
POLITECNICO DI TORINO
Master’s Degree in Computer Engineering

Master’s Degree Thesis

Skill learning and task composition from
human demonstrations

for a collaborative manipulator

Supervisors
Prof. Marina INDRI

PhD. Pangcheng David

CEN CHENG

Candidate

Carlo MIGLIACCIO

December 2025

Alla mia Famiglia e ai miei Amici,
ai miei Sacrifici,

a chi non ce l’ha fatta.

Acknowledgements

Questa tesi rappresenta la conclusione di un percorso lungo e importante, che non
avrei potuto affrontare senza il supporto e la vicinanza di tante persone.

Ringrazio di cuore i miei relatori, Marina Indri e Pangcheng David Cen
Cheng, e i cari dottorandi Cesare e Rosario, per la disponibilità, le chiacchierate,
la fiducia e i suggerimenti che hanno reso possibile lo svolgimento di questo lavoro.

Grazie ai miei amici Pietro, Pierfrancesco, Mattia, Samuele e Federico, per
aver condiviso con me giornate di studio, risate e tanti bellissimi ricordi. Quei
momenti saranno per sempre parte di me. Siete tra i primi che ho conosciuto
nell’ormai lontano 2021, e farei fatica a immaginare il mio percorso universitario —
e di vita — senza di voi.

Federico, carissimo collega e amico, incontrato all’inizio del percorso magistrale:
solo tu sai quanto abbiamo patito per certi esami, e quanto per me sia stato
importante supportarci a vicenda, cercando di evadere con il sorriso da quella
pesantezza che le sfide da affrontare ci imponevano. Grazie di cuore!

Grazie a tutti i ragazzi della magica “Aula Studio 3”, quella che chiamo “la
stanza dello spirito e del tempo”. Chi da tanto, chi da poco: nutro per voi tanto
affetto. Avete trasformato un luogo di impegno e fatica in un posto in cui ci si
sente sempre a casa. Una cosa impagabile!

Stefano, grazie! Non avevo mai conosciuto un turbine di ironia, simpatia e intelli-
genza come te. Grazie per la stima e il bene che mi hai dimostrato fin dall’inizio; per
tutte le volte che mi hai ascoltato e donato con pazienza il tuo tempo aiutandomi a
liberarmi dalle ragnatele dei momenti di insicurezza; per tutte le risate che mi hai
regalato (Piccè si nu “Pizzarrone”!) portandomi leggerezza anche quando non ce
n’era affatto. Con te ho capito, ancora di più, quanto sia importante “volare alto”,
senza mai arrendersi, restando resilienti. A tutti i costi. In pochissimo tempo sei
riuscito a darmi tantissimo — più di quanto avrei mai immaginato. Hai lasciato un

segno profondo, fatto di autenticità, leggerezza e forza, che porterò sempre con me.

Edoardo, Fabio e Giuseppe. Grazie, perché tutti insieme mi siete stati vicino
in un periodo che definire burrascoso è poco.Quando — proprio alla fine del mio
percorso — mille fantasmi sono venuti a trovarmi, voi eravate lì, insieme a me!Mi
avete appoggiato, ascoltato, aiutato, consigliato, rassicurato, spronato.Vi sarò per
sempre grato per tutto questo: lo porterò per sempre nel mio cuore.

Un grazie speciale a voi, mamma e papà, non ci sono parole adatte per raccontare
quanti sacrifici avete fatto per me. Il mio amore e la mia gratitudine per voi
sono incommensurabili. Quante sono le volte in cui mi avete detto: «Carlo, devi
stare sereno, non devi preoccuparti di niente: l’unica cosa veramente importante
è che tu stia bene»? Tantissime! Mi sono sempre sentito al sicuro, protetto.
Tanto, se avevo voi dalla mia parte, per me andava sempre tutto bene. Potesse
crollare il mondo. Senza di voi non sarei nemmeno un granellino di ciò che sono oggi.

Al mio amato fratello Antonio, mio mentore, mio sangue, mia ancora, mio tutto.
Ci siamo sempre amati dal primo giorno, da quando — appena nato — con una
chiave finta di fortuna mi facesti sobbalzare dalla culletta. Ti ricordi? Quante volte
mamma e papà ce l’hanno raccontato e io chiaramente ogni volta, mi sciolgo. Sei
sempre stato per me l’esempio da seguire, il mio porto sicuro. Sei stato, in questi
anni, una delle cose di cui ho sentito di più la mancanza nonostante ci sentissimo
tante volte al giorno, tutti i giorni, in tutti i modi possibili. Qualcuno lo sa bene
quanto io tenga a te, ma su questo non c’è da sorprendersi.

Tutti voi, tutti, chi in un modo chi in un altro, chi da tanto, chi da poco, chi da
sempre, siete parte della mia vita. Ci siamo incrociati nei modi e nelle occasioni
più disparate, ma con ognuno di voi condivido uno, più ricordi o tutti i ricordi.

A tutti voi, infinitamente, grazie.
Vostro, Carlo.

Abstract
Human-robot collaboration (HRC) in the modern industry requires the employ-
ment of manipulators that can acquire and reuse skills in a easy way and without
domain-specific knowledge. Learning from Demonstration (LfD) offers a practical
way to do so, however, real deployments still face some caveats; such as turning raw
demonstrations into reliable low-level controllers on hardware, re-parameterizing
skills to new object/goal poses.

This thesis presents a unified LfD pipeline implementation for the UFACTORY
xArm6, a 6DOF collaborative robot (cobot) that allows learning of reusable motor
skills from human kinesthetic demonstrations. Such demonstrations can be used to
plan more complex manipulation task.

The pipeline follows the canonical stages – demonstration data acquisition,
motion encoding, execution, and refinement – and is developed with three learn-
ing methods for low-level skills: Behavioral Cloning (BC), Dynamic Movement
Primitives (DMP), and Gaussian Mixture Models with Gaussian Mixture Regres-
sion (GMM-GMR). The Task-dependent parameters are retrieved from a vision
subsystem based on RGB-D RealSense D435 camera, enabling skill adaptation to
unseen situations without retraining. On the real robot the execution uses the
vendor SDK for fine-grained control which in turn allows to tackle the Sim2Real
gap; in simulation, trajectories are executed through MoveIt environment for rapid
checking.

The pipeline is validated on four low-level skills: PICK, PLACE, POUR, and
SHAKE. Moreover, it is also tested on high-level tasks that organize them into
plans, including pick-and-place, object collection, single-drink pouring, and multi-
ingredient mixing. Furthermore, we assume that skills (eventually conditioned)
sequencing is user-defined.

The overall performance is assessed with geometry and objective fulfillment
metrics (Cartesian/orientation RMSE, Hausdorff distance, endpoint error), motion
quality (jerk), and task-level success rates, highlighting trade-offs between learning
approaches (e.g., GMM-GMR’s accuracy on discrete motions and DMPs’ convenient
goal re-targeting).

The contributions are: (i) a modular, end-to-end LfD pipeline for the cobot
that goes from kinesthetic data capture to real-robot execution; (ii) a comparative

implementation of BC, DMP, and GMM-GMR for skill learning; (iii) a vision-guided
parameterization layer for skill reuse across poses; and (iv) task-level controllers that
include learned primitives into reliable plans. Collectively, these results demonstrate
that few-demo LfD can deliver accurate, adaptable, and maintainable behaviors for
collaborative manipulation, reducing integration effort while preserving generality.

