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Abstract

Network models like Software-Defined Networking (SDN) and Network Functions Virtu-
alization (NFV) have greatly impacted the manner in which we architect and manage
our networks today. These models allow for control over data flow with the help of
central control. This is done through the decoupling of the data processing aspect and
the decision-making aspect. These models also support a networking construct wherein
the networking functions can be developed on ordinary servers. This results in a network
environment that is dynamic and vibrant to cater to the demands of current services. The
increasing demands of security management, especially in terms of configuring Network
Security Functions (NSFs) like packet filters or firewalls, is becoming increasingly difficult
and demanding in today’s ever-changing and dynamic environments. Previously, security
configurations and management were done manually. These operations took a considerable
amount of time to accomplish. This resulted in ineffective & sluggish responses to meet
the demands at a rapid pace. At the same time, the manual nature of the task resulted in
errors occurring regularly.

The novel contribution of this research is the VEREFOO (Verified Refinement and
Optimized Orchestration) framework to tackle the urgent security management, applicable
to heterogeneous virtual networks within quickly evolving settings. VEREFOO is a
security automation framework designed to provide effective, efficient orchestration of
automated deployment and configuration of virtual network firewalls through a verified,
heuristic approach. The MaxSMT problem of automatic deployment and configuration
of firewalls in virtual networks is formulated and solved with the z3 theorem prover to
reduce the number of deployed firewalls and implemented filtering rules under the initial
condition that everything is satisfiable.

This thesis will concentrate on both proving the logical correctness of VEREFOO and
evaluating its scalable performance; specifically in relation to the integration of stateful
firewalls that filter bidirectional flow. To achieve the above goal, we needed to prove
the effectiveness of the logical formulation that models the stateful semantics of stateful
firewalls and the ALLOW COND (Permit Conditionally) action. Chapter 4 evaluates
the correctness of VEREFOO through the development of a rigorous cross-validation
methodology in order to validate that the configurations produced by VEREFOO refine
the NSRs and do so in a manner that does not introduce inconsistencies.

Following the evaluation of correctness, Chapters 5 and 6 assess scalability within
complex scenarios by creating a test case that replicates the Texas 2000 model, a cyber-
physical network representing a smart electric power grid. Results from this test case
demonstrate that the optimization techniques (removal of logical quantifiers and auto-
configuring pruning) utilized in the VEREFOO framework allow it to be computationally
viable and reliable in large-scale architectures. Thus, VEREFOO offers a viable alternative
to manually configuring and maintaining distributed security configurations for complex
architectures. The final section of this thesis outlines the results of this study along with
recommendations for future research.
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Chapter 1

Stateful firewalls

Stateful Firewall Defense represents one of the main themes in the present work because
of its strategic importance in managing traffic flow and security at the network layer. The
present Chapter therefore aims at providing a comprehensive review of the theoretical
and technological aspects of stateful Firewalls, while also describing the technologies that
can be used to configure them in order to manage the security of a network.

This Chapter starts by defining the concept of a "Stateful Function", and its importance
in networking environments, which have been significantly affected by the introduction of
SDN and NFV paradigms. The Stateful Function represents a System whose operation
depends on its being able to maintain an internal state among the several calls it receives;
in contrast, Stateless Systems do not store any information from call to call.

Therefore, the present Chapter starts by reviewing the security context in modern
networks (Section 1.1.1) to highlight the evolution of threats and the growing necessity of
traffic control, in addition to identifying the central role played by firewalls as the primary
means of defense against these threats.

Then the present Chapter describes the key differences between Stateful and Stateless
Firewalls (Section 1.1.2) and explains the reason why state management is a necessary
condition for connection monitoring.

In Section 1.2 and Section 1.3 the authors examine the applicability of Stateful
Functions in the context of Networks, by presenting the generic architecture of a Stateful
Firewall and by explaining how the latter maintains a State Table (also referred to as
Connection Table) containing information regarding all the current connections in the
network (the IP addresses and Ports involved, the state of each connection).

A particular focus is given to the ability to identify and process packets in different
States (i.e., New, Established, Related, Invalid), and to explain the advantages of using
such States in distributed and dynamic Architectures.

Section 1.4 is devoted to the specific mechanisms of State Management and Connection
Tracking that represent the functional core of a Stateful Firewall. In this section the
authors analyze how the firewall dynamically constructs and updates the State Table,
with particular reference to the key role of Inactivity Timers (Timeouts) in eliminating
Orphaned Connections automatically, and they discuss the inherent limitations of such
approach, including the optimizations that must be performed to prevent the risk of
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Stateful firewalls

Saturation of the State Table.

Finally, Section 1.5 closes the present Chapter by illustrating the typical tools and
technologies that are used for the configuration of Stateful Firewalls in Real World
Scenarios.

Platforms such as Iptables (with special regard to the conntrack Module, which
enables State Management), IpFirewall, Open vSwitch are reviewed; these platforms are
expected to be useful during the Thesis Implementation Phase for Policy Translation.
Therefore, the present Chapter supplies a detailed Conceptual Background to understand
the functionalities of Stateful Firewalls, so that Chapter 2 may go into detail about
the VEREFOO Framework and the formal methodologies adopted for the Orchestration
and Automatic Configuration of such systems in Virtualized Environments, in order to
overcome the Limitations of Manual Configuration.

1.1 Introduction

1.1.1 Network Security Environment

The development of new paradigms of software networking, like Software-Defined Net-
working (SDN) and Network Functions Virtualization (NFV), has dramatically
transformed the landscape of communication infrastructure systems [7]. The purpose of
these two technologies is to create flexibility and speed in managing networks; they
allow network functions (NF) to be detached from hardware and enable the dynamic
creation of complex logical networks, called Service Graphs (SG) [3].

However, the greater complexity in structure and the increased dynamism in SDN
and NFV-based environment have made security management even more difficult. It is
now practically impossible to correctly configure and timely activate defense tools
with manual methods [6]. Traditional security management methods, based on human
intervention, are therefore inherently liable to human errors (human errors) and
generate serious misconfiguration, representing one of the most common vectors of attacks.
Furthermore, manual configuration takes considerable time and generates a relevant
reaction delay with respect to operational changes or the emergence of new threats [7].

Therefore, given the continual evolution of cyber threats, the need for strictly
and automatically managed traffic has become indispensable [14]. For security in
today’s networks, network security requirements (NSRs) must be strictly defined —
for example, to separate nodes and/or ensure a specific level of connectivity — so as to
avoid exploiting vulnerabilities or misconfigured configurations. To overcome the limits
of a manual approach, security automation has become an essential theme [3]. The
double goal of the approach is to decrease the risk of human error and to decrease reaction
times, while at the same time creating correct and optimized solutions formally [7].

In this context, firewalls (or packet filters), continue to play the traditional role of the
first line of defense and remain the Network Security Function (NSF) and the most
commonly employed defense mechanism [6]. As opposed to traditional contexts,
characterized by a single point of control, modern SDN/NFV architectures promote
the use of distributed architectures, in which multiple virtual firewall instances are
strategically located throughout the Service Graph. The configuration and orchestration
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1.1 — Introduction

of these distributed defenses cannot be assigned to human interventions and require the
use of formal methodologies, such as those derived from MaxSMT problems, to guarantee
that the assignment and filtering policies are optimal [7]. However, to establish an effective
defense in such architectures, it is necessary to analyze the various types of filtering
available. The fundamental differentiation, which will be examined further below, is
related to how communications are monitored: the difference between firewalls that do not
store the results of past communications (stateless) and those that, instead, continuously
monitor the status of communications (stateful) [4].

1.1.2 Difference between stateless and stateful firewalls

The most significant difference defined in the last section involves how firewalls maintain
a decision-making context.

Stateless Packet Filtering (without State) represents the old way of doing things. Each
packet is evaluated and filtered as an individual event, and based solely upon the packet’s
headers (for example; IP addresses, Ports), the decision will be made (allow/deny) against
a predefined static list of rules. Although this provides low latency and minimal processing
power, the inability to associate packets together renders it powerless to sophisticated
attacks and difficult to configure for protocols that have return flow requirements [14].

In order to address the above mentioned shortcomings, the idea of "State" in Connection
Monitoring was established. This provided the basis for a Firewall that is Stateful (based
on State). The Stateful Firewalls actively monitor the state of current connections to
the network. The heart of the architecture is the State Table, a cache area used by the
Firewall to store information regarding each current valid session (for example; IPs, ports,
sequence number).

Upon receipt of a packet attempting to establish a new connection (state NEW), the
packet will be checked against the Policy Rules. If the connection is allowed, an entry
will be placed in the State Table. Upon receipt of subsequent packets belonging to that
session (states ESTABLISHED or RELATED) they will be compared to the State Table, and if
found, will be allowed to pass through quickly without having to go through the majority
of the Rule Analysis [14].

The greatest benefit of the Stateful Approach lies in the ability to provide a more
granular level of security and the capability to make informed decisions, and therefore
detect abnormal or anomalous packets or attack attempts (such as Session Hijacking), that
would be unable to be identified by Stateless Filters. Additionally, the Stateful Approach
is able to reduce the computational overhead associated with managing return traffic.

However, the greatest drawback of the Stateful Approach is the increased resource
utilization, particularly the Memory required to maintain the State Tables, which can act
as a Bottleneck or as a target for Denial-of-Service (DoS) type attacks intended to flood
the State Tables.

Below is a summary of the Key Differences between the Two Approaches presented in
the form of a Comparative Table.



Stateful firewalls

Characteristic Stateless Firewall Stateful Firewall

Filtering Logic Analyzes each packet individ- | Analyzes packets in the con-
ually text of a session

Context No context from previous con- | Maintains a “state table” of
nections active connections

Decision Based on static rules (e.g., IP, | Based on rules and the current
port) connection state

Rule Complexity Simple but rigid, potentially | More sophisticated, reduces
verbose the number of explicit rules

Overhead Low Higher (memory for state ta-

ble, CPU for state manage-
ment)

Security Limited, vulnerable to attacks | High, detects out-of-context
that exploit the state (e.g., | packets and blocks specific
spoofing, session hijacking) state attacks

Ideal Applications | Low-traffic environments, sim- | Complex environments, trans-
ple requirements, layer 3/4 | actional applications, granular
DoS mitigation session control

Table 1.1: Comparison between stateless firewalls and stateful firewalls

1.1.3 Reasons for using stateful firewalls in modern architectures

The use of stateful firewalls based on their state in today’s network architecture is driven
by the highly demanding technical requirements that do not allow stateless filters to be
met. These have primarily been caused by an increasingly strong demand for greater
control and reliability and the ability to handle complex protocols within distributed
environments [14].

Its most important benefit is in providing more detailed and secure traffic management.
Stateful firewalls can develop a state table and therefore are able to understand packets as
part of a logical communications session, rather than just as separate packets. Thus, they
are able to make "informed decisions" (informed decisions), which results in a substantially
higher level of security as the correlation of packets enables them to recognize and counter
advanced attacks that rely on the manipulation of state, e.g. session hijacking, spoofing,
or transmitting anomalous packets (e.g., INVALID or out-of-context), that would otherwise
go unrecognized by a stateless filter [4].

This logic is critical for managing complex protocols (e.g., TCP, UDP, etc.), and in a
broader sense, bidirectional traffic flows. For connection-oriented protocols (e.g., TCP), a
stateful firewall needs to be able to identify the initial phase of a communications session
(i.e., NEW), and then track the response packets (ESTABLISHED or RELATED), which requires
a state-based system. In this way, the firewall can quickly permit the passage of return
traffic (ESTABLISHED/RELATED) by performing a direct lookup against the entry in the
state table, rather than having to perform a full analysis of all of the Filtering Policy
rules for each packet after the first.

Stateful firewalls offer additional benefits related to resource efficiency and optimization,
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1.2 — Architecture and operating principles

both of which are essential elements in dynamic and distributed environments [7]. Since a
stateful firewall will permit the passage of return traffic (ESTABLISHED/RELATED) using a
simple and fast lookup in the state table, it does not have to perform the complete and
computationally intensive analysis of the entire Filtering Policy for most of the packets
of a session. Additionally, stateful firewalls will improve the throughput of the firewall,
and will greatly simplify policy definition; it is no longer required to write complex and
numerous static rules to describe the flow of return traffic, which reduces the attack
surface that arises from misconfiguration [3].

1.2 Architecture and operating principles

In establishing the limitations of the stateless method in the preceding sections, as well as
the technological factors leading to the selection of a state-based screening process, we can
now evaluate the technical and operational characteristics enabling stateful firewalls to
function. The primary objective in evaluating how a stateful firewall technically provides
for both context management and session memory is to break down the system into its
basic logical elements.

The purpose of this section is to evaluate the operational model of a stateful firewall
(Section 1.2.1), which defines the logical path followed by a packet. Additionally, it
will examine the architectural element: state table management, with particular
focus on the creation, update, and removal of connections (Section 1.2.2). Next, the
section will discuss how this model evaluates both inbound and outbound traffic flows
(Section 1.2.3). Finally, the section will establish the primary components making up
the structure (Section 1.2.4) of the stateful firewall’s architecture, including the packet
filter, the connection tracker, and the policy engine [14].

1.2.1 General model of a stateful firewall

The operating model of a stateful firewall can be explained by using a logical design
that views network traffic as a series of communication flows rather than individual,
independent events. With this view of traffic, static filtering limitations are overcome
and a dual decision-making process is implemented in order to differentiate how the first
packets of a connection are processed versus subsequent packets within connections that
have already been established.

A basic logical architecture (block diagram) is composed of the interaction between
two major components: the Filtering Policy (static access rules) and the State Table (also
referred to as a connection table), a dynamic component used as a memory for the number
of current connections. The interaction between these two components determines the
path taken by a packet.

A generic description of the normal operational procedure for the firewall is given
below:

1.Packet Arrival and State Table Search: When a packet arrives at an interface of the
firewall, the firewall performs a search of the State Table in order to determine whether
the packet has a relationship to any of the currently monitored connections. There are
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Figure 1.1: Flowchart of the stateful operation model.

two different operational paths for this search: the slow path and the fast path. These
terms are commonly used in literature.

2.Slow Path (Creation and Management of New Connections): If the packet being
searched is not found in the State Table, it is considered to be NEW. The packet is then
sent to the main analysis path or the slow path. Within this path, the packet is examined
in detail relative to the Filtering Policy (all applicable security policies). As a result, the
engine must examine the packet against many rules. Each examination is computationally
intensive because the engine must compare the packet against each of the applicable rules.
If there is a rule contained in the Policy that allows the initiation of a session (ALLOW), the
Connection Tracker (State Inspection Engine) generates a new entry into the State Table
with information about the session (commonly includes the five-tuple and its reverse) and
sets the session status to INITIALIZED. The packet is then passed to the next hop. If
none of the rules allow the establishment of the connection, the packet is dropped (DROP
or REJECT) and no record of the session is maintained.

3.Fast Path (Management of Ezisting Sessions): If the incoming packet finds a match
in the State Table (i.e., it is part of an ESTABLISHED or RELATED session), it is routed to the
fast path. For this optimal path, the system bypasses the complete and resource-intensive
analysis of all applicable rules in the Filtering Policy. The system performs only limited
validation (e.g., validates the sequence numbers of the TCP segments to detect session
hijacking) and updates the metadata of the session in the State Table (e.g., resets the
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1.2 — Architecture and operating principles

timeout counters) before passing the packet to the next hop [14].

4.Invalid Packet Management: If a packet does not correspond to an existing connection
and cannot be determined to be a valid packet to initiate a new session (e.g., an ACK
with no prior NEW session), it is classified as INVALID and normally discarded (DROP).

The use of the slow-path (a full and "resource-intensive" inspection for NEW packets) and
fast-path (a simple and "lightweight" lookup for ESTABLISHED /RELATED packets) represents
the fundamental mechanism used by stateful firewalls to achieve a balance between strict
and fine-grained security controls and high throughput for legitimate communications.

The detailed management of the state table, including the structure of the table, and
the mechanisms for updating entries in the table will be discussed in Section 1.2.2.

1.2.2 State table management (connections and sessions)

The state table is the dynamic high-performance data structure responsible for enabling
the efficiency of the fast path of a stateful firewall; its purpose is to act as a memory of
context for all active communication sessions going through the firewall. The state table
allows for informed decision-making regarding filtering, beyond simple packet-by-packet
analysis.

The state table is populated and managed by a critical process that manages the
lifecycle of the entries within the table, from creation to deletion. Each entry within the
table contains a minimum amount of information required to uniquely identify an ongoing
session. While there is no strict definition of what should be contained within an entry,
generally the following elements are included:

o The five-tuple (Source IP Address, Source Port Number, Destination IP Address,
Destination Port Number, L4 Protocol), used as the unique key to identify the flow;

o The reverse five-tuple (Destination IP Address, Destination Port Number, Source
IP Address, Source Port Number, L4 Protocol), calculated and stored before the
session is closed, to allow for rapid lookup of return traffic.

o The current protocol state, either at the application layer or the transport layer (i.e.,
the current state of a TCP three-way handshake, or states like ESTABLISHED,
RELATED);

e An inactivity timer, which defines how long a session can remain idle, i.e., without
receiving or sending data, until it is terminated due to lack of activity.

In addition to the above elements, other metadata could also be included within an
entry (such as packet and byte counts, TCP sequence number validation flag).
Each entry in the state table has a lifecycle managed by the Connection Tracker:

Creation (Create): When a packet is classified as NEW (as defined in Section 1.2.1)
and successfully inspected against the Filtering Policy in the slow path, a new entry
is created. By creating an entry for each new session, the stateful firewall limits the
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Stateful firewalls

allocation of state resources to legitimate and authorized sessions, while preventing De-
nial of Service (DoS) attacks that attempt to flood the state table with unauthorized traffic.

Update (Update/Read): Most of the time spent managing the entries in the state
table is associated with updating existing sessions. When a session is detected by the
fast path, the firewall rapidly looks up the entry corresponding to the arriving packet,
determines whether the received packet matches the record of the session in the table,
and if so, updates the entry. The primary operation performed during an update is the
reset of the inactivity timer, effectively extending the lifetime of the session. Other meta-
data, such as internal protocol state (for example, TCP window sizes) can also be updated.

Deletion (Delete): Deletions of entries in the state table are critical to maintain the
integrity and availability of the table. There are two ways in which deletions occur:

« Explicit Closure: The Connection Tracker deletes the entry after the firewall
detects packets indicating an orderly shutdown of the session (for example, FIN/RST
flags for TCP).

e Timeout: This is an implicit garbage collection mechanism. Entries are deleted
when the session does not receive or send data for longer than the time specified by
the inactivity timer. This helps prevent orphaned sessions (those that have been
interrupted or whose state has become invalid) and their state to accumulate in
the table, thus preserving the ability to manage new connections and optimizing
memory utilization.

The performance and reliability of a stateful firewall depends on the robustness and
optimization of the state table management mechanisms described. The protocol-specific
timeout parameter analysis and optimization strategies for state table management will
be examined in detail in Sections 1.4.2 and 1.4.4.

1.2.3 Inbound-Outbound traffic analysis

With a state table (explained in Section 1.2.2) introduced into the system, all aspects
of traffic analysis will have changed with respect to a stateless filter. Therefore, there
is a significant difference between incoming (ingoing) and outgoing (egress) traffic. In a
stateless firewalls, “ingoing” and “egress” are merely topological concepts which require a
pair of symmetric rules: to enable a TCP session from inside (the trust zone) to outside
(the un-trust zone), an administrator has to define both an outgoing rule to permit the
initiation of the session and an identical mirror rule on the ingoing side to permit the
return traffic.

Stateful design, on the other hand, uses session initialization as the basis for defining
“ingoing” and “egress.” As a result, the firewall analyzes traffic in an asymmetrical manner
based on the direction of the first packet (NEW). The majority of authorization is provided
for the creation of new sessions for egress traffic (from a trusted zone toward an untrusted
zone.) The Filtering Policy (slow path) is therefore written mostly to verify the outgoing
NEW traffic. After a session has been verified and entered into the state table, the return
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traffic (ingress traffic) is automatically categorized as either ESTABLISHED or RELATED.
Therefore, its return traffic is not analyzed against the static Filtering Policy, rather the
return traffic is routed through the fast path via the state table.

This method provides asymmetric rules and represents one of the primary operational
advantages: the administrator only defines the intent (e.g., “allow HTTP from inside to
outside”) and the firewall dynamically controls the return flow. This greatly simplifies
policy and dramatically lowers the attack surface by removing the need for “permissive”
static rules to allow the return flow of traffic; which can easily be used by malicious
packets to exploit.

In addition to optimizing legitimate traffic, this model is also critical for management
of unknown or anomalous packets. An invalid packet is a packet which appears to
have valid headers (for example, an ACK or FIN flag), yet does not appear to be part of any
NEW connection being initiated nor does it appear to be part of an existing ESTABLISHED
session contained in the state table. A stateless firewall may incorrectly forward an
invalid packet because it evaluates only the 5-tuple and there exists a generic permissive
rule for return traffic. A stateful firewall, however, recognizes the contextual conflict (a
“lost” ACK) and immediately discards the packet, thereby preventing spoofing attacks or
advanced network scanning.

Finally, the stateful analysis mechanism has to address the issue of half-open con-
nections. A half-open connection arises when a session is terminated abnormally (for
example, an endpoint fails without sending FIN or RST packets) and the terminating
endpoint (or the firewall itself) receives no indication of the termination. The allocation
for the connection in the state table will then remain allocated (“orphaned”) and will
consume memory resources unnecessarily. To prevent this from occurring, the mechanism
for management of inbound/outbound traffic utilizes inactivity timeouts (introduced in
Section 1.2.2). If no packet is detected (either inbound or outbound) for a predetermined
time (protocol specific), the session is defined as “stale” and the entry in the state table is
forcibly deleted, thus maintaining the integrity and availability of the state table.

1.2.4 Main components

The previously discussed packet flow and operational principles of the stateful firewall
(Sections 1.2.1, 1.2.2, 1.2.3) have been implemented through the interactions of the three
primary logical architectural elements of the stateful firewall: the Packet Filter, the
Connection Tracker and the Policy Engine [14].

The Packet Filter is the core element of the firewall and serves as the executive
engine of the firewall responsible for making the final decisions regarding the direction
of forwarded packets. For stateful firewalls, the Packet Filter has two roles. First, it
controls the forwarding of packets corresponding to the fast path (i.e., established or
related sessions) and acts upon the rapid decision made in the state table during the
packet filter’s search of the state table. Second, it implements the policy decisions created
by the Policy Engine for the slow path packets (i.e., NEW sessions), and executes the final
actions taken by the Packet Filter (for example, accept, drop, reject). Thus, it can be
considered as the “executive arm” of the entire architecture.

The Connection Tracker, or the State Inspection Engine, provides the memory
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for the firewall and adds context to the firewall. This module is responsible for the
complete management of the state table (see Section 1.2.2). One of its key tasks is to
capture and inspect every incoming packet, and perform the first search of the state
table for each captured packet. Depending on the results of the initial search, the
Connection Tracker categorizes the captured packet into one of the four possible states:
NEW, ESTABLISHED, RELATED, or INVALID. If the captured packet corresponds to an existing
session (established/related), the Connection Tracker allows the packet to travel via
the fast path, and updates the session timer. When the captured packet is NEW, the
Connection Tracker sends the packet to the Policy Engine for a deeper inspection. If the
packet is INVALID, the Connection Tracker discards it. The Connection Tracker is also
responsible for creating new entries and deleting expired ones (through either timeouts or
explicit FIN/RST closures).

Lastly, the Policy Engine is the decision-making “brain” for the slow path. This
module is used solely when the Connection Tracker forwards a NEW packet to the Policy
Engine. The only responsibility of the Policy Engine is to enforce the static security
policies (i.e., filtering policy) configured by the administrator. Therefore, the Policy
Engine analyzes the NEW packet against the collection of security policies, and makes the
determination of whether the beginning of the new session should be allowed (action
ALLOW) or rejected (actions DROP or REJECT). Upon completion of the evaluation, the
Policy Engine notifies the Connection Tracker of its decision. If the decision is to allow,
the Connection Tracker proceeds with the creation of an entry in the state table.

Separating these responsibilities is critical; the Connection Tracker manages the
state and categorizes packets, the Policy Engine enforces rules on NEW connections, and
the Packet Filter physically makes the forward or block. The specific rule structures
enforced by the Policy Engine will be examined in detail in Section 1.3.

1.3 Filtering policies and rules

Sections before described the operation design of a Stateful Firewall; identified the
Policy Engine as the logical component to check each connection (via the Slow Path)
from the start of each new connection (i.e., NEW packets) previously defined in Sections
before.

This section defines the Policy Engine’s main structural components: the Filtering
Policy (Filtering Policy).

The Filtering Policy is the formal representation of all static rules defined by an
administrator to express the desired level of security for the network. The main role
of a Filtering Policy in a Stateful Architecture is to determine whether the start of a
new session (a.k.a. the NEW packet) is allowed or disallowed. A Filtering Policy serves
as the rulebook for the Policy Engine when making the most difficult decisions (i.e.,
new connections). All other traffic (i.e., ESTABLISHED/RELATED) is managed by the State
Table and thus processed through the Fast Path.

In order to be able to completely describe how the Policy Engine evaluates the
NEW packet against the Filtering Policy, the next step would be to break down the
Filtering Policy into its basic elements. Therefore, Section 1.3.1 will thoroughly explain

14



1.3 — Filtering policies and rules

the syntax of an individual rule in terms of its basic fields (e.g., source, destination,
protocol, etc.), followed by an explanation of the logical matching process and resulting
actions (Section 1.3.2). Finally, Section 1.3.3 will provide examples of common rules for
some important protocols, including TCP and UDP.

1.3.1 Structure of filtering rules

The Filtering Policy (Section 1.3’s Filtering Policy) consists of a material ordered collection
of filtering rules (Filtering Rules) each representing an atomic command that the Policy
Engine will use to check whether a NEW packet should allow the beginning of a new session.

From a structural perspective, a rule is made up of two basic logical components: a
set of conditions (matchers) and a single action (target). The action will be performed
only when a packet meets all of the conditions stated within a rule.

