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Abstract

In everyday life, we come in contact with an ever growing amount of data, making
its every related aspect a matter of concern: where to retrieve data, where to store
it, and how to organize it are some notable mentions, but also only a fraction of a
much longer list. Among these challenges, respecting the privacy of the individuals
captured in a media deserves the right attention. In our work, we focus on the Image
Anonymization task, which aims to preserve the personal information of people
depicted inside photographs by modifying them. There are many techniques to
achieve this goal: the main ones include covering the people’s faces, sometimes even
entire bodies, with blur, solid colors, generated masks, or by recreating the entire
picture from scratch, but these approaches come with the issues of maintaining
the meaning of the original image, not compromising the overall quality when
editing identifiable details, and achieving a good level of anonymization. Our
architecture is an extension of the CAMOUFLaGE-Light model, where we make
use of pretrained models to extract different types of information from a picture
and generate an anonymized version based on a portion of the original and the
obtained features: we employ FRESCO and RelTR to analyze the starting input
and produce a data structure containing every information deemed relevant, IP-
Adapter and T2I-Adapter to learn from the extracted features, and Stable Diffusion
to reconstruct the de-personalized photograph. Particular attention is paid to
distill information such as ethnicity, age, gaze direction, body pose, and similar
characteristics that help to define the semiotic of the picture we want to obfuscate.
We execute different types of tests to assess the quality of the final output, where
image quality, re-identification rate, semiotic analysis, and downstream-task model
performance are used as metrics to compare the output scores with other state-of-
the-art methods. Finally, we discuss possible future developments that could bring
further advances in the efficacy of the proposed method.
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Chapter 1

Introduction

Today, pictures surround us in everyday life more than ever before: through social
media, ads, the possibility to snap a picture just by extracting the phone from
a pocket, self-driving vehicles, and many more ways to interact with such media.
Visual data is the main support to how we experience our lives, thus making the
regulation of this type of information a field of ever-growing interest as we face the
raise of concern on how to protect the associated privacy issues: some examples of
regularization in digital privacy are the European Union’s General Data Protection
Regulation (GDPR) [1], China’s Personal Information Protection Law (PIPL)
[2] and Canada’s Digital Charter Implementation Act (DCIA) [3]. To correctly
follow these laws, the scientific community is working on methodologies that allow
researchers and industries to protect personal data without compromising useful
information unrelated to the subjects’ identity. In particular, the task this thesis is
concerned with is called Image Anonymization: as the name suggests, its goal is
to hide personal information from a picture while keeping as much non-sensible
data as possible. Some of the approaches used thus far involve inpainting (such
as producing masks used to cover a picture’s sub-area) [4, 5], and generating the
image from scratch [6, 7]. The first method is based on modifying only a portion
of the original input, making most of the time an output picture only slightly
different from the original, and thus prone to be re-identified. Using the second
approach, the final result is entirely generated by a model, which means that the
produced image is less likely to be linked to the original data, but in this case
artifact generation is more common and the overall utility can decrease.

1.1 Current work’s limitations
Today’s state-of-the-art anonymization models have to find the right balance
between maintaining the utility of the synthesized images, while reducing the
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possibility to isolate the source image when analyzing the de-identified one. This
target has proved a difficult one: in order to distance original and generated images,
it is needed to act not only on the depicted persons but also on the environment
around them, as CAMOUFLaGE-Base [8] surpasses DeepPrivacy2 [4] at image level
re-identification by modifying multiple areas of the picture. It is also important to
note that the more data gets modified, the more it could get damaged and not be
as useful.

1.2 Goal
This thesis aims to define an architecture focused on generating an output that,
after the anonymization process, maintains a good level of utility for the training
and testing of downstream task models. In order to achieve this goal, the model
has been designed to take into account the semantic information contained in an
image without forgetting about plastic-level data. Going more into the details, with
semantic information is meant to address the meaning of what is displayed in the
picture, which subjects are interacting with each other, their peculiar characteristics
and how the interactions are happening, while plastic-level data is information
concerning the picture’s structure: for example the position of said subjects into the
frame, their depth with respect to the camera, the poses assumed by the captured
individuals, and many more. Thus, this methodology aims to use the original
picture only to condition the generated output, reducing re-identification rates by,
ideally, synthezising a picture starting from pure noise. The thesis work focuses
on extending the architecture defined in [8] as CAMOUFLaGE-Light, which uses
two adapters to get a combination of image and text features to guide a picture
generation process. The extension consists in adopting many diverse image analysis
techniques to obtain different kinds of data from a starting photograph, then use
them to distill ad hoc data maps, composed of plastic attributes, and text features,
consisting of a caption and relational descriptions, and employ them to condition
image synthesis.

1.3 Outline
The next thesis’ chapters are structured as follows:

• Chapter 2 - Related work: the second chapter explores some of the existing
state-of-the-art approaches regarding Image Anonymization, highlighting dif-
ferences, strengths and shortcomings of such methods, with the addition of a
brief summary on the metrics used to measure their performance.
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• Chapter 3 - Background: the third chapter includes the background knowl-
edge needed to realize the architecture proposed, from defining the origin of
Diffusion Models to the examination of core elements employed in the new
method.

• Chapter 4 - Methodology: the fourth chapter exposes the structure of the
architecture by describing the process the initial picture undergoes to be
transformed into its anonymized counterpart, delving into the details of every
intermediate step.

• Chapter 5 - Experimental environment the fifth chapter explains the train-
ing and testing experiments performed, including the datasets used through
their characteristics, the hyperparameter settings with their motivations, and
the evaluation metrics used to assess the model’s performance.

• Chapter 6 - Results: the sixth chapter defines which methods are confronted
with the one proposed, the quantitative outcomes of the evaluations and their
corresponding analysis.

• Chapter 7 - Ablation study: the seventh chapter explores the impact of the
text feature regarding relational descriptions by training and testing a model
without their use, then confronting image quality and re-identification rate
with the ones of the complete architecture.

• Chapter 8 - Conclusions: the eighth and final chapter summarizes the
results achieved in this thesis and proposes possible future directions of
development for the architecture designed, including update of existing modules
and insertion of brand new ones.
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Chapter 2

Related work

As stated previously, this thesis focuses on the Image Anonymization task: it
aims to obfuscate personal information from pictures while keeping their utility,
defined by Jordon et al. [9] as the property measurable by the change in evaluation
metrics, such as accuracy or prediction confidence, when synthetic images are
used instead of their original counterparts. Most of the current state of the
art in Image Anonymization is focused on producing de-identified faces, while a
minority of projects extend their attention to full-body masking and sometimes even
environmental modifications. These goals are achieved by approaches as inpainting,
where the obfuscation happens directly on the original picture by substituting
only some of its parts with synthesized ones that usually lower data quality, or by
generating completely new images while retaining some of the input information.
The models analyzed have been implemented usually with GANs [4, 6, 10], while
recently also diffusion models have been employed [11, 12, 13, 7, 14].

2.1 GAN based models
Some of the oldest but still highly performing architectures commonly use GANs
[15], where a Generator G module is trained to produce realistic images, while a
Discriminator D module learns to discern between authentic pictures and the ones
generated by G. At the end of the training process D is discarded and G is kept to
synthesize new images.

An example of a GAN-based model is DeepPrivacy2 [4], which acted as the best
performing model in the field and a benchmark to evaluate other architectures: the
general idea is to detect where persons are located in the original picture, generate
compatible masks to cover said subjects, and obtain the final output by applying
the generated data on the input image. FALCO [6], on the other hand, uses a
pre-trained StyleGAN2 [16] to create, starting from a real dataset, a fake one. From
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this synthesized collection the most similar image to the input one is selected to
mix parts of their latent code and generate the final picture.

