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Abstract

Negli ultimi anni, I'Intelligenza Artificiale Generativa (GenAl) ha profondamente trasfor-
mato il ciclo di vita dello sviluppo software (Software Development Life Cycle, SDLC),
offrendo nuove opportunita di automazione e ottimizzazione, ma introducendo al con-
tempo sfide di rilievo di natura tecnica, organizzativa ed etica. La presente tesi analizza
in modo sistematico I'impatto della GenAl sullo sviluppo software, con 'obiettivo di
valutare in che misura gli strumenti basati su Large Language Models (LLM) possano
migliorare i processi, mettendone in evidenza sia i benefici operativi sia le principali
limitazioni tecnologiche e metodologiche.

Il lavoro propone un approccio sperimentale basato sulla progettazione e realizzazione
di un sistema in grado di fornire una visione multilivello dell’evoluzione di un progetto
software. L’architettura & stata implementata impiegando modelli linguistici leggeri,
ottimizzati per I'esecuzione su singola GPU, in modo da garantire la riproducibilita e la
scalabilita del sistema anche in contesti con risorse computazionali limitate. L’architettura
sviluppata combina una pipeline offline, dedicata alla sintesi automatica dei commit e alla
strutturazione delle informazioni di progetto, e una pipeline online, che consente ad un
chatbot agentico di rispondere in linguaggio naturale a domande complesse, coordinando
dinamicamente diversi tool specializzati per il recupero, la contestualizzazione e la
generazione delle risposte. L’obiettivo € analizzare come la GenAl possa fungere da
strumento di supporto cognitivo per sviluppatori e revisori, migliorando la comprensione
dell’evoluzione del codice e la comunicazione all’interno dei team di sviluppo.

La validazione e stata condotta attraverso la creazione di due Golden Standard di
riferimento e 1'utilizzo congiunto di metriche quantitative (ROUGE, BLEU, METEOR,
BERTScore) e qualitative, valutate sia automaticamente (tramite G-Eval) sia tramite
giudizio umano. Per la pipeline offline, i risultati lessicali mostrano valori medi di BERT
compresi tra 0.85 e 0.89, a conferma di una solida corrispondenza semantica tra i riassunti
generati e quelli di riferimento. Le valutazioni qualitative ribadiscono la qualita dei testi
prodotti, con punteggi medi complessivi compresi tra 3.5 e 4 su 5. La pipeline online
ha evidenziato una qualita complessiva delle risposte in linea con quella osservata nella
pipeline offline, sia sul piano lessicale che su quello percettivo, registrando prestazioni
elevate nelle attivita di recupero e generazione, con NDCG@Q10 = 0.85, MAP = 0.81 ¢
un basso tasso di allucinazioni (< 10%).

Il lavoro conferma il potenziale della GenAl come strumento di supporto avanzato per
I'ingegneria del software, capace di migliorare la tracciabilita, la comunicazione e la
qualita dei processi di sviluppo. Le evidenze sperimentali suggeriscono come 1’adozione
di architetture agentiche basate su LLM possa rappresentare un passo concreto verso
sistemi sempre piu intelligenti, trasparenti e integrati nel ciclo di vita del software.
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Capitolo 1

Introduzione

1.1 Scopo della tesi

Nel panorama tecnologico contemporaneo, 'Intelligenza Artificiale Generativa
(GenAl) sta emergendo con forza dirompente, trasformando e ridefinendo con
forza i paradigmi fondamentali sia dei prodotti che dello sviluppo software. Que-
sta evoluzione non rappresenta solo I'introduzione di nuovi strumenti, ma segna
potenzialmente 'inizio di una nuova era nella progettazione, implementazione e
manutenzione dei sistemi. Secondo Gartner, “entro il 2026 oltre 1’'80% delle imprese
utilizzera API o modelli di IA Generativa e/o implementerd applicazioni basate su
di essa in ambienti di produzione”[1].

In un contesto in cui queste tecnologie assumono un ruolo sempre piu centrale,
diventa essenziale comprenderne non solo i vantaggi, ma anche le sfide e i rischi.
La presente tesi si propone di analizzare in modo approfondito e sistematico
I'impatto degli strumenti GenAl sull’intero ciclo di vita dello sviluppo software
(SDLC — Software Development Lifecycle), esplorando le molteplici dimensioni
di questa rivoluzione tecnologica. In particolare, si intende investigare come tali
strumenti stiano trasformando le pratiche tradizionali, rendendo possibili approcci
piu efficienti, automatizzati e innovativi. Verranno analizzati i vantaggi in termini
di produttivita, qualita del codice e ottimizzazione dei tempi, ma anche le criticita
emergenti, come le problematiche legate alla sicurezza, alla qualita del software,
ai diritti d’autore e ai bias insiti nei modelli generativi. Un ulteriore elemento di
analisi riguarda I'impatto organizzativo e culturale dell’introduzione della GenAl
nei processi aziendali: 'adozione di questi strumenti richiede infatti non solo
competenze tecniche adeguate, ma anche una revisione dei processi, dei ruoli e
delle dinamiche di lavoro all’interno dei team di sviluppo.
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Introduzione

Per affiancare alla riflessione teorica un riscontro pratico, la tesi include un caso
di studio sperimentale incentrato sull'uso dei Large Language Models (LLM) per
I’analisi di dati estratti da repository Git, come i messaggi di commit e i diff di
codice. L’obiettivo e esplorare come la GenAl possa supportare e migliorare le
attivita di code review e I'analisi dell’evoluzione di un progetto software. I modelli
vengono impiegati per sintetizzare 'intento delle modifiche, identificare pattern di
sviluppo, raggruppare commit significativi e generare report contestualizzati utili
alla comunicazione tra membri del team. Questo esperimento consente di valutare
concretamente 'efficacia della GenAl nel migliorare trasparenza, tracciabilita e
qualita nei processi di sviluppo.

La rilevanza dello studio e¢ duplice. Da un lato, offre agli sviluppatori strumenti
per un uso piu consapevole ed efficace della GenAl; dall’altro, fornisce alle aziende
indicazioni utili per integrare queste tecnologie nei propri processi produttivi,
massimizzandone i benefici e mitigando i rischi. Infine, la tesi ambisce a contribuire
al dibattito accademico, proponendo un’analisi critica e applicata utile sia ai
ricercatori che ai professionisti del settore.

1.2 Contesto: il ruolo crescente della GenAl
nell’industria del software

Negli ultimi anni, la GenAl ha guadagnato una posizione di primo piano tra
le innovazioni tecnologiche piu promettenti. Strumenti come ChatGPT, Gemini
e Copilot hanno dimostrato la loro efficacia nel supportare i professionisti di
ogni settore in molteplici attivita, tra cui la scrittura automatica di codice, la
generazione di test case e la creazione di documentazione. Questi progressi sono
stati resi possibili grazie ai significativi avanzamenti nel campo dell'Intelligenza
Artificiale, in particolare con l'avvento dei Large Language Models (LLM), capaci
di generare contenuti con un livello di sofisticazione senza precedenti.

In un contesto industriale sempre piu competitivo, 'integrazione di strumenti
GenAl sta contribuendo in maniera profonda a trasformare le metodologie di lavoro
nelle varie fasi del ciclo di vita dello sviluppo software. Dalla raccolta dei requisiti
al testing, fino al rilascio e alla manutenzione, ci si puo avvalere di nuovi strumenti
in grado di supportare e ottimizzare numerosi compiti, migliorando I'efficienza
e aumentando la qualita dei risultati finali. Questo scenario e ulteriormente
dinamizzato dalla rapida evoluzione dei modelli stessi, che diventano sempre piu
performanti e in grado di comprendere il contesto d’uso con maggiore precisione.
Di conseguenza, le organizzazioni devono adottare un approccio flessibile, capace di
adattarsi continuamente per sfruttare appieno il potenziale offerto da tali tecnologie.
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1.3 — Struttura del lavoro

Accanto alle opportunita, emergono tuttavia sfide complesse. Le imprese si trovano
a dover affrontare questioni legate alla proprieta intellettuale, alla sicurezza del
software generato, alla privacy dei dati e alla crescente dipendenza da strumenti
esterni. Inoltre, I'introduzione della GenAl implica spesso cambiamenti culturali
e organizzativi significativi, non sempre privi di resistenze o difficolta operative.
Infine, si aprono interrogativi cruciali sul futuro delle professioni e sull’evoluzione
dei ruoli in un ambiente sempre piu automatizzato.

1.3 Struttura del lavoro

Per affrontare in modo sistematico e approfondito la tematica in oggetto, il lavoro
e stato strutturato in cinque capitoli principali, al fine di garantire una trattazione
organica e coerente.

Il primo capitolo introduce gli obiettivi della tesi, il contesto tecnologico e le
motivazioni alla base dello studio, fornendo una base concettuale solida per la
lettura dei capitoli successivi. Nel secondo capitolo si analizza nel dettaglio come
la GenAl stia trasformando le diverse fasi del ciclo di vita dello sviluppo software,
con l'ausilio di esempi pratici, casi d'uso ed evidenze tratte dalla letteratura. Si
discutono inoltre gli strumenti piu diffusi, le tecniche di prompt engineering e
le principali sfide etiche, tecniche e organizzative. Il terzo capitolo descrive il
progetto sperimentale, illustrando 'applicazione dei LLM per 'analisi dei dati
Git e il supporto alla code review. Viene valutata la capacita dei modelli di
generare insight strutturati, facilitare la comprensione delle modifiche e migliorare
la comunicazione nei team. Il quarto capitolo presenta una discussione critica dei
risultati ottenuti dal caso di studio, mettendoli in relazione con quanto emerso
dalla letteratura esistente, e delineando le principali implicazioni per lo sviluppo
software. Infine, il quinto capitolo sintetizza i risultati della tesi, offrendo spunti
di riflessione per sviluppatori e aziende e suggerendo possibili direzioni per future
ricerche e applicazioni della GenAl nel software engineering.

Nel complesso, la struttura proposta mira a mantenere un equilibrio tra riflessione
teorica e sperimentazione pratica, fornendo una visione completa, integrata e critica
del fenomeno analizzato.






Capitolo 2

GenAl nel ciclo di vita del
software

La crescente integrazione degli strumenti GenAl nel ciclo di vita dello sviluppo
software sta modificando profondamente processi, ruoli e pratiche consolidate. In
questo capitolo analizzeremo come tecnologie quali Copilot e ChatGPT, e piu in
generali i prodotti basati su LLM, stanno intervenendo concretamente nelle diverse
fasi del SDLC, ridefinendone operativita ed efficienza.

Si partira da una breve panoramica sulle fasi tradizionali del ciclo di vita, per poi
esaminare gli impatti piu rilevanti dell’adozione della GenAl: dall’automazione
nella scrittura del codice alla generazione assistita di test e documentazione, fino
al supporto nelle attivita di pianificazione e monitoraggio dei progetti. Verra
inoltre approfondita la disciplina del Prompt Engineering, leva fondamentale per
un utilizzo efficace e controllato dei modelli generativi.

Verranno discussi i principali rischi e le criticita emerse, con particolare attenzione
agli aspetti tecnici, etici e organizzativi. L’obiettivo ¢ tracciare un quadro chia-
ro delle potenzialita e dei limiti attuali, per comprendere appieno come queste
tecnologie stiano progressivamente ridefinendo l'intero sviluppo software.



GenAlI nel ciclo di vita del software

2.1 Panoramica sul ciclo di vita del software
tradizionale

Il ciclo di vita del software (Software Development Life Cycle, SDLC) ¢ un modello
organizzativo che definisce le fasi sequenziali (o iterative) per lo sviluppo, il collaudo
e la manutenzione di un sistema software. Fornisce un processo standard per creare,
testare e distribuire software di alta qualita [2]. Questo processo, pur avendo subito
numerosi adattamenti nel tempo, segue uno schema di base che si articola in una
sequenza di fasi interdipendenti. Ogni fase e progettata per garantire la qualita
e 'affidabilita del prodotto finale, minimizzando al contempo i rischi associati a
eventuali errori o ritardi.

Al fine di garantire una trattazione chiara e lineare, in questa sezione si ¢ scelto di
adottare una suddivisione arbitraria e granulare delle possibili fasi fondamentali:
pianificazione, analisi dei requisiti, progettazione, implementazione, testing, rilascio
e manutenzione. Questa struttura, pur semplificando alcune complessita, offre una
visione efficace delle caratteristiche e delle criticita che si possono riscontrare lungo
I'intero ciclo di vita del software. In questo modo, funge da base utile per poter
poi analizzare e comprendere come la Generative Al possa essere iniettata nelle
attivita delle varie fasi.

Pianificazione

La pianificazione rappresenta la fase iniziale del SDLC, dedicata alla definizione degli
obiettivi, dell’ambito, delle risorse e delle tempistiche di progetto. In questa fase si
svolgono attivita di analisi di fattibilita, stima dei costi e dei tempi, identificazione
dei rischi e dei vincoli di progetto. Si redige un piano di progetto formale che
include, tra I’altro, la descrizione del contesto, ’elenco dei deliverable attesi, i criteri
di successo, le milestone, 'organigramma di progetto e il piano di gestione dei
rischi. Una pianificazione accurata ¢ fondamentale per individuare precocemente
rischi e vincoli e per garantire il controllo di tempi e costi.

Analisi dei requisiti

L’analisi dei requisiti ha ’obiettivo di identificare, documentare e validare le esigenze
funzionali e non funzionali del software. In questa fase gli analisti interagiscono con
gli stakeholder per raccogliere i requisiti mediante tecniche di elicitation (interviste,
questionari, prototipi). L’obiettivo ¢ ottenere una descrizione precisa e condivisa
delle aspettative del progetto, evitando ambiguita che potrebbero compromettere
enormemente le fasi successive. Tali informazioni vengono spesso formalizzate
in uno o piu documenti di specifica dei requisiti, cosi da fornire una base chiara,
completa e verificabile per le attivitd successive. E importante sottolineare come la
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qualita della definizione dei requisiti sia cruciale per il successo del progetto; errori
o ambiguita in questa fase possono compromettere 'intero ciclo di sviluppo.

Progettazione

La fase di progettazione traduce i requisiti funzionali in una struttura architetturale
del sistema e in specifiche di dettaglio. Vengono definiti i componenti principali del
software, le loro interfacce e I'architettura complessiva, spesso mediante diagrammi
UML, prototipi e documenti di design. L’obiettivo ¢ garantire che la soluzione
progettata soddisfi i requisiti di funzionalita, prestazioni e qualita espressi. Una
progettazione accurata ¢ una base fondamentale per favorire la manutenibilita e
I'estensibilita del software. Questa fase include, inoltre, la definizione di standard di
codifica, linee guida progettuali e la valutazione dei trade-off (prestazioni, sicurezza,
scalabilita) necessari per ottenere il miglior compromesso possibile a partire dai
requisiti ricevuti.

Implementazione

Durante I'implementazione, i programmatori sviluppano il codice necessario per
costruire il software, seguendo le specifiche delineate nella progettazione. Questa
fase rappresenta il momento operativo in cui il progetto prende vita, con il codice che
viene scritto, testato e migliorato. Sebbene I'implementazione segua le linee guida
definite, € comunque un processo estremamente dinamico dove spesso emergono sfide
tecniche o nuove esigenze che richiedono possibili affinamenti. La collaborazione
tra i membri del team e quindi fondamentale per garantire che tutte le parti del
sistema siano integrate correttamente. Il risultato finale € un insieme di componenti
software integrati e funzionanti, pronti per essere sottoposti al testing.

Testing

La fase di testing mira a identificare e correggere difetti nel software sviluppato
prima che finisca in ambiente produttivo. Viene condotto per identificare bug,
valutare le prestazioni e garantire che il prodotto soddisfi i requisiti stabiliti. Tutti
i difetti riscontrati vengono tracciati, corretti e ritestati. Ci sono varie tipologie di
test che possono essere condotti. Tra i piu importanti abbiamo quelli che includono
controlli su singoli moduli (unit testing), verifiche sull’integrazione tra i componenti
(integration testing) e test complessivi sul sistema (system testing). A questi si
aggiunge il test di accettazione (acceptance testing), che rappresenta la fase finale
del processo di verifica, dove 1'obiettivo & quello di confermare che il software
soddisfi i requisiti funzionali e non funzionali concordati, nonché le aspettative
degli utenti finali o dei committenti (spesso coinvolge direttamente gli utenti finali,
i quali valutano se il sistema & pronto per 'uso in un ambiente reale). Questa fase
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assicura che il software sia pronto per essere utilizzato senza problemi significativi.
Solo dopo il superamento con successo di tutti i test critici il software puo essere
considerato pronto per il rilascio.

Rilascio

La fase di rilascio consiste nella consegna del software agli utenti finali o nell’am-
biente di produzione. In questa fase si preparano i pacchetti di installazione o le
immagini di sistema, si aggiorna la documentazione tecnica e utente, e si formano
gli operatori di sistema o gli utenti finali. Inoltre, puo prevedere una fase di
deployment controllato con la verifica che il sistema operi correttamente.

Una release di successo si conclude con verifiche post-deployment finalizzate a
confermare 'effettivo funzionamento del software in produzione e I'acquisizione del
feedback iniziale dagli utenti.

Manutenzione

La manutenzione e 1'ultima fase del ciclo di vita, ma non meno importante. Una
volta che il software ¢ stato rilasciato, inizia un processo continuo di monitoraggio
e aggiornamento. Questo include la risoluzione di bug rilevati dopo il rilascio,
I'implementazione di nuove funzionalita e ’adattamento del software ai cambia-
menti tecnologici o alle esigenze degli utenti. La manutenzione assicura che il
prodotto rimanga funzionale, sicuro e rilevante nel tempo, prolungandone la durata
e massimizzando il valore per gli utenti.
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2.2 GenAl e LLM: definizioni e concetti generali

Prima di analizzare nel dettaglio 'impatto della GenAl sulle diverse fasi del SDLC,
fondamentale comprendere i concetti e le terminologie chiave alla base dei principali
modelli generativi sviluppati negli ultimi anni. Questi strumenti rappresentano
un’evoluzione significativa nel campo dell’intelligenza artificiale, distinguendosi per
caratteristiche uniche rispetto ai modelli precedentemente disponibili. Approfondire
il loro funzionamento consente non solo di valutarne i vantaggi e le limitazioni, ma
anche di comprenderne al meglio le potenzialita e le modalita di utilizzo ottimali.

2.2.1 Generative Artificial Intelligence (GenAl)

L’intelligenza artificiale generativa (GenAl) [3] ¢ un ramo dell’intelligenza artificiale
che sfrutta modelli generativi per produrre risultati sotto forma di testo, immagini,
video o altre forme di dati. Il termine “generativo” indica la capacita di questi
modelli di apprendere gli schemi e le strutture sottostanti ai dati di addestramento,
utilizzandoli poi per generare nuovi contenuti in risposta agli input ricevuti, spesso
espressi in linguaggio naturale (prompt). Questi modelli si basano su strutture
statistiche che descrivono la distribuzione congiunta tra una variabile osservabile e
una variabile dipendente, detta anche target. I dati prodotti sono, quindi, generati
a partire dai pattern appresi e, implicitamente, dalla distribuzione sottostante. In
altri termini, i modelli generativi sono degli strumenti che, analizzando grandi
quantita di dati, imparano a prevedere o a creare nuovi dati (variabile target)
basandosi su quelli che hanno gia visto (variabile osservabile). Per fare un’analogia,
¢ un processo simile a quello che potrebbe avere un pittore che vuole dipingere,
ad esempio, dei gatti. Osservando tante immagini di gatti diversi, il pittore sara
in grado di capire quali caratteristiche identificano il concetto di gatto e sara in
grado di riprodurle su tela. L’intelligenza artificiale generativa funziona in modo
simile: osserva tanti dati (come il pittore guarda le immagini) e ne apprende le
caratteristiche principali. Poi usa cio che ha imparato per creare nuovi contenuti
che sono simili a quelli di partenza, proprio come i gatti dipinti dal pittore.

Tali concetti, nonostante possono sembrare ad una prima lettura superflui, pongono
invece le basi ad importanti questioni etiche e sociali legate al diritto d’autore e alla
proprieta del contenuto generato. Inoltre, la natura intrinsecamente statistica di
questi modelli porta alla generazione di output non deterministici, che impongono
un approccio ingegneristico per il loro utilizzo. Entrambe le tematiche verranno
approfondite piu in avanti nella trattazione.

Dal punto di vista tecnico, I’evoluzione della GenAl ¢ stata resa possibile grazie
alla crescente disponibilita di dati e risorse computazionali, oltre che dai progressi
nel campo delle Deep Neural Network. In particolare, un contributo determinante ¢
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Figura 2.1: Storia della Generative Al. Immagine tratta da [4]

stato I'avvento dei modelli basati su Transformer [5], che hanno farvorito lo sviluppo
di Large Language Model (LLM) come GPT (Generative Pre-trained Transformer)
[6] di OpenAl [7]. Tali innovazioni hanno costituito un decisivo avanzamento [4]
tecnologico rispetto alle opzioni precedentemente disponibili, quali Long Short-Term
Memory (LSTM) [8], Variational Autoencoder (VAE) [9] e Generative Adversarial
Network (GAN) [10].

Negli ultimi cinque anni, le capacita di questi modelli hanno registrato una crescita
esponenziale, dimostrando una sempre maggiore capacita di generare contenuti
estremamente realistici e contestualmente coerenti. Questi progressi hanno trovato
applicazione in ambiti quali chatbot avanzati, assistenti virtuali e strumenti di
generazione automatizzata di contenuti. Oltre ai modelli basati sul linguaggio
naturale, le tecnologie di generazione di immagini come DALL-E [7], Midjourney
[11] e Stable Diffusion [12] hanno dimostrato notevoli capacita nel trasformare
descrizioni testuali in immagini altamente dettagliate e realistiche, mentre Sora ha
rappresentato un passo decisivo nella creazione di contenuti video.

Ed e qui che spunta un altro aspetto chiave dei prodotti GenAl contemporanei:
ovvero la capacita di lavorare con dati unimodali e multimodali [13]. T sistemi
unimodali si concentrano su un’unica tipologia di dato, come il testo o le immagini,
mentre i sistemi multimodali sono in grado di integrare e processare informazioni
proveniente da tipologie di fonti diverse, combinando, ad esempio, testo e immagini
per ottenere risposte piu contestualizzate e ricche. Un esempio significativo e
GPT-4 [7], che supporta input testuali, audio e visivi, consentendo nuove forme di
interazione utente-modello.
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2.2.2 Large Language Model

Un altro concetto chiave che deve essere dettagliato in questa trattazione ¢ quello
dei Large Language Models (LLM) [14]. Si tratta di una classe avanzata di modelli
di intelligenza artificiale che rientra nella categoria della GenAl, progettati specifi-
catamente per processare e generare linguaggio naturale (NLP), includendo attivita
come la comprensione, la generazione e la traduzione del testo. Questi modelli
sono addestrati su enormi quantita di dati testuali, come libri, articoli e pagine
web, e sono caratterizzati da un numero estremamente elevato di parametri, che
possono raggiungere le decine o le centinaia di miliardi (da qui I'aggettivo “Large”).
Tali caratteristiche consentono agli LLM di catturare le sfumature linguistiche e
generare testo con una convincente precisione sintattica, semantica ed ontologica.
Tuttavia, questa forte dipendenza dalla qualita dei dati di addestramento comporta
I’ereditarieta di eventuali inaccuratezze e bias presenti nei dati stessi.

Alla base del funzionamento degli LLM troviamo un’architettura chiamata Tran-
sformer [5]. A differenza dei modelli precedenti, come le RNN, che elaboravano il
testo in modo sequenziale, i Transformer riescono ad elaborare 'intero contesto
contemporaneamente, individuando le connessioni tra le parole in modo molto piu
efficace ed efficiente.

Per capire al meglio come utilizzare questi strumenti ¢ utile passare in rassegna
alcuni dei termini e delle caratteristiche piu importanti che li caratterizzano.

Uno degli elementi chiave che influenzano le prestazioni degli LLM e la Context
Window [14][15], ossia la quantita di testo che il modello puo considerare in un’unica
elaborazione. Ogni parola o frammento di parola viene suddiviso in unita chiamate
token, e il modello ha un limite massimo di token che puo elaborare alla volta.
Ad esempio, un modello come GPT-3 ha una finestra di contesto di circa 2048
token [6], mentre modelli pitt avanzati, come GPT-4.1, possono elaborare fino a
1.047.576 token [16]. Questo limite influisce direttamente sulle capacita del modello
di mantenere il “filo logico” in testi lunghi o conversazioni estese: se la lunghezza del
testo supera la finestra di contesto, le informazioni pitt vecchie rischiano di essere
dimenticate, a meno che non vengano riassunte o richiamate opportunamente.

Quando interagiamo con un LLM, l'efficacia delle risposte dipende in larga parte
dalla qualita dell’input che forniamo. Qui entra in gioco il concetto di Prompt
Engineering [17][18], ovvero 'arte di scrivere comandi testuali (prompt) in modo
chiaro e strutturato per ottenere risposte pertinenti. Un buon prompt fornisce al
modello tutte le informazioni necessarie per contestualizzare la richiesta e guidarlo
verso la risposta desiderata. Ad esempio, chiedere "Spiegami la relativita ristretta
come se avessi 10 anni" produrra un risultato molto diverso rispetto a una richiesta
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piu generica come "Parlami della relativita ristretta'. Su questo tema verra dedicato
un capitolo dedicato nel quale verranno mostrate tutte le tecniche piu importanti.

Un altro aspetto fondamentale per chi utilizza gli LLM ¢ la possibilita di effettuare
il Fine-Tuning [19] del modello, ovvero di adattarlo a domini specifici. Sebbene
questi modelli siano addestrati su dataset vastissimi e molto eterogenei, spesso
si rende necessario affinare il loro comportamento per settori particolari, come
la medicina, il diritto o la finanza. Il fine-tuning permette, infatti, di proseguire
I’addestramento su un corpus di dati mirato, in modo da migliorare la precisione e
la pertinenza delle risposte, riducendo al contempo il rischio che il modello generi
contenuti fuori contesto o perpetui bias presenti nei dati di partenza.

Un altro elemento importante da considerare ¢ il parametro della Temperatura
[20], che influenza il grado di casualita nella generazione del testo. In pratica,
la temperatura modula la distribuzione di probabilita utilizzata dal modello per
scegliere il token successivo durante la generazione. Impostazioni con temperatura
bassa tendono a rendere le risposte piu determinate e coerenti, favorendo precisione
e affidabilita, mentre temperature piu elevate introducono una maggiore varieta e
creativita nei risultati, sebbene a volte a discapito della coerenza. La scelta del
valore ideale dipende dall’obiettivo specifico: per applicazioni in cui & essenziale
mantenere un alto grado di accuratezza e coerenza si preferiscono temperature
basse, mentre per attivita che richiedono esplorazione creativa o generazione di
idee originali e possibile sperimentare con valori piu elevati.

Un ultimo concetto interessante nell’uso degli LLM ¢ rappresentato dal paradigma
della Retrieval-Augmented Generation (RAG) [21][22][23]. Questa tecnica combina
le capacita di generazione del linguaggio dei modelli con 1’accesso a una banca dati
esterna, consentendo al sistema di integrare informazioni aggiornate o specifiche
durante la fase di risposta. In altre parole, invece di affidarsi esclusivamente
alla conoscenza appresa durante il I’addestramento, il modello, in presenza di
una richiesta, puo eseguire una ricerca su un corpus esterno e "recuperare’ dati
pertinenti. Queste informazioni vengono poi fuse con il testo generato, contribuendo
a produrre risposte non solo piu ricche e contestualizzate, ma anche piu accurate
rispetto a quelle basate su dati statici. Questo approccio risulta particolarmente
utile in scenari in cui le informazioni evolvono rapidamente, o quando & necessario
rispondere a domande che richiedono conoscenze molto verticali o estremamente
aggiornate.

