigidly attached to the gripper.

In practice, the grasp event is declared when the distance between the end-effector
and the object falls below a small threshold and, at the same time, the gripper
action commands a closing motion.

gt =

1, if
...pee

t − pobj
t

...
2

≤ εgrasp ∧ agr
t < 0,

0, otherwise.
(5.1)

In other words, after grasping we stop treating the object as an independent body
whose pose must be sensed, and we start deriving its pose from the robot kinematics.
This trick is coherent with the real setup (once the object is in the fingers, it moves
with the end-effector) and, at the same time, it keeps the observation shape exactly
equal to what the policy was trained on.

5.2 Simulation-to-Reality
After validating the control pipeline against URSim, the final step consists in
redirecting the same ROS 2 nodes to the real UR10e controller. At this stage the
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Validation and transfer from simulation to real robot

(a) Approach to target (b) Alignment at target

(c) Pre-grasp pose (d) Grasping phase (e) Lifted object

Figure 5.2: Qualitative rollouts of the trained policies in URSim for two tasks:
Reach (top row), Lift (bottom row)

overall architecture remains unchanged. The transition therefore mainly involves
changing the network endpoint from the Docker network used for URSim to the IP
address of the physical controller and loading the appropriate safety configuration
on the robot.

Unlike the URSim stage, however, the real robot must also execute the grasping
actions commanded by the policy. For this reason we have to remove the fake
gripper and integrate the
robotiq_2f_urcap_adapter package [38], which bridges the Robotiq 2F-140 grip-
per mounted on a UR controller with ROS 2 topics and services. This adapter
connects to the URCap running on the controller and exposes the typical open/-
close commands as ROS entities. In this way the same policy that in Isaac Lab
learned to close the gripper at a specific stage of the task can now trigger a real
end-effector action on the physical setup, without changing its internal logic and
without introducing a separate ad-hoc communication channel just for the gripper.

To further mitigate timing variability and to make the commanded trajecto-
ries appear smoother on the manipulator, we installed a real-time Linux kernel
(PREEMPT_RT) on the ROS 2 host running the UR ROS 2 driver, following
the recommendations in the Universal Robots documentation [43]. This setup
significantly reduced the jitter observed in the joint updates and made the overall
motion execution noticeably more fluid.
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Trajectory time allocation. The ROS 2 policy node does not stream full joint
trajectories computed offline, but rather generates at each timer callback a short hori-
zon command that is compatible with the scaled_joint_trajectory_controller.
Let qarm

t−1 ∈ R6 be the most recent joint state received from the robot and qarm
t ∈ R6

the target configuration produced by the policy (both computed following the Equa-
tion (4.1)). To avoid abrupt changes, the commanded joint position is obtained
through an moving-average smoothing:

uarm
t,i = (1 − α) qarm

t−1,i + α qarm
t,i , i = 1, . . . ,6. (5.2)

for each joint i = 1, . . . ,6. This filter dampens high-frequency oscillations that may
appear in the policy output while still allowing the robot to converge to the desired
pose in a few iterations.

Given a maximum admissible joint speed q̇max (in the implementation set to
0.5 rad/s) and a minimum trajectory duration ∆tmin, the node computes for every
joint the time needed to move from the current to the commanded position:

∆ti = max
A

|qcmd
i − qcurr

i |
q̇max , ∆tmin

B
. (5.3)

Since the controller expects a single JointTrajectoryPoint with a single
time_from_start, the final duration associated to the trajectory point is chosen
as the maximum over all joints,

∆t = max
i

∆ti, (5.4)

so that no joint is forced to exceed the velocity bound.

Gripper command handling. The end-effector is commanded with the same
logic of the training expressed by Equation (5.5) but it’s adapted to work with the
robotiq driver where the close command is 0.14 m and the opening command is
0.0 m, in other words:

ugr
t =

0.14 if agr
t < 0 (closed gripper),

0.0 if agr
t ≥ 0 (open gripper).

(5.5)

Thanks to the robotiq_2f_urcap_adapter [38], the selected command ugr
t is

forwarded to the URCap running on the controller and executed on the physical
Robotiq 2F-140 gripper.

Once these conditions are met, the Sim2Real execution becomes a straightforward
continuation of the Sim2Sim pipeline.
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(a) Approach to target (b) Alignment at target

(c) Pre-grasp pose (d) Grasping phase (e) Lifted object

Figure 5.3: Qualitative rollouts of the trained policies executed on the real
UR10e for two tasks: Reach (top row) and Lift (bottom row)
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Chapter 6

Experimental Results

This chapter presents the results obtained with the control policies trained in
simulation and deployed on the real UR10e robot. The Reach and Lift policies
are evaluated in Isaac Lab, in URSim, and on the physical UR10e, while the
OpenDrawer task is evaluated only in Isaac Lab.