Fields (Matchers) that represent the conditionally based on the packet headers at the
L3 and L4 layers are generally what the primary fields are that will be used to define
the conditions for a rule. Fields that are included with each implementation may vary;
however, the general fields include:

o Source: The source IP address or subnet (i.e.: 192.168.1.0/24) from which the
packet originated.

e Destination: The IP address or subnet to which the packet is being sent.

o Protocol: The transport protocol being used (TCP, UDP, ICMP etc.).

o Port(s): The source and destination ports (port 80 for HTTP) are necessary to
identify the specific service.

Rules can also include additional conditional-based fields, including the input/output
interface, TCP flags (SYN), and in the case of stateful firewalls, the connection state (the
connection state is primarily managed by the Connection Tracker as described in 1.2.4).

Another key feature that defines how the policy is structured is the order in which
the Policy Engine evaluates the rules. The rules are not a set, they are a sequence (list
or chain). When evaluating packets, the Policy Engine compares the packet against the
rules in a pre-defined sequential order (based upon the rule’s priority, often represented
by a numerical index). The Policy Engine applies a first-match principle: once a packet
satisfies all of the conditions of a rule, the action associated with that rule is executed
(ACCEPT or DROP), and in most configurations, the processing of the chain for that packet
terminates immediately.

The ability to implement sophisticated concepts like policy inheritance and priority
exists because of the sequential nature of the policy structure. Often, rules are grouped
into separate "chains" (Chains) (for example, chains that filter INPUT, FORWARD or OUTPUT
traffic). A rule in a primary chain can have as its action to "jump" (Jump) to a secondary,
user created chain. The Packet is then evaluated against the rules of the new chain. If
none of the rules in the secondary chain produce a final decision, the packet "returns' to
the next rule in the original chain. This jump and return capability provides a hierarchical
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approach to developing complex and modular policies, where one chain inherits from or is
subordinate to another.

1.3.2 Packet matching and decision

The logic used to decide what to do with a packet is called Packet Matching Logic — a
function executed by the Policy Engine (Section 1.2.4) to select the appropriate response
to a packet.

Packet Matching Logic is a deep packet inspection process that is utilized almost
entirely on packets that start a new connection (NEW), therefore, all other types of packets
will follow the faster path (Section 1.2.3).

The matching process starts when the Connection Tracker passes a NEW packet to the
Policy Engine. The Policy Engine then evaluates the header fields (specifically, the 5-tuple
plus some Layer 2 and/or Layer 3 information including the source interface) of each
incoming packet in turn against the Filtering Policy in the order specified by the priority
order of the rules (Section 1.3.1). The process continues until either of the following occur:

o First-Match: The incoming packet matches all the conditions (or matchers) of a
particular rule — at that point, the evaluation process ends and the Policy Fngine
will apply the action (target) defined in the matched rule.

o No-Match: After evaluating every condition (or matcher) in the policy, there was
no single condition that satisfied the requirements — after passing through the
entire sequence of rules, the packet reaches the last element in the sequence —
the default action associated with the firewall is applied (for example, DROP in a
whitelist configuration).

At the completion of the matching process, the Policy Engine can perform one of
three primary actions (targets):

o ACCEPT (or ALLOW): This is the final action — it permits the packet. This instructs
the Packet Filter (the executive module) to pass the packet to its destination.

o DROP (or DENY): This is a final action — it silently discards the packet. The firewall
deletes the packet from consideration without notifying the sender of the packet
deletion. This method of handling packets is generally more secure than others
because it does not provide an attacker with evidence of the firewall’s presence or
configuration during a scan (security through obscurity).

e REJECT: This is a final action similar to DROP; however, the firewall generates an error
message to the sender (usually an ICMP Destination Unreachable — Port Unreachable
message). Although it is more polite and better suited for network troubleshooting,
this type of action violates the principle of security through obscurity because it
notifies an attacker that the host is active and being protected by a firewall.

It is crucial to understand the impact that each action has on both the state of the
firewall and future decisions. These decisions, made during the processing of a NEW packet,
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represent the core of the stateful mechanism. The DROP and REJECT actions have no
stateful implications — they simply end the examination of the current packet with no
residual effects on the firewall’s memory. On the other hand, the ACCEPT action has a
significant residual effect — when the Policy Engine accepts a NEW packet, it does not only
permit passage of the packet — it also tells the Connection Tracker to add a new record to
the state table. That single decision regarding the slow path influences all future decisions
related to that flow — by adding the state entry to the table, the firewall effectively
grants authorization for return traffic (ESTABLISHED and RELATED) to utilize the fast path,
thereby bypassing the Policy Engine and providing efficiency and asymmetry to the rules
as previously discussed (Section 1.2.3).

1.3.3 Practical examples of rules

The conceptual elements of the stateful and decision making models (as described in
sections 1.3.1 and 1.3.2) can be implemented as tangible firewall configurations which
are dependent upon the transport protocol (Level 4, L4) being filtered. In addition to
demonstrating the conceptual model’s operational viability, the stateful model’s viability
in practice is demonstrated through its application to TCP, UDP, and ICMP.

For TCP, a connection oriented protocol, the stateful model excels in monitoring the
entire session lifetime, where the stateful firewall has the ability to track the entire session
lifetime for each user. As discussed in section 1.3.2; a typical filtering policy includes rules
that do not include all phases of the handshake, but instead focus on a permissive rule for
the slowpath (i.e., ACCEPT proto=TCP dest-port=80 state=NEW). If a SYN packet (the
only packet that matches state=NEW) is accepted under this rule, the Policy Engine allows
the ACCEPT action and, as a side effect (section 1.3.2), the Connection Tracker inserts a
new entry in the state table. All subsequent packets (including the SYN-ACK response and
the final ACK of the handshake), along with the entire bi-directional dataflow are classified
as either ESTABLISHED or RELATED and therefore processed via the fast path.

For UDP, a connection-less protocol, the stateful model must simulate the concept of
a state since there is no handshake to create a state. Therefore, any UDP packet that
matches an ACCEPT rule (i.e., ALLOW proto=UDP dest-port=53) is classified as NEW and
causes an entry to be created in the state table. The firewall expects a response packet
(classified as RELATED) that reverses the 5-tuple (i.e., from a DNS server on port 53). The
response packet will be allowed in via the fast path. Due to the lack of explicit termination
packets, the removal of these state entries is dependent solely on inactivity timeouts.

Finally, the treatment of ICMP also illustrates the power of RELATED tracking. An
ICMP Echo Request (ping) packet that matches an ACCEPT rule will cause the creation of
a temporary state. The ICMP Echo Reply response packet, although technically a new
incoming packet, is properly identified by the Connection Tracker as RELATED to the
original ping and allowed via the fast path. Another example is an ICMP Destination
Unreachable (Port Unreachable) packet that is transmitted by a router in response to
a failed UDP attempt; a stateless filter would drop it, while a stateful firewall classifies it
as RELATED to the UDP session (that is still present in the state table) and transmits it
to the sender.

To demonstrate how these concepts are converted into actual configurations, Listing 1.1
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presents an example of a ruleset that uses a common syntax (similar to iptables) and
implements a whitelisting policy (Default DROP):

Listing 1.1: Example of stateful ruleset (iptables syntax)

# 1. Enable "Fast Path" for all already known session traffic.
# This is the most important rule for performance.
-A FORWARD -m conntrack --ctstate ESTABLISHED,RELATED -j ACCEPT

# 2. Enable "Slow Path" (NEW) for specific TCP sessions (e.g., Web)
—-A FORWARD -p tcp --dport 80 -m conntrack --ctstate NEW -j ACCEPT
—-A FORWARD -p tcp —-dport 443 -m conntrack --ctstate NEW -j ACCEPT

# 3. Enable "Slow Path" (NEW) for specific UDP sessions (e.g., DNS)
—-A FORWARD -p udp --dport 53 -m conntrack --ctstate NEW -j ACCEPT

# 4. Enable "Slow Path" (NEW) for ICMP (e.g., Ping)
—-A FORWARD -p icmp --icmp-type echo-request -m conntrack --ctstate NEW -j ACCEPT

# 5. Manage anomalous packets (discarded for security)
—-A FORWARD -m conntrack --ctstate INVALID -j DROP

# 6. Default Action (Whitelisting): everything that is not
# ESTABLISHED, RELATED or NEW (permitted) is discarded.
-P FORWARD DROP

As highlighted in Listing 1.1, the Filtering Policy focuses almost exclusively on defining
which NEW packets are authorized to start a session. The first rule (ESTABLISHED,RELATED)
then delegates the management of almost all traffic (the responses and data flows) to the
state table, implementing the efficiency of the fast path.

1.4 State management and connection tracking

This section is an analysis of the mechanisms used by firewalls to track and maintain
sessions (Section 1.2.4), and therefore how it manages its “memory” of sessions, which
will allow us to assess whether this mechanism works well or not.

In particular, we will investigate how the Connection Tracker maintains the state
table, but not only how new records are created (Section 1.4.1); we will focus on the
lifecycle of the sessions and the role of the timeout (inactivity timer), that can be different
depending on the protocols used (TCP/UDP), so that the orphaned connections can be
automatically deleted (Section 1.4.2);

We will finally highlight the differences in operation between these firewalls and those
using a stateless filter (Section 1.4.3), and the performance issues they entail; finally, we
will also highlight the internal problems of this mechanism, the risk of saturating the state
table (it represents a vector of denial-of-service attacks) and some possible optimizations
and techniques of garbage collection (Section 1.4.4).
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1.4.1 Connection tracking and state tables

| CLOSED | NEW Packet

Unexpected Packet
7y [ (TcPsYN) | syN SENT | L P
r| — I
(Client-side)
NEW Packet : Handshake Completion
(TCP SYN Handshake Completion {SYNfACK, ACK)
SYN RECV (SYN/ACK, ACK)
(Server-side) l L\ A 4 Secondary
FINRST ( ESTABL'SHED Connection Requesﬁ
2 "| RELATED
Orphaned Packet Fast Path Processing: | | Associated Flow
AGHKTIN Validated & Forwarded (Fast Path)
FIN_WAIT 1 5/
FINWAIT_2 o
Y
Timeout > DROP
TIME_WAIT > INVALID

Figure 1.2: TCP Transition State Diagram

Connection tracking is the core process that enables a stateful firewall to manage its
state (discussed in Section 1.4), and is much more than simply entering an entry in the
state table (covered in Section 1.2.2). It is essentially the semantic engine behind the
scene that tracks the life cycle of sessions (traffic flows) as a real finite state machine for
each one [14], and that allows the firewall to distinguish between the various states of a
connection, and categorize every packet into specific operational categories.

The ultimate objective of connection tracking is to determine the relationship
between packets and connections. A packet is more than just a 5-tuple datagram; it
is an event occurring in a logical sequence. The Connection Tracker classifies packets into
four fundamental states:

e NEW: Identifies packets trying to create a new connection. There is no related entry
in the state table for NEW packets. NEW packets are generally the case of TCP SYN
packets, or the first packet in a UDP flow. All NEW packets are processed by the
slow path and are evaluated by the Policy Engine (seen in 1.2.1 and 1.3.2). If the
Policy permits the packet, the Connection Tracker creates and manages the state
entry, setting the first state.

o ESTABLISHED: Identifies packets that are part of an existing and being tracked
connection in the state table, in either direction. Once the connection is confirmed
(for example, once the TCP three-way handshake is complete), packets enter the
ESTABLISHED state. ESTABLISHED packets are processed entirely on the fast path:
they undergo validation (for example, checks of consistency in TCP sequence
numbers) and are rapidly forwarded without evaluation by the Filtering Policy.
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o RELATED: Identifies packets that do not belong to the original connection (the 5-tuple
of the packets differs), but are logically and algorithmically linked to it. This is
an important state for complex protocols. Classic cases of RELATED packets are an
ICMP Destination Unreachable packet responding to a blocked UDP packet, or the
secondary data connection of a protocol like FTP, which is “related” to the primary
control connection. Like ESTABLISHED packets, RELATED packets are also processed
on the fast path.

o INVALID: Identifies packets that belong to none of the above states. Generally
speaking, these are packets that could never begin a new session (for example,
orphaned ACK or FIN packets with no existing connection) or those whose consistency
checks have failed (for example, obviously incorrect TCP sequence numbers). These
packets are usually dropped (DROP) for security reasons, because they can indicate
scans or attacks.

1.4.2 Timeout and inactive session management

The overall design element that will ensure the stability and resilience of the state table
(which was introduced in Section 1.2.2) is the implementation of inactivity timers (also
referred to as timeouts). Termination of sessions through explicit methods (such as TCP
FIN/RST) is used to end sessions properly, while timeouts are used as a garbage collector
method to remove inactive (and often called “orphaned”) sessions automatically; thus
helping prevent state table overflow, either from abnormal interruption of connections
(i.e., half-open) or through connectionless protocols which do not support a defined close
message.

There should be no reliance upon a single timeout value when developing a timeout
management plan, as it is better to use protocol-defined timeout parameters, along
with a separate timeout for each connection state for TCP (identified using the Connection
Tracker in Section 1.4.1). Due to the complexity of the state machine maintained by the
Connection Tracker, the timeouts can be very granular:

o A SYN_SENT packet has a very short timer (for example, 30-60 seconds) because this
is a key defense mechanism: if the handshake is not completed (because of a SYN
flood attack or a host that is unreachable) the “tentative” state entry will expire
quickly so as to prevent the table from becoming saturated by malicious half-open
connections.

o An ESTABLISHED session has a very long timer (for example, many hours or days)
since legitimate connections (such as SSH sessions or remote terminals) could
continue to exist without activity from the user for long periods of time.

o Closing states (FIN_WAIT, TIME_WAIT) have unique and short timers as well, so as
to allow a session to be closed properly after it is terminated, yet not before any
delayed packets have been transmitted.

UDP, however, behaves differently. Since UDP is connectionless, the firewall simulates
a state for UDP. When a UDP NEW packet creates a new state entry, the firewall waits for
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a response. As a result, the initial timer for a UDP NEW session is usually very aggressive
(typically 30 seconds or less). If a related packet (RESPONSE) is received, the UDP state
entry is confirmed (some times considered as ESTABLISHED) and the timer is extended
(for example, 120-180 seconds) and reset with every subsequent packet received. If there
is no response, the entry is timed-out rapidly [14].

Finally, ICMP (discussed in Section 1.3.3) has its own timers that are relatively short
to identify relationships between requests and responses (for example, Echo Request/Echo
Reply).

The performance and security implications of this mechanism represent a critical
trade-off. On the one hand (security), aggressive timers (particularly for SYN_SENT and
UDP_NEW) are a fundamental defensive mechanism against resource exhaustion attacks
which are designed to fill the state table (the subject of Section 1.4.4). On the other hand
(performance and reliability), evaluating millions of active timers repeatedly represents a
significant CPU overhead (non-negligible) and may disrupt legitimate but temporarily
inactive connections. Therefore, optimal configuration of timeout parameters are necessary
to achieve an acceptable level of both security and usability for a service.

Typical timeout values for some of the most common states and protocols are summa-
rized in Table 1.2.

Protocol State | Protocol Timeout (s) | Motivation
TCP_SYN_SENT TCP 60 | SYN Flood mitigation,
rapid closure of failed at-
tempts
TCP_ESTABLISHED | TCP 432000 (5 days) | Support for long-lived
sessions (e.g., SSH)
TCP_FIN_WAIT TCP 120 | Waiting for orderly clo-
sure (final ACK)
UDP_NEW UDP 30 | Rapid removal of scans
or one-shot UDP traffic
UDP_ESTABLISHED | UDP 180 | State maintenance for
active UDP flows (e.g.,
streaming)
ICMP_REQUEST ICMP 30 | Short wait for a response
(e.g., ping)

Table 1.2: Timeout connection examples for TCP

1.4.3 Differences from stateless firewalls

While prior sections covered the conceptual differentiation between stateless and stateful
filtering (Section 1.1.2), this is where those distinctions become evident after the discussion
of state table management (Section 1.4.1) and timeouts (Section 1.4.2) is completed. The
differences between the two types of firewalls go beyond functional differences; they are
also in how decisions are made about what to do with each packet and the associated
performance and resource consumption.
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Stateless firewalls operate in a totally “atomic” fashion. Each packet is treated
independently and is compared to the complete and static Filtering Policy. Whether a
packet is ACCEPTed or DROPped is based upon the content of the packet itself. Stateful
firewalls, however, make decisions based upon context and history. They utilize a
two-speed logic (as detailed in Section 1.2.1) to evaluate packets: the first packet in a
given session (NEW) is analyzed in detail (slow path) and all other packets in the same
session (ESTABLISHED) are quickly examined (high speed) via a state table look up (O(1)).

In addition to the decision making process, this architecture allows firewalls to keep
track of packets over time. Stateless filters have no “memory.” Therefore, when an
incoming ACK packet arrives, there is no way to know if the ACK packet is actually the
reply to a SYN packet sent several minutes ago or an invalid packet as part of some
type of malicious scan. Stateful firewalls, however, can correlate packets semantically.
They identify response traffic (ESTABLISHED) and secondary flows (RELATED, i.e., ICMP
or FTP data) since they have previously identified the NEW session from which those flows
originated.

These differences in operation have a direct relationship to throughput and resource
utilization. Ironically, even though a stateful firewall performs a more complicated
evaluation, it will typically have higher throughput than a stateless filter. Stateless filters
reevaluate the entire ruleset (which may consist of thousands of rules) for every single
packet in a session. Stateful firewalls pay this computational (CPU) price only one time
per session (slow path) and the remaining 99% of the packets in a session are processed
very rapidly (fast path).

However, there is a resource price for this increased throughput: the memory needed
to maintain the state table. The state table is a significant bottleneck since it needs
to be large enough to store all current sessions and fast enough so as not to diminish
the performance of the system. However, the state table itself is vulnerable to resource
exhaustion attacks, as explained in the following section (Section 1.4.4).

1.4.4 Problems and optimizations in state management

Although the management of the state table provides the functionality which makes
stateful firewalls so superior (as discussed in Section 1.4.3), it also presents an inherent
weakness: table saturation. Table saturation is the major performance limiting factor
and a key target for attackers of stateful devices. Although tables have limited memory
(and therefore represent finite-sized data structures), they are vulnerable to Denial of
Service (DoS) attacks intended to exhaust their capacity (i.e., resource exhaustion). By
sending a large number of NEW packets with spoofed source IP addresses, an attacker can
mount a DoS attack (e.g., SYN flood). Because the firewall must create a table entry
for each of the NEW packets it receives (in accordance with Section 1.4.1), the number of
entries in the table increases rapidly until it is full. At that point, the firewall cannot
add new entries to the table and thus cannot allow any legitimate new connections to be
initiated.

In order to reduce this basic threat, there are various mechanisms that have been
designed to optimize and provide garbage collection for the state table. The first line of
defense for the garbage collection (cleanup) processes were explicitly closed connections
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(FIN/RST) and inactivity timeouts (Section 1.4.2). The use of short (aggressive) timers,
particularly for the SYN_SENT and UDP_NEW states, is a direct countermeasures to prevent
saturation attacks; thereby ensuring that “tentative” or half-open entries are deleted
quickly when the connection has completed. While garbage collection is effective, efficient
management of millions of connections requires that additional optimizations be applied
to the data structure.

The primary optimization technique is the use of hashing. In addition to being
mentioned in Section 1.2.2; the state table is implemented as a hash table to ensure that
lookups of packets in the fast path (which are the majority of operations) occur in constant
time, O(1), and do not become a bottleneck for table access [14].

Aging is the process used to implement timeouts. The system must either periodically
scan the table to find and delete timed-out entries, or utilize other data structures (such
as timer wheels) to perform this function. However, there is a trade-off between the
frequency of scanning, and the impact of the CPU, and between the frequency of scanning,
and the latency of reclaiming memory.

Finally, in High Availability (HA) and distributed architectures, the necessity for
clustering arises. To ensure redundancy, the state of a connection managed by a
“primary” firewall must be duplicated to a “secondary” (or stand-by) firewall. This creates
a problem of synchronizing state between multiple nodes, which will be studied in detail
in Section 1.6.2.

1.5 Common implementations and technologies

In the preceding sections (Sections 1.1-1.4) the theoretical framework for Stateful Firewalls
has been established; specifically, the conceptual model, logical design and the operational
fundamentals that define how they function have been described. These descriptions were
based upon theoretical models of mechanisms commonly used in all Stateful Firewall
implementations including connection tracking and the management of the state table.

The next portion of this report focuses upon the practical application of the previously
stated abstract concepts. Specifically, it addresses how each of the theoretical constructs
and principles are implemented within specific state-of-the-art products and technologies.
An understanding of various product implementation approaches can assist in identifying
the inherent trade-offs in terms of performance, cost, flexibility and integration.

An overview of representative products of stateful firewalls (Section 1.5.1) will be
provided first. The overview will examine platforms that have set both industrial and open
source standards; for example, iptables/nftables (linux), pf (openbsd) and commercial
appliance vendors, i.e., Cisco [15]. Following the overview of well known implementations,
the focus will shift to the significant architectural differences between the two categories of
stateful firewall implementations (hardware) versus those that are exclusively based upon
software (Section 1.5.2). The performance benefits and disadvantages of general purpose
architectures versus those that are specialized will be addressed. In conclusion, the final
segment of this section will address the integration of these technologies in virtualized
and containerized environments (Section 1.5.3), a deployment environment in which, as
identified in Section 1.1.1, both performance and isolation characteristics present unique
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challenges in software defined infrastructure.

1.5.1 Examples of well-known stateful firewalls

The methods used for implementing connection tracking (Section 1.4.1) and time-outs
(Section 1.4.2) of firewall products exist in a broad variety of forms within both commercial
and open-source firewalls. Each of these implementations have similar goals (keeping track
of state), but each has very different design philosophies and architectures.

The majority of open-source implementations for maintaining a state-based firewall are
based upon the historical packet filtering mechanism of the Linux kernel called iptables.
However, unlike the packet filtering mechanism of iptables that maintains the state
of packets it is filtering, the ability of iptables to maintain state is a separate module
known as conntrack (connection tracker). conntrack is also a kernel-based subsystem
that intercepts packets before they reach iptables to look up the corresponding entry in
the state table, and marks the packets with one of five possible states (NEW, ESTABLISHED,
RELATED, INVALID). Packet filtering rules may then utilize these states to enable the
fast-path of traffic through the firewall. The modern replacement for iptables, nftables,
provides the same functionality of performing state-table lookups and marking packets
with state information; however, does so in a more cohesive manner and at greater speeds
than its predecessor [14].

As an alternative to the development of a separate module for maintaining state in
iptables, the developers of pf (packet filter) chose to integrate the ability to create state
into the native rule syntax of their firewall product. This approach is often referred to as
stateful inspection, and pf was developed as a replacement for the previous firewall product
for OpenBSD known as IPFilter. pf has received recognition for its clean, readable, and
powerful rule syntax (rule set), as well as its reliability. Therefore, rather than relying
on a separate module to create and manage the state associated with packets processed
through a firewall, in pf the process of creating the state of packets processed through
the firewall is an integral and inherent part of the native filtering rule syntax [14].

As opposed to the open-source firewall community, the commercial firewall community
is dominated by dedicated hardware appliance platforms. Firewalls such as Cisco ASA
(Adaptive Security Appliance) and Juniper SRX Series are examples of this type of
platform. Although the concepts of how these platforms operate are virtually identical to
those described above (i.e., the operation of processing the 5-tuple of packets, identifying
whether packets being processed are new, and providing a fast path to packets that have
been previously processed), the platforms’ architectures differ significantly from purely
software-based systems. Rather than utilizing general purpose CPU’s to perform state
table lookups, these platforms provide special purpose hardware (ASIC’s, NPUs, etc.) to
enhance the speed and capacity of the state table lookups. As a result of the existence of
this hardware, the platforms are able to support significantly higher numbers of sessions
(connections per second) and state tables (millions of entries).

Therefore, the differing design philosophies of the above-mentioned platforms produce
a number of different trade-off’s that are summarized below in Table 1.3. A primary
difference between the two types of platforms (i.e., the platforms operating on generic
hardware vs. the platforms operating on specialized hardware) produces a primary
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Implementation Platform State Mechanism | Approach

iptables/ nftables Linux Kernel conntrack | SW on  general-
module purpose OS

pf OpenBSD, FreeBSD Integrated in the fil-| SW  on  general-
ter purpose OS

Cisco ASA / Juniper SRX | Cisco IOS/ASA, Junos OS | Integrated and accel- | HW Appliance
erated (purpose-built)

Table 1.3: Comparison of most widely used stateful firewalls implementation

distinction between software and hardware architectures of firewalls. These distinctions
will be examined further in the next section.

1.5.2 Hardware vs. Software Architectures

A general-purpose software solution, based on the architecture described in Section 1.5.1,
involves using dedicated hardware-based firewalls (specialized appliances) versus completely
software-based (general-purpose) solutions, which will determine the fundamental trade-offs
in terms of performance, flexibility and cost.

Software architectures, whether they are implementing the stateful firewall logic (for
example, iptables/conntrack or pf) as software processes on commodity hardware
(COTS), essentially standard servers (x86 architecture) provide great flexibility. Software
functions can be easily modified, updated and deployed just like any other piece of
software. Additionally, initial costs associated with general-purpose software architectures
are typically lower because they do not require specialized hardware and therefore are less
dependent upon the proprietary hardware of a particular manufacturer.

However, general-purpose software architectures have significant performance limita-
tions. In addition to the fact that the entire state management process, including the
lookup in the state table for the fast path, compete for resources (for example, CPU cycles,
memory access, 1/O interrupts) with the general-purpose operating system and all other
processes, even though the fast path does not pass through the Policy Engine, the packet
is still required to be processed by the kernel’s network stack, which imposes an overhead
that will limit the maximum throughput and the number of connections per second that
can be managed by the general-purpose software architecture.

On the other hand, firewalls that are built into dedicated hardware appliances (for ex-
ample, Cisco ASA, Juniper SRX) are specifically designed for packet processing. Therefore,
their internal architecture will differ dramatically from that of a general-purpose server.
Like the general-purpose software architecture, the control plane (management, policy,
NEW session handling of the slow path) of a dedicated hardware appliance will operate on a
conventional CPU; however, the data plane (forwarding of ESTABLISHED packets on the
fast path) will be implemented directly in silicon. To enable the data plane to operate
at wire speed, these appliances utilize ASICs (Application-Specific Integrated Circuits)
and NPUs (Network Processing Units) to perform the most time-critical operations (for
example, state table lookup and packet forwarding).