Tra i modelli pitt noti abbiamo GPT di OpenAl [7], Claude di Anthropic [24],
Gemini di Google [25] ed Llama di Meta [26].
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2.2.3 Transformer

L’architettura Transformer, introdotta nel 2017 con il celebre articolo Attention Is
All You Need [5], ha rivoluzionato il campo dell” elaborazione del linguaggio naturale
(NLP) e rappresentato la base per lo sviluppo di modelli generativi avanzati come
Generative Pre-trained Transformer (GPT) [6].

Il cuore dell’architettura e il meccanismo di Self-Attention, che consente al modello
di pesare in modo dinamico I'importanza di ciascun token rispetto agli altri presenti
nella stessa sequenza. In particolare, il meccanismo di Scaled Dot-Product Attention
opera su tre insiemi di vettori derivati dalla rappresentazione degli input: query (Q),
key (K) e value (V). Il calcolo & strutturato come in figura 2.2 ed ¢ sintetizzabile
attraverso la seguente formula:

Attention(Q, K, V) ft (QKT> V
ention(Q), K, V') = softmax| —=—
Vi

dove d;, rappresenta la dimensione delle chiavi. Questa normalizzazione tramite
ﬁ e fondamentale per evitare che i prodotti scalari assumano valori troppo elevati,
il che potrebbe portare la funzione Softmax in regioni con gradiente estremamente

piccolo e, di conseguenza, diminuire la stabilita dell’addestramento.

Per catturare diversi aspetti relazionali e semantici della sequenza, i Transformer
adottano il concetto di Multi-Head Attention (figura 2.3. In pratica, invece di
eseguire una singola operazione, il modello esegue h operazioni parallele, ognuna

MatMul

L
Scaled Dot-Product J& .

Attention p
tl tl |
Linear Linear l Linear I]
Figura 2.2: Scaled Dot-Product Figura 2.3: Multi-Head Atten-

Attention [5] tion [5]
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con propri insiemi di proiezioni lineari per (), K e V. Ogni “testa” elabora una
rappresentazione differente del contesto, e i risultati vengono successivamente
concatenati e proiettati in uno spazio finale. Formalmente, se indichiamo con @);,
K; e V; le proiezioni relative alla i-esima testa, I’operazione complessiva e:

MultiHead(Q, K, V) = Concat(head, . .., head;) W©°

(]
matrici di parametri. Questo approccio permette di modellare in maniera piu ricca

le interdipendenze tra i token, considerando diverse “prospettive” del contesto
simultaneamente.

dove ogni head; = Attention(QW2, KWK, VIWY) e W2, WK, WY e WO sono
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Figura 2.4: Architettura Transformer [5]

L’architettura Transformer classica, in figura 2.4 & suddivisa in due parti principali:

e Encoder: Composto da una serie di blocchi identici, ciascuno dei quali integra
un modulo Multi-Head Attention e una rete Feed-Forward. L’Encoder trasfor-
ma la sequenza simbolica di input = (x1,...,2,) in una rappresentazione
continua z = (z1, ..., 2,) che cattura le informazioni contestuali.

14



2.2 — GenAl e LLM: definizioni e concetti generali

e Decoder: In maniera simile, anche il decoder e organizzato in n blocchi uguali
tra loro, ma include un ulteriore meccanismo di attenzione che permette di
“guardare” la rappresentazione prodotta dall’Encoder. Inoltre, nella parte
bassa, viene impiegata una versione Masked della Multi-Head Attention che
assicura che ogni token generato possa basarsi soltanto sui token precedenti,
preservando 'ordine temporale durante la generazione del testo (nella pratica
si crea una matrice triangolare superiore, ponendo i valori sotto la diagonale a
—00, cosi che con la softmax diventino zert).

Questi meccanismi permettono di calcolare le dipendenze tra le parole di una
sequenza in parallelo, superando i limiti di Vanishing Gradient e di inefficienza
computazionale su sequenze lunghe di cui soffrivano le RNN [5].
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2.24 GPT

Il modello GPT (Generative Pre-trained Transformer) ¢ stato introdotto da OpenAl
[7] nel paper “Improving Language Understanding by Generative Pre-Training’
[6] del 2018 e rappresenta una ulteriore svolta decisiva nel campo, grazie all’intro-
duzione di un approccio innovativo atto a migliorare le prestazioni nei compiti di
comprensione del linguaggio naturale.

)

Fino a quel momento i modelli tradizionali di NLP richiedevano enormi quantita di
dati etichettati per effettuare gli addestramenti necessari. Tuttavia, tali dati sono
spesso scarsi e costosi da ottenere, soprattutto per compiti complessi. La capacita
di apprendere in modo efficace da testi grezzi, ovvero non strutturati né classificati,
e quindi un elemento cruciale per ridurre la dipendenza dall’addestramento super-
visionato. Il lavoro di GPT ha mostrato che ¢ possibile utilizzare enormi quantita
di dati non etichettati per pre-allenare un modello e, successivamente, adattarlo
(fine-tuning) a compiti specifici tramite 1’ausilio di pochi dati etichettati.

Partendo dai vantaggi rilevati nel modello Transformer, i ricercatori di OpenAl
hanno rimosso la parte di Encoder, puntando ad una architettura formata solo dal
solo Decoder. Questa scelta architetturale e dettata dalla necessita di generare testo
in maniera autoregressiva: il modello predice ogni token in sequenza, condizionato
esclusivamente sui token precedenti, grazie all’applicazione di una mascheratura
che impedisce al modello di basarsi anche sulle informazioni future. Entrando
nel dettaglio delle due fasi, si ha che nella prima il modello viene addestrato
in maniera non supervisionata su un ampio corpus di testo, senza 1'utilizzo di
etichette. L’obiettivo ¢ apprendere una rappresentazione generale del linguaggio e
delle sue strutture. Dato un insieme non supervisionato di token U = {uy, ..., u,},
il training punta a massimizzare la seguente funzione obiettivo:

L1(9) = Zlogp(ul ’ Ui—ky - - ,u,-_l;@)

dove k ¢ la grandezza della Context Window e la probabilita condizionale P
¢ modellata usando una rete neurale con parametri 6. Questi parametri sono
addestrati usando la Stochastic Gradient Descent.

Nella seconda fase, il modello pre-addestrato viene adattato a compiti specifici
utilizzando un insieme di dati etichettati. L’idea e quella di sfruttare la conoscen-
za acquisita durante il pre-addestramento per migliorare le prestazioni su task
particolari, come la classificazione o il Question Answering.

Si assume un dataset etichettato C| in cui ogni istanza consiste in una sequenza
di token di input z?,...,2™, insieme a un’etichetta y. Gli input vengono passati
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attraverso il modello pre-addestrato per ottenere 'attivazione finale del blocco
transformer h;", che viene poi inserita in un livello lineare di output con parametri
W, per predire y:

P(y| ', ..., 2™) = softmax(h]"W,)

Questo porta alla seguente funzione obiettivo da massimizzare:

Ly(C) =Y log Py | «',...,2™)

(z,y)

Nei modelli piu recenti (come GPT-3, GPT-4 e GPT-5) questo approccio ha dimo-
strato una scalabilita eccezionale: aumentando il numero di parametri (nell’ordine
di centinaia di miliardi) e la quantita di dati, le prestazioni migliorano notevolmente
[4]. Ed e proprio grazie al successivo paper del 2020 “Language Models are Few-Shot
Learners” [27], sempre di OpenAl, che si sono poste le basi per I'utilizzo moderno
degli LLM.

Come accennato precedentemente, prima dell’avvento di GPT-3 gli LLM richie-
devano un processo di fine tuning specifico per il task target, indispensabile per
garantire performance ottimali. Tale procedura necessitava di dataset specifici e
comportava la spesa di ingenti risorse economiche, tecnologiche e temporali per
effettuare 'addestramento.

#Parameters Training Speed (based on V100 16G)
Switch
IT | 9« PaLM
GPT-3 O BLooM ChacipT
100B | 7x ©
TS DALL-E
10B | 5x Ie) f\hgrron
1 ‘J‘[]
GPT2 GLIDE D’“éu%
1B | 3x o L
Jisugl BERT
BERT B Eﬂ% BART )
GPT 0 ERNIE O o) CLIP
100M | 1x O @] O
2018 RTX vio00 2019 RTX  RTX 2020  A100 A100 2021 H100 2022 H100 2023
8000 16G 3090 4090 406G 80G 80G Gen5 80G SXMS5

Figura 2.5: Statistiche sulle dimensioni del modello e sulla velocita di addestra-
mento tra diversi modelli e dispositivi di calcolo [4]
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Il paper in questione ha invece evidenziato come 'aumento di scala possa eliminare
la dipendenza dal fine tuning, trasformando i modelli in veri “Few-Shot Lear-
ners”, capaci di adattarsi efficacemente anche fornendo pochi, o addirittura nessun,
esempio o istruzione.

Cio ha permesso di cambiare totalmente I’approccio necessario verso di essi, ren-
dendo di fatto la tecnologia estremamente piu accessibile e stimolando in maniera
sostanziale I'interesse e i progressi successivi nel settore.

Dal punto di vista ingegneristico, ¢ pero bene sottolineare che I'implementazione
di tali modelli richiede 1'uso di infrastrutture hardware specializzate, come GPU
e TPU ad alte prestazioni, e framework di machine learning ottimizzati. Inoltre,
aspetti come 'efficienza computazionale, la gestione della memoria e I’ottimizzazione
degli iperparametri sono cruciali per garantire prestazioni adeguate in ambienti di
produzione.
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2.3 La GenAl e la trasformazione del Ciclo di
Vita del Software

Questo paragrafo si pone l'obiettivo di offrire una panoramica generale sulle op-
portunita che offrono gli strumenti di GenAl per ognuna delle fasi del ciclo di
vita del software. Benché si punti ad una trattazione esaustiva, € un argomento
cosl in fervente evoluzione che resta estremamente complesso riuscire ad avere una
visione aggiornata di ogni singola nuova opportunita. Proprio per questo motivo,
in ognuna delle fasi verranno esposti gli esempi reputati piu rappresentativi ed
interessanti, consapevole del fatto che sicuramente verra tralasciato qualcosa.

Pianificazione

La fase di pianificazione rappresenta uno dei momenti piu delicati e strategici di
qualsiasi progetto. Un errore di valutazione in questa fase (come anche per quelle
di Analisi e di Progettazione) puo tradursi in costi elevati, ritardi significativi e, nei
casi peggiori, nel fallimento dell’intera iniziativa. A differenza di altri ambiti meno
critichi in cui la GenAl puo automatizzare compiti ripetitivi con notevoli vantaggi
e pochi rischi, la pianificazione resta ancora profondamente ancorata all’esperienza,
all’intuito e alle relazioni umane. Il coinvolgimento di stakeholder, la capacita di
negoziare priorita, di interpretare correttamente le esigenze esplicite e implicite, cosi
come di adattarsi alle variabili impreviste, sono elementi che difficilmente possono
essere sostituiti.

Tuttavia, esistono delle aree in cui e possibile un supporto fruttuoso di questi
strumenti, come anche di altre forme di Al piu classiche.

Un primo esempio ¢ I'assistenza nei meeting: a partire dall’audio o dalla trascrizione
della riunione (ormai disponibile nella maggior parte degli strumenti in commercio),
la GenAl puo essere utilizzata per estrarre informazioni rilevanti dalle conversazioni.
Tali informazioni, integrate con dati sul dominio applicativo, possono poi essere
rielaborate per generare documenti piu strutturati, come i requisiti di business.
Questa elaborazione puo includere anche la produzione automatizzata di report,
verbali di riunione, compilazioni di template standard o suddivisioni in parti. In
generale, ¢ importante osservare sin da subito che, ovunque sia presente linguaggio
naturale, esiste un potenziale ambito di applicazione per gli LLM.

Un altro esempio concreto, benché trasversale alle varie fasi del progetto ma
sempre ad appannaggio di PM, riguarda la generazione automatizzata di testi piu
operativi. La GenAl puo essere impiegata per generare automaticamente ticket
per strumenti di gestione del lavoro, come Jira o Trello, categorizzandoli in base a
priorita, assegnando loro etichette pertinenti e suggerendo descrizioni basate su
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best practice consolidate. Questo non solo accelera il processo di schedulazione,
ma in potenza puo ridurre anche il rischio di omissioni o interpretazioni errate,
garantendo maggiore coerenza nelle specifiche di progetto.

Oltre questi casi, ¢ interessante notare come restino ancora valide forme di Al piu
tradizionali, come gli algoritmi di Machine Learning, che possono dare supporto
fornire stime di tempo e budget piu accurate rispetto ai metodi manuali. Oppure
attraverso l'analisi di pattern ricorrenti e dati progettuali, identificando potenziali
rischi tecnici o organizzativi fin dalle fasi iniziali, consentendo di adottare misure
preventive in modo piu tempestivo [28]. La GenAl ci permette, quindi di avere
nuovi strumenti e di sfruttare nuove opportunita, senza per forza invalidare quelle
precedentemente esistenti.

Analisi dei Requisiti

Come illustrato nella sezione precedente, e possibile estrarre in modo efficace i requi-
siti da documentazione testuale o persino da trascrizioni di meeting, identificando
automaticamente elementi chiave come funzionalita richieste, attori coinvolti e
vincoli. Questa capacita risulta particolarmente utile per supportare la generazione
di documenti funzionali piu strutturati, come gli AFU, o per trasformare i requisiti
raccolti in User Story ben definite, complete di criteri di accettazione e dettagli
contestuali.

Oltre alla generazione di contenuti, la GenAl puo essere impiegata anche per la
validazione dei requisiti e, piu in generale, per il miglioramento della qualita della
documentazione. Ad esempio, e possibile effettuare un’analisi automatizzata per
individuare eventuali incongruenze, ambiguita o omissioni tra i requisiti, segnalando
potenziali conflitti prima che diventino problematici. Questo approccio consenti-
rebbe di ottenere documenti piu coerenti, leggibili e affidabili, riducendo il rischio
di interpretazioni errate e facilitando il lavoro.

Un ulteriore ambito di applicazione, piu trasversale, riguarda la creazione di
chatbot basati su LLM, su cui ¢ stato effettuato Fine-Tuning e/o RAG (Retrieval-
Augmented Generation) con informazioni specifiche del dominio di riferimento.
Questi assistenti intelligenti possono fungere da esperti virtuali, rispondendo con
precisione a domande spcifiche del dominio e delle progettualita passate, fornendo
supporto continuo su tematiche complesse, rendendo piu semplice 'accesso alle
informazioni e migliorando 1'efficienza operativa.

Studi recenti confermano che la GenAl viene gia applicata con successo in una
vasta gamma di compiti [29], inclusi quelli sopra menzionati. Tuttavia, sebbene
il suo utilizzo sia promettente, permane la necessita di una supervisione umana.
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Ricerche dedicate evidenziano che, accanto ai notevoli vantaggi offerti, e essenziale
validare gli output generati per evitare bias, incongruenze o errori che potrebbero
compromettere I'affidabilita delle informazioni prodotte [30]. Questo tema, benché
vero in generale, ¢ particolarmente importante in questo contesto, in quanto i
risultati qui generati vanno poi a costruire i documenti formali su cui saranno
basate le fasi successive dello sviluppo.

Progettazione

Durante la fase di progettazione software, la GenAl sta aprendo nuove possibilita
nel supportare gli architetti nella creazione di soluzioni. Come gia osservato in
altri ambiti, il suo impiego si configura principalmente come un supporto e un
potenziamento del lavoro umano. Questo perché i risultati prodotti dai modelli
richiedono sempre un certo grado di supervisione, specialmente in contesti critici
come quello della progettazione, dove eventuali errori tendono a propagarsi nelle
fasi successive dello sviluppo.

Un primo esempio e dato dalla possibilita di istruire il modello con le specifiche dei
requisiti, ottenendo in output possibili strutture architetturali o schemi di design.
Esperimenti di progettazione collaborativa con ChatGPT, ad esempio, hanno
dimostrato che il modello ¢ in grado di articolare e raffinare artefatti architetturali
a partire da input in linguaggio naturale, arrivando in parte a simulare il ruolo
di un architetto software umano [31]. Questa collaborazione puo accelerare e
migliorare il lavoro di definizione dell’architettura di alto livello, proponendo bozze
che i progettisti possono poi perfezionare o, viceversa, proponendo affinamenti alle
soluzioni gia progettate o in progettazione.

Un altro impatto significativo ¢ presente nella generazione di diagrammi UML e
altri modelli grafici. Tradizionalmente la creazione di diagrammi - come quelli di
caso d’uso, di classe o di sequenza - richiede tempo e competenza. Oggi la GenAl
puo assistere anche in questo. Uno studio esplorativo condotto con studenti ha
evidenziato che strumenti basati su LLM permettono anche a persone non ancora
esperte di produrre diagrammi a partire da requisiti testuali [32], precisando che,
benché possa essere di aiuto, non viene garantita accuratezza. In un altro studio
viene anche evidenziato come tenda ad amplificare gli errori se i requisiti non sono
scritti chiaramente [33]. E quindi richiesta una attenta supervisione anche in questi
casi.

Un ultimo esempio puo essere dato come sempre dal supporto alla generazione
della documentazione, in questo caso di natura tecnica. La fase di design prevede
infatti la produzione di una serie di documenti fondamentali, che fungono sia
da validazione formale della soluzione proposta, sia da guida per gli sviluppatori
incaricati dell’implementazione.

21



GenAlI nel ciclo di vita del software

Implementazione

La fase di implementazione e forse quella che piu sta venendo rivoluzionata dalla
GenAl. Le molteplici aree di applicazione e le competenze avanzate degli utilizzatori
sono state il volano verso una trasformazione sostanziale riguardante come si
progetta, scrive, documenta e testa il codice.

Strumenti avanzati come GitHub Copilot [34] o Machinet [35] puntano ad assi-
stere gli sviluppatori come se fossero veri e propri Pair Programmer, suggerendo
frammenti di codice in tempo reale e offrendo al contempo una chat contestuale
interrogabile direttamente da dentro I'IDE. Queste opportunita non solo aumen-
tano potenzialmente la produttivita dello sviluppatore, ma consentono anche di
concentrarsi su attivita piu strategiche e creative, favorendo 'innovazione e miglio-
rando potenzialmente la qualita complessiva del software prodotto. Tra le capacita
offerte da questi tool vi e la possibilita di produrre porzioni di codice, scrivere la
documentazione accessoria, generare unit test, valutare possibili miglioramenti e
refactor a soluzioni gia esistenti, offrire supporto per eventuali errori e molto altro.

Come si puo notare, si va a colpire una gran parte delle attivita ordinarie di un
programmatore medio, portando con sé un sicuro vantaggio allo sviluppo. Ad
esempio, uno studio condotto presso Microsoft, Accenture e una multinazionale
manifatturiera ha coinvolto quasi 5.000 sviluppatori, mostrando un aumento del
26% nel numero di task completati tra coloro che utilizzavano Copilot. Questo
incremento e stato particolarmente significativo tra i programmatori meno esperti,
che hanno registrato guadagni di produttivita superiori rispetto ai colleghi con piu
esperienza [36].

Tuttavia, rimane cruciale I'attenzione alla qualita del codice generato. Diversi
studi hanno evidenziato che una percentuale significativa del codice prodotto puo
contenere vulnerabilita. Ad esempio, una ricerca ha rilevato che il 29.8% del codice
generato da Copilot presentava vulnerabilita di sicurezza [37]. Queste possono
derivare da difetti nel codice o da pratiche di programmazione non sicure, rendendo
il software suscettibile ad attacchi. Pertanto, e essenziale che gli sviluppatori
revisionino attentamente il codice suggerito dall’Al, implementando le migliori
pratiche disponibili in termini di sicurezza. La revisione del codice generato da
un’Al non & un’opzione ma un atto dovuto per garantire I'affidabilita, la sicurezza
e la correttezza formale del software prodotto.

Testing

La fase di testing e tradizionalmente una delle piu dispendiose in termini di tempo
e risorse richieste. I modelli generativi offrono oggi nuove opportunita in questo
ambito, a partire dalla generazione automatica di test unitari. Come accennato nel
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paragrafo precedente, un LLM puo generare suite di test — complete di asserzioni e
input di prova — partendo dal codice sorgente di una funzione o dalla descrizione
della sua funzionalita. Questo approccio € in grado di ampliare la copertura di test in
modo rapido, riducendo drasticamente il carico manuale, pur mantenendo (e talvolta
migliorando) la capacita di scovare errori. Tuttavia, € emerso da studi accademici
che la complessita del problema impatta significativamente le performance dei
modelli: al crescere della difficolta del codice o dello scenario da testare, anche
i modelli piu avanzati faticano a generare test case corretti e significativi. Cio
¢ dovuto principalmente a limiti nel ragionamento computazionale dei modelli
attualmente esistenti — ad esempio determinare I'output atteso di funzioni molto
complesse puo essere arduo per un LLM puro. Per alleviare questi problemi, sono
in sviluppo approcci ibridi come l'integrazione di LLM con strumenti esecutivi:
ad esempio, un framework multi-agente realizzato attraverso la tecnica ReAct ha
permesso all’Al di interagire con un interprete Python per verificare in tempo reale
gli output, migliorando sensibilmente I’accuratezza dei test generati [38].

Un altro ambito in cui la GenAl puo offrire un contributo significativo ¢ la scrittura
dei casi di test destinati alla validazione utente. Partendo dai requisiti funzionali e
dalle informazioni sul sistema esistente, i modelli generativi possono supportare la
produzione o il miglioramento di test funzionali, di performance e di UI/UX. A
questo si affianca la possibilita di automatizzare anche la stesura dei report che
seguono ’esecuzione dei test, snellendo ulteriormente il processo.

In un’ottica di automazione piu estesa, e possibile prevedere anche 1’esecuzione
orchestrata delle suite di test e un’analisi intelligente dei risultati. Strumenti
specializzati, alimentati da Al, possono gestire ’esecuzione su diversi ambienti,
analizzare i log generati e identificare rapidamente le cause dei fallimenti. Un
assistente Al, ad esempio, potrebbe leggere i messaggi di errore ed effettuare una
prima diagnosi (“Test fallito per NullPointerException nel modulo X: aggiungere il
seguente codice alla riga Y...”), accelerando cosi la localizzazione e la risoluzione
dei problemi da parte dello sviluppatore.

Infine, un’ulteriore frontiera ¢ rappresentata dall’identificazione predittiva dei bug.
Oltre alla classica analisi statica del codice, si possono introdurre strumenti basati
su LLM capaci di segnalare porzioni di codice potenzialmente problematiche o
ricorrenti pattern di errore, prima ancora dell’esecuzione. In questo modo, I’Al
— attingendo alla conoscenza appresa da milioni di frammenti di codice — ¢ in
grado di riconoscere costrutti sospetti e contribuire a una sorta di debug anticipato,
riducendo il rischio di errori a valle.
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Rilascio

La GenAl sta trovando applicazione anche nella fase di rilascio del SDLC, poten-
ziando le pipeline di distribuzione e contribuendo a migliorare sia la velocita di
delivery sia la qualita complessiva del codice [39]. L’integrazione all’interno dei
flussi di Continuous Integration/Continuous Delivery (CI/CD), ha dato avvio a
sperimentazioni orientate all’automazione di attivita come la generazione auto-
matica delle note di rilascio a partire dal changelog, traducendo le modifiche in
linguaggio naturale per una comunicazione piu efficace con gli stakeholder. Altre
applicazioni includono la gestione automatizzata delle attivita post-commit — dal-
I’analisi del codice all’integrazione nei branch di sviluppo, dall’esecuzione dei test
alla preparazione dei pacchetti di rilascio — oltre al supporto nella progettazione e
configurazione delle pipeline stesse.

Questa evoluzione ha portato all’emergere di nuovi paradigmi, come DevGenOps
[40]: un approccio che fonde i principi del DevOps tradizionale con le potenzialita
della GenAl, con 'obiettivo di innalzare ulteriormente il livello di automazione nei
processi di sviluppo e distribuzione. Uno degli elementi centrali di questa filosofia
¢ la Continuous Generation, ovvero I'impiego di modelli generativi per la creazione
automatica di artefatti direttamente all’interno delle pipeline di build e deployment.

In una prospettiva piu ampia, considerando l'intero spettro delle tecnologie Al,
si aprono scenari che includono 'uso di strumenti predittivi e decisionali per
individuare le finestre temporali ottimali di rilascio, riducendo l'impatto sugli
utenti grazie all’analisi dei dati di utilizzo. Parallelamente, ’analisi dei pattern
di consumo delle risorse permette di individuare possibili ottimizzazioni lungo le
diverse fasi del processo, con benefici in termini di minore utilizzo delle risorse,
prevenzione dei colli di bottiglia e accelerazione dei cicli di consegna.

Generative
Al
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Figura 2.6: DevGenOps [40]
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Manutenzione

La fase di manutenzione beneficia in modo significativo dell’Al generativa, sia in
modalita reattiva che proattiva.

Sul fronte predittivo, la GenAl puo analizzare i flussi di monitoraggio (log applicativi,
metriche di performance, tracce di errori) per individuare pattern anomali o
segnali precoci di possibili problemi, allertando il team prima che si verifichino
malfunzionamenti critici. Ad esempio, un modello addestrato sui log di un sistema
puo riconoscere che una certa sequenza di eventi porta tipicamente a un crash,
generando un avviso e suggerendo azioni correttive, come il riavvio di un servizio
o la pulizia di una coda. Questo approccio aumenta 1’affidabilita del software in
esercizio e riduce il rischio di downtime imprevisti.

Un altro ambito riguarda le attivita di miglioramento continuo del codice (otti-
mizzazioni, refactoring tardivi, aggiornamento di librerie) e la correzione di bug o
vulnerabilita scoperte dopo il rilascio. Se, ad esempio, viene divulgata una nuova
vulnerabilita in una libreria, un sistema Al puo scandire il codebase per individuare
i punti in cui essa viene utilizzata e proporre una patch o un aggiornamento di ver-
sione. In questo modo la gestione delle vulnerabilita diventa piu rapida ed efficace:
I’AT non solo individua i problemi, ma suggerisce anche soluzioni, mantenendo il
software sicuro e conforme nel tempo.

In parallelo, la GenAl puo contribuire all’efficientamento del codice. Parti dell’ap-
plicazione poco performanti (ad esempio funzioni con elevato consumo di CPU o
memoria) possono essere riscritte in versioni piu efficienti. La ricerca si sta muo-
vendo in questa direzione, con LLM specializzati nell’ottimizzazione che trattano il
miglioramento del codice come un problema di generazione: data una funzione, il
modello ne propone una variante piu veloce e leggera. [41].

Guardando oltre, verso scenari pitt avanzati, si possono immaginare sistemi agentici
in grado di intervenire sia sul piano operativo che su quello di monitoraggio. Sul
primo fronte, un sistema Al potrebbe automatizzare (anche solo in parte) la gestione
dei ticket, classificandoli e proponendo soluzioni. Sul secondo, un esempio e un
tool di Root Cause Analysis capace di analizzare i dati provenienti da strumenti di
osservabilita (come Splunk per i log o Dynatrace per le performance) e da sistemi di
versionamento (come i commit Git), individuando il componente pit probabilmente
responsabile di un malfunzionamento e suggerendo le azioni correttive piu adatte.