This page was left intentionally blank

Table of Contents

List of Tables vii

List of Figures viii

Acronyms xii

1 Introduction 1
1.1 Human-Robot collaboration . 1
1.2 The Learning from demonstration paradigm 2
1.3 Overview and Thesis structure . 3

2 State of the art 5
2.1 The LfD pipeline: theoretical foundations 5

2.1.1 Demonstration method . 6
2.1.2 Demonstration data and learning space 7
2.1.3 Issues related to demonstration data 8
2.1.4 Learning methods: introduction 9
2.1.5 Learning outcomes . 10
2.1.6 Refinement Learning: introduction 11

2.2 Learning refinement and Interactive learning 12
2.2.1 Motivation . 13
2.2.2 Modalities of interaction . 14
2.2.3 Human feedback in the evaluative space 15
2.2.4 The TAMER framework . 16
2.2.5 Human feedback in Transition (State-Action) space 16
2.2.6 DAgger: a framework employing absolute corrections 18
2.2.7 COACH: a framework employing relative corrections 19
2.2.8 Human-robot interfaces . 19

2.3 Challenges in LfD . 21
2.3.1 Generalization . 21
2.3.2 Simultaneous learning of low and high-level behaviors 21

iii

2.4 Manipulation tasks in robotics . 21
2.4.1 An overview of manipulation tasks 22
2.4.2 Mating skills . 22
2.4.3 Joining skills . 23
2.4.4 Research problems in Robotic assembly 24
2.4.5 Pose estimation . 24
2.4.6 Force estimation . 24
2.4.7 Assembly sequences . 25
2.4.8 Robotic assembly and LfD pipeline 25
2.4.9 Robotic assembly, subtasks hierarchy, task learning 25
2.4.10 Mating skills issues: motion-based vs contact-based demon-

strations . 27
2.5 Safety aspects in HRC . 28

2.5.1 Three different levels for HRC 28
2.5.2 Safety standards for collaborative robots and HRC 29

2.6 Safety strategies for HRC . 30
2.6.1 Pre-collision strategies . 30
2.6.2 Post-collision strategies . 32

3 An overview of Learning from Demonstration approaches 34
3.1 M1: Behavioral Cloning (BC) . 34

3.1.1 Mathematical formulation in LfD 34
3.1.2 Goal Conditioned Behavior Cloning 35

3.2 M2: Gaussian Mixture Model and Gaussian Mixture Regression
(GMM-GMR) . 35
3.2.1 Mathematical formulation 36
3.2.2 Training a GMM . 36
3.2.3 The Expectation-Maximization (EM) algorithm 36
3.2.4 The Log-likelihood for GMM 37
3.2.5 Visualization and model selection 38
3.2.6 Gaussian Mixture Regression (GMR) 38

3.3 M3: Dynamic Movement Primitives (DMP) 39
3.3.1 1D DMP fundamental equations 40
3.3.2 Learning DMP parameters from demonstrations 41

4 Implementation of the LfD pipeline 42
4.1 Human demonstrations collection 42

4.1.1 Demonstrations collection: steps to follow 43
4.1.2 Debug: Visualizing demonstrated trajectories 44

4.2 Learning models . 45
4.2.1 Behavior Cloning (BC) 45

iv

4.2.2 Dynamical Movement Primitives (DMP) 47
4.2.3 Gaussian Mixture Model (GMM) 48
4.2.4 Trajectory Execution . 50

4.3 Evaluation metrics . 56
4.4 Task-specific parameters θtask retrievial 57

4.4.1 Pose estimation by using ArUCO tags 58
4.5 Hyperparameters . 59

4.5.1 Demonstration phase hyperparameters 60
4.5.2 Learning phase hyperparameters 60
4.5.3 Execution phase hyperparameters 62

4.6 Low-level skills . 63
4.6.1 PICK . 63
4.6.2 PLACE . 64
4.6.3 POUR . 64
4.6.4 SHAKE . 66

4.7 High-level tasks . 66
4.7.1 Pick-and-place . 67
4.7.2 Collecting objects in a recipient/basket 68
4.7.3 Pour a drink in a container 68
4.7.4 Prepare a mixture of drinks 69

4.8 Knowledge of the robot: motion primitives and tasks 72
4.9 Two-finger parallel gripper management 74

5 Experimental results 78
5.1 Low-level skills . 78

5.1.1 PICK . 78
5.1.2 PLACE . 78
5.1.3 POUR . 80
5.1.4 SHAKE . 81

5.2 High-level tasks . 82
5.2.1 Pick-and-place, collecting objects 83
5.2.2 Pour a drink, prepare a mixture 84

6 Conclusion 86
6.1 Methodology . 86
6.2 Contributions . 87
6.3 Limitations . 87
6.4 Future works . 87

A Basics of Markov Decision Processes in RL and LfD 90

v

B Fiducial markers in Robotics 92
B.1 ArUco marker detection process . 93

C Robotic vision system, Intel RealSense D435 camera 95
C.1 Configuration of the visual system 95
C.2 The Intel Realsense D435 camera 95

C.2.1 Specifications . 96
C.2.2 Camera Calibration Procedure 97

Bibliography 99

vi

List of Tables

2.1 Most important interaction methodologies grouped according types
of Space and Feedback . 19

4.1 Learnine methods features . 55
4.2 Demonstration phase hyperparameters 60
4.3 Learning phase hyperparameters (BC) 61
4.4 Learning phase hyperparameters (DMP) 62
4.5 Learning phase hyperparameters (GMM) 62
4.6 Execution phase hyperparameters 63

5.1 Units for used metrics . 78
5.2 Quantitative results (PICK) . 79
5.3 Quantitative results (PLACE) . 80
5.4 Quantitative results (POUR) . 81
5.5 High-level task evaluation: PICK_AND_PLACE, COLLECT_OBJECTS . . 84
5.6 Learning models used for each subtask 84
5.7 Success rates (task and subtask) for POUR_DRINK 85
5.8 Learning models for each subtask 85

vii

List of Figures

1.1 Typical uses of a collaborative robots [1] 2

2.1 LfD pipeline. A Human teacher shows the skill/task to be executed
by giving Demonstrations, on such data some High-level Task Learn-
ing or Low-level Skill Learning is performed; learned skill/task can
be Executed and, eventually refined. [3] 6

2.2 Different demonstration methods: (a) kinesthetic: the end-effector
is manually guided in the task space; (b) teleoperation: an external
device is used to move joints; (c) passive observation demonstration
are provided in the human state-space [4] 7

2.3 Main demonstration methods and their features concerning Concept,
Advantages, Limitations and Recommended use [4] 8

2.4 Main features of LfD methods according to different learning out-
comes: Policy, Cost or Reward, Plan [2] 12

2.5 Interaction modalities and informations contained in the feedback
signal: the more information to be provided the less usable the
approach by non-expert teachers [10] 14

2.6 Parts of the car and assembled car. In this case the assembly
task can be structured in a sequence of peg-in-hole subtasks. [21] . . 23

2.7 Any Full task can be seen as a sequence of Subtasks. After having
been decomposed/segmented, subtasks can be used to structure a
plan according to conditions [4] . 26

2.8 Motion-based and contact-based demonstrations: while in the
former case the the learning of interaction is less important than in
the latter. [4] . 27