The benefit of using a dedicated hardware appliance is that it provides a level of
performance (measured in Gbps of throughput and millions of concurrent connections)
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that is many orders of magnitude greater than what can be achieved by a general-purpose
software solution on commodity hardware. There is, however, a cost associated with using
dedicated hardware appliances. Lower flexibility (the features of the ASIC cannot be
changed) and higher purchase prices are two of the most obvious disadvantages. In addition,
users of dedicated hardware appliances will find themselves to be highly dependent upon
the vendor who manufactured the product (a condition known as vendor lock-in) [14].

Criterion Software Architecture | Hardware Architecture
(General-Purpose) (Purpose-Built)
Platform COTS Servers (e.g., x86) Specialized Hardware
(ASIC/NPU)
Examples iptables  (Linux), pf | Cisco ASA, Juniper SRX
(OpenBSD)

Performance | Limited by general-purpose | Wire speed fast path (ASIC ac-
CPU and kernel network | celerated)

stack
Flexibility High (easy software updates) | Low (functionality tied to
hardware)
Cost Low (non-proprietary hard- | High (proprietary hardware)
ware)
Use Case SMEs, Virtualized Environ- | Data Centers, Service
ments, Flexibility Providers, High Performance

Table 1.4: Comparison between Hardware and Software Architectures

1.5.3 Integration with virtualized and containerized environments

The Software-Defined Architecture (SDA) paradigm introduced in Section 1.1.1 — by way
of both Network Functions Virtualization (NFV) and containers — provides the
main application domain for software-stateful firewalls (as discussed in Section 1.5.2). With
the SDA paradigm, traditional purpose-built hardware appliances become less effective;
as the SDA paradigm emphasizes agility, elastic scalability, and rapid provisioning of
resources — all of which can only be achieved with software solutions.

In the NFV paradigm, a stateful firewall (for example, an instance of iptables or
pf) is "packaged" and provisioned as a Virtual Network Function (VNF). As such,
the VNF will run as a VM on top of a hypervisor (for example, KVM, VMware), or as a
direct guest operating system on a COTS server. A major challenge when using the NFV
paradigm is adapting to software defined infrastructure paradigms: the traffic must be
properly "steered" (typically via Service Function Chaining) so that it passes through the
firewall VNF prior to being reinjected back into the virtual network [7] where connection
tracking logic is applied.

As opposed to the NFV paradigm, integrating a stateful firewall into containerized
environments (for example, Docker, Kubernetes) present different challenges. Containers
do not have their own OS kernel, thus, stateful filtering within a container typically
depends upon the conntrack kernel module running on the host. Policies (for example,
Kubernetes Network Policies) are then interpreted by the host as iptables or nftables
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rules, and filter traffic passing through either virtual bridges (for example, docker0), or
veth interfaces. While providing stateful filtering at the level of individual containers, the
integration into containerized environments presents two additional challenges:

1. Performance: When using a centralized conntrack module in the host kernel to
track the state of each of thousands of containers (where each container may contain
thousands of session states), it becomes a performance bottleneck. Additionally,
because the single host maintains a single state table, the overhead of managing
that state table (as discussed in Section 1.4.4) is amplified, since there is a need to
manage a separate state table per tenant (container).

2. Isolation: When multiple containers share the same host, the shared state table
becomes a source of potential isolation issues. Although Linux provides network
namespace virtualization of the network stack (including iptables tables), the
conntrack module has traditionally been a global resource, allowing for potential
interference or side-channel leaks between containers. Recent improvements to the
conntrack module (for example, conntrack zones) are attempting to address this
challenge, however, the overall architecture of maintaining state in a high-density
container environment continues to be one of the most significant architectural
challenges to date.

1.6 Limitations and challenges

Sections 1.1-1.5 of this Chapter have detailed the Conceptual Model, Operational Archi-
tecture, Filtering (Policy) Principles and Major Technological Implementations of Stateful
Firewalls. Thus it can be seen that the ability of Stateful Systems to keep track of Sessions
and thus provide Granular and Secure Traffic Control (e.g., Management of Fast Path for
ESTABLISHED sessions) is based on their fundamental capability—stateful session tracking
(Section 1.4.1). However, this capability also creates significant computational and memory
overhead, which represents the major limitation of the Stateful Paradigm. Managing
thousands or millions of concurrent sessions creates significant Resource Challenges.

In this final section of the Chapter, the two main Architectural Challenges intro-
duced by the Management of Session State will be analyzed:

o Scalability and Performance (Section 1.6.1), where the Intrinsic Scalability
Limits will be discussed, examining again the Concept of the State Table as a
Bottleneck (as described in Section 1.4.4), as well as the Overhead of Connection
Tracking on Overall System Performance;

o State Synchronization (Section 1.6.2); one of the most Complex Issues in Modern
Distributed Architectures (like NFV), specifically the Replication and Synchroniza-
tion of the State of Connections between Multiple Firewall Instances to achieve High
Availability and Policy Consistency.
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1.6.1 Scalability and performance

Although the stateful architecture offers fine-grained control over network traffic flow, the
inherent constraints of the stateful design lead to limitations in terms of performance and
scalability due to “inherent” bottlenecks.

The first of these bottlenecks is the state table itself, which has the disadvantage
of being an array-based data structure of limited size (dependent upon the amount of
memory or RAM installed in the device), thereby providing a significant point of attack
for Denial of Service (DoS) based on resource starvation (e.g., SYN flood).

The second bottleneck is the computational overhead (CPU) which affects two
different metrics:

« Connection Rate (CPS): the number of new connections/second; CPS is limited
by the slow path, which is CPU intensive. Each NEW packet processed via the slow
path incurs the cost of evaluating the complete Filtering Policy, plus creating a new
entry in the state table.

o Throughput (Gbps): the volume of data which can be processed through the
system; while the fast path for ESTABLISHED sessions has been optimized, processing
each ESTABLISHED session still requires a lookup operation and a write to update
session timers, both of which consume CPU cycles.

In addition to the above mentioned factors, the problem is further complicated when
operating in virtualized or containerized environments as described in Section 1.5.3. In
such cases, a centralized conntrack module within the host kernel may act as a shared
bottleneck limiting throughput for all containers running on the same host.

As such, the only way to overcome the maximum vertical scalability limit of a
single firewall instance (i.e., adding more CPUs and RAM to a single machine) is to
implement horizontal scalability by dividing the workload among multiple parallel
firewall instances, which are typically load balanced together. However, this approach
raises the complexity of maintaining symmetric routing and state consistency between the
various nodes involved, which will be addressed in Section 1.6.2 [7].

1.6.2 State synchronization issues between multiple nodes

If the scalability challenges described in Section 1.6.1 are solved with horizontal scaling
(i.e., by creating many parallel firewalls that are each managed by a load balancer), then
you will immediately run into the most difficult architectural problems of stateful systems:
State Synchronization.

State Synchronization arises because of Asymmetric Forwarding. A NEW packet (a
packet that goes down the slow path) could be routed to Firewall-A (by the load balancer)
that Firewall-A uses to create a state entry in its own table. But when the response packet
arrives, that packet belongs to ESTABLISHED state and gets routed to Firewall-B. Because
Firewall-B doesn’t know anything about the state entry (the state entry only exists on
Firewall-A), Firewall-B will incorrectly classify the packet as INVALID (because it does
not match the definition of Section 1.4.1) and drop it. Dropping the packet will terminate
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Figure 1.3: State failure diagram due to asymmetric forwarding in a firewall cluster.
Asymmetric forwarding leads to Firewall-B receiving a response packet for a connection
tracked only on firewall-A, causing legitimate traffic drop and connection failure.

a valid connection. This is especially serious in High Availability (HA) situations. If
Firewall-A fails (a failover occurs), all million+ connections that it has active at the time
will be terminated because the backup Firewall-B will have no record of those states.

As a result, there needs to be an Active Synchronization mechanism implemented
between all the nodes in the cluster so that whenever Firewall-A adds a new state entry
or updates an existing one, Firewall-A must notify all of the peer nodes (B, C, etc.) of
this addition/update. Normally, the notifications will happen over a high speed dedicated
backplane network. While this provides for a solution to the problem, it also generates a
lot of CPU usage and bandwidth consumption that can easily become resource intensive
and negate any performance advantages gained by horizontally scaling the firewall(s).

Additionally, the distributed context of a cluster presents additional complexity
(consistency) issues. Any synchronization must be done with less delay than the round
trip time of the network traffic; otherwise, a response packet (ESTABLISHED) could reach
Firewall-B before Firewall-A sends the synchronization message to Firewall-B and both
could end up terminating the session. Maintaining consistency in a distributed system is
known to be a very difficult task, maintaining the consistency of the timing of events in
a distributed system (race conditions) and managing timeouts are just two of the many
tasks [7].

These practical constraints are made even worse in distributed environments like
NFV (explained in Sections 1.1.1 and 1.5.3). The elasticity of the environment of NFV,
as described in sections 1.1.1 and 1.5.3, enables the creation and termination of VNFs
(firewall instances) to scale out.

1.7 Conclusions

This Chapter provides a technical and conceptual examination of stateful firewalls,
providing a basis for the thesis. From the current state of modern network architectures
(Section 1.1), it is demonstrated how manual configuration and the need for formal
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automation is significant. In particular, the difference between the operation of stateless
versus stateful filters (Section 1.1.2) is identified; the state table is the primary element
that enables a firewall to inspect traffic within a context.

From there, the architecture (Section 1.2) is broken down into its logical components,
including the Connection Tracker and Policy Engine and the concept of a two-speed
operational model (slow path and fast path). The Analysis continues with the examination
of filtering Policies (Section 1.3) and connection tracking methods (Section 1.4) focusing on
the differences in protocol handling (TCP, UDP, ICMP) and the significance of inactivity
timeouts. The typical technological implementation (Section 1.5) and, more importantly,
the fundamental limitations of the stateful paradigm (Section 1.6) have also been evaluated.

In particular, the limitations — especially performance overhead and scalability
(Section 1.6.1) — that exist with respect to modern network architectures are exacerbated.
Today’s networks, which feature both virtualization (NFV) and containers, and service
graphs that are increasingly complex are highly dynamic: topologies change rapidly
(scale-out); redundant architectures (HA) are used and managing the complexities of
distributed flow configurations, many of which are asymmetrical, are difficult to manage
manually.

Therefore, the traditional form of security management (introduced in Section 1.1.1) is
unworkable. Maintaining synchronization between multiple distributed topologies, which
are constantly changing and are subject to workarounds specific to their topology, is very
difficult and expensive. Managing the distribution of policies is error prone and is typically
managed with a “it probably works” configuration without formal guarantees.

It is therefore necessary to transition from a manual management process — i.e., the
fallible and reactive “probably correct” configuration — to an automated process — i.e.,
an automated “provably correct” configuration. An appropriate solution is required to
shift the complexity from fallible and reactive manual management to a process that is
formally correct — i.e., correctness-by-construction.

Chapter 2 will present the VEREFOO framework, the formal methodology at the
core of this thesis, developed using MaxSMT formulations to meet the challenges described
here.
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Chapter 2

The VEREFOO Approach

As described above, Chapter 1 was a comprehensive analysis of stateful firewalls (both
technically and conceptually) which provides the background for this thesis work, and
identifies the intrinsic limitations of stateful firewalls (Section 1.6). Of particular inter-
est were two architectural limitations identified in Chapter 1: the management-based
performance overhead, and the potential state table saturation (Sections 1.4.4 and 1.6.1)
and the substantial complexity of state synchronization in real-time (Section 1.6.2). As
noted in Section 1.6.2, particularly in distributed and dynamic architectures such as those
found in NFV, the state synchronization challenge makes both manual configuration and
traditional management paradigms based on runtime state less than ideal, complex, and
error-prone.

Therefore, it follows that the challenges discussed above necessitate an abstraction
level of thinking to shift the complexities associated with runtime management to a formal
design and orchestration phase. Chapter 2 presents the VEREFOO ( Verified Refinement
and Optimized Orchestration) framework [6,7] - the formal methodology underpinning
this thesis and developed to automatically allocate and configure Network Security
Functions (NSFs) within virtualized networks; i.e., to create globally correct and optimal
security configurations (correctness-by-construction) that eliminate the need for manual
management. This chapter further describes the VEREFOO framework as follows:

Section 2.1 will examine the broader context of SDN/NFV architectures, with emphasis
placed on the motivation behind the use of formal automation for the management of
security configuration.

Section 2.2 will formally describe the models upon which VEREFOO relies for its
reasoning processes: how the Service Graph and the Allocation Graph represent the
network topology, how traffic flows can be represented (Maximal Flows [5]), and how
Network Security Requirements (NSRs) can be formally expressed.

Section 2.3 will describe the specific interface through which users interact with these
formal models and how user specifications are translated to formal models using XML
input schemas and the parsing process employed by VEREFOO.

Section 2.4 will explain the core resolution mechanism of VEREFOO: the formulation of

the refinement problem as a MaxSMT instance, and define the structure of the constraints
(Hard and Soft).
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Finally, Section 2.5 is the conceptual core of this thesis and will describe the extension
of VEREFOO to provide the semantics of stateful firewalls: including the ALLOW_COND
action and the logic of conditional permissions.

Section 2.6 concludes the description of VEREFOO, discussing the implications and
theoretical advantages of the VEREFOO framework (distributed security management and
scalability), and sets the stage for the experimental evaluation and verification presented
in subsequent chapters.

2.1 Context and Motivations for Automation in NFV

The architectural limitations of traditional stateful firewalls were addressed in Chapter 1,
as they have been identified to be particularly limited with regards to scalability and
state synchronization when distributed (Section 1.6). These limitations are a result of
the shift from static, hardware based network configurations to virtualized infrastructure
models [7] which provide the base for this dissertation work.

Before discussing the formal methodology of VEREFOO (introduced in the preamble
to this chapter), it is important to define the operational environment and motivation
behind why automation is a requirement in these types of environments. Although SDN
and NFV are beneficial to the operation of the network in terms of agility and flexibility,
they create significant security management problems, thus making manual approaches
both obsolete and inherently insecure [6].

Therefore, this section will discuss the context and rationale for adopting a formal and
automated approach. This will include a description of the fundamental changes from
traditional networks to virtualized architectures (Section 2.1.1) followed by a discussion
of the specific security configuration challenges created by these changes (Section 2.1.2).

2.1.1 From Traditional Networks to Virtualized Architectures (SDN/
NFV)

Traditionally, networks were developed around rigidly coupled network components and
proprietary hardware (which is often referred to as middlebozes), such as routers, load
balancers and firewalls. Although robust and reliable, the hardware-based approach was
limited in terms of scalability. Any changes to policies for traffic flow, etc. required
significant, time consuming and complicated work, and did not lend themselves to the
rapid and dynamic service demands of today’s environments.

Two new approaches have now arisen which provide the necessary infrastructure
for today’s rapidly changing environment; Software Defined Networks (SDNs) and
Network Function Virtualization (NFVs).

Software Defined Networking (SDNs) introduce a formal separation between the
control plane (where all the “intelligence” exists, i.e. the “brain”) and the data plane
(where the actual network processing takes place, i.e. switches, routers, etc.). The result
is that the SDN control plane acts as a central software controller, whereas the network
devices act as programmable forwarding executors. Therefore, it is possible to flexibly
manage the network through a software-defined method, whereby routing and filtering
decisions can be made programmatically by the controller.
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Network Function Virtualization (NFV), however, addresses the issue of hardware
dependency. NFV separates network functions (NF), such as firewalls or NATS, from the
specific hardware that they run on [3,7]. Instead of running on dedicated hardware, network
functions are implemented as software programs, called Virtual Network Functions
(VNF), which can run on COTS (Commercial Off-The-Shelf) hardware platforms, such as
x86 servers [3].

TRADITIONAL NETWORK ARCHITECTURE VIRTUALIZED ARCHITECTURE (SDN/NFV)
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Figure 2.1: Transition from Traditional Architecture to Virtualized Architecture (SD-
N/NFV)

When combined, SDNs and NFVs enable a high degree of operational agility and
flexibility. Complex network services can now be viewed as logical representations of
a Service Graph (SG) [6,7] rather than physical chains of network components. A
Service Graph is a logical representation of a group of connected VNFs (i.e. a client
connects to a VNF-Firewall, which then connects to a VNF-LoadBalancer) which can be
instantiated, modified, or terminated programmatically in a matter of seconds. While
the flexibility provided by this ability to create and modify a Service Graph enables
automation of security-related tasks [7], it simultaneously creates exponentially greater
complexity when compared to managing a single service graph [3].

2.1.2 The Challenge of Security Configuration in Dynamic Environments

While the agile and flexible operation enabled by both SDN and NFV (as defined in
Section 2.1.1) enables the creation of more complex services such as Service Graphs
(SG) [6], it also causes an exponential increase in the amount of effort required to manage
the security of those services [7]. In these virtualized environments, the network topology
is no longer static; Virtual Network Functions (VNF) can be created, moved, or
deleted within seconds to adjust to changing workloads or service requirements.

Given the very dynamic nature of these environments, manually configuring se-
curity becomes largely impractical [3] because traditional methods that rely on human
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intervention are subject to two main constraints:

1. Reaction Time: Any manual updates to firewall policies or flow reconfiguration in
response to changes in the network topology (i.e. scale-up/scale-down of a VNF)
will take significant amounts of time. The time spent waiting for the network to
react to the changes create “windows” of time during which the network operates in
a less-than-secure or less-than-optimal manner [7].

2. Error Rate: Distributed policies that are configured manually are inherently
error-prone [6]. In a distributed and dynamic environment, the lack of a global
and automated view of the system will lead to a high likelihood of either incorrect,
suboptimal, or non-consistent configurations.

Therefore, the issue is not just to configure something properly, but to provide formal
guarantees of correctness and optimality [5]. Formal guarantees are required
to ensure that the generated configuration will correctly implement all the Network
Security Requirements (NSRs) (i.e., isolate or allow connectivity between nodes)
with the least amount of resources possible (i.e., minimize the number of firewall instances
or firewall rules) [7].

Automated Security has become a key concept to solve the issues mentioned above,
but simply automating (with scripting) is insufficient since scripting may simply automate
the propagation of errors. A formal methodology to provide guarantees of correctness is
needed [3].

In this context, the VEREFOO ( Verified Refinement and Optimized Orchestration)
framework [6,7], a formal methodology to automatically allocate and configure NSFs (such
as firewalls) in virtualized networks and formulate the problem as a MaxSMT instance
to produce formally correct and optimal solutions, fits perfectly with the goal of this
dissertation.

2.2 Formalized Network and Traffic Flow Model

With the operational environment defined (SDN/NFV) and having identified the need
for formal automation due to the limitations of manual configuration (Section 2.1) , it is
essential to define the abstract models upon which the reasoning of the VEREFOO
framework is based [3].

For the purpose of using a strict solver-based methodology (MaxSMT) to solve the
problem, each aspect of the problem — the network, traffic, and goals/objectives — must
be converted into an formal construct.

In this section, the three fundamental models, which represent the inputs to the
refinement and orchestration process, are detailed:

1. Topology Model (Section 2.2.1): This section analyzes how VEREFOO translates
the network topology provided by the user (Service Graph or SG) into the internal
topology used for the reasoning process (Allocation Graph or AG), which has
placeholders for position of security functions (allocation places).
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2. Traffic Model (Section 2.2.2): This section outlines how network traffic is repre-
sented. The use of maximal flow-based modeling [4, 5] will be further explored, a
method that aggregates packet flows with the same forwarding and transformation
behavior to reduce the complexity of the problem.

3. Requirements Model (Section 2.2.3): In this section, the specification of NSRs
will be formally defined [6] transforming high-level objectives (for example, “isolation’
and “reachability”) into predicate logic statements that the solver can interpret.

9

The creation of these three models (topology, traffic, and requirements) is required for
the formation of the MaxSMT optimization problem, which is discussed in Section 2.3.

2.2.1 Service Graph (SG) and Allocation Graph (AG)

To address formally the refinement issue, it is necessary to establish a rigorous model
of the network topology. For this purpose, the framework VEREFOO makes use of two
levels of abstraction: the Service Graph (SG), representing the input of the user, and
the Allocation Graph (AG), representing the internal representation of the solver.

As previously discussed, the fundamental input that describes the service topology is
the Service Graph (SG). This graph represents the logical view of the end-to-end service
as described by the Service Designer and includes the necessary connections between
network functions and nodes to allow the full service delivery. In formal terms, the SG
is represented as a directed graph Gg = (Ng, Lg), where Lg is the set of directed edges
(connections) among the graph nodes and Ng is the set of graph nodes. The set of graph
nodes Ng is defined as the union of two disjoint sets, Ng = Eg U Sg:

o FEg (End Points): It is the set of service terminals, which may be clients, servers or
entire subnets that act as entry points for users accessing the services.

o Sg (Service Functions): It is the set of network functions (middlebozes) needed for
the service delivery, such as Network Address Translators (NAT), Load Balancers,
Web Caches, etc.

A critical feature of the above representation is that the SG provided by the user
is security-agnostic, since the SG does not contain security functions (Network Security
Functions, NSF) like firewalls, which will be instead identified and allocated automatically
by the VEREFOO framework.

From the SG, VEREFOO creates internally an additional topological representation
called Allocation Graph (AG) [3,7]. The AG is the actual graph on which the MaxSMT
solver (see Section 2.3) will perform the logical reasoning for the orchestration and
configuration of the security functions. The AG has the same structure of the SG,
but introduces a new set of nodes. Thus, the set of graph nodes N4 is defined as
Ngp=FEAUS4U Py, where E4 and S4 correspond to the same sets of the Service Graph
(Eax = Eg,S54 = Sg), whereas P4 corresponds to the set of Allocation Places.

Allocation Places (AP) are the basic construct allowing the automatic placement
of the security functions. These are placeholders introduced by VEREFOO to represent
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possible locations for placing an instance of a firewall. In the default generation process
of the AG, the framework introduces an AP for every edge (edge) l;; € Lg of the original
SG. The original edge [;; is substituted by an AP p;, € P4 and two new edges L, ly; € La
connecting the original nodes to the AP inserted between them, as shown in Figure 2.2.

Even though the creation of the AG is automatic, VEREFOO provides the service
designer with the possibility of influencing the placement process through the imposition
of certain constraints (placement constraints). The designer can:

o Force allocation (forced): Impose that an AP must host a firewall instance. This
possibility is very important to properly model hybrid or existing topologies where
some NSFs (such as hardware appliances) have been installed and cannot be removed.

o Forbid allocation (forbidden): Prevent the generation or utilization of an AP on a
certain edge. This possibility reduces the size of the search space that the solver
needs to explore, thus improving its efficiency at the cost of possible sub-optimality.

In both cases, the constraints (forced(l;;) and forbidden(l;;)) will be transformed in
hard constraints in the MaxSMT problem, so that the final solution will satisfy the choices
made by the designer.

(a) Service Graph (b) Allocation Graph

b
Iﬂa:

—
€6

Figure 2.2: Comparison: Service Graph vs Allocation Graph [6]

2.2.2 Traffic and Flow Model (Traffic Flows)

After defining a network’s static topology (Allocation Graph, Section 2.2.1), the second
step in the VEREFOO formal model defines the way traffic lows through that static
topology. The VEREFOO framework does not examine individual packets, however; it
examines the overall traffic classes and how they transform across network paths.

Traffic is the basic unit of analysis for the framework and is called a “packet class”
or “traffic.” It is formally defined as a predicate on a packet header. More specifically,
the model is based on the TCP/IP 5-tuple: {Source IP, Destination IP, Source Port,
Destination Port, Transport Protocol}.

More formally, a packet class ¢ € T' (where T is the set of all possible classes) is a
disjunction of predicates g;; (i.e., t =¢q¢ 1V g2V -+ -V gn). Each predicate g;; is in turn
a conjunction of five subpredicates representing the five fields of the 5-tuple:

qi,i = (ipSrc NipDst A portSrc A portDst A tr Proto)
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Wild cards (represented with > ’) may also be used in the model to define a full
range (e.g., > ’ for ports [0,65535]) or CIDR notation for IP addresses (e.g., 10.0.0.%’
for 10.0.0.0/24). The set T is closed under the Boolean logical operators (conjunction,
disjunction, and negation) and the symbol ¢y (or false) denotes no traffic.

Packet classes in VEREFOO do not depend on topology but are embedded in their
end-to-end paths through Traffic Flows (F') [3]. A flow f € F' is a formalization of how a
packet class generated by a source node ng is propagated to an ordered list of intermediate
nodes (middleboxes and APs) and transformed (e.g., by a NAT) before arriving at the
destination node ny.

A flow f is formally defined as a list of pairs of nodes and traffic classes:

f == [n87 tstu Ng, tabv Npy ..., Ny tkd) nd]

Wherein ¢;; represents the packet class transmitted from the node n; to node n;. The
model makes the assumption of homogeneity: all packets represented by t;; have to be
treated equally by node n; (all either forwarded/transformed, or all blocked).

Since the number of atomic flows in a given network could be very large, analyzing each
flow separately is not feasible. Therefore, VEREFOO uses a key optimization technique
called Maximal Flows (F™) [4,5], which merges into a single representative “maximal”
flow all traffic flows having the same behavior (same path and same transformations) and
thus creates fewer flows to be analyzed. More formally, the set of maximal flows contains
only the flows that are not subflows (subflows) of another flow within the same set.

Same Transformation

Individual Flows (11, f>) . Aggregation Maximal Flow (F™)
! Logic 5
Traffic Glasses Transformed Traffic ‘: E Aggregated Claes Tfaff‘s%;ﬁg:‘}eg'ass
(eg.10.0.01,10.0.0.2) (¢.0., Public IP) J : (e.g., 10.0.0.4/24) (e.9. Public IP
Flow fi " _ ! @ :
: ~ % Aggregation '::>§
Flow f2 — : Flow F —
Source NAT Destination | 1 Source NAT Destination
Node Middlebox\ Node | ; Node Middiebox Node
: i Condition: i
Transformation ! Same Path & !