Infine, una forma di Al piu generale puo essere impiegata per 'ottimizzazione
delle risorse in produzione, grazie a meccanismi come l'auto-scaling intelligente o il
tuning dinamico dei parametri di sistema, garantendo performance ottimali anche
al variare del carico.
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2.4 Prompt Engineering: la chiave per sfruttare
gli strumenti GenAl

La natura intrinsecamente non deterministica degli LLM porta come inevitabile
conseguenza che essi non generino mai risposte fisse: anche a fronte dello stesso
input, I'output puo variare. Senza una formulazione accurata e strategica del
prompt, il modello potrebbe produrre risposte incoerenti o divergenti dall’obiettivo
prefissato.

Il Prompt Engineering rappresenta una disciplina emergente nel campo dell’intelli-
genza artificiale dedicata alla progettazione, ottimizzazione e raffinamento degli
input (o “prompt”) forniti agli LLM al fine di ottenere output il pitt possibile accu-
rati, coerenti e pertinenti. In sostanza, un Prompt ¢ un input in linguaggio naturale
che guida il modello nell’esecuzione di un compito specifico, e la qualita di tale input
e determinante per U'efficacia della risposta generata. La formulazione di un prompt
efficace non si riduce alla mera scelta di parole, ma implica 1’organizzazione del
contenuto in modo tale da fornire contesto, specificare il tono e delineare eventuali
vincoli stilistici o narrativi, elementi che possono influenzare significativamente il
risultato finale. Questa ingegnerizzazione del testo in ingresso non solo permette
di sfruttare al massimo le capacita generative dei modelli, ma contribuisce anche
a ridurre i fenomeni indesiderati, quali allucinazioni e i bias ereditati dai dati di
addestramento, garantendo cosi risultati piu robusti ed affidabili.

L’importanza del Contesto

Un elemento essenziale nel Prompt Engineering [18] ¢ la capacita di fornire un
contesto dettagliato e mirato per 'attivita richiesta. Il contesto funge da cornice
interpretativa che orienta I’'LLM nel reperire e selezionare dai propri dati di adde-
stramento le informazioni piu rilevanti ai fini del compito. In pratica, un prompt
accompagnato dal giusto contesto riduce ’ambiguita e aiuta a delimitare I’ambito
della risposta, rendendola piu coerente con gli obiettivi prefissati. Ad esempio,
specificare nel prompt il dominio applicativo, il tono comunicativo o il ruolo da
assumere puo fare una grande differenza: un’istruzione come “Sei un insegnante che
spiega a uno studente delle elementari il concetto di relativita” guidera il modello
verso un registro semplice e intuitivo, diverso da un generico “Parlami del teorema
della relativita”. Includere questi dettagli contestuali stabilisce sin dall’inizio chi
parla, a quale scopo e in che contesto, permettendo al modello di adattare di
conseguenza stile e contenuto della risposta.

Per formalizzare tali indicazioni, & stato proposto il framework RGC (Role, Goal,
Context). Esso suggerisce di strutturare il prompt suddividendolo in sezioni ben
definite — tre obbligatorie (ruolo, obiettivo e contesto) e due opzionali (risultato
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atteso e vincoli). In altre parole, nel prompt andrebbero specificati: Role, il ruolo
che 'LLM deve impersonare; Goal, 'obiettivo o compito specifico da svolgere;
Context, il contesto situazionale o applicativo; ed eventualmente anche il Result
atteso (il formato o prodotto desiderato) e i Constraint da rispettare (limitazioni
stilistiche, lunghezza, tono, ecc.). Ad esempio, seguendo RGC si potrebbe scrivere:

In qualita di ingegnere informatico [role], spiega il concetto di ricorsione [goal]
nel contesto dei linguaggi di programmazione [context]. Usa esempi semplici per
illustrare il processo [constraint].

Questo approccio strutturato fornisce al modello una guida chiara su chi deve essere,
cosa deve fare, di cosa deve parlare e come farlo, aumentando cosi le probabilita di
ottenere un output pertinente e mirato. Tali accorgimenti rientrano tra le pratiche
di base del prompt engineering e risultano efficaci nel migliorare la coerenza e la
specificita delle risposte generative.

Inoltre, fornire il contesto adeguato aiuta anche a mitigare fenomeni indesiderati
come le allucinazioni. Contestualizzare in modo preciso la domanda significa
delimitare il campo delle possibili risposte alla conoscenza pertinente, riducendo la
probabilita che il modello “inventi” fatti non accurati.
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2.4.1 Tecniche

Di seguito verranno presentate tutte le tecniche piu rilevanti disponibili al momento
della stesura di questo documento. Benché ognuna abbia le proprie caratteristiche
peculiari, € possibile e consigliabile combinarle per ottenere risultati ancora migliori.

Per ulteriori dettagli e per tecniche pitt avanzate, si puo fare riferimento ad [17] e
42].

Zero-Shot Prompting

Lo Zero-Shot Prompting consiste nel fornire al modello una richiesta diretta, senza
alcun esempio esplicativo. Il modello si affida interamente alla sua conoscenza
pre-addestrata per interpretare l'istruzione e generare il testo. E particolarmente
utile quando il compito richiesto ¢ abbastanza generico o quando il modello ha
gia acquisito sufficienti competenze sul genere in questione durante il suo training.
Tuttavia, senza ulteriori indicazioni, il rischio € che I'output possa essere troppo
generico o non allineato perfettamente alle esigenze specifiche del compito.

Esempio:
"Serivi un haiku il cui tema é la pioggia."

Few-Shot Prompting

Il Few-Shot Prompting arricchisce l'istruzione fornita al modello includendo uno o
pochi esempi esplicativi che illustrano il formato, lo stile e il tono desiderati. Questi
esempi servono come guida, mostrando al modello come strutturare il risultato
finale. Come dimostrato da Language Models are Few-Shot Learners [27], negli
LLM moderni bastano un numero basso di esempi per raggiungere risultati molto
migliori rispetto alla variante Zero-Shot. Come si puo evincere dall’immagine,
I’accuratezza migliora all’aumentare del numero di esempi forniti, rallentando la
propria effiacia, pero, una volta che si raggiungono numeriche abbastanza basse.
L’utilizzo di esempi ben scelti puo ridurre I'ambiguita e aumentare la coerenza
dell’output, sebbene la qualita degli esempi stessi sia fondamentale per il successo
del prompt.

Esempio:
"Serivi un haiku il cui tema € la pioggia.
Sequi lo stile e la struttura degli esempi qui sotto:

Es. 1:

Lacrime di pioggia
bagnano l’anima stanca
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di vecchi addis.

Es. 2:

Gocce leggere

bagnano il vecchio ponte
sotto il cielo grigio."

Chain-of-Thought (CoT)

I1 Chain-of-Thought, introdotto da Chain-of-Thought Prompting Elicits Reasoning
in Large Language Models [43], ¢ una tecnica che incoraggia il modello a esplicitare
una sequenza di passaggi intermedi — una sorta di “pensare ad alta voce” — prima
di fornire la risposta finale.

Invece di limitarsi al solo output finale, il modello scompone il problema in sottopassi
coerenti e verificabili, rendendo il processo piu trasparente e, spesso, pit accurato nei
compiti che richiedono ragionamento aritmetico o simbolico. Questa esplicitazione
dei passaggi consente anche a chi usa il sistema di individuare e correggere eventuali
errori intermedi, migliorando la controllabilita del risultato.

La letteratura mostra che il CoT funziona sia in modalita Few-Shot, fornendo
nel prompt alcuni esempi di ragionamento passo-passo, sia anche in ZeroShot,
aggiungendo soltanto un trigger linguistico come “Rifletti passo dopo passo”.

Standard Prompting Chain-of-Thought Prompting

e

Model Input

N

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A: The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples

do they have?

N

J

A: The answer is 27. x

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls
each is 6 tennis balls. 5 + 6 = 11. The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples

do they have?

/

Model Output

A: The cafeteria had 23 apples originally. They used
20 to make lunch. So they had 23 - 20 = 3. They
bought 6 more apples, so they have 3+ 6 =9. The
answeris 9. 4/

.

_/

Figura 2.7: Chain-of-Thought [43]
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Self Consistency

La Self Consistency [44] applicata al CoT si fonda sull’osservazione che, nei compiti
complessi, possono coesistere molteplici percorsi di ragionamento ugualmente validi
in grado di condurre alla stessa risposta corretta. Anziché affidarsi a un’unica
traiettoria, il metodo esplora piu catene di ragionamento e seleziona la risposta
finale piu frequente tramite voto di maggioranza (Majority Vote). In questo modo,
eventuali errori isolati vengono compensati e si ottiene una risposta finale piu
robusta e accurata.

Operativamente, la procedura si articola in tre passaggi, come da figura 2.8:
1. fornire al modello un prompt che induca il CoT;

2. sostituire il Greedy Decoding con un campionamento dal decodificatore del
modello, cosi da generare un insieme diversificato di percorsi di ragionamento;

3. marginalizzare i percorsi e aggregare gli esiti selezionando, tra le risposte finali,
quella piu coerente/frequente.

Greedy decode
This means she uses 3 + 4 =7 eggs every day.

She sells the remainder for $2 per egg, soin
total she sells 7 * $2 = $14 per day. "~{ The answer is $14.

The answer is $14.

P
Chain-of-thought [ Prompt J___ Language |
prompting model

Self-consistency Sample a diverse set of Marginalize out reasoning paths
A4 reasoning paths P to aggregate final answers

§ e — 1

./Q: If there are 3 cars in the parking \ Shehas16-3-4=9eggs : \
lot and 2 more cars arrive, how many left. So she makes $2* 9 = | The answer is $18.
cars are in the parking lot? |1 %18 per day. I | \
A: There are 3 cars in the parking lot { - : | A
already. 2 more arrive. Now there are || This means she she sells the h \ \
3+ 2 =5 cars. The answer is 5. — ,'I. remainder for $2 * (16_4_3)I The answer is $26. \I'. ¥
. I | = %26 per day. i\
She eats thee for reakatovery | || -anguage ' | ! 4 /\ T T
morning and bakes muffins for her mocie: \ ( She eats 3 for breakfast, so | /
friends every day with four. She sells 7\ shehas16- 3 =13 left. Then | II'l
the remainder for $2 per egg. How M she bakes muffins, soshe , The answer is $18.
much does she make every day? has13 - 4 = 9 eggs left. So
A: /} | she has 9 eggs * $2= $18. |

Figura 2.8: Self Consistency [44]

Tree of Thoughts (ToT)

I1 Tree of Thoughts (ToT) [45] rappresenta una generalizzazione del CoT, passando
da un ragionamento lineare a uno strutturato ad albero in cui il problema viene
suddiviso in piccoli passaggi. Il modello genera molteplici possibilita ad ogni fase
e valuta, tramite criteri come il punteggio o la votazione, quali percorsi sono piu
promettenti per arrivare a una soluzione. Questa struttura ad albero permette al
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modello di esplorare diverse soluzioni in parallelo e di effettuare eventualmente
backtracking quando un percorso non conduce alla risposta corretta. Questo
approccio permette di migliorare le abilita di risoluzione dei problemi e migliorare
la gestione delle incertezze.

Operativamente, il ToT propone un approccio pratico che parte dalla scelta della
giusta granularita dei pensieri — che possono essere parole, righe di equazioni o
interi paragrafi, a seconda del compito. A questo si affianca la progettazione dei
prompt di generazione e di valutazione, che possono includere anche meccanismi
di voto tra diversi stati, e la selezione dell’algoritmo di esplorazione piu adatto,
come una ricerca in ampiezza con beam search limitato o una ricerca in profondita
con soglie di potatura. In questo quadro, tecniche come CoT e Self-Consistency
possono essere interpretate come varianti semplificate di alberi con ampiezza o
profondita limitata, mentre ToT esplicita in modo piu sistematico sia il processo di
esplorazione sia la selezione informata dei rami (si veda figura 2.9).

Majority vote

—

(a) Input-Output (c) Chain of Thought  (c) Self Consistency
Prompting (IQ)  Prompting (CoT) with CoT (CaT-SC)

(d) Tree of Thoughts (ToT)

Figura 2.9: Schema illustrativo dei vari approcci alla risoluzione dei problemi con
gli LLM. Ogni riquadro rettangolare rappresenta un pensiero (thought), ovvero una
sequenza linguistica coerente che funge da passaggio intermedio verso la risoluzione
del problema. [45]

Reasoning and Acting (ReAct)

ReAct [46] & un approccio che integra in modo sinergico la componente di ragio-
namento con ’esecuzione di azioni. Analogamente al CoT puro, il modello viene
guidato a produrre una sequenza di passaggi intermedi che spiegano il proprio
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ragionamento (Reason). La differenza sostanziale ¢ che, ad ogni passo, il model-
lo puo decidere di eseguire una o piu azioni (Action), volte a raccogliere nuove
informazioni o a compiere operazioni utili alla risoluzione del problema.

Queste azioni possono assumere forme diverse: la produzione di output struttu-
rati, 'invocazione di strumenti esterni (ad esempio il recupero di informazioni
da un motore di ricerca o un database), oppure l'esecuzione di comandi specifici
in un determinato ambiente. Dopo ogni azione, il sistema riceve un’osservazione
(Observation), ossia un feedback che descrive 'esito dell’azione intrapresa. L’osser-
vazione viene quindi integrata nel flusso di ragionamento, aggiornando il piano e
consentendo al modello di adattarsi in base alle nuove informazioni.

Il ciclo Thought — Action — Observation si ripete iterativamente, dando vita a un
processo di ragionamento dinamico ed interattivo. In questo modo, il sistema non
si limita a seguire un piano predefinito, ma puo formulare ipotesi, verificarle con
azioni mirate, correggere eventuali errori e arricchire la propria base informativa
man mano che procede. Questo approccio riduce la probabilita di allucinazioni e la
propagazione di errori, poiché il modello non si affida unicamente alla conoscenza
interna, ma si confronta con risorse esterne e osservazioni reali.

e { (1d) ReAct (Reason + Act) } ™~

Thought 1: I need to search Apple Remote and find the
program it was originally designed to interact with.

Act 1: Search[Apple Remote]

Obs 1: The Apple Remote is a remote control introduced in
October 2005 by Apple .. originally designed to control the
Eront Row media center| program ..

Thought 2: Apple Remote was originally designed to control
the Front Row media center program. I need to search Front
Row next and find what other device can control it.

Act 2: Search[Front Row]

Obs 2: Could not find [Front Row]. Similar: ['Front Row
Seat to Earth', 'Front Row Motorsports',' Front Row
(software) ', ..]

Thought 3: Front Row 1s not found. I need to search [Front
Row (software)

Act 3: Search[Front Row (software) ]

Obs 3: Front Row is a discontinued media center software ..

Thought 4: Front Row (software) is controlled by an Apple

Remote or the keyboard function keys. So the answer is

keyboard function keys.

Act 4: Finish[keyboard function keys ]| \//
J

-

Figura 2.10: ReAct (Reason+Act). [46]
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Come si puo intuire, ReAct non e soltanto un’estensione del CoT, ma una modalita
che trasforma il ragionamento in un ciclo interattivo di esplorazione e verifica: il
modello ragiona, agisce, osserva i risultati e aggiorna di conseguenza la propria
strategia fino a raggiungere la soluzione.

Prompt Chaining

Per migliorare I'affidabilita e le prestazioni degli LLM, una delle principali tecniche
disponibili consiste nella decomposizione dei compiti complessi in sotto-compiti
piu gestibili. In questo contesto si colloca il paradigma del Prompt Chaining, che
prevede la suddivisione di un problema in una sequenza di fasi, in cui 'output di
ciascuna diventa I'input della successiva.

Questo approccio modulare consente di affrontare il problema in maniera incre-
mentale: ogni fase si concentra su un aspetto specifico, permettendo di ridurre la
complessita e di mantenere il controllo sull’evoluzione della soluzione. Il risultato
finale non ¢ quindi generato in un unico passaggio, ma costruito progressivamente
attraverso una catena di trasformazioni guidate.

Il Prompt Chaining si rivela particolarmente utile nei casi in cui un LLM avrebbe
difficolta a gestire un compito se sollecitato tramite un singolo prompt molto lungo e
articolato. Oltre a migliorare le prestazioni complessive, questo metodo contribuisce
anche ad aumentare la trasparenza e la controllabilita del processo: la presenza di
output intermedi rende possibile analizzare il comportamento del modello passo
dopo passo, facilitando attivita di debugging e verifica della correttezza logica delle
singole fasi.

Retrieval-Augmented Generation (RAG)

Gli LLM incorporano una vasta quantita di conoscenza nei propri parametri, ma
tale conoscenza e difficile da aggiornare e tende a diventare rapidamente obsoleta.
Inoltre, I'accesso puntuale a contenuti specialistici rimane complesso, soprattutto
quando si tratta di informazioni di nicchia o di dominio ristretto. Queste limitazioni
derivano anche dal fatto che 'addestramento degli LLM richiede tempi e risorse
considerevoli, rendendo impraticabile un aggiornamento frequente dei dati di
training.

11 Retrieval-Augmented Generation (RAG) [47] [48] € una tecnica che affronta in
modo diretto queste criticita collegando la generazione del modello a una memoria
non parametrica esterna. In pratica, a ogni query il sistema effettua un’operazione
di retrieval, recuperando evidenze da un archivio di conoscenza — ad esempio
un database documentale, fonti aziendali o risorse aperte come Wikipedia — e
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condiziona la generazione sulle informazioni reperite. Questo arricchimento consente
di migliorare la specificita, la fattualita e la tracciabilita delle risposte.

L’idea e stata formalizzata principalmente nel paper Retrieval-augmented generation
for knowledge-intensive NLP tasks [47], dove ¢ stata proposta la combinazione di
un modello seq2seq con un indice denso di passaggi testuali, dimostrando progressi
significativi in task knowledge-intensive. Operativamente, I'implementazione tipica
del RAG prevede I'uso di un database vettoriale contenente gli embedding dei
documenti esterni. Quando 'utente pone una domanda, il sistema confronta la
query con lo spazio vettoriale, individua i documenti piu pertinenti e li utilizza per
arricchire il prompt inviato al modello, che genera cosl una risposta fondata sia sul
contesto originale sia sull’evidenza recuperata.

Indexing

—
Documents

—
Chunks|Vectors

embeddings

I Retrieval

] = 5 [RelevantDocumentsJ

"\ rehiring 't\"‘l ',.‘a_‘_:.:- E * LLM Generation

)
] Question :

1 How do you evaluate the fact that the
' OpenAls CEOQ, ...... dynamics?

i Please answer the above questions
] .

, based on the following information :
' Chunk 1

1+ Chur
]
i Chunk 3

—| Combine Context [~ :
and Prompts ]

Figura 2.11: Un esempio rappresentativo del processo RAG applicato alla risposta
a domande [49]. Consiste principalmente di 3 fasi:

1) Indicizzazione. I documenti vengono suddivisi in blocchi, codificati in vettori e
memorizzati in un database vettoriale.

2) Recupero. Recuperare i k blocchi piu rilevanti per la domanda in base alla
somiglianza semantica.

3) Generazione. Inserire la domanda originale e i blocchi recuperati insieme
nel’LLM per generare la risposta finale

Rispetto alla formulazione originaria, oggi il paradigma RAG puo essere esteso
in chiave piu dinamica grazie all’integrazione con tool esterni e sistemi agentici

34



2.4 — Prompt Engineering: la chiave per sfruttare gli strumenti GenAI

[49]. I’LLM non si limita a consultare una memoria statica, ma puo interagire
attivamente con strumenti di ricerca, API, basi dati in tempo reale o pipeline di
analisi, aggiornando continuamente il proprio contesto informativo. In questo modo,
il retrieval non e piu un’operazione isolata, ma diventa parte di un ciclo iterativo
in cui il modello recupera, interpreta, agisce e raffina progressivamente la risposta.

Questo approccio si dimostra particolarmente utile in contesti aziendali o settoriali,
dove I'accesso a informazioni aggiornate e affidabili e cruciale. Grazie all'integrazione
di fonti autorevoli, il RAG riduce la probabilita che il modello produca contenuti
inesatti o fuorvianti, garantendo risposte piu accurate, pertinenti e verificabili.

Modules
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Figura 2.12: Confronto tra i tre paradigmi di RAG [49].

(Sinistra) Il RAG naive consiste principalmente di tre parti: indicizzazione, recupero
e generazione.

(Centro) Il RAG avanzato propone diverse strategie di ottimizzazione relative al
pre-recupero e al post-recupero, con un processo che segue comunque una struttura
a catena, come per la versione naive.

(Destra) I1 RAG modulare, invece, eredita e sviluppa il paradigma precedente,
dimostrando una maggiore flessibilita complessiva. Cio e evidente nell'introduzione
di pitt moduli funzionali specifici e nella sostituzione dei moduli esistenti. Il processo
complessivo non si limita al recupero e alla generazione sequenziali, ma include
metodi come il recupero iterativo e adattivo.

35



GenAlI nel ciclo di vita del software

2.5 Rischi e sfide della GenAl

L’impiego di strumenti di Generative Al nel SDLC offre numerosi vantaggi im-
mediatamente percepibili dagli utilizzatori, migliorando produttivita, velocita e
qualita complessiva del processo. Tuttavia, insieme a questi benefici emergono
anche rischi e criticita, talvolta meno evidenti nel breve e medio periodo, che
richiedono un’attenta valutazione e strategie mirate di mitigazione.

In particolare, I'adozione di tali strumenti solleva questioni di natura tecnica,
legale, organizzativa ed etica, che devono essere analizzate in modo sistematico per
garantire un utilizzo consapevole e sostenibile. Inoltre, I'integrazione sempre piu
stretta con tool dinamici e sistemi agentici rende il quadro ancora piu complesso: se
da un lato aumenta la flessibilita e la capacita di adattamento dei modelli, dall’altro
amplifica la necessita di controlli accurati, governance e monitoraggio continuo.

Alla luce di cio, nei paragrafi successivi verranno esaminati in maniera strutturata
i principali aspetti critici connessi all'uso della GenAl nel ciclo di vita del software,
con l'obiettivo di delineare un approccio pit maturo e consapevole alla loro adozione.
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2.5.1 Tecniche

Un primo insieme di problematiche riguarda gli aspetti piu strettamente tecnici del
SDLC. Si tratta di rischi che possono manifestarsi in qualunque fase del processo,
dalla raccolta dei requisiti fino al testing e alla manutenzione, e che incidono
in maniera diretta sulla qualita complessiva del prodotto. Tali criticita possono
compromettere la correttezza del codice, la sua robustezza e manutenibilita, nonché
la capacita del software di soddisfare requisiti funzionali e non funzionali.

In particolare, le sfide tecniche derivanti dall’'uso di strumenti di Al generativa non
si limitano al mero aspetto implementativo: esse possono influenzare 1’architettura
complessiva, l'integrazione con sistemi preesistenti, 1'affidabilita del ciclo di build e
di deploy, fino ad arrivare alla gestione della sicurezza e alla conformita a standard
industriali. Un codice generato rapidamente ma non verificato puo introdurre
errori nascosti che si propagano a valle, aumentando i costi di correzione in fasi piu
avanzate del progetto. Inoltre, la difficolta nel garantire trasparenza e tracciabilita
delle decisioni prese dal modello rende piu complessa la revisione del software
e la sua validazione rispetto a requisiti stringenti, come quelli tipici di settori
regolamentati (finanza, sanita, pubblica amministrazione).

In altre parole, i rischi tecnici connessi alla GenAl non devono essere visti come
problematiche isolate, ma come fattori che si intrecciano con le pratiche consolidate
di ingegneria del software. Se non gestiti con strumenti e processi adeguati (code
review, testing automatico, analisi statica, linee guida di sviluppo), tali rischi
possono ridurre drasticamente i benefici attesi dall’adozione dell’TA; trasformando
un potenziale acceleratore in una fonte di complessita aggiuntiva.

Bias nei modelli

Uno dei problemi piu discussi nell’ambito della GenAl e la presenza di bias nei
modelli generativi, una criticita che si colloca all’incrocio tra aspetti tecnici, me-
todologici ed etici. I modelli apprendono schemi e soluzioni da grandi insiemi di
dati eterogenei, raccolti spesso da fonti pubbliche o da repository online. Se tali
dati contengono distorsioni o squilibri — ad esempio, il predominio di un certo
paradigma di programmazione, la sovra-rappresentazione di specifiche tipologie di
soluzioni o la scarsita di contributi provenienti da comunita diverse — il modello
tende a riprodurre automaticamente quelle stesse asimmetrie.

Il risultato sono output che riflettono pregiudizi impliciti, ipotesi non valide o
soluzioni tecniche sistematicamente orientate verso approcci non ottimali. Bias
meno evidenti possono tradursi in una sorta di “invisibile conformismo algoritmico”:
ad esempio, un modello che privilegia costantemente implementazioni tradizionali
anche laddove esistono alternative piu moderne, efficienti o piu eque per il contesto.
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Questi bias non abbiano soltanto una valenza etica (discriminazioni implicite,
esclusione di approcci minoritari), ma abbiano anche ricadute dirette sulla qualita
del software: un modello che incorpora assunzioni errate rischia di propagare errori
logici nei sistemi generati, con effetti a cascata sull’affidabilita complessiva.

Allucinazioni e affidabilita delle risposte

Un secondo rischio tecnico di grande rilievo e rappresentato dalla tendenza dei
modelli generativi a produrre contenuti inesatti o del tutto fittizi, fenomeno co-
munemente noto come Allucinazione (hallucination). Questo limite affonda le sue
radici nel funzionamento intrinseco dei modelli di intelligenza artificiale: essi non
possiedono una vera comprensione semantica del codice o del testo che producono,
ma operano sulla base di predizioni statistiche, selezionando la sequenza di token
piu probabile a partire dal contesto fornito. Tale approccio, pur risultando estrema-
mente efficace nel generare output plausibili e coerenti a livello superficiale, espone
inevitabilmente al rischio che vengano proposte soluzioni formalmente corrette ma
sostanzialmente errate.

Il pericolo principale risiede proprio nella plausibilita di questi output. A differenza
degli errori evidenti, che vengono individuati rapidamente e scartati senza esitazione,
le allucinazioni hanno 'aspetto di codice legittimo e funzionante, inducendo cosi
lo sviluppatore ad accettarle come valide. Non e raro, ad esempio, che la GenAl
generi funzioni in grado di compilare senza errori, ma che restituiscano risultati
scorretti in particolari condizioni limite. In altri casi, vengono introdotte chiamate
a procedure che non esistono, ma che appaiono del tutto credibili a chi legge,
magari perché richiamano convenzioni di denominazione diffuse o librerie realmente
esistenti. Ancora, si riscontrano test case apparentemente ben strutturati che pero
fraintendono aspetti fondamentali del dominio applicativo, con il rischio di validare
erroneamente comportamenti non conformi ai requisiti di business.