2.2 Diffusion based models

Lately, models are instead relying on diffusion [17], a process where the architecture
learns to remove more and more noise from a picture to restore it; when the training
phase has ended, a diffusion model is able to transform pure noise into an image.
This setting is generally preferred, as it is able to synthesize more realistic images.

Deep Identity Distraction [11] and IDDiffuse [7] are examples of diffusion-based
architectures: given a photo containing a face, the models extract its visual features
and mix them with the ones of similar candidate images drawn from a feature
space; then those features get combined with the input’s identity-independent data
to condition the final output generation. Full-body Anonymization using Diffusion
Models [12] adapts diffusion to the more conventional approach of masking: in
a first step it detects persons and other objects inside the photograph, then it
generates masks to cover the subjects, and finally it inpaints the generated data
to the initial input. Rendering-Refined Stable Diffusion [14] adopts a very similar
approach to [12], but trades the inpainting of only human subjects with doing
it in a more advanced manner: it detects 3D meshes used to estimate the body
pose, it renders an avatar based on said data which allows to produce a mask with
enhanced fidelity to the original context represented in the photograph.

2.3 Limitations

Most of the mentioned methods focus on inpainting in the original picture a
generated mask, thus achieving anonymization only regarding human faces, entire
bodies, and sometimes other detected objects: since the picture’s structure remains
unchanged, re-identification would be possible, for example, by matching the
segmentation maps obtainable from anonymized and original images. Another
issue worth of notice is that by simply generating masks based on a person’s
segmentation or body pose, the final output could lack the meaning the original
input represented: data like ethnicity, gender, age, or emotion add meaning to what
a photo conveys to the watcher, that being a human being or a machine learning
architecture. Add an image that highlights the invariance of elements as
background and bodies from SOTA methods.
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2.4 Quantitative evaluation metrics
The Image Anonymization task makes it important to tackle three different issues
about the output images: they have to be as realistic as possible while removing
useless identifiable visual data and keeping all the useful information needed to
train models on downstream tasks. This would mean that a picture representing a
person performing a certain action has to be modified enough not to be recognizable
by their facial features, clothes, and surroundings, but those details do not have
to be altered to the extent of changing the meaning conveyed by said action
being performed. Fréchet Inception Distance (FID) [18] is widely adopted when
evaluating Computer Vision models: it confronts the data distribution of real
images and generated ones to evaluate how dissimilar they are, but this method
presents some performance issues as stated by [19]. Other examples of image quality
measurement are Structural Similarity Index Measure (SSIM) [20], computed with
a simple function at the picture’s pixel level, Learned Perceptual Image Patch
Similarity (LPIPS) [21] and VisualDNA [22], which confront neuron activations
during data elaboration. As in the VisualDNA case, tests of this kind are executable
both at dataset-level, where the whole collections are opposed after collecting data
distribution properties, or at image-level, where each pair of original and synthesized
images is confronted singularly before averaging out the results. In order to assess
the efficacy of anonymization, Morra et al. [23] introduced the FRESCO score,
which makes it possible to estimate image similarity by considering each property
that FRESCO.v1 outputs upon classification. Furthermore, it is important to
measure the effect of identity obfuscation of the mentioned approaches: this metric
is defined by Barattin et al. [6] as the number of images whose identity is still
detected in the anonymized version, over the total number of images. Finally, it is
important to evaluate the generated dataset’s utility by how a downstream model’s
performance changes when trained on anonymized data instead of the original one.
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Chapter 3

Background

3.1 Diffusion Models
The fundamentals of Diffusion Models have been set by Sohl-Dickstein et al. [17],
in which the authors define the diffusion process as a Markov chain where, starting
from a distribution, it is possible to convert it into another one as seen in Figure
3.1. More specifically: while the encoder module transforms data through a series
of noise-adding steps to the initial data distribution q(x(0)) gradually mutating it
into a Gaussian distribution by applying forward diffusion (Equation 3.1) where
N is the Normal distribution,

√
1 − βt makes the data points tend towards the

origin while Iβt noise is added and t represents the timestep; the decoder network
learns how to remove noise and recover the original information using the backward
diffusion operation (Equation 3.2), where p(x(t)) describes the distribution at the
t-th step of the reverse diffusion process, fµ and fΣ are the mean and covariance
learned functions that regulate the denoising.

q(x(t)|x(t−1)) = N (x(t); x(t−1)
ñ

1 − βt, Iβt)∀t ∈ {1, ..., T} (3.1)

p(x(t−1)|x(t)) = N (x(t−1); fµ(x(t), t), fΣ(x(t), t))∀t ∈ {1, ..., T} (3.2)
Later, Denoising Diffusion Probabilistic Models [25] employed a U-Net [26]

backbone and improved the diffusion process by simplifying noise scheduling, with
βt following a linearly increasing sequence and fΣ set to be dependent only on
βt instead of being a learnable function; these changes resulted in more stable
training and better sample quality. Another notable addition to diffusion-based
models is defined by Dhariwal and Nichol [27] introduced the concept of Classifier
Guided Diffusion which, by training a classifier fϕ(y|xt, t) on noisy data xt, makes
it possible to condition the diffusion process using gradients ∇xt log fϕ(y|xt, t) and
thus produce an output based on the class label y, resulting in higher image
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Figure 3.1: Representation of a diffusion process (above) and corresponding
reverse operation (below). Image by [24].

fidelity while decreasing sample diversity. Ho and Salimans [28] improved diffusion
conditioning by defining Classifier-Free Guidance: it removes the need to train a
classifier, but maintains the advantages discussed above by using scores derived
from a conditioned and an unconditioned diffusion model to simulate the presence
of a classifier’s gradient.

3.2 Stable Diffusion

Based on Rombach et al. [29] Latent Diffusion Model, Stable Diffusion is an
generative architecture that produces images. This model is composed by vari-
ous modules: a Variational Autoencoder [30] which employs an encoder E that
compresses the input sample to a smaller and more efficient latent space and a
decoder D that converts the denoised latent into the final picture, a U-Net [26]
that removes the noise applied right after the latent space-conversion of the data,
and a text encoder that conditions the synthesis. In detail: an initial RGB image
x of height H and width W is processed by the pretrained VAE encoder to get the
latent z = E(x) of dimensions h < H, w < W and c = 4 channels; the latent code
obtained undergoes a diffusion process, then it is passed through the U-Net that
is learning to reverse the previously defined noise addition step, as explained in
Subsection 3.1. The backbone is enriched by cross-attention [31] layers, which help
with the interpretation of conditional data y as text, segmentation maps or other
pictures and thus influence the image generation: the conditioning information is
first passed through a domain-specific encoder τθ that projects y to be correctly
processed by cross-attention layers defined as:

Attention(Q, K, V ) = softmax(QK⊺

√
dk

)V (3.3)
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where dk is the dimension of K, Q = W
(i)
Q φi(zt), K⊺ is the transposed matrix of K =

W
(i)
K τθ(y) and V = W

(i)
V τθ(y) are the result of latent code zt and conditional input

τθ(y) in the space of learned projection matrices W
(i)
Q , W

(i)
K and W

(i)
V representing

respectively the query, key and value triplet. Once the backward diffusion process
has terminated, the resulting latent data z is brought back in pixel space by the
decoder D, obtaining the final output x̄ = D(z).