The evaluation is organised in two main parts:

1. We analyse the training performance, reporting learning curves averaged over
multiple random seeds in order to characterise how quickly and how reliably
each task is learned;

2. We move to the experimental evaluation, where we introduce the evaluation
protocol and metrics used across all experiments, and present task-wise results
in simulation, URSim, and on the real robot, concluding with a discussion
of the observed sim-to-real gap and of the overall behaviour of the learned
policies.

6.1 Training performance in simulation

Before analysing the deployment in URSim and on the physical UR10e, this
section reports the training performance of the policies in the Isaac Lab simulation
environment. For each task, the policy is trained with five different random seeds
in order to assess the variability of the learning process and to avoid drawing
conclusions from a single potentially lucky or unlucky run. We then plot the mean
episode reward together with a shaded band corresponding to µ ± σ across seeds,
where µ and σ denote the empirical mean and standard deviation over seeds at
each training step.
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(a) Reach (b) Lift

(c) OpenDrawer

Figure 6.1: Training performance for the three manipulation tasks. Each plot
shows the mean episode reward over five random seeds (solid line) and the

corresponding µ ± σ band (shaded area).

6.2 Evaluation protocol and metrics
For each task and for each environment, the learned policies are evaluated over
multiple episodes starting from initial conditions sampled from the same distri-
butions used during training. Unless otherwise specified, the reported values are
episode averages over all runs for the corresponding task and environment.

Task-level metrics. The main performance indicators used throughout this
chapter are:

• Success rate SR [%]: fraction of episodes in which the task-specific success
condition is triggered before the time limit. For the Reach task, success is

64



Experimental Results

defined as the end-effector entering a sphere of radius εp around the target
position while also satisfying an orientation constraint, and remaining within
this tolerance for 50 consecutive control steps. For the Lift task we have 2
different kind of SR,the first one require that the object must be grasped,
lifted above a height threshold hth, and kept close to the target pose for 50
steps. The other is more soft, in fact it only checks that the object is stably
grasped and lifted above hth, independently of the final target pose. For the
OpenDrawer task (simulated only), success requires the drawer joint to exceed
a specified opening threshold while the gripper remains close to the handle
always for 50 steps.

• RMSE [m]: root-mean-square error between the relevant body and its target
over the last 50 control steps of the episode. For Reach this is the TCP-to-
target error, whereas for Lift and OpenDrawer it measures the object-target
or end-effector-handle distance depending on the task definition. An analogous
RMSE is also computed for the drawer opening with respect to the desired
opening value.

• Episode length T [steps]: number of control steps elapsed from the beginning
of the episode until termination due to success.

These metrics are reported in the sections below and are used to quantify both
the overall reliability of the learned behaviours and the degradation incurred when
moving from simulation to the real UR10e.

6.3 Simulation Results
This section reports the performance of the three manipulation tasks evaluated in
simulation. All metrics are reported as mean ± standard deviation computed over
the five seeds.

6.3.1 Reach
For each episode of the Reach task we record a binary success flag, the episode
length in control steps, and the TCP-target position and orientation RMSE over
the last 50 control steps before termination, i.e., over the same time window used
in the success condition. The success criterion requires both the position and
orientation errors to remain below 0.25 m and 17◦, respectively, for 50 consecutive
steps.

The main performance indicators are summarized in Table 6.1. Overall, these
results indicate that the Reach policy learns a reliable controller that drives the end-
effector close to the target pose with good positional and acceptable orientational
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accuracy in simulation.

Metric Value (Simulation)

Success rate [%] 97.7 ± 0.9
RMSEpos [m] 0.0103 ± 0.0004
RMSEori [◦] 12.0 ± 1.3
Episode length [steps] 65.3 ± 0.7

Table 6.1: Simulation performance of the Reach task, reported as mean ±
standard deviation over 5 random seeds.

Figure 6.2 shows the per-seed success rates corresponding to Table 6.1. The
bars are very close to each other, confirming that the variability across seeds is
limited and that the aggregate metrics in Table 6.1 are representative of all runs
rather than being dominated by a single lucky seed. This plot is intended as an
indicative visual summary rather than a detailed statistical analysis: it allows one
to verify at a glance that the training outcome for Reach is stable with respect to
the random initialization.

Figure 6.2: Per-seed success rate in simulation for the Reach task (seeds 40-44).
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6.3.2 Lift
The Lift task extends Reach by requiring the robot to grasp and lift an object
before bringing it towards a desired pose. In practice, the task naturally decomposes
into two phases: a lift phase, in which the object must be securely picked up from
the table, and a subsequent placement phase, in which the grasped object is moved
and stabilised near the target pose for at least 50 steps.

Success metrics. For each rollout we therefore compute two binary success
indicators:

• a lift success flag, which checks whether the object has been grasped and
clearly lifted off the table. An episode is considered a lift success if the object
is held by the gripper and its height exceeds 5 cm above the table for at least
50 consecutive control steps, independently of the final target pose;

• a placement success flag, where an episode is counted as successful if the
distance between the object and the target position remains below a given
threshold for the last 50 control steps. This same window is used to define
the object-target RMSEpos.

