
POLITECNICO DI TORINO

Master’s Degree in Computer Engineering

Master’s Degree Thesis

Cross-Embodiment Policy Learning
for Robotic Manipulation

Supervisors

Prof. Giuseppe Bruno Averta

Dr.rer.nat Zhenshan Bing

Candidate

Federico Morro

December 2025

Abstract

The recent advancements in the machine learning field have demonstrated the
potential of knowledge transfer and multi-task learning to enhance the perfor-
mance and generalization capabilities of models across various domains. In the
context of robotics, the ability to transfer skills between different embodiments
is particularly appealing, as it can significantly reduce the time and resources
required for training control agents, while also improving their adaptability and
robustness. This thesis investigates how to leverage demonstrations and Rein-
forcement Learning (RL) to train agents capable of solving diverse manipulation
tasks using multiple robotic arms and grippers.

The proposed method utilizes a contrastive supervised learning approach to
construct a shared representation of different robotic configurations and tasks,
aligning state and action spaces across diverse embodiments while preserving the
critical distinctions necessary for accurate task execution. The approach employs
a language-conditioned vision-based policy, which poses significant challenges but
offers greater applicability to real-world scenarios. Additionally, to construct the
dataset for the vision-based agent, the thesis introduces a novel methodology that
leverages demonstrations from a single embodiment to accelerate and improve
the learning of state-based RL policies for diverse embodiments. This is achieved
by re-rolling aligned demonstrations and incorporating an advantage-weighted
behavioral cloning term into the RL training process.

To assess the effectiveness of the proposed methods, extensive experiments
are conducted in simulated environments using the MuJoCo physics engine. The
state-based RL agents exhibit accelerated learning and improved performance,
demonstrating the effectiveness of the knowledge transfer pipeline. The vision-
based policy achieves significant task performance across diverse embodiments and
shows promising generalization capabilities to unseen robot-gripper configurations.
However, when addressing more complex tasks, certain limitations become
evident, particularly in the vision-based policy. In these cases, performance
tends to decrease for grippers that require precise object interaction or exhibit
morphologies substantially different from those encountered during training.
Overall, these findings provide valuable insights into the strengths and limitations
of the proposed approaches and suggest potential directions for future research.

ii

iii

Acknowledgments

This thesis has been carried out at the Chair of Robotics, Artificial Intelligence and
Real-time Systems at the Technical University of Munich (TUM), in the context of
an exchange program from Politecnico di Torino (PoliTo). I would like to express
my sincere gratitude to both institutions for providing me with the opportunity to
conduct this research.

I am deeply grateful to my PoliTo supervisor, Prof. Giuseppe Bruno Averta,
for his continuous support, encouragement, and valuable feedback during the
development of this thesis.

I would also like to thank my TUM supervisor, Dr. rer. nat. Zhenshan Bing,
for the possibility to work on this research topic and for his guidance throughout
the project.

to my friends and family
who supported me along the way

iv

Table of Contents

List of Tables viii

List of Figures ix

Acronyms xi

1 Introduction 1

2 Preliminaries 4
2.1 Transformer Model . 4

2.1.1 Vision Transformer . 6
2.2 Diffusion Models . 7
2.3 Reinforcement Learning . 9

2.3.1 Taxonomy of RL Algorithms 11
2.3.2 Soft Actor-Critic Algorithms 12

2.4 Imitation Learning . 16
2.5 Advanced Learning Paradigms . 17

2.5.1 Representation Learning . 17
2.5.2 Multi-Task Learning . 17

3 State of the Art 19
3.1 Robotic Manipulation Learning . 19

3.1.1 Diffusion Models for Robotic Manipulation 20
3.1.2 Grasping . 20

3.2 Generalist Agents . 21
3.3 Cross-Embodiment Learning . 22

3.3.1 Knowledge Transfer . 22
3.3.2 Skill Transfer . 23
3.3.3 Dynamics Gap Bridging . 24
3.3.4 Vision Gap Bridging . 24

3.4 Leveraging Demonstrations for Policy Learning 25

vi

3.4.1 Reinforcement Learning with Demonstrations 25
3.4.2 Weighted Imitation Learning 26

4 Methodology 27
4.1 State-Based Agents . 28

4.1.1 State and Action Spaces Alignment 29
4.1.2 SAC with Advantage-Weighted BC 30

4.2 Dataset Generation Procedure . 33
4.3 Vision-Based Multi-Embodiment Policy 33

4.3.1 Fine-Tuning Configuration 35
4.3.2 Input Modalities . 36
4.3.3 Contrastive Losses for Embodiment Generalization 38
4.3.4 Weighted Behavioral Cloning 42

5 Experiments 43
5.1 Experimental Setup . 43
5.2 State-Based Agent Training . 44

5.2.1 Training Results vs Baseline SAC 46
5.2.2 Performance Evaluations . 50

5.3 Dataset Generation . 51
5.4 Vision-Based Policy Training . 51

5.4.1 Representation Learning Settings and Results 52
5.4.2 Task Performance Evaluations 59
5.4.3 Ablation Studies . 63

6 Conclusions 66
6.1 Discussion . 66
6.2 Future Directions . 67

A Appendix 68
A.1 Vision-Based Policy Additional Experiments 68

A.1.1 Multiple Action Heads . 68
A.1.2 RL Finetuning . 69
A.1.3 State Inputs . 70

A.2 Additional Figures and Results . 70

Bibliography 76

vii

List of Tables

5.1 State-Based Agents State Space . 46
5.2 State-Based Agents Action Space 46
5.3 State-Based Agents Training Hyperparameters 47
5.4 State-Based Agents Performance Training Results 48
5.5 Lift Task State-Based Agents Success Rates (%) 50
5.6 PickPlaceCan Task State-Based Agents Success Rates (%) 50
5.7 Vision-Based Policy Tokens per Input Type 52
5.8 Vision-Based Policy Finetuning Hyperparameters 53
5.9 Vision-Based Policy Contrastive Losses Hyperparameters 54
5.10 Representation Learning Contrastive Losses Results: Hard Labels

(k-NN: k=3,5,10). 58
5.11 Representation Learning Contrastive Losses Results: Timestep +

Hard Task Labels (k-NN: k=3,5,10). 58
5.12 Vision-Based Policy Performance Evaluations 60
5.13 Vision-Based Policy Performance Evaluations Summary 60

A.1 Vision-Based Policy Performance With State Inputs VS Without
State Inputs . 70

A.2 Vision-Based Multi-Embodiment Per-Configuration Performance
Evaluations . 75

viii

List of Figures

2.1 Overview of the attention mechanism (left) and of the multi-head
configuration (right). Source: arXiv preprint of [1] (arXiv:1706.03762). 6

2.2 Overview of the ViT architecture, and of the transformer encoder
model. Source: arXiv preprint of [3] (arXiv:2010.11929). 7

4.1 Overview of the Octo architecture. Source: arXiv preprint of [2]
(arXiv:2405.12213). 34

4.2 Overview of the vision-based multi-embodiment policy architecture,
including input modalities, model components, and training losses.
In the figure, “embs” stands for “embeddings”, while h, w, and
a are the transformer hidden size, the window of input temporal
observation size, and the action chunk size, respectively. The same
figure is reported in horizontal format in the Appendix A.1 for better
readability. 35

4.3 Examples of gripper point cloud representations (Robotiq140Gripper)
used as input to the model in open (left), half-open (center), and
closed (right) configurations. 38

5.1 Lift task progress in robosuite with Panda robot and Panda gripper. 44
5.2 PickPlaceCan task progress in robosuite with Panda robot and

Panda gripper. 44
5.3 Robot arms used in the experiments: (a) Panda, (b) IIWA, (c) Jaco

for training, (d) Kinova3, (e) UR5e for testing. 45
5.4 Grippers used in the experiments: (a) Panda, (b) Rethink, (c) Robo-

tiq140, (d) RobotiqThreeFinger for training, (e) Robotiq85, (f) Ja-
coThreeFinger for testing. 45

5.5 State-based agents average return during training for the Lift task. 49
5.6 State-based agents average return during training for the PickPlace-

Can task. 49
5.7 Empirical Analysis for Contrastive Loss Hyperparameter Selection . 54
5.8 t-SNE Projections of Embeddings with Contrastive Losses. 56

ix

5.9 Ablation studies for the Lift task 64
5.10 Ablation studies for the PickPlaceCan task 64

A.1 Overview of the vision-based multi-embodiment policy architecture
in horizontal format for better readability, as an alternative to Figure
4.2. 71

A.2 Visualization of all robot-gripper configurations solved by the state-
based agents for the Lift task. 72

A.3 Visualization of all robot-gripper configurations solved by the state-
based agents for the PickPlaceCan task. 73

A.4 Visualization of all robot-gripper configurations (5 robots × 6 grip-
pers) considered in the experiments with the vision-based policy.
The unseen components during training are reported in blue in the
titles of each image. 74

x

Acronyms

AWAC Advantage Weighted Actor-Critic

AWR Advantage Weighted Regression

BC Behavioral Cloning

BERT Bidirectional Encoder Representations from Transformers

CNN Convolutional Neural Network

DDPM Denoising Diffusion Probabilistic Model

DQN Deep Q-Learning

DRL Deep Reinforcement Learning

IK Inverse Kinematics

IL Imitation Learning

k-NN k-Nearest Neighbors

LfD Learning from Demonstrations

LLM Large Language Models

MDP Markov Decision Problem

MLP Multi Layer Perceptron

MTL Multi-Task Learning

NCE Noise Contrastive Estimation

NLP Natural Language Processing

xi

PPO Proximal Policy Optimization

ReLU Rectified Linear Unit

RL Reinforcement Learning

RNN Recurrent Neural Network

SAC Soft Actor-Critic

SARSA State-Action-Reward-State-Action

SNN Soft Nearest Neighbors

t-SNE t-Distributed Stochastic Neighbor Embedding

ViT Vision Transformer

xii

Chapter 1

Introduction

The recent advancements in the machine learning field have enabled significant
progress in various domains, including computer vision, natural language processing,
and robotics. These developments have enabled the creation of models that can
learn to solve complex continuous control tasks, such as robotic manipulation
ones, leveraging vision-based inputs and language conditioning. Nevertheless, these
models often require substantial amounts of data and computational resources
to train effectively; consequently, the possibility of reutilizing and transferring
knowledge across different tasks or environments emerged as a promising direction
to enhance their efficiency and generalization capabilities.

Traditional approaches to robotic learning often require training a separate
policy for each embodiment-task combination, resulting in high computational
and data collection costs. Moreover, the lack of shared representations across
embodiments hinders the transferability of learned skills, limiting the scalability
and applicability of these methods in real-world scenarios. Recent research has
begun to address these limitations by exploring multi-task and multi-embodiment
learning, aiming to develop models that can generalize across different robots and
tasks.

This thesis focuses on improving the efficiency and generalization capabilities of
robotic manipulation models across different embodiments. The main intuition lies
in the observation that, even though different robotic arms and grippers may have
varying kinematics and appearance, there exists underlying common patterns in the
way they interact with objects and perform tasks. By identifying and leveraging
these shared structures, it becomes feasible to transfer knowledge and train models
that can generalize across multiple embodiments, reducing the need for extensive
retraining and data collection for each new configuration.

The proposed approach found its foundation in generalist robotic agents, which
aim to develop versatile models capable of performing a wide range of tasks across
different environments and embodiments, and in representation learning techniques

1

Introduction

that facilitate the extraction of meaningful features from high-dimensional inputs.
By combining these ideas, along with insights drawn from robotic manipulation
learning literature, this thesis proposes to finetune a language-conditioned vision-
based policy, with a contrastive supervised learning framework to achieve cross-
embodiment generalization.

Additionally, to address the challenge of data scarcity for training such models,
this thesis introduces a novel methodology for generating multi-embodiment robotic
manipulation datasets. This approach involves training one agent per embodiment
to then collect demonstrations for multiple robot-gripper configurations. This is
achieved by training state-based RL agents that leverage adapted and re-rolled
expert demonstrations collected with a different robot-gripper configuration to
perform the same tasks using a particular robotic arm and gripper. By aligning state
and action spaces across embodiments and incorporating an advantage-weighted
behavioral cloning term into the RL training process, the method aims to accelerate
and improve the learning of these agents.

To evaluate the effectiveness of both the state-based agents and the vision-based,
multi-embodiment policy architecture, experiments are conducted in simulated
environments, assessing task performance and generalization capabilities to unseen
robots and grippers. The results demonstrate that both approaches enable effective
learning while providing distinct advantages: the state-based method facilitates fast
learning and exploration, while the vision-based approach shows promising cross-
embodiment generalization. However, limitations are observed for more complex
tasks and embodiment variations, providing insights into potential future research
directions.

The main contributions of this thesis are summarized as follows:

• A novel methodology for training state-based RL agents leveraging adapted
and re-rolled expert demonstrations collected with a different robot-gripper
configuration.

• A contrastive supervised learning framework for finetuning a language-cond-
itioned, vision-based policy architecture to achieve cross-embodiment general-
ization.

• Experimental validation of the proposed methods in simulated environments,
with a detailed analysis of their strengths, limitations, and variations, providing
insights for future research directions.

2

Introduction

The remainder of this thesis is organized as follows. Chapter 2 introduces the
foundational concepts and algorithms relevant to this work. Chapter 3 reviews
the state of the art in robotic manipulation learning, generalist agents, and cross-
embodiment knowledge transfer. Chapter 4 details the proposed methodology,
including state-based RL agents, dataset generation, and vision-based policy archi-
tecture. Chapter 5 presents the experimental setup and results. Finally, Chapter 6
discusses the main findings, limitations, and future research directions.

3

Chapter 2

Preliminaries

In this chapter, the foundational concepts and algorithms relevant to this research
are introduced.

It begins with the transformer model and the ViT architecture, followed by
an overview of diffusion models and their generative principles. Reinforcement
Learning is presented, with a focus on the Soft Actor-Critic algorithm, then
Imitation Learning is discussed in the context of behavioral cloning. The chapter
closes with relevant advanced learning paradigms, including representation learning,
multi-task learning, and cross-embodiment knowledge transfer.

2.1 Transformer Model
The transformer model architecture [1] is a deep learning model that utilizes self-
attention mechanisms to process sequential data. In the past few years, transformers
have become the dominant architecture in several fields, mainly due to their ability
to capture long-range dependencies in a parallelizable manner. Indeed, unlike
traditional Recurrent Neural Network (RNN) architectures, which process temporal
data sequentially requiring the computation of each time step to perform the next
one, transformers leverage self-attention mechanisms to weigh the importance of
different parts of the input data simultaneously, allowing for more efficient training
and inference.

Another relevant feature of transformers is their ability to handle variable-length
multimodal inputs, making them suitable for tasks that involve different types of
data, such as proprioceptive and visual information.

In the latter, the main components of the transformer architecture are introduced:

• Tokenization and Embedding: The input data is preprocessed into a
sequence of tokens. In Natural Language Processing (NLP), this often involves
splitting text into words or syllables, then converting them into vectorized

4

Preliminaries

numerical representations, called embeddings, using feedforward layers or
lookup tables. In robotics, this process can involve encoding multimodal
data (e.g., images, joint states) into a sequence of feature vectors, by first
splitting the data into fixed-size patches or segments, and then embedding
them into a higher-dimensional space. The size of the embedding space is a
hyperparameter of the model, typically denoted as dmodel and referred to as
the model dimension.

• Positional Encoding: Since transformers process input data in parallel,
rather than sequentially like Recurrent Neural Networks (RNNs), they lack
inherent information about the order of input tokens. To address this, po-
sitional encodings are added to the token embeddings to inform the model
about the temporal or logical order of the input sequence. Common methods
for positional encoding include sinusoidal functions, Equation (2.1), or learned
embeddings.

PE(pos,2i) = sin
3 pos

100002i/dmodel

4
(2.1)

• Self-Attention Mechanism: The core of the transformer architecture is
the self-attention mechanism, which allows the model to weigh the relative
importance of different tokens in the input sequence when making predictions.
This is achieved through the computation of attention scores, which determine
how much focus each token should receive based on its relevance to other
tokens. The self-attention mechanism enables the model to capture long-range
dependencies and relationships within the data, and can be mathematically
described as:

Attention(Q,K, V) = softmax

A
QKT

√
dk

B
V (2.2)

Where Q (queries), K (keys), and V (values) are matrices derived from the
input embeddings via learned linear transformations, dk is the dimensionality
of the keys, and softmax is applied row-wise to ensure that the attention
weights sum to one. As the names suggest, the idea is that each token (query)
attends to all other tokens (keys) to gather relevant information (values) for
its own representation, and the attention scores determine the weight assigned
to each value based on the similarity between the query and the keys.

• Multi-Head Attention: To enhance the model’s ability to capture diverse
relationships in the data, the transformer employs multi-head attention. This
involves using multiple self-attention mechanisms in parallel, each with its own
set of learned parameters. The outputs from these attention heads are then
concatenated and linearly transformed to produce the final output. This allows
the model to attend to different aspects of the input data simultaneously.

5

Preliminaries

Figure 2.1: Overview of the attention mechanism (left) and of the multi-head
configuration (right). Source: arXiv preprint of [1] (arXiv:1706.03762).

• Feed Forward Layers: In addition to the attention heads, transformers often
include multiple feedforward neural network layers, normalization layers, and
residual connections. These components help to stabilize training, improve
convergence, and enhance the model’s capacity to learn complex patterns in
the data.

• Output Layer (or Head): The final layer of the transformer architecture
is typically a linear layer followed by a softmax activation function, which
produces the output predictions. In robotics applications or in regression
tasks, the final layer may be adapted to produce continuous values, such as
control actions or state estimates.

• Masking: In certain applications, it is necessary to prevent the model from
considering certain tokens when computing attention scores. This is often
done using masking techniques that, for instance, to ensure that future time
steps are not considered when predicting the current action, and thus maintain
causality.

2.1.1 Vision Transformer
In this thesis, the Octo model [2], which utilizes a ViT-inspired architecture to
process multimodal inputs and generate robot control actions, is adopted as the
backbone for the vision-based policy, so a brief overview of the ViT architecture is
provided here.

The Vision Transformer (ViT) [3] is a model specifically designed for image inputs
and has demonstrated state-of-the-art performance in various computer vision tasks,
while being more computationally efficient than traditional Convolutional Neural
Networks (CNNs). The ViT employes a patcher which divides an image into

6

Preliminaries

fixed-size non-overlapping patches, which are then flattened and linearly embedded
into a sequence of tokens, then processed by the transformer architecture. In this
context, the positional encodings are added to the patch embeddings to retain
spatial information about the arrangement of patches in the original image. This
allows the model to learn complex relationships between different regions of the
image, while also allowing for the integration of additional modalities, such as
proprioceptive data or task specifications, by embedding them as additional tokens
in the input sequence.

Figure 2.2: Overview of the ViT architecture, and of the transformer encoder
model. Source: arXiv preprint of [3] (arXiv:2010.11929).

One crucial aspect to mention is the readout token, which is a special token
appended to the input sequence that serves as a summary representation of the
entire input. The readout token was firstly introduced in the BERT model [4],
denoted as [CLS] token, where it is used to aggregate information from the entire
input sequence for classification tasks. In the ViT architecture, the same concept
is applied to obtain a global representation of the image, which can then be used
for downstream tasks, such as image classification or action generation in robotics.

2.2 Diffusion Models
Diffusion models are a class of generative models that have recently gained significant
attention in the machine learning community, especially in the field of image
generation [5]. The core idea is inspired by non-equilibrium thermodynamics, and
consist in learning to reverse a gradual noising process applied to the data. The
diffusion process involves two main steps: the forward process, where noise is
progressively added to the data, and the reverse process, where the model learns
to denoise and recover the original data from the noisy version, such that at

7

Preliminaries

inference time, the model can generate new samples by starting from pure noise
and iteratively denoising it.

The forward and reverse processes can be mathematically described as follows:

q(xt|xt−1) = N (xt;
ñ

1− βtxt−1, βtI) (2.3)

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)) (2.4)
Where xt represents the data at time step t, βt is a variance schedule that controls
the amount of noise added at each step, and µθ and Σθ are the learned mean and
covariance functions parameterized by θ.