Figure 2.3: Example of aggregating flows (f1, f2) into Maximal Flow (F'™)

Using this approach, the cardinality of the set of flows to be analyzed is significantly
reduced. Since MaxSMT constraints are created for each identified flow, aggregating
them reduces the number of logical clauses the solver has to process, which improves
the framework’s scalability. Moreover, the MaxSMT problem formulation in VEREFOO
(as described in Section 2.4) avoids the use of logical quantifiers (e.g., Yn € Ny), which
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severely reduce the solver’s efficiency. The combined usage of pre-computed data structures
on the AG (for example leftHops/rightHops maps specifying the relevant neighbors for
a flow) and the calculation of specific paths for Maximal Flows make quantifier elimination
possible.

2.2.3 Formalization of Security Requirements (NSRs)

After describing the topological network model (the Allocation Graph, Section 2.2.1) and
how traffic can travel through it (Mazimal Flows, Section 2.2.2) - the third building block
of the formal model of VEREFOO is the Network Security Requirements (NSRs).

NSRs describe security goals of the users (service designers) and are restrictions on
network connectivity that the end-network must fulfill. In the case of VEREFOO, an NSR
is a specification of which traffic flows should be allowed or forbidden to pass between
pairs of end-points. The general form of an NSR r is a pair (C, a), where C is a condition
(predicate on the 5-tuple similar to the traffic model) and a is an action; VEREFOO
focuses on the two most important actions:

o Isolation: a = DENY. It requires all traffic flows C' to be blocked.

e Reachability: a = ALLOW. It requires at least one traffic flow C to be allowed to
reach the destination.

The key feature of VEREFOO is that each requirement (NSR) is mapped directly to
Hard Clauses (no relaxations possible) in the MaxSMT problem [6] - thus providing the
means of ensuring the formal correctness of the solution (correctness-by-construction); by
definition, a MaxSMT-solver can only provide a valid solution if all hard constraints are
fulfilled.

The formal transformation of these requirements into logical clauses based on Mazimal
Flows (FM | defined in Section 2.2.2) is made necessary by introducing three new auxiliary
functions that allow querying the flow-structure:

o 7(f): maps a flow to the ordered sequence of traversed nodes;

o 7(f,n): maps a flow and a node to the specific traffic entering that node (taking
care of potential transformations);

o allocated(n): predicate indicating whether a firewall is installed on node n.

It is then possible to formally specify the policies:

Isolation Policy (r.a = DENY) An isolation requirement demands that for every flow
(f) contained in the set of maximal flows of the requirement (FM), at least one firewall
on its route blocks the flow. The logical expression is:

Vf e FM 3i.(n; € n(f) A allocated(n;) A deny; (T(f,n4))) (2.1)

This expression asserts that for each flow (every V) that satisfies the requirement,
there exists at least one node n; (some 3) on its route (7w(f)) such that a firewall is

38



2.3 — Input Specification: XML Schema and Processing

installed (allocated(n;)) and the specific traffic of that flow (7(f,n;)) is denied (deny;) by
the configuration of that firewall.

Reachability Policy (r.a = ALLOW) A reachability requirement asserts that there
exists at least one flow f € M that is not blocked by any firewall during its entire route.
The logical expression is:

3f € FM Vi.(n; € n(f) A allocated(n;) = —~deny;(7(f,n))) (2.2)

This expression asserts that there exists at least one flow (some 3) such that for all
(V) nodes n; on its route, if a firewall is installed (allocated(n;)), it follows (=) that its
configuration does not deny (—deny;) the traffic of that flow.

These constraints will serve as the foundation for correctness verifications and, as
shown in Section 2.5, they will be further enriched with the specific semantics of stateful
firewalls.

2.3 Input Specification: XML Schema and Processing

In this section we explain how the designer interacts with VEREFOO, and therefore why
the logical architecture and formal models (the Allocation Graph, Maximal Flows, and
Network Security Requirements (NSRs)) described in Section 2.2 are abstracted internally
as a mathematical representation of the framework to apply formal methods.

To allow designers to enter information about the design problem they wish to solve,
it is essential that designers have an interface with VEREFOO. Therefore, a method to
specify input information must exist. The input specification mechanism employed by the
framework is an XML (eXtensible Markup Language) schema [3].

XML was selected for the input specification mechanism because it is able to accurately
represent the complex network topologies and policy structures in a hierarchical and
structured form.

This Chapter explains the detailed structure of this input. Section 2.3.1 explains the
XML schema used to define the Service Graph topology (nodes, node functions, etc.),
Section 2.3.2 defines the format in which NSRs are entered, and Section 2.3.3 describes
the parsing mechanism that transforms the XML input files into logical representations
and formal models (from Section 2.2) that will then be used to formulate a MaxSMT
problem (the subject of Section 2.4).

2.3.1 XML Structure for Service Graph Definition

To allow the parser to read the topological input that is required by the VEREFOO
framework, the designer of the service defines the network in a structured XML format.
The concrete form of this structured XML format transforms the abstract Service Graph
model (Gs = (Ng, Lg)) of Section 2.2.1 into a format that may be processed by the
framework’s parser.

All topological information resides in a single root element <graphs>. In addition to
the root element <graphs>, zero or more <graph> elements exist. All <graph> elements are
assigned a unique id as an attribute and are assigned the attribute serviceGraph="true".
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This distinction is necessary because a similar allocation graph exists internally (as
described in Section 2.2.1) but has no standardized way for users to define.

Each <node> element represents a vertex n € Ng (either an End Point Eg or a Service
Function Ss). The basic attributes of this element are:

o name: The name of the node; typically the node’s IP address (e.g., “10.0.0.1”) or a
subnet identifier (e.g., “10.0.0.%”); serves as a primary key for the node.

e functional_type: The attribute describes the semantics of the node; is important
for the parser to determine if a given node is an End Point (e.g., WEBCLIENT,
WEBSERVER) or a Service Function (e.g., NAT, CACHE, TRAFFIC_MONITOR).

Edges in the graph (Lg) do not have individual definitions as standalone elements;
rather, they are implied through the use of nesting. Within each <node> element are listed
one or more <neighbour> elements, each specifying the name of an adjacent node; thus
defining a directed edge from the parent node (<node>) to the child node (<neighbour>).

Nodes representing Service Functions (Sg), which require special configuration to
perform their functions (e.g., a NAT needs to know the source addresses in order to properly
translate them), contain a <configuration> block. The block contains function-specific
elements (e.g., <nat>, <cache>) describing how the Service Function behaves.

An example of a simple Service Graph, shown below, demonstrates the XML structure.

<graphs>
<graph id="0" serviceGraph="true">

<node functional_type="WEBCLIENT" name="10.0.0.1">
<neighbour name="20.0.0.3"/>

<configuration ... >
<webclient nameWebServer="30.0.5.2"/>
</configuration>
</node>

<node functional_type="NAT" name="20.0.0.2">
<neighbour name="20.0.0.3"/>
<neighbour name="20.0.0.1"/>
<configuration ... >
<nat>
<source>10.0.0.1</source>
<source>10.0.0.2</source>
</nat>
</configuration>
</node>

</graph>
</graphs>
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2.3.2 Specification of Network Security Requirements

In addition to the Service Graph topology (described in Section 2.3.1), the XML input file
has to include the definition of the Network Security Requirements (NSRs) which
have to be satisfied by the final configuration. The XML elements translating the formal
requirements model (defined in Section 2.2.3) into a parser-readable format are called
Requirements.

Each Requirement is contained inside an element <PropertyDefinition>. Elements
of type <PropertyDefinition>, group one or more <Property> elements, each of them
specifying a single security requirement (NSR). Each element corresponds directly to the
fields of the 5-tuple and the desired action as follows:

 name: specifies the desired action a (defined in Section 2.2.3). It corresponds to
the ReachabilityProperty for a reachability requirement (¢ = ALLOW) or to the
IsolationProperty for an isolation requirement (a = DENY).

o src /dst: map fields C.IPSrcand C.IPDst. They define the source and destination
IP addresses.

e src_port / dst_port: map fields C.pSrc and C.pDst. They define the source and
destination transport port.

o ldproto: map field C.tPrt. It defines the transport protocol (TCP, UDP, etc.) or
ANY.

o graph: a management attribute giving the id of the graph (defined in Section 2.3.1)
on which this requirement is applied.

To allow a flexible input, the VEREFOO XML schema allows the use of wildcards and
intervals (intervals) in the values of these attributes. For IP addresses, the framework can
use -1 as a wildcard in an octet (e.g., dst="130.192.-1.-1" for the subnet 130.192.0.0/16).
For ports, it is possible to use * as a wildcard (all ports) or an explicit interval (e.g.,
src_port="[2000-3000]").

The following example shows how the XML definition of a set of NSRs could look like:

<PropertyDefinition>

<Property graph="0" name="ReachabilityProperty"
src="10.0.0.1"
dst="20.0.0.2"
dst_port="80"
l4proto="TCP"/>

<Property graph="0" name="IsolationProperty"
src="10.1.1.1"
dst="130.192.-1.-1"
src_port="[2000-3000]"
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dst_port="80"
l4proto="ANY"/>

</PropertyDefinition>

This elements are parsed by the parser (Section 2.3.3) and they are then used to
compute the maximal flows (Section 2.2.2) and hard constraints (Section 2.2.3) needed to
build the MaxSMT problem (Section 2.4).

2.3.3 From XML to Formal Models

The parsing process represents the main connection between the user’s concrete description
given in the form of XML files (Sections 2.3.1 and 2.3.2), and the internal mathematical
abstraction needed by the solver (the formal models of Section 2.2). This phase is
managed by specific software components inside the VEREFOO system, specifically the
VerefooSerializer, which act as translators.

Firstly, the parsing process starts with parsing the XML input file. The parser analyzes
the XML document’s structure to create Java objects representing the network topology.
The parser maps each element to an AllocationNode object, and the elements are used
to construct the graph structure (the Allocation Graph). At the same time, the parser
reads the elements and maps them to SecurityRequirement objects.

After the XML input has been converted into its object representation using the above-
described process, the framework proceeds with translating the object representation to
the formal model. This phase lays the foundation for MaxSMT resolution:

o Flow Generation: Once the topological and requirement data (Network Security
Requirements or NSRs) have been analyzed by the framework, it calculates the set
of Maximal Flows based on the aggregation logic explained in Section 2.2.2.

¢ Constraint Construction: Based on the flow values calculated in the previous
step, the VEREFOO framework constructs the logical problem instance. In this
phase:

— NSRs are converted into Hard Constraints, i.e., mandatory logical clauses
ensuring network security (the details of which will be covered in Section 2.4.1).

— User preferences and efficiency metrics are translated into Soft Constraints,
optional weighted constraints providing guidance for optimization (further
detailed in Section 2.4.2).

Ultimately, this process results in the creation of a complete formal logical model
that fully abstracts from the original XML input. The z3/z30pt engine then uses this
mathematical model for solving, as further detailed in the next Section.
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2.4 The MaxSMT Solution: Optimality and Constraint
Structure

Although VEREFOO has defined the network architecture (Allocation Graph), traffic
behavior (Maximal Flows), and security requirements (NSRs), it still remains as an
abstract problem from the algorithmic point of view; that is, which is the correct way to
configure the firewalls so that they comply with all the previous constraints.

In terms of solving this type of problems using Satisfiability Modulo Theories (SMT) it
would be sufficient to obtain any valid configuration that respects the security requirements.
However, since we are working with virtualized networks (NFV), the correctness of a
solution is no longer sufficient. In fact, it is necessary to find an optimal solution
concerning resources usage, i.e., minimizing the number of allocated network functions,
the number of configured rules, and the impact on network performance. A SMT Solver
does not support such an objective, as it will stop when the first valid solution is found,
even if the solution is over-dimensioned.

Therefore, in order to reconcile both the rigidity of security requirements and the
flexibility of resource optimizations, VEREFOO models the orchestration problem as a
Weighted Partial MaxSMT problem [6], that extends the SMT Logic by distinguishing
between two hierarchical classes of constraints:

o Hard Clauses (Rigid Constraints). They represent conditions that have to be
obligatorily fulfilled by the solution in order to be considered valid (e.g. security
requirements).

» Soft Clauses (Relaxable Constraints). They represent desirable conditions but not
mandatory ones (e.g.: “do not use a firewall here”). A cost (a weight) is assigned to
each violation of a soft constraint.

The objective of the solver is then to find a variable assignment that fulfills all Hard
Clauses and, in addition, minimize the sum of the weights of violations of Soft Clauses.

The next sections describe how both components are mathematically formulated in
order to provide guidance for the refinement process.

2.4.1 Formulation of the Problem as MaxSMT

VEREFOO must convert the network problem into a math problem, which means defining
what “knobs” the solver may use to solve the problem. Those are the decision variables.
The system must provide answers to two very basic questions about each of the points
in the network: “Do I put a firewall here?” and “If I do, which kind of packets should I
block?”

Decision variables are represented with two types of Boolean variables (which have
just one of two states: True or False):

o Allocation Variables (allocated(py)): There is one allocation variable for every
potential place (pg) in the graph. This variable determines whether to set up a
firewall at that place, if it is True then a firewall is placed there.
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o Configuration Variables (deny(n,t)): If a firewall is in place on the node (n),
this variable determines whether to enable or disable a certain blocking rule for a
particular traffic flow (¢). If it is True, the specified type of traffic will be blocked,
otherwise it will not.

Variables representing the allocation and configuration variables cannot have arbitrary
values but must comply with hard logic rules. There are two groups of these rules:
structural coherence and actual security.

Structural coherence is the most obvious example of a hard constraint: you cannot
establish a blocking rule on a non-existent node. This is expressed in the form of an
implication in mathematics:

deny(n,t) = allocated(n)

As mentioned before, the second group of hard constraints represents real-world
security. The solver will search through all of the possible combinations of switches
(allocated and deny) and identify the one that satisfies both the isolation and reachability
criteria provided by the user (see Section 2.2.3). In other words, the solver searches
through millions of possible combinations until it finds one that meets the following
conditions:

1. All required firewalls are turned on.
2. All necessary blocking rules are enabled.

3. No traffic that was prohibited from passing through can pass through, and all traffic
that was permitted to reach its intended destination will reach that destination.

In case such a combination is found, the problem is solvable (SAT). Once the problem is
identified as being solvable, the cheapest combination of switches that satisfy the problem
will be selected (this is discussed further in the next section on soft constraints).

2.4.2 Relaxed Constraints (Soft Constraints) - for Optimizing Resource
Consumption

Following the establishment of the Correctness of Configuration through Hard Constraints,
VEREFOO’s second objective is to optimize resources (in an NFV context) to minimize
network usage; specifically to reduce the Number of Instantiated Firewalls and the
Complexity of Internal Firewall Rule Sets.

Optimization is achieved through the use of Soft Constraints, which are different from
rigid constraints. Instead of imposing strict obligations on the Solver, they identify a
preferred (or default) configuration State that the Solver attempts to maintain. When
the Solver can no longer maintain the preferred State due to a Security Requirement, a
Penalty (Weight) is added to the Global Objective Function.

For VEREFOO, Optimization is modeled using two primary Negative Soft Con-
straints [7]:
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1. Minimizing Resource Allocation: This constraint is expressed as follows: "at

this moment (p) there is no firewall"

Soft(allocated(py) = false, Wyy,)

When the Solver manages to maintain allocated(py,) false, the Cost is Zero. When the
Solver must assign a Firewall (allocating(py) = true) to meet a Security Requirement,
the Total Solution Cost is increased by the Weight Wy,,.

2. Minimizing Number of Rules: Similarly, for each possible Rule, the System
expresses the constraint: "the blocking rule is not configured."

Soft(deny(n7 t) = false, Wrule)

Again, when a Rule is activated (deny = true), the Solver adds the Weight W, to
the Cost Function.

Thus, the Optimization Strategy is simply a Weighted Sum. The Solver determines
the "Total Cost" of each Valid Solution using a Linear Function:

COSttotal = (Nfirewall X wa) + (Nrules X Wrule)

Where N represents the Number of Active Elements, and W represents their Unit
Cost (i.e., Weight).

By adjusting these two Weights, we can express the System’s Priority. For instance, if
we set Wy, = 1000 and W = 10, the Solver is being told that a new Firewall "costs'
as much as 100 New Rules. Thus, the mathematical Algorithm would naturally prefer to
add more Rules to a currently Existing Firewall, rather than create a new Firewall to fill
it, thus maximizing Resource Consolidation.

2.5 VEREFOOQO'’s Extension for Stateful Firewalls

Previous sections (2.2 and 2.3) have described the Formal Approach of VEREFOO
to Firewall Refinement and Optimization. It was demonstrated how Topology (AG),
Traffic (Mazimal Flows) and Requirements (NSRs) were converted into a MaxSMT
Problem. However, while Section 2.4.2 has presented the Logic of Optimization for
Stateful Firewalls (preference for ALLOW_COND), it has still not provided the Formal
Semantics of this extension. While the Base Model (ALLOW/DENY) remains fundamentally
Stateless and does not capture Connection Memory Management, a key Feature of Stateful
Firewalls examined in Chapter 1.

Therefore, the limitation of the base model needs to be addressed to allow the Solver
to orchestrate and configure Stateful Firewalls that not only Filter Packets according to
the 5-Tuple, but also Track the Connection State (e.g., NEW, ESTABLISHED, RELATED).

This Section describes the Architectural and Logical Modifications made to the
Framework. Section 2.5.1 will detail the Integration of Stateful Semantics into the Model,
Defining New Categories of Traffic (I#*, I#¢) and Introducing the new ALLOW_COND Action.

T )T
Subsequently, Section 2.5.2 will Examine the Formalization of this Logic, Presenting the
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New Hard Constraints (such as the cond_permit predicate) Necessary to Correctly Model
Conditional Permission and Return Traffic [14].

2.5.1 Integration of Stateful Semantics

The need to go beyond the VEREFOO framework’s classical traffic model to support state-
ful firewalls required overcoming its limitations. As previously presented in literature [7]
the classical model is inherently stateless. It defines each incoming packet to a node n;
as being either an allowed packet (I#) or a denied packet (If). Given that the filtering
decision depends on the history of the flow and the temporal aspect of the flow [14], a more
granular representation of the traffic space is needed to model the operational decisions
taken by the Connection Tracker. Thus, the new traffic model distinguishes the incoming
traffic to each node n; into four classes of traffic [4]:

o I (Accept): The class of packets accepted by the firewall (i.e., stateless behavior),
with no record created in the connection table.

. If (Drop): The class of packets that are always blocked by the firewall, regardless
of any prior connection state.

o %% (Accept and Save State): The class of packets accepted by the firewall, for which
a new entry is created in the State Table. These correspond to the first packets
of a new connection initialization (e.g., TCP SYN or the first UDP packet) and are
classified as NEW state.

o I (Accept Conditionally): The class of packets accepted by the firewall only if a
valid corresponding state already exists in the table. These correspond to return or
subsequent packets (e.g., TCP ACK) and are classified as ESTABLISHED or RELATED
state.

This new classification enables us to formally describe the relationship between outgoing
traffic (which generates state) and return traffic (which consumes state). Classes I#* and
I{¢ are inversely related. Formally, we can express the conditional traffic class I as the
disjunction of the inverse predicates of those that generate state:

I7¢ = \/ inv(qai,as) (2.3)
X
where:

* (u,ias is an atomic predicate of the set of state-accepted flows (I{¥);

o inv(q) is a function that reverses the directional components of the 5-tuple of predicate
q (exchanging source IP address with destination IP address and exchanging source
port number with destination port number).

The formula (2.3) represents the idea that the firewall will “conditionally” accept only
those packets that represent the direct response to a previously authorized and stored
request [14].
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I;“ (Accept)
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Figure 2.4: Traffic model classification for stateful firewalls [14].

To enable the MaxSMT solver to use this new traffic model, VEREFOO provides a
new refinement action called ALLOW_COND ( Conditional Permission), which abstracts the
common bidirectional logic of a stateful rule into a single logical construct:

o An ALLOW action (stateless) grants permission to flow only in one direction (A —
B), without memory.

e An ALLOW_COND action on a flow A — B means two simultaneous semantical aspects
exist:

1. Unconditional permission to forward traffic A — B (thus populating set I{*).

2. Conditional permission to return traffic B — A (thanks to the inverse relation
defined above; thus populating set 1{¢).

Enabling stateful behavior in the traffic model makes possible the characterization
of the security policies, and how they relate to different types of network connectivity
requirements that the framework needs to fulfill. We have identified four major categories
of Network Security Policies (NSPs) in the VEREFOO context [14]:

« Isolation Policy: States that for all flows fulfilling the requirement conditions,
at least one security function must be present along the path that is configured
to block the traffic. This definition is independent from the connection state: the
traffic cannot reach the destination (i.e., DENY).

« Simple Reachability Policy: States that a valid flow must exist in such a way
that traffic is not blocked along the path. In a stateful environment, this policy is
fulfilled when the firewall grants permission to packet transmission, regardless of
the fact that the decision is based on a static rule or the existence of a prior state.
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« Strong Reachability Policy: States that the traffic must be granted unconditional
access, i.e., independently of the existence of a prior state. This policy is generally
applied to model the connection initialization flow (forward traffic, e.g., SYN packets),
which must be explicitly authorized through a static rule to create an entry in the
State Table (class I{*).

« Conditional Reachability Policy: States that the traffic is allowed to pass only
if a valid prior-established connection state exists. This policy models return traffic
(backward traffic, e.g., ACK packets or response data), which does not require explicit
static rules to be authorized dynamically due to the Connection Tracking mechanism
(class I£€).

With the definitions of the new traffic classes and the new ALLOW_COND action, it is
now necessary to formalize the constraints (Hard Constraints) that govern their behavior
in the z3 solver. This will be addressed in the next section, which will introduce the logical
predicate cond_permit.

2.5.2 Formalization of Conditional Permission

Due to the introduction of new stateful categories (Section 2.5.1), especially I#* and I?,
the formal constraints (Hard Constraints) applied by the MaxSMT solver must be directly
extended. The Stateless Model (Section 2.2.3) provides conditions only for I (Must
Permitted) and I¢ (Must Blocked). The formalization of behaviors for I#* (Accept and
Save State) and I (Accept Conditionally) is required.

For the I{® class, the constraint is simply: packets which establish a new state must
be permitted. The constraint for I** packets is formally identical to the constraint for I}

packets:

Vq € I° Np € q.~deny;(p)

The technical and conceptual difficulty is formalizing the I;'° class. Such packets can
only be permitted when a valid state exists, i.e., when the reverse traffic (inv(q)) has
been processed by the preceding firewall and classified as I{**. In order to represent the
conditional logic without having a runtime state table, VEREFOO introduces a new
Boolean predicate, cond_permit(n, t).

This predicate is true if and only if traffic ¢, arriving at node n, is of type I;*°. In other
words, the predicate cond_permit identifies traffic that cannot be blocked, but must have
been accepted on the basis of a previously established state.

Thus, the conditional permission logic is represented by the fourth class of constraints
(a new Hard Constraint) relating the deny; decision to the existence of a valid reverse
flow. A packet p (which is understood as the header that uniquely identifies the traffic
unit) of type g € I?¢ (i.e., cond_permit;(p) is true) is not denied (—deny;(p)), if and only
if (<) the state condition (equation 2.4) is met:

Vq € I'°.¥p € q.(~deny;(p) & ®)
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The condition ® (equation 2.4) represents the verification of the state. It is true if
and only if the inverse traffic p’ = inv(q) can be associated with some existing flow f
in the set Fp (the set of all the traffic flows modeled in the system, or Maximal Flows,
corresponding to a given requirement), satisfying simultaneously three conditions:

®@ =Vp' € inv(q).3f € Fr.(1) A (2) A (3) (2.4)

Where:

1. 7(ns, f) = p’: The reverse traffic p’ (corresponding to packet p) actually arrives at
node n; as part of flow f.

2. 7(ni, f) A I?®: That reverse traffic p’ has been classified by firewall n; as I#°, i.e., it
has been authorized to create state.

3. Vn; € w(f)|n; < nij.—deny;(t(nj, f)): No other node n;, located before firewall n;
along the path of reverse flow f, has blocked such flow.

This formulation shifts connection tracking logic from a runtime mechanism (the state
table analyzed in Chapter 1) to a formal logical constraint defined a priori (compile-time)
in the MaxSMT problem.

2.6 Implications and Benefits of Using VEREFOO

Having described VEREFOOQ'’s formal approach for describing distributed systems (from
topology modeling to the MaxSMT problem and refinement as MaxSMT problem) in the
previous chapters (2.2, 2.3, and 2.4), we can now examine the theoretical and operational
implications and benefits associated with the use of this methodology.

There are two main implications arising from the adoption of a formal refinement
process (by means of MaxSMT) to generate secure configurations that are correct-by-
construction instead of relying on runtime state management (which was analyzed in
Chapter 1):

In Section 2.6.1, we will show the benefits of using VEREFOO’s formal approach
to manage distributed security. We will specifically describe how VEREFOO defines a
globally correct configuration during the orchestration phase, thereby avoiding the difficult
task of synchronizing states (state synchronization) among multiple components in the
same system or across multiple systems in resilient or virtualized environments, which is
the primary weakness of stateful firewalls in those architectures.

In Section 2.6.2, we will analyze theoretically and experimentally the efficiency and
scalability of the VEREFOO approach. While MaxSMT problem solving is a well-known
NP-complete problem, we will explain how optimization methods (such as logical quantifier
elimination and pruning) included in our models make it computationally viable (and
therefore scalable) for very large-scale scenarios, paving the way for the experimental
validation that constitutes the central part of this dissertation.
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2.6.1 Benefits in Distributed Security

VEREFOO’s formal approach provides a crucial benefit when managing distributed
security in networks. Traditionally, runtime state synchronization issues have been
resolved at runtime; however, VEREFOO resolves them at design time.

When there are asymmetrical routes (forward and reverse flows travel through dif-
ferent nodes) and stateful firewalls are used, the connection tracking tables of stateful
firewalls must be synchronized in real-time in order to allow return traffic. Without state
synchronization, a firewall on a return path np may allow return traffic based on weak
rules, exposing the network to spoofing attacks (e.g., fake SYN-ACK or ACK packets).

Our model prevents this risk by construction since the acceptance of return traffic
is strictly bound to the entire flow lifecycle and therefore is subject to a hard logical
constraint for conditional acceptance (1%¢).