The first metric focuses on the ability of the policy to establish a stable grasp and lift
the object off the surface, while the second captures the full transport-and-placement
performance.

Table 6.2 reports the aggregated performance in simulation over the five random
seeds. The simulated Lift policy attains an average lift success rate of 84.6% ±
3.93%, confirming that in most simulated rollouts the object is successfully grasped
and lifted from the table. The stricter placement success rate is 78.5% ± 5.2%. The
mean object-target RMSEpos is 0.0194 m with a standard deviation of 0.0036 m,
corresponding to positioning errors on the order of a couple of centimetres at the
end of the episode. The average episode length is 88.4 ± 4.2 steps. Compared to
the simpler Reach task, the lower placement success rate and higher variability
reflect the increased difficulty of reliably establishing a stable grasp, lifting the
object and precisely placing it under the applied domain randomization.

The same type of bar visualization used for Reach is reported for Lift, which
displays the placement success rate obtained by each of the five seeds. The bar
chart is meant as an indicative tool to quickly assess the stability of the results,
rather than as a substitute for the numerical summary in Table 6.2. For the
subsequent deployment experiments in URSim and on the real robot, we selected
the policy corresponding to seed 42. This seed provides performance that is close to
the multi-seed averages, and in simulation it exhibited a smoother,non-aggressive
interaction with the object and the table, which made it a natural candidate for
transfer to the physical setup.
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Metric Value (Simulation)

Lift success rate [%] 84.6 ± 3.93
Lift episode length [steps] 69.2 ± 5.9
Placement success rate [%] 78.5 ± 5.2
RMSEpos [m] 0.0194 ± 0.0036
Placement episode length [steps] 88.4 ± 4.2

Table 6.2: Simulation performance of the Lift task, reported as mean ±
standard deviation over 5 random seeds. The table includes both the lift success

rate and the stricter placement success rate.

Figure 6.3: Per-seed lift and placement success rates in simulation for the Lift
task (seeds 40-44).

Figure 6.3 shows, for each seed, both the lift and the stricter placement success
rates. The former is consistently higher, confirming that most simulated rollouts
succeed in grasping and lifting the object, while some of them only fail in the final
precise placement phase.

6.3.3 OpenDrawer
The OpenDrawer task is the most complex scenario considered in this work. The
policy must first approach and align the gripper with the drawer handle, establish
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contact, and then execute a coordinated pulling motion to open the drawer. In this
case we evaluate two RMSE measures over the last 50 control steps of each episode:
the TCP-handle distance RMSEhandle and the error on the drawer opening with
respect to the fully open configuration RMSEmaxOpen, in addition to the binary
success flag and the episode length.

As shown in Table 6.3, the OpenDrawer policy achieves an average success rate
of 74.5% ± 11.5% across seeds. The mean TCP-handle RMSE (RMSEhandle) in the
last-50 window is 0.0364 m with a standard deviation of 0.0011 m, indicating that
the end-effector typically remains within a few centimetres of the handle during
the final phase. The mean drawer opening RMSE(RMSEmaxOpen) is 0.0090 m ±
0.0001 m in the chosen opening coordinate, meaning that successful episodes reach
a configuration close to the fully open drawer. The average episode length is
307.4±42.9 steps, which is significantly larger than for Reach and Lift and reflects
the increased complexity of the task.

Metric Value (Simulation)

Success rate [%] 74.5 ± 11.5
RMSEhandle [m] 0.0364 ± 0.0011
RMSEmaxOpen [m] 0.0090 ± 0.0001
Episode length [steps] 307.4 ± 42.9

Table 6.3: Simulation performance of the OpenDrawer task, reported as mean ±
standard deviation over 5 random seeds.

Figure 6.4 reports the per-seed success rates for the OpenDrawer task. In
contrast to Reach and Lift, here the bars show a noticeably larger spread: some
seeds achieve success rates close to 90%, while others are significantly lower. This
behaviour is consistent with the higher standard deviation reported in Table 6.3,
and reflects the increased sensitivity of this contact-rich, multi-stage task to the
particular random initialization and training trajectory. As before, the bar chart
should be interpreted as a compact visual aid that highlights the variability across
seeds at a glance.

6.4 Real-robot experiments
After validating the policies in Isaac Lab, we deploy the Reach and Lift controllers
on the physical UR10e robot equipped with the Robotiq 2F-140 gripper. The
deployment pipeline reuses the same ROS 2 infrastructure and action conventions
described in Section 5.2 (see Chapter 5),so that the policy outputs can be replayed
on the real arm with minimal modifications to the code. In this section we present
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Figure 6.4: Per-seed success rate in simulation for the OpenDrawer task (seeds
40-44).

the task-wise results for Reach and Lift on the real system.