To train the model, the most common approach is to minimize the variational
bound on the negative log-likelihood of the data, which can be simplified to a
mean-squared error loss between the predicted noise and the actual noise added
during the forward process:

L(θ) = Ex0,ϵ,t

è
||ϵ− ϵθ(xt, t)||2

é
(2.5)

Where x0 is the original data, ϵ is the noise added, and ϵθ is the model’s prediction
of the noise.

It’s worth noting that the diffusion process can be conditioned on additional
information, such as class labels or other modalities, to guide the generation process.
This is typically done by concatenating the conditioning information to the input
of the model at each time step, resulting in the following modified reverse process:

pθ(xt−1|xt, c) = N (xt−1;µθ(xt, t, c),Σθ(xt, t, c)) (2.6)

Where c represents the conditioning information.
A critical component of the diffusion model is the noise schedule, which defines

how the variance schedule {βt}T
t=1 evolves over the diffusion steps. Common choices

for noise schedules include linear, quadratic, and cosine schedules. The schedule
affects the model’s learning dynamics and generation quality, with well-designed
schedules enabling faster convergence and better sample generation.

In this thesis, a diffusion model is employed as ViT output head to generate
robot control actions, conditioned on multimodal inputs, such as visual observations
and proprioceptive data. The conditioning is given by the readout token that is
passed through the transformer, and it encapsulates the relevant information from
the input modalities. The idea is to consider the readout token as a noisy version
of the desired action, and the diffusion model learns to translate it into a clean
action representation.

This approach, proposed by Ghosh et al. [2], has outperformed traditional
regression-based methods for action prediction in robotic manipulation tasks, thanks
to the ability of diffusion models to capture complex, multimodal distributions of
actions.

8

Preliminaries

2.3 Reinforcement Learning
Reinforcement Learning (RL) is a subfield of machine learning that focuses on
training agents to make sequential decisions to maximize a cumulative reward signal
provided by an external environment. The agent interacts with the environment
by taking actions based on the current state, and the environment responds by
providing a reward and transitioning to a new state. The goal of the agent is to
learn a policy π, i.e., a mapping between the current state and the action to be
taken, that maximizes the expected cumulative reward over time.

RL problems can be formally modeled as Markov Decision Problems (MDPs),
which are defined by the tuple (S,A, P,R, γ), where:

• S: Set of possible states the agent can be in.

• A: Set of possible actions the agent can take.

• P (s′|s, a): State transition probability function, representing the probability
of transitioning to state s′ given the current state s and an action a.

• R(s, a): Reward function, representing the immediate reward received after
taking action a in state s.

• γ ∈ [0,1]: Discount factor, which determines the relative importance of future
rewards compared to immediate rewards.

The agent’s objective is to find an optimal policy π∗ that maximizes the expected
cumulative reward, also known as the return, defined as:

Gt =
∞Ø

k=0
γkR(st+k, at+k) (2.7)

Where Gt is the return at time step t, and R(st+k, at+k) is the reward received at
time step t+ k, given the state st+k and action at+k.

To achieve this goal, it can be convenient to define the state-value function
V π(s) and the action-value function Qπ(s, a), which represent the expected return
when starting from state s and following policy π, and the expected return when
starting from state s, taking action a, and then following policy π, respectively:

V π(s) = Eπ[Gt|st = s] (2.8)

Qπ(s, a) = Eπ[Gt|st = s, at = a] (2.9)

Given these definitions, the optimal policy can be defined as the policy that
maximizes the value or the action-value function for all states and actions. So, the

9

Preliminaries

optimal policy yields the highest possible expected return from any given state
V ∗(s) or state-action pair Q∗(s, a).

V ∗(s) = max
π

V π(s) (2.10)

Q∗(s, a) = max
π

Qπ(s, a) (2.11)

In practice, estimating the value function and action-value function can be
challenging, especially in high-dimensional state and action spaces. Therefore,
various RL algorithms have been developed to solve MDPs by directly learning the
optimal policy (without explicitly estimating value functions) or approximating
the value functions, using techniques such as dynamic programming, Monte Carlo
methods, and temporal-difference learning. Many of these algorithms rely on
the Bellman equations, which provide a recursive relationship between the value
functions and the expected rewards, and can be used to iteratively update the
estimates of the value functions. The Bellman equations have the following forms:

V π(s) = Ea∼π

C
R(s, a) + γ

Ø
s′
P (s′|s, a)V π(s′)

D
(2.12)

Qπ(s, a) = R(s, a) + γ
Ø
s′
P (s′|s, a)Ea′∼π [Qπ(s′, a′)] (2.13)

It is worth mentioning that, regardless of the approach used, a fundamental
aspect of RL is addressing the exploration-exploitation trade-off, which is a challenge
unique to RL settings. Indeed, while trying to maximize the cumulative reward, the
agent must also explore the environment to discover new states and actions that
may lead to higher rewards in the future. Balancing exploration and exploitation
is crucial for effective learning, and various strategies, such as ϵ-greedy policies and
entropy regularization have been proposed to tackle this challenge.

Finally, with the advent of deep learning, Deep Reinforcement Learning (DRL)
has emerged as the most widely adopted approach to solve complex RL problems,
especially in continuous high-dimensional state and action spaces. In DRL, deep
neural networks are used to approximate the policy, value functions, or both,
enabling the agent to learn in continuous state and action spaces, which are at the
core of many real-world applications, such as robotic manipulation. In this context,
the neural networks are defined as function approximators, parameterized by a set
of weights θ, resulting in the notations V π

θ (s), Qπ
θ (s, a), and πθ, and are trained

using gradient-based optimization techniques to minimize a suitable loss function.
From now on, unless otherwise specified, the distinction between traditional RL
and DRL will be omitted for brevity, and the term RL will refer to both paradigms.

10

Preliminaries

2.3.1 Taxonomy of RL Algorithms
In this section, a brief overview of how RL algorithms can be categorized is provided,
focusing on the main distinctions that are relevant to this research.

• On-Policy vs. Off-Policy: On-policy algorithms, such as SARSA, learn the
value of the policy while following it, meaning that the data used for learning
is generated by the current policy. Off-policy algorithms, such as Q-learning,
learn the value of a different policy than the one used to generate the data.
This allows off-policy methods to leverage data from different policies and from
past experiences, making them more sample-efficient but also more complex
to implement and tune.

• Online vs. Offline: Online RL algorithms learn and update the policy in
real-time as the agent interacts with the environment. Offline RL algorithms
learn from a fixed dataset of previously collected experiences, without further
interaction with the environment, making them suitable for scenarios where
data collection is expensive or risky.

• Model-Based vs. Model-Free: Model-based RL algorithms learn a model
of the environment’s dynamics, i.e., the state transition probabilities and the
reward function, and use this model to plan actions. Model-free algorithms, on
the other hand, learn a policy or value function by direct interaction with the
environment, without explicitly modeling its dynamics. Model-free methods
are generally more flexible and easier to implement, but they may require
more data to learn effectively.

• Value-Based vs. Policy-Based vs. Actor-Critic: The last, and most
relevant, distinction that can be made is based on the approach used to learn
the optimal policy.

– Value-Based: Value-based algorithms, such as DQN [6], focus on learning
the action-value function Q(s, a), to then maximize it at each state to
obtain the optimal policy. This approach is generally more sample-efficient,
but it can struggle with high-dimensional action spaces and continuous
actions.

– Policy-Based: Policy-based algorithms, such as PPO [7], directly learn
the policy π(a|s) without explicitly estimating the value functions. This
optimization is typically done using gradient ascent on the expected
cumulative reward. Policy-based methods can handle continuous action
spaces and can learn stochastic policies, but they may require more data
to converge and more careful tuning of hyperparameters.

11

Preliminaries

– Actor-Critic: Actor-critic algorithms aim at combining the strengths of
both value-based and policy-based methods by learning both the policy
(actor) and the value function (critic) simultaneously. The actor is re-
sponsible for selecting the actions based on the current policy, while the
critic evaluates the actions taken by the actor by estimating the value
function. These methods can be more stable and efficient than the indi-
vidual approaches, as the critic provides feedback to the actor, helping it
to improve its policy over time.

To train the state-based agents for dataset generation, the focus will be on
off-policy, online, model-free, actor-critic RL algorithms, with a particular emphasis
on the SAC algorithm, which will be described in detail in the next section.

2.3.2 Soft Actor-Critic Algorithms
Soft Actor-Critic (SAC) is an off-policy, model-free, actor-critic RL algorithm that
optimizes a stochastic policy, aiming at maximizing a trade-off between expected
cumulative reward and entropy [8].

In the context of RL, entropy is a measure of uncertainty or randomness in the
policy’s action selection. The entropy of a policy can be defined for a given state s
as:

H(π(·|st)) = −Eat∼π[log π(at|st)] (2.14)
Where H(π(·|st)) is the entropy of the policy at state st, the expectation is taken
over the actions at sampled from the policy π(at|st), and log π(at|st) is the logarithm
of the probability of taking action at in state st according to the policy. The entropy
is maximal when the policy selects actions uniformly at random, and minimal (zero)
when the policy is deterministic, always selecting the same action for a given state.

By incorporating an entropy term into the objective function, SAC encourages
exploration and prevents premature convergence to suboptimal policies. Indeed,
the agent is incentivized to maintain a certain level of randomness in its action
selection, which can help in discovering better strategies and avoiding local optima.
The modified objective function can be expressed as:

J(π) = Eπ

C ∞Ø
t=0

γt(R(st, at) + αH(π(·|st)))
D

(2.15)

Where α is a temperature parameter that controls the trade-off between reward
maximization and entropy, and that can also be actively adjusted during training
[9]. In particular, its active adjustment allows the agent to adapt its exploration
strategy over time, starting with a higher entropy to encourage exploration in
the early stages of training, and gradually reducing it as the agent becomes more
confident in its learned policy, making the entropy converge to a target value.

12

Preliminaries

In the following, the foundational framework of soft policy iteration is presented,
along with the practical implementation details of the SAC algorithm.

Soft Policy Iteration

The SAC algorithm is based on the soft policy iteration framework, which consists
in the iterative application of two main steps:

• Soft Policy Evaluation: In this step, the action-value function Qπ(s, a)
and the state-value function V π(s) are estimated and updated based on the
current policy π. The update is performed using the soft Bellman equation,
with the inclusion of the entropy term in the value functions:

Qπ(st, at) = R(st, at) + γEst+1∼P (·|st,at) [V π(st+1)] (2.16)

V π(st) = Eat∼π(·|st) [Qπ(st, at)− α log π(at|st)] (2.17)

• Soft Policy Improvement: In this step, the policy π is updated to maximize
the expected cumulative reward, using the action-value function as a guide.
The policy update is performed by minimizing the Kullback-Leibler divergence
between the current policy and the distribution induced by the action-value
function:

πnew = arg min
π′∈Π

DKL

π′(·|st)

exp

1
1
α
Qπold(st, ·)

2
Zπold(st)

 (2.18)

Where Zπold(st) is a normalization constant ensuring that the right-hand side
forms a valid probability distribution.

The soft policy iteration process is repeated until convergence, resulting in an
optimal policy that balances reward maximization and exploration through entropy
regularization. Indeed, the term “soft” in the name of the framework explicitly
refers to the inclusion of the entropy term in the policy evaluation and improvement
steps, which encourages the agent to maintain a certain level of randomness in its
action selection.

Soft Actor-Critic Implementation

The practical implementation of the SAC algorithm involves the use of function
approximators, typically deep neural networks, to represent the policy and value
functions, as previously discussed when introducing DRL.

In the following, the main components with their respective loss functions are
described:

13

Preliminaries

• Critic Networks: Two separate neural networks, Qθ1(s, a) and Qθ2(s, a),
are used to approximate the action-value function. The estimated Q value
is given by the minimum of the values returned by the two networks to
mitigate overestimation bias, since taking the minimum helps to provide a
more conservative estimate of the action-value function, removing positive
biases that can arise from function approximation errors:

Q(st, at) = min (Qθ1(st, at), Qθ2(st, at)) (2.19)

The two critic networks are trained to minimize the expected squared Bellman
error, using a replay buffer D to store past experiences. In particular, they
are updated by minimizing the error between the predicted Q value and a
target Q value yt computed using two target networks, Qθ̄1(s, a) and Qθ̄2(s, a),
which are delayed copies of the critic networks, kept to stabilize training. The
resulting loss function for each critic network is given by:

JQ(θi) = E(st,at,rt,st+1)∼D

è
(Qθi

(st, at)− yt)2
é

(2.20)

yt = rt + γEat+1∼πϕ(·|st+1) [Qθ̄(st+1, at+1)− α log πϕ(at+1|st+1)] (2.21)
Where yt is the target Q value computed using the target networks, and Qθ̄

represents the Q value estimated by the two target networks. The target
networks’ parameters θ̄i are updated using a soft update mechanism, as follows:

θ̄i ← τθi + (1− τ)θ̄i (2.22)

Where τ ∈ [0,1] is a hyperparameter that controls the update rate.

• Actor Network: A separate neural network, πϕ(a|s), is used to represent
the policy. The actor network is trained by minimizing the expected KL
divergence between the current policy and the distribution induced by the
action-value function. This is equivalent to maximizing the expected Q value
while also considering the entropy of the policy, leading to the following loss
function:

Jπ(ϕ) = Est∼D

è
Eat∼πϕ(·|st) [α log πϕ(at|st)−Qθ(st, at)]

é
(2.23)

Since the policy is stochastic, actions are typically sampled from a Gaussian
distribution parameterized by the actor network, which outputs the mean
µϕ(st) and standard deviation σϕ(st) of a standard Normal distribution, for
each state st. The actions are then sampled using the reparameterization trick
[10], and then transformed using a squashing function (e.g., tanh) to ensure
that they lie within a valid range.

at = fϕ(st; ϵt) = tanh(µϕ(st) + σϕ(st)⊙ ϵ), ϵ ∼ N (0, I) (2.24)

14

Preliminaries

• Temperature Parameter: The temperature parameter α can be either fixed
or learned during training, to actively balance the exploration-exploitation
trade-off. When learned, it is updated by minimizing the following loss
function, which encourages the policy’s entropy to match a target entropy
value Htarget:

Jα(α) = Eat∼πϕ(·|st) [−α (log πϕ(at|st) +Htarget)] (2.25)

With this formulation, the temperature parameter α is adjusted to ensure
that the policy maintains a desired level of entropy, promoting exploration
while still focusing on reward maximization.

Given the components and loss functions described above, the SAC algorithm
can be summarized in the steps presented in Algorithm 1.

Algorithm 1 Soft Actor-Critic (SAC) [9]
Input: Qθ1 , Qθ2 , πϕ, θ1, θ2, ϕ ▷ Q-function and policy with initial parameters

1: θ̄1 ← θ1, θ̄2 ← θ2 ▷ Initialize target networks
2: D ← ∅ ▷ Initialize empty replay buffer
3: for each iteration do
4: for each environment step do
5: at ∼ πϕ(at|st) ▷ Sample action from policy
6: st+1 ∼ p(st+1|st, at) ▷ Sample next state from environment
7: D ← D ∪ {(st, at, r(st, at), st+1)} ▷ Store transition
8: end for
9: for each gradient step do

10: θi ← θi − λQ∇θi
JQ(θi) for i ∈ {1,2} ▷ Update Q-functions

11: ϕ← ϕ− λπ∇ϕJπ(ϕ) ▷ Update policy
12: α← α− λα∇αJ(α) ▷ Adjust temperature
13: θ̄i ← τθi + (1− τ)θ̄i for i ∈ {1,2} ▷ Update target networks
14: end for
15: end for
Output: θ1, θ2, ϕ ▷ Optimized parameters

15

Preliminaries

2.4 Imitation Learning

Imitation Learning (IL), or Learning from Demonstrations (LfD), is a paradigm
in machine learning where an agent learns to perform tasks by mimicking expert
demonstrations, rather than through trial-and-error interactions with the environ-
ment as in RL. The main objective of IL is to learn a policy that can replicate a
given set of expert behaviors, enabling the agent to perform tasks without the need
for explicit reward signals.

The most straightforward approach to IL is Behavioral Cloning (BC), which
involves training a policy to directly map states to actions based on the expert
demonstrations. This means that the agent learns to predict the expert’s actions
given the observed states, effectively treating the problem as a supervised learning
task. The policy, parameterized by θ, is trained to minimize the following loss
function:

LBC(θ) = E(s,a)∼D

è
||a− πθ(s)||2

é
(2.26)

Where D is the dataset of expert demonstrations, consisting of state-action pairs
(s, a), and πθ(s) is the policy’s predicted action for state s.

The main advantage of BC is its simplicity and efficiency, as it does not require
additional labeling or reward engineering, while still enabling the model to learn
complex behaviors directly from expert data. However, BC suffers from several
limitations, such as compounding errors, covariate shift, and difficulty in generalizing
to unseen contexts. All these issues arise from the fact that the policy is trained
only on the states present in the expert demonstrations, and may not be able
to handle situations that deviate from those seen during training, in some cases
leading to a divergence from the expert behavior due to error accumulation over
time.

In this thesis, a variant of BC is employed as the main training signal for the
transformer-based models, due to its effectiveness in learning complex policies from
high-dimensional inputs, and since it allows for faster and more stable training
compared to RL approaches. To alleviate some of the limitations of BC, some of the
most common techniques are employed, such as data augmentation, regularization,
and the use of large and diverse datasets, which help improve the model’s general-
ization capabilities and robustness to distributional shifts. Additionally, different
samples are weighted differently during training, to prioritize more relevant or
informative demonstrations. Further details on the specific implementation choices
will be provided in the subsequent chapters.

16

Preliminaries

2.5 Advanced Learning Paradigms
In this section, two advanced learning paradigms that are relevant to this research
are briefly introduced: representation learning and multi-task learning. Further-
more, cross-embodiment learning, which can be seen as a specific case of multi-task
learning, is also discussed.

2.5.1 Representation Learning
Representation learning is a subfield of machine learning that focuses on learning
useful and informative representations from raw data, which can be used to improve
the performance of downstream tasks, such as classification, regression, or control
[11]. The main idea behind representation learning is to automatically discover
features or embeddings that capture the underlying structure and patterns in the
data, enabling the model to generalize better and learn more efficiently.

In the context of robotics and control, representation learning refers to the
process of learning compact and meaningful representations of sensory inputs, such
as images, proprioceptive data, or other modalities, that can be used to inform
decision-making and action selection. In particular, the goal is to structure the
learned representations in a way that captures the relevant information for the task
at hand, while also being invariant to irrelevant factors, such as noise, distractions,
or disturbances.

One of the prominent approaches to representation learning is through the
employment of contrastive learning techniques. The core idea of contrastive learning
is to learn models that map similar inputs to nearby points (positive pairs) in the
feature space, while mapping dissimilar inputs (negative pairs) to distant points.
In supervised contrastive learning, the positive and negative pairs are determined
based on class labels or other annotations. For example, in an image classification
task, positive pairs could be images displaying the same object with different
viewpoints or lighting conditions, while negative pairs could be images of different
objects.

In this work, representation learning techniques are utilized to learn robust and
transferable visual features from a dataset containing diverse trajectories collected
from multiple robotic embodiments and tasks.

2.5.2 Multi-Task Learning
Multi-Task Learning (MTL) is a machine learning paradigm where a single model
is trained to perform multiple related tasks simultaneously. MTL aims to lever-
age shared information and representations across tasks to improve the overall
performance, data efficiency, and generalization capabilities of the model. This is

17

Preliminaries

particularly relevant in robotics, where an agent may need to perform a variety
of tasks that share common skills or knowledge. Indeed, even if the tasks differ
in their specific objectives or environments, they may still benefit from leveraging
common underlying structures or features derived from shared sensory inputs or
action spaces.

The advantages of MTL have been demonstrated in both RL [12] and IL. In
IL, several studies show the viability of generalist agents, as discussed in Section
3.2, including the agent used in this thesis [2], and the benefit of leveraging models
pretrained on diverse datasets for downstream tasks [13, 14].

Cross-Embodiment Learning

Cross-embodiment learning can be seen as a specific case of MTL, where the different
tasks correspond to performing similar behaviors using different embodiments. The
main challenge in cross-embodiment learning is to learn representations and policies
that are transferable, but still accurate. Indeed, different robots may have varying
kinematics, dynamics, and sensory modalities, that can significantly affect input
signals and solving strategies. To overcome this issues, the model must capture the
underlying structure of the tasks and how it relates to the different embodiments,
while also being able to adapt to the specific characteristics of each robot.