2.9 Collaboration levels adapted from [24]: (a) Coexistence, (b) Cooper-
ation, (c) Collaboration . 29

2.10 Human-Robot collaboration: safety aspects [26] 31

viii

4.1 Human Kinesthetic demonstration. Both task space (xe) and joint
space (q) data can be collected. In our work only task space data
were used . 44

4.2 Schema of real/simulated demonstration collection 44
4.3 Learning phase: general flow for obtaining an encoding from demon-

strated trajectories . 45
4.4 Behavior Cloning: learning phase 47
4.5 Dynamical Movement Primitives: learning phase 48
4.6 Gaussian Mixture Model: learning phase 50
4.7 Execution phase: real and simulated general flow for execution . . . 51
4.8 Execution phase: simulated environment 52
4.9 Execution phase: real environment 53
4.10 Behavior Cloning: inference phase 54
4.11 Dynamical Movement Primitives: trajectory decoding 54
4.12 Gaussian Mixture Regression: inference phase 55
4.13 ArUCO detection and pose estimation (realsense2+OpenCV) . . 59
4.14 LfD pipeline for learning PICK low-level skill 59
4.15 Vision pipeline (I): start/goal poses ArUCO-based, object geometry

in a static glossary . 60
4.16 Base (base), TCP and camera (cam) frames of the robot model . . . 61
4.17 PICK_AND_PLACE() flowchart . 67
4.18 COLLECT_OBJECTS: flowchart. len is assumed to be the length of the

array containing objects information 68
4.19 Detected objects from the real scene. The image is annoted with

detected ArUco IDs and reference frames 69
4.20 POUR_DRINK() flowchart . 70
4.21 Pouring a liquid . 70
4.22 PREPARE_MIXTURE() flowchart . 71
4.23 Human screwing the cap on the bottle: the robot goes to the human

(a) and asks for help for screwing the cap (b) 73
4.24 Robot knowledge: motion primitives (bottom-right) are the building

blocks for tasks (left) which are nothing but a sequence of low-level
skills (top-right) . 74

4.25 Learned low-level skills’ snapshots. Sample trajectories are given
in red. Note that while for PICK, PLACE and POUR you have
point-to-point trajectories, for SHAKE there is a periodic one . . . 74

4.26 xArm gripper . 75
4.27 Pick and place with gripper management 76
4.28 Horizontal and Vertical approaches 77

5.1 PICK - Projection on YZ plane . 79

ix

5.2 PICK - Quaternion components timeseries 80
5.3 PLACE - Projection on XY plane . 81
5.4 POUR - Position (x, y, z) timeseries 82
5.5 POUR - Projection on XZ plane . 83
5.6 Demonstrations in the xy plane (different colors represent different

demonstrations) [37] . 84

6.1 LfD pipeline and related choices for each aspect 88
6.2 Modified vision subsystem relying on GraspNet-1B [38]: static glos-

sary is replaced by a dedicated grasp proposal network 89

B.1 Examples of fiducial markers [41] 92
B.2 Image process for automatic marker detection. (a) Original

image. (b) Result of applying local thresholding. (c) Contour
detection. (d) Polygonal approximation and removal of irrelevant
contours. (e) Example of marker after perspective transformation.
(f) Bit assignment for each cell. [42] 94

B.3 Examples of generated ArUco of different sizes n 94

C.1 Eye-in-hand(a) and Eye-to-hand (b) configurations [44] 96
C.2 Intel RealSense d435 camera . 96
C.3 Camera Calibration. From world coordinates to pixels and viceversa 97

x

Acronyms

CPS
Cyber-Physical System

HRC
Human-Robot Collaboration

LfD
Learning from Demonstration

RL
Reinforcement Learning

IRL
Inverse Reinforcement Learning

HRI
Human-Robot Interaction

BC
Behavior Cloning or Behavioral Cloning

GMM
Gaussian Mixture Model

GMR
Gaussian Mixture Regression

TP-GMM
Task-Parameterized Gaussian Mixture Model

xii

MP
Movement Primitive

DMP
Dynamic Movement Primitives

ProMPs
Probabilistic Movement Primitives

MDP
Markov Decision Process

HMM
Hidden Markov Model

DAgger
Dataset Aggregation

IL
Imitation Learning

IIL
Interactive Imitation Learning

POMDP
Partially Observable Markov Decision Process

TAMER
Training an Agent Manually via Evaluative Reinforcement

HG-DAgger
Human-Gated Dataset Aggregation

COACH
COrrective Advice Communicated by Humans

SRMS
Speed and Separation Monitoring

xiii

HG
Hand Guiding

SSM
Speed and Separation Monitoring

PFL
Power and Force Limiting

RNN
Recurrent Neural Network

LSTM
Long Short-Term Memory

RRT
Rapidly-exploring Random Tree

xiv

Chapter 1

Introduction

Recent advances in machine learning (ML) techniques, edge/cloud computing
passing through smart sensors technologies have drastically changed the way to
conceive the Industry. All of these elements can collaborate and being integrated
together to build up Cyber-Physical systems (CPS), which are nowadays playing
an important role while making possible both technologies and methods that once
were considered only in science fictions.
There has been a shift from mass production to a more adaptive and flexible
paradigm enabled by the co-existence of human and robots, with the objective
of taking the best from each one. This is what you need for the Industry 4.0 to
enable the so-called smart-manifacturing. With this aim a novel and innovative
discipline, which has been catching the attention from the scientific community, is
the Human-Robot collaboration (HRC) to which is dedicated the next paragraph.

1.1 Human-Robot collaboration
The main focus of HRC is to combine the flexibility of human beings with the
automation of which is equipped a robotic system. Note that, such robots in
a collaborative context are called collaborative robots (cobots for short). In
particular they – with respect to the traditional ones – work in a shared workspace
with humans and in order to ease the reciprocal interaction are provided with
sensors, cameras and other advanced technologies. Relevant applications of cobots
in manufacturing and main differences with traditional robots are presented more
deeply in the work by Javaid et al. [1]. The transition from a traditional to a
collaborative industrial scenario is not straightforward at all, since:

• You have to install cobots instead of robots, this requires a redesign of working
cells and places within the factory, note that this is affecting the plant layout
of the organization;

1

Introduction

• They must be programmed in an efficient and flexible way which could be
context-aware and easily customizable;

• The fact that their workspace is shared with humans raises up safety issues,
that have to be properly addressed and are the leading factor in implementing
a smart factory. A detailed analysis of such aspects can be found in Sections
2.5 and 2.6.

Figure 1.1: Typical uses of a collaborative robots [1]

1.2 The Learning from demonstration paradigm
Generally speaking, one of the most important and enabling functions in HRC is
intuitive learning which allows both humans and robots to exchange knowledge
and notions. One of the most used approach to implement it, is the Learning from
Demonstration (LfD), which is the

"the paradigm in which robots acquire new skills by learning to imitate
an expert" [2].

This is closing more and more the existing gap between research and practical
applications in robotics. Such a technique allows the programming of robotic systems

2

Introduction

in a unusual way that skip the traditional motion/task planning procedures.
In general, programming a robot using traditional methods is quite hard. Indeed,
not only good programming skills are needed but also a medium to low-level
knowledge about robot kinematics and dynamics is often required. Furthermore,
the traditional way by which a robot is programmed requires the single actions
to be specified by an expert "by hand"! Even worse, little changes either in the
environemnt or in the procedures are associated with a complete reprogramming of
the system.
The LfD paradigm overcomes these issues:

• Allowing non expert to teach the robot without any mechanical or mathemat-
ical knowledge;

• Most LfD methods learn and generalize the learnt skills to novel task and
requirements;

• Defining a task in such a framework results in less effort and a quicker way to
serve the manufacturing requirements.