Il carattere insidioso delle allucinazioni risiede dunque nella loro capacita di creare
un falso senso di affidabilita. Uno sviluppatore, soprattutto se alle prime armi, puo
essere portato a integrare tali soluzioni senza verificarle con attenzione, convinto
dalla loro forma sintatticamente impeccabile. Questo atteggiamento non solo
facilita I'introduzione di bug logici difficili da rilevare in fase di testing, ma puo
anche compromettere la fiducia che il team ripone nel processo di sviluppo stesso:
se il codice generato dall'TA si rivela inaffidabile, ogni fase successiva (dalla code
review fino alla messa in produzione) risulta appesantita dalla necessita di ulteriori
controlli.
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Vulnerabilita

Un ulteriore aspetto tecnico di primaria importanza riguarda la sicurezza del
codice generato. La natura stessa dei modelli generativi spiega il motivo di tale
criticita: essi vengono addestrati su enormi corpora di codice reperibile in rete,
che includono progetti open source di varia qualita, frammenti di documentazione
tecnica, esempi da forum di programmazione e repository spesso non sottoposti ad
alcun processo di validazione. In questo insieme di dati convivono tanto soluzioni
eleganti e consolidate quanto pratiche obsolete, pattern deprecati e, non di rado,
vulnerabilita note. Poiché il modello non possiede una comprensione intrinseca del
concetto di “sicurezza”, ma si limita a riprodurre correlazioni statistiche, non e
in grado di distinguere autonomamente tra codice sicuro e codice pericoloso: cio
significa che debolezze e cattive pratiche presenti nei dati di training possono venire
inconsapevolmente perpetuate negli output generati.

Le conseguenze non sono puramente teoriche. Esempi concreti documentati mo-
strano come i modelli suggeriscano con frequenza soluzioni vulnerabili. Un caso
classico riguarda la concatenazione diretta di stringhe all’interno di query SQL,
una pratica diffusa in molti vecchi progetti e che espone immediatamente al rischio
di SQL injection.

La letteratura scientifica conferma la gravita del problema. Una ricerca condotta
dalla Cornell University ha evidenziato che circa il 40% dei programmi completati
con l'ausilio di GitHub Copilot presentava vulnerabilita di sicurezza [50]. Questo
dato non sorprende se si considera che la probabilita di incontrare e riprodurre cat-
tive pratiche aumenta proporzionalmente all’ampiezza del dataset di addestramento
e al suo carattere eterogeneo. La capacita predittiva del modello, pur sofisticata,
non implica in alcun modo la garanzia che la soluzione proposta sia sicura, robusta
o conforme a standard di settore.

Di fronte a tale scenario, e evidente che un approccio di cieca fiducia verso le soluzioni
generate dalla GenAl risulta intrinsecamente rischioso. Al contrario, I'uso di questi
strumenti deve essere sempre incardinato all’interno di un contesto di pratiche
consolidate di sicurezza del software. Tra queste, assumono un ruolo cruciale
strumenti come le code review, I'impiego di strumenti di analisi statica e di analisi
dinamica, 'integrazione di test di sicurezza specifici. A questi strumenti tecnici deve
affiancarsi una consapevolezza organizzativa: le aziende che introducono la GenAl
nei propri flussi di sviluppo hanno la responsabilita di formare adeguatamente
il personale, sensibilizzando sul fatto che il codice generato non ¢ mai “sicuro di
default”. Solo combinando la potenza generativa dei modelli con solide pratiche di
ingegneria del software e con una cultura condivisa della sicurezza sara possibile
sfruttare appieno i benefici che essa puo offrire.
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Soluzioni generiche e mancata aderenza ai requisiti di business

Un altro limite sostanziale delle soluzioni presenti attualmente sul mercato e la
scarsa comprensione del contesto progettuale e dei requisiti di business specifici.
Gli output della GenAl, pur essendo sintatticamente corretti, spesso rappresentano
soluzioni generiche, valide in media ma non ottimizzate per il particolare dominio
o scenario d’uso dell’applicazione target.

Questo accade perché il modello non dispone di una visione globale degli obiettivi
di progetto: manca della capacita di cogliere la finalita ultima del software, le
priorita di business, le aspettative degli stakeholder e le nuance dei requisiti
funzionali e non funzionali. Ad esempio, un modello potrebbe generare una funzione
per calcolare prezzi senza tenere conto di regole aziendali peculiari (scontistiche,
arrotondamenti normativi, ecc.). Allo stesso modo, vincoli non funzionali come
performance, scalabilita, usabilita o conformita normative possono essere ignorati:
studi evidenziano che I'TA tende a focalizzarsi sull’'implementazione funzionale di
base, trascurando considerazioni architetturali e di qualita del software.

Il risultato sono soluzioni distanti dalle aspettative, che richiedono interventi
correttivi o addirittura reingegnerizzazioni, riducendo i benefici di produttivita.
Inoltre, poiché i modelli si basano su pattern consolidati, le soluzioni tendono a essere
poco innovative: mancano cioe della capacita di introdurre idee progettuali originali
o vantaggi competitivi, che invece un team umano puo sviluppare ragionando in
modo creativo sui requisiti.

Accumulo di debito tecnico

L’ultimo rischio tecnico riguarda l'accumulo di debito tecnico, fenomeno ben
noto nello sviluppo software tradizionale ma potenzialmente amplificato in modo
significativo dall’adozione della GenAl. Con il termine debito tecnico si intende il
costo implicito derivante da scelte di sviluppo rapide e non ottimali, che consentono
di ottenere un risultato immediato ma generano lavoro aggiuntivo futuro in termini
di manutenzione, correzione o refactoring. Come ogni debito, esso puo apparire
vantaggioso nel breve periodo — permettendo di raggiungere obiettivi con maggiore
velocita — ma comporta interessi che si accumulano progressivamente nel tempo,
fino a gravare pesantemente sulla sostenibilita del progetto.

La GenAl, con la sua promessa di accelerare drasticamente la produzione di software
in ogni fase del ciclo di vita, rischia di rafforzare dinamiche gia presenti ma di solito
piu contenute. La disponibilita di strumenti in grado di generare codice in pochi
secondi puo indurre sviluppatori e team a privilegiare soluzioni rapide e superficiali,
trascurando pratiche fondamentali di ingegneria del software come la progettazione
modulare, la stesura di documentazione accurata, 1’esecuzione di test sistematici o
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la revisione del codice da parte di pari. In altre parole, la tentazione di “prendere
scorciatoie” aumenta proporzionalmente alla percezione di poter contare su un
alleato potente e veloce.

Benché il debito tecnico sia un rischio strutturale da sempre presente nello sviluppo
software, 'introduzione della GenAl puo portarlo a nuovi livelli di pericolosita. Se
non si lavora in maniera sistematica per diffondere una cultura della qualita del
codice e per creare, dove necessario, gli “anticorpi” organizzativi e metodologici
adeguati, il rischio e quello di accumulare in tempi rapidissimi grandi quantita di
codice apparentemente funzionante ma strutturalmente fragile. Tale codice, nel
lungo termine, rallenta I’evoluzione del sistema, poiché ogni nuova funzionalita deve
fare i conti con una base instabile, e aumenta sensibilmente i costi di manutenzione
e gestione.

Le osservazioni provenienti dal mondo industriale e accademico confermano questa
tendenza. Molti addetti ai lavori sottolineano che, senza un’attenta governance, la
GenAl rischia di aumentare il carico tecnico complessivo anziché ridurlo, contribuen-
do ad accrescere quella “montagna di debito tecnico” che gia caratterizza numerose
codebase legacy. Indagini recenti rafforzano questa preoccupazione: sebbene il 92%
degli sviluppatori dichiari un incremento del volume di codice prodotto grazie all'TA,
una quota significativa segnala anche un ampliamento del “raggio di impatto” di
codice di bassa qualita, ossia di porzioni che richiedono correzioni e rifattorizzazioni
successive [51].
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2.5.2 Organizzative

Oltre alle implicazioni di natura prettamente tecnica, l'introduzione della GenAl
nei processi di sviluppo software porta con sé un insieme di rischi organizzativi
che meritano un’attenta considerazione. Se, infatti, le criticita tecniche incidono
direttamente sulla qualita e sull’affidabilita del codice prodotto, i rischi organiz-
zativi si manifestano piu sottilmente, influenzando il modo in cui i team operano,
collaborano e si evolvono nel tempo.

Queste problematiche non riguardano soltanto la dimensione operativa quotidiana,
ma toccano aspetti piu profondi della vita aziendale: la distribuzione delle compe-
tenze tra professionisti, la capacita di mantenere un adeguato livello di autonomia
tecnica, la definizione di policy interne coerenti e il delicato equilibrio tra produtti-
vita individuale e collaborazione collettiva. In altre parole, 'adozione della GenAl
non rappresenta solo una questione di strumenti, ma anche e soprattutto una sfida
culturale e organizzativa.

Le implicazioni possono assumere diverse forme. Da un lato, vi e il rischio di
dipendenza eccessiva dagli strumenti di Al, che puo condurre a un impoverimento
progressivo delle competenze umane e alla formazione di quello che alcuni autori
definiscono “debito di competenze”. Dall’altro, emerge la necessita di definire
politiche di governance chiare e condivise, senza le quali I'uso dell’TA rischia di
diventare anarchico, esponendo 'organizzazione a problemi di sicurezza, conformita
o gestione dei flussi di lavoro. Infine, occorre considerare I'impatto sulle dinamiche
collaborative: la GenAl puo alterare i processi consolidati di comunicazione e
revisione, generando sia nuove opportunita sia potenziali attriti tra sviluppatori.

In questo senso, i rischi organizzativi non vanno interpretati come semplici corollari
dei rischi tecnici, ma come fattori che ne moltiplicano o ne attenuano gli effetti.
Un’organizzazione che non gestisce adeguatamente le proprie politiche interne, che
non forma il personale all’'uso critico degli strumenti o che non integra I'TA in
una cornice di collaborazione strutturata, si espone infatti al pericolo di vedere
compromessi non solo i risultati di singoli progetti, ma anche la propria capacita di
innovazione e di crescita nel lungo periodo.

Dipendenza dagli strumenti Al e “debito di competenze”

L’adozione estesa di tool di Al generativa nel SDLC introduce inevitabilmente
anche il rischio di una dipendenza eccessiva da tali strumenti, con conseguente
impoverimento progressivo delle competenze umane. Questo fenomeno, che si
manifesta in maniera sottile ma profonda, riguarda soprattutto i programmatori
meno esperti: questi, potendo contare su un assistente capace di generare codice
in tempi rapidissimi, possono sviluppare l'abitudine ad affidarsi totalmente al
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sistema per la risoluzione dei problemi, limitandosi ad accettarne le soluzioni senza
comprenderle a fondo.

Se tale tendenza si consolida, il rischio ¢ quello di generare quello che possiamo
definire un vero e proprio “debito di competenze”. A breve termine, I’organizzazione
guadagna in velocita e produttivita apparente, beneficiando della capacita dell'TA
di fornire risposte immediate a domande anche complesse. Tuttavia, sul lungo
periodo, la perdita di conoscenze critiche e abilita fondamentali diventa inevitabile:
competenze come il problem solving, il ragionamento algoritmico, la capacita
di debugging o la padronanza di architetture complesse rischiano di atrofizzarsi,
lasciando spazio a professionalita che sanno “chiedere all’Al” ma non piu “fare da
sé”. In questo senso, la GenAl puo trasformarsi da strumento abilitante a fattore
di regressione formativa, soprattutto per le nuove generazioni di sviluppatori.

Alcuni articoli preliminari suggeriscono gia questa deriva: si prospetta infatti un
peggioramento delle capacita di coding di base tra i programmatori che fanno uso
intensivo di assistenti di intelligenza artificiale [52]. Il rischio non ¢ quindi soltanto
individuale, ma collettivo: interi team potrebbero diventare meno autonomi, meno
creativi e meno resilienti di fronte a problemi non standard, proprio perché hanno
perso l'esercizio quotidiano del pensiero critico e del ragionamento logico.

La dipendenza, tuttavia, non si manifesta soltanto sul piano delle competenze.
Un ulteriore elemento di vulnerabilita e rappresentato dal vendor lock-in: quando
un’organizzazione costruisce i propri workflow intorno a un modello o a un servizio
specifico, il passaggio ad alternative si fa complesso e oneroso. Cio lega a doppio
filo I'azienda alle scelte tecnologiche, economiche e politiche del fornitore, riducendo
la flessibilita strategica e aumentando il rischio di dipendenza infrastrutturale.

Senza adeguate contromisure, I’organizzazione rischia di trovarsi con professionisti
abili a interagire con I'IA; ma sempre meno preparati a operare in autonomia. Per
evitare che questo debito di competenze diventi un fardello strutturale, ¢ indispen-
sabile investire in formazione continua, incoraggiando pratiche che mantengano vive
le capacita umane fondamentali, e promuovendo un uso dell’Al che sia realmente
complementare e non sostitutivo dell’ingegno umano. Solo in questo modo la GenAl
puo essere integrata nei processi di sviluppo come risorsa potenziante, anziché come
fattore di dipendenza che impoverisce progressivamente il capitale di conoscenza
dell’organizzazione.

Governance e policy di utilizzo

Un ulteriore aspetto cruciale riguarda la definizione di una chiara governance interna
e di politiche di utilizzo appropriate per la GenAl. L’assenza di regole condivise e
di meccanismi di controllo rappresenta infatti un rischio organizzativo significativo:
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in mancanza di linee guida precise, ciascun sviluppatore potrebbe decidere in
autonomia come e quando ricorrere all'lA; con conseguente esposizione dell’azienda
a vulnerabilita di sicurezza, violazioni di conformita normativa o compromissioni
della qualita del prodotto. In altri termini, senza una governance strutturata,
I’adozione della GenAl rischia di evolvere in modo anarchico, generando benefici
immediati ma anche effetti collaterali potenzialmente gravi.

Dati recenti confermano la portata del problema. Un’indagine del 2023 ha rivelato
che soltanto il 21% delle aziende aveva gia istituito policy formali sull’uso dell’TA
da parte dei dipendenti, nonostante la diffusione esplosiva di queste tecnologie nei
flussi di lavoro [53]. Questo divario evidenzia un disallineamento tra l’entusiasmo
per l'adozione e la maturita organizzativa nella gestione degli strumenti: se da un
lato cresce rapidamente 'uso di assistenti generativi, dall’altro mancano spesso
regole e processi in grado di incanalare tale utilizzo in un quadro sicuro e sostenibile.

Una governance solida dovrebbe partire dall’elaborazione di una politica aziendale
che indichi con chiarezza gli usi consentiti e quelli vietati, stabilendo ad esempio
che non sia possibile inserire nei prompt dell'TA codice proprietario o dati sensibili,
al fine di evitare fughe di informazioni riservate. La stessa policy dovrebbe chiarire
che i risultati prodotti dalla GenAlI non possono essere accettati senza un’adeguata
revisione umana, e che l'integrazione del codice generato deve avvenire attraverso
processi di verifica e validazione consolidati. Parallelamente, occorre che 1'organiz-
zazione definisca quali strumenti siano effettivamente autorizzati, e quali invece
siano da escludere per ragioni di sicurezza, licenza o conformita con le normative
vigenti, come I’Al Act europeo.

A questi principi deve affiancarsi una chiara definizione di ruoli e responsabilita.
Le organizzazioni pit mature potrebbero istituire comitati interni o figure di
riferimento incaricate di valutare periodicamente I'impatto della GenAl nei progetti,
di monitorare la conformita alle regole e di condurre audit sul codice prodotto
con l'ausilio dell’TA. In assenza di tali meccanismi, il rischio ¢ che lo strumento
venga utilizzato in maniera inconsapevole o persino impropria: sviluppatori che
condividono porzioni di codice proprietario senza rendersene conto, o che integrano
soluzioni generate senza adeguata verifica, con conseguenze potenzialmente gravi
nel medio-lungo periodo [53].

La cultura organizzativa, poi, gioca un ruolo altrettanto decisivo. Una policy, per
quanto ben scritta, non e sufficiente se non e accompagnata da una comunicazione
chiara e da un senso di responsabilita condivisa. I team devono essere istruiti non
solo su cosa € consentito o vietato, ma anche sul perché: comprendere i rischi
legati alla gestione dei dati, alla proprieta intellettuale e alla qualita del software
¢ essenziale per favorire un uso consapevole e maturo dell'TA. Solo attraverso un
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impegno culturale di questo tipo & possibile trasformare le regole formali in prassi
effettivamente rispettate nella vita quotidiana dei progetti.

Impatto sulla collaborazione tra sviluppatori e sul flusso di lavoro

L’integrazione degli strumenti di questi strumenti all’interno dei team di sviluppo
non ha solo conseguenze tecniche, ma puo modificare in maniera significativa anche
le dinamiche collaborative e i flussi di lavoro consolidati. Il loro impatto, infatti,
non si limita alla fase di scrittura del codice, ma si estende all’intero ecosistema di
interazioni che caratterizza lo sviluppo software moderno, in cui la condivisione di
conoscenze, il confronto tra pari e la revisione collettiva sono elementi centrali.

Da un lato, la GenAl tende a ridurre la necessita di interazioni umane per alcune
attivita di routine. In passato, ad esempio, un programmatore junior che incontrava
una difficolta avrebbe cercato il supporto di un collega piu esperto, generando
un’occasione di confronto, di scambio di esperienze e di crescita formativa reciproca.
Oggi, invece, lo stesso problema puo essere affrontato semplicemente chiedendo
suggerimento all'TA, ottenendo una soluzione immediata ma isolata. Se questo
comportamento diventa sistematico, il rischio ¢ che lo scambio di conoscenza
all’interno del gruppo si impoverisca: errori comuni che prima avrebbero alimentato
discussioni e portato a un apprendimento collettivo diventano occasioni mancate,
perché la risposta arriva dal modello ma non viene necessariamente compresa,
interiorizzata o condivisa con il resto del team. La crescita del know-how collettivo,
elemento fondamentale per la maturazione dei gruppi di lavoro, puo cosi risentirne
sensibilmente.

Dall’altro lato, I'uso diffuso della GenAl introduce nuove complessita nei pro-
cessi collaborativi gia consolidati. La fase di code review, ad esempio, assume
un’importanza ancora maggiore, perché i revisori non sono piu chiamati soltanto
a valutare la correttezza e l'aderenza del codice ai requisiti, ma devono anche
essere in grado di riconoscere e analizzare eventuali frammenti generati dall’TA
che, pur essendo plausibili a livello sintattico, possono nascondere vulnerabilita,
errori logici o assunzioni non corrette. Se lo sviluppatore che ha integrato tali
porzioni di codice non ne ha piena padronanza, il revisore rischia di trovarsi di
fronte a un compito piu complesso e dispendioso in termini di tempo, con inevitabili
rallentamenti nel processo di integrazione. Questo scenario puod anche intaccare
la fiducia reciproca tra i membri del team: la revisione rischia di trasformarsi in
un’attivita di “controllo” piuttosto che di collaborazione costruttiva, alimentando
frizioni e riducendo la fluidita del workflow.

Le evidenze empiriche confermano questa dinamica. Studi condotti su progetti open-
source che hanno introdotto GitHub Copilot mostrano che, a fronte di un incremento
misurabile della produttivita individuale (nell’ordine del 5-6%), si & registrato un
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aumento significativo del tempo di integrazione del codice prodotto, stimato intorno
al 41% [54]. Tale differenza sembra imputabile ai maggiori costi di coordinamento e
alle verifiche aggiuntive richieste per il codice generato dall’TA. Cio indica che 1'uso
della GenAl puo determinare un vero e proprio overhead collaborativo, fatto di piu
iterazioni, discussioni piu lunghe e necessita di aggiustamenti frequenti prima di
arrivare all’accettazione di una modifica. In altre parole, il guadagno di velocita
individuale rischia di tradursi in una perdita di efficienza a livello di team.

Infine, non bisogna dimenticare che la GenAl, per quanto sofisticata, non puo
sostituire la comunicazione diretta con gli stakeholder e con gli utenti finali. Attivita
come la raccolta e la chiarificazione dei requisiti, le sessioni di brainstorming per
la progettazione o la negoziazione delle priorita rimangono fortemente ancorate
all’interazione umana. Una delega eccessiva di tali momenti all'TA rischierebbe
di impoverire il dialogo interno ed esterno, compromettendo quella dimensione
relazionale che rappresenta la linfa vitale di un progetto software sano. In definitiva,
la GenAI puo potenziare il lavoro dei team, ma non sostituire la ricchezza cognitiva
e collaborativa che nasce dall’incontro tra persone.
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2.5.3 Etiche, Ambientali e Legali

Accanto ai rischi tecnici e organizzativi, I'adozione della GenAl nel ciclo di vita del
software solleva questioni di carattere etico, giuridico e ambientale che trascendono
la dimensione puramente tecnologica ma che, al tempo stesso, condizionano in
modo determinante le possibilita di utilizzo sostenibile e responsabile di queste
tecnologie. Si tratta di rischi che investono ambiti tradizionalmente regolati da
norme di diritto, da principi etici e da considerazioni di sostenibilita, e che pertanto
non possono essere ignorati da chi intende integrare la GenAl nei processi aziendali
o istituzionali.

Proprieta intellettuale e licenze del risultato generato

L’utilizzo di sistemi di intelligenza artificiale generativa per produrre testi, docu-
menti, immagini o codice sorgente solleva questioni inedite e tuttora dibattute in
merito alla proprieta intellettuale e al rispetto delle licenze applicabili ai contenuti.
I modelli linguistici vengono infatti addestrati su vastissimi insiemi di dati, che
includono libri, articoli, materiale proveniente dal web, documentazione tecnica,
repository di codice e una molteplicita di altre fonti, molte delle quali protette da
copyright o distribuite con licenze specifiche.

Il fatto che i modelli possano generare testi o contenuti che riproducono, anche
solo parzialmente, strutture, stili o soluzioni provenienti da opere preesistenti, apre
scenari giuridici complessi. Vi ¢ il timore che 'output di un sistema di GenAl
possa configurarsi, in alcuni casi, come un’opera derivata, con conseguente rischio
di violazione involontaria della proprieta intellettuale. La giurisprudenza su questi
temi € ancora in evoluzione, ma diversi esperti hanno gia sottolineato come il
rischio di infrazione, pur non sempre immediatamente evidente, sia tutt’altro che
trascurabile.

Un esempio particolarmente critico riguarda le licenze copyleft, come la GPL nel
campo del software. Se un modello generativo, avendo appreso durante I'addestra-
mento da materiale coperto da tale licenza, produce un contenuto che ne incorpora
elementi sostanziali, chi utilizza quell’output in un contesto proprietario potrebbe,
almeno teoricamente, essere obbligato a rilasciare l'intera opera sotto la stessa
licenza, con conseguenze rilevanti. Nel caso del codice sorgente, cio significhereb-
be dover distribuire parti di software proprietario come open source, ma scenari
analoghi si possono ipotizzare anche per altre tipologie di contenuti testuali.

A tutto cio va poi aggiunto il tema che riguarda la mancata attribuzione: anche
quando l'output generato non coincide testualmente con una fonte specifica, puo
esserne fortemente ispirato. Si pensi, ad esempio, a quando si chiede a un modello
di scrivere un racconto breve: il risultato puo rivelarsi una variazione piu o meno
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evidente di opere letterarie gia esistenti. Cio solleva questioni etiche, legate al
mancato riconoscimento degli autori originari, e legali, legate al diritto morale
d’autore, che in molti ordinamenti tutela la paternita e I'integrita dell’opera.

Vi e poi la problematica dell’apolidia delle opere generate dall’TA. In alcuni sistemi
giuridici, un contenuto prodotto interamente da una macchina senza contributo
creativo umano non puo essere protetto da copyright. Questo significa che i testi, le
immagini o i codici generati potrebbero ricadere in una sorta di “zona grigia”, privi
di protezione legale e quindi liberamente riutilizzabili da chiunque. Per le aziende,
cio implica I'impossibilita di rivendicare diritti esclusivi sui contenuti creati dall’TA,
con conseguenze potenzialmente gravi in termini di tutela e valorizzazione degli
asset immateriali [55].

A questi va poi aggiunto un rischio trasversale che riguarda 1’esposizione involontaria
di proprieta intellettuali aziendali. Molti fornitori di GenAl, specialmente nelle
versioni gratuite, dichiarano di poter raccogliere i prompt e i dati inseriti dagli utenti
per migliorare i modelli. Qualora uno sviluppatore o un dipendente introducesse
all’interno di un prompt parti di codice proprietario o documentazione interna
riservata, tali informazioni potrebbero essere conservate e, in seguito, riemergere
in output generati per terzi. Questo scenario non solo mina la riservatezza e la
sicurezza aziendale, ma comporta anche una perdita di controllo su conoscenze
strategiche e su elementi di proprieta intellettuale.

Responsabilita legale e compliance normativa

Un’organizzazione che adotta la GenAl nel proprio SDLC deve considerare attenta-
mente le responsabilita legali derivanti dall'uso di codice generato automaticamente,
e piu in generale dei dati forniti in ingresso e ricevuti in uscita dai modelli. Dal
punto di vista giuridico, infatti, permane in capo all’azienda (o agli sviluppatori)
la responsabilita per il corretto funzionamento e la liceita del software prodotto,
anche se parti di esso sono state scritte dall’TA. L’uso di un assistente Al, infatti,
non rappresenta in alcun modo un’esenzione di responsabilita. Se un software
contenente porzioni generate da un modello dovesse provocare danni a terzi — ad
esempio per un bug critico, un malfunzionamento in un sistema mission critical
o una violazione normativa — il fatto che quel codice o quel contenuto sia stato
prodotto da una macchina non costituirebbe una difesa sufficiente in sede legale.

La prassi corrente dei fornitori di GenAl conferma questa impostazione. I principali
attori del settore, consapevoli delle implicazioni potenzialmente rilevanti, tendono a
declinare esplicitamente ogni forma di responsabilita sui risultati prodotti dai propri
modelli, imponendo all’utente finale I'onere di verifica e validazione. I termini di
servizio di GitHub Copilot [56], ad esempio, specificano chiaramente che lo svilup-
patore ¢ tenuto a controllare e testare ogni output prima dell’utilizzo, sollevando di
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fatto Microsoft e GitHub da ogni responsabilita per eventuali conseguenze negative
legate al codice suggerito. In altre parole, i team di sviluppo devono trattare i
contenuti generati dall’lIA come se fossero contributi di un collaboratore umano
non esperto, sottoponendoli a processi rigorosi di code review, testing e validazione
prima della distribuzione. In caso contrario, un eventuale contenzioso per danni,
negligenza o violazioni contrattuali ricadrebbe interamente sull’azienda produttrice
del software e non sul fornitore dell'TA.

Accanto alla responsabilita civile e contrattuale, I'uso della GenAl porta con
sé anche significative sfide di compliance normativa. In Europa, ad esempio,
il Regolamento Generale sulla Protezione dei Dati (GDPR) [57] impone vincoli
stringenti sul trattamento delle informazioni personali. Laddove per generare codice
o configurazioni si forniscano all’'TA dati reali di utenti — come esempi di record,
credenziali o informazioni anagrafiche — si rischia di compiere un trattamento non
autorizzato, soprattutto qualora il fornitore del servizio conservi tali dati per finalita
di addestramento. Non meno problematico ¢ lo scenario in cui il modello, per effetto
dei dati presenti nel training, produca stringhe contenenti informazioni sensibili
che vengano poi integrate inconsapevolmente nel software o nella documentazione:
anche in questo caso l'azienda sarebbe responsabile di una violazione della privacy
o di obblighi di riservatezza.