A broader perspective on cross-embodiment learning is provided in Section 3.3,
where related works are discussed in detail. Additionally, since cross-embodiment
learning is the main focus of this thesis, specific details will be provided in all the
subsequent chapters.

Lastly, it is worth mentioning that the vision-based policy employed in this thesis
aim at achieving MTL capabilities both across different tasks and embodiments.

18

Chapter 3

State of the Art

This chapter provides an overview of the existing literature and research that
motivates and contextualizes the work presented in this thesis. The discussion aims
at positioning this research within the landscape of robotic manipulation learning,
with a particular focus on generalization across different embodiments.

The chapter is structured as follows: the first section reviews the key concepts
for robotic manipulation learning, with a particular focus on diffusion models and
grasping techniques. Then, in the second section, generalist agents are discussed,
highlighting their relevance to the proposed approach. The third section delves
into cross-embodiment learning, exploring various strategies to address each of
the challenges involved. Finally, the last section examines methods that leverage
demonstrations for policy learning, dividing them between contributions relevant
to the state-based agents and to the vision-based agent proposed in this thesis.

3.1 Robotic Manipulation Learning
Robotic manipulation has been a central topic in robotics learning research. It
involves some unique challenges, such as high-dimensional multimodal states,
complex dynamics, and the need for precise control in continuous action spaces.

One of the foundational approaches to tackle robotic manipulation learning is
proposed by Zhao et al. [15], which introduces a supervised learning framework
that leverages action chunking and temporal ensembling to improve the training
and inference of transformer-based visuomotor policies. Action chunking consists in
predicting a sequence of future actions instead of a single action at each time step,
which helps the model to capture temporal dependencies and plan ahead. Temporal
ensembling, on the other hand, involves aggregating predictions over multiple time
steps to obtain the final action, which enhances robustness and smoothness in the
generated behaviors.

19

State of the Art

Furthermore, their contribution proved the effectiveness of transformer-based
architectures for robotic manipulation tasks and highlighted the importance of
modeling temporal dependencies in action sequences to achieve coherent and
effective behaviors.

3.1.1 Diffusion Models for Robotic Manipulation
Building on Zhao et al. [15] foundation, subsequent research has investigated
alternative methods to ensure action coherence. A notable example involves
diffusion models, shown to be effective by Chi et al. [16] for visuomotor policy
learning in robotic manipulation. Their method employs a diffusion-based policy
framework to model temporal dependencies in action sequences, enabling flexible
manipulation strategies that can predict multi-modal action distributions, while
being more robust to noisy and suboptimal demonstrations. Subsequent works
have further explored the potential of diffusion models, proving their effectiveness
in learning different tasks simultaneously [17], adapting to new environments [18],
and utilizing 3D representations [19].

These advancements highlight the potential of diffusion models in enhancing
the generalization capabilities of robotic manipulation policies and the ability to
capture complex action distributions. Nevertheless, these methods often require
substantial computational resources and, in particular, they may not be suitable for
real-time applications due to the high overhead introduced by the diffusion process
at inference time. For the vision-based agent proposed in this work, a lightweight
diffusion-based action decoder is employed [2], which is specifically designed to
reduce the computational burden while maintaining the benefits of diffusion models
for action generation.

3.1.2 Grasping
Grasping is a fundamental aspect of robotic manipulation, as it is often the
most critical step in interacting with objects, since it requires precise control
and coordination of the robot’s end-effector. In the context of cross-embodiment
learning, grasping presents additional challenges, as different robotic platforms may
have varying gripper designs, with different kinematics and grasping strategies.

The literature on robotic grasping can be broadly categorized into two main
approaches: grasping pose detection and end-to-end learning. Grasping pose
detection methods focus on identifying optimal grasping points on objects, often
given a 3D representation of the scene and a specific gripper model, to then execute
the grasp using a predefined control strategy [20, 21], while end-to-end learning
approaches aim at directly mapping sensory inputs to grasping actions, mainly
using deep learning techniques [22, 23]. In this thesis, the focus is on end-to-end

20

State of the Art

learning methods, as they are simpler to integrate into a generalist agent framework.
Regarding cross-embodiment learning, recent studies have investigated the

development of gripper-independent grasping policies. Notable examples include
Unigrasp [24] that cast grasping as a sequence of contact point prediction till the
number of fingers of the gripper is reached, AdaGrasp [25] which aims at learning
adaptive gripper-aware grasping policies through a cross-convolution operation
between visual features and gripper attributes, and NeuralGrasps [26] that leverages
implicit representations built by leveraging contact point similarity across grippers.
Even though these methods have shown promising results in generalizing across
different grippers, they require a grasp execution module to be paired with the
learned policy or specific datasets for training.

The key takeaways drawn from these works are that gripper-aware representa-
tions are crucial for achieving successful graspings, especially when dealing with
diverse gripper designs, and that learning such representations usually requires high-
dimensional data, such as 3D point clouds or meshes. In this thesis, those insights
are used to provide the vision-based agent with a gripper-aware representation that
can be integrated into a generalist agent for cross-embodiment learning.

3.2 Generalist Agents
Following the success of LLM in various language tasks, researchers have explored
the potential of generalist agents in robotics. Those models have demonstrated
remarkable generalization capabilities across a wide range of tasks [27], while being
able to leverage vast amounts of data to learn complex patterns, while scaling
performance with model size [28].

In robotics, several works have explored the potential of generalist agents for
manipulation tasks. One of the first attempts in this direction is Gato [29], a
transformer-based model trained on a diverse dataset of tasks, including robotic
manipulation, game playing, and language processing. Gato demonstrated the
ability of a single model to exploit knowledge across different tasks and modalities,
showcasing the potential of generalist agents.

Later works introduced more specialized models, such as RT-1 [30], a vision-
based transformer model trained on a large-scale dataset of robotic manipulation
tasks, and RoboCat [31], a self-improving generalist agent that leverages both
imitation learning and reinforcement learning to enhance its performance over
time and generalize to new embodiments. More recently, FP3 [32] proved the
effectiveness of leveraging 3D representations to enhance the generalization capa-
bilities of a generalist agent. These models have shown promising results in various
manipulation tasks, even with only language instructions as input, but they often
require large-scale datasets and significant computational resources for training

21

State of the Art

and inference due to their complexity.
To address these challenges, some works have focused on leveraging smaller and

faster architectures. In this thesis, the Octo model, proposed by Ghosh et al. [2], was
selected as the backbone of the vision-based policy due to its reduced computational
requirements, openly available codebase and weights, and its flexible fine-tuning
pipeline. It employs a transformer-based architecture, inspired by the ViT-Small
architecture [3], with a lightweight diffusion head for action generation. Octo is
pretrained on a subset of the Open X-Embodiment dataset [33] and demonstrates
strong generalization and fine-tuning capabilities across different robotic platforms
and tasks.

Another aspect that is worth mentioning in this context is the datasets used to
train generalist agents. In recent years, Robonet [34] and the Open X-Embodiment
dataset [33] are two of the most notable examples of open-source, large-scale
datasets for robotic manipulation. The dataset plays a crucial role, as it needs to
be as representative as possible to have an efficient task learner agent. Indeed, in
this work, a comprehensive multi-embodiment dataset is generated to effectively
finetune the vision-based generalist agent proposed.

3.3 Cross-Embodiment Learning
As introduced in Section 2.5.2, cross-embodiment learning aims at transferring
knowledge and skills across different robotic platforms with varying morphologies.
This area of research has gained significant attention due to the increasing diversity
of robotic systems and the consequent need for adaptable and versatile control
policies to avoid expensive retraining for each new robot. Nevertheless, cross-
embodiment learning remains a complex problem, as it involves addressing several
challenges, including differences in appearance, perception systems, dynamics, and
morphologies [35].

To tackle these challenges, researchers have proposed various approaches, of
which the most relevant to this thesis are discussed in the following. In particular,
four main categorizations are identified, based on the primary focus of the methods:
knowledge transfer, skill transfer, dynamics gap bridging, and vision gap bridging.
The insights drawn from these works have been primarily used to design the
vision-based agent proposed.

3.3.1 Knowledge Transfer
Generalist agents, introduced in Section 3.2, form the backbone of most of the
knowledge transfer approaches, which aim at leveraging knowledge acquired from
one embodiment to improve the learning process on a different one, even when
considering significantly different settings.

22

State of the Art

COMPASS [36], CrossFormer [37] and the cross-embodiment policy proposed by
Yang et al. [38] are valuable examples of this category. They propose architectures
trained via IL or a combination of IL and RL to learn generalist policies that
can perform significantly different tasks, e.g., manipulation and navigation, across
different embodiments. In particular, Yang et al. [38] utilizes a transformer-based
architecture with a diffusion head to achieve strong cross-task knowledge transfer,
similarly to the architecture adopted in this thesis. All those methods serve
as practical evidence of the potential of knowledge transfer approaches in cross-
embodiment learning, even if in this thesis the focus is on manipulation tasks
only.

3.3.2 Skill Transfer
Another set of approaches focuses on skill transfer, which differs from knowledge
transfer since the main goal is to transfer specific skills or behaviors learned in
one embodiment to another, providing approaches for more specific settings. The
methods in this category often aim at learning a shared latent representation
that captures the essential features of different skills across various embodiments,
enabling their transfer between robots with diverse morphologies. To achieve this
goal, representation learning techniques, introduced in Section 2.5.1, are often
employed.

For instance, Zakka et al. [39] proposes XIRL, which aims at learning embodiment-
invariant visual representation through temporal cycle-consistency learning, en-
abling the transfer of skills between different robotic platforms. Similarly, XSkill
[40] and R3M [41] leverage InfoNCE (Noise Contrastive Estimation) [42] time
constrative losses to learn a shared latent space for skill transfer, such that similar
skills across different embodiments are mapped to nearby points in the latent space.
Finally, Wang et al. [43] proposes a multiple adversarial training framework to
align different encoders and decoders for different embodiments.

Those approaches have shown promising results in transferring skills across
different robotic platforms, even if they may struggle in dealing with challenging or
fine-grained manipulation tasks, as they may lack embodiment-specific details. In
this thesis, the main insight drawn is that representation learning is a key enabler
for cross-embodiment skill transfer; nevertheless, similar difficulties are observed
and discussed in the experimental chapter.

23

State of the Art

3.3.3 Dynamics Gap Bridging
Another approach to cross-embodiment learning focuses on bridging the dynamics
gap between different robotic platforms. This involves learning dynamic models
that can generalize across various embodiments, often by leveraging the transformer
architecture due to its flexibility.

In the literature, several works have explored the possibility of modeling joints
as tokens, translating the action prediction problem into a sequence modeling
problem. Notable examples include MetaMorph [44] and Meta-Controller [45] that
retain a stronger connection between the tokens and the robot’s morphology, while
AnyMorph [46] and MAT [47] employ a more abstract representation of the robot’s
joints to enhance the flexibility of the model.

These approaches exhibit strong generalization capabilities across different em-
bodiments, but they are focused on locomotion tasks, which hinder significant
dynamic and kinematics differences between the robots, requiring a strong joint-
level understanding. In contrast, in manipulation tasks, the differences in joint
configurations do not affect the end-effector behavior as much, since Inverse Kine-
matics (IK) solvers can be used to map the end-effector actions to the robot’s joints,
so it is not worth using such computationally expensive methods. Nevertheless, key
insights from these works can be leveraged; indeed Bohlinger et al. [48] recently
demonstrated the effectiveness of preprocessing the robot’s joint states as tokens
before feeding them to a transformer-based model, which also processes general
observations to predict end-effector actions. In this thesis, a similar approach is
adopted, but the focus is on the mutual interaction between the robot’s gripper
and the object to be manipulated, rather than on the robot’s joints.

3.3.4 Vision Gap Bridging
The last aspect that is worth mentioning in the context of cross-embodiment
learning is the vision gap bridging, which aims at addressing the differences in
visual perception across different robotic platforms. This is crucial since for vision-
based policies, the visual input varies significantly between different arms and
grippers, in terms of colors, shapes, and sizes.

A class of methods that has been explored in this context aims at directly
addressing the visual domain gap by isolating the robotic arm from the background
to then separately process the two components [49], or to then substitute the
original arm with the current robot’s arm [50]. Even though these methods have
shown promising results, they require complex image processing pipelines, and they
may struggle to generalize to unseen environments.

Alternative approaches propose data-centric solutions, such as Dasari et al. [51]
that investigate the impact of different datasets for pertaining visuo-motor policies,
aiming at addressing the visual domain gap by leveraging large-scale and diverse

24

State of the Art

datasets. Polybot [52], on the other hand, leverages contrastive learning techniques
to learn visual representations conditioned on the robot’s end-effector state rather
than on the robot’s appearance. This thesis is more related to the latter approaches,
as pretrained models are leveraged to extract visual features, while the gap is bridged
through contrastive losses.

3.4 Leveraging Demonstrations for Policy Learn-
ing

Leveraging demonstrations for learning control policies is often more efficient
than learning from scratch through RL, especially in robotic manipulation, where
exploration can be challenging and time-consuming. Additionally, demonstrations
can provide valuable prior knowledge about the task, guiding the learning process
and improving sample efficiency.

In the next two sections, methods relevant to the state-based agents (3.4.1) and
to the vision-based agent (3.4.2) proposed in this thesis are discussed separately,
as they pertain to different learning paradigms, namely RL and IL.

3.4.1 Reinforcement Learning with Demonstrations
In the RL context, the most straightforward approaches to leverage demonstrations
are offline RL methods, which aim at learning policies from fixed datasets of
demonstrations without any environment interaction. Notable examples include
AWR [53], which performs advantage-weighted regression to extract high-return
actions from the offline data, and more complex methods that aim at mitigating
extrapolation errors by constraining the learned policy to remain close to the
demonstrations while maximizing a learned Q-function [54, 55, 56]. These offline
RL methods generally achieve strong performance, but they cannot bridge huge gaps
between the demonstrations and the target policy, like in the case of demonstrations
collected with a different embodiment.

To overcome the limitations of offline learning, at the cost of requiring environ-
ment interaction, several works have proposed hybrid offline-online RL. Advantage
Weighted Actor-Critic (AWAC) [57] is a notable example that utilizes an advantage-
weighted likelihood objective to effectively combine offline demonstrations with an
online actor-critic RL algorithm. On the other hand, several approaches [58, 59,
60] investigate practical design choices to reliably mix offline and online learning,
demonstrating that even simple methods can achieve strong performance when
appropriately configured. These hybrid approaches generally outperform both pure
offline and pure online methods, but they often require careful tuning to balance
the contributions of the offline data and the online interactions.

25

State of the Art

In this work, the state-based agent presented will be trained using a hybrid
offline-online RL approach, leveraging an AWAC-style BC loss and practical in-
sights drawn from the second class of methods to improve sample efficiency and
overall performance. Indeed, the additional challenge is to bridge the domain
gap introduced by the fact that the demonstrations are collected with a different
embodiment with respect to the one used in the policy learning phase.

3.4.2 Weighted Imitation Learning
Imitation Learning (IL) is a widely used paradigm for learning control policies from
demonstrations. However, standard IL methods assume that the demonstrations
are optimal, which is often not the case in practice. To address this limitation,
several works have proposed weighted Imitation Learning methods, which assign
different weights to the demonstrations based on their quality or relevance to
the target task [61, 62]. This allows the model to focus more on high-quality
demonstrations while still leveraging the information present in suboptimal ones,
and at the same time maintains the simplicity and efficiency of standard IL.

Nevertheless, these methods often require additional labeling, estimation of
demonstration quality, or access to expert demonstrations. Additionally, they
involve the use of additional components to estimate the weights, which introduce
further complexity to the training process. In this thesis, an easier approach to
weighing the demonstrations is adopted to overcome these limitations by leveraging
the information already provided by the state-based agents.

26

Chapter 4

Methodology

This chapter describes the methodology adopted to obtain a vision-based multi-
embodiment policy via supervised finetuning of a pre-trained generalist agent. The
choice of employing a vision-based policy is motivated by the need for embodiment
generalization, especially when considering novel embodiments not seen during
training. Indeed, vision can provide rich contextual information about the en-
vironment and the robot’s interaction with it, without relying on explicit state
representations that are usually less transferable due to embodiment-specific varia-
tions that are difficult to derive from raw sensory data. Furthermore, vision-based
policies can better adapt to real-world scenarios where precise state information
may not be available.

The motivation behind the decision to use supervised finetuning for training
the vision-based multi-embodiment policy is driven by several factors. Supervised
finetuning is generally more sample-efficient and less computationally demanding
than, for instance, RL approaches, which is particularly important when dealing
with high-dimensional visual inputs that require large amounts of data to learn
effective policies. Additionally, finetuning a pre-trained model allows leveraging
prior knowledge and representations learned from large-scale datasets, which can
significantly accelerate the learning process and improve the final performance.

A direct consequence of choosing supervised finetuning is the requirement for
a large, diverse dataset of successful demonstrations that covers the target robot-
gripper-task triplets. To generate this dataset, a two-stage pipeline is adopted.
First, state-based agents are trained per triplet using RL accelerated with expert
demonstrations and a re-rolling procedure that adapts demonstrations across
embodiments. Second, the resulting trained agents are executed in simulation
to collect multi-view RGB observations, proprioception, actions, and metadata
from successful runs; these executions form the multi-embodiment demonstration
dataset. The collected dataset is then used to supervisedly finetune a pre-trained
vision model into a multi-embodiment policy, leveraging contrastive losses and

27

Methodology

weighted behavioral cloning to improve embodiment generalization.
For the dataset generation, the choice of leveraging RL is motivated by the

need to obtain an arbitrary number of successful demonstrations for each robot-
gripper-task triplet, which may not be feasible with human teleoperation due
to time and resource constraints. In this case, state-based agents are preferred
since the single embodiment setting is less challenging, allowing for the utilization
of low-dimensional state representations that facilitate the learning process and
improve sample efficiency. Additionally, the choice of covering all possible robot-
gripper combinations for each task is motivated to maximize the diversity of the
dataset, forcing the vision-based policy to learn embodiment-invariant features and
behaviors.

The remainder of the chapter details each step of this pipeline: Section 4.1
describes state-based training and demo re-rolling; Section 4.2 explains dataset
collection and filtering; and Section 4.3 presents the vision model, together with its
input modalities, the supervised finetuning losses, and the strategies employed to
achieve embodiment generalization.

4.1 State-Based Agents
The training of state-based agents is performed in simulation using a modified
version of the Soft Actor-Critic [8, 9], introduced in Section 2.3.2. In particular, to
accelerate the learning process and improve the final performance, the RL training
is aided by leveraging publicly available expert demonstrations for each task. The
expert demonstrations are human teleoperated trajectories collected in simulation
with only one particular robot and gripper embodiment.

The key observation enabling the proposed approach is that, although the expert
demonstrations are collected with a specific robot-gripper embodiment, if the state
and action spaces are properly aligned, they can still provide useful information to
train agents with different robot-gripper embodiments for the same task. This is
because, regardless of the specific embodiment used to collect the demonstrations,
the underlying task dynamics remain the same. In particular, given a proper
alignment, it may be possible to solve the task using an action sequence similar to
the one collected with a different embodiment.

Building upon this observation, the action sequences from the expert demonstra-
tions collected with a specific robot-gripper embodiment are adapted and re-rolled
to obtain a set of, possibly sub-optimal, demonstrations for every other robot-
gripper embodiment selected for the task. Even though the re-rolled demonstrations
may not be optimal for the new embodiment, and they provide a way lower success
rate compared to the original ones, they can still significantly aid the RL training
process. Indeed, in complex task scenarios, the ability to leverage even sub-optimal

28

Methodology

demonstrations can be the key to successfully learn a policy, since it allows the
agent to explore more relevant areas of the state space. Furthermore, pathological
behaviors, such as reward hacking, are less likely to occur when the agent can rely
on demonstrations to guide its learning process, rather than solely on the reward
signal.

4.1.1 State and Action Spaces Alignment
To perform the re-rolling, the state and action spaces must be aligned across
different robot-gripper embodiments.