LfD takes inspiration from neuroscience, especially in terms of imitation, observation,
and feedback phases. Furthermore, according to [3]

"Starting at an early ages, children use the information around them
to learn from observation, experience, and instruction, striving to imitate
the adults around them".

A practical roadmap for an industry to adopt and deploy LfD methods is shown in
[4] by Barekatain et al. with a specific focus on manipulation tasks.

1.3 Overview and Thesis structure
Overall, the objective of this thesis is to design and implement an end-to-end
Learning from Demonstration pipeline for a 6DOF collaborative manipulator (the
UFACTORY xArm6), capable of acquiring reusable manipulation skills from human
kinesthetic demonstrations and adapting them to new task configurations. To
achieve this, the work combines a conceptual and methodological analysis of HRC
and LfD with a comparative study of three motion encoders (Behavioral Cloning,
DMP, GMM-GMR), the integration of a vision-based parametrization layer, and
an experimental validation on both low-level skills and their composition into
higher-level tasks.

The remaining part of this thesis is organized as follows: Chapter 1 introduces
the industrial context, Human–Robot Collaboration and the LfD paradigm; Chap-
ter 2 presents the state of the art on LfD, interactive learning, robotic assembly and

3

Introduction

safety aspects in HRC; Chapter 3 provides a theoretical overview of the selected
LfD methods (BC, GMM–GMR, DMP); Chapter 4 details the implementation
of the proposed LfD pipeline including demonstration collection, learning and
execution; Chapter 5 reports and discusses the experimental results for both
low-level skills and high-level tasks; Chapter 6 concludes the work, highlighting
the main contributions and limitations and outlining possible directions for future
developments.

4

Chapter 2

State of the art

The LfD paradigm stays at the intersection between Supervised Learning (SL) and
Reinforcement Learning (RL). In such a framework, the robot can be seen as an
agent that is put into an environment. Coming back to the paradigms, we can say
that, in particular, from the former we inherit the fact that some learning/training
data are used (what we are going to call demonstrations), from the latter the fact
that – at the end of the learning phase – we obtain a function that for each state
of the environment associates an action for the robot (agent). This function, in
first approximation, is called a policy:

π : S → A (2.1)

where S is the state space and A is the action space. As in RL, also in the LfD
framework the robot learning process can be modeled through a Markov Decision
Process (MDP) by which the main results and proofs can be provided also for LfD.
How it is explained in [5], the main difference between RL and LfD is that, at
least in the vanilla version, during the training the agent is not interacting
with the environment since in the learning data there is a guiding policy
πteacher to imitate, that is the one showed by the human expert. The importance
of MDP theory and the relationship between LfD and RL motivated us in providing
a brief theoretical overview in the Appendix A.

2.1 The LfD pipeline: theoretical foundations
Entering more in details here, we want to find some (family of) methods by which
the collaborative robots can learn some low-level skills or a high-level task
relying on a natural demonstration of an expert teacher that in some way is meant
to show to the robot the way to execute a certain skill or a certain tipology of task.
According to [5] and other inherent surveys, such a learning process can be split

5

State of the art

into five stages: (i) Demonstrator selection, (ii) Data acquisition (demonstrations),
(iii) Data modeling (learning), (iv) Task/skill execution, (v) Learning refinement,
as shown in Figure 2.1:

Figure 2.1: LfD pipeline. A Human teacher shows the skill/task to be executed
by giving Demonstrations, on such data some High-level Task Learning or Low-level
Skill Learning is performed; learned skill/task can be Executed and, eventually
refined. [3]

2.1.1 Demonstration method
There are mainly three modalities by which demonstrations can be performed as
illustrated in Figure 2.2:

1. Kinestetic approach. Here, there is a human that physically guides the cobot
through a desired trajectory. The key aspect here is the direct interaction
between the learner (robot) and the teacher. Due to this fact safety concerns
arise;

2. Teleoperation. In this case the human remotely control the robot by using an
external mechanism (eg. joysticks). This is adviceable for those operations
for which a direct interaction should be avoided for safety reasons.

3. Passive observation. Here, there is not a direct interaction or explicit guidance
of the learner, since the robot is a passive observer. The demonstrations are
provided by means of images from a camera of some type.

The choice of the demonstration method implies the choice of the demonstrator;
in the first two cases it is the learner itself, since the demonstrated task is
executed in the configuration space (which is the joint space), while in the third
case, the demonstrator is someone different than the robot, since there is the human
that performs the demonstration.
Here, a first issue arises in the demonstration phase the so-called correspondence
issue, which is related to answering to the following question:

How can we map the state and action spaces of the teacher
in the state and action spaces of the learner (agent/robot)?

6

State of the art

Figure 2.2: Different demonstration methods: (a) kinesthetic: the end-effector is
manually guided in the task space; (b) teleoperation: an external device is used
to move joints; (c) passive observation demonstration are provided in the human
state-space [4]

In the worst case, there are two correspondence functions to apply [5]: from
the teacher space to the record (Record Mapping) and from the record to the
learner (Embodiment Mapping). How far the first two methods are concerned,
no mapping is required since the teacher acting directly on the robot (by using its
hands or an external mechanism) provides data which are already in its configuration
space.

More formally:

(srecord, arecord) = mR(steacher, ateacher) Record Mapping (2.2)
(slearner, alearner) = mE(srecord, arecord) Embodiment Mapping (2.3)

where mR and mE are, respectively, the Record and Embodiment mapping functions.
The main aspects of the just presented demonstration techniques are given in the
table in Figure 2.3 from [4].

2.1.2 Demonstration data and learning space
The Demonstration data must be provided in a structured way, so that learning
method can use them in a straightforward manner. In general, whatever is the
shape of the demonstration data they have:

1. The information related to the state which is called feature vector. It may
contain also redundant/useless information that must be thrown away;

2. The action performed by the teacher to a particular state (in vector sense).

The survey in [5] provides a clear distinction of the features in: (i) raw features
which are the ones obtained directly from the robot sensors; (ii) handcrafted

7

State of the art

Figure 2.3: Main demonstration methods and their features concerning Concept,
Advantages, Limitations and Recommended use [4]

features they are usually obtained by applying manually designed functions giving
a rich and minimal representation; (iii) extracted features, which are the one
obtained by passing the demonstration dataset through a deep-learning architecture
(e.g., a Convolutional Neural Network (CNN)).

Another simpler classification for the spaces in which can lie the demonstration
data is given in [4]. This is more suitable for robotic manipulators. The two
individuated spaces are:

Joint Space (Configuration Space) This offers a low-level representation for
the motor commands. At the end of the learning process, the integration of
the policy into the controller is straightforward. The main drawback of such
a method for picking the data is that there is high probability to overfit the
training data with the related loss of generalization.

Cartesian Space (Operational or Task Space) In robotics we use the carte-
sian space to describe the attitude of the end-effector. The main advantage
of such a method is the adaptability of such a description to other robotic
platforms. This is a human-oriented description, indeed. It facilitates the
explainability of the learning process.