3.3 CAMOUFLaGE-Light

Starting from the assumption that from an image x it is possible to divide sensitive
and non-sensitive representations into Rs and ¬Rs respectively; CAMOUFLaGE
[8] models aim to perform the decomposition and use the non-personal details
¬Rs to reconstruct a de-personalized picture, while maintaining its usefulness and
meaning. In particular, CAMOUFLaGE-Light performs Image Anonymization
by analyzing the individuals depicted in a photograph using IP-Adapter [32]
and FACER [33], as visible in Figure 3.2; the first extracts both image features,
by employing a pre-trained FaRL encoder [33] instead of ViT-H/14 from CLIP
mentioned on the original IP-Adapter, and, during training, text features distilled
from a corresponding caption by a pre-trained CLIP text encoder [34], these
embeddings pass through a decoupled cross-attention layer in order to influence the
image generation process. The FACER module is instead used to extract specific

Figure 3.2: CAMOUFLaGE-Light architecture by [8], formed of an IP-Adapter
at the upper branch, Stable Diffusion embedded in the center and feature maps
interpreting T2I-Adapter below.
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visual characteristics, such as hair color, presence of makeup and accessories like
glasses, for a total of 40 different facial attributes taken from the individuals in
the picture and organize them in the corresponding 40 data maps, to which is
added another one containing faces’ keypoints. The resulting feature matrix is
passed through a trainable T2I-Adapter [35]. In order to create the final image,
noise is added to the starting picture, which is then converted to the corresponding
latent data and fed into a pre-trained Stable Diffusion model, as the one defined in
Subsection 3.2, together with image encoding, text embeddings and data maps to
manage the noise reversion process and obtain a new photo with the same set of
non-personal data ¬Rs, but different sensitive information Rs than the image used
at the beginning.

3.4 FRESCO
The FRESCO architecture [23] aims to provide an in-depth analysis of images,
which is divided into 3 levels: plastic (lines, shapes and colors), figurative (objects
and concepts) and enunciation (primarily about the observer’s point of view). The
FRESCO.v1 prototype, which is composed of a variety of classification models
that perform image caption, object identification, depth estimation, panoptic
segmentation, and many other different analyses, manages to accomplish a thorough
measure of the three levels defined earlier, and compiles an image identikit that
contains all the results about the examination performed.

Figure 3.3: Example of annotation maps and identikit of the picture to the left.
Image by [23].
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3.5 Scene Graphs
Scene Graphs provide an ulterior kind of analysis about visual data: by representing
the captured objects as nodes and relations as edges. The final scheme condenses
both the subjects’ attributes and how the actors portrayed relate to each other. This
information allows distilling the general semantics of the picture, without referring
to a unique photograph, showing potential in tasks such as image generation [36, 37,
38], image retrieval [39] and image captioning [40, 41, 42]. The modules appointed
to perform Scene Graph Generation inside these architectures can be divided into
two-stage and one-stage methods, where the former refers to performing object
detection and graph generation in separate and consecutive steps as in [43], while
the latter consists in inferring detection and generation in a single pass [40, 41].

Figure 3.4: Correspondence between an image, its possible scene graph and the
resulting caption. Image by [44]

3.6 RelTR
Relation Transformer [40] is a one-stage model trained on the Visual Genome
dataset [45] that, given a photograph representing multiple objects, produces
the corresponding scene graph. As shown in Figure 3.5, this architecture is
composed of a Detection Transformer [46] and a Triplet Decoder module. DETR
is an entity detection framework made of a CNN used to extract the image’s
features Z0, which will be passed, together with the positional encoding Ep, to
the encoder’s self-attention layer that generates a feature context Z used by the
decoder to extract from a set of learned entity queries the entity representations
Qe. The Triplet Decoder is split into subject and object branches that combine
subject/object encodings Es/Eo, triplet encodings Et and subject/object queries
Qs/Qo, respectively. The results get concatenated into Q = K = [Qs + Es +
Et, Qo + Eo + Et] and processed by the same Coupled Self-Attention module,
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which computes the triplets’ context and dependencies between subject and objects
[Qs, Qo] = AttCSA(Q, K, [Qs, Qo]). Qs and Qo are split apart and passed to two
separate Decoupled Visual Attention modules that, using the feature context Z
mentioned previously, update Qs and Qo with the influence of Z: in the subject
branch case the queries become Q = Qs + Et and keys K = Z + Ep and the
output is computed as Qs = Attsub

DV A(Q, K, Z); the object branch mirrors the same
functioning using Qo. Additionally, DVA computes the attention heat maps M . The
third attention module used is Decoupled Entity Attention, which is provided with
entity representations Qe and thus unifies the output of DETR and Triplet Decoder
by adjusting Qs = Attsub

DEA(Qs + Et, Qe, Qe) and in the same way updating Qo.
Finally, triplets are defined by processing queries Qs and Qo via two different FFNs
and the attention maps M through a CNN to obtain spatial feature vectors Vspa

and the final predictions are computed as p̂prd = softmax(MLP ([Qs, Qo, Vspa])),
representing subject and object’s bounding boxes, class labels and predicate label.

Figure 3.5: RelTR model’s schema by [40], composed of DETR in the upper-left
section, the Triplet Decoder in the lower-left corner and the FFN finalizing the
output to the right side.
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Chapter 4

Methodology

Given the partial attention regarding visual semiotics in most of today’s state-of-the-
art models, this thesis’ work is focused on extending the use of this type of analysis
to condition Stable Diffusion’s image generation in [8]’s CAMOUFLaGE-Light
architecture with the help of detailed analysis performed by FRESCO [23] and a
scene graph of relations produced by RelTR [40], with the final goal of enriching
CAMOUFLaGE-Light with more text features while using less visual data, which
is the main cause of re-identification.

4.1 Extended Scene Graph
As previously stated in Section 3, the results of the image analysis performed by
FRESCO [23] are concentrated into a JSON file, called identikit, and visualization
maps depicting panoptic segmentation, depth data, edge detection, and others. Of
these different types of data, a subset of them will be used to extract information that
will be employed to compose the Extended Scene Graph (ESG). In particular, ESG
will contain three different sections: a "scene" section composed of the image caption
produced by CLIP and the picture’s dimensions, useful for scaling the bounding
boxes to the resolution in which the pipeline works, the "objects" list containing
the instances detected with their related characteristics, and the "relationships"
section representing the interactions between objects. From the information stored
in the identikit file, objects are defined as follows:

• id: unique identifier;

• type: label of the detected object;

• position: contains the upper-left and lower-right points of the object’s bounding
box;
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• depth: estimates the distance of the object from the camera.

The "depth" attribute deserves a brief in-detail explanation: the value assigned is
computed by intersecting panoptic segmentation’s pixels and object detection’s
bounding box, which, when the designated area of pixels encloses more than the
completely_contained threshold of an instance’s total amount of pixels, allows to
determine which instance’s mask of the panoptic segmentation corresponds to
the detected object. The most present instance within the bounding box under
examination is defined as:

i∗ = argmax(
qB piqB p

) (4.1)

where B is the bounding box mentioned, pi symbolizes a pixel of the i-th instance’s
mask inside B, and p is a generic pixel of B. Once the best candidate instance
for a bounding box is found by confronting the corresponding

qB
pi∗qB
p

with the
completely_contained threshold, its panoptic mask is used to take into consideration
only the same pixels from the depth map and compute on that data the average
depth of the instance in the following manner:

depthi∗ =
qB di∗qB pi∗

(4.2)

where di∗ is the value of a point in the depth map corresponding to i∗ contained in
B. When the best candidate cannot be found because the completely_contained
threshold is not being met, the instance closer to the camera’s point of view is
selected, with the idea that the most important object of the detection could be
placed in front of other less relevant things. Objects’ bounding boxes are sorted by
ascending area in order to process instances composed of a low amount of pixels
first, which could tamper with larger boxes that could completely contain multiple
object masks. For the list of detectable objects, the reader is referred to Prismer
[47], the model used for object detection. Since the main goal of this work is to
generate anonymized images without losing useful information, general data about
persons’ faces are linked to "human face" objects, which are detected by FACER’s
RetinaFace module [33]:

• face attributes scores: a list of the subject’s facial attributes, the same that
CAMOUFLaGE-Light [8] computes using FACER [33];

• age: estimates how old the subject is;

• gender scores: a list of the subject’s gender scores;

• ethnicity scores: a list of the subject’s ethnicity scores;
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• emotion scores: a list of the subject’s emotion scores;

• head pose: describes the instance’s head position by evaluating yaw, pitch
and roll;

• gaze direction: describes the instance’s gaze direction by evaluating eyes’ XY
positions, yaw, and pitch.