6.4.1 Reach
On the real UR10e, the Reach policy trained with seed 42 achieves a strict success
rate of 100% over the ten evaluation episodes reported in Table 6.4. In all trials
the end-effector is able to reach and stabilise near the commanded target pose.
The mean TCP-target position RMSE over the last 50 control steps is 0.0174 m
with a standard deviation of 0.0026 m, which corresponds to position errors on the
order of two centimetres and shows limited dispersion across episodes. The mean
orientation RMSE in the same window is 16.0◦± 0.7◦, indicating that the final
TCP orientation remains close to the desired one, albeit with slightly larger errors
than those observed in simulation. The average episode length is 2116 control steps
with a standard deviation of 190 steps.

Qualitatively, the behaviour observed on the real robot is consistent with the
simulation results: in all evaluated episodes the end-effector converges smoothly
towards the target and remains close to the desired pose for the remainder of
the rollout. From a quantitative standpoint, the real-robot experiments exhibit a
100% success rate over ten trials, which is compatible with the approximately 98%
success obtained in simulation given the much smaller sample size. However, the
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Metric Value (Real robot)

Success rate [%] 100
RMSEpos [m] 0.0174 ± 0.0026
RMSEori [◦] 16.035 ± 0.7476
Episode length [steps] 2116.2 ± 190.4321

Table 6.4: Performance of the Reach policy (seed 42) on the real UR10e.

final TCP-target RMSE values are systematically higher on the real robot (about
1.7 cm in position and 16◦ in orientation) than in simulation (about 1.0 cm and
12◦), reflecting the additional disturbances and model mismatches present in the
real setup. This gap will be discussed more systematically in Section 6.5 when
comparing the simulation and real-robot metrics side by side.

6.4.2 Lift
For the Lift task, the policy trained with seed 42 is deployed on the real UR10e in
a scenario where the robot must grasp a spray can on the table and lift it towards
a fixed target pose in free space. Ten episodes are executed under identical initial
conditions. As in simulation, the task is naturally decomposed into two phases:
a lift phase, where the object must be securely picked up from the table, and a
placement phase, where the grasped object is moved and stabilised near the target
pose.

To mirror the simulation analysis, we evaluate two separate success metrics on
the real robot:

• a lift success flag, which is set to one if the object is held by the gripper and
its height exceeds 0.05 m above the table for at least 50 consecutive control
steps, regardless of the final target pose;

• a placement success flag, which reuses the strict definition adopted in simula-
tion: an episode is counted as successful if the distance between the object
and the target pose remains below a given threshold for the last 50 control
steps.

In addition, we compute the object-target RMSEpos and the episode length in
control steps.

The resulting real-robot performance is summarised in Table 6.5.
The values in Table 6.5 show that, on the real robot, the policy is frequently

able to grasp and lift the spray can off the table: the lift success rate is high,
confirming that the first phase of the task transfers reasonably well from simulation
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Metric Value (Real robot)

Lift success rate [%] 90.0
Lift episode length [steps] 3557.2 ± 2388.73
Placement success rate [%] 0.0
RMSEpos [m] 0.1335 ± 0.0503
Placement episode length [steps] 8290 ± 2245

Table 6.5: Performance of the Lift policy (seed 42) on the real UR10e. The
table reports both the lift success rate and the stricter placement success rate,

together with the final object-target RMSE and episode length.

to hardware. In contrast, the strict placement success rate drops to 0%. This does
not mean that the policy fails to manipulate the object; rather, it indicates that
none of the real-robot episodes satisfies the demanding requirement of keeping the
object within a tight tolerance around the target pose for a full 50-step window.

When the initial grasp is shallow or slightly misaligned the policy reacts by
using the table as a support: the object is gently pushed against the surface while
the gripper closes further, so that the grasp gradually evolves from a nearly parallel
pinch to a more wrapped configuration around the can. This emergent behaviour
was not explicitly programmed, yet it contributes to the high lift success rate
observed on the real robot.

This strategy also explains the statistics reported in Table 6.5 for the lift-only
metric. While the lift success rate reaches 90%, the corresponding lift episode
length has a very large variance (3557.2 ± 2388.7 steps). In episodes where the
initial contact already yields a sufficiently deep and well-aligned grasp, the can
is lifted shortly after touchdown and the episode terminates relatively quickly.
In other trials, however, the policy spends a substantial number of control steps
performing small in-plane motions and using the table as a support to reconfigure
the grasp before committing to the vertical lift. As a result, the distribution of lift
episode lengths develops a long right tail: the policy eventually succeeds in lifting
the can in most runs, but it sometimes delays the lift phase in order to obtain a
more secure, wrapped grasp. This behaviour is beneficial for robustness, yet it
also reveals a trade-off between grasp stability and execution efficiency that is not
present to the same extent in the idealised simulation setting.