Il tema della conformita normativa si fa ancora piu stringente in settori ad alta
criticita, come quello sanitario, finanziario o automotive, nei quali le leggi richiedono
non solo correttezza funzionale ma anche trasparenza, tracciabilita e validazione
formale del software. In tali contesti, I'utilizzo di componenti generate dall'TA, per
loro natura difficili da spiegare e da certificare a causa del carattere di “black-box”
dei modelli, rischia di entrare in conflitto diretto con requisiti di audit e certificazione.
Le organizzazioni che operano in questi ambiti devono quindi valutare attentamente
I'impatto dell’introduzione della GenAl, integrando misure di controllo aggiuntive
e predisponendo strategie di mitigazione per garantire che il rispetto degli standard
normativi non venga compromesso.

Impatti occupazionali e trasformazione del ruolo dello sviluppatore

L’adozione crescente di strumenti di intelligenza artificiale generativa nel settore
del software apre interrogativi profondi sugli impatti occupazionali e sulla possibile
trasformazione dei ruoli professionali. La questione non riguarda soltanto la quantita
di posti di lavoro disponibili, ma anche la natura stessa delle competenze richieste
e I'evoluzione del profilo dello sviluppatore.

Da un lato, esiste il timore che I'automazione di una parte delle attivita di pro-
grammazione possa ridurre la domanda complessiva di programmatori [58]. Se
un modello come ChatGPT o sistemi analoghi sono in grado di generare in modo
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autonomo porzioni significative di codice funzionante, molte aziende potrebbero
non avere piu necessita di mantenere lo stesso numero di addetti dedicati alla
scrittura manuale di software. Questo scenario appare particolarmente critico per
le posizioni junior o per i ruoli caratterizzati da mansioni ripetitive e a basso valore
aggiunto, che rischiano di essere le prime a subire la pressione dell’automazione.

Sul medio-lungo periodo, tuttavia, 'impatto potrebbe assumere una forma diversa
e piu articolata. Se I'innovazione tecnologica continuera a progredire con i ritmi
osservati negli ultimi anni, e plausibile che la figura dello sviluppatore tradizionale
subisca una trasformazione radicale. Il programmatore potrebbe progressivamente
evolvere in una sorta di “supervisore dell’TA”, maggiormente focalizzato sulla
definizione dei requisiti, sulla progettazione architetturale e sulla validazione critica
delle soluzioni generate, piuttosto che sulla scrittura puntuale di ogni riga di codice.
In questo senso, il lavoro di sviluppo diverrebbe pit vicino al design concettuale e
strategico, lasciando all’Al la parte piu esecutiva e ripetitiva delle attivita.

Un simile cambiamento comporterebbe inevitabilmente una riconfigurazione delle
competenze richieste. La capacita di memorizzare dettagli sintattici o di riprodurre
algoritmi standard potrebbe diventare meno centrale, mentre assumerebbero mag-
giore importanza abilita quali il ragionamento analitico, la progettazione ad alto
livello, la revisione critica del codice generato e il cosiddetto prompt engineering,
ossia la capacita di interagire efficacemente con i modelli per ottenere risultati
pertinenti e di qualita. Non sorprende che alcune aziende stiano gia avviando
programmi di formazione interna per preparare i propri dipendenti a questa transi-
zione, consapevoli che il futuro del lavoro dello sviluppatore richiedera un insieme
di competenze nuove e complementari.

Storicamente, 'automazione non ha quasi mai eliminato del tutto il lavoro umano,
ma ne ha modificato le modalita e i contenuti. E quindi plausibile che anche la
GenAl finisca per spostare il baricentro delle mansioni piuttosto che sopprimerle
completamente. In questa prospettiva, l'intelligenza artificiale potrebbe liberare
i programmatori dalle attivita piu ripetitive e standardizzate, consentendo loro
di dedicare piu tempo a compiti di maggiore valore strategico, come il design
innovativo delle soluzioni, I'ottimizzazione delle performance, la collaborazione con
i clienti o la sperimentazione di nuove idee. Paradossalmente, la figura del software
engineer potrebbe cosi diventare ancora piu cruciale: meno “artigiano del codice” e
piu architetto di soluzioni, guida della strategia digitale e attore chiave dei processi
di innovazione.

Resta tuttavia il fatto che, nel breve termine, le sfide occupazionali siano gia
tangibili. Le dinamiche del mercato del lavoro negli Stati Uniti mostrano segnali di
ristrutturazione in alcuni segmenti del settore IT [59], e non mancano dichiarazioni
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di CEO di importanti aziende — come il caso di Klarna [60] — che hanno esplicita-
mente sottolineato I'impatto della GenAl sulle strategie occupazionali delle proprie
organizzazioni.

Per affrontare questa transizione in maniera equilibrata, appare fondamentale
adottare un approccio etico e proattivo, investendo in programmi di riqualificazione
professionale e in percorsi di formazione continua. La sfida non e soltanto tecnica,
ma anche culturale e organizzativa: occorre garantire che i lavoratori non subiscano
passivamente la trasformazione, ma siano messi nelle condizioni di sfruttare le
potenzialita della GenAl per accrescere la propria produttivita e il proprio valore
professionale. Solo cosi 'introduzione dell’intelligenza artificiale potra trasformarsi
da minaccia occupazionale a opportunita di crescita, in grado di ridefinire i confini
della professione senza eroderne la centralita.

Sostenibilita ambientale

Un aspetto spesso trascurato nelle discussioni sull’adozione della GenAl riguarda
il suo impatto ambientale, che si sta rivelando sempre piu significativo. Se molto
si discute degli aspetti tecnici, organizzativi o giuridici, minore attenzione e stata
finora dedicata ai costi ecologici di questi strumenti, nonostante essi rappresentino
un fattore cruciale per la sostenibilita futura della tecnologia. Gli LLM sono infatti
estremamente energivori, sia nella fase di addestramento sia in quella di inferenza,
con conseguenze tangibili in termini di consumo di risorse ed emissioni di anidride
carbonica.

La fase di training ¢ quella piu intensiva dal punto di vista energetico. Per
addestrare un modello sono necessari calcoli su scala massiva, distribuiti su migliaia
di unita di elaborazione specializzate. Studi recenti stimano che I’energia richiesta
possa variare da alcune decine a oltre un migliaio di megawattora, a seconda della
dimensione del modello e della durata dell’addestramento. Per avere un riferimento
concreto, lo sviluppo di GPT-3 e stato associato a circa 552 tonnellate di CO,
emesse in atmosfera durante la sola fase di training, un dato che rende evidente la
portata ambientale di tali operazioni [61].

Anche la fase di inferencza, cioe 'utilizzo del modello gia addestrato per rispondere
a domande o generare testi, non e priva di conseguenze. Ogni singola query rivolta
a un modello come ChatGPT ha un costo energetico che si traduce in emissioni di
alcuni grammi di CO, [62]. Tale cifra, apparentemente irrilevante se considerata
in isolamento, diventa significativa se moltiplicata per le centinaia di milioni di
richieste che vengono processate quotidianamente a livello globale. L’accumulo su
larga scala di questi consumi genera un impatto ambientale non trascurabile, che
tende ad amplificarsi con la diffusione sempre piu capillare della tecnologia.
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Oltre al consumo elettrico, un’altra variabile critica e rappresentata dalle risorse
idriche necessarie al raffreddamento dei data center. Gli impianti che ospitano le
infrastrutture di calcolo utilizzate per 'addestramento e 'inferenza dei modelli
richiedono infatti enormi quantita di acqua per mantenere stabili le temperature
operative dell’hardware. Secondo stime del professor Shaolei Ren (University of
California, Riverside), una singola sessione di interazioni con GPT-3, equivalente a
10-50 query consecutive, puo comportare indirettamente un consumo di circa mezzo
litro di acqua dolce per il raffreddamento [63]. Se questo valore viene proiettato su
scala annuale e moltiplicato per milioni di utenti, I'impatto sul fabbisogno idrico
diventa colossale, con potenziali conseguenze per i territori in cui sono collocati i
data center, spesso gia caratterizzati da stress idrico.

La crescente domanda di modelli sempre pitu grandi e performanti rende inevitabile
un aumento proporzionale di tali consumi, con un conseguente aggravio in termini
di emissioni, energia e risorse naturali. In questo scenario, la questione ambientale
non puo essere considerata secondaria né demandata al futuro, ma richiede fin da
subito un impegno congiunto di aziende e governi. E necessario sviluppare strategie
volte a mitigare I'impatto ecologico dell’TA, investendo in soluzioni tecnologiche
piu efficienti dal punto di vista energetico, favorendo 1'uso di fonti rinnovabili per
alimentare i data center e introducendo regolamentazioni specifiche che pongano
limiti e vincoli all'impronta ambientale dei modelli di intelligenza artificiale.

I1 successo della GenAl non puo essere misurato soltanto in termini di produttivita,
innovazione o competitivita economica, ma deve essere valutato anche rispetto alla
sua sostenibilita complessiva. Solo affrontando in maniera proattiva le implicazioni
ambientali sara possibile garantire che questa tecnologia contribuisca realmente al
progresso, senza scaricare costi occulti sul pianeta e sulle generazioni future.
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Capitolo 3

I Dati Git e gli LLM per
I’ Analisi e il Miglioramento
dei Workflow e delle Code

Review

Dopo aver analizzato nei capitoli precedenti il ruolo della GenAl nello sviluppo
software e le principali aree in cui gli LLM stanno trovando applicazione, questo
capitolo introduce la parte sperimentale della tesi. L’obiettivo ¢ esplorare come gli
LLM possano essere impiegati per estrarre conoscenza dai dati dei repository Git,
con l'intento di supportare sia le attivita di code review sia la comprensione del
workflow di progetto.

Il capitolo si articola in piu sezioni complementari. Nella prima parte vengono
delineati il contesto e le domande di ricerca che orientano lo studio. Successivamente
viene presentato il progetto originario a cui questo lavoro si ispira, illustrandone
I’architettura e le tecniche adottate. Segue quindi la descrizione del caso di studio
selezionato — il progetto open-source MuJS — scelto come banco di prova per
valutare l'efficacia dell’approccio. Infine, viene introdotta la soluzione proposta,
che rappresenta il contributo originale di questa tesi e costituisce il cuore della
sperimentazione.
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3.1 Contesto e Obiettivi

Nel contesto dello sviluppo software moderno, tracciare e comprendere I’evoluzione
di un progetto complesso ¢ essenziale per garantire la qualita del codice e supportare
decisioni informate. Tuttavia, i tradizionali processi di comunicazione tra le diverse
figure di un team di sviluppo spesso faticano a reggere di fronte all’enorme mole di
commit e modifiche, soprattutto in progetti caratterizzati da storie evolutive lunghe,
team numerosi e molteplici interdipendenze. A cio si aggiunge la naturale dinamicita
del settore, che comporta un frequente ricambio di ruoli e persone, aumentando il
rischio di perdita di informazioni cruciali e di una visione complessiva del progetto
e del dominio applicativo.

In questo scenario, come discusso nei capitoli precedenti, i LLM offrono un approccio
promettente. Grazie alle loro capacita di analisi del linguaggio naturale e di
riconoscimento di pattern, possono elaborare i dati provenienti dai repository Git —
ad esempio messaggi di commit e diff — consentendo di riassumere, categorizzare
e contestualizzare le modifiche nel tempo. In questo modo, il team di sviluppo
puo ottenere insight strutturati riguardo allo scopo dei commit, alle motivazioni
sottostanti e al loro impatto complessivo sul progetto. Un LLM, ad esempio, puo
raggruppare i commit relativi a una specifica funzionalita, mettere in evidenza le
aree del codice soggette a modifiche frequenti o individuare pattern ricorrenti di
refactoring e bug fix, offrendo cosi una visione chiara dell’evoluzione del progetto.

All'interno di questo quadro emergono due principali domande di ricerca che
guidano l'indagine:

« RQ1: Quanto efficacemente gli LLM possono riassumere e interpretare i
messaggi di commit Git per esprimere 'intento alla base delle modifiche al
codice?

« RQ2: In che modo gli LLM possono facilitare una migliore comunicazione
tra i membri del team generando report contestualizzati sull’evoluzione del
progetto?

In altri termini, la RQ1 si concentra sulla capacita degli LLM di interpretare
e sintetizzare i singoli commit, cogliendone motivazioni e obiettivi. La RQ2,
invece, esplora come strumenti basati su LLM possano supportare la condivisione
delle conoscenze all’interno del team, ad esempio attraverso report narrativi che
descrivano 1’evoluzione del codice e le decisioni prese nel tempo. Il problema
affrontato € quindi duplice: da un lato, sintetizzare in modo efficace le informazioni
provenienti dai commit per comprenderne 'intento (RQ1); dall’altro, investigare se
gli LLM siano in grado di migliorare la comunicazione e la comprensione condivisa
dello stato del progetto tra tutti gli attori coinvolti nello sviluppo (RQ2).
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3.2 Progetto originario

Per rispondere alle domande di ricerca sopra poste, si € preso come punto di partenza
il lavoro di Alzate, Francios e Monaco (Politecnico di Torino, 2025) intitolato "Code
Review and Project Workflow Analysis for Git Data" [64]. In tale studio viene
proposta un’architettura per 1'analisi dei dati Git con 1'obiettivo di supportare la
code review e lo studio del workflow di progetto. In particolare, si ispira a recenti
studi basati su LLM in ambito software: il framework multi agente di Tao et al. in
“MAGIS: LLM-Based Multi-Agent Framework for GitHub Issue Resolution” [65], il
generatore di test di regressione per commit di Liu et al. [66], e la metodologia di
analisi di large codebases di Zheng et al. [67].

L’architettura descritta in [64], adottata come base per questo studio, ¢ di tipo
modulare e strutturata come una pipeline multi-stadio (figura 3.1). A partire
dai dati estratti da un repository Git, essa produce automaticamente categorie
di commit, riassunti testuali delle modifiche e persino narrazioni (“stories”) che
descrivono I’evoluzione del progetto.

Filter &
Normalization

ol

O sit

Repository

Figura 3.1: Architettura ad alto livello del lavoro svolto in “Code Review and
Project Workflow Analysis for Git Data” [64]

3.2.1 Architettura

Entrando nel dettaglio, ’architettura comprende un primo modulo di estrazione,
che raccoglie i dati grezzi dal repository Git e filtra i commit non significativi o
“banali”. Le informazioni rilevanti (messaggi, diff, autore, data, ecc.) vengono
normalizzate in un formato uniforme per le fasi successive.
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Ogni commit viene quindi classificato in una delle categorie funzionali predefinite
(ad es. feature, bug fix). L’LLM riceve come input le informazioni associate al
commit e sceglie la categoria piu appropriata a partire da un elenco fisso. Per
questo compito sono stati confrontati 'appoccio zero-shot con quello few-shot.

A valle di questo componente c¢’¢ una doppia catena di summarization, che genera
)
per ogni commit due riassunti di carattere:

+ Generale (summary): in linguaggio naturale comune, spiega ad alto livello
cosa ¢ stato fatto nel commit e perché, in modo comprensibile a sviluppatori
e stakeholder non tecnici;

« Tecnico (technical summary): piu dettagliato, evidenzia specificamente le
modifiche al codice (quali file o componenti sono stati toccati, quali funzionalita
sono state aggiunte/modificate, ecc.), fornendo una visione pit approfondita
per gli sviluppatori.

Anche qui, e 'LLM che elabora tutte le informazioni rilevanti del commit per
produrre i due tipi di riassunto. In questo caso si e scelto di usare il solo few-shot,
in quanto il setup zero-shot si ¢ rivelato poco adeguato. L’output di questa fase sono
due testi per commit (riassunto “user-friendly” e riassunto tecnico) che descrivono
la stessa modifica a livelli differenti di astrazione.

Per aumentare 'affidabilita delle sintesi tecniche, il sistema integra un meccanismo
iterativo di controllo qualita ispirato al paradigma multi-agente di MAGIS [65]. In
questo schema, un primo agente genera il riassunto tecnico, mentre un secondo
ne valuta la qualita assegnando un punteggio da 0 a 10. Se la valutazione risulta
inferiore a una soglia prefissata (pari a 8), il riassunto viene rigettato e il primo
agente deve produrne uno nuovo. In questo modo il sistema incorpora meccanismi
di riflessione e autocritica, mantenendo solo le sintesi considerate sufficientemente
valide.

L’ultimo componente dell’architettura ¢ dedicato a creare una narrazione comples-
siva dell’evoluzione del progetto a partire dai singoli commit analizzati. Mentre
le sintesi descritte sopra trattano i commit individualmente, questa fase mira a
integrare le informazioni per raccontare come il progetto si sviluppa nel tempo. In
pratica, il sistema elabora i riassunti generati per ciascun commit e li trasforma
in “storie” strutturate che descrivono 'avanzamento del progetto dal punto di
vista degli stakeholder. In particolare, dal riassunto (tecnico e/o generale) di ogni
commit vengono individuati tre elementi fondamentali: il soggetto/attore coinvolto
(“chi” e protagonista del cambiamento, ad esempio uno sviluppatore o componente
software), l'obiettivo o azione compiuta (“cosa” € stato fatto/modificato) e la
motivazione o beneficio che ne deriva (“perché” questa modifica ¢ importante). 1
prompt di generazione delle story prende questi elementi e li mappa su specifici ruoli
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di stakeholder rilevanti nel contesto software, come ad esempio sviluppatore, tester,
ecc. Per ogni commit, il modello costruisce quindi una frase in formato user story
tipico dello sviluppo agile: “As a [role], I want [goal] so that [reason/bene-
fit].” Questa rappresentazione trasforma la modifica tecnica in termini di valore
per un particolare ruolo, rendendo esplicito chi beneficia del cambiamento e per
quale scopo. Vengono generate due versioni: una basata sul riassunto tecnico e una
basata sul riassunto generale, per mantenere sia la prospettiva dettagliata sia quella
piu astratta/user-friendly. Successivamente interviene una fase di aggregazione
delle story prodotte in base al singolo ruolo. Lo scopo e concatenare queste frasi
in una narrazione continua che segua 'ordine temporale dei commit e dia il senso
dello sviluppo progettuale.

Ciascun componente dell’architettura contribuisce alle domande di ricerca iniziali:
i primi moduli (estrazione, classificazione, sintesi) rispondono alla RQ1, mentre le
fasi di narrazione affrontano la RQ2, trasformando i dati in un racconto accessibile
a tutti gli stakeholder.

3.2.2 Modelli

I1 modello impiegato ¢ Llama 3.2-1B Instruct (Meta) [68], un LLM da circa 1
miliardo di parametri disponibile su HuggingFace [69]. La scelta di un modello
compatto e motivata dalla volonta di testare la fattibilita di utilizzare LLM di
dimensioni ridotte, privilegiando efficienza computazionale e rapidita di esecuzione.
In parallelo, per accelerare la valutazione dei risultati, & stato utilizzato anche
OpenAl ChatGPT [16] in modo supervisionato: le sue uscite hanno fornito un
riferimento con cui confrontare e affinare quelle di Llama, con il supporto di un
controllo umano per correggere eventuali inesattezze.

3.2.3 Tecniche

Dal punto di vista delle tecniche di prompting, sono stati sperimentati approcci di
prompting zero-shot (senza esempi) e few-shot (con esempi input-output forniti
nel prompt). Nel primo caso, la comprensione del compito ¢ affidata interamente
al modello pre-addestrato; nel secondo, il modello ¢ guidato da esempi che ne
orientano la produzione. La classificazione dei commit ha visto il confronto tra
i due approcci, mentre nella generazione di riassunti si e preferito il few-shot
per ottenere risultati pit mirati. Inoltre, ispirandosi a lavori recenti sui sistemi
multi-agente (es. MAGIS), il progetto adotta un paradigma in cui diversi LLM
collaborano o si validano a vicenda in compiti specifici, introducendo meccanismi
di auto-riflessione e verifica incrociata dei contenuti generati, con 'obiettivo di
aumentarne la robustezza.
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3.3 Caso di studio: il progetto MuJS

Per validare e sperimentare ’architettura descritta, ¢ stato scelto come caso di
studio il repository open-source MuJS [70]. MuJS & un interprete JavaScript leggero,
conforme allo standard ES5 e interamente implementato in linguaggio C. Si tratta di
un progetto di media dimensione (circa 15.000 linee di codice) concepito per essere
integrato in altre applicazioni come motore di scripting. Il repository originale &
pubblico su GitHub ed ¢ mantenuto da Artifex Software con il contributo della
comunita open source.

La scelta di MuJS & motivata da diversi fattori. Innanzitutto, il progetto e
sufficientemente esteso e maturo: la sua lunga storia di sviluppo fornisce un
ampio insieme di commit, distribuiti su periodi e contesti diversi, che consente di
testare l'efficacia della pipeline su commit eterogenei (bug fix, nuove funzionalita,
ottimizzazioni, ecc.). In secondo luogo, il dominio applicativo & ben definito, il
che rende i risultati della narrazione pit facilmente verificabili e interpretabili. E
infatti possibile confrontare la sintesi prodotta con eventi concreti dell’evoluzione
del progetto, come l'introduzione di nuove feature del linguaggio, la risoluzione
di bug critici o interventi di refactoring per migliorare le performance. Infine,
I'impiego di un repository open-source reale assicura che I'approccio sia validato su
dati concreti e non su esempi artificiali, confermando la solidita dell’architettura
proposta in uno scenario realistico.

A partire da agosto 2025, il progetto & stato migrato da GitHub a Codeberg [71].
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3.4 Soluzione Proposta

Il progetto di partenza ha dimostrato il potenziale degli LLM nell’analisi dei dati
Git, in particolare nella creazione di riassunti dei commit e nella categorizzazione
delle modifiche, mettendo pero in luce anche alcune limitazioni. Tra queste,
I'incapacita di generare una narrazione fluida e coerente dell’intera evoluzione
del progetto e la tendenza a produrre output ridondanti o non sempre pertinenti
quando vengono combinati numerosi commit. Nel report originale vengono suggerite
alcune possibili direzioni di miglioramento: ’adozione di modelli LLM piu grandi
(che potrebbero garantire maggiore coerenza e accuratezza nella sintesi globale),
I'impiego di approcci multi-agente in cui pit modelli collaborano per affinare la
narrazione (sulla scia di MAGIS, citato in precedenza), e I'integrazione di strumenti
di RAG per superare i limiti di contesto, consentendo al modello di recuperare
dinamicamente informazioni rilevanti durante la generazione della storia.

Alla luce di queste osservazioni, ’estensione sperimentale qui proposta si concentra
in particolare sulla RQ2, con I'obiettivo di migliorare la comunicazione e la compren-
sione condivisa dell’evoluzione del codice. Invece di forzare il sistema a produrre un
unico resoconto globale di tutti i commit — approccio che si ¢ dimostrato fragile
in termini di coerenza — si e scelto di sviluppare un sistema interattivo di Q&A:
un chatbot intelligente capace di rispondere in linguaggio naturale a domande
sul repository e sulla sua storia. La conoscenza di base ¢ costituita dal codice
sorgente, dalla documentazione di progetto, dai dati dei commit e dai relativi
riassunti generati nella pipeline offline. I1 LLM utilizza questi dati come base di
conoscenza per fornire risposte mirate e contestualizzate.

In questo scenario, un membro del team puo porre domande specifiche (ad esempio:
“Quali commit hanno introdotto la funzionalita X e chi li ha effettuati?” oppure
“Quando ¢ stato risolto il bug relativo al modulo Y?”) e ricevere una risposta
sintetica, supportata dalle informazioni raccolte dalle varie fonti. L’approccio
on-demand migliora la fruibilita delle informazioni storiche: ciascun utente ottiene
soltanto le parti rilevanti della storia, evitando sia la ridondanza di un report
statico sia la scarsa coesione di una narrazione unica. Inoltre, un simile chatbot puo
fungere da assistente virtuale della conoscenza centralizzata del progetto, facilitando
la comunicazione interna e riducendo il carico cognitivo necessario a consultare
manualmente grandi quantita di informazioni sparse su piu fonti.

L’integrazione del RAG non si limita alla fase di Q&A, ma apre anche nuove
prospettive per la RQ1. Contestualizzare la generazione dei riassunti dei commit
con informazioni storiche e di dominio permette infatti di ottenere testi pitt completi,
coerenti e informativi. Invece di basarsi esclusivamente sui dati del singolo commit,
il modello puo attingere a un contesto piu ampio, con il potenziale di migliorare
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sensibilmente la qualita e 'accuratezza delle sintesi prodotte.

3.4.1 Architettura

Partendo dalle intenzioni sopra descritte, ¢ stato progettato un sistema in grado di
rispondere efficacemente alle domande di ricerca RQ1 e RQ2. Dal punto di vista
architetturale, il sistema implementato puo essere scomposto in due pipeline. La
prima, "Offline" 3.2, si occupa dell’elaborazione dei commit, della loro storicizzazione,
classificazione e sintesi. La seconda, "Online", rappresenta il chatbot vero e proprio,
che recuperando le informazioni di contesto riesce a dare riposte precise e mirate
alle richieste utente.

Entrando nel dettaglio, la pipeline "Offline" (figura 3.2) si occupa di elaborare i
dati relativi ai commit, generando dei riassunti sintetici che vengono successiva-
mente caricati in un database vettoriale. La generazione dei riassunti avviene in
maniera sequenziale, ossia ciascun commit e elaborato individualmente e non in
parallelo. Questa scelta consente di aggiornare il database vettoriale al termine di
ogni elaborazione, rendendo immediatamente disponibili i riassunti generati come
contesto potenziale per i commit successivi. In altre parole, come si puo vedere in
figura 3.3,durante 'elaborazione del commit n-esimo, i riassunti degli n-1 commit
precedenti sono gia disponibili nel database vettoriale e utilizzabili tramite RAG,
fornendo cosi un contesto utile alle sintesi del commit corrente. Una volta generato,
anche il riassunto del commit n-esimo viene caricato nel database, diventando a sua
volta disponibile per ’elaborazione del commit successivo. Tale scelta architetturale
nasce dalla convinzione che informazioni contenute in un commit possano essere
rilevanti o giustificare quelli successivi.

LLM Processing

Classification }

Git Repository J—»{ Nof‘rﬁszzjiion }———» { General Summary }

Technical Summary

{Code, Docs & Commit Storage}

Figura 3.2: Dettaglio della pipeline Offline proposta

La pipeline "Online", visibile in figura 3.4, ¢ dedicata, invece, all'interazione utente-
sistema tramite un chatbot agentico basato su LLM. Qui, le informazioni di contesto
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sono recuperate mediante 1'utilizzo di tool a disposizione dell’agente. Ognuno di
essi € verticalizzato nel recupero di una specifica tipologia di informazione da
collezioni precedentemente alimentate dalla pipeline "Offline". Entrando piu nel
dettaglio nel processo, 1'utente inserisce una domanda in linguaggio naturale
attraverso 'interfaccia del chatbot. Questa viene utilizzata dall’agente per trovare,
se necessario, il tool (o anche piu di uno) che reputa piu adatto per recuperare le
informazioni utili per generare la risposta contestualizzata. Una volta individuato,
effettua la chiamata passandogli una query che ¢ una rielaborazione della domanda
iniziale. A questo punto, il tool recupera le informazioni e le restituira all’agente,
che potra quindi decidere di elaborare la risposta da restituire o di effettuare qualche
altra chiamata ad altri tool.