2.1.3 Issues related to demonstration data
In the LfD paradigm, as in SL, the quality of the policy that one obtains at the
end of the learning process is strongly dependent on the learning data, which in
our case, are the ones related to the demonstrations. Note that the choice of a
demonstration method instead of another can influence the choice of the learning
method, too. The main issues concerning the data quality are:

Incomplete Data The demonstration data that are collected represent a subset
of the full MDP. The lower the quantity of collected learning data, the higher

8

State of the art

the probabilty of having a state that has not been sampled. In that case, the
policy is diverging more and more to the desired actions in a way that the
final objective will not be reached. This is the well-known problem of the
distributional shift. As reported in [5], the ways for improving this issue are:
(i) collecting more data, (ii) obtaining new data from the existing ones1; (iii)
Using transfer learning exploiting the skills learned for other types of tasks.

Inadequate Data Demonstration data are collected by sensors or cameras. What-
ever is the demonstration technique, there is uncertainty in the measurement
process: a non-expert teacher, an inaccurate sensor, a camera affected by
occlusion.

The presented issues give in output policies that achieves sub-optimality. This is
the reason why the obtained policy has to be tuned using some refinement technique
to which we dedicated a section, but first, some other theoretical details about
learning methods and outcomes are needed.

2.1.4 Learning methods: introduction
In the field of manifacturing, there are many tasks a robot can learn (e.g., pick and
place, peg-in-hole and so on). Each one of this tasks (also called High-level tasks)
can be in turn split in several subtask (called also Low-level skills). As it is
stated in [4], it is possible to achieve better performances when a single subtask at
a time is learned and during a second stage a conditional hierarchy is superimposed.
This will be clearer in the section dedicated to manipulation tasks in robotics (see
Section 2.4). Learning methods can be classified according to the task they allow
to learn.

Low-level skill learning

Low-level skills are the basic movement a robot can learn (pushing, moving,
grasping, and so on). They can be put together in order to form more complex
tasks. There are cases in which is more convenient to have a learning space with
respect to another. In this family of methods we have a further distinction in:

• One-shot or deterministic methods: they are based on a single skill demon-
stration. It is the simplest strategy considering such an aspect, however, it is
vulnerable to the noise introduced in the demonstration phase. The simplest
method of this type is the Behaviour cloning, which consists of obtaining

1This is what in supervised learning is called Data augmentation

9

State of the art

a deterministic policy2 πθ(s) = a in a Supervised Learning fashion. At the
opposite the most used one-shot method is called Dynamic Movement
Primitive (DMP);

• Multi-shot or probabilistic methods: Here, the data coming from demonstrations
are modelled with a probability density function (pdf), this is the same to say
that the (2.1) will be of the following type

π = π(st|at) (2.4)

The state-of-the-art probabilistic method is the combination of GMM (Gaussian
Mixture Model) and GMR (Gaussian Mixed Regression).

Both State-Of-the-Art (SOA) methods are well-presented and explained in [6],
where in general an overview of trajectory generation for robotics is given.

High-level task learning

A High-level task is a compound of a set of primitive motions (low-level skills). The
demonstrations, in this case, are sequences of primitive motions. In order to learn
a task, there are three main methods:

1. Policy learning The task is reproducing the demonstrator policy by generalizing
a set of demonstrations (a set of multiple compounds of elementary tasks);
here, the demonstration data is a sequence of state-action pairs;

2. Reward Learning The task to be executed is represented by a reward function.
In order to obtain a reward function, Inverse Reinforcement Learning
(IRL) applied to demonstration data can be used.

3. Semantic learning They are based on extracting which are the correct param-
eters related to task features, object affordance and task frames.

Overall, the most used one-shot learning method is DMP, GMM-GMR for multi-shot
learning. Finally, the most used methods for high-level task is Semantic Learning.
An exhaustive list of methods for both skills and tasks learning is presented in [7]
and more deeply discussed in the next subsection.

2.1.5 Learning outcomes
In this section, the objective is to give more details about the learning phase
outcome answering to the question: what are we going to learn from demonstration
data? According to [2], there are mainly three possibilities:

2For example, a Multi-Layer Perceptron can be used, it can rely on Universal Approximation
Theorem by Barron. The obtained policy will result in a deterministic function parametrized by
the parameters θ.

10

State of the art

1. Policy learning (associated to low-level skills) is the mapping function π
we have introduced so far, providing the correspondence between a state space
variable and an action that applied to the manipulator will generate similar
trajectories to the ones showed into the demonstration dataset given by an
expert. The most used methods learn policies that provide a mapping into
the trajectory space. More specifically they are: (i) dynamical systems-based
(e.g., DMP, ProDMP), where the demonstrated trajectories are supposed to be
solutions of the dynamical system itself; (ii) probabilistic inference, where the
demonstration are compressed in a unsupervised fashion using multivariate
models. The output trajectories, moreover, are obtained by sampling the
learned multivariate distribution after eventually having conditioned on
initial and final point (examples of such models are the GMM-GMR based).
Finally, the generated trajectories can be either in the joint space or in the
operational space (clearly there are pros and cons related to generalization
and singularity handling).

2. Reward or Cost function learning In this context, IRL is used in order to
obtain a reward function Rt from demonstration data. This is one of the most
difficult task in Reinforcement Learning. As reported in A, IRL is usually
used in learning refinement. A strong assumption on the demonstration data
is made, which is the demonstrated policy πteacher to be optimal (this is an
approximation since it is never the case).

3. Plan learning (associated to high-level task) This learning strategy is
devoted to complex tasks (eg. folding a towel, assembling a device). These are
usually sets of primitive actions, which are often demonstrated in continuous
sessions. Now, whether the demonstrated trajectories are of the full complex
task, which is composed of a sequence of actions, the first problem to be
solved is the segmentation of the trajectories in subtasks. Within this
family of approaches, a further distinction can be introduced among methods
performing a learning of a primitive sequence or a primitive hierarchy (see
2.4).

The main features of the approaches we have just presented are shown in Figure
2.4.

2.1.6 Refinement Learning: introduction
We have seen that due to the distributional shift and the presence of noise in
the data, the obtained π(s) can be a sub-optimal one. Such a policy, then, could
require some refinement.
The most common way to do so, is using Reinforcement learning (RL) in order

11

State of the art

Figure 2.4: Main features of LfD methods according to different learning outcomes:
Policy, Cost or Reward, Plan [2]

to let the agent interact with the environment in a way to uncover the unknown
part of the MDP. At this aim a reward function can be obtained by using the
demonstrations, using such a reward the founded policy can be refined.
One can wonder, why not using RL from the beginning? In real-world applications
exposing the robotic system to the exploration of the environment starting from a
randomic policy could be dangerous for both humans and the robot itself, since
a state of the environment may lead to physical constraints violation. On the
contrary, using RL only for fine-tuning the policy obtained from LfD, this results
in a safer procedure.

In order to further enhance the LfD methods active and interactive learning can
be employed [8]. The approaches are similar. In the first case, when you are out
from the distribution of the demonstration data, the learner actively requires further
demonstration to the teacher. On the other hand, in interactive learning method
the teacher can act during the task execution to correct some wrong behaviours.
The next section expands such concepts.