6.5 Sim-to-real comparison
In this section we compare the performance obtained in simulation and on the
real UR10e. In both cases we focus on the policy trained with random seed 42,
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which was selected for deployment as discussed above. The goal is not to provide
an exhaustive statistical study, but rather to highlight how the main performance
indicators change when moving from Isaac Lab to the physical robot.

6.5.1 Reach
The Reach task is the simplest of the three skills considered in this work, and it is
also the one for which the behaviour in simulation and on the real robot is most
closely aligned. Table 6.1 reports the aggregate simulation performance averaged
over five random seeds, while Table 6.4 summarises the results obtained on the
physical UR10e. For a more direct comparison, Table 6.6 juxtaposes the main
metrics for the single deployed policy in simulation and on the real robot.

Metric Simulation Real robot

Success rate [%] 98.2 100.0
RMSEpos [m] 0.0107 ± 0.003 0.0174 ± 0.003
RMSEori [◦] 11.547 ± 5.99 16.035 ± 0.7476
Episode length [steps] 307.4 ± 42.9 2116.2 ± 190.4321

Table 6.6: Sim-to-real comparison for the Reach task, reported for the policy
trained with seed 42.

Overall, the success rates in simulation and on the real robot are comparable: the
deployed policy achieves 98.2% success in Isaac Lab and 100% success over ten trials
on the real UR10e. Given the much smaller number of real-robot episodes, these
figures should be interpreted as compatible rather than as evidence of genuinely
better performance on the hardware.

In terms of geometric accuracy, the position RMSE over the last 50 control
steps increases from approximately 1.1 cm in simulation to about 1.7 cm on the real
robot, and also the orientation RMSE increases from roughly 11.5◦ to 16◦. These
deviations are consistent with the presence of additional sources of error in the real
setup. Importantly, the errors remain small in absolute terms, and the qualitative
behaviour of the policy–a smooth approach to the target pose and a stable final
configuration–is preserved when moving from simulation to the physical UR10e.

From a control perspective, these results indicate that for the Reach task the
simulation-to-real transfer is largely successful: the policy trained in Isaac Lab
produces reliable and accurate motions on the hardware without any additional
fine-tuning. At the same time, the small but systematic increase in the final RMSE
highlights that even for relatively simple set-point regulation tasks, residual model
mismatch is still observable when comparing simulated and real executions.
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Figure 6.5 provides a qualitative confirmation of this observation: for five
representative targets, the final TCP poses in simulation (left) and on the real
UR10e (right) are visually almost indistinguishable, which is consistent with the
centimetre-level position RMSE reported in Table 6.6.
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(a) Simulation - target 1 (b) Real robot - target 1

(c) Simulation - target 2 (d) Real robot - target 2

(e) Simulation - target 3 (f) Real robot - target 3

Figure 6.5: Visual comparison between simulation and real robot for targets 1, 2
and 3 in the Reach task. Each row shows the final TCP pose for the same target
in simulation (left) and on the real UR10e (right), illustrating the close agreement

between the two domains.

75



Experimental Results

(a) Simulation - target 4 (b) Real robot - target 4

(c) Simulation - target 5 (d) Real robot - target 5

Figure 6.6: Visual comparison between simulation and real robot for targets 4
and 5 in the Reach task. Each row shows the final TCP pose for the same target

in simulation (left) and on the real UR10e (right).

6.5.2 Lift task

Table 6.7 highlights a clear gap between simulated and real-robot performance for
the Lift task, especially when using the strict placement-based success definition.
In addition to the global success rates and RMSEpos, we further analyse the real-
robot behaviour through two auxiliary distance-based metrics described at the end
of this section.

In Isaac Lab, the policy trained with seed 42 achieves a lift success rate of
87% and a placement success rate of 81.2%, with a final object-target RMSEpos
of 0.0236 ± 0.0047 m. This corresponds to positioning errors of about 2-3 cm and
confirms that most simulated episodes not only complete the lift phase but also
stabilise the object close to the desired pose for a prolonged time window.
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On the real UR10e, by contrast, the same policy attains a slightly higher lift
success rate of 90%, confirming that the basic ability to grasp and lift the spray
can transfers reasonably well to hardware. However, none of the ten real-robot
episodes satisfies the more demanding placement criterion, leading to a placement
success rate of 0%. The corresponding object-target RMSEpos is 0.1335 ± 0.0503 m:
this error is significantly larger than in simulation (roughly a factor of five), but it
is still moderate in absolute terms, and many rollouts end with the object within a
distance on the order of the object size from the target.

On the real system, the control sequence is executed under encoder noise, slight
kinematic inaccuracies and unmodelled flexibilities, so that the object trajectory
drifts more than in simulation and rarely remains inside the prescribed spatial
window long enough to be counted as a strict success.