Face attributes data come with a bounding box which defines the corresponding
detected face. In order to match this area with a "human face" object previously
detected, its bounding box and the one corresponding to the face attributes are
matched through Intersection over Union (IoU), then confronted with a lower
limit bbox_match threshold. In the "gaze direction" case, only the eyes’ position is
provided, thus it is sufficient to check in which bounding box those coordinates
are comprehended. After the nodes have been established, edges that represent
relations are outlined in this fashion:

• source: source object’s id;

• target: target object’s id;

• type: label of the relation.

Some of the possible relationships are assigned by confronting two objects: based
on their relative position it is possible to define the general composition of the
image:

• in front of;

• behind;

• next to;

• below;

• above;

• to the right of;

• to the left of;

• below-right of;

• below-left of;

• above-right of;

• above-left of.
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In particular: "in front of", "behind", and "next to" are depth-related spatial
interactions, where the first two are assigned when source and target objects’
depths ratio dr = dsource

dtarget
is above the depth_upper_limit parameter or below the

depth_lower_limit one, respectively, while every other case of overlapping bounding
boxes falls into the last type, and "below", "above", "to the right of" and the rest
concern only non-overlapping objects and the distance between source and target’s
boxes centroid, which has to be above the positional_relation_tolerance threshold.
"human face" objects and "person" objects get linked together based on which
"person" instance, in the panoptic segmentation computed by Prismer’s module
Mask2Former [47] contains the central pixel of the "human face" bounding box.
Finally, additional relationships are imported by RelTR’s generated scene graph:
triplets in the form of "<subject> <relation> <object>" with the addition of
subject and object’s detected bounding boxes are confronted with the objects’
position attribute; when both subject (source node) and object (target node) find
a matching object based on bounding boxes’ IoU greater than a configurable
threshold, a new relation is preposed to the spatial ones defined above, since the
interactions identified by RelTR are more meaningful.

4.2 Data maps
The first use of the extended scene graph is to compose 61 data maps, at 1/8
of the photo’s resolution, which are then passed to T2I-Adapter [35], a lighter
alternative to ControlNet [48], which contributes to conditioning the final image.
In order to compose this feature matrix, attribute scores of the listed objects are
used: from non-"human face" entities depth data is employed for the corresponding
data map, while from "human face" objects every additional attribute is used to
compile 60 features, including depth. The final and 61st map contains the body
pose of "human" subjects. The complete list of feature maps is the following:

• depth;

• facial attributes scores:

– 5 o clock shadow;
– arched eyebrows;
– attractive;
– bags under eyes;
– bald;
– bangs;
– big lips;

– big nose;
– black hair;
– blond hair;
– blurry;
– brown hair;
– bushy eyebrows;
– chubby;
– double chin;
– eyeglasses;
– goatee;
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– gray hair;
– heavy makeup;
– high cheekbones;
– male;
– mouth slightly open;
– mustache;
– narrow eyes;
– no beard;
– oval face;
– pale skin;
– pointy nose;
– receding hairline;
– rosy cheeks;
– sideburns;
– smiling;
– straight hair;
– wavy hair;
– wearing earrings;
– wearing hat;
– wearing lipstick;
– wearing necklace;
– wearing necktie;
– young;

• age;

• gender scores:

– gender score woman;
– gender score man;

• ethnicity scores:

– asian;
– indian;
– black;
– white;
– middle eastern;
– latino hispanic;

• emotion scores:

– neutral;
– happy;
– sad;
– surprise;
– fear;
– disgust;
– anger;
– contempt;

• gaze direction;

• head pose;

• body pose.

As Figure 4.1 shows, data maps can be quite diverse; "depth" information is
composed by using the values of every entity, computed as explained in Subsection
4.1 and confined into the objects’ bounding box area, while scores regarding "facial
attributes", "age", "gender", "ethnicity" and "emotion" make use of "human face"
entities’ areas. The "gaze direction" feature traces the position of the eyes and lines
symbolizing the angle that connects them to the point observed by the subject.
The "head pose" map is defined by drawing the three axes of estimated yaw, pitch,
and roll, starting from the center of the target "human face" object and by using
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grayscale in order to differentiate them. Finally, the matrix produced by OpenPose
[49] containing body poses of the depicted individuals highlights how keypoints are
linked, thus constructing subjects’ skeleton, hands and faces. Each feature map is
computed separately, exception made for body pose information, and aggregated
at a later time, with the intention of keeping only the maximum value in case of
overlapping data, as it is visible in "depth" and "blond hair" features depicted in
Figure 4.1, since adding them together would affect the normalization of said data.

Figure 4.1: Upper left: original image with object detection annotation (person,
human face, person, human face, cup, person), indicative of which area belongs to
each detected entity; upper middle: depth data; upper right: blond hair feature’s
score; lower left: gaze direction; lower middle: head pose; lower right: body pose.
Every data map is used to condition the model’s generation process.

4.3 Relation triplets
With the goal of adding context and meaning to the text prompt used by Stable
Diffusion, in parallel to the image’s caption, the second use of ESG is to create a
collection of the relationships detected between object pairs: triplets in "<subject>
<relation> <object>" format are built by using the relationship entries of source
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object, relation type and target object; such triplets get concatenated until the
upper limit of 77 tokens manageable by CLIP [34] is reached. Within the ESG,
interactions predicted by RelTR are the first ones to be listed, while spatial relations
come right after, with the idea that when the token limit is reached, only less
descriptive interactions remain unused. The final string is then processed by the text
encoder, and the resulting embeddings are concatenated to the caption encoding in
order to guide the image generation process. An example of the relation triplets
composed starting from an ESG is:

cup in front of person, cup to the right of person, cup below
person, cup below-left of footwear, sneakers, cup below person,
person next to person, person in front of person, person in
front of footwear, sneakers, person in front of person, person
in front of person, person below-left of footwear, sneakers,
person below-left of person

4.4 Final architecture
In summary, the main differences between CAMOUFLaGE-Light and the proposed
method are:

• the use of image captions during inference, before it was employed only at
training time;

• the use of a secondary caption composed of relation triplets;

• the 20 additional data maps passed to T2I-Adapter.