2.2 Learning refinement and Interactive learning
There some other methods, different from IRL, which can be used during the
Learning refinement. We mean Active and Interactive Learning that are at the
intersection between Imitation Learning3 and Interactive Machine Learning,
in a field which in the literature is called Interactive Imitation Learning4.
We have talked about Imitation learning in the latest reports, while – citing the
definition from Dudley and Kristensonn (2018) [9]:

3In the literature you can find: Learning From Demonstration (LfD), Learning by Demonstra-
tion (LbD), Programming by Demonstration (PbF) or Imitation Learning (IL). These are used
indistinctly when one wants to enabling robot deriving controllers from human demonstrations.
In the present report and the following we will also use such terms interchangebly.

4Initially we will analyze only Interactive Learning which is the most discussed, leaving for
further research Active Learning, the process by which is the learner that ask for help.

12

State of the art

"Interactive Machine Learning is distinct from classical machine learning
in that human intelligence is applied through iterative teaching and model
refinement in a relaively tight loop of set-and-check. In other words,
the user provides additional information to the system to update the
model, and the change in the model is reviewed against the user’s design
objective."

Methods like Inverse Reinforcement Learning and Imitation Learning are not
interactive, despite the fact they use human demonstrations. These are used in
a supervised-learning fashion as a training dataset and data are collected before
the learning process starts. At the opposite, Interactive Imitation Learning
(IIL) being at the intersection between IL and IML, exploits the presence of a
Human-In-The-Loop (HITL) during the training of the policy.

2.2.1 Motivation
The introduction of IIL comes from the idea of instructing a robot "naturally",
taking inspiration on how humans learn complex skills. Indeed, while a small set of
demonstration is sufficient for learning simple skills (e.g., open the door), complex
skills – for example playing a sport – require a loop of interaction in which
the teacher explains directly what are the issues to fix or evaluates the actions.
Similar concepts can be tailored for robotics with the difference that the learner is
not a human but a robotic system. Furthermore, there are several advantages in
emplyoing interactions in the LfD pipeline feedback:

1. At the end of the training, you will earn more accurate datasets which includes,
by means of rating feedback or corrections, situations that are not normally
present when using traditional demonstration datasets;

2. The teacher is allowed to transfer the knowledge to the robot not only with
the demonstrations. On the contrary, other types of interactions can be used,
such as: reinforcements, preferences, corrections;

3. The correspondence problem we mentioned at the beginning can be solved in
a effective way where the teacher is directly involved.

Without any doubt, the presence of the human teacher in the learning loop is
not negligible: humans make mistakes and can be inconsistent. This, at a higher
theoretical level, may lead the underlying MDP (or Partially Observable MDP)
to diverge. This is the main reason why, in practice, several approaches are used
in order to encapsulate the presence of the teacher in a way that the whole LfD
process will obtain benefits.
In the following, we are analyzing:

13

State of the art

• How the teacher is supposed to intervene giving feedback about either how
good the work has been carried out or how to do to improve its behavior;

• What are the available channels by which the feedback can be conveyed?

The main reference for analyzing and exploring the IIL field can be found in [10]
from which we are taking the main aspects. Clear and detailed theoretical insigths
are also provided.

It is remarkable that we are going to mention some RL-specific terms, since, as
stated at the beginning, IL/IIL and RL are strictly related fields.

Figure 2.5: Interaction modalities and informations contained in the feedback
signal: the more information to be provided the less usable the approach by non-
expert teachers [10]

2.2.2 Modalities of interaction
At this stage, we want to analyze possible modalities that a human demonstrator
can employ to give feedback on the robot behavior/performance. At first, we need
a definition for feedback. This is "the signal containing information that human
teachers explicitly communcicate to the learning agent through a human-robot
(or human-computer) interface" [10]. We are able to choose, according to diverse
factors such as the complexity of the task we are dealing with, the expertise of the
human, available interfaces, one method with respect to the others, etc
Shortly speaking, we can say that all of the modalities can be grouped into two
classes, in particular, feedback can be either in the evaluative space (the signal
contains an evaluation about how well the agent has learned) or in the transition
(state-action) space, where the teacher directly gives hints directly on how to do

14

State of the art

better the task. Within the two categories critics5 can be provided in an absolute
or in a relative way. The former requires the teacher to know what is the optimal
behavior while also requiring a non-negligible cognitive load.

2.2.3 Human feedback in the evaluative space
An evaluative feedback is nothing but a scalar value indicating the quality of
the agent’s behavior. The most recent papers about interactive learning adopted
such a kind of feedback strategy taking inspiration on how domestic pets learn
what is a good or bad behaviour.
More technically, the main idea is inspired by RL with the only difference that the
reward/penalty are received from a human instead of having a reward function,
the design of which is not trivial at all. However, sometimes it can happen that
inconsistent feedback are provided leading to convergence issues.

Learning from Human reinforcements (absolute)

When one wants to give feedback in an absolute way, the robot interprets the
human signal as a reward or penalty with respect to an optimal policy
that is implicitly known by the teacher. Such a type of feedback are called
Human reinforcement.
A possible way to implement such feedback is training the agent in an RL fashion,
skipping the design of the reward function and letting the human to give judgements
at each time step leading to the Interactive RL fields. Another implementation of
absolute feedback in the evaluative space is within a framework called TAMER.
Overall, human reinforcements are used for conveying to the robot what is wrong
or right. The teacher is supposed to have complete knowledge about the tasks
we are teaching. However, he/she does not have any idea on how the robot could
improve by means of actions to be executed. On the other hand, the teacher has
to be careful, since is not simple to revert a mistaken penalty.

Learning from Human Preference (relative)

In principle, using human reinforcements in some situations could reveal great
results in the learning outcome, however, giving a reward or punishment on an
absolute scale is not simple and sometimes is not feasible. To solve this issue, there
are other methods in the evaluative space that act by comparing two or more
sequences and provide a preference score. The teacher workload is reduced
without any doubt. In particular, the direction toward which the policy should be

5In RL field is the way to say ’corrections’

15

State of the art

shifted is given implicitly, since a sort of rating of different behaviors is given.
Lastly, an implementation of such concepts can be found in Preference-based
Policy Learning (PPL) approaches [11], which explored how preferences and
RL can be combined. An extension of such method to high-dimensional state
spaces is possible by using some function approximators such as neural networks.
In summary, learning from preferences reduce the cognitive load on the teacher
since a general performance comparison constitutes the feedback. Similarly to
reinforcements, mistakes in the teacher judgements have a negative impact on the
policy convergence.

2.2.4 The TAMER framework
We have just seen that absolute feedback given in the evaluative space is something
similar to what is done in RL: an agent interacting with the environment will gain
a (positive/negative) reward from it, that is nothing but an evaluation on how
good was its action. Here, in this framework, the objective is training the agent
using human rewards. Neverthless, they cannot be treated in the same way
as environment reward. This fact can be summarized as: "MDP reward is infor-
mationally poor yet flawless and human reinforcement is rich yet flawed" (Knox,
Stone in [12]). In other words, if human rewards are used in the same fashion with
respect to MDP reward, the richness related to the fact that the teacher does have
some priors on the long-term consequences is lost. The so-called shaping approach
allows to take into account both long-term consequences and optimality of the
robot actions.
The framework TAMER (Training an Angent Manually via Evaluative Reinforce-
ment), introduced by Knox and Stone, in 2008 [13] is seminal in this field, since
it addresses the problem on how human rewards can be used in RL problems
with discrete action spaces. Some other works manage the problem of taking into
account both human and MDP rewards, in a framework they call TAMER+RL. In
2013 Knox and Stone implemented TAMER on a real robot, while in 2018 Deep
TAMER (D-TAMER) were presented, considering an high-dimensional state space.