Overall, the Lift experiments confirm that the proposed pipeline is able to
carry over the structure of the behaviour learned in Isaac Lab to the physical
UR10e, especially for the lift phase, but also reveal that precise object placement
remains strongly affected by modelling inaccuracies in contact interactions and by
calibration errors. Addressing these limitations for instance by improving friction
and contact modelling, better matching the real object properties in the training
environment, or explicitly randomising target poses and calibration offsets is a
promising direction for narrowing the sim-to-real gap in future work.

Metric Simulation Real robot

Lift success rate [%] 87.0 90.0
Lift episode length [steps] 65.2 ± 5.4 3557.2 ± 2388.73
Placement success rate [%] 81.2 0.0
RMSEpos [m] 0.0236 ± 0.0047 0.1335 ± 0.0503
Placement episode length [steps] 85.1 ± 19.4 8290 ± 2245

Table 6.7: Sim-to-real comparison for the Lift task, reported for the policy
trained with seed 42. The table reports both lift and strict placement success

rates; RMSE and episode lengths are averaged over all episodes.

Beyond the global metrics in Table 6.7, we introduce two auxiliary distance-based
quantities that are computed only for the ten real-robot episodes in order to better
characterise the failure modes observed on hardware. Specifically, for each trial we
measure the minimum end effector-object distance dEE,obj

min and the minimum object-
target distance dobj,target

min over the episode. Their mean and standard deviation across
the real-robot rollouts are reported in Table 6.8, providing a compact summary of
the best grasping and placement accuracy that the policy manages to achieve in
the physical setup.
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Metric Real robot

dEE,obj
min [m] 0.0812 ± 0.0192

dobj,target
min [m] 0.1686 ± 0.0537

Table 6.8: Auxiliary distance-based metrics for the Lift task on the real UR10e.
For each episode, we record the minimum end effector-object distance dEE,obj

min and
the minimum object-target distance dobj,target

min ; the table reports their mean and
standard deviation across trials.
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Chapter 7

Conclusions

This thesis investigated the use of deep reinforcement learning for robotic manip-
ulation on an industrial collaborative arm. In particular, it studied how policies
trained purely in simulation can be transferred to a real UR10e robot equipped with
a Robotiq 2F-140 gripper. Building on the NVIDIA Isaac ecosystem, ROS 2, and
the URSim virtual controller. The work implemented an end-to-end pipeline that
goes from task definition and training in Isaac Lab/Sim, through simulation-based
validation, to deployment on physical hardware.

The project was organised around three manipulation tasks of increasing
complexity–Reach, Lift, and OpenDrawer–and around a common experimental
protocol based on multiple random seeds and shared performance metrics. The
goal was to show that zero-shot sim-to-real transfer is possible in this setting, and
to identify where performance degrades when moving from an idealised simulator
to a real robot executing contact-rich motions.

7.1 Summary of contributions
The first contribution of this thesis is the design and implementation of a complete
training-to-deployment workflow for UR-series manipulators. On the simulation
side, the manipulation tasks were implemented in Isaac Lab as modular manager-
based environments. On the control side, the same joint-space commands produced
by the policy are used consistently across Isaac Lab, URSim, and the physical
UR10e via a shared ROS 2 interface and compatible controller configurations. This
design makes it possible to (i) train and debug policies where full task state and
reward are available, (ii) test the deployment code against a virtual UR controller
without risk to hardware, and (iii) replay the resulting trajectories on the real robot
with only minor adjustments for gripper integration and real-time execution.

A second contribution is the systematic use and adaptation of three classes of
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manipulation tasks with progressively richer structure. The Reach task isolates pre-
cise, closed-loop positioning of the TCP at a target pose; the Lift task extends this
to grasping, lifting, and placing a movable object; the OpenDrawer task introduces
drawer-handle interactions and constrained motion of an articulated object. These
tasks build upon the manipulation environments and reward structures provided
by NVIDIA Isaac Lab [41], which are instantiated, tuned, and documented in this
thesis for the specific UR10e + Robotiq setup, the chosen domain-randomization
ranges, and the sim-to-real deployment pipeline. In this sense, the work offers a
reusable template for future manipulation skills on the same platform.

Third, the thesis provides a quantitative characterisation of training dynamics
and deployment performance across tasks and domains. In simulation, the Reach
policy attains high success rates and centimetre-level accuracy with limited vari-
ability across seeds, indicating that the task is reliably solved within the adopted
training regime. The Lift policy also reaches high success rates for both lift and
placement in simulation, but this level of performance does not transfer to the
real robot, where only the lift phase is consistently successful. OpenDrawer, which
combines reaching, grasping, and drawer opening, is learned to a reasonable per-
formance level but shows sensitivity to the choice of random seed and a broader
spread in success rates.