Regarding the state space, only the robot-agnostic components are retained, such
as the end-effector position and orientation, the object position and orientations,
and the gripper state, while robot-specific components, such as joint positions and
velocities, are discarded. Nevertheless, this is a common practice in state-based
robotic control policies, as the aforementioned robot-agnostic components are
usually sufficient to successfully solve the task.

Particular attention must be given to the gripper state, as it is crucial to learn a
successful policy, but it varies in the number of dimensions across different gripper
types. Since different gripper types have a different number of fingers, but also a
different representation of the finger states, a representation mapping is defined to
adapt the gripper state from the pre-existing expert demonstrations to the new
gripper type. Assuming that the representation is based on finger opening levels,
and that the original demonstrations have the smallest number of elements in the
gripper state vector, the gripper state is adapted as follows: while the number
of additional dimensions is divisible by the original number of dimensions, the
original gripper state values are replicated to fill the new dimensions, then any
remaining dimensions are filled with the average value of the states from the original
demonstration. For example, the 2-dimensional gripper state [0.2, 0.4] would be
adapted to the 5-dimensional [0.2, 0.4, 0.2, 0.4, 0.3], where 0.3 is the average
of 0.2 and 0.4. Some noise is also added to increase variability in the adapted
demonstrations.

Even if this adaptation is highly simplistic, and it may not be accurate in
representing the actual gripper state, in practice, it was found to still provide
useful information to the learning process. Indeed, this design choice, instead
of just considering the gripper opening level as a scalar between fully closed
and fully opened, allows for better capturing the state of the gripper in the
subsequent learning process, providing a more precise representation of the gripper’s
configuration. Additionally, it is worth noting that the expert demonstrations are
progressively replaced in the replay buffer during training, as the agent collects
new experiences, so any inaccuracies in the adapted demonstrations are eventually
overcome by the agent’s own exploration of the environment.

29

Methodology

Concerning the action space, a similar approach is followed. The action is
expressed in terms of end-effector movement difference with respect to the current
position, represented as a 3D translation and angular displacement, and of gripper
opening percentage. This representation is independent of the robot and gripper
embodiment, allowing for direct reuse of the action sequences from the expert
demonstrations without any modification. Moreover, the IK solver provided by
the simulation environment is consistent across different robot-gripper embodi-
ments, allowing for more similar behaviors when executing the same end-effector
trajectories.

4.1.2 SAC with Advantage-Weighted BC
The re-rolling process is performed by executing the action sequences from the
expert demonstrations in the simulation environment, using a different robot-
gripper embodiment. To increase the likelihood of successfully completing the task,
after positioning the end-effector and the object according to the demonstration
initial state, position adjustments and, eventually, random variations are applied
to the end-effector position and orientation to take into account the differences in
dimensions and kinematics across different grippers.

Given the adapted trajectories for every robot-gripper embodiment selected for
the task, the state-based agents are trained using the SAC algorithm with a BC
term added to the actor loss, similarly to the approach presented by Lu et al. [60].
However, in this work, the BC term uses a AWAC-style [57] advantage weighting
to utilize the information given by the sub-optimal adapted demonstrations only
when it is beneficial to maximize the expected return. In particular, the advantage
is computed between the current Q-value associated with the state-action pair
from the demonstration and the approximate value of the current state. To obtain
such an estimate, the value function is approximated as the Q-value of the average
action sampled from the current policy, as also proposed by Nair et al. [57]:

Âπk(s, a) = Qπk(s, a)− V̂ πk(s)
= Qπk(s, a)− Ea′∼πk(·|s) [Qπk(s, a′)]

(4.1)

In practice, the action used to compute the second term is the mean action µϕ(s)
given by the current policy for the specific state. This formulation allows for
identifying whether the action from the demonstration is better or worse than the
average action proposed by the current policy in the same state. Thus, the BC
term will encourage the policy to imitate actions from the demonstrations only
when they are estimated to be better than the average action from the current
policy, while discouraging their imitation otherwise.

Furthermore, the inclusion of the AWAC objective, presented in Equation 4.2,
constraints the policy to stay close to the behavioral cloning policy, enforcing a

30

Methodology

more stable learning process and a more structured exploration of the environment.
To not bias the learning process too much towards sub-optimal behaviors, the BC
term is linearly annealed during training, eventually being completely removed
after a certain number of training steps.

πk+1 = arg max
π

Ea∼π(·|s) [Aπk(s, a)]

s.t. DKL (π(·|s)∥πBC(·|s)) ≤ ϵ
(4.2)

The final actor loss used for training the state-based agents is thus the combina-
tion of the standard SAC actor loss and the AWAC-style BC term, resulting in the
following expression:

Jπ,BC(ϕ) = Est∼D

5
Eat∼πϕ(·|st)

5
α log πϕ(at|st)− min

i=1,2
Qθi

(st, at)
66

+ λBC(t) E(s,a)∼Ddemo

C
log πϕ(a|s) exp

A
1
β
Âπk(s, a)

BD (4.3)

Where λBC(t) is the time-dependent weight of the BC term, which is linearly
annealed during training, β is a temperature hyperparameter that controls the
sharpness of the advantage weighting, D is the replay buffer, and Ddemo is the set
of adapted demonstration transitions.

Regarding the replay buffer, the adapted transitions are kept in a separate buffer
Ddemo for computing the BC term, but are also included as initialization to the
main one D to further aid the learning process. In this case, to avoid overfitting
to the demonstrations, the capacity of the replay buffer D is lower than the total
number of training steps to ensure that the agent can explore the environment and
collect new experiences, eventually replacing the adapted transitions.

The remainder of the SAC training procedure follows the standard approach
presented in Section 2.3.2, with adaptive temperature adjustment enabled.

For reproducibility and comparability with other works, the training is performed
using the default task settings provided by the robosuite framework [63]. The
built-in reward shaping is enabled, and the environment randomization parameters
are set to their default values.

The complete training procedure is summarized in Algorithm 2.

31

Methodology

Algorithm 2 State-Based Agents Training
Input: Dexpert, θ1, θ2, ϕ

1: θ̄1 ← θ1, θ̄2 ← θ2 ▷ Initialize target networks
2: Reroll Dexpert to obtain Ddemo
3: D ← Ddemo ▷ Initialize buffer with demos
4: Initialize λBC

5: for iteration i=1,2,. . . do
6: for each environment step do
7: at ∼ πϕ(at|st) ▷ Sample action from policy
8: st+1 ∼ p(st+1|st, at) ▷ Sample next state
9: D ← D ∪ {(st, at, r(st, at), st+1)} ▷ Store transition

10: end for
11: for each gradient step do
12: θi ← θi − λQ∇θi

JQ(θi) for i ∈ {1,2} ▷ Update Q-functions (2.20)
13: ϕ← ϕ− λπ∇ϕJπ,BC(ϕ) ▷ Update policy (4.3)
14: α← α− λα∇αJ(α) ▷ Adjust temperature (2.25)
15: θ̄i ← τθi + (1− τ)θ̄i for i ∈ {1,2} ▷ Update target networks (2.22)
16: Anneal λBC
17: end for
18: end for
Output: θ1, θ2, ϕ ▷ Optimized parameters

32

Methodology

4.2 Dataset Generation Procedure
The trained state-based agents are then used to generate the dataset of demon-
strations for training the vision-based multi-embodiment policy. For each robot-
gripper-task triplet, the corresponding trained agent is executed in the simulation
environment, and the environment observations, including RGB images from multi-
ple camera viewpoints, actions, and other relevant data, are recorded at each time
step.

During dataset generation, to increase the diversity of the collected demonstra-
tions, the default initial state randomization provided by robosuite was used,
which randomizes the object initial position and orientation within a certain range,
as well as the robot end-effector initial position and orientation.

Only successful episodes were stored in the dataset, limiting the maximum
number of steps to reach the success condition, to ensure more efficient and
consistent demonstrations. Additionally, to further improve the quality of the
collected demonstrations, a pre-saving filtering strategy was employed, where only
trajectories with a relatively small maximum joint velocity were saved, to avoid
jerky and unnatural movements.

4.3 Vision-Based Multi-Embodiment Policy
The vision-based multi-embodiment policy is based on the Octo [2] architecture,
which is finetuned to the tasks and robot-gripper embodiments considered in
this work. Octo was selected due to the openly available pre-trained models, its
modular design, which allows for adaptation to different sensor modalities and
new action parameterizations, and its proven effectiveness when finetuned on
downstream robotic manipulation tasks. As previously discussed in Chapter 3,
leveraging pre-trained models for vision-based robotic policies has been shown to
significantly improve performance and generalization capabilities, avoiding the need
to train large models from scratch, which can be prohibitively expensive in terms
of computational resources, time, and data availability.

The model is a ViT that processes a main RGB image observation, and optionally
a wrist camera RGB image, and can accommodate additional information, such
as proprioceptive data or other input modalities. The token prediction can be
conditioned on a natural language instruction, preprocessed using the t5 text
encoder [64], or a goal image representing the desired final state. To predict
the action, the model uses a diffusion-based decoder to produce multi-modal
action distributions, given a readout token from the transformer backbone. The
diffusion decoder allows for modeling complex action distributions, capturing multi-
modality, while leaving more capacity to the transformer backbone to learn useful

33

Methodology

Figure 4.1: Overview of the Octo architecture. Source: arXiv preprint of [2]
(arXiv:2405.12213).
representations from the input modalities. The model is pretrained using a selected
subset of the large-scale Open X-Embodiment dataset [33], which is one of the
largest available datasets for vision-based robotic manipulation tasks.

Architecturally, due to the flexibility of the ViT architecture, it exhibits a
modular design where modality-specific encoders convert raw inputs into tokenized
embeddings; a shared transformer backbone performs cross-attention over these
tokens, maintaining the causal temporal structure; and a diffusion decoder maps
the resulting latent context to actions. In particular, image observations are
processed by ViT-style patch encoders into spatial tokens, textual instructions are
encoded and broadcast across the temporal dimension, while, if present, additional
information is embedded and appended as tokens.

To ensure causality, a masking strategy is employed in the attention layers.
Each input token can only attend and be attended to by tokens from previous and
current time steps, such that future information cannot be accessed. Additionally,
the readout token, introduced in Section 2.1, is masked such that it cannot be
attended to by any input token. In this way, the readout token can only aggregate
information from the other tokens, effectively summarizing the entire input sequence
up to the current time step, but it cannot influence the processing of the input
tokens.

The following sections describe the key aspects of the finetuning procedure. In
section 4.3.1, the overall finetuning configuration is presented. Section 4.3.2 details
the input modalities used, including the novel gripper point cloud representation,

34

Methodology

while section 4.3.3 describes the contrastive losses introduced to improve embodi-
ment generalization. Finally, section 4.3.4 explains the weighted BC loss employed
during finetuning.

To have a reference of each of the components described in the following sections,
Figure 4.2 provides an overview of the vision-based multi-embodiment policy
architecture, including the input/output modalities, the model components, and
the training losses.

Figure 4.2: Overview of the vision-based multi-embodiment policy architecture,
including input modalities, model components, and training losses. In the figure,
“embs” stands for “embeddings”, while h, w, and a are the transformer hidden
size, the window of input temporal observation size, and the action chunk size,
respectively. The same figure is reported in horizontal format in the Appendix A.1
for better readability.

4.3.1 Fine-Tuning Configuration

To effectively finetune the pre-trained Octo model for the specific tasks and robot-
gripper embodiments considered in this work, several key design choices presented
in the following are made.

First of all, in accordance with the pretraining, to improve the performance of
vision-based policies trained via IL, it is beneficial to provide a temporal input
window of observations rather than a single frame, so that the model can better
capture temporal dependencies in the input data.

Temporal dependencies are also crucial for action prediction. Indeed, predicting
a sequence of future actions instead of a single one can lead to better results,
as it allows the model to plan ahead and better model the task dynamics. This
latter approach is referred to as action chunking [15], and it has been proven to
be effective in improving the performance of vision-based policies. Furthermore,

35

Methodology

at inference time, to obtain an even smoother and coherent action sequence, the
temporal ensembling technique [15] is employed, which consists of averaging the
overlapping action predictions from multiple input windows shifted in time. In
practice, the model, for each input window of observations, predicts a sequence
of future actions, and the action that is actually executed at each time step is
obtained by averaging the predictions from all the input windows that include that
specific time step as part of their predicted action sequence.

The final action executed at time step t is thus computed as follows:

at = 1
N

N−1Ø
i=0

e−αi â
(i)
t (4.4)

â
(i)
t = π (st−i : t−i+w−1) [t] (4.5)

Where at is the final action executed at time step t, â(i)
t is the action predicted for

time step t from the input window starting at time step t− i, N is the number of
overlapping input windows considered, w is the size of each input window, and α
is a decay factor that gives more importance to predictions from input windows
closer in time to the current time step.

Another important design choice is the task conditioning method. Even though
the model supports goal conditioning, since it is not possible, or highly challenging
[50], to have goal images for robot-gripper configurations not seen during training,
only natural language instructions are used. This choice is motivated by the
necessity of generalization, but it is worth noting that goal conditioning was found
to be more effective in certain scenarios, as it provides a more direct representation
of the desired outcome, from which the model can infer the necessary actions to
achieve it.

Finally, the diffusion action head is reset with randomly initialized weights before
finetuning, as the action space considered in this work differs from the one used
during pre-training. The action space considered is the same as that introduced in
Section 4.1.1.

4.3.2 Input Modalities
The main input modalities are the RGB image from a front-facing camera and
from a wrist camera. The front-facing camera provides a broader view of the
environment, allowing the model to understand the overall scene and the spatial
relationships between objects. The wrist camera, on the other hand, offers a
close-up view of the end-effector and the object being manipulated, which is crucial
for understanding how to interact with it effectively. Similar to the proposed
fine-tuning configuration, the images undergo a series of augmentations to improve
the generalization capabilities of the model, including random brightness, contrast,

36

Methodology

and saturation adjustments. On the other hand, random cropping and rescaling are
not applied, as they were found to be detrimental to performance in preliminary
experiments.

Building on the considerations derived in Section 3.1.2, another input modality
is introduced to the model: a point cloud representation of the gripper structure.

Gripper Point Cloud Representation

The driving idea behind the introduction of a gripper point cloud representation
as an additional input modality is to provide the model with explicit information
about the gripper’s geometry and structure. This information can be crucial for
manipulation tasks, as the gripper’s shape and size can significantly influence how it
interacts with objects in the environment and how the sequence of actions needed to
solve the task. Additionally, through the employment of the attention mechanism
in the transformer backbone, the model can learn to focus on the most relevant
features of the gripper structure and how they relate in particular to the wrist
camera view, which captures the interaction between the gripper and the object.

The point cloud representation is obtained from the 3D model of the gripper used
in simulation. The 3D model is used to sample a fixed number of points uniformly
distributed over the gripper surface till reaching a desired density, resulting in a
point cloud that captures the overall shape and structure of the gripper. Finally,
farthest point sampling is applied to downsample the point cloud to a fixed number
of points, 2,048 in this work, to ensure a consistent input size for the model. This
is without loss of generality, as in a real-world scenario, the point cloud could be
acquired using depth sensors or 3D scanning techniques, or even be retrieved from
a database of known gripper models.

To feed the point cloud representation to the model, a dedicated PointNet-based
architecture [65] is employed, due to its good balance between effectiveness and
computational efficiency, and due to the fact that more complex architectures
would not provide significant benefits in this scenario. Indeed the idea is to provide
the model with a compact representation of the gripper structure, rather than
extracting highly detailed features from the point cloud, to be used in a similar
way as the task description to condition the action prediction. Additionally, before
feeding the point cloud to the PointNet encoder, some augmentations are applied,
including random rotations, translations, jittering and pixel dropout, to avoid
overfitting also due to the limited number of gripper types considered in this work.

In particular, an encoder-decoder PointNet model is pretrained with a recon-
struction objective, then only the encoder part is retained to be used to extract a
fixed-size embedding from the point cloud, at three different opening levels, i.e.,
fully closed, half-opened, and fully opened. The three embeddings are then con-
catenated and linearly projected to obtain the final gripper representation, which

37

Methodology

is appended as tokens to the transformer backbone, similarly to the proprioceptive
information. This design choice is motivated by other works that have shown the
benefits of providing multiple views of the gripper structure [24, 25].

As depicted in Figure 4.3, the gripper point cloud representation includes only
the fingers of the gripper, as they are the parts that directly interact with the
objects during manipulation tasks and mostly affect the shape and dimensions
of the component, while the rest of the gripper structure is omitted to focus the
model’s attention on the most relevant features.

Figure 4.3: Examples of gripper point cloud representations (Robotiq140Gripper)
used as input to the model in open (left), half-open (center), and closed (right)
configurations.

4.3.3 Contrastive Losses for Embodiment Generalization

Another key addition to the training procedure is the introduction of contrastive
losses to improve the embodiment generalization capabilities of the model. The
core idea is to encourage the model to learn similar representations for different
robot-gripper embodiments when they are performing the same task, and they are
in similar states, as also proposed by Yang et al. [52]. This design choice addresses
the vision gap problem, enabling the model to focus on the robot and object state,
rather than the specific robot and gripper appearance.

As depicted in Figure 4.2, the contrastive losses are applied to the output tokens
from the transformer backbone, specifically to the tokens corresponding to the
main image, the wrist camera image, and the gripper point cloud representation.
The task and the action readout tokens are instead excluded. The task token is
excluded since only two tasks are considered in this work, so the model could easily
learn to cluster the representations based on the task identity. On the other hand,
the action readout token is excluded to avoid interfering with the action prediction
objective, while leaving greater flexibility to the transformer backbone prediction.
This choice will be discussed further in the next Chapter 5.

38

Methodology

Main Image

To guide the attention mechanism towards learning embodiment-invariant features,
the Soft Nearest Neighbors (SNN) loss was employed as contrastive loss [66, 67],
due to its ability to consider multiple positive and negative samples in the same
batch, providing a more robust learning signal, with respect to the commonly
used InfoNCE loss [42]. The SNN for a batch (x, y) of size B, where xi are the
embeddings and yi are the corresponding labels, is defined as:

LSNN = − 1
B

Ø
i=1,...,B

log


q

j=1,...,B; j /=i; yi=yj

exp
1
−∥xi−xj∥2

τ

2
q

k=1,...,B; k /=i
exp

1
−∥xi−xk∥2

τ

2
 (4.6)

Where τ is a temperature hyperparameter that controls the softness of the similarity
distribution. As the InfoNCE loss, the SNN loss encourages the model to bring
closer in the feature space the samples with the same label, while pushing away
samples with different labels, considering all the samples in the batch as potential
positives or negatives.

In this work, the labels yi are a combination of a hard task label and a soft
similarity score based on a distance metric. The hard task label indicates whether
two samples belong to the same task, while the soft similarity score is computed to
encourage the model to learn similar representations for states that are close in the
task space, even if they are performed with different robot-gripper embodiments.
This use of soft similarity targets is consistent with insights from soft contrastive
learning literature, which demonstrates that softened supervision can improve
representation quality [68].

The similarity score is computed as follows:

S(si, sj) = exp
A
−d(si, sj)

∆d

B
· I[task(si) = task(sj)]

ψ(ti, tj)
(4.7)

So the considered soft SNN loss becomes:

LSNN = − 1
B

Ø
i=1,...,B

log


q

j=1,...,B; j /=i
S(si, sj) exp

1
−∥xi−xj∥2

τ

2
q

k=1,...,B; k /=i
exp

1
−∥xi−xk∥2

τ

2
 (4.8)

In equation (4.7), d(·, ·) denotes a combined state distance, that, for the main
image tokens, is defined as:

dstate(si, sj) = wpr ∥pr
i − pr

j∥2 + wqr 2 arccos
1
|⟨qr

i , q
r
j ⟩|
2

+ wpo ∥po
i − po

j∥2 + wqo 2 arccos
1
|⟨qo

i , q
o
j ⟩|
2 (4.9)

39

Methodology

The first two terms account for the robot end-effector position pr and orientation qr

expressed as quaternions, while the last two terms account for the object position po

and orientation qo. The object terms, if included, allow the similarity to reflect not
only robot pose but also relative object configuration. The weights wpr , wqr , wpo , wqo

are tunable hyperparameters that balance the contribution of each component
to the overall distance metric. Overall, the distance metric captures the key
aspects of the robot and object state that are relevant for the manipulation tasks
considered, allowing the model to learn state-dependent similarities across different
embodiments.