2.2.5 Human feedback in Transition (State-Action) space
In this context, the feedback signal contains insights on how to do to improve the
task, explaining hot to perform a certain set of transitions. No quality assessment
is considered here, it is assumed that the teacher has good insights about the task
execution. Even in this context we have the split between absolute and relative
feedbacks. In the former case, the demonstrator is expected to show what is the
optimal transition for the state that the robot is visiting, the latter case expects
that feedback are provided with respect to the trajectories the robot is executing

16

State of the art

in that time step. The correct action is achieved after some iterations since the
correction is not considered to be an optimal action, only an hint to proceed in a
certain direction.

Corrective demonstrations (absolute corrections)

While using absolute feedback, the teacher can intervene: every time step, occasion-
ally according to the decision of the human. Another aspect to be considered is that,
the corrections could be only recorded or both recorded and exectuted. While
absolute feedback in the evaluative space was closer to RL, absolute corrections are
closer to LfD methods. The most important algorithms included in this bunch take
inspiration or belong to a family of methodologies based on DAgger [15], which
interactively records the corrective demonstrations. As in the case of TAMER,
in the following we are dedicating a whole subsection to DAgger. Even if these
methods are the most similar to our LfD approaches, they require the teacher to
have expertise at solving the task. However, among the advantages, they reduce the
errors since corrections are for improving current policy deviations; the workload is
reduced since some methods require only occasional intervention.

Learning from human relative intervention

As far as relative corrections are concerned, the teacher is not supposed to know
which are the actions for each state. On the contrary, the teacher is required to
have sensibility about the consequences of changing the magnitude of a certain
state-action transitions. That is, What is the impact of slightly changing the
policy? Relative corrections can be either discrete or continuous. The methods
employing relative corrections are: Advice-Operator Policy Improvement (A-
OPI), Physical advice and COACH. While the last have a dedicated subsection,
for the others we briefly give some insights:

• A-OPI At each iteration, the policy is rolled out online, then in an offline
manner. The human teacher individuates what is the fragment of the trajectory
to be modified by using an associated advice operator, which changes the
actions for each pair in the chosen trajectory part. Finally, there is a re-
derivation of the policy which is based on the updated dataset. The advice
operator stands for implementing the relativeness of corrections. For example,
for a navigation task, a sample advice acceleration could lead to a multiplication
of the current velocity by 1.1, which results in increasing the current action
magnitude. This is the essentials of the method presented in a work from 2009
[16].

• Physical advice Sometimes, especially for manipulation tasks, it is useful
to provide relative corrections by using the kinesthetic approach. Here, the

17

State of the art

corrections are detected and computed by measuring the difference between
the desired trajectory and the one which has been deviated by the teacher.

To finish the development of this part, we can say that relative corrections can be
used whether the desired behaviour is not a-priori known or a expert user is not
present.

2.2.6 DAgger: a framework employing absolute corrections
DAgger stands for Dataset Aggregation; it is an algorithm introduced by Ross
et al. [15] that created a family of methods with this idea: instead of training
only on the expert’s demonstrations, DAgger iteratively collects new data from the
learner policy and asks the expert to label it. The overview of the algorithm is the
following:

1. Initialization

• Collect a dataset D1 of expert demonstrations;
• Train a policy π1 on this dataset

2. Iteration For each iteration i

• Rollout the current policy πi to collect the trajectories;
• The expert observes and labels the visited states with correct actions;
• Aggregate the new pairs into the dataset
• Train a new policy πi+1 using the aggregated dataset

3. Repeat until performance convergence

The objective is to minimize the difference between the agent and expert’s actions
fixing a certain state. Note that the original DAgger algorithm requires a correction
for every state, which is infeasible for robotic tasks where state and action spaces are
continuous ones. However, there are some variants that are more suitable, such as
the HG-DAgger (Human-Gated DAgger) [17], where the most relevant difference is
that the human does not label each state-action pair, but the intervention is limited
to the cases in which the robot is clearly wrong. More specifically, there is always
the presence of a novice policy obtained by demonstration data. Such a policy
is used for executing the task, whether the taken actions are wrong, the human
teacher takes control and executes a corrective action. In this case, the portion
of corrected trajectory is recorded and this data is added to the dataset. This is the
moment when the policy is retrained using the aggregated dataset which – again
– contains both human demonstrations and human-corrected generated examples.

18

State of the art

2.2.7 COACH: a framework employing relative corrections

We have introduced A-OPI and we have seen that actions can increase/decrease
according to the given Advice-Operator. There is a framework called COACH
(COrrective Advice Communicated by Humans) [18] that exploits binary feedback
to encode the direction in which the change should occur, so the change is provided
in relative terms where the magnitude/percentage is a hyperparameter to tune.
This feedback signal is interpreted as an Advantage Signal A(s, a). The obtained
policy is then updated using policy-gradient methods such as REINFORCE or
Actor-Critic. It is used in all those situations when the teacher can observe but
not physically correct the wrong behaviors.
A summary table of the methods is given in Table 2.1:

Absolute feedback Relative feedback

Evaluative Space Interactive RL
TAMER,
TAMER+RL
Deep-TAMER

PPL

Transition space DAgger
HG-DAgger

A-OPI
Physical Advice
COACH, D-COACH

Table 2.1: Most important interaction methodologies grouped according types of
Space and Feedback

2.2.8 Human-robot interfaces

Now, our main focus here is on Which channel can be used for exchanging feedback-
related information? In principle, such a channel can be bidirectional, even if for
IIL the direction is mostly from the human-teacher to the learning agent, being
the learner passive.

Physical Contact with the Robot Embodiment

Here, we are essentially referring to kinesthetic guiding approach, which is the
most important and simple, to enable the use of robot to non-expert users. It is
widely used for robotic arms; however, this approach can be unfeasible for safety or
mechanical reasons. A possible scenario is the one in which the robot size is outside
the human manipulability spectrum; also for high-speed robot such a method is not
applicable, other interfaces are for sure more suitable.

19

State of the art

Physical Contact with External Devices

The keys are the most used external devices to give feedback to a robotic system.
They are particularly useful when the information to convey are not so much as
in the case of feedback provided in the evaluative space (reinforcements/prefer-
ences). Other external devices are the joysticks that can be used to encode more
information in a single input, for instance, in navigation tasks. Moreover there are
6DOF interfaces (e.g., space mouses) that can be used for manipulation tasks
and provides correction of the end-effector position/velocity.

Contact-free interfaces

The types of interfaces we have presented so far provide an output type that is
directly usable for learning methods. In other words, we do not have to solve
the correspondence problem. If we want to use other contact-free interfaces, a
mapping problem must be solved. Very often, some pattern recognition methods
are used in order to extract from the output of the sensors useful information for
the learning process.

Video

The videos of human executing tasks allow the user to perform a task with minimal
hardware requirements and effort. There is a non negligible caveat: learning from
videos is not simple due to the large state space, since they can be treated as a
sequence of RGB images. Moreover, due to the correspondence problem, sometimes
only the hand keypoints are detected and directly mapped to the end-effector
position.
There are related works in which some pretrained models are used for gesture
recognition for using COACH or facial expression for implementing the human
feedback in TAMER, just for giving some examples.