On the deployment side, the thesis shows that policies trained in Isaac Lab can
be replayed in URSim and on the real UR10e without any retraining or explicit
domain adaptation. For the Reach task, a representative policy (seed 42) transfers
almost directly: real-robot executions exhibit smooth, repeatable motions and final
TCP poses that closely match their simulated counterparts, with only a modest
increase in position error. For the Lift task, the same policy reliably approaches
and grasps a spray can and initiates the lift phase on the real robot, reproducing
the qualitative structure of the simulated behaviour.

7.2 Discussion and lessons learned
The experimental results highlight both the potential and the current limitations
of deep RL for robotic manipulation in an industrially relevant setting.

On the positive side, the thesis confirms that a simulator-centric, dense-reward
workflow, combined with a standard on-policy algorithm such as PPO, can produce
policies that transfer meaningfully to a real collaborative manipulator. For the
Reach task, the sim-to-real gap is small: a policy trained entirely in Isaac Lab, with
no access to real-world data, can drive the UR10e to the desired set-points with
centimetre-level accuracy and smooth trajectories, using the same ROS 2 interface
and controller stack employed in simulation. This suggests that, when the task is
dominated by geometric accuracy and moderate contact forces, careful modelling,
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gain tuning, and domain randomization are sufficient to obtain robust closed-loop
behaviours.

The Lift experiments extend this picture to a more challenging contact-rich
task. The structure of the learned behaviour carries over to hardware: the policy
approaches the object, closes the gripper, and, in most trials, succeeds in lifting the
spray can off the table. Real-robot rollouts also reveal emergent strategies, such as
using the table as a support surface to reconfigure a shallow or misaligned grasp
into a more secure one. This behaviour was not programmed explicitly but arises
from the reward, the policy’s stochastic exploration, and the closed-loop nature of
the controller, illustrating how RL can discover contact-exploiting behaviours that
would be difficult to encode by hand.

At the same time, the Lift results show that precise object placement remains
strongly affected by modelling inaccuracies. Even when a simulated policy appears
robust according to standard metrics, performance on the real robot deteriorates
once the task depends critically on the details of contact interactions, friction
coefficients, inertial properties, and exact table and target heights. In the present
experiments, these discrepancies appear as larger final RMSE between the object
and its target and as failures to satisfy strict success definitions that require the
object to remain within a tight tolerance window for an extended time. This is not
a failure of the RL algorithm as such, but a reminder that sim-to-real transfer is
limited by how well the training environment matches the physical system.

Finally, the work underlines the value of intermediate validation stages. By
inserting URSim as a controller-level that mirror the real one on UR10e, the thesis
decouples task learning from deployment engineering. Policies can be trained and
debugged where full state and reward information are available, while the deploy-
ment code, ROS 2 nodes, and controller parameters can be exercised extensively in
a risk-free environment before any real-robot experiments.

7.3 Future work
The work presented in this thesis can be extended along a few concrete directions
that are closely aligned with the current implementation.

A first natural step is to integrate an external camera into the pipeline. All
experiments in this thesis rely on state information provided directly by the
simulator or by the UR controller. Adding a calibrated RGB-D or monocular
camera, together with a pose estimation module, would make it possible to close
the loop on the object pose and to operate in less structured scenarios.

A second direction is to coordinate multiple policies to solve more complex,
multi-stage tasks. In this thesis, Reach, Lift, and OpenDrawer are trained and
executed as separate skills. Future work could combine them into a larger task
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pipeline by using hierarchical reinforcement learning, where a high-level policy
selects which low-level skill to execute, or by orchestrating existing skills through
a ROS 2 action server. This would enable, for example, full pick-and-place or
drawer-opening sequences composed of several learned behaviours, while keeping
each individual policy relatively simple.

A third line of work concerns how the policies are trained. The current approach
relies entirely on hand-crafted dense rewards, which are effective but time-consuming
to design and tune. Imitation Learning techniques, such as Behaviour Cloning
from human demonstrations, could be used to initialise the policy and speed up
convergence, especially in contact-rich phases like grasping. In parallel, Inverse
Reinforcement Learning or related reward-learning methods could help reduce the
manual effort of specifying rewards, by inferring them from expert rollouts instead
of engineering them term by term.

Overall, these extensions–better sensing, coordinated skills, and learning from
demonstrations and inferred rewards–are direct continuations of the present work
and have the potential to make the proposed pipeline more robust, more scalable,
and closer to real industrial applications.
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Appendix A

Hardware and Software
Setup

This appendix reports the hardware and software configuration used to carry out
the thesis project, in order to support the reproducibility of the results. The
information is split between the host machine and the container environment
(where Isaac Sim, Isaac Lab are installed and executed).

Host Machine
• CPU: AMD Ryzen 9 9950X (16 cores / 32 threads; min frequency 600 MHz,

max 5756 MHz; boost enabled).

• RAM: 62 GiB (about 55 GiB available at the time of measurement).

• GPU: NVIDIA RTX A6000 (49 140 MiB VRAM).

• Driver/CUDA: NVIDIA driver 570.172.08, CUDA runtime 12.8.