Vg € I#°,Vp € q.~deny;(p) & &

The composite condition ® (Equation 2.4) statically verifies the flow’s history. Specifi-
cally, the logical symmetry clause:

/

T(nia f) =D
states that, for node n; to instantiate a conditional permission rule for the return packet

p, it must have also processed the corresponding forward packet p’ (where p’ € inv(p))
and classified it as 1*® (Accept and Save).

Resolution Example. For example, consider a network where a flow f traverses firewall
n4 in the forward direction (creates the state) and firewall np in the return direction. If
the model attempts to define a conditional permission rule to allow npg to accept the return
traffic (p € If), the verification of the logical symmetry clause fails because 7(np, f) =0
(node np did not observe the forward traffic p’). Therefore, the constraint ® evaluates to
false, making the creation of the permission rule on np unsatisfiable (UNSAT).

Therefore, the MaxSMT solver is forced to reject any insecure configurations, and
therefore converge toward solutions that satisfy flow symmetry or the placement of
firewalls at topologically symmetric points, eliminating spoofing vulnerabilities at their
origin, without requiring state synchronization at runtime.

2.6.2 Efficiency and Theoretical Scalability

The second important implication of VEREFOO relates to its efficiency and scalability,
although theoretically the chosen methodological approach has several drawbacks. For-
mulating the refinement problem as a MaxSMT instance (Section 2.4.1) is, in terms of
computational complexity, equivalent to the class of NP-complete problems. Thus, it is
possible that the time required to find the optimal solution could increase exponentially
with an increasing number of instances (number of Allocation Places, P4, and number of
Requirements, R).

However, VEREFOO is not designed to solve the worst-case scenarios, but rather
to provide a practically efficient solution for network scenarios. To achieve this goal,
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VEREFOO uses two fundamental optimization methods to dramatically decrease the size
of the search space of the z3 solver [7]:

¢ Reduction of Soft Constraints: As explained in Section 2.4.2, the time required
for the resolution is mainly due to the number of soft constraints, which directly
depends on the number of placeholder rules (Ilj) generated for each firewall. VERE-
FOO employs reduction strategies to aggressively eliminate unnecessary rules (e.g.,
requirements that are satisfied by the default DENY action in whitelisting mode, or
requirements whose flows do not actually pass through that AP).

o Elimination of Logical Quantifiers: The most effective optimization strategy
used in the model is the complete removal of logical quantifiers (e.g., Vn € N4, “for
all nodes”) in forwarding formulas. Previous studies and research work employing
quantifiers required the solver to expand the formula for all possible pairs of nodes
in the network, regardless of whether they represent a valid path, leading to an
explosive growth of the search space. VEREFOO solves this limitation by introducing
leftHops and rightHops data structures that are pre-calculated on the Allocation
Graph [3]. Each node in the graph is uniquely associated with valid adjacent
nodes for a given flow through leftHops and rightHops: leftHops indicates the
preceding nodes from which a packet can be received legally, while rightHops
indicates the succeeding nodes to which it can be forwarded legally. Due to these
structures, MaxSMT formulas are expressed in terms of punctual constraints between
specific nodes (e.g., “if I receive from A, then forward to B”), and therefore, the
need to evaluate the entire node domain is eliminated, significantly reducing the
computational cost of the problem presented to the solver.

Through the combination of these two strategies, the theoretical NP-complete com-
plexity of the MaxSMT problem is addressed, ensuring that the VEREFOO framework
scales correctly. As will be shown in the experimental validation (Chapters 5 and 6),
this approach proves to be efficient and reliable even in complex and large-scale network
environments, such as Texas2000.

51



52



Chapter 3

Objective of Thesis

The chapters above outlined the technical environment (Chapter 1) and the formal
structure of the VEREFOO framework (Chapter 2). Although MaxSMT methodologically
ensures correctness-by-construction [7], the actual feasibility of the application is dependent
on the quality of the implementation and the solvability of the problem within reasonable
time frames.

In this chapter we will outline the goals of the thesis project, specifically focusing on
the experimental verification of two important features: the logical validity of new stateful
functionalities and the scalability of the framework under realistic conditions.

3.1 Background & Objectives

VEREFOO’s methodology is based on translating high level security requirements into
logically very complex constraints [6]. The addition of stateful semantics, especially with
regard to conditionally permitting actions (cond_permit) and return flows, increases the
complexity of the model exponentially. However, despite the fact that there are theoretical
soundness arguments, practical implementation in an SMT solver such as Z3 [14] brings
concrete risks:

» Risk of Logical Inconsistency: Errors during translation of formulas and/or
errors in the management of dependency flows could result in the solver generating
configurations that, although mathematically correct, do not meet the original
security requirements.

¢ Risk of Computation Explosion: Due to the NP-completeness of the MaxSMT
problem and due to the stateful constraints, the framework may become unusable
on realistically sized networks.

Therefore, the goal of this thesis is not the theoretical expansion of the framework,
but the empirical verification of the framework via two main paths:

o Objective 1 (Correctness): Show that the logical implementation of stateful
policies is correct and free from ambiguity.
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o Objective 2 (Scalability): Prove that optimization methods allow the applicability
of the framework to be extended to large-scale scenarios.

3.2 Objective 1: Verification of Logical Correctness

The first objective is to verify that the configurations produced by VEREFOO satisfy the
Network Security Requirements (NSRs) when using stateful firewalls. It is necessary to
guarantee that the ALLOW_COND action and NAT management do not create vulnerabilities
or unwanted blocks.

Cross-Validation is the methodology used to achieve this objective. The framework
is run in two different and sequential ways:

1. Refinement Mode: The generation of the optimal configuration from the require-
ments.

2. Verification Mode: Formal static verification of the generated configuration with
respect to the same requirements.

Verification is successful if and only if both phases confirm the satisfiability (SAT)
of the constraints. The details of the test suite implementation, including the specific
examples of NAT and asymmetric flows, are described in Chapter 4.

3.3 Objective 2: Validation of Scalability & Performance

An otherwise correct formal solution is useless if it takes infinitely long to compute.
Therefore, the second objective is to evaluate the operational limits of the framework,
specifically measuring the scalability of the execution time and the memory usage as a
function of increasing network complexity.

To provide results relevant to real-world applications (e.g., critical infrastructure),
simply using random topologies is insufficient. Therefore, the validation utilizes a specific
case study: the Texas 2000 model [9,13]. The Texas 2000 model represents the Texas
power grid in a synthetic but realistic way in order to support large-scale research without
revealing sensitive information. This model provides the hierarchical and dimensional
complexity required to put pressure on the resolution engine. The description of the
test generator and the topology are presented in Chapter 5; the experimental results are
analyzed in Chapter 6.
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Chapter 4

Correctness Validation

In Chapter 3, we identified the two primary goals of this research project: Cross-Validation
of Correctness (Objective 1) and Performance Validation (Objective 2). In this chapter,
we are solely concerned with validating Correctness (Objective 1), as defined in Chapter 3.

As stated in Section 3.1, the Formal Approach of VEREFOOQO, using MaxSMT, guaran-
tees Correctness-by-Construction [7]. Nonetheless, due to the complexity of implementing
stateful semantics (Section 2.5), specifically the handling of return flows (ALLOW_COND) and
interactions with packet-altering NFs (like NATSs), experimental verification is required
to confirm there are no Logical Errors or Implementation Errors [14]. As previously
mentioned in Section 3.2, our aim in this chapter is to prove that the stateful firewall
configurations created through VEREFOOQ'’s refinement process correctly implement the
original NSRs.

To verify the previous statement, the chapter will follow the cross-validation method-
ology described in Section 3.2. Section 4.1 will give a brief overview of the methodological
workflow and software components (test runner, serializer, z3 solver) necessary to perform
the cross-validation in two phases (Refinement and Verification).

The bulk of the validation will be represented through the test case designs. Section 4.2
will outline the test case selection criteria and motivate why certain scenarios were
chosen to “stress” the most difficult logic within the framework; namely: Interaction
with NATS (correctness of state inversion), Management of Multiple Concurrent Flows
(control of state interference), and Multi-Firewall Topology (consistency without runtime
synchronization) [3].

Section 4.3 will document an inventory of test files utilized (Test Artifacts Inventory);
Section 4.4 will illustrate how the test files represent representative examples of the tested
logic, including the input data, tested logic and the expected output to validate correctness
for example with regard to Port/Wildcard management.

Lastly, Section 4.5 will define the key metrics for validation (primarily the consistency
of results — SAT/UNSAT — between the two phases) and will summarize the results of
the validation, confirming the logical correctness of the stateful model and justify moving
forward to assess performance (Objective 2).
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4.1 Methodological Overview

To validate the logical correctness (Objective 1, Section 3.2) of the stateful firewall
configurations produced by VEREFOO as being consistent with the specified Network
Security Requirements (NSRs), we employed a rigorous cross-validation methodology,
utilizing the framework in two distinct operational modes: First as a refinement engine
and then as a verification engine, thus providing a cross-check on the outputs [6].

The test case execution workflow can be described as follows:

Phase 1: Refinement

e Inputs: The test case is initiated with an XML input file obtained from the
StatefulCorrectness test suite. The file represents the Service Graph (SG) topol-
ogy, network functions and a set of NSRs.

¢« Execution: VEREFOO executes in refinement mode. The framework converts
the inputs into formal representations and formulates the problem as a MaxSMT
instance and invokes the z30pt solver [7].

o Output: If the problem is solvable (SAT), z30pt generates an optimal solution
consisting of firewall allocation and a set of concrete filtering rules.

Phase 2: Verification

e Input: This phase utilizes the same original topology and NSRs as input, plus the
firewall configuration generated by Phase 1.

e Execution: A second instance of VEREFOO is invoked in verification mode. In
this mode, the framework seeks to verify that the given configuration satisfies all
requirements by formulating an SMT problem for each one [3].

o Output: The output of this phase is a Boolean value (SAT/UNSAT) for each
requirement, indicating whether the generated configuration satisfies the requirement
or not.

The Test Runner is a dedicated Java class, TestStatefulFirewallPolicy. java,
which orchestrates the entire cross-validation process. At an implementation level, the
Test Runner facilitates communication between the two phases using the file system.
When the refinement phase has produced a SAT result, the resultant configuration (an
instance of the Allocation Graph) is serialized by the VerefooSerializer into a new
temporary XML file. Within this file, the graph attribute is set to serviceGraph="false"
to signal that it is a static configuration to be verified. Following serialization, the Test
Runner invokes the verification phase upon this temporary file. After the verification
phase completes, the temporary file is removed.

A successful validation for a test case is defined by the Consistency of Results: If
the refinement phase produces a valid configuration (SAT result), the verification phase
should confirm that the valid configuration satisfies all NSRs. Any inconsistencies could
indicate an Error in the Formal Logic of the Framework.

56



4.2 — Test case selection criteria

NETWORK SECURITY VEREFO0 OPTIMAL CONFIGURATION
REQUIREMENTS (NSRs) = REFINEMENT (Firewall Allocation &
PROCESS Filtering Rules)
A
MaxSMT Problem
Formulation (z30pt)
PHASE 2: CROSS-CHECK (VERIFICATION) — FROZEN CONFIGURATION ——
\ 4
NETWORK SECURITY VEREFOO VERIFICATION RESULT
REQUIREMENTS (NSRs) (——{ VERIFICATION PROCESS SAT UNSAT
(Same as Phase 1) (Verigraph-analogue) (Satisfiable) | | (Unsatisfiable)
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Figure 4.1: Flowchart of the cross-validation methodology used for correctness validation.
The process is divided into a Refinement phase, which generates the configuration, and a

Verification phase, which checks its correctness against the initial requirements.

4.2 Test case selection criteria

The criteria used for choosing test cases for the validation of correctness (Objective 3.2) is
based upon the necessity of checking the most logically complicated parts of the framework,

developed for the management of the semantics of states (Section 2.5).

Based on these criteria the following coverage objectives have been defined; these have
been created in order to "test" the most critical aspects of the implementation of the

framework:

NAT and State Inversion: Verifies the correctness of the inversion of the 5-tuple
(t71) after the rewriting performed by a NAT. An inversion failure would invalidate
the functioning of conditional permissions (ALLOW_COND) [4].

Multi-firewall and Distributed Consistency: Demonstrates that the MaxSMT
model produces globally consistent configurations in topologies with multiple in-
stances of firewalls, validating the theoretical advantage (described in Section 2.6.1)
of eliminating the need for synchronization of run-time.

Multiple Flows and Logical Segregation: Verifies that the application of the
ACTION ALLOW_COND to a flow (for example, from client A) does not inadvertently
permit the transit of unrelated flows (for example, the return traffic of client B)
through the same instance of the firewall [5].

L4 Variants and Protocol: Validates the robustness of the logic of matching and
inversion on complex predicates, including specific ports, port ranges and wildcard
protocols (for example, TCP, UDP, ANY).
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o Expected Failure Test (Negative Test): Verifies that the framework correctly
returns UNSAT (unsatisfiability) when the input is deliberately unsatisfiable (for
example, conflicting Reachability and Isolation requirements), demonstrating the
robustness of the model.

Each test case was designed to represent a specific and recurring criticality in the real
world use of stateful firewalls in distributed architectures, in order to exclude errors of
implementation in the most complex formal logic of the framework.

4.3 Inventory of tests

The suite of tests for the validation of the logical correctness of the framework was developed
to systematically cover all the criticalities identified in Section 4.2. The tests are organized
into categories of function, each aimed at validating a specific aspect of the VEREFOO
formal model for stateful firewalls. All tests are located in the StatefulCorrectness
directory and use XML files as input for the framework.

Tests Basic (Validation of a single NSR) Before dealing with complex scenarios, it
was necessary to validate the behavior of the framework on minimal topologies with a
single type of requirement at a time. SimpleReachabilityProperty.xml validates the
generation of a stateless ALLOW rule for a simple reachability requirement between two
nodes (WEBCLIENT — WEBSERVER), where traffic is permitted in general terms. Instead,
StrongReachabilityProperty.xml is focused on the concept of initialization of the con-
nection: it verifies that the traffic flows from the source to the destination specifically as a
forward flow (NEW state), distinguishing itself from simple reachability as it does not autho-
rize such traffic to be simply a response. IsolationProperty.xml validates that the frame-
work correctly generates DENY rules or uses the default action to block unwanted traffic.
ConditionalReachabilityProperty.xml is a test designed to be intentionally UNSAT: an
isolated ConditionalReachabilityProperty requirement (without the corresponding for-
ward flow initializing the connection) cannot be satisfied, and therefore this test verifies that
the z3 solver correctly returns UNSAT. The ConditionalReachabilityProperty2.xml file
extends the previous test by introducing the ReachabilityProperty necessary to make
the conditional requirement SAT; this property, in fact, authorizes the initial traffic flow,
allowing the creation of the related entry in the State Table and therefore making pos-
sible the conditioned response. WS2WCIsolation.xml tests the isolation in the opposite
direction (Server — Client), verifying the symmetry of the model.

Tests NAT (Validation of 5-Tuple Inversion) This category is the most important
because NAT introduces address and port rewriting, therefore it requires the correct 5-tuple
inversion (¢t~!) for return traffic [4]. NAT.xml is the most complex test: it uses a 6-node
topology with 3 NATs (Figure 4.3) and verifies that the framework correctly calculates the
composition of series NAT transformations, also managing the flows between nodes behind
different NATs. NAT2.xml validates the management of multiple flows through the same
NAT (two clients towards a server), verifying that stateful rules do not generate interference
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and that the mixing of different semantics (stateful for one client, stateless for the other)
is managed correctly. NAT3.xml extends NAT2.xml by introducing a second server, testing
whether the NAT correctly distinguishes the flows toward different destinations and if the
5-tuple inversion takes the destination address into consideration.

NAT Config:

Source NAT for
WEBCLIENT 3370,

10.0.0.1 30.0.0.1

NAT Config:

Source NAT for
30.0.0.1,30.0.0.2 WE:;%SERVER

e
NAT Config:
T fi
WEBCLIENT 15051 ™  NAT
11.0.0.1 30.0.0.2

MNAT Config:
Source NAT for

WEBCLIENT FORWARDER
10.0.0.1 20.0.0.1

NAT STATEFUL_ WEBSERVER

30.0.0.3 FIREWALL 30.0.5.2
FORWARDER Firewall Config:
20.0.0.4 Default DENY, ALLOW_COND
WEBCLIENT FORWARDER NAT 30.0.0.3->30.052

11.0.0.1 20002 30.0.0.2

Bottom: VEREFOO output.
Bottom: VEREFOO output.

Figure 4.2: Top: Service graph of the NAT.xml configuration.
Bottom: VEREFOO output.

Tests with Multiple Flows (Validation of Logical Segregation) These tests
verify that the stateful rules for the concurrent flows toward the same firewall do not
generate security interferences [5]. 3Node_S-S-Reachability_Isolation.xml tests two
stateless clients toward the same server, with return traffic isolation, verifying the
absence of overly permissive rules. 3Node_S-STR-Reachability_Isolation.xml is a
critical test of interference between stateless and stateful semantics: one client has
ReachabilityProperty, the other has StrongReachabilityProperty, but for both there
is an IsolationProperty on return traffic. The test verifies that the framework allows
the forward flows but rigorously blocks the responses, without generating overly permissive
rules. MultipleFlow_ConditionalStates.xml is the main test for logical segregation:
two client-server pairs traverse the same stateful firewall, and the test verifies that the rules
ALLOW_COND use the full 5-tuple to distinguish the connections, preventing a client from
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receiving traffic destined to the other. 4Node_ServerUpdateScenario_Conditional .xml
represents a realistic communication server-to-server scenario: clients communicate with a
first server, which in turn communicates with a second server (for example, a database),
testing the management of stateful communication chains.

Tests with Layer 4 Specification (Validation of Rule Matching) These tests
validate the behavior of the formal model when the requirements specify protocols, ports
or port ranges. L4&PROTO_MultipleFlow_ConditionalStates.xml is a variant of the
multiple flow test with explicit Layer 4 specification: it verifies that the rules ALLOW_COND
include exact protocol and ports (for example, TCP src=12345 dst=80), that the rules
of isolation with port ranges do not conflict, and that the mixing of different protocols
(TCP, UDP) is correctly managed. L4&PROTO_ComplexScenario.xml is the most complex
test in the suite: 9 nodes (3 clients, 3 servers, 3 cascaded firewalls) with 18 heterogeneous
requirements, each with L4 specification. It validates the consistency of multi-firewall
configurations with protocols and port constraints, the management of edge cases (ANY,
TCP, UDP protocols), and the robustness of the MaxSMT solver on problems with high
combinatorial complexity [6].

Test with Complex Scenario (Validation of Logical Scalability)
ComplexScenario.xml shares the same topology as L4&PROTO_ComplexScenario.xml (9
nodes, 18 requirements, 3 firewalls), but abandons the transport layer details using wild
cards for ports and protocols. The purpose of this test is to validate the ability of the
framework to correctly manage the generic requirements (for example, "all the traffic
from A to B is allowed") in a multi-firewall configuration, verifying that the absence of
specifications on the transport layer does not generate ambiguity in the generation of the
rules of state or conflicts with the policies of isolation in non-trivial scenarios.

In conclusion, the motivation and statistics of the overall suite FEach test
represents a criticality recurrent in the use of stateful firewalls in distributed architectures
in the real world. The suite covers a wide range of complexities: from minimal topologies
(2 nodes, 1 requirement) to realistic scenarios (9 nodes, 18 requirements, 3 firewalls).
In total, the suite includes 16 distinct tests, with node numbers varying from 2 to 9,
numbers of NSRs varying from 1 to 18, and number of allocated firewalls varying from 0
(unallocated graph, to be optimized) to 3 (already allocated graph, to be verified). The
tests were designed to "test" the most complex logic of the framework (inversion of state
after NAT, distributed consistency of multi-firewalls, segregation of flows concurrent, L4
matching) and to eliminate errors of implementation even on edge cases. In the following
Sections (Section 4.4), some representative tests will be analyzed in detail, showing the
XML input, the generated output and the analysis of the rules.

Table 4.1 reports the main characteristics of each test included in the suite.
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Test Case Category Nodes | NSRs FW Validated Criticality
SimpleReachabilityProperty.xml Base 2 1 TBD | Basic stateless rules
StrongReachabilityProperty.xml Base 2 1 TBD | First stateful semantics (ALLOW_COND)
IsolationProperty.xml Base 2 1 TBD [ DENY rules and default action
ConditionalReachabilityProperty.xml Base (UNSAT) 2 1 TBD | Expected failure test
ConditionalReachabilityProperty2.xml Base 2 2 TBD | Stateless/stateful mixing (edge case)
WS2WCIsolation.xml Base 2 1 TBD | Reverse isolation (model symmetry)

NAT. xml NAT 6 3 TBD Chain of 3 NATSs, composite inversion
NAT2.xml NAT 4 4 TBD | Multiple flows through 1 NAT

NAT3.xml NAT 5 6 TBD | NAT 4 multiple destinations
3Node_S-S-Reachability_Isolation.xml Multiple Flows 3 4 TBD | 2 stateless clients, same server
3Node_S-STR-Reachability_Isolation.xml Multiple Flows 3 4 TBD Stateless/stateful interference
MultipleFlow_ConditionalStates.xml Multiple Flows 5 1 1 5-tuple segregation, 2 stateful Hows
4Node_ServerUpdateScenario_Conditional.xml Multiple Flows 4 6 TBD | Client-server-server chain (stateful)
L4&PROTO_MultipleFlow_ConditionalStates.xml Layer 4 5 6 1 L4 Matching (ports, protocols, range)
L4&PROTO_ComplexScenario.xml Layer 4 9 18 3 Complex multi-FW scenario with L4 constraints
ComplexScenario.xml Scalability 9 18 3 Baseline without L4 constraints (wildcard)

Table 4.1: Inventory and characteristics of the Logical Correctness test suite.

Legend:
o Nodes: Total number of nodes in the topology (client, server, NAT, firewall).
e« NSRs: Number of Network Security Requirements specified in the input.

o FW: Number of firewalls already present in the input graph. “TBD (To-Be-Defined)”
indicates that the graph is unallocated (serviceGraph="true") and the framework
must decide where to allocate firewalls during the refinement phase. A specific
number (1, 3) indicates that the graph is already allocated (serviceGraph="false")
and the test validates only the configuration correctness.

e Validated Criticality: Main technical aspect tested by the case.

4.4 Representative tests

The purpose of this section is to provide detailed information about four representative
test cases that were developed to prove the hardest challenges of the VEREFOO formal
model for stateful firewalls. Each test contains the topology, the critical needs, and the
validation logic associated with each test.

4.4.1 NAT3.xml: 5-Tuple Inversion and Multiple Destinations
This test case is used to verify the correctness of the 5-tuple inversion (¢~!) after a NAT

rewrite operation, while also managing the combination of stateful and stateless semantics.

Operational Scenario The operational topology is composed of 5 nodes: 2 clients
(10.0.0.1, 10.0.0.2) connected to a NAT (30.0.0.1) which performs Source Network Address
Translation (SNAT); 2 destination servers (30.0.5.1, 30.0.5.2); and a single firewall. There
are six heterogeneous Network Security Rules (NSRs):

o Client 1 = Server 1: Stateful bidirectional semantics (Strong + Conditional).
e Client 2 — Server 1: Stateless unidirectional semantics, with explicit return isolation.

¢ Client 2 = Server 2: Stateful bidirectional semantics.
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NAT Config:
Source NAT for
WEBCLIENT  [SEiee ee W%%SOE5R¥ER

10.0.0.1 ’
NAT
2000.

WEBCLIENT WEBSERVER
10.0.0.2 30.0.5.2

Network Service Requirements (NSRs)

©) StrongReachability: 10.0.0.1 to 30.0.5.1 (TCP) () Isolation: 30.0.5.1 to 10.0.0.2 (ANY, src:1-100, dst:1-100)
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© Reachability: 10.0.0.2 to 30.0.5.1 (TCP, src:123, dst:80) () ConditionalReachability: 30.0.5.2 to 10.0.0.2(TCP)

Figure 4.3: Topology of test NAT3.xml: post-NAT 5-tuple inversion towards multiple
destinations.

Validation Logic The test case evaluates three major aspects of the formal model:

1. 5-tuple inversion: The model must correctly compute ¢!, taking into account
that the source address has been rewritten by the NAT (it becomes 30.0.0.1) [4].

2. Destination disambiguation: Because Client 2 communicates with two different
servers via the same NAT, the framework must use the complete 5-tuple (including
the original destination IP) to identify the return flow; otherwise, a routing ambiguity
could occur.

3. Hybrid Isolation: The test verifies whether the ALLOW_COND rule generated for
Server 2 is not over-permissive and does not incorrectly allow return traffic from
Server 1 (which must be rejected).

Expected output: The expected output is SAT in both phases (Refinement and
Verification).

4.4.2 MultipleFlow_ConditionalStates.xml: Simultaneous Flow Separa-
tion

The purpose of this test case is to prove that there is no logical interference among multiple

concurrent stateful flows passing through the same firewall instance.

Operational Scenario Two client-server pairs (10.0.0.1 = 30.0.5.4 and 10.0.0.7 =

30.0.5.6) exchange data through a central firewall (20.0.0.3) with a previously allocated
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Firewall Config: ﬁ
Default DENY

WEBSERVER
30.0.5.4

WEBCLIENT
10.0.0.1

STATEFUL_FIREWALL
20.0.0.3
WEBCLIENT WEBSERVER
10.0.0.7 30.0.5.6

Network Service Requirements (NSRs)
© StrongReachability: 10.0.0.1 to 30.0.5.4 (©) StrongReachability: 10.0.0.7 to 30.0.5.6
© ConditionalReachability: 30.0.5.4 to 10.0.0.1 ) ConditionalReachability: 30.0.5.6 to 10.0.0.7

Figure 4.4: Topology of test MultipleFlow_ConditionalStates.xml: concurrent flow
segregation.

5-node graph. Four symmetric stateful NSRs (Strong + Conditional) are enforced for
each pair.

Validation Logic The test simulates a possible attack scenario where a malicious (or
compromised) server tries to inject traffic into another session. Validation is focused on
the specificity of the generated ALLOW_COND rules:

o If Client A establishes a connection to Server A, the firewall generates a dynamic
rule.

o If Server B sends a packet to Client A, the model must reject it.