The scalar ∆d is a tunable distance threshold that controls how rapidly similarity
decays with state distance. The indicator I[·] enforces that only samples from
the same task are treated as potential positives, while the scalar function ψ(ti, tj)
implements a timestep penalty which down-weights pairs that are temporally far
apart.

The timestep penalty used during training is defined as a simple piecewise
function:

ψ(ti, tj) =


1, |ti − tj| ≤ ∆t,

|ti − tj|
∆t

, |ti − tj| > ∆t,
(4.10)

Where ti, tj ∈ [0,1] are normalized timestep percentages and ∆t is an hyperpa-
rameter. This choice penalizes pairs that are separated by more than the allowed
temporal window, effectively reducing their weight in the soft nearest-neighbor
objective, which is particularly useful for tasks in which some states can be reached
at multiple points in time, e.g., in a lifting task, the robot state before and after
the grasping execution is similar. The normalization ensures that the penalty is
consistent across trajectories of different lengths.

Wrist Image

For wrist views, the same similarity formulation introduced in equation (4.7) is
used, but building on the assumption that object-gripper relative geometry is more
informative than absolute poses, the distance metric is computed differently. The
motivation is that the wrist camera is mounted on the robot’s end-effector, so its
viewpoint is heavily influenced by the relative position between the gripper and the
object being manipulated, and by object position. To capture those factors, the
distance metric is based on a distance that emphasizes the relative configuration
between gripper and object.

A relative vector v = pr − po is defined, representing the vector from the gripper
to the object. For a pair of samples i, j, the signed per-axis differences are computed,
i.e., δv,a = va

i − va
j for a ∈ {x, y, z}, and summed up in a sign-sensitive manner

40

Methodology

to obtain a base distance. To further enhance the sensitivity to large per-axis
differences, a threshold-based penalty term is added. This term penalizes differences
that exceed a certain threshold ∆v by adding a normalized excess distance to the
overall metric, that grows linearly with the amount by which the difference exceeds
the threshold. Finally, the robot orientation and object position differences are
also included to obtain the final distance metric, since they significantly affect the
wrist camera view. The resulting distance is metric:

dobj-grip(si, sj) =
Ø

a∈{x,y,z}
|va

i − va
j |+

q
a∈{x,y,z} max

1
|va

i − va
j | −∆v, 0

2
3∆v

+

+ wqr 2 arccos
1
|⟨qr

i , q
r
j ⟩|
2

+ wpo ∥po
i − po

j∥2

(4.11)

Where ∆v is a tunable per-axis distance threshold that controls how rapidly
similarity decays with object-gripper relative distance, and wqr , wpo are weights for
the robot orientation and object position terms, respectively.

Gripper Point Cloud

The processed gripper point-cloud representation is used to compute a contrastive
loss to further enhance embodiment-invariant features and to maintain consistent
gripper representations across different tasks. In this case, the SNN loss is employed
with hard gripper-type labels to define positive and negative samples, as the gripper
representation should be independent of the specific task and state.

Annealing Strategy

To effectively integrate the contrastive losses into the training process without
affecting convergence or badly impacting task performance, an annealing strategy
is employed. The contrastive loss terms are assigned an exponential weight decay
factor that decreases their influence over time. This approach allows the model to
initially focus on learning embodiment-invariant features, while gradually shifting
its attention towards optimizing task performance as training progresses.

The overall constrastive loss function used during training is thus defined as:

Lcontrastive = λexp
decay(t) [λimgLSNN,img + λwristLSNN,wrist + λpcLSNN,pc] (4.12)

Where LSNN,img, LSNN,wrist, and LSNN,pc are the SNN losses computed on the main
image embeddings, wrist image embeddings, and gripper point cloud embeddings,
respectively. The scalar weights λimg, λwrist, and λpc control the relative importance
of each contrastive loss term, while λexp

decay(t) is the exponential decay factor that
reduces the influence of the contrastive losses over time.

41

Methodology

4.3.4 Weighted Behavioral Cloning
To further improve the learning process, a weighted behavioral cloning loss is
employed, where each sample in the dataset is assigned a weight based on its
quality. The quality of each sample is estimated using information already obtained
during the state-based agent training process. In this way, there is no need to tune
and train additional modules or manually label the dataset samples, but the model
can still focus more on high-quality samples, utilizing knowledge already available.

For each demonstration sample, the estimated advantage value Â(s, a), computed
as in Equation (4.1), is extracted from the corresponding state-based agent. The
advantage value provides an estimate of how much better the action from the
demonstration is compared to the average action proposed, following the intuition
that samples with a high advantage value are more likely to be beneficial for the
learning process. Indeed, the approach is inspired by AWR [53], which uses a
similar weighting strategy to prioritize high-quality samples, but that requires
training an additional value function to estimate the advantage values, which can
be tricky for a dataset with demonstrations coming from multiple embodiments.

To compute the weight for each sample, the advantage values are normalized to
zero mean and unit variance across each task-robot-gripper triplet, and then across
the entire dataset, to ensure that the weights are comparable across different tasks
and embodiments. The per-sample weight is then computed as follows:

w(s, a) = 1 + γWBC · tanh Â (4.13)

Where γWBC is a scaling factor that controls the overall range of the weight,
and the tanh application helps to limit the influence of outliers in the input
distribution, improving the stability of the weighting scheme. The final weights are
mean-normalized to 1.0 across samples in each training batch to ensure consistent
gradient magnitudes, leading to an overall training loss defined as:

LWBC(θ) = E(s,a)∼D
è
w̃(s, a) ∥a− πθ(s)∥2

2

é
(4.14)

Where w̃(s, a) are the batch mean-normalized weights.
The overall training loss used to finetune the vision-based multi-embodiment

policy is thus defined as the sum of the weighted behavioral cloning loss and the
contrastive losses:

Ltotal = LWBC + Lcontrastive (4.15)

42

Chapter 5

Experiments

In this chapter, the experimental setup and results obtained to evaluate the proposed
methods are presented.

Section 5.1 describes the simulation environment, tasks, and robot-gripper
configurations considered. Section 5.2 details the training procedure and results of
the state-based RL agents used to generate the multi-embodiment dataset. Section
4.2 outlines the dataset generation process. Finally, Section 5.4 describes the
finetuning procedure of the vision-based multi-embodiment policy, including the
architecture, training details, and extensive evaluation of its performance and
generalization capabilities, including ablation studies on the proposed methodology.

5.1 Experimental Setup
The considered simulation environment is robosuite [63], which provides a variety
of robotic arms, grippers, and pre-defined manipulation tasks. It is built on top of
MuJoCo [69] physics engine, and it also provides controllers and IK solvers for the
included robots.

The tasks considered are the Lift and PickPlaceCan, where the objective is to lift
a cube from the table and to pick a can and place it in a target bin, respectively. The
first task is considered due to its simplicity, allowing for focus on the embodiment
generalization capabilities. In contrast, the second task is more complex, requiring
a more challenging manipulation sequence, including grasping an object with a
round shape from a more variable initial position, and placing it in a specific target
location, overcoming two small barriers.

The robots considered to train the vision-based agent are the Panda, IIWA,
and Jaco arms, while the grippers are the PandaGripper, RethinkGripper, Robo-
tiq140Gripper, and RobotiqThreeFingerGripper. This selection provides a good
variety of robot and gripper types, with different kinematics, sizes, and appearances.

43

Experiments

It is important to notice that all the robot-gripper combinations are considered for
each task, resulting in a total of 24 different robot-gripper-task triplets.

At test time, two additional robots, the Kinova3 and the UR5e, and two
additional grippers, the Robotiq85Gripper and the JacoThreeFingerGripper, are
included to evaluate the zero-shot generalization capabilities of the vision-based
multi-embodiment policy.

From now on the Gripper suffix is omitted when referring to grippers for brevity,
except when necessary for clarity.

The two tasks, robot arms, and grippers considered are displayed in Figures 5.1,
5.2, 5.3, and 5.4, respectively. Additionally, in the Appendix, Figures A.2 and A.3
report all the state-based agents solving the Lift and PickPlaceCan, respectively,
while Figure A.4 displays all the 30 considered robot-gripper configurations.

Figure 5.1: Lift task progress in robosuite with Panda robot and Panda gripper.

Figure 5.2: PickPlaceCan task progress in robosuite with Panda robot and
Panda gripper.

5.2 State-Based Agent Training
The demonstrations used to train the state-based agents are obtained from the
publicly available dataset provided by the robomimic project [70]. The trajecto-
ries considered are the proficient human teleoperated ones, collected using the
Panda robot with the PandaGripper, for both tasks. The dataset contains 200
demonstrations per task.

44

Experiments

(a) Panda (b) IIWA (c) Jaco (d) Kinova3 (e) UR5e

Figure 5.3: Robot arms used in the experiments: (a) Panda, (b) IIWA, (c) Jaco
for training, (d) Kinova3, (e) UR5e for testing.

(a) Panda (b) Rethink (c) Robotiq-
140

(d) Robotiq-
ThreeFinger

(e) Robotiq85 (f) Jaco-
ThreeFinger

Figure 5.4: Grippers used in the experiments: (a) Panda, (b) Rethink, (c)
Robotiq140, (d) RobotiqThreeFinger for training, (e) Robotiq85, (f) JacoThreeFinger
for testing.

The state-based agents are trained following the procedure described in section
4.1. The actor and critic networks are both 3-layer MLP with 256 hidden units
per layer and ReLU activations, layer normalization after each hidden layer, and a
dropout rate of 0.01. The actor network outputs the mean and standard deviation
of a Gaussian distribution, for a total of 14 output dimensions. The actions are
then sampled from this distribution and then squashed using a tanh function to
obtain predicted actions in the [-1, 1] range. The critic networks output a single
Q-value for each state-action pair.

Following the state and action space alignment procedure, the state space is
defined as the concatenation of the robot end-effector position and orientation
quaternion, the object position and orientation quaternion, the gripper state, and
other task-specific state information, such as the object-gripper distance. On
the other hand, the action space is defined as the end-effector position delta,
and orientation delta expressed as angular displacement, and the gripper opening
percentage. The state and action space dimensions are summarized in Tables 5.1
and 5.2.

45

Experiments

Table 5.1: State-Based Agents State Space

Component Dimension
End-effector position 3

End-effector orientation 4
Object position 3

Object orientation 4
Gripper state 2 to 11

Task-specific info 3
Total 19 to 28

Table 5.2: State-Based Agents Action Space

Component Dimension
End-effector position delta 3

End-effector orientation delta 3
Gripper opening percentage 1

Total 7
The hyperparameters used for training the state-based agents are summarized in

Table 5.3. The optimizer employed is AdamW [71], with the learning rates specified
in the table, and standard parameters (β1 = 0.9, β2 = 0.999, weight decay = 0.01).

The robots are controlled at a frequency of 20 Hz, in accordance with the
demonstration dataset, and the horizon for each episode is set to 100 steps for the
Lift task and 200 steps for the PickPlaceCan task. Longer horizons were considered
in preliminary experiments, but they did not provide significant benefits in terms
of performance.

5.2.1 Training Results vs Baseline SAC
To test the effectiveness of the proposed approach, a set of baseline SAC agents is
trained on the same configurations, but without leveraging any demonstrations. The
baseline agents share the same architecture and hyperparameters as the proposed
method, except for the target entropy and the replay buffer size. Indeed, to
encourage more exploration, aligning with common practices in RL, the target
entropy is set to −dim(A) = −7.0, while the replay buffer size is increased to
1,000,000 transitions. Furthermore, 20,000 initial random environment steps are
performed before starting the training process, to bootstrap the exploration.

The results summarized in Table 5.4 report the average success rates and average
returns over every robot-gripper configuration for each task, for both the proposed
method and the baseline SAC agents. The success rates are computed during the

46

Experiments

Table 5.3: State-Based Agents Training Hyperparameters

Hyperparameter Value
Number of training steps 1,000,000
Replay buffer size 250,000
Batch size 512
Discount factor γ 0.99
Actor learning rate λπ 3× 10−5

Critic learning rate λQ 1× 10−4

Temperature learning rate λα 1× 10−4

Target network update rate τ 0.005
Actor update frequency 1
Critic update frequency 2
Gradient clipping 5.0
Initial temperature α 0.5
Target entropy −dim(A)/2 = −3.5
BC loss weight λBC 0.1
BC loss annealing steps 100,000
AWAC advantage temperature β 1.0

evaluation phase of training, at different checkpoints, computing the average over
just 10 evaluation episodes per checkpoint due to computational constraints. This
comparison is not meant to be exhaustive, but rather explicative of the benefits of
the proposed approach.

For the Lift task, since the proposed method achieves very high success rates
quickly, the results for it are reported at earlier training steps (100k, 250k, and
500k), with respect to the baseline SAC agents (100k, 500k, and 1M) to provide a
more fair comparison. Interestingly, at step 100,000, after the BC term is completely
annealed, the proposed agents already achieve reasonable success rates for the Lift
task, showing that the adapted demonstrations are effective in guiding the learning
process. On the other hand, the baseline SAC agents struggle to make any progress
at the beginning of training; indeed, at step 100,000 (removing the initial random
exploration phase), they still achieve a 0% success rate. Also, at later training
steps, the baseline agents are not able to match the performance of the proposed
method, reaching lower success rates even after performing a significant amount of
additional training steps.

Regarding the more challenging PickPlaceCan task, after the initial phase where
the BC term is active, the proposed method fails to achieve a significant success rate.
However, as training progresses, the early guidance provided by the demonstrations
allows the agents to explore more efficiently, and a steady improvement in perfor-
mance is observed, reaching a success rate of 65.8% after 1,000,000 training steps.

47

Experiments

Table 5.4: State-Based Agents Performance Training Results

Task Metric Train
Step

Proposed
Method

Baseline
SAC

Lift

Success
Rate (%)

100k 45.8 0.0
250k / 500k 89.2 45.8
500k / 1M 96.7 70.0

Average
Return

100k 36.0 7.89
250k / 500k 56.03 40.04
500k / 1M 60.32 51.26

PickPlaceCan

Success
Rate (%)

100k 10.0 0.0
500k 52.5 0.0
1M 65.8 0.1

Average
Return

100k 23.77 0.78
500k 75.16 15.03
1M 115.64 59.56

On the other hand, the baseline SAC agents struggle to achieve any success on this
task regardless of the training time. Even if there is an increase in the average
return, the agents are not able to discover successful strategies, and the returns
tend to plateau after a certain amount of training, signaling that the exploration is
not effective enough to solve the task. Notably, the success rate of the adapted
demonstrations alone is quite low (for some configurations, it is as little as 2-3%),
but the proposed method is still able to leverage them to bootstrap the learning
process effectively.

These observations can be further confirmed by looking at the average episode
returns achieved during training by some sample configurations, which are displayed
in Figures 5.5 and 5.6 for the Lift and PickPlaceCan tasks, respectively. The
plots show the average return over 10 evaluation episodes every 5,000 training
steps, for 3 different robot-gripper configurations, selected to represent a variety
of embodiments, for both methods. In the Lift, the proposed method achieves
rapidly high returns to then stabilize, while the baseline SAC agents show a slower
improvement over time. In the PickPlaceCan, both methods show a way higher
variance due to the complexity of the task, but the proposed method is able to
steadily improve over time, while the baseline SAC agents struggle to achieve
significant returns, especially in the early stages of training. The curves suggest
that it is possible that longer training times could potentially allow the baseline
SAC agents to achieve better performance, even if the returns seem to plateau after
a certain amount of training.

48

Experiments

Figure 5.5: State-based agents average return during training for the Lift task.

Figure 5.6: State-based agents average return during training for the PickPlaceCan
task.

It is worth mentioning that to obtain reasonable trajectories for the Lift task,
a more complex success constraint was used during training, requiring the object
to be lifted above a threshold three times higher than the standard one. This
choice was made to mitigate reward hacking issues observed during preliminary
experiments, where SAC agents learned to tilt or hit the object to trigger the
success condition without actually lifting it. On the other hand, the proposed
approach was able to overcome this issue, even with the standard success constraint,
thanks to the guidance provided by the adapted demonstrations.

49

Experiments

5.2.2 Performance Evaluations

The overall success rates achieved by the state-based agents after completing the
full training procedure (1M steps) are summarized in Tables 5.5 and 5.6, for the
Lift and PickPlaceCan tasks, respectively. Those results are obtained by running
100 evaluation episodes per robot-gripper-task configuration, for a total of 2,400
episodes.

Table 5.5: Lift Task State-Based Agents Success Rates (%)

Lift Panda IIWA Jaco Aggregated
PandaGripper 99 100 98 99.0

Rethink 100 100 99 99.3
Robotiq140 100 99 100 99.7

RobotiqThreeFinger 100 100 100 100
Aggregated 99.8 99.8 99.3 99.6

Table 5.6: PickPlaceCan Task State-Based Agents Success Rates (%)

PickPlaceCan Panda IIWA Jaco Aggregated
PandaGripper 55 25 51 43.7

Rethink 60 37 45 47.3
Robotiq140 81 74 95 83.3

RobotiqThreeFinger 75 60 69 68.0
Aggregated 67.8 49.0 65.0 60.6

The results show that for the Lift task, the state-based agents achieve very high
success rates across all robot-gripper configurations with an overall average success
rate of 99.6%. On the other hand, for the more challenging PickPlaceCan task, the
performance is more variable, with some configurations achieving high success rates
(up to 95%), while others struggle more (as low as 25%), even if overall the average
remains satisfactory (60.6%). This variability can be attributed to differences in
gripper capabilities and kinematics of the different robot arms, which affect both
the transferability of the adapted demonstrations, but also the learning process
itself. Indeed, some specific configurations may have more limited reachability or
dexterity, making it more difficult to perform the required manipulation actions
effectively.

It is interesting to note that in the PickPlaceCan task, the Robotiq140 and Robo-
tiqThreeFinger grippers mounted on any robot outperform the Panda-PandaGripper
configuration, which was the one for which expert demonstrations were collected.

50

Experiments

This suggests, as will be observable in the next sections, that Robotiq grippers pro-
vide an easier and more reliable way to grasp the can, thanks to their wider fingers.
Nevertheless, this result also highlights the effectiveness of the proposed knowledge
transfer method, which allows the agent to leverage demonstrations collected with
a specific embodiment to successfully train agents for different embodiments, going
beyond the limitations of the original demonstration data.

5.3 Dataset Generation
The 24 trained state-based agents were each used to generate 100 successful episodes,
resulting in a total of 2,400 demonstrations. The maximum number of steps allowed
to achieve the success condition was limited to 40 for the Lift task and 80 for
the PickPlaceCan task, in such a way as to obtain more efficient and consistent
demonstrations.

5.4 Vision-Based Policy Training
The model used for finetuning is based on the Octo-Small architecture [2], which
has approximately 27M parameters, which mirrors the ViT-S configuration from
Dosovitskiy et al. [3]. The choice of the 27M parameter model, instead of the larger
Octo-Base with 93M parameters, is motivated by the need for a more compact
and memory-efficient architecture, which is easier to finetune with the available
computational resources. Furthermore, the implementation provided by Ghosh
et al. [2] is in JAX, while the training pipeline used is based on PyTorch, so a
conversion of the model was necessary, starting from an existing octo-pytorch1

implementation.
Octo-Small is a 12-layer transformer with 6 attention heads, a model dimension

of 384 (h in Figure 4.2), and a feedforward dimension of 1536. The main image
input resolution is set to 256x256 pixels, while the wrist image resolution is set to
128x128 pixels. The images are processed by a convolutional stem followed by a
patch embedding layer, resulting in 16x16 patches. For the language instruction
decoding, a pretrained and frozen t5-base transformer model [64] is used (111M). A
3-layer MLP with 256 hidden units per layer, ReLU activations, layer normalization,
and residual connections is used as diffusion action head, with the standard DDPM
objective [5] and a cosine noise schedule [72], with 20 diffusion steps.