Now that the main implementations have been discussed, the complete training
process can be defined. As Figure 4.2 displays, the original image is used by
different models in parallel: IP-Adapter uses FaRL to extract visual features,
VAE’s encoder produces an embedding into the latent space, FRESCO computes
the in-depth image analysis, and RelTR defines a fitting scene graph; the last two
data structures are refined and combined into an ESG as previously explained,
from which image caption and relation triplets are kept to obtain text features
via CLIP’s text encoder, and the objects list is used to compose the data maps.
Once this is all set, the caption encoding and triplets embedding are processed by
frozen cross-attention modules, while image features are refined by trainable ones
followed by a Resampler Q-Former module1, which performs image projection to
obtain tokens. The resulting outputs are concatenated to be received by Stable

1https://github.com/shan18/Perceiver-Resampler-XAttn-Captioning
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Diffusion in order to condition image denoising, while the data maps are processed
by T2I-Adapter and subsequently provided to Stable Diffusion for regulating the
generation process. To the image’s latent embedding is added Gaussian noise,
then it is passed to SD’s UNet so to begin the denoising phase. The optimized
loss function is based on the Mean Squared Error between the noise added to the
image’s latent code and the predicted one, the latter being used by VAE’s decoder
to produce the final anonymized image.

Figure 4.2: Schema of the complete architecture.
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Chapter 5

Experimental environment

This chapter defines how the proposed method has been trained and tested, com-
prehending the datasets used, the hyperparameters configured, the metrics used to
measure its performance and some output examples.

5.1 Datasets
During the training phase, it has been used the Flickr-Faces-HQ-in-the-wild (FFHQ-
itw) dataset proposed by Karras et al. [16] to train StyleGAN and later established
as a pillar of training and testing generative image models. It is composed of 70,000
images in 1024 × 1024 resolution, focused on portrait images with high variability
of age, ethnicity, background, and accessories. Original images were rescaled to
the size of 512 × 512 pixels prior to use. The test results have been computed on
a subset of CelebA-HQ [50], composed of 1,000 images in 512 × 512 resolution,
each depicting the face of a famous person, thus making this set a good choice
for evaluating how the designed model performs when data are mainly focused on
visage, and an OpenImages-v7 [51] subset of 2,002 pictures in the same 512 × 512
definition, which represent scenes with more variability, making it possible to
perform inference on pictures containing more than one person.

5.2 Training
As the first step, the FFHQ-itw dataset has been preprocessed to obtain the images’
identikits, with FRESCOv1 [23], and scene graphs, using RelTR [40]. The model
configuration of FRESCO is the default one featured in its own GitLab repository1,

1https://gitlab.com/grains2/fresco
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and in the same way RelTR has been executed using the pretrained weights in
checkpoint0149.pth with the default hyperparameters, both can be found in the
official implementation’s codebase2. In order to aggregate identikits and scene
graphs into ESGs, min_objects_for_relations has been set to 2, making possible
the presence of the relation list only when at least 2 objects have been recognized,
bbox_match at 0.75 as the threshold to be reached by the Intersection over Union
between two bounding boxes in order to consider them as referring to the same
object, completely_contained to 0.95 as the lower limit above which the proportion
of pixels belonging to a segmentation mask is considered to be entirely included into
a bounding box, depth_overlap at 0.0 the minimum IoU value at which two objects
are considered eligible for a depth-related spatial relation, depth_upper_limit and
depth_lower_limit respectively set to 1.1 and 0.9 as thresholds that regulate at
which depth ratio one object can be considered as "in front" or "behind" another
one, and positional_relation_tolerance at 0.5 to manage the limit above which
the distance between two bounding box centroids has to be in order to be eligible
for a directional relation. The learning phase has been divided into two separate
steps: the first one using only IP-Adapter with image and text features, both
caption and relation triplets, for 120,000 optimization steps, while the second phase
included both IP-Adapter and T2I-Adapter to add data maps-conditioning for
ulterior 100,000 optimization steps. Both phases account for a total of 220,000
steps, the whole FFHQ-itw dataset was used as defined before, using AdamW
optimizer, a learning rate of 1e-4, weight decay set to 1e-2 and the batch size was
8. The image encoder being Green-Sky/FaRL-Base-Patch16-LAIONFace20M-ep64,
and the Stable Diffusion model used was stablediffusionapi/realistic-vision-v51.

5.3 Inference
Once the model had completed training, it has been used to generate images based
on CelebA-HQ and OpenImages v7 data. Again, the first step is to preprocess
with FRESCOv1 and RelTR the entire datasets, and then merge the results into
ESGs; the preprocessing configurations have been maintained the same as the ones
used during training. This method’s inference can be customized by acting on the
hyperparameters dimension d, strength s, guidance scale g and timesteps T . d is
the size of the final picture and can be greater than the starting one thanks to
rescaling, s regulates how much of the original picture will be overwritten with
noise before using it as a starting point for the generation, g regulates how much
the final output should adhere to the conditioning data other than a condition-free
generation, and T is the amount of steps used to complete the denoising phase. The

2https://github.com/yrcong/RelTR
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same hyperparameter values have been set regardless of which dataset was used as
the starting point: it has been tested d of both 512 and 768 pixels in combination
with s of 0.6 and 0.8 to evaluate multiple levels of image obfuscation, while cfg
and T have been fixed to 3.0 and 30, respectively. Additionally, it has been set a
fixed Random Number Generator seed of 12345 to facilitate the reproducibility of
this work. Unlike the case of CAMOUFLaGE-Light [8], both caption and relation
triplets are provided during inference.

Figure 5.1: Inference example with different resolutions and noise proportions.
Left: original image; upper middle: d = 512, s = 0.6; upper right: d = 512, s = 0.8;
lower middle: d = 768, s = 0.6; lower right: d = 768, s = 0.8.

5.4 Evaluation metrics
To quantitatively evaluate the performance of the proposed model, Fréchet Inception
Distance (FID) has been used [18] to assess image quality by estimating the distance
of the features, extracted by an Inception-v3 [52] neural network, between the
original data and the anonymized one. Visual Distributions of Neuron Activation
(VisualDNA) [22] was also employed to measure the neuron activation differences of
a Mugs-ViT-B [53] model between the original and anonymized datasets with Earth
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Mover’s Distance (EMD) [54]. As an additional test, it has been used VisualDNA
to confront original and generated images in pairs and then compute the average
the score to identify the distance between the data. Re-identification rate tests
have been conducted at both face and image level. The former is based on using
Multitask Convolutional Neural Network (MTCNN) to extract face crops from
the pictures. Then, a FaceNet architecture pre-trained on VGGFace2 and CASIA
WebFace datasets, computes for each anonymized face its K-Nearest Neighbors
(K-NN) based on their extracted features. Instead, image-level anonymization
evaluation adopts a CLIP visual encoder to extract features from pictures and
then determines a set of K-NN photos. The presence of the original input inside
the sets of K-NN define an high, and worse, re-identification rate. It has been
measured Re-ID@K with ranks K = [1, 5, 10] to show how the anonymization rate
changes the more top-K neighbors are considered, and mAP@50. To conclude
the performance assessment, it has been evaluated how much a pretrained model
output would differ when provided with generated data instead of the original: by
testing the FACER [33] model with pictures from CelebA-HQ and the anonymized
counterparts, it has been computed the distance between the original facial features
annotated for the dataset and the actual output of FACER.

5.5 Baselines
The architectures confronted with the proposed model are the following:

• DeepPrivacy2 [4]: full-body anonymization realized by inpainting synthesized
masks on the original image, resulting in images of 250 × 250 pixels;

• FALCO [6]: focused on face anonymization, generates a completely new
1024 × 1024 picture by mixing the original image’s latent code with the one
belonging to a picture selected from a synthesized dataset;

• CAMOUFLaGE-Base [8]: analyzes the photo with a series of task-specific
modules to condition the reconstruction of a heavily obfuscated version of the
initial image (s = 0.9) to obtain a 768 × 768 image;

• CAMOUFLaGE-Light [8]: similarly to the Base version, extracts visual
information with lighter modules that allow a lower rate of obfuscation s = 0.6,
but generates 768 × 768 pictures in a shorter time.