Per migliorare la qualita di elaborazione dell’agente, ¢ stato combinato il pattern
ReAct, disponibile tramite il React Agent del framework LangGraph, con 'utilizzo
del modello Qwen 3 da 8B, che presenta nativamente caratteristiche di CoT tramite
la funzionalita di "Thinking". Il framework ha permesso inoltre di aggiungere
molto facilmente anche la cronologia delle interazioni, cosi da mantenere lo stato
conversazionale nel caso di piu interazioni consecutive di Q&A. Grazie a questa
possibilita, 'agente ha a disposizione anche le informazioni storiche dell’interazione,
cosi da poter evitare eventuali chiamate a tool se nello storico ha gia a disposizioni
le informazioni necessarie per generare la risposta e, in generale, fornire un flusso
conversazionale pitt omogeneo e coerente.

Un aspetto architetturale significativo riguarda 'aggiornamento della knowledge
base. Con l’evolversi continuo del repository Git tramite nuovi commit, il database
vettoriale necessita di aggiornamenti periodici che richiedono di eseguire la pipeline
"Offline" per i nuovi dati. Tale processo puo essere potenzialmente automatizzato
attraverso workflow di tipo CI/CD, che ad ogni push sul branch principale eseguono

—_— Summary

Vector
Database

Figura 3.3: Dettaglio dell’elaborazione della sintesi e del recupero del singolo
commit nella pipeline Offline
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Figura 3.4: Dettaglio della pipeline Online proposta

automaticamente I'estrazione e la sintesi dei nuovi commit, aggiornando le collezioni.
In contesti reali, 'LLM impiegato per la generazione dei riassunti potrebbe essere
ottimizzato per tale task (tramite fin-tuning) e risiedere su un servizio dedicato.

Come visibile nell’architettura in figura 2, alcuni componenti presentati in [64]
sono stati riutilizzati e potenziati. In particolare, e stato mantenuto il modulo
iniziale che estrae i dati grezzi dal repository del progetto MuJS, filtrando i commit
non significativi e normalizzandoli in un formato uniforme per le fasi successive.
Anche la struttura di base per la generazione dei riassunti ¢ stata mantenuta, ma
potenziata dall’integrazione del RAG e da prompt ed esempi migliori, che dovrebbe
migliorare significativamente la qualita delle sintesi prodotte. Anche il classificatore
e stato potenziato da esempi piu aderenti.

Relativamente al modello adottato, si & scelto di mantenere la continuita con I’ap-
proccio di [64], privilegiando modelli leggeri in grado di operare su una singola GPU
domestica, al fine di minimizzare i requisiti computazionali e favorire ’accessibilita
del sistema anche a privati o aziende di piccole e medie dimensioni. Tuttavia,
I'introduzione del RAG e la necessita di supportare un chatbot evoluto, capace di
gestire conversazioni estese e 1'utilizzo avanzato di tool, ha portato alla scelta di
modelli pitt potenti e performanti rispetto al lavoro originario. In particolare,
stato selezionato il modello Llama 3.1 8B-Instruct [72] per la pipeline "Offline", per
il suo equilibrio tra prestazioni avanzate, capacita di comprensione contestuale e
requisiti hardware ancora estremamente contenuti. Invece, per quella "Online" si ¢
optato per Qwen 3 8B [73] per il supporto nativo al "Thinking" e per la capacita di
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gestire in maniera efficace piu tool.

3.4.2 Tecnologie

In questa sezione verranno descritte le principali tecnologie adottate nella soluzione
proposta.

Per ulteriori dettagli implementativi riguardo al loro utilizzo all’interno del progetto,
si rimanda al codice disponibile al link [74].

Llama 3.1 - 8B - Instruct

Llama 3.1 8B-Instruct [72] ¢ un LLM basato sull’architettura Transformer auto-
regressiva, sviluppato da Meta [26]. Appartiene alla famiglia Llama 3.1, disponibile
in diverse versioni con 8, 70 e 405 miliardi di parametri. La variante Instruct
¢ ottimizzata attraverso fine-tuning supervisionato (SFT) e apprendimento per
rinforzo con feedback umano (RLHF), al fine di eseguire istruzioni e interagire in
modo naturale in contesti conversazionali.

I modelli Llama 3.1 sono multilingue (supportano, tra le altre, inglese, tedesco,
francese, italiano e spagnolo) e implementano tecniche avanzate come la Grouped
Query Attention, che consente di gestire contesti estesi fino a circa 128.000 token.
La versione utilizzata supporta inoltre l'integrazione nativa con tool esterni ed
¢ progettata per compiti complessi quali generazione di testi, sintesi automatica,
dialoghi multi-turno e traduzioni.

Qwen 3 - 8B

Qwen3-8B [73] & un LLM leggero, parte della terza generazione della serie Qwen
sviluppata da Alibaba Cloud [75] [76]. Si tratta di un modello denso con circa 8,2
miliardi di parametri totali (di cui 6,95 miliardi esclusi gli embedding), distribuiti
su 36 livelli e basato su Grouped Query Attention (GQA).

Una caratteristica distintiva di Qwen 3-8B ¢ il meccanismo di ragionamento ibrido:
il modello puo passare da una modalita "thinking", adatta a compiti complessi
come logica, matematica e programmazione, a una modalita "non-thinking", piu
efficiente per conversazioni rapide e generiche.

Il modello gestisce contesti fino a 32.768 token in modo nativo, estendibili a 131.072
token tramite la tecnica YaRN (Yet Another RoPE extension). E stato addestrato
su circa 36 trilioni di token e supporta oltre 100 lingue e dialetti, garantendo buone
capacita multilingue, creativita testuale, dialoghi multi-turno e integrazione con
strumenti esterni.
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Ollama

Ollama [77] ¢ un framework leggero ed estensibile progettato per eseguire LLM
in locale, senza dipendere da servizi cloud. Consente di scaricare, gestire e av-
viare modelli linguistici tramite una CLI o API REST locali. Ad esempio, con
ollama pull <modello> & possibile scaricare un modello specifico (come Llama 3.x o
DeepSeek), mentre con ollama run <modello> si avvia l'inferenza direttamente sul
dispositivo locale.

Ollama offre integrazioni client in diversi linguaggi (tra cui Python) e mette
a disposizione un ampio catalogo di modelli pre-addestrati, rendendo semplice
I’esecuzione e la sperimentazione di LLM in ambienti locali.

LangGraph

LangGraph [78] & un framework open-source, sviluppato dal team di LangChain,
per costruire applicazioni basate su LLM come grafi di stato e di esecuzione. A
differenza delle semplici “catene” sequenziali, LangGraph modella i flussi come nodi
(funzioni/attori) e archi (transizioni guidate dallo stato), consentendo controllo
esplicito sul ciclo di esecuzione, gestione fine degli errori e percorsi condizionali. Il
cuore del modello e lo StateGraph, una struttura che trasporta lo stato condiviso
(messaggi, variabili, risultati intermedi) tra i nodi; le transizioni possono essere
deterministiche o basate su regole/euristiche apprese.

Il framework offre funzionalita essenziali per applicazioni reali: persistenza dello
stato e checkpointing (per riprese e roll-back), interrupt e passaggi human-in-the-
loop, orchestrazione di strumenti esterni (tool invocation) e supporto naturale
a scenari multi-agente. Cio rende LangGraph adatto a costruire agenti reattivi,
pipeline RAG complesse e workflow event-driven.

Per accelerare lo sviluppo, LangGraph fornisce componenti predefiniti come crea-
te_react_agent [79], un costruttore di agenti in stile ReAct che combina pianifica-
zione e ragionamento con chiamate a strumenti (tool calling). Questo componente
incapsula un ciclo “pianifica — agisci — osserva”, integrandosi con lo StateGraph e
semplificando 'implementazione di agenti che risolvono compiti multi-step tramite
strumenti esterni, mantenendo al contempo tracciabilita e controllo del flusso.

ChromaDB

ChromaDB [80] ¢ un database vettoriale open-source progettato per archiviare e
recuperare embeddings, ovvero rappresentazioni numeriche di testi, immagini o
audio. Funziona come un indice vettoriale che permette ricerche semantiche basate
sulla similarita tra vettori.
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Le query vengono eseguite trasformando il testo in un embedding e recuperando
i documenti piu simili presenti nel database. Oltre alla ricerca semantica pura,
ChromaDB supporta modalita ibride che combinano ricerca vettoriale, filtri sui
metadati e filtri testuali.

Il sistema e pensato per scalare facilmente da notebook sperimentali a cluster
di produzione. Nel contesto di applicazioni RAG, ChromaDB funge da archivio
vettoriale per un recupero efficiente e preciso del contesto necessario alla generazione
delle risposte da parte degli LLM.

SQLite

SQLite [81] ¢ un sistema di gestione di basi di dati relazionali embedded, serverless
e a configurazione nulla. I dati vengono memorizzati in un singolo file portabile,
caratteristica che ne facilita la distribuzione, la replicazione e l'integrazione in
applicazioni desktop, mobile ed edge. Nonostante la sua leggerezza, SQLite garan-
tisce proprieta ACID tramite journaling e modalita Write-Ahead Logging (WAL),
offrendo transazioni atomiche e durabilita.

Nel contesto della soluzione proposta, SQLite funge da archivio leggero per i log
applicativi, i dati dei commit e le informazioni relative ai test di validazione,
integrandosi agevolmente con i componenti Python e con gli agenti LLM.

Python 3.13

Python 3.13 [82] ¢ il linguaggio di programmazione scelto per I'implementazione
della soluzione. E ampiamente apprezzato per la sintassi semplice e leggibile,
I’ampia disponibilita di librerie e framework, ’essere un linguaggio interpretato e
I’esteso supporto della comunita.

La versione 3.13 introduce miglioramenti di performance al runtime e nuove otti-
mizzazioni del compilatore, mantenendo la piena compatibilita con 'ecosistema
esistente. Un aspetto rilevante e I'avanzamento verso l’eliminazione del Global
Interpreter Lock (GIL), reso opzionale in build dedicate. Questa evoluzione apre la
strada a un migliore supporto per il multithreading nativo, rendendo Python piu
adatto a carichi di lavoro intensivi e concorrenti.
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3.5 Implementazione

Come gia descritto nella sezione 3.4.1, la soluzione si articola in due componenti
complementari: una pipeline Offline, che si occupa di elaborare e storicizzare i dati
provenienti dal repository Git, e una pipeline Online, che espone tali conoscenze
attraverso un agente conversazionale. Le due parti sono strettamente collegate: la
prima costruisce e aggiorna la base informativa, la seconda la utilizza in tempo
reale per fornire risposte mirate agli utenti.

In generale, verranno trattate solo le parti piu interessanti dal punto di vista
della trattazione, concentrandosi sugli aspetti di progettazione. Verranno, quindi,
esclusi i dettagli pitu di basso livello e tutte quelle classi e funzioni a supporto della
soluzione, che resta visionabile al seguente link [74].

3.5.1 Pipeline Offline

La pipeline Offine, implementata nel file offline_pipeline.py, rappresenta il
cuore della fase di pre-elaborazione. Qui ogni commit del progetto MuJS viene
analizzato in sequenza: ne vengono estratti i dati essenziali e rimossi i casi banali
o ridondanti. Ogni commit ¢ quindi classificato in una tipologia funzionale (ad
esempio feature, bug fix, refactoring) tramite prompting few-shot, gestito nel file
summary_categorization/categorization.py.

Segue la fase di generazione dei riassunti, distinta in due varianti:

« una versione generale, pensata per figure non tecniche, definita in summary_
categorization/general_summarization.py;

e una versione tecnica,summary_categorization/technical_summarization.py,
orientata agli sviluppatori e arricchita da dettagli implementativi.

Per quest’ultima e previsto un meccanismo iterativo di controllo qualita: una
seconda istanza del modello valuta la sintesi generata e, se ritenuta insufficiente,
ne richiede la rigenerazione, introducendo cosi una forma di autocorrezione. Anche
in questo caso si e prediletto un approccio few-shot.

Un aspetto centrale della pipeline e 'integrazione del RAG. I riassunti prodotti
vengono progressivamente caricati in un database vettoriale (ChromaDB), che
funge da memoria storica interrogabile in fase di generazione. In questo modo,
quando il sistema si trova a sintetizzare un nuovo commit, puo recuperare i riassunti
precedenti piu simili e utilizzarli come contesto, migliorando coerenza e continuita
narrativa. Parallelamente, i dati strutturati vengono memorizzati in SQLite, cosi
da consentire interrogazioni puntuali e deterministicamente accurate.
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La scelta di processare i commit in ordine temporale e aggiornare immediatamente
il database vettoriale riflette I'idea che molte modifiche diventino pienamente
comprensibili solo alla luce di quelle che le hanno precedute. In scenari reali, questa
pipeline potrebbe essere facilmente integrata in flussi CI/CD, cosi da aggiornare la
base di conoscenza in maniera incrementale a ogni nuovo push.

3.5.2 Pipeline Online

La pipeline Online, descritta nel file online_pipeline.py, € invece dedicata all’in-
terazione con 'utente. Qui entra in gioco 'agente graph_react_agent (definito
in online_pipeline_models/models/graph_agent_react.py), costruito con il fra-
mework LangGraph secondo il paradigma ReAct. L’agente riceve in input la
domanda dell’'utente e, prima di formulare la risposta, riflette sul percorso da
seguire: valuta quali informazioni siano necessarie, decide se consultare la base
di conoscenza e sceglie quali strumenti (tool) utilizzare. Questo processo, reso
possibile dalle capacita di ragionamento del modello Qwen 3 8B, e supportato da
una memoria conversazionale che conserva lo storico delle interazioni, garantendo
continuita nei dialoghi multi-turno e permettendo di evitare richieste ridondanti.

I tool a disposizione dell’agente rappresentano veri e propri canali specializzati di
accesso alla conoscenza accumulata nella pipeline Offline. Alcuni operano su base
semantica, come il Commit Code, che recupera i riassunti dei commit piu pertinenti
rispetto a una query, o il Semantic Code, che consente di cercare direttamente nel
codice sorgente. Altri si fondano su interrogazioni strutturate, come il NL—SQL
Commit Query, che traduce domande in linguaggio naturale in query SQL eseguite
su SQLite, restituendo risultati deterministici. Vi ¢ infine il General Project Info,
dedicato alla documentazione e alle informazioni di alto livello sul progetto.

L’agente ¢ in grado di usare questi strumenti singolarmente o in combinazione: ad
esempio, puo usare NL—SQL Commit Query per identificare un commit specifico e
successivamente un recupero semantico per contestualizzarlo con commit correlati,
oppure chiamare entrambi in parallelo.

L’integrazione di queste componenti realizza un sistema altamente dinamico, capace
di rispondere a domande molto diverse: dalle pit generali, sul funzionamento e
sugli obiettivi del progetto, alle pit puntuali, relative a chi ha introdotto una certa
modifica 0 a come ¢ implementata una determinata funzione. Le risposte non sono
generate “a vuoto”, ma sempre ancorate a fonti concrete — commit, documentazione
o codice — recuperate dinamicamente attraverso i tool. In questo modo, I’agente
combina la flessibilita espressiva del linguaggio naturale con I'affidabilita dei dati
effettivamente presenti nella knowledge base, offrendo un supporto interattivo e
verificabile alle attivita di analisi e comprensione del workflow.
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Modelli scartati

Durante lo sviluppo della pipeline Online sono stati sperimentati diversi approcci.
Ognuno ha aiutato a chiarire limiti e potenzialita, fino a portare alla scelta del
modello finale online_pipeline_models/models/graph_agent_react.py.

Il primo esperimento, online_pipeline_models/models/chain_simple.py, € stato
un prototipo minimale di recupero tramite RAG: la domanda dell’'utente veniva
trasformata in query, i documenti piu rilevanti recuperati, e il modello generava
direttamente la risposta. Questa soluzione si e rivelata efficace solo su richieste
molto semplici, ma mostrava limiti evidenti su domande articolate o multi-turno,
con un’alta tendenza ad allucinazioni in assenza di evidenza testuale precisa.

Per superare la rigidita della catena singola e stato sviluppato online_pipeline_
models/models/chain_multi_query.py, che produceva piu varianti della stessa do-
manda e ne fondeva i risultati. In questo modo si recuperava piu contesto utile,
migliorando il richiamo, ma a discapito della precisione ed efficienza: le risposte
risultavano spesso verbose, a volte contraddittorie, e i tempi di latenza crescevano
in modo significativo.

Un passo avanti ¢ stato compiuto con online_pipeline_models/models/chain_
agent_react.py, il primo prototipo agentico in stile ReAct. L’agente era in grado
di decidere se e quando attivare i tool, migliorando la pertinenza delle risposte
rispetto alle catene puramente sequenziali. Tuttavia, I'architettura restava lineare
e priva di uno stato conversazionale robusto: la gestione dei follow-up e delle
domande che richiedevano piu fasi rimaneva fragile, cosi come ’orchestrazione in
caso di errori o percorsi alternativi.

Queste criticita hanno portato a online_pipeline_models/models/graph_agent_
react.py, che ha consolidato i vantaggi dell’approccio ReAct integrandoli con le
capacita di orchestrazione di LangGraph. La modellazione a grafo ha introdotto
persistenza dello stato, checkpoint e transizioni condizionali, consentendo all’agente
di pianificare strategie multi-tool in maniera affidabile (ad esempio combinando
query SQL e recupero semantico). Questo modello finale si ¢ dimostrato il piu
adatto a gestire scenari reali: capace di sfruttare la knowledge base aggiornata dalla
pipeline Offline, di ridurre allucinazioni grazie all’ancoraggio a fonti strutturate e
semantiche, e di mantenere coerenza nei dialoghi multi-turno grazie alla memoria
integrata.
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Capitolo 4

Validazione e Risultati

Dopo aver descritto il progetto sperimentale, I’architettura del sistema proposto
e le tecniche adottate, ¢ fondamentale verificarne 1’efficacia rispetto agli obiettivi
della ricerca. La validazione ha lo scopo di misurare, in maniera sistematica e
rigorosa, quanto bene il sistema soddisfi le due domande di ricerca (RQ) su cui si
fonda il progetto:

« (RQ1) Riassumere e interpretare correttamente i messaggi di commit Git,
restituendo in forma sintetica l'intento alla base delle modifiche al codice;

» (RQ2) Supportare una comunicazione pit efficace all’interno del team di svilup-
po, generando report o risposte contestualizzate che facilitino la comprensione
condivisa dell’evoluzione del progetto.

Questo capitolo si propone di illustrare in dettaglio i metodi di validazione adottati,
motivandone la scelta in relazione agli obiettivi della ricerca, e di presentare
i risultati emersi dalle diverse analisi. Tali risultati verranno successivamente
interpretati e discussi in chiave critica, al fine di evidenziare i punti di forza del
sistema, le eventuali limitazioni riscontrate e le implicazioni per un possibile impiego
pratico.

L’analisi complessiva mira inoltre a delineare prospettive future di miglioramento e
a verificare in che misura il sistema contribuisca in modo concreto al raggiungimento
degli obiettivi definiti dalle domande di ricerca.
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4.1 Approccio Generale

Entrando nel dettaglio del lavoro svolto, il processo di validazione ¢ stato affrontato
analizzando separatamente le due pipeline principali del sistema — e, di conseguenza,
le due domande di ricerca — attraverso metodologie quantitative e qualitative,
opportunamente adattate alla specificita del tool. Questo approccio integrato
permette di rispondere alle due domande di ricerca in modo completo: combinando
misure oggettive con analisi qualitative, ed evidenziando sia i risultati medi sia i
casi anomali, si ottiene un quadro chiaro dei punti di forza e dei limiti del sistema
proposto.

4.1.1 Pipeline Offline

Per la pipeline offline, data la natura del problema, e stato selezionato un sottoin-
sieme di 100 commit, per i quali ¢ stato costruito un Golden Standard manuale:
a ciascun commit sono stati associati due riassunti di riferimento redatti manual-
mente, uno generale e uno tecnico, utilizzati come base di confronto con i riassunti
generati dal modello. Cio ha permesso di condurre una valutazione quantitativa
tramite metriche di similarita tra testo generato e riferimento.

In parallelo, e stata svolta una valutazione qualitativa basata sia da una compo-
nente umana che da una LLM (G-Eval), focalizzata su criteri quali accuratezza,
completezza, leggibilita, utilita e profondita tecnica del riassunto, oltre che una
generale. L’obiettivo ¢ quello di avere un’analisi piul interpretativa della qualita dei
riassunti generati.

In ultima battuta, & stata condotta anche una valutazione mirata della qualita
della classificazione, per verificare se e come i miglioramenti introdotti abbiano
influenzato le prestazioni rispetto al lavoro di riferimento. In questo caso sono state
utilizzate metriche classiche come Accuratezza, Richiamo e Precisione.

4.1.2 Pipeline Online

Per la parte online si e valutato come il chatbot agentico, potenziato da LLM e dalla
knowledge base di progetto, sia in grado di rispondere a domande in linguaggio
naturale sui commit e sulla la storia del repository. E stato definito un insieme di 50
domande tipiche che un utente potrebbe porre al sistema (ad esempio, "Recuperami
l'ultimo commit”, "Quali commit hanno introdotto la funzionalita X e chi li ha
effettuati?", "Quando é stato risolto il bug relativo al modulo Y?"). Questo ha
consentito di valutare sia le capacita di recupero delle informazioni sia quelle di
sintesi ed esposizione del chatbot.
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4.1 — Approccio Generale

Anche in questo caso, la validazione e stata condotta seguendo un approccio duplice,
che combina analisi quantitative e qualitative. Da un lato, e stato effettuato un
confronto sistematico tra le risposte generate dal chatbot e un Golden Standard
costruito manualmente, utilizzando metriche automatiche per misurarne la coerenza
e la correttezza. Questo ha permesso di valutare in modo oggettivo la capacita del
sistema di fornire risposte precise e pertinenti rispetto alle informazioni presenti
nel repository.

Dall’altro lato, la componente qualitativa ha previsto un giudizio espresso sia da
una componente umana che da LLM (G-Eval), applicando gli stessi criteri impiegati
per la pipeline offline. L’obiettivo di questa seconda analisi e stato comprendere
non solo quanto il chatbot fosse corretto dal punto di vista fattuale, ma anche
quanto risultasse effettivamente chiaro, utile e informativo per un potenziale utente
che desideri interrogare la storia del progetto in linguaggio naturale.

Accanto a queste due dimensioni principali, sono stati presi in esame anche alcuni
indicatori specifici del comportamento del sistema, che consentono di approfondire la
qualita dell’interazione tra il modello e i suoi strumenti di supporto. In particolare,
e stata analizzata 1'efficacia del modulo di retrieval nel reperire le informazioni
piu rilevanti, attraverso metriche come precisione, richiamo e NDCG; si & inoltre
osservato 1'uso dei tool interni da parte del chatbot — ad esempio, la capacita di
accedere correttamente al codice dei commit quando necessario — e si ¢ verificata
la presenza di eventuali allucinazioni, ossia risposte contenenti informazioni non
supportate dai dati reali.

Questo insieme articolato di analisi ha permesso di ottenere una visione completa
delle prestazioni del sistema, evidenziando non solo la qualita delle risposte generate,
ma anche il grado di affidabilita, consistenza e trasparenza del comportamento del
chatbot nel contesto d’uso previsto.
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4.2 Metriche e Indicatori

Per valutare quantitativamente la qualita dei testi generati — sia i riassunti dei
commit (RQ1) sia le risposte del chatbot (RQ2) — sono state utilizzate sia metriche
classiche di similarita con un testo di riferimento che metriche pit innovative basate
su LLM. A queste si affiancano indicatori qualitativi, derivanti da giudizio umano e
G-Eval, che permettono di misurare aspetti piu soggettivi, come utilita e leggibilita.
L’integrazione dei due approcci consente dunque di ottenere un quadro pitt completo
e bilanciato della qualita complessiva del sistema, combinando rigore numerico e
sensibilita interpretativa.

A completamento dell’analisi, sono state considerate anche metriche specifiche su
alcuni degli stumenti utilizzati, con ’'obiettivo di misurare in modo piu puntuale le
loro prestazioni e il contributo alla qualita complessiva del sistema.

Nelle sezioni successive vengono presentate nel dettaglio tutte le metriche e gli
indicatori selezionati, illustrandone le finalita specifiche e le motivazioni che ne
hanno guidato la scelta.

4.2.1 Metriche Quantitative

Le metriche quantitative si basano su misurazioni numeriche e replicabili, che
consentono di confrontare oggettivamente le prestazioni del sistema rispetto a un
riferimento predefinito (ad esempio un riassunto umano o una risposta attesa).
Esse mirano a catturare in forma sintetica la somiglianza lessicale o semantica tra
il testo generato e quello di riferimento, fornendo cosi un’indicazione oggettiva della
correttezza e della copertura informativa delle risposte prodotte.

ROUGE

ROUGE (Recall-Oriented Understudy for Gisting Evaluation) [83] ¢ una metrica
classica basata sul recall n-gram, ampiamente utilizzata per valutare riassunti. Il
calcolo di ROUGE-N avviene confrontando gli N-grammi del testo generato con
quelli del riferimento: il punteggio risultante riflette la frazione di contenuto del
riferimento che & stato “coperto” dal riassunto generato. In altri termini, ROUGE
misura quanto del contenuto informativo originale (riassunto di riferimento) viene
recuperato dal modello. Punteggi ROUGE elevati (vicini a 1) indicano che molte pa-
role o frasi chiave presenti nel riferimento compaiono anche nel generato, suggerendo
quindi un’elevata aderenza informativa. In questo caso, si e calcolato ROUGE-1
(unigrammi), ROUGE-2 (bigrammi) e ROUGE-L (basato sulle sottosequenze co-
muni piu lunghe) per avere un quadro sia di corrispondenza lessicale elementare
sia di coerenza su frasi piu lunghe. ROUGE e stato scelto perché fornisce una
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prima indicazione quantitativa sulla completezza informativa dei riassunti/risposte
generati rispetto ai contenuti attesi.

BLEU

BLEU (Bilingual Evaluation Understudy) [84] ¢ una metrica di riferimento nella
valutazione di sistemi di traduzione automatica, spesso adottata anche per il testo
generato. Contrariamente a ROUGE, il BLEU é orientato alla precisione degli n-
grammi: conta la quota di n-grammi del testo generato che trovano corrispondenza
nel riferimento. Intuitivamente, BLEU premia riassunti che utilizzano parole ed
espressioni simili al riferimento, penalizzando aggiunte non pertinenti. In questo
lavoro, BLEU (in particolare nella variante BLEU-4 cumulativa) contribuisce a
misurare la fedelta lessicale delle generazioni: un punteggio BLEU alto indica che
il modello non solo recupera il contenuto corretto, ma lo esprime con termini molto
simili a quelli umani di riferimento (alta precisione). D’altra parte, BLEU tende a
penalizzare la varieta lessicale e sinonomica, dunque valori bassi di BLEU potrebbero
non indicare necessariamente scarsa qualita, ma piuttosto 1'uso di una formulazione
diversa (cosa comune nei testi generati da LLM). Si ¢ incluso comunque BLEU per
confrontare i risultati con lavori precedenti e avere un indicatore complementare a

ROUGE.