For the test to pass, the framework must create constraints using the full 5-tuple. A
constraint-based solely on source or destination IP would be too lax, allowing cross-talk
among sessions.

Expected output: Expected output is SAT in both phases, proving that segregation
is correct.

4.4.3 L4 & PROTO_ComplexScenario.xml: Distributed Consistency with
Layer 4 Constraints

This test case is the most complex in the suite, developed to validate distributed consistency
across a firewall chain without run-time synchronization, and to include specific Layer 4
constraints (ports and protocols).
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10.0.0.1 (A) 10.0.0.2 (B) 10.0.0.3(C) TN
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- X-->A 80 123 TCP Conditional Reachability
A->Y |10 11 TCP Reachabiiity
y Y->A |11 10 TCP Conditional Reachability
= A-->Z | 111 111 ANY Isolation

Z-->A | 222 222 ANY Isolation

\ B—>Y | 12380 TCP Strong Reachability

\5\ Y-->B | 80123 TCP Conditional Reachability
\\ B->X | 99 100 TCP Reachability
L X-->B | 10099 TCP Conditional Reachability
20.0.0.1 (FW1) B->Z |34 ANY Isolation
Firewall 1 Z-->B | 12UDP Isolation
[/ 1]
A C-->Z | 32180 TCP Strong Reachability
Z-->C | 80321 TCP Conditional Reachability
C-->X | 1080 TCP Reachability
X-->C | 8010 TCP Conditional Reachability
C-->Y | 1112UPD Isolation
20.0.0.2 (FW2) 20.0.0.3(FW3) y_>c 1211uPD Isolation
Firewall 2 Firewall 3
™= '—ﬁ [y kil

e
\ e

30.0.0.1 (X) 30.0.0.2 (Y) 30.0.0.3 (2)
WebServe WebServer WebServer

Figure 4.5: Topology of test L4&PROTO_ComplexScenario.xml: firewall chain with L4
constraints.

Operational Scenario The operational topology is a 9-node graph with 3 Clients and
3 Servers, separated by a 3-firewall chain (a front-end and two back-end). The system
must meet 18 heterogeneous NSRs that specify protocols (TCP, UDP, ANY) and particular
ports (e.g., stc=123, dst=80).

Validation Logic This test case emphasizes the ability of the MaxSMT solver to
manage large combinatorial complexities by verifying four conditions:

1. Distributed Consistency: All firewalls involved in a flow (for example, 20.0.0.1
and 20.0.0.2) must agree on the ALLOW_COND rules generated during the refinement
process, as they represent a single atomic solution [7].

2. L4 Matching: The generated rules must respect the specified ports and correctly
perform inversion (example: request dst:80 — response src:80).
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3. Protocol Hierarchy: An ANY rule (generic for isolation) cannot replace or invalidate
a TCP rule (specific for reachability) and vice versa.

4. TCP / UDP Mixing: The framework must distinguish flows based on their trans-
port protocol and avoid conflict between UDP isolation rules and TCP permissions
on the same node.

Expected output: Expected output is SAT in both phases.

4.4.4 ConditionalReachabilityProperty.xml: Failure Test (UNSAT)

)« —@

WEBSERVER
WEBCLIENT 30.0.5.2

10.0.0.1

Network Service Requirements (NSRs)
© ConditionalReachability: 30.0.5.2 to 10.0.0.1

Figure 4.6: Representation of test ConditionalReachabilityProperty.xml: absence of
the forward flow.

This failure test is essential to show the model’s ability to detect logical inconsistencies
and to verify that the framework does not produce "magic" solutions that violate the
specifications when the required conditions are impossible to meet [6].

Operational Scenario The operational topology consists of only 2 nodes, one of
them being a single requirement: a ConditionalReachabilityProperty from Server to
Client. The StrongReachability property (the forward flow) necessary to initiate the
communication is intentionally absent.

Validation Logic The test case creates a logical contradiction for the formal model:

o The requirement necessitates that return traffic be permitted (Server — Client).

e By definition, the ALLOW_COND action requires that there exist a previous state,
created by a forward flow, to permit the return flow.

e Since the forward flow is not permitted by any requirement, the state cannot be
created.
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Therefore, the z3 solver must find this unresolved circular dependency and report that
the problem is unsolvable (UNSAT).

Expected output: Expected output is UNSAT in the Refinement phase. A SAT result
indicates a serious logical error (violation of conditional semantics).

4.5 Conclusion

The test suite has enabled the validation of Objective 1 (Logical Correctness) according
to the success criteria defined in Section 3.2.
The validation was performed using two major criteria:

» Positive Case (Reachability /Isolation Test): A test is successful (SUCCESS) if
and only if Phase 1 (Refinement) returns SAT (an optimal configuration is found)
AND Phase 2 (Verification) returns SAT (such configuration meets the NSRs).

o Negative Case (Expected Failure Test): A test designed to be unsatisfiable
(like ConditionalReachabilityProperty.xml) is successful (SUCCESS) if Phase 1
(Refinement) correctly reports UNSAT.

Successful completion of the entire test suite, that covers all the criticalities (Section 4.2)
and representative cases (Section 4.3) of the formal model, proves the logical correctness
of the formal model. These results demonstrate that the implementation of stateful
semantics (Section 2.5) is correct and that the refinement process (Section 2.4) produces
configurations that are consistent with the verification model.

With the logical correctness of the model demonstrated, the analysis may continue
with the evaluation of Objective 2. The scalability and performance of the framework,
and the effect of stateful constraints on complex scenarios, will be analyzed in Chapter 5
and 6 respectively.
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Chapter 5

Scalability Test Case Design for
Performance Evaluation

Chapter 4 has enabled the evaluation of the logical correctness of the stateful extension of
the VEREFOO framework, validating through specific tests whether the configurations
generated by the framework meet the security requirements without inducing inconsisten-
cies. Formal correctness is just one of the two fundamental goals of this thesis; the other
goal, which is no less important than the first, is the capacity of the framework to provide
efficient operation on large-scale and complex networks [7].

This Chapter is completely devoted to the design and definition of the testbed (the test
case) that will be used for the performance and scalability validation. In order to ensure
that the experimental results obtained are meaningful and usable in real-world scenarios,
generic synthetic topologies are insufficient; therefore, a model representative of the
structural and operational difficulties of a modern critical infrastructure is needed [10, 16].

Section 5.1 illustrates the reference model chosen for this analysis: the Texas 2000.
The characteristics of this cyber-physical system, representative of a Smart Grid electric
network, will be shown, and the reasons why it is the ideal candidate to test the optimization
potential of the framework, due to its intrinsic hierarchical complexity and criticality of
its services, will be analyzed [2,13].

Section 5.2 will analyze the network architecture from both the topological and
functional points of view. From a simplified logical model, it will move to a complex
and rigorously segmented topology, designed to respect industrial security standards (like
NERC-CIP-005-7 [12]), in which the key components, demilitarized zones (DMZs) and
security perimeters, will be recognized [9] that constitute the core of the test case.

Finally, Section 5.3 will focus on modeling the operational flows crossing such an
infrastructure. Protocols typical of this area (industrial and management) (DNP3, ICCP,
SQL, and HTTP) will be studied and it will be explained how these operational flows
can be formally translated into a complete set of NSRs (Network Security Requirements),
necessary to direct the policy generation process [1,16].
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5.1 The Texas 2000 Model: Context, Scope, and Relevance

5.1.1 Architectural Characteristics and Operational Context

uce

BES 3
\“/ (Control Center)
CC
Control Center)

Figure 5.1: Schematic representation of the hierarchical topology of Texas 2000. The
diagram illustrates the interconnection between Control Centers (UCC) and Substations
(SS) clusters, highlighting the distributed nature of the model [13].

To validate the scalability (Objective 2) of the performance of the framework, it
is essential to identify a test case that represents a realistic, complex, and large-scale
environment. We have selected the Texas 2000 model. It is not a generic topology, but a
synthetic yet plausible model of the Texas electrical transmission grid [2,13].

Why did we choose this model? The main reason is its nature: it is an electrical
network (a smart grid) — a mission-critical infrastructure [10]. Smart grids differ from
corporate networks: they are complex CPS (cyber-physical systems) in which physical
operations (electric energy distribution) are strictly controlled by a digital communication
infrastructure [13].

The purpose of this model is to demonstrate the importance of security of this
communication infrastructure for the stability of the physical grid. Therefore, reliability
is regulated by strict standards (like NERC-CIP-005-7) [12], and this realistic model will
allow us to verify VEREFOOQ’s capability to generate stateful firewall configurations in a
scenario requiring the rigorous network segmentation (e.g. isolation of Control Centers
from Substations), required by such standards [10].

The Texas 2000 model, which is initially a physical model of buses and transmission
lines, has been extended with a communication model, in which there are also cyber-
components (routers, switches, firewalls, RT'Us, IEDs) [13]. The resulting architecture is
therefore inherently hierarchical and is based on two main types of logical nodes, which
will serve as the basis of our scalability analysis (as described in Section 5.2):
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« UCC (Utility Control Center) — regional control centers (or Balancing Authori-
ties) from which grid operations are managed [13].

o SS (Substations) — electric substations located throughout the territory, containing
physical devices [13].

Therefore, using this model enables testing VEREFOO’s stateful refinement (which is
necessary to represent industrial protocols such as DNP3, see Section 5.3) in a realistic,
complex and large-scale topology, thus enabling a robust empirical validation of its
computational scalability [7].

5.1.2 Suitability for the scalability benchmark

The choice of the Texas 2000 model (see Section 5.1) is not random and responds to
a specific methodological necessity for the verification of Objective 2. As reported in
Section 3.1, the major obstacle of VEREFOO is its theoretical computational complexity,
which is NP-complete [3]. Moreover, this complexity is increased by the introduction
of stateful semantics (see Section 2.5), which add a significant computational load for
managing bidirectional flows and conditional constraints (®) of Formula 2.4 [14].

A valid scalability test should therefore not be limited to increase the number of nodes,
but must test the framework in a realistic, complex and large-scale scenario. The Texas
2000 model meets all three requirements:

e Large Scale — The Texas 2000 model, in its full representation, represents a
large-scale electric transmission grid, possibly consisting of thousands of nodes
(buses, substations and control centers) [2,13]. Even though, for the purposes of our
experiments, we will utilize a parametric generator (see Section 5.2), the ability to
scale on this topology provides a clear evidence of the framework’s computational
feasibility (usability) in non-trivial cases.

» Topological Complexity — Unlike simple linear topologies (chains) or full mesh,
the Texas 2000 model exhibits a complex hierarchical topology (Control Centers /
UCC manage clusters of Substations / SS). Protecting this infrastructure requires
a rigorous network segmentation (i.e., e.g., DMZ zones for isolating the control
network from the corporate network or from external access) [9]. This topological
complexity increases the number of possible paths and the difficulty of the allocation
and configuration problem (MaxSMT solver) to be solved.

+ Requirements Complexity (Stateful): Stateful semantics are the most relevant
factor. A Smart Grid network uses only Web protocols, while it is based on industrial
protocols (SCADA) like DNP3 or ICCP [13,16]. These protocols are characterized
by being bidirectional and therefore require the use of state tracking. For example,
an ICCP communication between a server in a BA and a node in a UCC requires
a forward flow for the request and a backward flow for the response. Such a
scenario cannot be correctly represented with simple ALLOW actions (stateless),
but requires the use of the stateful semantics introduced in Section 2.5, specifically
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the combined use of StrongReachabilityProperty (for the forward flow I#*) and
ConditionalReachabilityProperty (for the backward flow [#¢).

In conclusion, the Texas 2000 model is suitable for us as a scalability test because it
allows measuring the simultaneous effects of a large-scale topology, a complex hierarchical
structure and a set of realistic security requirements that heavily rely on the stateful
extension of the framework. This will enable the empirical validation of the efficiency of
VEREFOO’s optimizations (see Section 2.6.2) in a mission-critical scenario compliant
with industrial standards (NERC-CIP-005-7) [10,12].

5.1.3 The Model’s Logical Organization

The Texas 2000 model, selected as a case study for assessing scalability (Objective 2), relies
on an electrical grid communication structure based on the same operational organization
of actual power grids. The logical organizational hierarchy of the Texas 2000 model
is centered around a star topology that can be divided into three logical levels (see
Figure 5.1) [13]:

« Balancing Authority (BA)/ISO: The highest level is the central control unit (for
example, ERCOT) that is in charge of the overall balance of the electric grid [13,16].

o Utility Control Center (UCC): At the second level, regional control units
supervise the different substations (via SCADA and EMS systems) [13].

o Substations (SS): At the third level, distributed physical plants contain the field
equipment (for example, RTUs, relays) [13].

The central tenet of this structural design is separation: communication generally
occurs vertically (from the BA down to the UCC and then to the SS) and rarely horizontally
(between UCCs) [10,16].

In terms of developing a cyber-physical model of this structure, there are two principal
ways of representing the star topology found in the literature, each differing in level of
detail and degree of compliance with industry regulation:

o Simplified Functional Model (Model 1): This representation, depicted in
Figure 5.2, emphasizes functional connections [13]. It includes some form of segmen-
tation (for example, a single DMZ for services that are openly available to the public
(for example, a Web Server)) [9]. Although useful for the preliminary operational
evaluation, this model does not represent the strict security requirements that are
currently placed upon modern critical infrastructures.
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Figure 5.2: Functional Model [13], showing the basic topology of UCC, BA, Substation,
and a single DMZ.

o NERC-CIP-005-7 Compliant Model (Model 2): This model, shown in
Figure 5.3, is an expanded version of the original model that reflects the need for
regulatory compliance under the NERC-CIP-005-7 standard [12] that stipulates:

“‘to provide management of electronic access to BES Cyber Systems by
defining a controlled Electronic Security Perimeter for the protection of
BES Cyber Systems from compromise” [12].

This model specifically defines the Electronic Security Perimeter (ESP) required
for the segregation of the operational network (OT) and dictates that DMZs be
implemented as the technical means of implementing an ESP, functioning as buffer
zones to segregate Critical Cyber Assets from outside networks and from corporate
networks (IT) and other OT zones [10,12]. This model further expands upon
the original model by adding additional specialized DMZs based on function (for
example, SCADA DMZ, BA DMZ, Public DMZ, Substation DMZ).
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Figure 5.3: Complex NERC-CIP-005-7 Compliant Model, showing the detailed topology
with multiple firewalls and DMZs [9, 11].

A hybrid methodology was selected to pursue the goals of this dissertation. The
foundation of the methodology was the Simplified Functional Model (Model 1) (Figure 5.2),
which served as the topological basis for constructing the test case. From this base, only
those components, protocols, and specialized DMZs that were necessary to construct a
realistic test bed were added to the model incrementally, as described in the Complex
Model (Model 2) (Figure 5.3). This hybrid methodology fulfilled two purposes: on the one
hand, it allowed for the verification of the stateful semantics of industrial protocols such
as DNP3 and ICCP; on the other hand, it allowed for the limitation of the computational
complexity of the model in order to enable scalability analysis (Objective 2). Thus, the
unnecessary overhead resulting from modeling the full compliant topology was eliminated.
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5.2 Scalability Test Case Analysis

To develop a scalable test case (Objective 2) that is both realistic and relevant, a model (the
simplified functional model) (Figure 5.2) of primary logical interconnections is insufficient
[13]. That model is completely abstracted from the stringent network segmentation
that is required for critical infrastructures by industry regulations [10]. Therefore, it
is essential in this section to analyze the functional components of the basic model
(Section 5.2.1), and then map them to a segmented and standards compliant network
architecture (Section 5.2.2). This process is essential in order to demonstrate that the
development of the basic topology toward the hybrid and compliant model that will be
utilized for testing in Chapter 6, is justified. Our objective is to confirm that our test case
is realistic enough to allow for the examination of industrial protocols (such as DNP3,
ICCP) that will be examined in Section 5.3.

5.2.1 Functional Components of the Basic Topology (Simplified Model)

The basic architecture (Model 1) (Figure 5.2) presents the macro-components that define
the primary functionality [13]. The identification of these elements is the first step to
understand the primary flow of data. The functional components that are identified are:

o ICCP Server (in the BA): This is the exclusive component of the Balancing
Authority that enables the management of the Inter-Control Center Communication
Protocol (ICCP). It is the logical termination of the exchange of real time balancing
data and telemetry between the utility control center (UCC) and the Balancing
Authority [13].

o« DMZ (in the UCC): The Demilitarized Zone represents an isolated area of the
network (a buffer zone) within the Utility Control Center. As shown in Figure 5.2,
the purpose of the DMZ is to house services that require exposure to external
networks (for example, the Internet, or corporate networks), while protecting the
internal control network [9,16].

o Web Server (in the DMZ): It is the primary service housed in the DMZ of the
Utility Control Center. It provides a data access interface (often via a web-based
HMI) for remote operators, corporate partners (utility partner), or maintenance
technicians (vendors) without direct access to internal critical systems [13].

o« EMS (Energy Management System): It is the operational 'brain’ of the Utility
Control Center. The EMS is the software system that aggregates data received
from the SCADA network, performs real time analysis, supports operator decision
making, and transmits control instructions to the substation(s) [13,16].

« RTU (Remote Terminal Unit): Located in the substation (SS), the RTU acts
as the primary interface between the physical world (field devices) and the digital
control network. The RTU collects measurement data from field devices (for example,
relays) and transmits it to the Utility Control Center, typically using the DNP3
protocol [1,13].
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+ Relay Controller (in the substation): It is the device that coordinates and
manages intelligent protection relays (IEDs). It is responsible for the local automation
of the substation (for example, performing rapid isolation of a fault detected by
sensors (CT/PT) prior to receiving a command from the Utility Control Center [13]).

5.2.2 Development toward a Compliant Model (Complex Model)

Although the functional components identified in Section 5.2.1 are correctly organized,
they are structured in a topology (Figure 5.2) that does not comply with current security
standards for critical infrastructures. Reference Regulation NERC-CIP-005-7 mandates
the creation of secure boundaries (Electronic Security Perimeters) to protect "Critical
Cyber Assets" (CCA) [12]. The segmentation created by the reference regulation results
in the utilization of a multi-firewall architecture and the extensive utilization of multiple
specialized DMZs as presented in the Complex Model (Figure 5.3) [9]. Therefore, to
create a realistic test case that is capable of transmitting industrial protocol flows (that
will be examined in Section 5.3), our hybrid topology must be developed to include this
segmentation. We identify the following DMZs that derive from the Complex Model, that
are applicable to the test case:

o« SCADA DMZ (in the UCC): This is the most sensitive security zone. It creates a
barrier to isolate the real time industrial control systems (SCADA Server, Historian
(PI Server), DNP3 Master) from other areas of the network [9, 16].

« BA DMZ (in the UCC): A DMZ is created to isolate the communications
that occur between the Utility Control Center and the Balancing Authority. It
contains the BA ICCP Node, which acts as a gateway for the ICCP protocol, thereby
preventing the Balancing Authority from having a direct connection with the internal
SCADA network [9].

o Public DMZ (in the UCC): Replaces the single DMZ of the simple model. It
houses the services that require (stringently controlled) access from external networks
(for example, the Web Server and the public database (frequently a replica of the
Historian)) [9].

o Corporate/Vendor DMZ (in the UCC): Additional network segments are
created to establish individual access perimeters for corporate partners (Utility

Partner) or maintenance personnel (Vendors). These nodes have limited access only
to the Public DMZ [9].

o Substation DMZ (in the SS): The substation also has internal segmentation.
This DMZ is established to segregate the local servers (for example, Local Database,
Local Web Server) from the operational control devices (RTU, Relay Controller) so
as to prevent local HMI access from compromising the protective network [9].

Implementing this segmented architecture (Model 2) is a necessity for our test case.
This model establishes the security perimeters (firewalls) through which the industrial
protocol flows (DNP3, ICCP, SQL, HTTP), that we will examine in the next section,
must pass in order for us to specify realistic and compliant stateful NSRs.

74



5.3 — Protocol Modelling & Requirements Definition (NSRs)

5.3 Protocol Modelling & Requirements Definition (NSRs)
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Figure 5.4: Hybrid Reference Topology used for protocol analysis and NSR definition.
This architecture combines the hierarchical structure of Model 1 with DMZ segmentation
(SCADA, BA, Public, Substation) and specific components of Model 2 [9,13].

Following the description of the topological evolution of the system architecture from
a simple functional architecture (Figure 5.2) to a segmented one (Section 5.2.2), the next
step is to identify and describe how communications flow through this newly segmented
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system. In this section we will:

o Identify the key network protocols typically found in an actual SCADA system [16].

o Develop Stateful Network Security Requirements (NSRs) that will be applied to
validate against these networks protocols, as described above [16].

Here arises a methodological critical issue: industrial and management protocols
(DNP3, ICCP, SQL) are used between specific components (e.g. DNP3 Master, PI Server,
BA ICCP Node) that are easily identifiable in the Complex Model (NERC-CIP-005-7
compliant) [9], but not necessarily always directly or homonymously represented in the
simple model [13]. For example, the generic node "EMS" of Model 1 is logically related to
the entire "SCADA DMZ" (which includes the DNP3 Master and PI Server) of Model
2 19].

Thus, to create our test case, we must augment the simple model by creating equivalents
to the missing nodes or adding segments (the DMZ) as derived from the Complex Model.
This augmentation will allow us to achieve a hybrid topology that adequately represents
the needed protocol flows.

Our Hybrid Reference Topology, which combines the Model 1 base model with the
Model 2 segmentation and components, is illustrated in Figure 5.4. This figure will provide
a common reference point for the analysis of all the protocols that follow (5.3.1 - 5.3.4),
eliminating the need to depict the topology for each individual subsection [9,13].

The subsequent subsections will individually review each key protocol in detail, referring
to Figure 5.4 at all times to define the flow of the protocol and the derivation of NSRs:

 Section 5.3.1 - DNP3 Protocol (Distributed Network Protocol)
 Section 5.3.2 - HTTP/HTTPS Protocol

e Section 5.3.3 - SQL Protocol

e Section 5.3.4 - ICCP Protocol

5.3.1 DNP3 Protocol (Distributed Network Protocol)

The Distributed Network Protocol 3 (DNP3) is a foundational SCADA communication
protocol utilized extensively in the energy sector for communications between Control
Centers and Remote Components (distributed across the territory) [13]. DNP3 is built
on top of TCP, utilizing standardized Port 20000 for IP communications. Its primary
purpose is to facilitate Telemetry and Telecontrol, enabling Central Systems to monitor
Asset Status and dispatch Operational Commands [1,16].

In order to properly evaluate this protocol within our test case, it is essential to map
the DNP3 Logical Roles (displayed in the Complex Model, Figure 5.3) to Functional
Components already identified in our Simple Model (Figure 5.2) [9,13]. Since no additional
nodes are added to the model for this mapping, functional roles are simply assigned:

o Master (Initiator): The EMS (Energy Management System), already in-
cluded in the Simple Model (Figure 5.2), plays the functional role of the DNP3
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Master role. The reasoning behind this mapping is that the EMS is the operational
"brain" of the UCC, responsible for Active Network Monitoring, Alarm Management
and dispatching Real-Time Commands, which are precisely the types of operations
of a DNP3 Master [1].

o Outstation (Responder): The DNP3 Outstation (O/S) role is played by the
RTU (Remote Terminal Unit), also present in the Simple Model (Figure 5.2).
The RTU acts as a "Smart Bridge" in the Substation (SS), collecting raw data from
Field Devices (e.g. CT/PT Sensors and Relays) and standardizing it for SCADA
Communication towards the Control Center. Thus, it fulfills the exact role of a
DNP3 0/S [1,13].

Thus, the transition from the simple topology to our Hybrid Reference Topology
(Figure 5.4) is achieved by relocating these existing components (EMS and RTU) into a
NERC-CIP-005-7 compliant network segmentation. As shown in Figure 5.4, the EMS
(performing the DNP3 Master role) has been relocated to the SCADA DMZ, while the
RTU (performing the DNP3 O/S role) is now located in the Substation Network and is
separated from the rest of the network by a firewall to protect the critical operational
traffic [10,12].

The examination of the DNP3 communication flow reveals a Query-Response (Poll-
Response) model, which is inherently Stateful [1]. A real-world example illustrates this
behavior:

1. A physical fault (short-circuit) occurs on a substation line, which is detected by
sensors and relays.

2. The RTU (DNP3 O/S) registers the event [1].

3. The EMS (DNP3 Master), located in the UCC, regularly polls the DNP3 O/S
(RTU) by transmitting a query request on Port 20000. This flow (Master — O/S)
establishes the initial connection (NEW state) [1].

4. The RTU sends back the response (return flow O/S — Master) on the pre-existing
TCP connection established earlier, transmitting the alarm data [1]. This response
traffic is part of the ESTABLISHED state.

A stateful firewall, such as the one protecting the perimeter of the UCC (see Figure 5.4),
should be able to manage the bi-directional and asymmetric nature of this flow. It should
be configured to only accept connection establishment requests (NEW) from the UCC
(trusted zone) to the SS. Once a connection is established, it should be configured to only
permit response traffic (ESTABLISHED/RELATED) from the SS to the UCC, while rejecting
any un-solicited NEW connection attempts from the substation.

The logic governing this stateful flow is expressed as a formalized set of Network
Security Requirements (NSRs). Specifically, a Strong Reachability is established for
the flow establishing the connection (Master — O/S), and a Conditional Reachability
is established for the flow responding to the connection (O/S — Master), as detailed in
Table 5.1 at the end of this chapter.
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5.3.2 HTTP/HTTPS Protocol

HTTP (HyperText Transfer Protocol) and HTTPS (HTTP Secure) are industry-standard
Application-Level Protocols for transferring data and facilitating User Interface interactions
over the Internet. They use TCP, operating on Standard Ports 80 (HTTP) and 443
(HTTPS) [9].

As part of the Texas 2000 SCADA network, these protocols are not used for general
public access; rather, they are vital for delivering Web-Based HMI (Human Machine
Interface) interfaces to permit access to Diagnostic Dashboards or to permit Partners and
Suppliers (Vendors) to view specific Data in a controlled environment [10].