Being CAMOUFLaGE-Light the predecessor and direct competitor, in terms of
architecture similarity, of the new method, their confrontation is the main focus of
the following sections.
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Chapter 6

Results

In the following, the results of performance metrics defined in the previous chap-
ter have been reported and they are then confronted with other state-of-the-art
architectures. Finally, a discussion regarding the reasons of such results is presented.

6.1 Inference samples
Figure 6.1 shows how the same images have been generated by the mentioned
architectures and the defined method using different configurations, with CelebA-
HQ images as starting points, where photos are portraits of only one person each,
while Figure 6.2 represents the synthesis of pictures inferred from the OpenImages
v7 dataset, which contains more complex scenarios where multiple subjects come
into play. It possible to notice a degree of similarity between CAMOUFLaGE-Light
and the architecture proposed with parameters s = 0.6 and d = 768, as both models
are composed of very similar modules and share the same s and d values during
inference.

6.2 Image quality and fidelity
Table 6.1 shows that in terms of picture quality, when evaluating the synthesized
datasets with FID, every configuration of the proposed model performs better than
the GAN-based methods DeepPrivacy2 and FALCO, which score 49.4 and 41.2,
respectively, while CAMOUFLaGE-Base shortens the distance when the parameter
anonymization scale is set to 1.0, reaching 35.4. CAMOUFLaGE-Light gets the
best result of 28.7, slightly better than its extended version, which scores 30.8 when
dimension d = 768 and noise strength s = 0.6. Similar results are achieved by
evaluating the data distribution using VisualDNA, where CAMOUFLaGE-Light
achieves the best score of 4.6, followed by DeepPrivacy2 at 5.0 and this thesis’
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Figure 6.1: Images generated by the evaluated models based on the CelebA-
HQ dataset. From top row to bottom: original images, DeepPrivacy2, FALCO,
CAMOUFLaGE-Base, CAMOUFLaGE-Light, the proposed model at 512p and
60% noise, 512p and 80% noise, 768p and 60% noise, 768p and 80% noise.

model at both 512 and 768 resolution, scoring 5.8 and 6.0 respectively. Instead,
when computed on pairs of original photo and corresponding anonymized image,
VisualDNA measures image fidelity, highlighting a different trend: DeepPrivacy2,
as an inpainting approach where the amount of modified pixels is small, scores
10.4 ± 1.3, overtaking by a meaningful margin CAMOUFLaGE-Light’s 12.3 ± 1.4
as the second best and the proposed architecture at 768p and 60% noise with
slightly higher 13.3 ± 1.4. It is also possible to notice the difference in image fidelity
when, in the new approach, the noise strength s has been set at 60% and 80%:
in the latter both metrics register substantially greater dissimilarity between the

26



Results

Figure 6.2: Images generated by the evaluated models based on the OpenImages
v7 dataset. From top row to bottom: original images, CAMOUFLaGE-Base
as = 1.0, CAMOUFLaGE-Base as = 1.25, CAMOUFLaGE-Light, the proposed
model at 512p and 60% noise, 512p and 80% noise, 768p and 60% noise, 768p and
80% noise.

original data and the synthesized one, which is the expected behavior when a
larger portion of the image gets obfuscated. The numerical results show that the
best overall configuration for the designed model confirms the settings applied to
CAMOUFLaGE-Light: dimension d = 768 and noise strength s = 0.6.
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Method Celeba-HQ OpenImages v7
FID

DeepPrivacy2 49.4 -
FALCO 41.2 -

CAMOUFLaGE-Base (as = 1.0) 35.4 31.5
CAMOUFLaGE-Base (as = 1.25) 41.5 38.3

CAMOUFLaGE-Light 28.7 30.1
Proposed method (512, 0.6) 32.2 28.6
Proposed method (512, 0.8) 39.2 34.2
Proposed method (768, 0.6) 30.8 28.6
Proposed method (768, 0.8) 40.7 35.8

VisualDNA (dataset-level)
DeepPrivacy2 5.0 -

FALCO 6.3 -
CAMOUFLaGE-Base (as = 1.0) 8.9 6.9
CAMOUFLaGE-Base (as = 1.25) 9.9 7.8

CAMOUFLaGE-Light 4.6 4.2
Proposed method (512, 0.6) 5.8 3.7
Proposed method (512, 0.8) 6.7 4.2
Proposed method (768, 0.6) 6.0 4.3
Proposed method (768, 0.8) 6.5 4.8

VisualDNA (image pair-level)
DeepPrivacy2 10.4±1.3 -

FALCO 15.2 ± 2.1 -
CAMOUFLaGE-Base (as = 1.0) 15.9 ± 2.0 16.5 ± 2.7
CAMOUFLaGE-Base (as = 1.25) 17.7 ± 2.1 18.5 ± 2.9

CAMOUFLaGE-Light 12.3 ± 1.4 14.9 ± 2.8
Proposed method (512, 0.6) 13.7 ± 1.3 15.4 ± 2.3
Proposed method (512, 0.8) 16.1 ± 1.6 19.1 ± 3.0
Proposed method (768, 0.6) 13.3 ± 1.4 14.7±2.5
Proposed method (768, 0.8) 16.0 ± 1.7 18.8 ± 3.1

Table 6.1: FID computed on dataset distribution and VisualDNA executed at
dataset level and original-anonymized image pair level test results across different
models (lower is better).

6.3 Anonymization

Table 6.2 shows that the best result of 17.6% when tested for re-identification rate
at rank 1 with the environmental visual features extracted by CLIP’s ViT-B/32, is
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achieved by the proposed model using resolution d = 512 and obfuscation s = 0.8
during inference, and falls behind CAMOUFLaGE-Base’s 8.7%, when using the
anonymization scale parameter as = 1.25, and FALCO’s 10.9%, which impact
more heavily on the totality of the image as FALCO generates it from scratch and
CAMOUFLaGE-Base uses a noise strength s = 0.9, in both cases the portionn of
original data is lower than what our model uses. When testing the anonymization
focused on face features, the newly proposed model reaches a Re-ID@1 of 3.1%,
still worse than FALCO’s 0.2% when testing with FaceNet trained on VGGFace2,
while it shortens the distance to 2.6% against 0.4% while measuring with the same
architecture trained on the CASIA WebFace dataset. The high re-identification
rate could be caused by using too much of the starting image, with s = 0.6, as
a foundation to generate the output, and combining it with the higher number
of features extracted from the Extended Scene Graph puts this model behind of
CAMOUFLaGE-Light scores, which operates with an obfuscation of s = 0.6 and
performs a face-swap before regenerating the image, thus achieving better results.