• Storage: 1.8 TB NVMe SSD (root, ext4); 3.6 TB HDD (mounted at
/mnt/dati, ext4).

• OS: Ubuntu 24.04.3 LTS (noble); kernel 6.14.0-29-generic.

• Containerisation: Docker Engine 28.4.0; NVIDIA Container Toolkit 1.18.0-rc.3.

Container Environment
All libraries and frameworks used for simulation, training and deployment are
installed and executed inside a Docker container, with GPU pass-through enabled.
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Hardware and Software Setup

Languages and package managers
• Python 3.11.13

• Pip 25.2

• Conda 25.5.1 (solver libmamba)

Deep learning and numerical libraries
• PyTorch 2.7.0+cu128 (CUDA 12.8, cuDNN 9.7.1)

• NumPy 1.26.0

• SciPy 1.15.3

• scikit-learn 1.7.1

Simulation and robotics
• Isaac Sim 5.0.0.0 (main modules: isaacsim-app, isaacsim-core, isaacsim-rl,

isaacsim-ros2, etc.)

• Isaac Lab 2.2.0

• ROS 2 Humble (packages ros-humble-desktop, ros-humble-moveit, UR
and Robotiq drivers)

Reinforcement learning frameworks
• RSL-RL 2.3.3

• Stable-Baselines3 2.7.0

• RL-Games 1.6.1

• skrl 1.4.3

• Gym 0.23.1, Gymnasium 1.2.0

Supporting tools
• TensorBoard 2.20.0 (training monitoring)

• Git 2.34.1 (version control)

• Visual Studio Code with the Remote - Containers extension

• Omniverse Kit SDK 107.3.1.206797
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Appendix B

Angle/velocity unit
conversions

When values are entered in degrees on the USD side but radians are used in Python,
use the following:

Kp, ° = Kp, rad
π

180 , Kd, °/s = Kd, rad/s
π

180 , q̇ °/s = q̇ rad/s
180
π

.

Conversely:

Kp, rad = Kp, °
180
π

, Kd, rad/s = Kd, °/s
180
π

, q̇ rad/s = q̇ °/s
π

180 .
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Appendix C

UR10e Technical Details
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UR10e Technical Details

Figure C.1: UR10e technical specifications [39].
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Appendix D

Robotiq 2F-140 Gripper
Technical Details

This appendix reports a mechanical drawing of the Robotiq 2F-140 gripper mounted
on the UR10e end-effector.

Figure D.1: Robotiq 2F-140 technical specifications [40].
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Appendix E

Nonlinear activation
functions

This appendix reports the non-linear activation functions used in the policy and
value networks, together with the nonlinearity employed in some of the reward
shaping terms.

Exponential Linear Unit (ELU)

The hidden layers of both actor and critic use the Exponential Linear Unit (ELU)
activation, defined as

ELUα(x) =

x, x > 0,

α
1
ex − 1

2
, x ≤ 0,

(E.1)

For positive inputs, ELU behaves like the identity function, while for negative
inputs it smoothly saturates towards the finite asymptote −α. In all experiments,
the same ELU with α = 1.0 is used in every hidden layer of both the actor and
the critic networks, and this choice is kept fixed across all tasks. Compared to
ReLU, ELU reduces the risk of ”dead” neurons and provides negative outputs with
non-zero mean, which can help stabilise optimisation in the PPO-based training
setup[33].

Figure E.1 illustrates the shape of the ELU activation over a representative
input range.
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Nonlinear activation functions

Figure E.1: Exponential Linear Unit (ELU) activation function

Hyperbolic tangent
The hyperbolic tangent function is defined as

tanh(x) = ex − e−x

ex + e−x
, (E.2)

and maps all the inputs to the open interval (−1, 1). It assumes values tanh(x) ≈ −1
for large negative inputs and tanh(x) ≈ 1 for large positive inputs.

In this work, the hyperbolic tangent is used as a bounded kernel in some reward
shaping terms (for example, in the fine position tracking reward described in
Section 4.2.1), where expressions of the form 1 − tanh(dt/σ) are employed to turn
a distance dt ≥ 0 into a reward that is close to 1 when the error is small and
smoothly decays towards 0 as the error increases.

Figure E.2 illustrates how input scaling affects the shape of the tanh nonlinearity.
The three panels show y = tanh(x), y = tanh(x/2) and y = tanh(2x), respectively.
Dividing the argument by 2 stretches the function horizontally, so saturation is
reached more slowly and a wider range of inputs is mapped to intermediate values.
Conversely, multiplying the argument by 2 compresses the function horizontally,
making the transition around the origin steeper and causing the function to saturate
more quickly. These plots provide an intuitive picture of the different scalings with
which the hyperbolic tangent is used in the reward functions, and help the reader
understand how changing the argument affects the resulting reward landscape.
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Figure E.2: Hyperbolic tangent activation function for three different input
scalings
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