To effectively represent these flows, we begin with the simple model (Figure 5.2), which
identifies a generic "Web Server' in a "DMZ." However, the complex model (Figure 5.3)
provides a stricter segmentation according to NERC-CIP-005-7 standards, which we
utilize in our hybrid reference topology (Figure 5.4). The topological evolution for this
protocol is as follows:

1. Public DMZ Segmentation: Rather than including the Public DMZ in our
hybrid model (Figure 5.4) as a singular entity, we include it as a segmented entity.
The Public DMZ contains the Web Server and the Database as two separate
nodes, connected to the same Internal Switch. Segmentation of the Public DMZ
enables granular access controls [9)].

2. HMI Placement: The HMI (Human-Machine Interface) is the primary terminal
of the control center operator. Rather than a generic client, in our hybrid model
(Figure 5.4) it is located, for security reasons, inside the SCADA DMZ, connected
to the same Switch as the EMS (DNP3 Master) and PI Server [9].

Thus, the clients (vendors, partners, HMI) and servers (web server and local web
server) for the HTTP/HTTPS flows are identified in Figure 5.4:

o Clients: Vendors (from Vendor DMZ), Utility Partner (from Corporate DMZ),
and HMI (from SCADA DMZ).

o Servers: Web Server (Public DMZ) and Local Web Server (Substation DMZ) [9].

An examination of the flow of this protocol (real scenario) demonstrates the various
uses of this protocol. While the mechanisms governing the statefulness of the protocol are
similar, the actors and their interests (commercial and operational) are quite different:

e Scenario 1 (External Access to Public DMZ): This scenario describes controlled
access by parties outside of the utility.

— Vendors (Suppliers) are technicians from third party companies (for example,
manufactures of relays or transformers). Their commercial interest is often
under a maintenance agreement to perform remote diagnostics, examine logs
or confirm the status of installed equipment. Thus, vendors access the Web
Server in the Public DMZ.
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— Utility Partners (Corporate Partners) are neither equipment suppliers nor
other companies/entities in the energy sector with which the UCC collaborates
(for example, national transmission grid operators or market managers). Their
interest is intercompany coordination, both commercial and operational, to
balance electric generation and consumption. To coordinate this effort, utility
partners require read-only access to aggregate energy information (for example,
forecasted loads, current energy production). Utility partners access this
information via the Web Server in the Public DMZ [9].

o Scenario 2 (Internal HMI Access): This scenario describes internal operational
access for advanced diagnostics.

— The HMI is the interface used by control center (UCC) operators who reside
in the SCADA DMZ. Typically, the operator views the network via aggregate
data received by the EMS via DNP3 (as discussed in 5.3.1).

— Fault Diagnosis Use Case: Assume a recurring alarm ("glitch") is occurring
on a relay in Substation X. The DNP3 data arriving at the central EMS may
be polled (sampled) (for example, every 10-15 seconds) and lacks sufficient
time resolution to diagnose the problem.

— Action: The operator, via the HMI, initiates an HTTP /HTTPS session towards
the Local Web Server residing in the Substation DMZ of Substation X.

— Advantages: The Local Web Server serves as a secure interface to query the
Local Database (Data Historian), which stores the events at high-resolution
timestamps (for example, milliseconds). The operator can thus thoroughly
analyze the details of the relay logs and accurately determine the root cause of
the fault (for example, defective relay), which would be difficult to accomplish
with only centralized aggregated data [16].

Regardless of the scenario, the Client (Vendor, Partner, or HMI) always initiates the
connection (NEW flow) toward the Server. A stateful firewall that lies between the Client
and the Server authorizes the request (slow path) and creates a state entry. When a
Server sends back a response (ESTABLISHED flow), the stateful firewall automatically
permits the response (fast path) because it correlates with a previously-created state entry,
without requiring a static ingress rule.

The stateful flow logic is translated into formal NSRs that are required for validation.
Both Strong and Conditional Reachability are defined for all participating actors
(Vendor, Partner, HMI), referencing standard ports (80/443). The complete listing of
NSRs for this protocol is presented in Table 5.1.

5.3.3 SQL (Structured Query Language)

SQL (Structured Query Language) is a query language and not a network protocol;
however, in the context of this thesis, SQL represents the application-level protocol
used by databases to transport queries. Due to widespread use in industry and SCADA
environments for historical data management, it is assumed Microsoft SQL Server is
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being utilized and is running on standard port 1433 [9]. SQL provides the means for
operational and corporate actors to access structured operational, historical, or diagnostic
data collected by the electric grid [10].

To properly map the flows, we utilize our Hybrid Reference Topology (Figure 5.4),
which, based upon the segmentation described in the NERC-CIP-005-7 model of the
Complex Model (Figure 5.3), identifies two separate database nodes:

o Database (Public DMZ): This represents a centralized database server, located
in the Public DMZ (isolated from the Web Server by a switch [9]), and acts as a
central repository for historical and aggregated data. This data can be accessed in a
controlled manner from multiple security zones.

o Local Data Historian (Substation DMZ): This represents a local database lo-
cated within the Substation DMZ, and utilizes high resolution recording of substation
events [9].

Flow Analysis (Real Scenario) indicates multiple use cases for the SQL protocol exist,
and are all built upon a fundamentally stateful client-server interaction:

o Scenario 1 (Local Data Recording — Substation): The primary SQL flow
within the substation is a write operation. The DNP3 O/S (RTU) is the client that
sends SQL commands (i.e., “INSERT INTO...”) to continuously record sensor data
(voltage, current, switch status) in the Local Data Historian. This provides a high
fidelity method of locally archiving data for immediate diagnostics.

o Scenario 2 (Centralized Data Access — UCC): The Database in the Public DMZ
is the server that accepts requests from multiple clients with different operational
and economic interests:

— PI Server (SCADA DMZ): The PI Server acts as an SQL client to read his-
torical data from the Public Database for aggregated analysis and visualization
on the HMI (i.e., “Show me yesterday’s load curve...”) [9].

— Vendors (Vendor DMZ): The vendors act as SQL clients to perform remote
diagnostics, and query the Database for specific fault logs (i.e., “What relay
generated the alarm at 08:327”) [10].

— Utility Partners (Corporate DMZ): The utility partners act as SQL clients
to consult aggregated and anonymized data necessary for inter-company coor-
dination and market analysis (i.e., “Download monthly consumption data...”).

— BA ICCP Node (BA DMZ): The BA ICCP Node acts as an SQL client to
read updated operational data (i.e., current production) from the Database,
and format this information and send via ICCP to the Balancing Authority.

All these scenarios involve the Client (RTU, PI Server, Vendor, etc.) establishing the
connection (NEW flow) towards the Database Server (Public DB or Local DB) on port
1433. A stateful interposed firewall allows the Client’s request (slow path) and creates a
state entry. Any subsequent response traffic (ESTABLISHED flow), i.e., results of a SELECT
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or ACK of an INSERT, are subsequently automatically permitted (fast path) since they
correlate with the previously created state.

This stateful flow logic is translated into a series of formal NSRs to govern database
access. Each of the identified interactions (Vendor, Partner, PI Server, BA ICCP Node,
and RTU) define the pair of rules to initialize and respond on port 1433. Details regarding
these requirements can be found in Table 5.1.

5.3.4 ICCP Protocol (Inter-Control Center Communications Protocol)

ICCP protocol (Inter-Control Center Communications Protocol), also referred to as
TASE.2, represents the industrial standard for exchanging real time data among different
energy control centers. This protocol runs on the ISO/OSI stack, typically encapsulated
in TCP. Within the context of the Texas 2000 system, the ICCP protocol is critical to
vertical communication between the Utility Control Center (UCC) and the Balancing
Authority (BA) [13,16]. The ICCP protocol facilitates communication between the BA
and UCC to enable the BA to observe UCC operational data, and transmit setpoints
(load or generation targets) to maintain balance and stability of the entire inter-regional
electrical grid [10].

To map this flow onto our Hybrid Reference Topology (Figure 5.4), we have identified
the two logical endpoints developed from the Complex Model (Figure 5.3):

o Endpoint A (Server): The ICCP Server, residing in the Balancing Authority
(BA) network [13].

« Endpoint B (Client): The BA ICCP Node. This component was introduced during
the evolution from Model 1 and has been placed in a unique DMZ, the BA DMZ,
which resides within the UCC perimeter [9]. This placement is a significant NERC-
CIP-005-7 requirement to provide an additional layer of security and segregate
traffic entering from outside the control center (the BA) from the internal control
network (SCADA DMZ) [12].

Flow analysis (real scenario) demonstrates how the ICCP protocol is used for opera-
tional coordination. The parties involved include the Balancing Authority (BA), acting
as regional grid manager (e.g., ERCOT), and the Utility Control Center (UCC), acting
as local operator. The Balancing Setpoint Sending use case illustrates the process:
The BA operator establishes that the area managed by the UCC needs to adjust its load
profile (e.g., “new setpoint of 90MW requested”). The process is as follows:

o Communication Flow: The command is transmitted from the ICCP Server (BA)
to the BA ICCP Node (UCC) utilizing the ICCP protocol (TCP).

e Isolation and Integration: To adhere to the NERC-CIP-005-7 isolation require-
ment, the BA ICCP Node (residing in the BA DMZ) does not communicate directly
with the EMS. Instead, it acts as a secure proxy, receiving the ICCP command,
translating it, and inserting the new set point (90MW) into the Database (located
in the Public DMZ) utilizing the SQL protocol (as illustrated in Section 5.3.3).
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o Action: The EMS (from the SCADA DMZ) reads this updated value from the Database
and makes this value available to the EMS for operational decisions. Ultimately,
the EMS translates the set point into specific DNP3 commands to be sent to the
substation(s).

The interaction is a typical TCP session. The ICCP Server (BA) initiates the con-
nection (NEW flow) on port 102 towards the BA ICCP Node (UCC). The firewall providing
protection to the BA DMZ permits the BA ICCP Node’s request (slow path), creating a
state. The BA ICCP Node uses the same connection (ESTABLISHED flow) to transmit
acknowledgments or requested telemetry data (fast path).

This stateful flow logic is translated into corresponding formal NSRs. A Strong
Reachability is established for the command from the BA to the UCC and a Conditional
Reachability for return traffic on port 102. The formal specification for the above
mentioned NSRs is provided in Table 5.1.

5.3.5 Summary Table of Network Security Requirements (NSRs)

As discussed in previous sections (5.3.1 — 5.3.4), the analysis of fundamental operational
and management protocols (DNP3, HTTP/HTTPS, SQL, ICCP) present in our Hybrid
Reference Topology (Figure 5.4), identified actors (clients and servers) in the respective
protocols, analyzed real use cases, and evaluated the stateful nature of the communication
flows.

This section combines these analyses by providing the complete set of Network Secu-
rity Requirements (NSRs) that will serve as inputs to the Network Generator (covered
in Chapter 6). As previously stated, generating a formally correct and optimal fire-
wall configuration is contingent upon the VEREFOO framework’s ability to meet these
requirements.

Each NSR is defined as a tuple that includes the source (Src), destination (Dst),
protocol (Lv4), destination or source port (Port), and requirement type (Type) to reflect
stateful behavior:

» Strong Reachability: Utilized for the flow that initiates the connection (NEW flow).
Represented by the firewall’s ALLOW or ALLOW_COND action.

» Conditional Reachability: Utilized for the response flow (ESTABLISHED flow).
Only satisfied when a state created by the forward flow exists.

o Isolation: Utilized to prohibit communication. Compliant with the rigorous NERC-
CIP-005-7 segmentation implemented through DMZs, the architecture utilizes an
approach based upon the least privilege principle: traffic is permitted to travel
only along functionally defined paths (Reachability). Therefore, to maintain the
integrity of the security perimeter, any non-reachable node pair (and therefore not
operationally required) shall be subject to an Isolation constraint. This prevents
arbitrary connections, specifically those seeking to traverse zones of differing security
levels without proper authorization [12].
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Table 5.1 below represents the comprehensive list of NSRs derived from our analysis.
This represents a specification document for the implementation of the Network Generator
(covered in Chapter 6). During scalability testing, each time the generator introduces
a new topological element (e.g., new UCC or SS cluster), we will reference this table
to determine which corresponding NSRs need to be concurrently added to the Network
Generator. By doing so, we will ensure that the complexity of the refinement problem
grows realistically and proportionally, while ensuring consistent mapping between the
topology and security requirements.

1D ‘ Source (Src) ‘ Destination (Dst) ‘ Lv4 ‘ Port ‘ Type (Action)
DNP3 Protocol (Section 5.3.1)

DNP3_FWD EMS (DNP3 Master) RTU (DNP3 O/S) TCP | dstPort: 20000 | Strong Reachability
DNP3_RET RTU (DNP3 O/S) EMS (DNP3 Master) TCP | srcPort: 20000 | Conditional Reachability
HTTP/HTTPS Protocol (Section 5.3.2)

HTTP_VND_ FWD | Vendor Public DMZ Web Server TCP | dstPort: 443 Strong Reachability
HTTP_VND_RET | Public DMZ Web Server Vendor TCP | srcPort: 443 Conditional Reachability
HTTP_PRT_FWD | Utility Partner Public DMZ Web Server TCP | dstPort: 443 Strong Reachability
HTTP PRT RET | Public DMZ Web Server Utility Partner TCP | srcPort: 443 Conditional Reachability
HTTP_HMI FWD | HMI Local Web Server (SS) TCP | dstPort: 443 Strong Reachability
HTTP_HMI RET | Local Web Server (SS) HMI TCP | srcPort: 443 Conditional Reachability
SQL Protocol (Section 5.3.3)
SQL_VND_FWD Vendor Public DMZ Database TCP | dstPort: 1433 | Strong Reachability
SQL_VND_RET Public DMZ Database Vendor TCP | srcPort: 1433 Conditional Reachability
SQL_PRT_FWD Utility Partner Public DMZ Database TCP | dstPort: 1433 | Strong Reachability
SQL_PRT RET Public DMZ Database Utility Partner TCP | srcPort: 1433 Conditional Reachability
SQL_PI_FWD SCADA PI Server Public DMZ Database TCP | dstPort: 1433 | Strong Reachability
SQL_PI RET Public DMZ Database SCADA PI Server TCP | srcPort: 1433 Conditional Reachability
SQL_BA_FWD BA ICCP Node Public DMZ Database TCP | dstPort: 1433 | Strong Reachability
SQL BA RET Public DMZ Database BA ICCP Node TCP | srcPort: 1433 Conditional Reachability
SQL_RTU_FWD DNP3 O/S (RTU) Local Data Historian (SS) | TCP | dstPort: 1433 | Strong Reachability
SQL_RTU_RET Local Data Historian (SS) | DNP3 O/S (RTU) TCP | srcPort: 1433 | Conditional Reachability
ICCP Protocol (Section 5.3.4)
ICCP_FWD ICCP Server (BA) BA ICCP Node (UCC) TCP | dstPort: 102 Strong Reachability
ICCP_RET BA ICCP Node (UCC) ICCP Server (BA) TCP | srcPort: 102 Conditional Reachability

Table 5.1: Summary Table of Network Security Requirements (NSRs) for the Hybrid
Topology.
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Chapter 6

Test Case Implementation and
Scalability Validation

Previous chapters have presented the technological environment (Chapter 1); the formal
architecture of the VEREFOO framework (Chapter 2); and the overall objective of
this thesis (Chapter 3). Chapters 4 and 5 addressed Objectives 1 and 2 respectively;
Chapter 4 provided a demonstration of logical correctness (Objective 1) using a formal
test suite that provides evidence that the stateful firewall configurations produced by the
VEREFOO framework correctly enforce the designated Network Security Requirements
(NSRs), therefore validating the absence of errors in the application of the complex logical
formulas in the MaxSMT model (Chapter 4).

Chapter 5, has progressed further and introduced a new and fundamental element:
starting from the Tezas 2000 model—a realistic but artificial representation of an electrical
network within a smart grid —it examined individual functional components, mapped
industrial protocols (DNP3, ICCP, HTTP/HTTPS, SQL) onto the segmented topology of
a NERC-CIP-005-7 compliant network; and finally defined the entire set of stateful NSRs
(Table 5.1) regulating communication in a high-risk infrastructure (Chapter 5).

This chapter completes the experimental path of the thesis by providing a demonstra-
tion of the second objective of the thesis—Performance and Scalability Validation of the
VEREFOO framework—where Chapter 4 demonstrated that the VEREFOO framework
produces correct configurations and therefore this chapter is concerned with whether the
framework can scale to handle increased problem complexity. This is due to the fact
that the MaxSMT problem is inherently NP-complete and that the inclusion of stateful
semantics (Section 2.5) imposes far greater logical constraints than the stateless model on
the z3 solver.

Section 6.1 describes the Test Case Generator Architecture, which is the software
tool that was developed to generate parametrically similar instances of the Texas 2000
model automatically. Its design pattern, the encoding of the NERC-CIP-005-7 compliant
topology (with all DMZs identified in 5), the automatic generation of NSRs derived from
Table 5.1, and the management of Isolation Properties through parameters like withPorts,
withIsolation, and isolationBound will be discussed. In addition, Section 6.1 demon-
strates how the generator transforms the abstract analysis of Chapter 5 into a concrete
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and reproducible implementation.

Section 6.2 defines the Experimental Test Methodology used to validate scalability.
The automated execution framework (TestPerformanceScalabilityTexas2000), the
sampling strategy based on 100 runs for each configuration (UCC, SS) with deterministic
seeds to ensure reproducibility, and the important management of potential issues related
to the implementation (z3 garbage collection and need for a full reset between executions)
will be explained. Furthermore, the three test modes that were designed to evaluate the
effect of each of the different scalability metrics independently will be illustrated: increase
in UCC nodes separately (keeping SS constant), increase in SS nodes separately (keeping
UCC constant), and combined linearly increasing both UCC and SS nodes (keeping
UCC:SS ratio constant).

Section 6.4 provides an evaluation of the Output Management, explaining the in-
cremental JSON format that was used to collect data (average time, maximum time,
minimum time, total number of SAT /errors, property count) and documenting the tests
that were performed along with the associated flags.

Finally, Section 6.5 presents the results of the experimental tests, with a detailed
analysis of the scalability graphs and interpretation of the observed performance, confirm-
ing (or highlighting the limitations of) the computational feasibility of the VEREFOO
framework in a realistic and complex scenario.

6.1 Test Case Generator Architecture

6.1.1 Design Pattern and Generator Structure

To develop a test case for testing scale (Objective 2, Section 3.3), it is necessary to employ
an alternative methodology of creating test cases to avoid the necessity of manually
developing the XML files needed for these tests. As stated above, due to the Hybrid
Reference Model (Figure 5.4), the segmentation of NERC-CIP-005-7 and the hierarchical
nature of the Texas 2000 model, statically defining test cases is not possible. Because the
total number of nodes follows the equation N,o4es = 3+ 17 Nycc + 14- Ngg, and because
the number of NSRs increases in proportion to Ngg (Table 5.1), a test with 20 UCCs
and 40 SSs would necessitate the management of over 900 nodes and many hundreds of
security properties. Due to the explosion of combinatorics associated with the number of
nodes and the number of security properties, the use of a programmatic test case generator
has been deemed appropriate.

The software component developed to meet this need is the TestCaseGeneratorTexas2000
class, implemented as a Factory pattern. The Factory pattern was chosen for its ability
to generate families of complex objects (in this case, NFV instances conforming to the
nfvSchema.xsd schema) that have a similar structure, but differ in terms of their dimen-
sional parameters. The generator is also a “smart constructor,” that, depending on the set
of input parameters provided, generates a full topology and a consistent set of NSRs, thus
removing the possibility of manual configuration errors, and providing for the scientific
reproducibility of tests.

The generator’s architectural structure consists of five primary components:
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1. Configurable Input Parameters: The class constructor accepts six parameters
that determine the complexity and semantic aspects of the test case being generated:

o seed (s € Z): Seed for the pseudo-random number generator (PRNG), used
for deterministic assignment of IP addresses to each node. This parameter is
essential for reproducing the same topology for a given set of input parameters.

e numberUCC (Nycc € NT): Number of Utility Control Centers to generate.
Each UCC will replicate the structure of Figure 5.4, including all required
DMZs (SCADA DMZ, Public DMZ, Vendor DMZ, Corporate DMZ, BA DMZ).

o numberSS (Ngs € N*1): Total number of Substations. SSs will be distributed
uniformly among UCCs based on the relation SS_per  UCC; = | Nss/Nucc]
for i < Nycco, with the remainder assigned to the last UCC.

o withPorts (boolean): If true, security requirements will include specific
TCP/UDP ports (e.g., dst_port = 20000 for DNP3, dst_port = 443 for
HTTPS). If false, wildcards (“*”) will be employed to simplify the MaxSMT
problem, but reduce the level of realism.

o withIsolation (boolean): Determines whether the generator will generate
Isolation Properties. If true, the generator will apply the algorithm presented
in Section 6.1.3 to add isolation requirements between non-directly connected
nodes.

¢ isolationBound (Bs, € {—1} U NT): Specifies the upper bound of the maxi-
mum number of Isolation Properties. The value -1 means that there is no limit.
The formal precondition of this parameter is:

—withIsolation =— Bj,, = —1 (6.1)

Violations of this precondition will cause an IllegalArgumentException to
be thrown in the constructor to prevent the creation of an invalid configuration
that could produce erroneous results in experiments.

2. Deterministic IP Address Generation: The topology will require each node
to have a unique IP address. The createRandomIP () method employs a rejection
sampling technique (essentially a “try and retry” technique) that utilizes a hash set to
determine if the randomly generated IP address is unique. The algorithm generates
a random address using a PRNG (whose seed will be initialized to reproduce results)
and then checks to see if the address is unique by checking the allIPs set. If a
collision occurs, the algorithm discards the address and generates another one until
a unique address is found.

It is easy to demonstrate the effectiveness of this approach (average time complexity
O(1)) to show that address generation will rarely require multiple attempts by
calculating the collision probability with regard to the total number of IPv4 addresses
(M = 232). To find the probability of at least one collision occurring when generating
N addresses, we look at the complementary probability that there are no collisions
(P(no__coll)).
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We proceed in a step-by-step manner: When the algorithm needs to generate the
i-th address, there are already 7 — 1 addresses that have been assigned and therefore
are “taken.” For no collision to occur, the new address must be selected from the
remaining addresses, which are M — (i —1). The probability of success for this single
insertion is expressed in Equation:

M—(i—1) i—1
P j=————*=1— —— 6.2
(success;) A7 T (6.2)
The total probability of having no collisions during the entire generation of N nodes
is the product of the success probabilities for each single step (from address 1 to

address N), as illustrated in [8]:

P(no_coll) ~ ﬂ (1 - z;j) (6.3)

=1

Using the approximation 1 — z ~ e~* (for small z), we may convert the product of
Equation above to a sum of the exponents:

N

P(no__coll) ~ H e~ = e~ 31 2o 1) (6.4)

In the Equation above, the exponent includes the summation of integers from 0 to

N — 1. Using the Gauss Sum formula for the first £ integers (k(k; 1)), and setting

k=N — 1, we get the simplification in Equation:

N-1 2
 (N-1)N N
=0

By substituting the result of the Equation above into the previous one, we find
2
P(no_coll) ~ e 2N | Then, by using the inverse approximation (e~* ~ 1 — z) once

again to compute the collision probability P(coll) = 1 — P(no_coll), we find the
final expression:

2

P(coll) ~ 3 9%

(6.6)
For the analyzed topologies (N < 10°), the resulting value from the Equation above
is very small (< 0.01). This provides mathematical evidence that collisions are rare
events and that the algorithm will usually succeed on the first try, so the generation
of addresses will not be computationally expensive.

. JAXB Mapping and XSD Schema Compliant: The generator will utilize JAXB
classes automatically produced from the nfvSchema.xsd schema (Section 2.3.1) to
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programmatically construct the Java object tree representing the NFV. Each com-
ponent of the hybrid topology (Figure 5.4) will be represented as an instance of the
Node class with the related FunctionalType (e.g., STATEFUL_FIREWALL, WEBSERVER,
FORWARDER). Adjacent nodes will be represented as Neighbour objects, and the
NSRs specified in Table 5.1 will be added to the PropertyDefinition element as
Property objects.

The use of JAXB ensures that the generated NFV will be formally compliant with the
XML schema required by the VEREFOO framework, thereby eliminating the possibil-
ity of syntax errors that would prevent successful input parsing. The generateNFV ()
method will produce a complete NFV object, which can be converted to XML via
the JAXB marshaller, or sent directly to the solver via VerefooSerializer.

4. Hierarchical Topology Creation Logic: The core of the generator lies in the
generateNFV () method, which performs incremental topology construction based
on a modular strategy:

« Balancing Authority (BA) Creation: A single BA node is created, con-
taining the ICCP Server, a router, and a firewall. This subgraph is identical to
every test case and represents the hierarchical entry point of the model.

o Loop for Generating UCCs: For each i € [0, Nycc), the generator will
create 17 nodes for each UCC (as determined by the formula N,,oq4e5), replicating
the structure of Figure 5.4: ingress firewall, router, switch, SCADA DMZ
components (EMS/DNP3 Master, PI Server, HMI), Public DMZ firewall and
switch, Public DMZ web server and database, Vendor DMZ firewall and router,
and finally the BA ICCP Node in the BA DMZ. Each node will be connected
to its neighboring nodes via Neighbour objects, and the IP addresses will be
stored in arrays (e.g., dnp3_master[i], pubdmz_web_server[i]) for later use
in generating NSRs.

o Loop for Generating SSs: For each j € [0, Ngg), the generator will create
14 nodes for each SS, consisting of the firewall chain (boundary firewall, router,
internal firewall), control network switch, DNP3 O/S (RTU), Relay Controller
and the three relays (A, B, C), endpoint network switch, local client, and finally
the Substation DMZ switch and servers (local web server and Local Data
Historian). The Substations will be assigned to respective Control Centers in a
round robin fashion to ensure balanced topology. At the same time, key IP
addresses (e.g., dnp3_os[j]) will be stored for use in protocol generation.