The PointNet encoder processes the three point cloud inputs (open, half-open,
and closed gripper configurations) using 1D convolutional layers with hidden

1https://github.com/emb-ai/octo-pytorch

51

Experiments

dimensions [64, 128, 256], followed by batch normalization, ReLU activation, and
0.1 dropout, reducing each point cloud to a 256-dimensional feature via global
max pooling. The three point cloud features are then fused together and expanded
to 16 tokens of dimension 384 (matching the model dimension h) before being
fed to the transformer alongside other input modalities. Those dimensions were
selected taking inspiration from standard architectures, while maintaining a compact
size to limit the overall model complexity, as this component is used to provide
additional context about the embodiment rather than to learn detailed point cloud
representations. Nevertheless, after undergoing the pretraining procedure with a
reconstruction decoder, the PointNet showed good capabilities in reconstructing
the input point clouds, validating its effectiveness in capturing relevant features.

Regarding the temporal configuration, the input window length is set to 2 time
steps, which are used to predict a chunk of 4 future actions, respectively w and
a in Figure 4.2. At inference time, the exponential decay factor α for temporal
ensembling, defined in Equation 4.4, is set to 0.5.

The number of tokens per input type is reported in Table 5.7. The term
“broadcasted” indicates that the input is replicated across the temporal dimension
for each time step in the input window. Notice that the number of input and
output tokens per type is the same, as the ViT architecture maintains the token
count throughout the layers.

Table 5.7: Vision-Based Policy Tokens per Input Type

Input Type Tokens
Main image 16 x 16 = 256
Wrist image 8 x 8 = 64
Language instruction 16 (broadcasted)
Gripper point cloud 16 (broadcasted)
Readout action 1

The hyperparameters used for finetuning the vision-based multi-embodiment
policy are summarized in Table 5.8. The optimizer employed is AdamW [71], with
standard parameters (β1 = 0.9, β2 = 0.999, weight decay = 0.01), with a cosine
annealing learning rate schedule with linear warm-up.

5.4.1 Representation Learning Settings and Results
As described in Section 4.3.3, contrastive learning losses are employed during
finetuning to encourage the model to learn embodiment-invariant features. Those
losses are based on similarity metrics defined over different input modalities, such
as images and point clouds. One of the main challenges when employing such
paradigms is the selection of appropriate hyperparameters for the similarity metrics

52

Experiments

Table 5.8: Vision-Based Policy Finetuning Hyperparameters

Hyperparameter Value
Number of finetuning steps 50,000
Batch size 256
Peak learning rate 3× 10−4

Warmup steps 2,000
Gradient clipping 1.0
Contrastive loss annealing steps 30,000
Weighted BC amplitude γWBC 0.1
Window size w 2
Action chunk size a 4

used to define positive and negative samples.
Due to the high number of hyperparameters involved, a systematic tuning

procedure was not feasible. Instead, the values were selected based on statistical
and empirical considerations. The temperature values and the contrastive loss
weights were chosen based on common practices in contrastive learning literature,
to properly handle the different token types and to balance their contributions
to the overall loss. The distance and timestep thresholds, and weights for the
distance metrics were selected based on the relative importance and magnitude of
each component influencing the similarity, ensuring that the model focuses on the
most relevant aspects of the state when learning embodiment-invariant features.
Regarding this step, some statistical and empirical analyses were performed on
the training dataset to determine reasonable ranges for the distance metrics,
considering the variability in robot and object positions and orientations across
different demonstrations.

In Figure 5.7, an example of the comparison performed to select the thresholds
is depicted. In particular, a script was developed for visualizing, for each timestep
in a demonstration, the closest and farthest within-threshold samples in the dataset
based on the defined distance metrics, to ensure that the selected thresholds provided
a meaningful distinction between similar and dissimilar states. Additionally, the
percentage of contributions of each component to the overall distance metric was
analyzed to verify that no single component dominated the metric excessively. Even
if this analysis only allowed for a qualitative assessment, it provided useful insights
into the behavior of the distance metrics, also through the histogram visualization,
helping to narrow down the hyperparameter selection process.

Nevertheless, after finding a reasonable range of values for the thresholds,
different combinations were tested by training the model and evaluating the quality

53

Experiments

Figure 5.7: Empirical Analysis for Contrastive Loss Hyperparameter Selection
of the learned representations and the task performance.

The final hyperparameter values used for the contrastive losses during finetuning
are summarized in Table 5.9.

Table 5.9: Vision-Based Policy Contrastive Losses Hyperparameters

Hyperparameter Value
Temperature for images τimg 0.2
Temperature for point cloud τpc 0.07
Timestep percentage threshold ∆t 0.15
Main image weights: wpr , wqr , wpo , wqo 1.0, 1× 10−2, 0.8, 5× 10−3

Wrist image L1 threshold ∆v 0.05
Wrist image weights: wqr , wpo 1× 10−2, 0.2
Main image distance threshold ∆d,m 0.05
Wrist image distance threshold ∆d,w 0.03
Contrastive loss weights: λimg, λwrist, λpc 0.4, 0.4, 0.2

It is worth mentioning that the contrastive learning losses rapidly converged
during training, with most of the improvement occurring within the first 2,000
finetuning steps. This behavior is likely due to the fact that the model already
possesses a strong prior from the pretraining phase, and the contrastive losses
serve to fine-tune the representation space to better capture embodiment-invariant
features.

54

Experiments

Results

To evaluate the effectiveness of the contrastive losses in structuring the learned
representation space, a series of analyses were performed on the embeddings ex-
tracted from the transformer backbone after finetuning. In particular, t-Distributed
Stochastic Neighbor Embedding (t-SNE) projection visualizations were created to
observe how the embeddings cluster, and accuracy and homogeneity scores were
computed to quantitatively assess the separation of different robot and gripper types
in the embedding space given k-Nearest Neighbors (k-NN) groupings. t-SNE is a
dimensionality reduction technique that is particularly well-suited for visualizing
high-dimensional data, as it preserves local structures and relationships between
data points, while k-NN clustering is a clustering algorithm that groups data points
based on their proximity in the feature space.

The visualization and the metrics’ computations are performed considering one
random trajectory per configuration not used during training, for a total of 24
trajectories, to have a comprehensive overview of the learned representations. The
output tokens, corresponding to the main image, wrist image, gripper point cloud,
and action readout input embeddings, are obtained by forwarding the observations
through the transformer backbone.

It is important to mention that the results reported are obtained using a
model that showed the best representation learning results, and task performance
comparable to the best model reported in Section 5.4.2. This choice was made to
provide a clearer and more interpretable analysis of the learned representations, as
the best-performing model in task resolution showed slightly more noisy results.
Furthermore, as discussed in Section 5.4.3, representation learning quality does not
always correlate directly with task performance, but the effectiveness of the learned
representations in capturing embodiment-invariant features is still a valuable aspect
to analyze, which may be leveraged in future works.

In Figure 5.8, the t-SNE projections of the embeddings for the main image, wrist
image, gripper point cloud, and action readout are shown. Each point is colored
based on the hard part of the labels for the specific embedding considered, i.e., the
task for all the embeddings except for the gripper point cloud embeddings, which
are colored based on the gripper type. Additionally, a color fading is proposed
(except for the gripper point cloud embeddings) based on the timestep percentage
within the episode, to visualize how the embeddings evolve. This visualization helps
to assess whether the learned embeddings capture the task’s temporal structure,
since it is reasonable to assume that similar timesteps show similar states, and the
state-based contrastive losses explicitly take into account temporal proximity when
defining positive and negative samples.

Regarding the main image embeddings in Figure 5.8a, it is possible to observe
that the two tasks are separated, and the time evolution has been modeled effectively.

55

Experiments

(a) Main Image Embeddings (b) Wrist Image Embeddings

(c) Gripper Point Cloud Embeddings (d) Action Readout Embeddings

Figure 5.8: t-SNE Projections of Embeddings with Contrastive Losses.
Indeed, for both tasks, apart from some outliers, the embeddings belonging to
the beginning of the episodes are clustered together, and as time progresses, the
embeddings move away from that initial cluster, towards different regions of the
embedding space. This behavior also indicates that later timesteps have more
variability in the states, as the embeddings are more spread out.

A similar behavior is observed for the wrist image embeddings in Figure 5.8b,
where the two tasks are well separated, but the temporal structure is less clear,
especially for the Lift task. This is likely due to the fact that the wrist camera
provides several similar views while performing the Lift task, leading to less
distinctive embeddings.

For the gripper point cloud embeddings in Figure 5.8c, the separation between
the different gripper types is very clear, with respect to the task-based ones in the
previous plots. Indeed, this contrastive loss used only hard labels based on the

56

Experiments

gripper type, producing well-defined different clusters for each gripper.
Finally, for the action readout embeddings in Figure 5.8d, a similar behavior to

the image embeddings is observed, even if in this case the task separation and the
temporal structure are way more pronounced. Additionally, the early timesteps for
both tasks are clustered closely, indicating that the initial actions taken are quite
similar across different configurations. This results is remarkable even considering
that no explicit contrastive loss was applied to the action readout embeddings,
showing that the model has learned to structure the representation space effectively.

The quantitative results, summarized in Table 5.10 and Table 5.11, confirm
the observations from the t-SNE visualizations. The computation of the scores
was performed using k-NN clustering with k values of 3, 5, and 10. Basically,
for each embedding, the k nearest neighbors are found, and the majority class
among those neighbors is used to predict the label for the sample. The accuracy
and homogeneity scores are then computed based on those predicted labels. The
accuracy score is the ratio of correctly classified samples to the total number of
samples, while the homogeneity score measures how much each cluster contains
only members of a single class, with a value of 1.0 indicating perfect homogeneity,
and a value of 0.0 indicating completely mixed clusters.

The formulas for both metrics are provided below:

Accuracy = 1
N

NØ
i=1

I (yi = ŷi) (5.1)

Where N is the total number of samples, yi is the true label of sample i, and ŷi is
the predicted label based on the majority class in the k-NN grouping.

Homogeneity = 1− H(C|K)
H(C) , if H(C) > 0, else 1.0

H(C|K) = −
KØ

k=1

CØ
c=1

Nc,k

N
log

3
Nc,k

Nk

4

H(C) = −
CØ

c=1

Nc

N
log

3
Nc

N

4
(5.2)

Where H(C|K) is the conditional entropy of the classes given the clusters, H(C)
is the entropy of the classes, Nc,k is the number of samples of class c in cluster k,
Nk is the total number of samples in cluster k, Nc is the total number of samples
of class c, and N is the total number of samples. The entropy is a measure of
how mixed the classes are within the clusters, with lower values indicating better
separation, while the conditional entropy quantifies the uncertainty of class labels
given the cluster assignments.

In Table 5.10, just hard labels were considered, so the task type for the images
and action readout embeddings, and the gripper type for the gripper point cloud

57

Experiments

embeddings. On the other hand, in Table 5.11, timestep percentage-based labels
are also considered, together with the task labels, for the images and action readout
embeddings, to assess how well the temporal structure is captured by the learned
embeddings. The timestep percentage-based labels are defined by dividing the
episode into 5 equal segments, and assigning a label based on which segment
the timestep belongs to, with a margin of 2% around the segment boundaries to
account for variability. The resulting timestep segments are as follows: [0%-19%],
[21%-39%], [41%-59%], [61%-79%], [81%-100%]. Those segments’ labels are then
combined with the hard task labels to obtain the final clusters’ labels.
Table 5.10: Representation Learning Contrastive Losses Results: Hard Labels
(k-NN: k=3,5,10).

Embedding Type k = 3 k = 5 k = 10
Acc Hom Acc Hom Acc Hom

Main image 1.0 0.99 1.0 0.96 0.98 0.89
Wrist image 1.0 0.96 0.99 0.91 0.98 0.85
Gripper point cloud 1.0 0.99 1.0 0.99 1.0 0.97
Action readout 1.0 0.98 1.0 0.98 1.0 0.96

Table 5.11: Representation Learning Contrastive Losses Results: Timestep +
Hard Task Labels (k-NN: k=3,5,10).

Embedding Type k = 3 k = 5 k = 10
Acc Hom Acc Hom Acc Hom

Main image 0.94 0.90 0.92 0.86 0.85 0.76
Wrist image 0.93 0.88 0.90 0.83 0.81 0.70
Action readout 0.94 0.89 0.92 0.87 0.86 0.80

The results with the hard labels confirm the arguments based on the t-SNE
visualizations, showing that the learned embeddings are highly structured, with near-
perfect accuracy and homogeneity scores across different k values. Additionally, the
gripper point cloud embeddings achieve a very high score due to the employment of
hard labels during training, but also, the action readout tokens achieve comparable
scores without any explicit supervision.

Regarding the results with the soft labels, they follow a pattern similar to the
hard label ones, even if with lower scores. This suggests that while the model
is proficient at distinguishing between different tasks, it also encodes temporal
information in a meaningful way, allowing for the separation of different phases

58

Experiments

within an episode.
The two quantitative analyses highlight the increased difficulty in structuring

the wrist image latent space, likely due to the limited variability in the wrist camera
views across different tasks and configurations. Nevertheless, the results prove the
effectiveness of the proposed contrastive losses in constructing a well-organized
representation space.

It is also worth mentioning that applying contrastive losses directly on the
action readout embeddings was tested, but it badly affected the task performance,
probably due to the excessive constraints imposed on the action space, so it was
avoided in the final finetuning procedure. Instead, the model was able to learn
a well-structured action embedding space indirectly, thanks to the supervision
provided by the other contrastive losses applied to the observation embeddings.

5.4.2 Task Performance Evaluations
The finetuned vision-based multi-embodiment policy task performance is evaluated
on all the robot-gripper-task triplets considered during training, as well as on
the unseen robot-gripper configurations for zero-shot generalization assessment.
The evaluation procedure consists of running 10 episodes per configuration and
computing the average success rate.

During inference, instead of performing a prediction of 4 actions at each time t,
the predictions are performed only at even timesteps, and actions t and t+ 1 are
executed for each prediction, while actions t+2 and t+3 are kept to be exponentially
averaged and summed to the next prediction, according to the temporal ensembling
approach. This choice is motivated by the fact that executing only 1 action per
chunk does not provide significant benefits in terms of performance, while it doubles
the computational cost at inference time.

In table 5.12, the success rates are aggregated over different dimensions to
provide a comprehensive overview of the model’s performance. For each task, and
each robot/gripper considered, the table reports success rate (SR): over all configu-
rations (including that particular task and robot/gripper); over all configurations
having only seen components; and over all configurations with at least one unseen
component. Unseen components are displayed in blue, while the robots and the
grippers are separated by a midrule.

In table 5.13, the overall success rates are summarized, aggregating the results
over all configurations for each task, just dividing between configurations only with
seen components and configurations with at least one unseen component.

The per-configuration non-aggregated results are instead reported in Appendix
A.2.

59

Experiments

Table 5.12: Vision-Based Policy Performance Evaluations

Task Robot/Gripper Total
SR (%)

Seen
SR (%)

Unseen
SR (%)

Lift

Panda 61.7 77.5 30.0
IIWA 63.3 72.5 45.0
Jaco 56.7 65.0 40.0

Kinova3 65.0 - 65.0
UR5e 20.0 - 20.0

PandaGripper 58.0 76.7 30.0
Rethink 34.0 40.0 25.0

Robotiq140 78.0 86.7 65.0
RobotiqThreeFinger 86.0 83.3 90.0

Robotiq85 62.0 - 62.0
JacoThreeFinger 2.0 - 2.0

PickPlaceCan

Panda 13.3 20.0 0.0
IIWA 18.3 22.5 10.0
Jaco 20.0 22.5 15.0

Kinova3 10.0 - 10.0
UR5e 0.0 - 0.0

PandaGripper 14.0 16.7 10.0
Rethink 4.0 6.7 0.0

Robotiq140 20.0 30.0 5.0
RobotiqThreeFinger 24.0 33.3 10.0

Robotiq85 12.0 - 12.0
JacoThreeFinger 0.0 - 0.0

Table 5.13: Vision-Based Policy Performance Evaluations Summary

Task Total SR (%) Seen SR (%) Unseen SR (%)
Lift 53.33 71.67 41.11
PickPlaceCan 12.33 21.67 6.11

60

Experiments

Analyzing the results, it is evident that the vision-based multi-embodiment
policy performs significantly better on the Lift task compared to the more complex
PickPlaceCan task. This discrepancy can be attributed to the increased difficulty
of the latter task. The Lift task primarily requires the agent to learn a lifting
motion and grasping strategy on a cube, placed in an initial position that varies in
a small area around the center of the table, in front of the robot base. In contrast,
the PickPlaceCan task involves a more intricate sequence of actions, including
approaching, grasping, lifting, and placing a cylindrical object into a target bin.
Furthermore, the initial position of the can is randomized over an area more than
an order of magnitude larger than the cube in the Lift task, and the presence of
small barriers around the target bin adds additional complexity to the placement
phase and requires a higher lift and transfer precision.

Another aspect that may have significantly hindered the performance on the
PickPlaceCan task is the higher diversity in the strategy adopted to perform
the task across different robot-gripper embodiments. Indeed, different grippers
provide different grasping capabilities, differing in the approach direction and
object to gripper distance; for instance, the RethinkGripper requires a top-down
approach to successfully grasp the can, while the Robotiq140Gripper allows for
a side approach due to its wider finger span, and this aspect is clearly reflected
in the final performance results, where the average success rate achieved is 4.0%
and 20.0%, respectively. Additionally, different robots have different kinematics,
leading to significantly different visual observations while transferring the object to
the target bin, which may have further complicated the learning process.

By qualitatively analyzing the execution of the tasks, it is possible to observe
that the model also often struggles during the approach phase, leading to failed
attempts. This observation suggests that the model may have difficulty in accurately
perceiving the can’s position from the visual inputs, especially when considering
the variability introduced by different robot-gripper embodiments, and in some
cases, this results in employing suboptimal or average strategies to approach and
grasp the can. In this regard, the contrastive losses seemed to slightly help in
understanding common features across embodiments, but not enough to achieve
significant performance, as evidenced by the ablation studies presented in the next
Section 5.4.3.

Regarding the more successful Lift task, the results indicate that the model is able
to generalize reasonably well to unseen robot and gripper configurations, achieving
a success rate of 41.11% on configurations with at least one unseen component.
This outcome suggests that the contrastive losses employed during finetuning
effectively encouraged the model to learn embodiment-invariant features, enabling
it to adapt to new configurations not encountered during training. Additionally, the
high success rates achieved on configurations with only seen components (71.67%)
demonstrate that the model is capable of leveraging the knowledge acquired during

61

Experiments

training to perform well on familiar setups.
The success rate on seen robots is pretty consistent across tasks, with the Panda

achieving 77.5% on Lift and 20.0% on PickPlaceCan, the IIWA achieving 72.5%
and 22.5%, and the Jaco achieving 65.0% and 22.5%. This consistency suggests
that the model is able to effectively utilize the knowledge acquired to bridge the
gap between different robot embodiments. For instance, the Jaco robot is smaller
and requires a longer approach to the object compared to the Panda and IIWA,
but the model is still able to adapt its strategy accordingly. It is worth noting
that, even if the UR5e robot has a different appearance, movement style, and
initial position compared to the training robots, the model is still able to achieve
reasonable performance in the Lift task (20.0% success rate), while it completely
fails in solving the PickPlaceCan task due to the aforementioned differences. On
the other hand, the Kinova3 robot, which has a more similar appearance and
movement style to the training robots, achieves a higher success rate in both tasks,
even outperforming the seen robots in the Lift task. This outcome suggests that
visual similarity and kinematic resemblance to the training robots may play a
significant role in the model’s ability to generalize to unseen robot embodiments.

Concerning grippers, the results show a more varied performance across tasks.
It is possible to observe that the Robotiq grippers generally outperform the other
grippers, likely due to their wider finger span and more stable grasping capabilities.
In particular, the Robotiq140 achieves the highest success rates in both tasks, and
the unseen Robotiq85 is able to outperform the Rethink in both tasks. On the other
hand, the almost complete inability to achieve a successful execution displayed
by the JacoThreeFinger can be attributed to several factors. Firstly, this gripper,
even if it has three fingers like the RobotiqThreeFinger, has a significantly different
design and requires a more precise grasping strategy, which may not have been
adequately represented in the training dataset. Furthermore, the limited number of
demonstrations involving three-finger grippers during training may have hindered
the model’s ability to learn effective grasping strategies for this specific gripper
type.

Comparison with Octo-Small Baseline

To provide some context, the performance achieved by the proposed vision-based
multi-embodiment policy can be compared with the results reported by Ghosh
et al. [2] for the Octo model. Even if the experimental setups are not directly
comparable, since different simulation environments and tasks are considered, some
observations can still be made.