6.4 FACER inference

It will now be discusses how a pretrained model interacts with de-personalized
pictures with respect to the original ones. FACER [33] is a state-of-the-art face-
related toolkit, able to detect faces, segment their regions and categorize some
of their characteristics. Because of the last capability, FRESCOv1 adopts it to
implement facial attribute classification, ready to be utilized by the method defined
in this thesis’ work for the composition of data maps. Before performing the test,
it has been used the CelebA-HQ subset of 1000 images together with their face
attribute annotations to compute FACER’s accuracy on this dataset: it achieved
an accuracy score of 91.35, meaning that the model’s predictions correspond, to
an acceptable extent, to the truth stored in the annotations. Then, a closer look
as been paid to the distance between ground truth and the score of predicted
features when inferencing on CelebA-HQ original images and anonymized pictures
at different resolutions and obfuscation: Figure 6.3 shows how every single facial
attribute is perceived differently from its actual presence on average, representing
in a negative value how much that characteristic is being recognized where it isn’t
supposed to, and in positive the case in which the attribute has not been found.
Characteristics as "wearing hat" and "gray hair" present very low distances in every
set of pictures, meaning that their presence is accurately confirmed by FACER,
while "wearing necklace" is not being recognized as much as it should, given that in
every image collection FACER does not find it at least 10% of the time. On the
contrary, the "oval face" character is recognized more than the labels would suggest,
as FACER detects it almost 20% more than the cases annotated when looking at
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Method Re-ID@1 Re-ID@5 Re-ID@10 mAP@50
CLIP ViT-B/32

DeepPrivacy2 0.306 0.440 0.497 0.123
FALCO 0.109 0.217 0.278 0.055

CAMOUFLaGE-Base (as = 1.0) 0.211 0.343 0.411 0.084
CAMOUFLaGE-Base (as = 1.25) 0.087 0.162 0.205 0.037

CAMOUFLaGE-Light 0.399 0.571 0.638 0.157
Proposed method (512, 0.6) 0.457 0.625 0.689 0.184
Proposed method (512, 0.8) 0.176 0.312 0.390 0.086
Proposed method (768, 0.6) 0.574 0.735 0.790 0.230
Proposed method (768, 0.8) 0.201 0.342 0.429 0.095

VGGFace2
DeepPrivacy2 0.008 0.023 0.036 0.007

FALCO 0.002 0.008 0.015 0.003
CAMOUFLaGE-Base (as = 1.0) 0.096 0.192 0.250 0.065
CAMOUFLaGE-Base (as = 1.25) 0.018 0.046 0.067 0.014

CAMOUFLaGE-Light 0.046 0.115 0.146 0.040
Proposed method (512, 0.6) 0.103 0.202 0.257 0.075
Proposed method (512, 0.8) 0.031 0.077 0.113 0.029
Proposed method (768, 0.6) 0.185 0.289 0.361 0.123
Proposed method (768, 0.8) 0.043 0.086 0.117 0.034

CASIA
DeepPrivacy2 0.008 0.024 0.037 0.006

FALCO 0.004 0.011 0.021 0.003
CAMOUFLaGE-Base (as = 1.0) 0.100 0.200 0.260 0.054
CAMOUFLaGE-Base (as = 1.25) 0.019 0.049 0.070 0.012

CAMOUFLaGE-Light 0.036 0.118 0.160 0.030
Proposed method (512, 0.6) 0.090 0.183 0.254 0.057
Proposed method (512, 0.8) 0.026 0.081 0.117 0.022
Proposed method (768, 0.6) 0.152 0.303 0.374 0.090
Proposed method (768, 0.8) 0.035 0.080 0.124 0.023

Table 6.2: Re-ID test results across different models. The images used come from
a CelebA-HQ subset of 1,000 images (lower is better).

the official CelebA-HQ subset. This test proved that, in general, the facial features
present in the initial data are kept after anonymization, preserving the usefulness
of the information; in fact, FACER achieves an accuracy score between 87% and
89% when inferencing on de-personalized data. The comparison of the proposed
method’s best configuration with CAMOUFLaGE-Base and CAMOUFLaGE-Light,
shown in Figure 6.4, highlights how the new architecture tends to maintain more
attributes with respect to the other models: FACER achieves an accuracy of 87.1%
when tested on the data generated by CAMOUFLaGE-Light, comparable with the
87.4% score when inferring on CAMOUFLaGE-Base with parameter anonimization
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scale set to 1.0. The worst accuracy of 85.9% is registered after testing with
CAMOUFLaGE-Base coupled with as = 1.25, 4% lower than the one achieved
with the architecture suggested in this thesis’ work, making it the best performing
in terms of data utility preservation.
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Figure 6.3: Distances between attributes ground truth and detected by FACER
with different model configurations. Distances > 0 mean false negatives, distances
< 0 symbolize false positives (lower absolute value is better).
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Figure 6.4: Distances between ground truth and attributes detected by FACER
with different models. Distances > 0 mean false negatives, distances < 0 symbolize
false positives (lower absolute value is better).
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Chapter 7

Ablation study

This chapter focuses on the real contribution of integrating relation triplets into
training and testing, with the goal of assessing if the model performs better without
them: it is first evaluated how much the image quality and fidelity changes, then it
is measured the impact on the anonymization effectiveness.

7.1 Image quality and fidelity
The degree in which the generated pictures are different from the original ones has
been measured in the same way as explained during Section 5.4: using FID [18]
and VisualDNA [22], the dissimilarity between the features extracted by the two
methods has been tested across the whole subset of data. VisualDNA was also
used to compare each pair of authentic and synthesized pictures. Following the
previous chapter, the data used is from CelebA-HQ and OpenImages v7 datasets,
and the parameters used during training and inference are the same as the ones
already discussed, with an exception made for the relation triplets distilled from the
Extended Scene Graph. Table 7.1 reports how both FID and VisualDNA highlight
the same behaviors. The former makes it possible to notice that adding noise
lowers the picture’s fidelity and highlights that, when considering CelebA-HQ, the
difference between the best performing model with d = 768 and s = 0.6 is only 0.7
points lower than the second best that uses the same configuration without relation
triplets, while inferring on OpenImages v7 rewards d = 512 and s = 0.6 without
interaction triplets with a score of 28.2 and its counterpart with triplets achieves
a slightly worse 28.6, on par of the same configuration at d = 768. VisualDNA
also shows that the absence of object interactions does not translate into different
performance, where, at dataset level, the model that does not use triplets performs
overall 0.1-0.3 better than the model that employs them, on both datasets, while,
when analyzing single pairs, having triplets is slightly better when inferencing on
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Figure 7.1: Images generated by the evaluated models based on the CelebA-HQ
and OpenImages v7 datasets. From top row to bottom: original images, proposed
model at 512p and 60% noise, 512p and 80% noise, 768p and 60% noise, 768p
and 80% noise. The proposed method’s images show, grouped in 2 rows, the same
configuration of noise and resolution with and without the use of relation triplets.
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CelebA-HQ and narrowly worse when testing on OpenImages v7.

Method Celeba-HQ OpenImages v7
FID

Proposed method (512, 0.6) 32.2 28.6
Proposed method (512, 0.8) 39.2 34.2
Proposed method (768, 0.6) 30.8 28.6
Proposed method (768, 0.8) 40.7 35.8

Proposed method (512, 0.6, no triplets) 34.5 28.2
Proposed method (512, 0.8, no triplets) 41.7 33.8
Proposed method (768, 0.6, no triplets) 31.5 28.4
Proposed method (768, 0.8, no triplets) 44.5 36.2

VisualDNA (dataset-level)
Proposed method (512, 0.6) 5.8 3.7
Proposed method (512, 0.8) 6.7 4.2
Proposed method (768, 0.6) 6.0 4.3
Proposed method (768, 0.8) 6.5 4.8

Proposed method (512, 0.6, no triplets) 5.7 3.5
Proposed method (512, 0.8, no triplets) 6.4 4.0
Proposed method (768, 0.6, no triplets) 5.9 4.1
Proposed method (768, 0.8, no triplets) 6.6 4.7

VisualDNA (image pair-level)
Proposed method (512, 0.6) 13.7 ± 1.3 15.4 ± 2.3
Proposed method (512, 0.8) 16.1 ± 1.6 19.1 ± 3.0
Proposed method (768, 0.6) 13.3±1.4 14.7 ± 2.5
Proposed method (768, 0.8) 16.0 ± 1.7 18.8 ± 3.1

Proposed method (512, 0.6, no triplets) 13.8 ± 1.4 15.3 ± 2.3
Proposed method (512, 0.8, no triplets) 16.5 ± 1.8 19.0 ± 2.8
Proposed method (768, 0.6, no triplets) 13.3 ± 1.5 14.6±2.4
Proposed method (768, 0.8, no triplets) 16.5 ± 2.1 18.8 ± 2.9

Table 7.1: FID computed on dataset distribution and VisualDNA executed at
dataset level and at original-anonymized image pair level test results across different
hyperparameter combinations, with and without the use of relation triplets (lower
is better).