5. Automated NSR Generation

Populating the PropertyDefinition element will be accomplished by an algorithmic
process that transforms the specifications in Table 5.1 into Java objects. Three
distinct loops will be executed by the generator to address different competence
areas of the topology:

o SCADA Interconnection Loop (UCC <« SS): The first loop will iterate
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over the set of Substations (SS) to establish DNP3 telecontrol flows. The algo-
rithm will implement a round robin distribution logic to assign each Substation
to a reference Utility Control Center (UCC). For each identified pair (UCC-
Master, SS-Outstation), strong reachability (command flow) and conditional
reachability (response flow) properties will be created, establishing specific
ports (TCP/20000) or wildcards depending on the input parameters.

o Management and External Access Loop (UCC-Centric): The second
loop will iterate exclusively over UCC nodes to define internal and external
access policies. For each control center, massive amounts of rules will be defined
for accessing public dmz services (web server and database) by external actors
(vendor and utility partner), and for iccp communication toward the balancing
authority. This loop will manage the complexity of the heterogeneity of the
various protocols (http, sql, icep), utilizing the correct ports (443, 1433, 102)
for each flow.

o Local Recording Loop (SS-Centric): The third loop will iterate over the
set of Substations to configure flows contained within the substation dmz. In
this loop, local sql traffic between the rtu (dnp3 outstation) and the local data
historian will be permitted, allowing the persistence of operational logs directly
in the field.

As a result, the total number of generated NSRs will grow linearly with respect to
the dimensions of the generated topology:

Nnsprs = 2 x Ngs + 12 x Nycce (6.7)

(excluding Isolation Properties, treated in Section 6.1.3). The linear growth of the
number of NSRs is intentional and corresponds to the hierarchical nature of the
actual network: each additional topological component (UCC or SS) adds a constant
number of communications to govern.

Table 6.1 presents the semantics and constraints of the generator parameters. This
modular structure allows the generator to be both flexible (the parameters allow ex-
ploration of different regions of the scalability space), reproducible (the deterministic
seed ensures that each test can be repeated), and compliant with the VEREFOO
schema (utilization of JAXB eliminates syntactic errors). In subsequent sections, we
will describe the algorithm for generating Isolation Properties (Section 6.1.3) and
the implementation of the automatic test framework (Section 6.2), which utilizes
this generator to execute hundreds of experimental runs.
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Parameter Type Range Semantics Preconditions
seed int Z Seed for PRNG (deterministic | -
IP generation)
numberUCC int Nt Number of Utility Control | Nycc > 1
Centers
numberSS int Nt Total number of Substations | Ngg > 1
withPorts boolean | {true, false} | If true, includes specific |-

TCP/UDP ports in NSRs
withIsolation | boolean | {true, false} | If true, generates Isolation |-
Properties
isolationBound | int {=1}UN* | Bound on number of Isolation | =withIsolation =}
Properties (—1=unlimited) Biso = —1

Table 6.1: Parameters of the Test Case Generator TestCaseGeneratorTexas2000.

6.1.2 Automatic Generation of NSRs

At the heart of security policy definitions resides the createPolicy () method, whose task
is to generate formal constraints that comply with the VEREFOO XML schema from the
theoretical flow analysis described in Table 5.1. In essence, createPolicy () translates the
theoretical flow analysis into actual formal constraints. For each functional interaction iden-
tified in the topology, the generator creates, using JAXB factories, two Property objects:
one, configured with the name="StrongReachabilityProperty", for the initialization
flow, and the other, configured with the name="ConditionalReachabilityProperty",
for return traffic.

With the goal of maintaining modularity and writing clean code, the generator has
encapsulated the above mentioned logic inside the helper method createPolicyPair().
The createPolicyPair() method is responsible for managing the port configuration,
based on the Boolean parameter withPorts (as anticipated in Section 6.1.1), which
determines whether the generated constraints should be rigid or flexible. When the
withPorts parameter is set to True, the method inserts specific numeric values of industrial
protocols (for example, “20000” for DNP3) in the fields stcPort and dstPort, thus forcing
the solver to meet a strict equality requirement. On the contrary, when the withPorts
parameter is set to False, the wildcard character * is inserted; this action removes the
transport port constraint, significantly reducing the z3 engine’s search space.

6.1.3 Advanced Management: Isolation Properties

Besides the reachability requirements needed for the proper functioning of networks,
another important aspect of security validation is the definition of isolation constraints
(Isolation Properties). In fact, while reachability policies define what must happen, isolation
policies define what must not happen, by preventing unauthorized lateral movements and
segmenting the network into different security zones.

In the case of the Texas2000 use case, manually generating such constraints for
thousands of nodes would be impracticable and prone to human errors. Therefore, a
heuristic algorithm has been developed in the createIsolationPolicies() method,
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with the purpose of automatically identifying candidate node pairs for isolation without
contradicting previously existing functional requirements.

Candidate Selection Logic for Isolation Policy (Subtractive Logic)

Initial Candidate Pool
u,v) € Nweb X Nyep

WebClient
WebClient

1. Functional Exclusion Already in R @ DISCARDED
(Reachability Check) (Strong/Conditional Reachability) (UNSAT Constraints)

Already in A @ DISCARDED
<~ (Adjacent Nodes) (Topological Changes)

2. Topological Exclusion

(Adjacency Check)
PR D o
3. Path Verification 3 Firewall in M DISCARDED
(Path Check - BFS) path(u, v)? Firewall (Impossible to Enforce)

/ YES

Firewall

Selected for
Isolation Property

Figure 6.1: Ilustration showing how the Isolation Policy is calculated by excluding all
unnecessary cases.

The algorithm operates on a subset N, of the graph nodes, i.e., the ones identified
as WebClient or WebServer, since they represent the most critical targets and the most
used attack vectors. The generation of isolation properties between two nodes u, v € Nyep
follows a subtractive logic, as follows.

Let R be the set of pairs (s,d) for which there exists a reachability property (Strong
or Conditional) and let A be the set of adjacent node pairs in the topological graph (i.e.,
there exists a direct edge connecting them). A pair (u,v) is a candidate for an Isolation
Property if and only if the following conditions are satisfied:

(u,v) ¢ RA (u,v) ¢ AN JFirewall € path(u,v) (6.8)

In practice, the generator performs the following filtering actions:

e Functional Exclusion: The pairs that need to communicate for SCADA operations
(e.g. EMS to RTU) are eliminated, so as to avoid the creation of unsatisfiable (UNSAT)
constraints a priori.

o Topological Exclusion: The adjacent nodes (the direct neighbors) are ignored,
because the isolation between nodes that are physically connected and do not have
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intermediary nodes would require topological changes that are not provided for in
this test phase.

o Path Check: Using an optimized BFS (Breadth-First Search) visit, the algorithm
checks if there is at least one node with Firewall functionality that exists in the path
between the source and destination nodes. Without an intermediary enforcement
point, the isolation request would be technically impossible to implement.

To control test scalability and to limit the number of constraints created during testing,
the algorithm uses a limiting parameter called isolationBound. This parameter limits
the number of generated isolation properties (K2 )-

The algorithm iterates through the permutations of valid pairs and stops generating
when the number of isolated properties |P;s,| exceeds Kq. If the value of the parameter
isolationBound is equal to -1, the generator works in unbound mode, creating constraints
for all valid pairs found. This mechanism enables the modulation of the stress test on the
z3 solver and enables the evaluation of how the degradation of performance occurs as the
negative constraint density increases, as will be discussed in Chapter 7.

The entire logic of the algorithm is summarized in Algorithm 6.1.

Listing 6.1: Pseudo-code for Isolation Properties generation

Input: Graph G, Set<Property> ReachabilityProps, int K_max
Output: Set<Property> IsolationProps

Set<Node> WebNodes = filterWebNodes(G);
Set<Pair> Forbidden = extractPairs(ReachabilityProps) U getAllGraphEdges(G);
int count = 0;

foreach u in WebNodes do
foreach v in WebNodes do
if (u == v) continue;
if (pair(u,v) in Forbidden) continue;

if ('hasFirewallInPath(u, v)) continue;

createIsolationProperty(u, v);
count++;

if (K_max != -1 AND count >= K_max) return;
end
end

6.2 Experimental Test Methodology

The experimental assessment of VEREFOO scalability on the Texas 2000 topology entails
a well-orchestrated set of experiments and evaluations. Simply running one experiment
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and measuring the resolution time of the resulting instance does not suffice; the goal
is to differentiate framework performance from intrinsic variability in the underlying z3
heuristic solvers.

Therefore, an automated test execution framework has been created and implemented
in the TestPerformanceScalabilityTexas2000 class to manage the lifecycle of the test,
collect metrics and primarily to mitigate the effects of pseudo-randomly generated IP
addresses (used to generate unique test cases) on the statistical reliability of the results of
the experimentation.

6.2.1 Automated Test Execution Framework

TestPerformanceScalabilityTexas2000 represents a parametric test harness and its
operational logic iterates through a predefined set of test vectors (stored in the testCases
array) defined in terms of dimensional configurations (Nycoc, Ngs).

To obtain statistically valid results, for each dimensionality configuration the system
runs cycles of N = 100 independent runs. Each of the individual runs includes the
following steps:

Instantiation: Invocation of the TestCaseGeneratorTexas2000 described in Section 6.1,
providing dimensional parameters and an initial seed.

Marshaling and Resolution: Conversion of the generated NFV object to XML format
and invocation of the VEREFOO core (VerefooSerializer) to solve the MaxSMT
problem.

Measurement: Calculation of wall clock time required to complete the resolution phase
(excluding topology creation time), measured as the elapsed time from the moment
the solver is invoked to the point when the SAT/UNSAT result is returned to the
caller.

Incremental Logging: Immediately after resolving the MaxSMT problem, measurement
values (wall clock time, number of nodes, number of properties) are written to a
JSON file (dataToPlot.json). Writing measurement values incrementally avoids
losing measurement data in case the system crashes during the course of a long
duration test (which may last longer than 24 hours).

6.3 Implementation Challenges

6.3.1 The “seed” issue and Z3 heuristics

During the experimental testing period, it became apparent that the Z3 solver would
sometimes need exponentially greater amounts of computation time to solve some problem
instances that were topologically identical to other problem instances solved in a relatively
short amount of time.

The reason for this behavior is related to the nature of SMT solver search algorithms
and how sensitive they are to the internal representation of the problem. Although the
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logical model abstracts away real IP addresses converting them into symbolic identifiers
(atomic predicates), a different seed changes the order in which these data structures are
created and assigned in the framework before being passed to the solver. As such, the
solver receives the same logical assertions and variables, but in a reordered manner. Given
that the solver uses heuristics to determine which branch to explore first based upon the
order in which the variables are inserted into the search tree and the internal names of the
variables, the solver will be placed in an inferior and possibly computationally expensive
branch of the search tree based upon the input order.

When this occurs, simply generating a new instance using a new seed will modify the
internal structure of the problem sufficiently so that the heuristic will select a faster and
more efficient branch of the search tree.

6.3.2 “Randomized Restart” Strategy

To ensure that the experimental results represent true VEREFOO algorithm performance
and not simply the “luck” of solving a particular instance of the problem, the test
framework employs a Randomized Restart strategy.

As shown in the code control logic (the while (!validRun) loop), the test framework
monitors the outcome of each execution. When an execution fails (returns UNSAT when it
should have returned SAT or hangs) or the solver appears to have entered an infinite loop
and timed out, the test is discarded rather than counted towards the final results. The
test framework discards the current instance, generates a new random seed (currentSeed
= r.nextInt()), generates a new topology using the new seed and launches another
execution of the test.

This strategy insures that the data collected will be statistically significant and will
accurately reflect the typical operating conditions of the VEREFOO algorithm, excluding
pathological outliers due solely to low-level SMT solver heuristics.

It is worth noting however that the current implementation of this strategy is external
to the VEREFOO core and was developed as part of the test framework to enable the
realization of the experimental goals of this thesis. That said, given the importance of
this strategy and the success achieved with the current implementation, the inclusion of a
restart capability natively within the VEREFOO core is highly advisable in any future
development of the VEREFOO engine, as outlined in Section 6.6.

6.3.3 Native Memory Management and Stability

As part of the extensive experimental validation, conducted under high-intensity iterative
execution (100 runs per configuration) over a prolonged time frame (longer than 24
hours), a critical blocking condition arose from system resource management. During early
iterations of the test session, the machine hosting the computation showed progressively
increasing and severe performance degradation to the point of causing a complete operating
system crash after 24 hours of uninterrupted operation.

An examination of error logs produced by the JVM revealed a seemingly contradictory
anomaly: the Java process crashed due to failure of the JVM to allocate native memory at
the operating system level (native memory allocation (malloc) failed); although
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THE PROBLEM (Symptoms and Impact) ( TECHNICAL ANALYSIS (Java Heap vs Native Memory)

RESULTS AND BEST PRACTICES

JAVA HEAP NATIVE MEMORY RESULTS
(Managed by GC) (C++ Heap, Unmanaged)
» e ) Z3 NATIVE PAYLOAD
Progressive A ) STABILITY PERFORMANCE
€ Gigabytes!
RAM Saturation q ? - / e (Days of (Sped up,

Scalability Test (Thousands of iterations)

execution) No forced Sleep/GC)
-> Crash VS Code / Java Process.

No OutOfMemoryError. GC sees only GC doesn't cl
; Il wrapper. ocar s s oe) Memory freed each iteration
Ineffective GC/Sleep. bl t 1 y 5
[ /Sleep ) Ignores native memory. native memory System stable.
THE SOLUTION (Explicit Resource Management) BEST PRACTICES (JNI/Z3)
1. VerefooProxy.java (AutoCloseable) NATIVE MEMORY 2. VerefooSerializer.java (Caller)
(C++ Heap, Unmanaged) gy ; @ 1. Implement
tx; ':\,/evefooprmy test = new VerefooProxy(...); AutoCIoseabIe/dispose()
3 [ xplicit Closure
Qoverride ' NATIVE } e C(1 i ({)’ 2 e @ 2. Use try-with-resources
pL "),U(r i 5 PAYLOAD X0
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i Immediate and deterministic heavy native resources.
§ native memory release. ) )
o

Figure 6.2: Z3 Memory Leak Fix in Verefoo: Cause and Solution

the Java heap (Old Gen usage < 1%) was nearly empty and there was no indication of
Java Heap exhaustion (java.lang.0OutOfMemoryError).

Resource monitoring confirmed that both physical memory (RAM) and virtual memory
(swap space) of the host system had reached maximum capacity. Technical analysis of the
interaction between the JVM and the native Microsoft Z3 library employed by VEREFOO
via JNI (Java Native Interface) found the source of the problem in the hybrid nature of
73 objects:

o Java Side: The object representing the Z3 Context is very light weight (a few
bytes).

o Native Side (C++): The object corresponding to the object representing the
73 Context in the underlying computational engine creates very heavy-weight data
structures in the Native Heap (up to several Gb for large instances).

Since the JVM’s garbage collector (GC) only monitors the managed Heap, it did not
perceive the impending system memory exhaustion caused by native objects. Thus, the
garbage collector was not called frequently enough to free up the Java wrapper objects of
the native objects, which resulted in orphaned native resources (Native Memory Leaks)
that continued to accumulate over subsequent iterations until system crash.

To remove the structural impediment to the problem, the Explicit Resource Man-
agement pattern was applied. The VerefooProxy class was modified to implement
the AutoCloseable interface and provide an explicit close method, which calls the C++
destructor of the Z3 context directly. The test framework was modified to ensure that
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the .close() method is called deterministically for each computation iteration, releasing
native memory immediately and avoiding reliance on the garbage collector.

This solution completely eliminated the problem of the saturation of the virtual memory
pool of the host system. The subsequent scalability tests demonstrated complete stability
of the framework and allowed the framework to execute continuously for days without
showing any evidence of degradation in performance or unusual memory consumption,
thus demonstrating the appropriateness of the solution for use in long-running enterprise
environments.

6.4 QOutput Management

Output Management is the final step of the validation process which includes collecting
all the experimental performance data systematically and structuring them. The output
management is not just the output of the results on the screen, but also a structured way
to persist the data to enable further analysis and visualization phases, especially given
the high number of experiments needed to analyze the scalability of the framework. This
section explains the selected format for serializing the experimental data and gives an
overview of the different test setups validated.

6.4.1 Output Format

After each test run, the results are stored as a JSON formatted file, as defined by the
JavaScript Object Notation standard. A single JSON object is created for each experiment
and contains the metadata and the metrics of the experiment.

The metadata contain:

e Configuration parameters: Boolean values describing the context of the exper-
iment (withPorts and withIsolation) and the bound imposed to the isolation
properties (isolationBound).

o Dimensional metrics: The total number of nodes in the graph (nNodes) and the
number of constraints generated (Reachability Property, Isolation Property and
total).

The metrics contain:

e Performance metrics: The resolution times of the z3 solver averaged, maxima
and minima values (over N runs) during the execution of the experiment.

In order to store the results incrementally, the output management is done per test
configuration instead of storing all the results in memory until the end of the process.
After completing the execution of each test configuration, the system writes the new result
into the JSON file, adds the new result to the existing ones and immediately closes the
write stream. This approach allows to save intermediate results and avoid losing hours of
computation due to a crash of the system or a forced interruption of the process.
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6.5 Experiments and Results

Scalability has been evaluated through three different metrics: UCC Scalability, SS
Scalability, Linear Scalability. Three different test configurations have been used for each
of the metrics to measure how the constraint stiffness affects the performances.

Baseline: (!withPort, !withIsolation). Uses wildcards for ports and no isolation
property; represents a baseline without ports and without isolation properties.

Constrained Isolation: (!withPort, withIsolation, Bound=100). Adds a fixed load
of 100 negative constraints (Isolation) to evaluate how the solver manages conflicting
requirements without creating a combinatorial explosion.

Strict Semantics: (withPort, !withIsolation). Specifies strict equality on transport
layer ports (TCP / 20000); significantly increases the search space of the SMT solver
compared to wildcard usage.

6.5.1 UCC Scalability

The first study concerned the scaling of the number of Utility Control Center (UCC)
while maintaining a fixed number of Substation (SS). Initial results showed that this
metric, even though interesting in theory, provides little insight to the limitations of the
computational resources of the framework. When a new UCC is added without related
SS in Texas 2000 topology, a "topological island" is formed, i.e. a sub-graph with internal
rules but few connections with the rest of the network. As a consequence, the solver
has always solved these examples in very short times (of the order of seconds), since the
complexity does not grows exponentially with the number of nodes. This case study has
been considered less representative of the real-world network evolution, since the growth
of control centers is generally accompanied by the creation of additional field resources.
Therefore, the focus has moved to other, more complex studies.

6.5.2 SS Scalability

In this study, the number of UCCs has remained constant and the number of SSs has been
incremented progressively. Even if the experimental campaigns have involved test cases
with 3, 4 and 5 UCCs, the following analysis concerns only the configuration with 5 fixed
UCCs because this case forces the solver to find the maximum connection density toward
the same control points. The general resolution time trend for this study is illustrated in
Figure 6.3 at the end of the Chapter.

Port Impact: The configuration withPort=true has proven to be the most compu-
tationally expensive. Indeed, in the scenarios involving 130 nodes, 22 firewalls and 72
properties, the execution times reached many hours. This shows that even if VEREFOO
can handle the strict Layer 4 constraints, abstraction using wildcards is more suitable for
fast prototyping of large-scale networks.

Analysis of Isolation Bound (Limit to Isolation): The configuration with
IsolationBound=100 was essential to demonstrate the validity of the negative constraints
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without producing a combinatorial explosion of the isolation policies. It is an O(N?)
problem to compute the isolation for each possible non-communicating pair of nodes
and produce a number of constraints much larger than the one that could be reasonably
produced by a realistic operation. By limiting this set to 100 significant properties,
we found that the framework maintains a performance similar to that of the Baseline
configuration (without Ports, without Isolation policy), with a constant delay in time.
This proves that the bottleneck is not the presence of the isolation rules, but rather
their potential quantity and the combinatorial complexity. The solver is able to manage
effectively a realistic number of negative constraints.

6.5.3 Linear Scalability

Finally, the last and most important test case simulates the organic growth of the smart
grid. We have therefore established a fixed ratio between control centers and substations
(first 1:2 and then 1:3) and we have scaled up the system multiplier. This test case scales
simultaneously both UCCs and SSs, as shown in Figure 6.4 at the end of the Chapter.

Convergence of Overheads due to Isolation: An interesting observation is noted
in 1:3 ratio tests comparing the Baseline curve (without ports, without isolation) with
the curve with Isolation Bound = 100. At first sight, for small topologies, the two curves
are clearly distinct, with the curve of the configuration with Isolation showing a clear
overhead. However, as the size of the topology and the multiplier increase, the curves
tend to converge.

This behavior can be explained by the amortization of the complexity of the search
space of the solver. Indeed, the computational effort is driven by two types of costs: the
cost of satisfying the topological constraints (reachability, allocation, depending on the
network size) and the cost of checking the isolation constraints (fixed at 100). In small-scale
instances, the cost of checking 100 negative constraints is relatively high compared to the
total resolution time. On the contrary, in large-scale instances, the solver’s execution is
essentially determined by the combinatorial complexity of establishing valid connectivity
paths in a huge topology. As a result, the relative influence of the fixed overhead due to
the isolation constraints tends to become negligible, explaining the convergence of the
performance curves.

6.6 Future Implementations

As part of the experimental validation carried out in this thesis, several infrastructural
issues have been identified and solved. The main issue that had to be directly treated on
the source code of VEREFOO to prevent the Z3 native memory leaks (see Section 6.3.3)
and the Randomized Restart strategy that was implemented in this work only at the
test harness level to mitigate the solver’s heuristics’ stalls caused by the generation of IP
addresses (Section 6.3.1) are typical examples.

Therefore, for future development of the project, it is recommended to include the
resilience logic inside the framework itself, so that the caller is not required to implement the
external control mechanisms, and to transform the restart strategy from an experimental
workaround to a native architectural feature.
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To this aim, the introduction of a new architectural element named AdaptiveVerifier,
designed to function as an intelligent proxy between the end-user and the VerefooSerializer
verification engine is proposed as a guideline for future implementations of the framework.
The AdaptiveVerifier should respect the following design principles:

1. Transparency and Encapsulation: The AdaptiveVerifier should expose the
same interface as the current serializer (input NFV object and configuration parameter
timeoutThreshold). The main role of the AdaptiveVerifier is to orchestrate the
execution, monitor the response times and decide autonomously whether and when
to use mitigation strategies, hiding entirely the complexity to the user.

2. Phase 1: Monitored Execution (Watchdog): The component starts the first
verification instance on the original topology, sets the watchdog timer according to
the provided threshold.

« If the solver converges before the expiration of the timer, the result is immedi-
ately returned.

o If the timer expires, indicating that the Z3 heuristic has stalled or explored inef-
ficiently, the AdaptiveVerifier interrupts the current execution and activates
the recovery process.

3. Phase 2: "IP Permutation" Engine (Pseudonymization): To allow the solver
to operate without modifying the semantic of the network, an internal IP Shuffling
logic is suggested to be implemented:

e« Mapping: The system generates a temporary mapping of the original TP
addresses (which cause stall) to a set of "dummy" or permuted addresses, and
stores the original associations in a lookup data structure.

e Resolution: The problem is submitted again to the solver using the topology
with permuted IPs. The permutation of the IP addresses modifies internally
the representation and the ordering of variables of the solver, causing it to
adopt a different branch of the search tree.

e Reverse Binding: Once a SAT result is obtained, the component uses the
lookup mapping to perform the reverse binding, converting the dummy ad-
dresses present in the generated solution to the corresponding original addresses.

The introduction of this new architectural element would ensure the intrinsic robustness
of the VEREFOO framework, allowing the framework to dynamically adapt to the
complexity of the instances handled and providing the results in deterministic times even
in the presence of "unfortunate" configurations of the underlying SMT engine.
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Chapter 7

Conclusions

As part of the VEREFOO research project, the primary goal of this dissertation has
been to identify and analyze the key issues in relation to the automation of network
security (in SDN / NFV virtualized networks) and the integration and verification of
stateful firewalls inside the VEREFOO architecture. As a consequence of the increasing
demand to overcome the constraints of manual and stateless configuration, and due
to the high complexity and security demands of modern Critical Infrastructures, the
research adopted a formal method, based on MaxSMT problems, to demonstrate how
“correct-by-construction” configurations can be guaranteed, avoiding the risk of human
errors in connection tracking.

Two main contributions have emerged as a result of the completion of this research.
Firstly, the objective of validating the logical correctness (Objective 1) of the extended
stateful model, by using a rigorous cross-validation methodology, as presented in Chapter 4,
to confirm that the inclusion of stateful semantics — mainly the ALLOW_COND action and
the cond_permit predicate — enables the development of configurations devoid of logical
ambiguity, was achieved. Moreover, tests carried out in critical scenarios showed that
the proposed formal model is able to satisfy Network Security Requirements (NSRs) and
avoid the risk of interference between states and vulnerabilities.

Secondly, the contribution concerning the validation of the scalability and perfor-
mance (Objective 2) of the framework in realistic large-scale scenarios, in comparison
to other theoretical approaches previously published, is significant. The thesis presents
a testbed that implements the Texas 2000 model, representing a cyber-physical infras-
tructure simulating a real Smart Grid, compliant with the NERC-CIP-005-7 standards.
Moreover, thanks to the implementation of a parametric test case generator (Chapter 6),
the framework has been tested under several and complex topologies, characterized by
hierarchical segmentation (UCC, Substations, multiple DMZs), as well as bidirectional
industrial communication protocols such as DNP3 and ICCP.

Moreover, the experimental results obtained during the execution of these test cases,
did not only show the computational viability (“viability”) of the framework for large-scale
networks but also helped in resolving engineering criticalities for system stability:

A memory leak native problem, occurring when interacting with the Z3 library, was
identified and solved by implementing explicit resource management (AutoCloseable) to
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ensure framework stability during prolonged executions.

The heuristic instability of the solver was reduced by implementing a Randomized
Restart strategy, so that resolution times reflect the actual complexity of the problem
rather than random events caused by internal solver heuristics.

Finally, the results of this thesis validated VEREFOO as a reliable solution for the
orchestration of stateful firewalls, showing that the overhead generated by conditional
logic is manageable, even in mission-critical scenarios.

Regarding future developments, it is suggested to internalize the resiliency strategies
developed in this thesis. Specifically, the randomized restart logic currently managed by the
experimental validation infrastructure, should become a native architectural component,
called AdaptiveVerifier (technically analyzed in Section 6.6). The AdaptiveVerifier
will act as an intelligent proxy, monitoring timeouts and autonomously applying IP
shuffling techniques to unlock solver heuristic stalls, allowing the framework to be fully
autonomous and deterministic in production environments.
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