In the paper, the Octo-Small model is fine-tuned on 4 different tasks with
approximately 100 expert demonstrations each. It is important to note that for
each task, only a single robot-gripper embodiment is used during training, and the

62

Experiments

model is fine-tuned on one task at a time. The reported success rates range from 70%
to 90% on the in-distribution configurations and for novel object instances, while
the performance on new environments is lower, with a success rate of approximately
40%.

These results are comparable to the ones achieved by the proposed method
on the Lift task, where a 71.67% success rate is obtained on seen configurations
and a 41.11% success rate on unseen configurations. Notably, in this work, the
model is trained to handle multiple robot-gripper embodiments and two different
tasks simultaneously, with machine-generated suboptimal demonstrations. The
performance on the more complex PickPlaceCan task is lower, with a 21.67%
success rate on seen configurations and a 6.11% success rate on unseen configura-
tions, highlighting the challenges associated with multi-embodiment and multi-task
learning in vision-based robotic manipulation.

5.4.3 Ablation Studies
To better understand the impact of the different components of the proposed
finetuning procedure on the embodiment generalization capabilities, a series of
ablation studies is conducted. In particular, the following aspects are analyzed:

• Contrastive Losses: The model is finetuned without the contrastive loss
terms in the overall loss function (Equation (4.12)).

• Gripper Representation Input: The model is finetuned without the gripper
point cloud input.

• Weighted BC: The model is finetuned without the weighted BC loss term
(Equation (4.14)), only using the standard BC loss (Equation (2.26)).

• Pretraining: The model is finetuned starting from a randomly initialized
transformer backbone, instead of using the pretrained weights.

The results of the ablation studies are reported in Figure 5.9 and Figure 5.10,
where the summarized success rates for each configuration are displayed for the
Lift and PickPlaceCan tasks, respectively. The grouping is the same proposed in
Table 5.13.

The ablation results indicate that, even if the model achieves the highest success
rates when all components are included, the removal of individual components does
not drastically affect the overall performance, especially for the Lift task. The only
exception is represented by the removal of the pretrained weights, which leads to
a significant drop in performance, highlighting the importance of the pretrained
representation for effective learning of generalist agents.

63

Experiments

Figure 5.9: Ablation studies for the Lift task

Figure 5.10: Ablation studies for the PickPlaceCan task
Analyzing the results for the PickPlaceCan task, it is possible to observe a more

pronounced impact of the different components on the performance. In particular,
the removal of the weighted BC loss leads to a significant decrease in success rates,
especially for seen configurations, indicating that this component plays a crucial
role in guiding the model towards effective strategies for the more complex task. On
the other hand, the removal of the contrastive losses and the gripper representation
input has a more moderate effect on performance, suggesting that while these
components contribute to embodiment generalization, they are not as critical as
the weighted BC loss for task success.

Consequently, the use of the contrastive losses can still be considered beneficial,
as a more structured representation space is learned, which may facilitate further
finetuning or adaptation to new tasks and embodiments in future work. Conversely,
the use of the gripper point cloud representation as an additional input is less

64

Experiments

justified, as its removal seems to have a limited impact on the final performance,
and its inclusion does not provide a clear advantage. This suggests that a different
approach might be necessary to effectively incorporate gripper-specific information
into the model, especially considering the proven importance of this aspect in
multi-embodiment manipulation task settings.

Diffusion Action Decoder Ablation

Similar to what was proposed by Ghosh et al. [2], preliminary experiments were
conducted to assess the effectiveness of employing a diffusion-based action decoder
instead of a standard regression-based action decoder. As discussed in previous
sections, the diffusion-based decoder is expected to better capture the multimodal
nature of the action distribution and to leave more flexibility to the transformer
backbone in structuring the learned representation space. This aspect was partic-
ularly considered important given the multi-embodiment nature of the problem
addressed in this work.

Indeed, during preliminary experiments, when employing a simple MLP-based
action decoder, the model struggled to learn effective policies, achieving lower task
performance and less structured representations. Following these observations, the
diffusion-based action decoder was adopted for all the experiments reported in this
work, and the MLP-based decoder was not considered further.

65

Chapter 6

Conclusions

6.1 Discussion

This thesis addresses the challenge of cross-embodiment generalization in robotic
manipulation, focusing on two main contributions: a novel dataset generation and
knowledge transfer pipeline for RL training, and a contrastive, language-conditioned
vision-based policy architecture for multi-embodiment control.

The first contribution proved to be a powerful tool for overcoming the scarcity
of embodiment-diverse datasets. By aligning state and action spaces and leveraging
advantage-weighted behavioral cloning, the approach enabled efficient RL even
for the more complex PickPlaceCan task. The experiments showed that this
pipeline not only accelerates learning but also mitigates common issues such as
reward hacking and pathological movements, with respect to pure RL. However,
the quality of the adapted demonstrations and the differences between source and
target embodiments remain critical. Additionally, when generating the dataset, the
demonstration quality is higher than standard RL exploration, but still sub-optimal
with respect to expert performance, which can hinder subsequent learning.

Regarding the vision-based policy, the contrastive supervised learning framework
successfully created a shared representation space that facilitated generalization
across multiple embodiments. The use of a diffusion model for action generation
allowed for flexible and expressive control, while the language conditioning enabled
task versatility. The experimental results demonstrated strong performance on both
seen and unseen robot-gripper-task combinations for the Lift task, highlighting
the potential of the method for cross-embodiment generalization. Nonetheless,
challenges remain in scaling to more complex tasks, such as PickPlaceCan, where
performance dropped notably. This suggests that while the architecture is promising,
further refinements are needed to handle manipulation scenarios where precise
object interactions and movement are critical.

66

Conclusions

Those findings underscore the importance of high-quality demonstrations, robust
representation learning, and the need for architectures that can effectively capture
the nuances of complex tasks to achieve reliable cross-embodiment generalization.
Although significant progress has been made, the limitations observed provide some
clear directions for future research.

6.2 Future Directions
Building on the insights gained from this thesis, several future research directions
can be pursued:

• Knowledge Transfer Enhancements: Explore more advanced techniques
to re-utilize knowledge acquired from previous embodiments and tasks, such
as meta-learning or continual learning approaches, to further improve sample
efficiency and adaptability of state-based RL agents.

• Dataset Quality and Scalability: Investigate methods to enhance the
quality of the generated demonstrations. Additionally, understand if it is
possible to obtain similar performance with smaller datasets, without every
possible robot-gripper-task combination included, enabling better scalability
to a wider range of embodiments and tasks.

• Complex Task Handling: Investigate enhancements to the vision-based
policy architecture and training procedures to better handle complex tasks
such as PickPlaceCan. This could involve incorporating hierarchical learning,
or exploring alternatives to include RL in the training process.

• Real-World Deployment: Even if the vision-based policy was pretrained
with real-world demonstrations, the proposed approach has only been validated
in simulated environments. Future work could focus on transferring the learned
policies to real robotic systems to assess their performance and adaptability
in practical scenarios.

67

Appendix A

Appendix

A.1 Vision-Based Policy Additional Experiments
In this section, additional experiments related to the vision-based policy are
reported. In particular, the use of multiple diffusion heads for action generation, as
well as the possibility of further finetuning the model using RL after the supervised
training phase, are discussed. Finally, the inclusion of state-based inputs alongside
visual observations is considered.

A.1.1 Multiple Action Heads
While developing the vision-based policy architecture described in Section 4.3,
different design choices were explored. One such choice that is worth mentioning
is the use of multiple diffusion heads for action generation, each specialized for
a specific gripper type, instead of a single shared diffusion head for all grippers.
The rationale behind this experiment is that different grippers may require distinct
action distributions due to their unique kinematics and interaction capabilities,
and thus having separate heads could potentially improve performance. The idea is
also motivated by prior works [43, 52], which propose using different policy heads
for different embodiments.

For this experiment, the model is finetuned using the same training procedure as
described in Section 4.3, with the only difference being the use of separate diffusion
heads for each gripper type, computing the loss for different grippers through
masking. Even though the training converged successfully, the evaluation results
showed no significant improvement compared to the single-head architecture, but
rather a slight decrease in performance even when dealing with the easier Lift
task. This suggests that the additional complexity introduced by multiple heads is
not beneficial in this context, possibly due to the fact that the diffusion model is

68

Appendix

already capable of capturing the necessary variations in action distributions across
different grippers within a single head.

Additionally, using multiple heads increases the model size and computational
requirements, but also significantly limits the ability to generalize, since unseen
grippers cannot be handled without a dedicated head. Therefore, the single-head
architecture was preferred for its simplicity, efficiency, and better generalization
capabilities.

A.1.2 RL Finetuning

After the supervised finetuning of the vision-based policy, an additional RL finetun-
ing phase was explored to further improve the agent’s performance, especially for
the more complex PickPlaceCan task. The idea was to leverage the trained model
as a strong initialization point and then refine the policy using RL techniques. The
RL finetuning was performed optimizing only the diffusion head parameters, while
keeping the rest of the model frozen, to reduce the computational complexity and
avoid catastrophic forgetting of the learned representations.

Mainly online RL methods were considered, due to the fact that through the
employment of weighted BC during the supervised training phase, the model
has already been using most of the available information from the dataset. The
procedures tested included a variation of the PPO algorithm specifically designed
for diffusion policies [73], as well as a simpler TD3-based approach where the base
imitation learning policy was used to aid the RL-head exploration process [59].

The tests were performed only on the PickPlaceCan task, since the Lift task
was already solved with high success rates. However, the results did not show
any significant improvement over the purely supervised finetuned model, with the
performance remaining roughly the same. This could be due to several factors,
including the limited exploration capabilities of the diffusion head when the rest
of the model is frozen, providing an insufficient representation for an effective RL
optimization. Indeed, as previously mentioned, the model seems to struggle to
capture the can position, and this issue might be the limiting factor for this kind
of approach.

Future work could explore different strategies to integrate RL into the training
process, such as complete finetuning of the entire model as proposed by Wang et
al. [74], at the cost of increased computational requirements, or reducing model
size and complexity.

69

Appendix

A.1.3 State Inputs
Another additional experiment involved augmenting the vision-based policy with
state-based inputs alongside visual observations. The motivation behind this ap-
proach is that state information, such as robot end-effector position and orientation,
can provide valuable context that may enhance the policy’s decision-making capabil-
ities, especially in complex manipulation tasks. The state inputs were concatenated
to the other input embeddings as additional tokens before being processed by
the ViT backbone. The rest of the architecture and training procedure remained
unchanged from the original vision-based policy.

The results from this experiment, compared with the standard vision-based
policy, are summarized in Table A.1.
Table A.1: Vision-Based Policy Performance With State Inputs VS Without
State Inputs

Task Method Total
SR (%)

Seen
SR (%)

Unseen
SR (%)

Lift Reference 53.33 71.67 41.11
+ State Inputs 48.33 75.83 30.0

PickPlaceCan Reference 12.33 21.67 6.11
+ State Inputs 11.00 19.17 5.56

As is clear from the results, the inclusion of state inputs does not lead to
significant performance improvements compared to the standard vision-based
policy. While there is a slight increase in success rates for seen configurations in the
Lift task, there are some decreases in performance in the other settings, especially
for unseen Lift configurations. This suggests that while state information can
provide additional context, the vision-based policy is already capable of extracting
sufficient information from visual observations alone. Moreover, the addition of
state inputs might introduce redundancy or even confusion in the learning process,
potentially hindering the model’s ability to generalize effectively across different
embodiments and tasks.

A.2 Additional Figures and Results
In this section, additional figures and results related to the methodology and
experiments are provided for completeness.

70

Appendix

Figure A.1: Overview of the vision-based multi-embodiment policy architecture
in horizontal format for better readability, as an alternative to Figure 4.2.

71

Appendix

Figure A.2: Visualization of all robot-gripper configurations solved by the state-
based agents for the Lift task.

72

Appendix

Figure A.3: Visualization of all robot-gripper configurations solved by the state-
based agents for the PickPlaceCan task.

73

Appendix

Figure A.4: Visualization of all robot-gripper configurations (5 robots × 6
grippers) considered in the experiments with the vision-based policy. The unseen
components during training are reported in blue in the titles of each image.

74

Appendix

Table A.2: Vision-Based Multi-Embodiment Per-Configuration Performance
Evaluations

Robot Gripper Lift
SR (%)

PickPlaceCan
SR (%)

Panda

Panda 90 20
Rethink 20 20

Robotiq140 100 0
RobotiqThreeFinger 100 40

Robotiq85 60 0
JacoThreeFinger 0 0

IIWA

Panda 60 20
Rethink 60 0

Robotiq140 80 20
RobotiqThreeFinger 90 50

Robotiq85 90 20
JacoThreeFinger 0 0

Jaco

Panda 80 10
Rethink 40 0

Robotiq140 80 70
RobotiqThreeFinger 60 10

Robotiq85 80 30
JacoThreeFinger 0 0

UR5e

Panda 0 0
Rethink 10 0

Robotiq140 30 0
RobotiqThreeFinger 80 0

Robotiq85 0 0
JacoThreeFinger 0 0

Kinova3

Panda 60 20
Rethink 40 0

Robotiq140 100 10
RobotiqThreeFinger 100 20

Robotiq85 80 10
JacoThreeFinger 10 0

75

Bibliography

[1] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. u. Kaiser, and I. Polosukhin, «Attention is all you need», in Advances in
Neural Information Processing Systems, vol. 30, Curran Associates, Inc., 2017
(cit. on pp. 4, 6).

[2] D. Ghosh et al., «Octo: An open-source generalist robot policy», in Robotics:
Science and Systems XX, Robotics: Science and Systems Foundation, Jul. 15,
2024, isbn: 979-8-9902848-0-7. doi: 10.15607/RSS.2024.XX.090 (cit. on
pp. 6, 8, 18, 20, 22, 33, 34, 51, 62, 65).

[3] A. Dosovitskiy et al., «An image is worth 16x16 words: Transformers for
image recognition at scale», presented at the International Conference on
Learning Representations, Oct. 2, 2020 (cit. on pp. 6, 7, 22, 51).

[4] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, BERT: Pre-training of
deep bidirectional transformers for language understanding, May 24, 2019.
doi: 10.48550/arXiv.1810.04805. arXiv: 1810.04805[cs] (cit. on p. 7).

[5] J. Ho, A. Jain, and P. Abbeel, «Denoising diffusion probabilistic models», in
Advances in Neural Information Processing Systems, vol. 33, Curran Asso-
ciates, Inc., 2020, pp. 6840–6851 (cit. on pp. 7, 51).

[6] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra,
and M. Riedmiller, Playing atari with deep reinforcement learning, Dec. 19,
2013. doi: 10.48550/arXiv.1312.5602. arXiv: 1312.5602[cs] (cit. on
p. 11).

[7] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, Proximal
policy optimization algorithms, Aug. 28, 2017. doi: 10.48550/arXiv.1707.
06347. arXiv: 1707.06347[cs] (cit. on p. 11).

[8] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, «Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor», in
Proceedings of the 35th International Conference on Machine Learning, ISSN:
2640-3498, PMLR, Jul. 3, 2018, pp. 1861–1870 (cit. on pp. 12, 28).

76

https://doi.org/10.15607/RSS.2024.XX.090
https://doi.org/10.48550/arXiv.1810.04805
https://arxiv.org/abs/1810.04805 [cs]
https://doi.org/10.48550/arXiv.1312.5602
https://arxiv.org/abs/1312.5602 [cs]
https://doi.org/10.48550/arXiv.1707.06347
https://doi.org/10.48550/arXiv.1707.06347
https://arxiv.org/abs/1707.06347 [cs]

BIBLIOGRAPHY

[9] T. Haarnoja et al., Soft actor-critic algorithms and applications, Jan. 29, 2019.
doi: 10.48550/arXiv.1812.05905. arXiv: 1812.05905[cs] (cit. on pp. 12,
15, 28).

[10] D. P. Kingma and M. Welling, «Auto-encoding variational bayes», Dec. 23,
2013 (cit. on p. 14).

[11] Y. Bengio, A. Courville, and P. Vincent, «Representation learning: A review
and new perspectives», IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 35, no. 8, pp. 1798–1828, Aug. 2013, issn: 1939-3539. doi:
10.1109/TPAMI.2013.50 (cit. on p. 17).

[12] C. D’Eramo, D. Tateo, A. Bonarini, M. Restelli, and J. Peters, «Sharing
knowledge in multi-task deep reinforcement learning», presented at the In-
ternational Conference on Learning Representations, Sep. 23, 2019 (cit. on
p. 18).

[13] R. Boige, Y. Flet-Berliac, A. Flajolet, G. Richard, and T. Pierrot, PASTA:
Pretrained action-state transformer agents, Dec. 4, 2023. doi: 10.48550/
arXiv.2307.10936. arXiv: 2307.10936[cs] (cit. on p. 18).

[14] C. Ying, Z. Hao, X. Zhou, X. Xu, H. Su, X. Zhang, and J. Zhu, PEAC: Un-
supervised pre-training for cross-embodiment reinforcement learning, Nov. 18,
2024. doi: 10.48550/arXiv.2405.14073. arXiv: 2405.14073[cs] (cit. on
p. 18).

[15] T. Zhao, V. Kumar, S. Levine, and C. Finn, «Learning fine-grained bimanual
manipulation with low-cost hardware», in Robotics: Science and Systems
XIX, Robotics: Science and Systems Foundation, Jul. 10, 2023, isbn: 978-
0-9923747-9-2. doi: 10.15607/RSS.2023.XIX.016 (cit. on pp. 19, 20, 35,
36).

[16] C. Chi, S. Feng, Y. Du, Z. Xu, E. Cousineau, B. C. Burchfiel, and S. Song,
«Diffusion policy: Visuomotor policy learning via action diffusion», presented
at the Robotics: Science and Systems XIX, vol. 19, Jul. 10, 2023, isbn:
978-0-9923747-9-2 (cit. on p. 20).

[17] H. He, C. Bai, K. Xu, Z. Yang, W. Zhang, D. Wang, B. Zhao, and X. Li,
«Diffusion model is an effective planner and data synthesizer for multi-task
reinforcement learning», in Proceedings of the 37th International Conference
on Neural Information Processing Systems, ser. NIPS ’23, Red Hook, NY,
USA: Curran Associates Inc., Dec. 10, 2023, pp. 64 896–64 917 (cit. on p. 20).

[18] Z. Liang, Y. Mu, M. Ding, F. Ni, M. Tomizuka, and P. Luo, «AdaptDiffuser:
Diffusion models as adaptive self-evolving planners», in Proceedings of the
40th International Conference on Machine Learning, ISSN: 2640-3498, PMLR,
Jul. 3, 2023, pp. 20 725–20 745 (cit. on p. 20).

77

https://doi.org/10.48550/arXiv.1812.05905
https://arxiv.org/abs/1812.05905 [cs]
https://doi.org/10.1109/TPAMI.2013.50
https://doi.org/10.48550/arXiv.2307.10936
https://doi.org/10.48550/arXiv.2307.10936
https://arxiv.org/abs/2307.10936 [cs]
https://doi.org/10.48550/arXiv.2405.14073
https://arxiv.org/abs/2405.14073 [cs]
https://doi.org/10.15607/RSS.2023.XIX.016

BIBLIOGRAPHY

[19] Y. Ze, G. Zhang, K. Zhang, C. Hu, M. Wang, and H. Xu, «3d diffusion policy:
Generalizable visuomotor policy learning via simple 3d representations»,
presented at the Robotics: Science and Systems XX, vol. 20, Jul. 15, 2024,
isbn: 979-8-9902848-0-7 (cit. on p. 20).

[20] D. Morrison, J. Leitner, and P. Corke, «Closing the loop for robotic grasping:
A real-time, generative grasp synthesis approach», presented at the Robotics:
Science and Systems XIV, vol. 14, Jun. 26, 2018, isbn: 978-0-9923747-4-7
(cit. on p. 20).

[21] H. Kasaei and M. Kasaei, MVGrasp: Real-time multi-view 3d object grasping
in highly cluttered environments, Oct. 5, 2022. doi: 10.48550/arXiv.2103.
10997. arXiv: 2103.10997[cs] (cit. on p. 20).