7.2 Anonymization
In order to evaluate the performance in terms of de-personalization, it has been
adopted the same approach described in Chapter 5. Again, the re-identification
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rate was measured by the amount of times the original picture gets placed in the
top K-NN of a generated image and the mAP@50. In this case, the models have
been tested only on the CelebA-HQ subset. As shown in Table 7.2, the architecture
trained and tested without the use of relation triplets performs consistently, by
a small margin, better than the one that uses the additional text features: the
reason could be attributed to the specificity some relations can provide to the
generation process, which could make Stable Diffusion mimic with more fidelity
the initial input. The best performing configurations are the ones that involve an
obfuscation rate of s = 0.8, which regulates how many pixels of the original image
have been substituted by noise, and makes the proposed model reach a score of
7.5% when testing with CLIP Re-ID at rank 1 and a mAP@50 of 3.9%, reaching
roughly the same results of CAMOUFLaGE-Base with as = 1.25, previously noted
as a Re-ID@1 of 8.7% and mAP@50 of 3.7%. When measuring identification at
face level with FaceNet, the same hyperparameter setting described earlier achieves
the best results of re-identification rate at rank 1 of 0.6% when using the model
trained on VGGFace2 and 0.8% when FaceNet has learned from CASIA WebFace,
comparable to the results achieved by DeepPrivacy2 0.8% and 0.8% when evaluated
in the same manner.

7.3 Findings
The tests executed reveal that image quality is not noticeably affected by the
presence of the additional text features containing interactions among objects,
the main cause would be the presence of a considerable portion of the original
image pixels (40% when s = 0.6 and 20% when s = 0.8) which define the picture’s
structure, generating very similar outputs regardless of the relation triplets use. On
the other hand, anonymization obtains slightly better re-identification rates when
not employing relations: it is possible that the amount of information provided
through additional text features conditions the synthesis process to be more adherent
to the input photo.
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Method Re-ID@1 Re-ID@5 Re-ID@10 mAP@50
CLIP ViT-B/32

Proposed method (512, 0.6) 0.457 0.625 0.689 0.184
Proposed method (512, 0.8) 0.176 0.312 0.390 0.086
Proposed method (768, 0.6) 0.574 0.735 0.790 0.230
Proposed method (768, 0.8) 0.201 0.342 0.429 0.095

Proposed method (512, 0.6, no triplets) 0.338 0.513 0.581 0.146
Proposed method (512, 0.8, no triplets) 0.075 0.163 0.214 0.039
Proposed method (768, 0.6, no triplets) 0.491 0.661 0.721 0.193
Proposed method (768, 0.8, no triplets) 0.109 0.221 0.293 0.055

FaceNet + VGGFace2
Proposed method (512, 0.6) 0.103 0.202 0.257 0.075
Proposed method (512, 0.8) 0.031 0.077 0.113 0.029
Proposed method (768, 0.6) 0.185 0.289 0.361 0.123
Proposed method (768, 0.8) 0.043 0.086 0.117 0.034

Proposed method (512, 0.6, no triplets) 0.070 0.137 0.187 0.050
Proposed method (512, 0.8, no triplets) 0.006 0.030 0.045 0.009
Proposed method (768, 0.6, no triplets) 0.109 0.214 0.271 0.080
Proposed method (768, 0.8, no triplets) 0.018 0.041 0.069 0.016

FaceNet + CASIA WebFace
Proposed method (512, 0.6) 0.090 0.183 0.254 0.057
Proposed method (512, 0.8) 0.026 0.081 0.117 0.022
Proposed method (768, 0.6) 0.152 0.303 0.374 0.090
Proposed method (768, 0.8) 0.035 0.080 0.124 0.023

Proposed method (512, 0.6, no triplets) 0.065 0.149 0.195 0.041
Proposed method (512, 0.8, no triplets) 0.008 0.032 0.057 0.007
Proposed method (768, 0.6, no triplets) 0.118 0.232 0.290 0.069
Proposed method (768, 0.8, no triplets) 0.016 0.042 0.055 0.013

Table 7.2: Re-ID test results across different model configurations, with and
without the use of interaction triplets. The images used come from a CelebA-HQ
subset of 1,000 images (lower is better).
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Chapter 8

Conclusions

This final chapter briefly summarizes what this thesis work has achieved and it
defines the possible directions that this new method could take in the future.

8.1 Findings
As discussed in Chapter 1, today’s state-of-the-art efforts in the Image Anonymiza-
tion task, of which some are introduced in Chapter 2, are mostly focused on
modifying sensitive data inside pictures by means of inpainting the key details
limited to persons’ faces, sometimes their entire bodies, while neglecting the sur-
rounding environment. Then, in Chapter 4 it has been proposed a revised version
of the CAMOUFLaGE-Light [8] architecture, which employs the combination of
the in-depth image analysis performed by FRESCOv1 [23] with the identification
of visual relationship inferred by RelTR [40] to define an Extended Scene Graph
used to condition a Stable Diffusion 1.5 [29] pipeline to synthesize images that
maintain the original context and their key characteristics, but have most of the
less meaningful details modified in order to deter re-identification of the subjects
involved. It has been empirically demonstrated in Chapter 6 that the suggested
implementation attains image quality scores comparable with the existing state-of-
the-art approaches when anonymizing portrait pictures where less elements could
affect the image generation process, while it achieves the best performance where
photos capture more complex scenarios. Additional tests have also confirmed that
anonymized images preserve their utility for a downstream task model focused on
facial attribute detection. Finally, the difference in performance when using the
list of interactions provided by the Extended Scene Graph compared to when not
operating with them was explored in Chapter 7, and it has been noticed how image
fidelity does not present substantial change, but the re-identification rate is better
when relation triplets are not applied: the reason being in the more information
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provided during synthesis conditioning, which aids the new image to adhere more
closely to the starting input and makes it more recognizable.

8.2 Future development
In Chapter 6 it is possible to notice that the designed model competes on the
same level as the best performing architectures that the presented analysis took
into consideration in terms of picture credibility: the subjects maintain their facial
traits, their poses and their locations in frame, but the presence of visual artifacts,
which is a well known issue regarding Stable Diffusion, are sometimes observable
in the generated images; a possible solution could be to adopt a more recent
Latent Diffusion model. Another possible development could be to change how the
Extended Scene Graph is interpreted by the architecture: with the use of a Graph
Convolutional Network (GCN) designed to harness graph-structured information
would make possible to manage the information collected in a more compact manner,
the use of interaction information would make a more noticeable contribution to
the image synthesis, and the use of this module could allow operating pure noise
as a starting point to obtain the final output, thus attaining even better result in
terms of anonymization. Finally, the insertion of more information derived from
visual analysis could extend this method’s capabilities: text detection could be
used to remove characters from the photo or accurately report them based on
the downstream task’s needs, color information could be valuable to maintain the
photograph’s intended atmosphere, the position from which the picture has been
taken, and any other data deemed semiotically valuable could be inserted to add
non-identifiable information, thus tilting the intended balance between utility and
personal information obfuscation.
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