METEOR

METEOR (Metric for Evaluation of Translation with Explicit ORdering) [85]
¢ una metrica piu avanzata progettata per correlare meglio con i giudizi umani
rispetto a BLEU. Essa considera non solo corrispondenze esatte di parole, ma anche
corrispondenze a livello di stem, sinonimi e riorganizzazioni parziali. In METEOR,
precisione e recall unigram vengono combinati in un singolo punteggio, con un
sistema di pesi e penalita che tiene conto di allineamenti allentati tra generato
e riferimento. Si é scelto METEOR perché nel contesto dei riassunti di commit
e delle risposte discorsive ci si aspetta che il modello possa esprimere gli stessi
concetti con parole diverse; METEOR e piu tollerante a tali variazioni lessicali
ed ¢ quindi un indicatore di somiglianza semantica piu robusto del BLEU. Un
punteggio METEOR elevato suggerisce che, anche se le parole esatte differiscono,
il modello ha catturato gran parte delle informazioni chiave del riferimento (grazie
a match sinonimici, ecc.). Nel presentare i risultati, verranno affiancati METEOR,
ROUGE e BLEU per fornire una visione bilanciata tra aderenza letterale e aderenza
concettuale.
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BERTScore

Si tratta di una metrica basata su modelli di linguaggio pre-addestrati (ad es.
BERT) che confronta il significato dei testi tramite le loro rappresentazioni in
uno spazio vettoriale [86]. In pratica, BERTScore calcola, per ciascuna parola
del testo generato, la similarita coseno con le rappresentazioni delle parole nel
riferimento, stabilendo corrispondenze semantiche a livello di embedding. Vengono
poi aggregati i risultati in termini di Precisione, Recall e F'1-score. In questo lavoro,
si ¢ usato BERTScore per ottenere una misura di allineamento semantico globale
tra il riassunto/risposta generato e il riferimento. Ad esempio, un BERTScore F1
alto (>0.85) significa che, considerate tutte le sfumature semantiche, il contenuto
generato € molto vicino al contenuto atteso, anche se potrebbe usare parole differenti.
BERTScore e stato scelto perché gli LLM potrebbero generare testi parafrastici di
alta qualita difficili da valutare con semplici match lessicali: questa metrica permette
di catturare somiglianze a livello di idea e contenuto sottostante, completando il
quadro fornito da ROUGE, BLEU e METEOR. In letteratura recente sull’analisi
automatica di testo, BERTScore ha mostrato una buona correlazione con i giudizi
umani di qualita, il che giustifica il suo impiego come indicatore della bonta
semantica delle generazioni.

4.2.2 Metriche Qualitative

Un’ analisi puramente quantitativa non e sufficiente per valutare pienamente
la qualita dei testi generati. Alcuni aspetti fondamentali — come la chiarezza
espositiva, la leggibilita, la coerenza logica o 'utilita percepita — non possono essere
catturati da un semplice confronto numerico. Per questo motivo, alle metriche
automatiche e stata affiancata una valutazione qualitativa, basata sia su un giudizio
umano che tramite G-Eval (si ¢ usata la versione 2.5 flash di Google Gemini), che
permette di analizzare la qualita del testo da una prospettiva piu interpretativa.

In altre parole, mentre le metriche quantitative misurano quanto il testo generato
si avvicina a quello atteso, la valutazione qualitativa indaga come e quanto bene il
sistema riesca a comunicare in modo efficace, utile e comprensibile. L’integrazione
dei due approcci consente dunque di ottenere un quadro pitt completo e bilanciato
della qualita complessiva del sistema, combinando rigore numerico e sensibilita
interpretativa.

I criteri considerati riflettono vari aspetti della qualita e utilita dei riassunti/risposte
nel contesto d’uso previsto e hanno permesso poi di avere dei valori specifici utili a
creare delle statistiche sulla bonta della soluzione. Nei vari test sperimentali, ognuna
delle componenti e stata misurata su una scala da 1 a 5, dove 1 ¢ Completamente
Insoddisfacente e 5 ¢ Completamente Soddisfacente.
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Accuratezza

Indica quanto il contenuto generato sia corretto rispetto ai dati originali. Un
riassunto accurato cattura l'intento reale del commit senza introdurre distorsioni
o errori fattuali; una risposta accurata del chatbot fornisce informazioni veritiere
rispetto alla cronologia del progetto. Questo criterio e cruciale per entrambe
le RQ, poiché un riassunto inaccurato puo fuorviare lo sviluppatore sull’intento
delle modifiche, e una risposta inaccurata del chatbot puo diffondere informazioni
sbagliate nel team.

Completezza

Valuta la copertura informativa. Si verifica se il riassunto (o la risposta) include tutti
gli elementi salienti che ci si aspetterebbe. Ad esempio, per un commit, un riassunto
completo menziona tutte le modifiche di rilievo e il loro scopo; per una risposta del
chatbot, completezza significa che tutti gli aspetti della domanda posta dall’utente
trovano riscontro nella risposta. Questo criterio integra l'accuratezza: anche un
riassunto accurato potrebbe essere incompleto se omette dettagli importanti.

Utilita

E un criterio pitt soggettivo che risponde alla domanda: quanto il riassunto/risposta
risulta utile all’'utente? Un riassunto utile dovrebbe aiutare un membro del team
a capire rapidamente il perché e il cosa di un commit, possibilmente facilitando
attivita come code review, debugging o documentazione. Analogamente, una
risposta del chatbot e utile se effettivamente chiarisce il dubbio dell’'utente e gli
risparmia tempo nella ricerca manuale di informazioni. Questo indicatore sintetizza
un po’ I'impatto pratico: testi magari accurati ma troppo vaghi o troppo dettagliati
potrebbero essere valutati meno utili.

Leggibilita

Riguarda la forma espositiva del testo generato — grammatica, chiarezza, scorrevo-
lezza e appropriatezza del linguaggio. Poiché i riassunti devono poter essere letti
velocemente dai vari membri del gruppo di lavoro, ¢ fondamentale che siano ben
formulati, senza ambiguita o costrutti contorti. Lo stesso vale per le risposte del
chatbot, le quali dovrebbero idealmente essere chiare e comprensibili al primo colpo.
Questo fattore & importante perché un riassunto tecnicamente corretto ma poco
leggibile vanificherebbe in parte il suo scopo.
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Profondita Tecnica

Questo criterio & stato applicato in particolare ai riassunti tecnici dei commit
(previsti dall’architettura in aggiunta al riassunto generale). Misura il grado di
dettaglio tecnico fornito: ad esempio menzione specifica di file o componenti
modificati, dettagli su implementazioni, riferimenti a codice, ecc. Un punteggio alto
(5) indica un riassunto molto approfondito tecnicamente, utile per uno sviluppatore
che voglia capire esattamente cosa ¢ cambiato nel codice; un punteggio basso (1)
indica un riassunto privo di dettagli tecnici (magari troppo generico). Questo
indicatore e stato introdotto perché RQ1 prevede esplicitamente anche riassunti
mirati agli sviluppatori, e si voleva misurare se il modello riuscisse ad aggiungere
tali dettagli. Per i riassunti generali questo criterio non ¢ applicabile, in quanto
per definizione un riassunto generale non entra nei dettagli tecnici; infatti nella
valutazione tali casi sono marcati come N/A.

Giudizio complessivo

Oltre ai singoli criteri, e stato dato un punteggio complessivo 1-5 che sintetizzi la
qualita generale del riassunto/risposta. Questo overall & un’impressione generale che
tiene conto di tutti gli aspetti (es. un testo potrebbe avere piccole imprecisioni ma
essere comunque estremamente utile, e viceversa). Avere un giudizio complessivo
aiuta a capire come gli eventuali trade-off fra criteri si riflettano sulla percezione
generale dell’output.

4.2.3 Metriche Specifiche per il Retrieval

Nel contesto della pipeline online, la capacita del sistema di recuperare le informa-
zioni corrette rappresenta un aspetto cruciale per il buon funzionamento dell’intera
architettura. Poiché il chatbot si basa su un meccanismo di recupero informativo, la
qualita del materiale che esso recupera dalle varie fonti a sua disposizione influenza
direttamente la pertinenza e la correttezza delle risposte generate. Per valutare
questa componente, e stata effettuata una misurazione mirata delle prestazioni del
modulo di retrieval, inteso come il sistema incaricato di selezionare i documenti o
frammenti informativi piu rilevanti in risposta a una query in linguaggio naturale.

A tal fine, sono state adottate metriche consolidate nell’ambito dell’Information
Retrieval, capaci di catturare sia la precisione dei risultati restituiti sia la qualita
del loro ordinamento. La Precision@K (P@K) misura la proporzione di elementi
rilevanti tra i primi K risultati, evidenziando quanto il sistema tenda a collocare in
testa al ranking le informazioni effettivamente utili. La NDCG@K (Normalized
Discounted Cumulative Gain) tiene conto non solo della rilevanza dei risultati
ma anche della loro posizione, penalizzando quelli corretti che compaiono troppo
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in basso nella lista. La Mean Average Precision (MAP) fornisce una visione
complessiva della precisione mantenuta lungo l'intero ranking, mentre la Mean
Reciprocal Rank (MRR) valuta quanto rapidamente il sistema riesca a fornire
almeno una risposta corretta.

L’insieme di queste metriche consente di misurare la qualita complessiva del re-
trieval da piu prospettive: accuratezza, stabilita e rapidita nel restituire contenuti
pertinenti. Inoltre, esse forniscono un quadro quantitativo utile a interpretare anche
i risultati qualitativi: un buon sistema di retrieval, infatti, tende a ridurre gli errori
nella fase generativa successiva, migliorando la coerenza e la fedelta semantica delle
risposte fornite dal chatbot.

Per garantire un’analisi bilanciata, la valutazione e stata condotta a diversi livelli
di profondita (ad esempio per K = 5, K = 10 e K = 15), osservando come la
precisione vari al crescere della quantita di informazioni recuperate.

Oltre alla valutazione numerica del retrieval, & stato introdotto un controllo specifico
sul corretto utilizzo dei tool da parte dell’agente, con 1'obiettivo di verificare la
coerenza tra le chiamate effettivamente effettuate e quelle attese per ciascuna
tipologia di query. Questo controllo ha permesso di distinguere i casi in cui il
chatbot abbia utilizzato in modo completo gli strumenti necessari, da quelli in
cui ’esecuzione sia stata parziale o incompleta. Tale analisi fornisce un riscontro
diretto sulla capacita dell’agente di orchestrare correttamente le proprie risorse
interne — come i moduli di retrieval SQL o di accesso al codice — e contribuisce a
valutare la robustezza del comportamento operativo del sistema.

E stato, inoltre, effettuato un controllo sul tasso di allucinazione delle risposte
generate, inteso come la presenza di informazioni non supportate dai dati effettiva-
mente recuperati. Il fenomeno e stato analizzato sia tramite valutazione umana sia
tramite G-Eval, considerando tre livelli di classificazione (assenza, presenza parziale
o presenza totale di allucinazione). Questa analisi qualitativa consente di stimare
in modo piu diretto la fedelta semantica delle risposte rispetto alle fonti, integrando
le metriche precedente esposte, offrendo una misura piu realistica dell’affidabilita
complessiva del sistema.

4.2.4 Metriche Specifiche per la Classificazione

Un ulteriore aspetto oggetto di validazione riguarda la componente di classificazione
dei commit, che costituisce una fase preliminare fondamentale nella pipeline offline.
Questa parte del sistema ha lo scopo di assegnare automaticamente a ciascun
commit una categoria semantica — ad esempio feature, bug fix, refactoring —
fornendo cosi una prima interpretazione funzionale delle modifiche al codice. La
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qualita di questa classificazione e cruciale, poiché da essa dipende in larga misura
la correttezza e la contestualizzazione dei riassunti generati in seguito.

Per valutarne l'efficacia sono state utilizzate tre metriche principali, ampiamente
riconosciute nella letteratura sul machine learning: Accuratezza, Precisione e
Richiamo.

L’accuratezza rappresenta la percentuale complessiva di commit classificati corret-
tamente sul totale e fornisce una prima misura sintetica della prestazione generale.
Tuttavia, quando le classi non sono perfettamente bilanciate, tale valore puo ri-
sultare fuorviante. Per questo motivo, viene affiancata la precisione, che misura
la proporzione di commit correttamente assegnati a una categoria rispetto a tutti
quelli etichettati come appartenenti a quella categoria, e il richiamo, che indica
invece la capacita del sistema di individuare tutti i commit effettivamente apparte-
nenti a una determinata classe. Il bilanciamento tra queste due ultime metriche
fornisce una misura piu stabile delle prestazioni effettive del modello, evitando
che il sistema venga premiato per un comportamento sbilanciato verso una sola
direzione (ad esempio alta precisione ma basso richiamo).

Le metriche riportate sono calcolate a partire da una funzione di valutazione che,
seguendo 1" implementazione originale, tratta la classificazione come un problema
binario. In particolare, tutti i commit appartenenti alle categorie diverse da
Other vengono considerati come un’unica classe positiva, mentre la categoria Other
rappresenta la classe negativa, in quanto definita come residuale (o di fallback). Di
conseguenza, le metriche di precisione e richiamo si riferiscono alla capacita del
modello di distinguere i commit “rilevanti” (cioé appartenenti a categorie specifiche)
da quelli generici o non informativi.

Questa semplificazione permette di ottenere una misura sintetica delle prestazioni,
ma non riflette pienamente la complessita del problema multi-classe, in cui ciascuna
categoria tematica dovrebbe essere valutata separatamente. In una futura estensio-
ne, sarebbe opportuno calcolare le metriche per ciascuna classe e riportare valori
medi per ottenere una stima piu accurata della qualita complessiva del classificatore.

La valutazione e stata condotta su un sottoinsieme rappresentativo di commit per
i quali era disponibile un’etichetta di riferimento, costruita manualmente gia nel
lavoro di partenza, e qui riutilizzata per un confronto diretto.
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4.3 Limiti degli Approcci Utilizzati

Sebbene le metodologie di validazione adottate — comprendenti sia analisi quanti-
tative basate su metriche automatiche sia valutazioni qualitative di tipo umano e
tramite LLM — offrano una visione complessiva e coerente del comportamento del
sistema, € necessario riconoscere alcuni limiti intrinsechi al disegno sperimentale.
Le metriche automatiche forniscono una misura oggettiva e replicabile della qualita
dei risultati, ma non riescono a cogliere appieno aspetti piu sottili come la chiarezza
comunicativa, la leggibilita o l'effettiva utilita per 'utente finale. D’altro canto, la
componente qualitativa — pur permettendo di esplorare tali dimensioni — resta
basata su un campione limitato e su giudizi soggettivi, difficilmente generalizzabili.
Inoltre, le metriche di retrieval, pur efficaci nel misurare la precisione del recupero
informativo, si fondano su un insieme di query predefinite e non riflettono neces-
sariamente la varieta e la complessita delle richieste reali che un utente potrebbe
formulare in un contesto operativo.

Un ulteriore limite riguarda la definizione stessa di “buon” riassunto o “buona” ri-
sposta. In letteratura non esiste ancora un consenso univoco su quali caratteristiche
definiscano in modo oggettivo la qualita di un testo generato in ambito software,
né metodi di valutazione pienamente consolidati. Le metriche automatiche correnti
si basano prevalentemente sulla similarita testuale e tendono a trascurare la dimen-
sione semantica o 1'utilita pratica del contenuto, mentre i giudizi umani, seppur piu
aderenti all’esperienza d’'uso, restano inevitabilmente soggettivi. Di conseguenza, la
qualita percepita di un riassunto o di una risposta dipende fortemente dal contesto
e dal profilo dell'utente, cosi come dallo scopo specifico della consultazione. Inoltre,
il dataset di test — pur accuratamente selezionato — non puo rappresentare l'intera
eterogeneita dei repository software reali, nei quali i messaggi di commit possono
variare notevolmente per lunghezza, stile, grado di dettaglio e qualita descrittiva.

E, inoltre, opportuno sottolineare che la validazione condotta si concentra preva-
lentemente su aspetti tecnici e di correttezza formale, includendo valutazioni di
natura personale, ma non misura ancora l'impatto reale del sistema all’interno di
un contesto operativo di team di sviluppo. In altre parole, la sperimentazione finora
svolta consente di stimare la qualita del sistema da un punto di vista funzionale,
ma non fornisce ancora evidenze dirette sul suo contributo effettivo ai processi
collaborativi di lavoro. Sarebbe pertanto auspicabile che le analisi qualitative e
i testi di riferimento venissero, in futuro, estesi e validati anche dal gruppo di
sviluppo del progetto MuJS, al fine di ottenere un riscontro pitt oggettivo e aderente
alla realta produttiva. In questa direzione, una possibile evoluzione del lavoro
potra prevedere una validazione in the loop, in cui il sistema venga effettivamente
impiegato in scenari di sviluppo collaborativo, consentendo di osservare metriche
legate alla produttivita, alla chiarezza comunicativa e alla qualita percepita delle
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interazioni.

Allo stesso modo, potranno essere esplorate tecniche di valutazione piu avanzate,
come quelle proposte dal framework RAGAS, che permettono di stimare in modo
piu diretto la coerenza tra fonti recuperate e contenuto generato, individuando in
maniera automatica fenomeni di allucinazione o di mancanza di fedelta alle fonti.
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4.4 Risultati Sperimentali

In questa sezione vengono presentati e commentati i risultati delle valutazioni
condotte, organizzati per ciascuna delle due pipeline del progetto (Offline e Online).
I risultati includono sia metriche quantitative oggettive, sia valutazioni qualitative
soggettive, allo scopo di rispondere ai due quesiti di ricerca nel contesto dell’impatto
degli strumenti GenAl sullo sviluppo software. Di seguito, per ciascuna pipeline,
si illustrano i principali indicatori numerici e qualitativi riscontrati, seguite da
un’analisi delle osservazioni piu significative emerse.

4.4.1 Pipeline Offline
Risultati Quantitativi

Nella pipeline offline, la qualita dei riassunti generati e stata valutata tramite
metriche di similarita rispetto ai testi di riferimento, Golden Standard formato
dai riassunti tecnici e generali di 100 commit. La tabella e la figura che seguono
riportano i punteggi medi ottenuti sia per i riassunti di tipo generale sia per quelli
tecnici.

Metrica Generale Tecnico
ROUGE-1 0.4229 0.4539
ROUGE-2 0.1215 0.1368
ROUGE-L 0.2458 0.2233
BLEU 0.0890 0.1226
METEOR 0.3337 0.3145
BERT Precision  0.8892 0.8756
BERT Recall 0.8877 0.8564
BERT F1 0.8884 0.8658

Tabella 4.1: Risultati medi per i test quantitativi dei riassunti
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Figura 4.1: Risultati medi per metrica

Come si puo osservare, i riassunti mostrano un buon livello di sovrapposizione con
i testi di riferimento. In media, i riassunti generali ottengono valori di ROUGE-1
intorno a 0.42 e di ROUGE-2 pari a 0.12, mentre i riassunti tecnici raggiungono
punteggi lievemente superiori (ROUGE-1 ~ 0.45, ROUGE-2 ~ 0.14), a indicare una
copertura marginalmente migliore dei contenuti originali. Anche il punteggio BLEU
risulta leggermente piu alto per i riassunti tecnici (0.12 contro 0.09), segnalando
una maggiore aderenza lessicale e strutturale rispetto ai testi di riferimento. Al
contrario, la metrica METEOR mostra valori simili per entrambe le tipologie (~
0.33-0.31), suggerendo una qualita complessiva comparabile dal punto di vista
lessicale e semantico.

Passando alle metriche basate su embedding (BERTScore), i valori risultano elevati
per entrambi i tipi di riassunto: il punteggio medio di BERT F1 si colloca tra 0.87
e 0.89, con una varianza minima (la quasi totalita dei riassunti presenta punteggi
compresi tra 0.85 e 0.90). Questo indica che, nonostante le differenze lessicali,
i riassunti generati riescono a catturare gran parte del contenuto semantico dei
commit. Si tratta probabilmente dell’aspetto piu rilevante, poiché — al di la
dell’allineamento letterale — e la coerenza semantica a determinare la qualita
effettiva del riassunto.
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. Generale Tecnico
Metrica
Min Max Min Max

ROUGE-1 0.1852 0.6061 0.2849 0.5847
ROUGE-2 0.0075 0.2769 0.0271 0.2393
ROUGE-L 0.1185 0.3896 0.1259 0.3099
BLEU 0.0000 0.2020 0.0000 0.2879
METEOR 0.1785 0.4766 0.1963 0.5093

BERT Precision 0.8325 0.9269 0.8302 0.9165
BERT Recall 0.8249 0.9184 0.8232 0.8974
BERT F1 0.8249 0.9175 0.8313 0.9062

Tabella 4.2: Valori minimi e massimi per i test quantitativi dei riassunti

Analizzando in modo piu approfondito la distribuzione dei punteggi ottenuti,
emergono alcune differenze e tendenze interessanti tra le due tipologie di riassunti.

Per quanto riguarda i riassunti generali - figure 4.2 e 4.3 -, le metriche ROUGE
mostrano una variabilita moderata. La maggior parte dei riassunti si colloca nella
fascia 0.4-0.6 per ROUGE-1 (65 casi su 100), mentre pochi esempi si trovano
in fasce estreme, con un minimo di circa 0.18 e un massimo di 0.61. I valori
di ROUGE-2 risultano generalmente piu bassi, concentrandosi prevalentemente
tra 0.0 e 0.2 (91% dei casi), a indicare una limitata sovrapposizione a livello di
bigrammi. Anche ROUGE-L si distribuisce in modo simile, con la maggioranza
dei punteggi compresi tra 0.2 e 0.4. Le metriche BLEU e METEOR confermano
questa tendenza: BLEU risulta inferiore a 0.2 per quasi tutti i riassunti (valore

. Generale Tecnico
Metrica
25"  Mediana 75 25  Mediana 75

ROUGE-1 0.3854  0.4366  0.4679 0.4139 0.4640 0.4932
ROUGE-2 0.0824  0.1247 0.1603 0.1062 0.1382  0.1655
ROUGE-L 0.2069  0.2442 0.2861 0.1954 0.2226  0.2488
BLEU 0.0000 0.0614 0.0974 0.0813 0.1195 0.1624
METEOR 0.2807  0.3337  0.3839 0.2723  0.3097  0.3485

BERT Precision 0.8773  0.8902  0.9020 0.8646  0.8759  0.8864
BERT Recall 0.8773  0.8909  0.9003 0.8462  0.8557  0.8678
BERT F1 0.8778 0.8895 0.8993 0.8563  0.8664  0.8759

Tabella 4.3: Quartili (25°, Mediana, 75°) per i riassunti generali e tecnici
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medio pari a 0.09), mentre METEOR presenta una distribuzione leggermente pit
bilanciata, con la maggioranza dei valori nella fascia 0.2-0.4 e alcuni casi fino a 0.47.
Al contrario, le metriche basate su embedding semantici (BERTScore) mostrano
valori sistematicamente elevati e stabili, con F1 medio pari a 0.89 e tutti i punteggi
compresi tra 0.82 e 0.92, indicando una forte coerenza semantica tra i riassunti e i
testi di riferimento, anche in presenza di variazioni lessicali.

I riassunti tecnici - figure 4.4 e 4.5 - mostrano un quadro analogo, ma con prestazioni
leggermente superiori. I punteggi medi di ROUGE-1 (0.45) e ROUGE-2 (0.14)
risultano piu alti rispetto a quelli dei riassunti generali, con una concentrazione della
maggioranza dei valori nella fascia 0.4-0.6 per ROUGE-1 e 0.0-0.2 per ROUGE-2.
Anche BLEU evidenzia un miglioramento, con il 12% dei casi nella fascia 0.2-0.4 e
un valore medio di 0.12. La metrica METEOR mantiene una distribuzione simile
a quella precedente (prevalentemente tra 0.2 e 0.4), mentre i punteggi BERT si
attestano su valori lievemente inferiori ma comunque elevati (F1 medio ~ 0.87,
range 0.83-0.91).

Nel complesso, i risultati suggeriscono che il modello riesce a catturare efficacemente
le informazioni salienti dei commit, mantenendo un buon equilibrio tra accuratezza
lessicale e coerenza semantica. Le lievi differenze tra riassunti generali e tecnici
evidenziano come il contenuto piu strutturato dei commit tecnici favorisca una
generazione leggermente piu aderente ai testi di riferimento.
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Figura 4.3: Riassunti generali — distribuzione per fasce (stacked 100%)
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Figura 4.5: Riassunti tecnici — distribuzione per fasce (stacked 100%)
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Risultati Qualitativi

La valutazione qualitativa dei riassunti generati ha previsto I'analisi dei giudizi
espressi, su scala da 1 a b, per ciascuno dei criteri definiti in precedenza: accuratezza,
completezza, utilita, leggibilita e profondita tecnica (solo per i riassunti tecnici). I
punteggi sono stati raccolti sia per i riassunti generali sia per quelli tecnici, al fine
di comprendere le differenze in termini di chiarezza, correttezza e valore informativo
percepito.

. Generale Tecnico
Metrica
Umano G-Eval Umano G-Eval

accuracy 3.53 3.97 2.83 3.18
completeness 3.04 3.64 2.53 3.09
usefulness 3.10 3.97 2.59 3.23
readability 4.38 4.39 3.97 3.67
technological depth ~ N/A N/A 2.33 2.85
overall 3.51 3.99 2.83 3.20

Tabella 4.4: Valori medi complessivi, sia umani che g-eval, per riassunti generali
e tecnici

Come si puo vedere dalla tabella 4.4, G-Eval tende ad assegnare in media punteggi
superiori rispetto alla valutazione umana su accuracy, completeness e usefulness,
sia per i riassunti generali sia per quelli tecnici; la readability risulta allineata
(generale) o leggermente inferiore (tecnico) nelle valutazioni G-Eval. Sui riassunti
tecnici, technological depth emerge come dimensione piu sfidante per entrambi i
canali, con valori medi inferiori alle altre metriche.

Considerando l'intero quadro, i risultati qualitativi possono essere valutati come
complessivamente positivi. I punteggi medi superiori a 3.5 nelle principali dimensioni
per i riassunti generali e intorno a 3 per quelli tecnici indicano che il sistema e
in grado di produrre testi generalmente corretti, chiari e utili, in linea con gli
obiettivi della RQ1. La leggibilita rappresenta uno dei punti di forza piu costanti,
con valori prossimi al massimo in entrambe le tipologie di riassunto, a conferma
della qualita linguistica e della scorrevolezza del testo generato. Le differenze piu
marcate emergono invece nei riassunti tecnici, dove ’accuratezza e la profondita
tecnica risultano piu difficili da mantenere costantemente elevate, segno che la
componente semantica legata al codice richiede ancora una rappresentazione piu
precisa del contesto.
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Riassunti generali Entrando nel dettaglio dei risultati qualitativi per i riassunti
generali, € possibile notare che G-Eval tende a collocare la maggioranza dei campioni
nella fascia alta per accuracy, usefulness e readability, con mediane pari a 5. 1 giudizi
umani confermano 'eccellente leggibilita (mediana 4 e 75° quantile 5) e mostrano
una distribuzione piu conservativa su completeness e usefulness, concentrate tra 2
e 4. L’overall segue I'andamento dei singoli criteri: piu elevato in G-Eval (mediana
4.50) e comunque positivo per la parte umana (mediana 3.75). Questi risultati
indicano che la forma espositiva e costantemente chiara, mentre la copertura

informativa e 'impatto pratico sono percepiti come buoni.