[22] S. Song, A. Zeng, J. Lee, and T. Funkhouser, «Grasping in the wild: Learning
6dof closed-loop grasping from low-cost demonstrations», IEEE Robotics and
Automation Letters, vol. 5, no. 3, pp. 4978–4985, Jul. 2020, issn: 2377-3766.
doi: 10.1109/LRA.2020.3004787 (cit. on p. 20).

[23] W. Yuan, A. Murali, A. Mousavian, and D. Fox, «M2t2: Multi-task masked
transformer for object-centric pick and place», presented at the 7th Annual
Conference on Robot Learning, Aug. 30, 2023 (cit. on p. 20).

[24] L. Shao, F. Ferreira, M. Jorda, V. Nambiar, J. Luo, E. Solowjow, J. A. Ojea,
O. Khatib, and J. Bohg, «UniGrasp: Learning a unified model to grasp with
multifingered robotic hands», IEEE Robotics and Automation Letters, vol. 5,
no. 2, pp. 2286–2293, Apr. 2020, issn: 2377-3766. doi: 10.1109/LRA.2020.
2969946 (cit. on pp. 21, 38).

[25] Z. Xu, B. Qi, S. Agrawal, and S. Song, «AdaGrasp: Learning an adaptive
gripper-aware grasping policy», in 2021 IEEE International Conference on
Robotics and Automation (ICRA), ISSN: 2577-087X, May 2021, pp. 4620–4626.
doi: 10.1109/ICRA48506.2021.9560833 (cit. on pp. 21, 38).

[26] N. Khargonkar, N. Song, Z. Xu, B. Prabhakaran, and Y. Xiang, «Neural-
Grasps: Learning implicit representations for grasps of multiple robotic hands»,
in Proceedings of The 6th Conference on Robot Learning, ISSN: 2640-3498,
PMLR, Mar. 6, 2023, pp. 516–526 (cit. on p. 21).

[27] T. B. Brown et al., «Language models are few-shot learners», in Proceedings of
the 34th International Conference on Neural Information Processing Systems,
ser. NIPS ’20, Red Hook, NY, USA: Curran Associates Inc., Dec. 6, 2020,
pp. 1877–1901, isbn: 978-1-7138-2954-6 (cit. on p. 21).

[28] D. Hernandez, J. Kaplan, T. Henighan, and S. McCandlish, Scaling laws
for transfer, Feb. 2, 2021. doi: 10.48550/arXiv.2102.01293. arXiv: 2102.
01293[cs] (cit. on p. 21).

78

https://doi.org/10.48550/arXiv.2103.10997
https://doi.org/10.48550/arXiv.2103.10997
https://arxiv.org/abs/2103.10997 [cs]
https://doi.org/10.1109/LRA.2020.3004787
https://doi.org/10.1109/LRA.2020.2969946
https://doi.org/10.1109/LRA.2020.2969946
https://doi.org/10.1109/ICRA48506.2021.9560833
https://doi.org/10.48550/arXiv.2102.01293
https://arxiv.org/abs/2102.01293 [cs]
https://arxiv.org/abs/2102.01293 [cs]

BIBLIOGRAPHY

[29] S. Reed et al., «A generalist agent», Transactions on Machine Learning
Research, Aug. 29, 2022, issn: 2835-8856 (cit. on p. 21).

[30] A. Brohan et al., «RT-1: Robotics transformer for real-world control at
scale», in Robotics: Science and Systems XIX, Robotics: Science and Systems
Foundation, Jul. 10, 2023, isbn: 978-0-9923747-9-2. doi: 10.15607/RSS.2023.
XIX.025 (cit. on p. 21).

[31] K. Bousmalis et al., «RoboCat: A self-improving generalist agent for robotic
manipulation», Transactions on Machine Learning Research, Sep. 6, 2023,
issn: 2835-8856 (cit. on p. 21).

[32] R. Yang, G. Chen, C. Wen, and Y. Gao, FP3: A 3d foundation policy for
robotic manipulation, Mar. 11, 2025. doi: 10.48550/arXiv.2503.08950.
arXiv: 2503.08950[cs] (cit. on p. 21).

[33] A. O’Neill et al., «Open x-embodiment: Robotic learning datasets and RT-x
models : Open x-embodiment collaboration0», in 2024 IEEE International
Conference on Robotics and Automation (ICRA), May 2024, pp. 6892–6903.
doi: 10.1109/ICRA57147.2024.10611477 (cit. on pp. 22, 34).

[34] S. Dasari, F. Ebert, S. Tian, S. Nair, B. Bucher, K. Schmeckpeper, S. Singh,
S. Levine, and C. Finn, «RoboNet: Large-scale multi-robot learning», in
Proceedings of the Conference on Robot Learning, ISSN: 2640-3498, PMLR,
May 12, 2020, pp. 885–897 (cit. on p. 22).

[35] H. Niu, J. Hu, G. Zhou, and X. Zhan, A comprehensive survey of cross-domain
policy transfer for embodied agents, Aug. 27, 2024. doi: 10.48550/arXiv.
2402.04580. arXiv: 2402.04580[cs] (cit. on p. 22).

[36] W. Liu, H. Zhao, C. Li, J. Biswas, S. Pouya, and Y. Chang, COMPASS:
Cross-embodiment mobility policy via residual RL and skill synthesis, Feb. 22,
2025. doi: 10.48550/arXiv.2502.16372. arXiv: 2502.16372[cs] (cit. on
p. 23).

[37] R. Doshi, H. Walke, O. Mees, S. Dasari, and S. Levine, Scaling cross-embodied
learning: One policy for manipulation, navigation, locomotion and aviation,
Aug. 21, 2024. doi: 10.48550/arXiv.2408.11812. arXiv: 2408.11812[cs]
(cit. on p. 23).

[38] J. Yang, C. Glossop, A. Bhorkar, D. Shah, Q. Vuong, C. Finn, D. Sadigh, and
S. Levine, Pushing the limits of cross-embodiment learning for manipulation
and navigation, Feb. 29, 2024. doi: 10.48550/arXiv.2402.19432. arXiv:
2402.19432[cs] (cit. on p. 23).

[39] K. Zakka, A. Zeng, P. Florence, J. Tompson, J. Bohg, and D. Dwibedi,
XIRL: Cross-embodiment inverse reinforcement learning, Dec. 13, 2021. doi:
10.48550/arXiv.2106.03911. arXiv: 2106.03911[cs] (cit. on p. 23).

79

https://doi.org/10.15607/RSS.2023.XIX.025
https://doi.org/10.15607/RSS.2023.XIX.025
https://doi.org/10.48550/arXiv.2503.08950
https://arxiv.org/abs/2503.08950 [cs]
https://doi.org/10.1109/ICRA57147.2024.10611477
https://doi.org/10.48550/arXiv.2402.04580
https://doi.org/10.48550/arXiv.2402.04580
https://arxiv.org/abs/2402.04580 [cs]
https://doi.org/10.48550/arXiv.2502.16372
https://arxiv.org/abs/2502.16372 [cs]
https://doi.org/10.48550/arXiv.2408.11812
https://arxiv.org/abs/2408.11812 [cs]
https://doi.org/10.48550/arXiv.2402.19432
https://arxiv.org/abs/2402.19432 [cs]
https://doi.org/10.48550/arXiv.2106.03911
https://arxiv.org/abs/2106.03911 [cs]

BIBLIOGRAPHY

[40] M. Xu, Z. Xu, C. Chi, M. Veloso, and S. Song, XSkill: Cross embodiment
skill discovery, Sep. 28, 2023. doi: 10.48550/arXiv.2307.09955. arXiv:
2307.09955[cs] (cit. on p. 23).

[41] S. Nair, A. Rajeswaran, V. Kumar, C. Finn, and A. Gupta, «R3m: A universal
visual representation for robot manipulation», in Proceedings of The 6th
Conference on Robot Learning, ISSN: 2640-3498, PMLR, Mar. 6, 2023, pp. 892–
909 (cit. on p. 23).

[42] A. v. d. Oord, Y. Li, and O. Vinyals, Representation learning with contrastive
predictive coding, Jan. 22, 2019. doi: 10.48550/arXiv.1807.03748. arXiv:
1807.03748[cs] (cit. on pp. 23, 39).

[43] T. Wang, D. Bhatt, X. Wang, and N. Atanasov, Cross-embodiment robot
manipulation skill transfer using latent space alignment, Jun. 4, 2024. doi:
10.48550/arXiv.2406.01968. arXiv: 2406.01968[cs] (cit. on pp. 23, 68).

[44] A. Gupta, L. Fan, S. Ganguli, and L. Fei-Fei, «MetaMorph: Learning universal
controllers with transformers», presented at the International Conference on
Learning Representations, Oct. 6, 2021 (cit. on p. 24).

[45] S. Cho, D. Kim, J. Lee, and S. Hong, Meta-controller: Few-shot imitation
of unseen embodiments and tasks in continuous control, Dec. 10, 2024. doi:
10.48550/arXiv.2412.12147. arXiv: 2412.12147[cs] (cit. on p. 24).

[46] B. Trabucco, M. Phielipp, and G. Berseth, «AnyMorph: Learning transferable
polices by inferring agent morphology», in Proceedings of the 39th Interna-
tional Conference on Machine Learning, ISSN: 2640-3498, PMLR, Jun. 28,
2022, pp. 21 677–21 691 (cit. on p. 24).

[47] B. Li, H. Li, Y. Zhu, and D. Zhao, «MAT: Morphological adaptive transformer
for universal morphology policy learning», IEEE Transactions on Cognitive
and Developmental Systems, vol. 16, no. 4, pp. 1611–1621, Aug. 2024, issn:
2379-8939. doi: 10.1109/TCDS.2024.3383158 (cit. on p. 24).

[48] N. Bohlinger, G. Czechmanowski, M. Krupka, P. Kicki, K. Walas, J. Peters,
and D. Tateo, One policy to run them all: An end-to-end learning approach
to multi-embodiment locomotion, Apr. 1, 2025. doi: 10.48550/arXiv.2409.
06366. arXiv: 2409.06366[cs] (cit. on p. 24).

[49] E. S. Hu, K. Huang, O. Rybkin, and D. Jayaraman, «Know thyself: Transfer-
able visual control policies through robot-awareness», presented at the ICLR
2022 Workshop on Generalizable Policy Learning in Physical World, Apr. 27,
2022 (cit. on p. 24).

80

https://doi.org/10.48550/arXiv.2307.09955
https://arxiv.org/abs/2307.09955 [cs]
https://doi.org/10.48550/arXiv.1807.03748
https://arxiv.org/abs/1807.03748 [cs]
https://doi.org/10.48550/arXiv.2406.01968
https://arxiv.org/abs/2406.01968 [cs]
https://doi.org/10.48550/arXiv.2412.12147
https://arxiv.org/abs/2412.12147 [cs]
https://doi.org/10.1109/TCDS.2024.3383158
https://doi.org/10.48550/arXiv.2409.06366
https://doi.org/10.48550/arXiv.2409.06366
https://arxiv.org/abs/2409.06366 [cs]

BIBLIOGRAPHY

[50] L. Y. Chen, K. Dharmarajan, K. Hari, C. Xu, Q. Vuong, and K. Goldberg,
«MIRAGE: Cross-embodiment zero-shot policy transfer with cross-painting»,
presented at the Robotics: Science and Systems XX, vol. 20, Jul. 15, 2024,
isbn: 979-8-9902848-0-7 (cit. on pp. 24, 36).

[51] S. Dasari, M. K. Srirama, U. Jain, and A. Gupta, «An unbiased look at
datasets for visuo-motor pre-training», presented at the 7th Annual Conference
on Robot Learning, Aug. 30, 2023 (cit. on p. 24).

[52] J. H. Yang, D. Sadigh, and C. Finn, «Polybot: Training one policy across
robots while embracing variability», in Proceedings of The 7th Conference
on Robot Learning, ISSN: 2640-3498, PMLR, Dec. 2, 2023, pp. 2955–2974
(cit. on pp. 25, 38, 68).

[53] X. B. Peng, A. Kumar, G. Zhang, and S. Levine, «Advantage-weighted
regression: Simple and scalable off-policy reinforcement learning», Oct. 2,
2020 (cit. on pp. 25, 42).

[54] S. Fujimoto, D. Meger, and D. Precup, «Off-policy deep reinforcement learning
without exploration», in Proceedings of the 36th International Conference on
Machine Learning, ISSN: 2640-3498, PMLR, May 24, 2019, pp. 2052–2062
(cit. on p. 25).

[55] I. Kostrikov, A. Nair, and S. Levine, «Offline reinforcement learning with
implicit q-learning», presented at the International Conference on Learning
Representations, Oct. 6, 2021 (cit. on p. 25).

[56] A. Nair, B. McGrew, M. Andrychowicz, W. Zaremba, and P. Abbeel, «Over-
coming exploration in reinforcement learning with demonstrations», in 2018
IEEE International Conference on Robotics and Automation (ICRA), ISSN:
2577-087X, May 2018, pp. 6292–6299. doi: 10.1109/ICRA.2018.8463162
(cit. on p. 25).

[57] A. Nair, A. Gupta, M. Dalal, and S. Levine, AWAC: Accelerating online
reinforcement learning with offline datasets, Apr. 24, 2021. doi: 10.48550/
arXiv.2006.09359. arXiv: 2006.09359[cs] (cit. on pp. 25, 30).

[58] P. J. Ball, L. Smith, I. Kostrikov, and S. Levine, «Efficient online reinforcement
learning with offline data», in Proceedings of the 40th International Conference
on Machine Learning, ISSN: 2640-3498, PMLR, Jul. 3, 2023, pp. 1577–1594
(cit. on p. 25).

[59] H. Hu, S. Mirchandani, and D. Sadigh, «Imitation bootstrapped reinforcement
learning», Oct. 13, 2023 (cit. on pp. 25, 69).

81

https://doi.org/10.1109/ICRA.2018.8463162
https://doi.org/10.48550/arXiv.2006.09359
https://doi.org/10.48550/arXiv.2006.09359
https://arxiv.org/abs/2006.09359 [cs]

BIBLIOGRAPHY

[60] Y. Lu et al., «Imitation is not enough: Robustifying imitation with reinforce-
ment learning for challenging driving scenarios», in 2023 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), ISSN: 2153-0866,
Oct. 2023, pp. 7553–7560. doi: 10.1109/IROS55552.2023.10342038 (cit. on
pp. 25, 30).

[61] Y.-H. Wu, N. Charoenphakdee, H. Bao, V. Tangkaratt, and M. Sugiyama,
«Imitation learning from imperfect demonstration», in Proceedings of the 36th
International Conference on Machine Learning, ISSN: 2640-3498, PMLR,
May 24, 2019, pp. 6818–6827 (cit. on p. 26).

[62] H. Xu, X. Zhan, H. Yin, and H. Qin, «Discriminator-weighted offline imita-
tion learning from suboptimal demonstrations», presented at the Deep RL
Workshop NeurIPS 2021, Dec. 13, 2021 (cit. on p. 26).

[63] Y. Zhu, J. Wong, A. Mandlekar, R. Martín-Martín, A. Joshi, K. Lin, A.
Maddukuri, S. Nasiriany, and Y. Zhu, Robosuite: A modular simulation
framework and benchmark for robot learning, Jan. 18, 2025. doi: 10.48550/
arXiv.2009.12293. arXiv: 2009.12293[cs] (cit. on pp. 31, 43).

[64] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou,
W. Li, and P. J. Liu, «Exploring the limits of transfer learning with a unified
text-to-text transformer», Journal of Machine Learning Research, vol. 21,
no. 140, pp. 1–67, 2020, issn: 1533-7928 (cit. on pp. 33, 51).

[65] R. Q. Charles, H. Su, M. Kaichun, and L. J. Guibas, «PointNet: Deep learning
on point sets for 3d classification and segmentation», in 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), ISSN: 1063-6919, Jul.
2017, pp. 77–85. doi: 10.1109/CVPR.2017.16 (cit. on p. 37).

[66] R. Salakhutdinov and G. Hinton, «Learning a nonlinear embedding by pre-
serving class neighbourhood structure», in Proceedings of the Eleventh Inter-
national Conference on Artificial Intelligence and Statistics, ISSN: 1938-7228,
PMLR, Mar. 11, 2007, pp. 412–419 (cit. on p. 39).

[67] N. Frosst, N. Papernot, and G. Hinton, «Analyzing and improving repre-
sentations with the soft nearest neighbor loss», in Proceedings of the 36th
International Conference on Machine Learning, ISSN: 2640-3498, PMLR,
May 24, 2019, pp. 2012–2020 (cit. on p. 39).

[68] S. Lee, T. Park, and K. Lee, «Soft contrastive learning for time series»,
International Conference on Representation Learning, vol. 2024, pp. 46 815–
46 839, May 31, 2024 (cit. on p. 39).

[69] E. Todorov, T. Erez, and Y. Tassa, «MuJoCo: A physics engine for model-
based control», in 2012 IEEE/RSJ International Conference on Intelligent
Robots and Systems, ISSN: 2153-0866, Oct. 2012, pp. 5026–5033. doi: 10.
1109/IROS.2012.6386109 (cit. on p. 43).

82

https://doi.org/10.1109/IROS55552.2023.10342038
https://doi.org/10.48550/arXiv.2009.12293
https://doi.org/10.48550/arXiv.2009.12293
https://arxiv.org/abs/2009.12293 [cs]
https://doi.org/10.1109/CVPR.2017.16
https://doi.org/10.1109/IROS.2012.6386109
https://doi.org/10.1109/IROS.2012.6386109

BIBLIOGRAPHY

[70] A. Mandlekar et al., «What matters in learning from offline human demonstra-
tions for robot manipulation», in Proceedings of the 5th Conference on Robot
Learning, ISSN: 2640-3498, PMLR, Jan. 11, 2022, pp. 1678–1690 (cit. on
p. 44).

[71] I. Loshchilov and F. Hutter, «Decoupled weight decay regularization», pre-
sented at the International Conference on Learning Representations, Sep. 27,
2018 (cit. on pp. 46, 52).

[72] A. Q. Nichol and P. Dhariwal, «Improved denoising diffusion probabilistic
models», in Proceedings of the 38th International Conference on Machine
Learning, ISSN: 2640-3498, PMLR, Jul. 1, 2021, pp. 8162–8171 (cit. on p. 51).

[73] A. Z. Ren, J. Lidard, L. L. Ankile, A. Simeonov, P. Agrawal, A. Majumdar,
B. Burchfiel, H. Dai, and M. Simchowitz, «Diffusion policy policy optimiza-
tion», presented at the The Thirteenth International Conference on Learning
Representations, Oct. 4, 2024 (cit. on p. 69).

[74] C. Wang, X. Luo, K. W. Ross, and D. Li, «VRL3: A data-driven framework
for visual deep reinforcement learning», presented at the Advances in Neural
Information Processing Systems, Oct. 31, 2022 (cit. on p. 69).

83

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Preliminaries
	Transformer Model
	Vision Transformer

	Diffusion Models
	Reinforcement Learning
	Taxonomy of RL Algorithms
	Soft Actor-Critic Algorithms

	Imitation Learning
	Advanced Learning Paradigms
	Representation Learning
	Multi-Task Learning

	State of the Art
	Robotic Manipulation Learning
	Diffusion Models for Robotic Manipulation
	Grasping

	Generalist Agents
	Cross-Embodiment Learning
	Knowledge Transfer
	Skill Transfer
	Dynamics Gap Bridging
	Vision Gap Bridging

	Leveraging Demonstrations for Policy Learning
	Reinforcement Learning with Demonstrations
	Weighted Imitation Learning

	Methodology
	State-Based Agents
	State and Action Spaces Alignment
	SAC with Advantage-Weighted BC

	Dataset Generation Procedure
	Vision-Based Multi-Embodiment Policy
	Fine-Tuning Configuration
	Input Modalities
	Contrastive Losses for Embodiment Generalization
	Weighted Behavioral Cloning

	Experiments
	Experimental Setup
	State-Based Agent Training
	Training Results vs Baseline SAC
	Performance Evaluations

	Dataset Generation
	Vision-Based Policy Training
	Representation Learning Settings and Results
	Task Performance Evaluations
	Ablation Studies

	Conclusions
	Discussion
	Future Directions

	Appendix
	Vision-Based Policy Additional Experiments
	Multiple Action Heads
	RL Finetuning
	State Inputs

	Additional Figures and Results

	Bibliography