) Umano G-Eval
Metrica
Min Max Min Max

accuracy 1.0 50 1.0 5.0
completeness 1.0 50 1.0 5.0
usefulness 1.0 50 10 5.0
readability 3.0 50 1.0 5.0
overall 1.5 5.0 1.0 5.0

Tabella 4.5: Minimi e massimi per i riassunti generali (Umano vs G-Eval)

. Umano G-Eval

Metrica

25° Mediana 75° 25° Mediana 75°
accuracy 3.00 4.00 5.00  3.00 5.00 5.00
completeness 2.00 3.00 4.00 3.00 4.00 5.00
usefulness 2.00 3.00 4.00 3.00 5.00 5.00
readability 4.00 4.00 5.00 4.00 5.00 5.00
overall 2.75 3.75 4.25 3.44 4.50 4.75

Tabella 4.6: Quartili per i riassunti generali (Umano vs G-Eval)
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Figura 4.7: Riassunti generali — distribuzione per fasce (umano)
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Riassunti tecnici Per i riassunti tecnici si osserva, invece, una maggiore disper-
sione rispetto ai generali, specie su accuracy, completeness e usefulness. In G-Eval
le mediane sono pari a 3 per accuracy, completeness e usefulness, con il 34-49%
dei casi nelle fasce alte; la readability resta solida (mediana 4). La dimensione
technological depth, qui presente, si colloca mediamente piu in basso rispetto alle
altre (mediana 2 e 75° quantile 3), segnalando spazio di miglioramento nel dettaglio
implementativo esplicito. I giudizi umani confermano la buona leggibilita (mediana
4, distribuzione fortemente sbilanciata verso la fascia 4-5), mentre risultano piu
stringenti su accuracy, completeness e usefulness, per le quali la massa si concentra
tra 2 e 3. L’overall riflette questo quadro piu prudente, con mediane inferiori

rispetto rispetto ai riassunti generali.

. Umano G-Eval
Metrica
Min Max Min Max

accuracy 1.0 50 1.0 5.0
completeness 1.0 50 1.0 5.0
usefulness 1.0 50 1.0 5.0
readability 20 50 1.0 5.0
technological depth 1.0 4.0 1.0 5.0
overall 1.2 44 1.0 5.0

Tabella 4.7: Minimi e massimi per i riassunti tecnici (Umano vs G-Eval)

. Umano G-Eval

Metrica

25°  Mediana 75° 25° Mediana 75°
accuracy 2.00 3.00 4.00 2.00 3.00 5.00
completeness 2.00 3.00 3.00 2.00 3.00 4.00
usefulness 2.00 3.00 3.00 2.00 3.00 4.00
readability 4.00 4.00 4.00 3.00 4.00 4.00
technological depth 2.00 2.00 3.00 2.00 2.00 3.00
overall 2.40 2.90 3.40 2.20 3.20 4.20

Tabella 4.8: Quartili per i riassunti tecnici (Umano vs G-Eval)
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Figura 4.8: Riassunti tecnici — distribuzione per fasce (G-Eval)
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Figura 4.9: Riassunti tecnici — distribuzione per fasce (umano)
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Risultati della Classificazione

Un componente fondamentale della pipeline offline e la classificazione automatica
dei commit in categorie tematiche (es. feature, bug fiz, refactoring, ecc.). Si ricorda
che le metriche riportate in tabella 4.9 sono calcolate a partire da una funzione
di valutazione che, seguendo I’ implementazione originale, tratta la classificazione
come un problema binario.

Di seguito le prestazioni ottenute nei diversi setting sperimentali:

Esperimento Precisione Richiamo Accuratezza
Originale 0.59 0.46 -
Esempi originali con LLaMA 3.1 8B 0.67 1.00 0.67
Nuovi esempi con LLaMA 3.1 8B 0.73 0.99 0.72

Tabella 4.9: Prestazioni del modulo di classificazione dei commit

Nel progetto originario, il classificatore ottiene una precisione di 0.59 a fronte di un
richiamo di 0.46. Cio indica che meno della meta dei commit sono stati assegnati
alla categoria corretta (richiamo 46%), e tra quelli etichettati come appartenenti a
una data categoria, solo il 59% erano effettivamente corretti (precisione 59%).

Introducendo un modello LLM piu potente (LLaMA 3.1 da 8 miliardi di parametri),
le prestazioni migliorano sensibilmente. In particolare, il richiamo raggiunge il 100%
mentre la precisione sale a 0.67. Questo si traduce in un’accuratezza globale del
67%: il modello classifica correttamente circa due terzi dei commit. Usando invece
esempi ex-novo (rielaborati o aggiuntivi) per il few-shot, si ottiene un ulteriore
incremento di performance: la precisione arriva a 0.73, mantenendo un richiamo
molto alto. L’accuratezza complessiva migliora fino al 72%. Questo risultato
suggerisce che la qualita e la varieta degli esempi forniti al modello hanno un
impatto positivo, permettendo al classificatore di essere piu selettivo (precisione pit
alta, meno falsi positivi) pur continuando a individuare quasi tutti i casi rilevanti
(richiamo prossimo a 1).
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4.4.2 Pipeline Online
Risultati Quantitativi

Nella pipeline online, la qualita delle risposte del chatbot ¢ stata valutata rispetto
a un Golden Standard costruito manualmente su 50 possibili query che vanno
ad esplorare casistiche tipiche per cui potrebbe essere utilizzato, i casi limite e
gli aspetti tecnici. Le metriche riportate sono le medesime gia presenti per la
pipeline offline, ovvero ROUGE-1/2/L, BLEU, METEOR e BERTScore (Precision,
Recall, F1). Di seguito si presentano i valori medi, i range min-max, i quartili e le
distribuzioni per fasce.

Metrica Media Min Max 25° Mediana 75°

ROUGE-1 0.4131 0.0488 1.0000 0.3066 0.4035 0.5137
ROUGE-2 0.2144 0.0000 1.0000 0.0707 0.1389 0.3154
ROUGE-L 0.3114 0.0488 1.0000 0.1692 0.2336 0.4443
BLEU 0.0759 0.0000 1.0000 0.0093 0.0632 0.1630
METEOR 0.2805 0.0113 0.9977 0.1879 0.2670 0.3401

BERT Precision 0.8614 0.7505 1.0000 0.8307  0.8513  0.8946
BERT Recall 0.8629 0.7688 1.0000 0.8261 0.8552  0.8950
BERT F1 0.8615 0.7919 1.0000 0.8297  0.8517  0.8873

Tabella 4.10: Statistiche riassuntive per le metriche quantitative del chatbot

Score

Figura 4.10: Risultati medi per metrica
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I risultati mostrano come le distribuzioni tendono a concentrarsi nella parte bassa
per le metriche piu lessicali, in particolare ROUGE-2 e BLEU, mentre le metriche
piu semantiche, Bertscore, si confermano stabilmente alte (oltre il 90% dei casi in
[0.80,1.00] per F1), a indicare coerenza semantica con il Golden Standard. T quartili
mostrano mediane solide (es. ROUGE-1 ~ 0.40), ma con coda lunga positiva (max
~ 1.0) dovuta alla presenza di una query con risposta perfettamente allineata al
riferimento. In generale, i valori sono in linea con cio che si era gia ottenuto con la
pipeline offline.

| %
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Figura 4.11: Metriche quantitative chatbot - boxplot
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Figura 4.12: Metriche quantitative chatbot - Distribuzione per fasce (stacked
100%)

Risultati Qualitativi

Le valutazioni qualitative mostrano valori medi complessivamente elevati in tutte
le metriche, con un andamento stabile tra giudizi umani e G-Eval. Le dimensioni
accuracy e usefulness mantengono valori medi superiori a 4.2 in entrambi i casi, a
indicare che le risposte fornite risultano generalmente corrette e rilevanti rispetto
alle richieste dell'utente. La readability presenta i punteggi piu alti, con medie
prossime al valore massimo (4.78 per la valutazione umana e 4.86 per G-Eval) e
il 100% dei giudizi collocati nella fascia piu alta per il modello automatico. Cio
conferma che il linguaggio utilizzato dal chatbot e chiaro, coerente e facilmente
leggibile anche in contesti tecnici.

La metrica completeness rappresenta invece ’aspetto piu variabile: la valutazione
umana ha attribuito una media pari a 4.32, mentre G-Eval si mostra pit conservativo
(3.74). Questo divario suggerisce che, sebbene le risposte siano ritenute accurate e
comprensibili, il modello automatico tende a penalizzare lievi omissioni o0 mancanza
di dettagli accessori, pur non compromettendo la qualita complessiva della risposta.

I giudizi “overall” rimangono alti (4.44 per la parte umana e 4.34 per G-Eval), con
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oltre '85% delle valutazioni concentrate nella fascia [4,5]. La distribuzione dei pun-
teggi conferma una generale coerenza tra le due modalita di valutazione: entrambe
evidenziano una forte concentrazione nelle fasce alte e una bassa dispersione, come
indicato dai quartili superiori (mediane > 4.5).

I risultati indicano che la pipeline online mantiene livelli qualitativi analoghi a
quelli della pipeline offline, garantendo risposte consistenti, corrette e leggibili anche
in contesti d’uso interattivi. L'unica differenza di rilievo riguarda la completeness,
che rimane il parametro piu sensibile al tipo di valutazione, ma senza impatto
significativo sulla percezione complessiva della qualita.

Metrica Umano G-Eval
accuracy 4.64 4.60
completeness ~ 4.32 3.74
usefulness 4.48 4.20
readability 4.78 4.86
overall 4.44 4.34

Tabella 4.11: Valori medi delle metriche qualitative.

Umano G-Eval

Metrica

Min—Max Min—Max
accuracy 1 -5 2 — 5
completeness 1 — 5 1 - 5
usefulness 1 - 5 2 - 5
readability 1 - 5 4 — 5
overall 1 - 5 2 — 5

Tabella 4.12: Valori minimi e massimi delle valutazioni qualitative.
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) Umano G-Eval
Metrica
25°  Mediana 75° 25° Mediana 75°
accuracy 4.00 5.00 5.00 4.00 5.00 5.00

completeness 4.00 4.50 5.00 3.00 4.00 5.00
usefulness 4.00 5.00 5.00 4.00 5.00 5.00
readability 5.00 5.00 5.00 5.00 5.00 5.00
overall 4.00 5.00 5.00 4.00 4.50 5.00

Tabella 4.13: Quartili per le valutazioni qualitative.
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Figura 4.13: Metriche qualitative chatbot G-Eval - Distribuzione per fasce
(stacked 100%)
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Figura 4.14: Metriche quantitative chatbot Umano - Distribuzione per fasce
(stacked 100%)

Risultati del Retrival

Il comportamento del sistema di retrieval nella pipeline online, basato sulla pre-
senza di quattro tool a disposizione dell’agente, ¢ stato valutato considerando tre
componenti principali: metriche standard di information retrival, invocazione dei
tool e hallucination rate.

Metriche di Information Retrival Per le metriche standard si e utilizzate
le classiche Precision@K (P@QK), Normalized Discounted Cumulative Gain (ND-
CGQK), Mean Average Precision (MAP) e Mean Reciprocal Rank (MRR). Le
misurazioni sono state effettuate per differenti valori di K (5, 10 e 15).

I risultati evidenziano prestazioni complessivamente elevate. Il valore di NDCGQK
risulta stabile e superiore a 0.84 per tutti i livelli di K, indicando che i documenti
piu rilevanti vengono costantemente posizionati ai primi posti del ranking. Il valore
di MAP (0.8130) e MRR (0.8847) conferma un buon comportamento medio e una
risposta efficace gia ai primi risultati. La precision@QK decresce come previsto
all’aumentare di K, passando da 0.38 a 0.17, comportamento tipico dei modelli di
retrieval ben calibrati.
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Metrica K=5 K=10 K=15

PaK 0.3810 0.2476 0.1730
NDCG@K 0.8436 0.8518 0.8509
MAP 0.8130 0.8130 0.8130
MRR 0.8847 0.8847 0.8847

Tabella 4.14: Metriche di retrieval per diversi valori di K.
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Figura 4.15: Andamento delle metriche di retrieval per differenti valori di K.

Correttezza delle chiamate ai tool La sezione di verifica delle chiamate ai tool
mostra una corretta orchestrazione nel 90% dei casi (45 su 50 query), con solo 5 casi
di chiamate parziali e nessun fallimento completo. Le analisi di debug confermano
che i casi parziali riguardano 'omissione del tool commit code, senza impatti
rilevanti sulla correttezza complessiva del risultato. Un modello pitt potente, unito
a tecniche piu avanzate, avrebbe sicuramente aiutato nel migliorare ulteriormente i
risultati.
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Stato Conteggio
OK 45
PARTIAL 5
KO 0

Tabella 4.15: Correttezza delle chiamate ai tool.
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Figura 4.16: Distribuzione degli stati di esecuzione dei tool.

Tasso di allucinazione Il tasso di allucinazione ¢ contenuto: nelle valutazioni
umane solo il 10% delle risposte mostra elementi parzialmente inventati, mentre per
G-Eval il valore & leggermente piu alto (12%). Entrambi i risultati evidenziano una
buona aderenza semantica delle risposte ai contenuti effettivamente recuperati. Solo
in un caso di validazione umana si e riscontrata una risposta totalmente allucinata.
Nel complesso, i valori raggiunti confermano la solidita del processo di retrieval
nella pipeline online, che mantiene elevata precisione, consistenza e affidabilita
anche in contesti interattivi.

. Valutazione
Categoria
Umano (%) G-Eval (%)
YES 2.00 0.00
PARTIALLY 8.00 12.00
NO 90.00 88.00
Totale allucinato (YES+PARTIALLY) 10.00 12.00

Tabella 4.16: Tasso di allucinazione (Human vs G-Eval).
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Figura 4.17: Distribuzione delle valutazioni di allucinazione.
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Capitolo 5

Conclusioni

Questo capitolo raccoglie le riflessioni conclusive sul lavoro svolto, sintetizzando i
risultati ottenuti, le implicazioni emerse e le prospettive future del progetto. L’o-
biettivo e discutere in che misura le soluzioni sviluppate siano riuscite a rispondere
alle domande di ricerca iniziali, valutando al tempo stesso il contributo scientifico e
applicativo della proposta. Dopo una prima sezione dedicata alla discussione dei
risultati rispetto alle due domande di ricerca, il capitolo analizza il comportamento
complessivo del sistema, le sue potenzialita di integrazione nel ciclo di vita del
software. Infine, vengono tratte alcune considerazioni generali sulle prospettive
evolutive legate alla diffusione della GenAlI nel SDLC.
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5.1 Discussione rispetto le due domande di ricer-
ca

In questa sezione si riflette sull’efficacia complessiva del sistema nel rispondere alle
due domande di ricerca che hanno guidato lo sviluppo del progetto. Le analisi
condotte sulle due pipeline — offline e online — mostrano un quadro coerente e
nel complesso positivo, sia dal punto di vista delle prestazioni quantitative, sia per
la qualita percepita e la rilevanza dei risultati ottenuti.

La prima domanda di ricerca riguardava la capacita del sistema di analizzare e
riassumere in modo accurato i messaggi di commit, mantenendo la coerenza con
Iintento originale delle modifiche.

Nella pipeline offline, i riassunti generati offrono una buona base narrativa per
descrivere i commit, come confermato anche dagli alti valori di BERTScore. I
generali risultano leggibili, coerenti e mediamente informativi, mentre quelli tecnici
presentano una maggiore fragilita, con valutazioni che scendono fino a 2,3-2,8 /5
per la profondita tecnica. Questo suggerisce che il sistema riesce a cogliere il senso
delle modifiche, ma incontra maggiori difficolta nel rappresentarne i dettagli di
implementazione, probabilmente a causa della complessita dei diff e della dimensione
molto ridotta del modello adottato.

Anche 'analisi della pipeline online fornisce ulteriori elementi positivi in risposta a
RQ1. Le risposte generate alle domande degli utenti sono convincenti e riescono a
sintetizzare in modo preciso gli intenti alla base delle modifiche del codice. I punteggi
assegnati risultano mediamente piu alti, con evidenze di maggiore accuratezza e
completezza. Questo suggerisce che, quando la generazione e guidata da un contesto
informativo piu ricco e mirato, il sistema riesce a produrre spiegazioni piu dettagliate
e pertinenti. In tale prospettiva, l'interazione online, quindi, compensa parzialmente
le limitazioni della sintesi automatica offline, grazie alla possibilita di adattare la
risposta alle esigenze e al livello di dettaglio richiesto dall'utente, valorizzando cosi
meglio il contenuto del commit e del codice sottostante.

La seconda domanda, invece, riguarda come gli LLM siano in grado di migliorare
la comunicazione tra i membri del team, generando report contestualizzati e
favorendo una comprensione condivisa dell’evoluzione del progetto. Questa & stata
interpretatata attraverso un chatbot agentico che sia in grado, tramite interazioni
in linguaggio naturale, di rispondere a domande sul progetto e sulla sua evoluzione.

In questo ambito, la pipeline online ha mostrato prestazioni complessivamente
molto solide, sia sotto il profilo tecnico, sia da quello dell’esperienza d’uso. Il
chatbot, basato su un’architettura agentica ReAct e potenziato da un modulo di
retrieval semantico, si € dimostrato capace di comprendere domande complesse,
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scomporle in sotto-task e coordinare autonomamente i tool disponibili per recupe-
rare le informazioni necessarie. Durante i test, il sistema ha mostrato una notevole
capacita nel contestualizzare le richieste dell’'utente: ad esempio, nelle domande
relative all’evoluzione di un determinato file o alla natura di un cambiamento,
'agente e stato in grado di combinare piu fonti (riassunti di commit, diff, metadati)
e produrre risposte articolate ma sintetiche, in cui la componente descrittiva e
accompagnata da una chiara interpretazione del processo di sviluppo. Questo
comportamento emerge anche nella qualita linguistica delle risposte, giudicate nel
complesso scorrevoli, precise e coerenti con la domanda di partenza.

Dal punto di vista del recupero delle informazioni, le metriche di retrieval con-
fermano una buona capacita nell’ individuare i documenti rilevanti. Il tasso di
allucinazione basso dimostra la solidita dell’approccio RAG nel limitare errori
semantici o contenuti non fondati. Inoltre, 'agente ha mostrato un uso corretto e
coerente dei tool interni, con circa il 90% delle esecuzioni completate senza errori,
a indicare una buona orchestrazione tra ragionamento, ricerca e generazione.

Un aspetto critico emerso riguarda tuttavia l'effettiva utilita dei riassunti generati
dalla pipeline offline all’interno del processo di retrieval online. In diversi casi, infatti,
le risposte basate direttamente su commit e porzioni di codice hanno mostrato una
maggiore precisione e rilevanza rispetto a quelle che si appoggiavano ai riassunti
sintetici. Questo evidenzia come, nella configurazione attuale, I'informazione
derivata dai riassunti non apporti ancora un vantaggio significativo in fase di
interrogazione, e che 'accesso diretto ai dati originali resti spesso piu efficace per
domande di natura tecnica o specifica.

Nel complesso, i risultati ottenuti permettono di affermare che entrambe le domande
di ricerca hanno trovato una risposta positiva. La pipeline offline ha dimostrato la
capacita di costruire in modo affidabile una base informativa sintetica e coerente,
mentre la pipeline online ha mostrato come tale conoscenza possa essere resa resa
fruibile e adattabile al contesto dell’interazione, consentendo all’utente di esplorare
I’evoluzione del progetto in maniera naturale e dinamica. L’integrazione tra le due
componenti costituisce il punto di forza principale del sistema: la prima struttura
e organizza l'informazione, la seconda la trasforma in uno strumento interattivo
di comprensione e analisi. Nel suo insieme, il sistema proposto non si limita ad
automatizzare attivita di sintesi o ricerca, ma si configura come un vero e proprio
supporto cognitivo per sviluppatori e revisori, migliorando la tracciabilita delle
modifiche, la lettura del codice e la comunicazione all'interno dei team di sviluppo.
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5.2 Discussione complessiva del progetto

In questa sezione si discutono in modo piu ampio i risultati del progetto, eviden-
ziandone i punti di forza, le criticita e le possibili direzioni di sviluppo. Dopo aver
analizzato separatamente le due pipeline, ¢ possibile riflettere sul comportamento
complessivo del sistema, sulla coerenza dell’architettura e sulle prospettive che essa
apre per 'integrazione della GenAl nel ciclo di vita del software.

Il progetto ha raggiunto risultati significativi, dimostrando che I'integrazione dei
LLM nel SDLC puo generare valore reale e misurabile. Le due pipeline si completano
a vicenda: la componente offline estrae e struttura la conoscenza dai dati Git, mentre
la componente online ne consente un’esplorazione interattiva e personalizzata.
Questo approccio ibrido di analisi, sintesi e interazione agentica ha effettivamente
migliorato la comprensione dei processi di sviluppo, rendendo piu accessibile la
conoscenza nascosta nei repository e favorendo una forma di documentazione
dinamica.

Dal punto di vista tecnico, il sistema ha dimostrato una stabilita complessiva e un
grado di maturita adeguato agli obiettivi di ricerca. L’adozione di un’architettura
ReAct integrata tramite LangGraph ha garantito un controllo dei flussi operativi
e un’elevata trasparenza nelle interazioni tra i moduli. L’utilizzo del RAG ha
ridotto le allucinazioni e migliorato la coerenza semantica, mentre la modularita del
design ha permesso una sperimentazione agile e iterativa. L’esperienza d’uso del
chatbot é risultata fluida e naturale, con risposte coerenti e linguisticamente solide,
confermando la validita dell’impostazione architetturale adottata. Pur essendo
concepito come prototipo di ricerca, il sistema mostra gia caratteristiche che ne
rendono plausibile un’applicazione in contesti reali.

Accanto ai risultati positivi, 'analisi ha evidenziato anche margini di miglioramento.
In prima battuta, ¢ emersa — come gia osservato in precedenza — una criticita
legata all’effettiva utilita dei riassunti generati dalla pipeline offline all’interno
del processo di retrieval online. Nella maggior parte dei casi, infatti, le risposte
basate direttamente su commit e codice si sono rivelate piu efficaci e pertinenti
rispetto a quelle che facevano uso dei riassunti sintetici. Cio suggerisce che una
diversa gestione o integrazione dell’informazione potrebbe migliorare ulteriormente
I'efficacia complessiva del sistema. Sul piano modellistico, il sistema potrebbe
beneficiare dell’impiego di tecniche avanzate di ottimizzazione, come il Fine-Tuning
[19] o strategie di Reinforcement Learning from Human Feedback (RLHF) [87][88],
volte a raffinare la precisione e I’aderenza semantica delle risposte. Un ulteriore passo
evolutivo potrebbe consistere nella scelta di LLM piu potenti, in grado di gestire
con maggiore precisione contesti pitt complessi. Dal punto di vista architetturale,
I'introduzione di un approccio multi-agente rappresenterebbe un’evoluzione naturale
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del sistema, permettendo la cooperazione tra agenti specializzati (analisi, retrieval,
validazione, generazione linguistica) e migliorando scalabilita e precisione. In
parallelo, una versione personalizzata dell’agente LangGraph, progettata per gestire
in modo piu dinamico i flussi tra i tool e la memoria, potrebbe rendere il sistema
piu adattivo e controllabile. Anche l'integrazione con protocolli come il Model
Context Protocol (MCP) [89] aprirebbe la possibilita di una comunicazione piu
strutturata e standardizzata tra il sistema e altri strumenti software, favorendo
un’integrazione piu flessibile e robusta in ambienti di sviluppo reali.

Nel complesso, il lavoro puo considerarsi soddisfacente gia nella sua forma attuale:
ha raggiunto gli obiettivi scientifici e tecnici stabiliti, validando la fattibilita di
un sistema in grado di analizzare, sintetizzare e comunicare informazioni sul
codice in modo coerente e adattivo. Al di la dei risultati sperimentali, il progetto
offre anche una prospettiva applicativa concreta: mostra come i LLM possano
diventare strumenti di supporto intelligenti e integrabili nel ciclo di vita del software,
contribuendo a migliorare la tracciabilita, la collaborazione e la consapevolezza
collettiva all’interno dei team di sviluppo.
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5.3 Discussione generale della GenAl nel SDLC

La progressiva integrazione della GenAl nel ciclo di vita del software (SDLC) sta
modificando in modo profondo il modo in cui i team sviluppano, comprendono e
mantengono il codice. Gli strumenti basati su LLM stanno evolvendo da semplici
assistenti testuali a vere e proprie piattaforme di supporto cognitivo, in grado di
analizzare repository, proporre modifiche e contestualizzare decisioni progettuali.
In questo scenario, i risultati di questo lavoro confermano il potenziale della GenAl
come strumento in grado di potenziare lo sviluppo software.

Al tempo stesso, I'esperienza maturata mostra come tali sistemi debbano essere
impiegati con una chiara consapevolezza dei loro limiti. L’efficacia della generazione
automatica di contenuti tecnici dipende fortemente dalla qualita dei dati di input,
dalla trasparenza del ragionamento del modello e dalla sua capacita di mantenere
coerenza semantica nel tempo. La GenAl non sostituisce le competenze umane
nello sviluppo, ma puo integrarle, automatizzando compiti ripetitivi e rendendo piu
accessibile la conoscenza distribuita all’interno dei team. In questo senso, il valore
piu rilevante non risiede nella sostituzione, ma nella collaborazione uomo-macchina,
dove il modello diventa un amplificatore della comprensione collettiva.

Guardando alle prospettive attuali e future, la direzione della ricerca e dell’industria
si sta orientando verso architetture pit modulari, efficienti e flessibili. L’emergere del
MCP [89] sta favorendo la creazione di ecosistemi interoperabili, nei quali i modelli
possono comunicare con strumenti esterni — ambienti di sviluppo, IDE, database o
altri agenti — attraverso canali standardizzati. Parallelamente, gli approcci multi-
agente stanno guadagnando terreno come paradigma per orchestrare competenze
specializzate: diversi agenti possono collaborare per analizzare, generare, validare
e spiegare, rendendo i sistemi piu adattivi e affidabili. Sul fronte modellistico,
si osserva una duplice tendenza: da un lato lo sviluppo di LLM sempre piu
grandi e generalisti, capaci di un ragionamento profondo e multidominio; dall’altro
la nascita di Small Language Models (SLM) [90] e modelli verticalizzati, piu
efficienti, interpretabili e adatti a scenari aziendali ristretti o a dispositivi edge. Il
futuro prossimo sembra dunque orientato verso sistemi ibridi, nei quali modelli di
dimensioni differenti cooperano secondo un principio di specializzazione funzionale,
bilanciando capacita di ragionamento e sostenibilita computazionale.

In questa prospettiva, la GenAl nel SDLC potra assumere un ruolo sempre piu
integrato: non solo come assistente, ma come componente attiva nel monitoraggio
della qualita, nella pianificazione evolutiva e nella gestione della conoscenza tecnica.
Il passo successivo sara I’emergere di ecosistemi intelligenti in cui agenti, strumenti
e persone coesistono in modo sinergico, condividendo contesto e obiettivi.
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5.4 Conclusioni

Il lavoro svolto ha mostrato come la combinazione di analisi automatica, sintesi
informativa e interazione agentica possa costituire una base solida per nuove forme
di comprensione e collaborazione nello sviluppo del software. La ricerca condotta
non si limita a dimostrare la fattibilita tecnica di un sistema basato su LLM, ma
propone un modello di interazione che riflette un cambiamento pitt ampio nel modo
di concepire la produttivita e la conoscenza nei processi di ingegneria del software.

La sfida principale non sara soltanto rendere i modelli pitt potenti, ma integrarli in
modo sicuro, trasparente e realmente utile per le persone che li utilizzano. Se il
codice rappresenta la logica delle macchine, la GenAl ne diventa oggi il linguaggio
di mediazione, capace di tradurre 'intento umano in conoscenza operativa. In
questo senso, ’obiettivo finale non e costruire sistemi che pensino al posto nostro,
ma strumenti che ci aiutino a pensare meglio insieme alle macchine.
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