Voice

The voice interface is an even-more complex contact-free interface. The most simple
way to use the human voice is setting up a set of predefined words, which are
mapped into specific actions, according to the adopted method. More complicated,
but state-of-the-art, approches imply the use of Large Language Models (LLM) in
order to exploit the richness of human languages.

20

State of the art

2.3 Challenges in LfD
The main objective of the research in the field of LfD is enabling the robot to
learn in an efficient and fast manner from humans, while operating in environments
whose characteristics are not priors. There are some challenges that are not only
related to robotic assembly, but in general to the use of the LfD framework.

2.3.1 Generalization
Generalization is a concept which comes from cognitive psychology [4]. It can be
summarized as the possibility for a human to react to new stimuli according to
the similar ones coming from previous experiences. Many reaserchers have studied
the concept of generalization for artificial systems. Most ML models are based on
this fundamental idea. Sometimes reasonable assumptions are made in order to
obtain it in ML. For example, in a supervised learning we use the iid one (data are
assumed to be independent and identically distributed).
As stated before, in LfD this will not hold anymore due to the intrinsically correlated
structure under the hood of demonstrations. Here we want to add something more
about intratask and intertask generalization. The former characterizes the ability
of the algorithm to adapt itself to new unseen conditions (e.g., new initial and
final location for pick-and-place); the former is also known as skill transfer and is
related to the use of the learning outcomes for novel similar tasks.

2.3.2 Simultaneous learning of low and high-level behaviors
We have seen that different learning strategies operate at different level of abstrac-
tion while having different learning outcomes. In the literature, there are some
approaches that attempt to pursue multiple outcomes simultaneously, which is
at different level of abstraction. This is related to the issue that low-level and
high-learning methods usually reciprocally ignore themselves.

2.4 Manipulation tasks in robotics
After having introduced the LfD framework, analyzed its pipeline and illustrated
the main aspects about context-awareness and safety in HRI, now we want to
analyze more in details fundamental manipulation tasks (namely peg insertion, pick-
and-place) and conceptually put them together for carrying out robotic assembly
tasks.
A top-down approach has been followed: from robotic assembly and related problems
to elementary subtasks of which it is made up of. Ad-hoc references have been made

21

State of the art

to the LfD pipeline in order to better formalize the notions of task hierarchy
(with related learning methods) and motion compliance.

2.4.1 An overview of manipulation tasks
Generally speaking, a robotic assembly operation requires that – following
a certain logical/semantic reasoning – two or more parts (workpieces) are put
together to form a final artifact, which is the so-called assembly [19]. Actually,
this can involve many manipulation tasks together, to be performed according
to a predefined order. The work «Obstacles and Opportunities for Learning from
Demonstration in Practical Industrial Assembly: A Systematic Literature Review»
investigates the main aspects behind 77 articles on LfD for manipulation tasks and
splits the basic learnable skills into two categories, which are both essential, even
if, only the former have greater attention from the scientific community. They are:

1. Mating skills: They refer to the fact that two individual pieces are positioned
and aligned in a way that they can be joined later.

2. Joining skills: They refers to the fact of putting together the parts that
formerly were aligned in a permanent or semi-permanet way using specialized
grippers.

With the aim of making more effective the comparison between the classes from a
research interest point of view, from [20] the following statistics can be retrieved:
among 77 sampled inherent papers only 21% were related to joining skills while, as
far as the mating skills are concerned the two most studied ones are peg-in-hole
(or peg insertion) (46%) and pick-and-place task (23.4%). Motivated by such
a result, in the following we are going to analyze more in details the most explored
mating and joining skills.

2.4.2 Mating skills
Peg-in-hole

It could seem trivial, but the ability of inserting an object (called the peg) into a
specific hole is an essential task in manufacturing. This is used as a benchmark
case study for automated assembly.
Even if it may seem very simple, carrying out such a task by using a manipulator
is not easy at all. Substancially, the challenge stays in the fact that the object
must be inserted in the required hole with a relatively high precision to respect
given and small tolerances (sometimes less than 1mm). In such a case, particular
attention must be devoted to the motion control, since it is required to adjust the
motion itself by taking into account contact forces. A dedicated section in which

22

State of the art

the different motion control desiderata are explained follows this introductory part.
See [20] for a detailed summarizing table with papers treating peg insertion task.
The paper [21] treats a practical example of a toy-car robotic assembly which
requires multiple peg-in-hole operations.

Figure 2.6: Parts of the car and assembled car. In this case the assembly
task can be structured in a sequence of peg-in-hole subtasks. [21]

Pick-and-place

Another (apparently) simple task is the one about picking up an object from a
location and placing it into another location. This is among the most used skills for
manipulation tasks. The fact that an assembly task is correctly performed is highly
dependent on how well the pick-and-place is performed, since multiple objects must
be handled. Related to the pick and place task, there are other elementary skills at
a lower layer: for example reaching, grasping and stacking. Such skills are different
from peg-insertion for two reasons:

1. A higher uncertainty is allowed since less strict tolerances requirements have
to be fulfilled;

2. Contrary to peg-insertion, the final outcome does not have a deterministic
success, since a valid final result can be achieved following different path
alternatives.

Such differences need different control requirements, and – roughly speaking – more
attention on the trajectory can be paid instead of the contact which, in this case,
is not stricly relevant. Hereafter, we will see that a complete pick-and-place task
requires a hierarchical learning process: low-level skills are, in some way, combined
to fulfill the task.

2.4.3 Joining skills
Whether there were the necessity to robustly connect the assembly components in
a either permanent or non-permanent way, joining skills are needed. However this

23

State of the art

category of low-level skills including screwing, gluing, soldering and hammering, are
the least studied ones in the literature. Despite this fact, there is a small number
of papers which focus on how to fix the parts of an assembly together. The reasons
behind the lack of attention to joining skills are explained as follows:

• Process-Specific They are less generalizable and industry-specific tasks.
• Requires more specific validation Think about on how complex can be

evaluating that two parts are well-fixed together. On the other hand verifying
alignment and/or insertion is a much easier task.

• Tool complexity Each joining skill requires specific tools, the presence of
which makes more and more complex the overall system.

2.4.4 Research problems in Robotic assembly
Previously, we introduced the robotic assembly and related skills to learn in a LfD
scenario. Instead, in this paragraph we will focus on some problems that occur
when one decided to learn robotic assembly from demonstrations. In doing this we
are going to follow in part the structure proposed in [19].
In such a context, the auto-pilot software of which the learner robotic arm is
equipped has to: (i) convert the sequences of tasks into individual movements, (ii)
estimate the pose of assembly parts, (iii) calculate forces and torques according to
the generated trajectories.

2.4.5 Pose estimation
Pose estimation is related to determine the position and the orientation of the
parts to be assembled. It is a key process to guide the motion planning of the robot
through the learned model from human demonstrations.More important, this is
essential to generalize the motion when the parts change their positions. Different
methods can be used to fulfill such a task. The most comnon method (used also in
the work [21] about the toy-car assembly) is the employment of RGB-D cameras
(e.g., RealSense, Kinect); moreover, very often deep-learning methods are also used
(e.g., PoseCNN).

2.4.6 Force estimation
Some papers also refer to this problem as Force/Torque sensing, which is related
to the measurement of the contact forces/torques that are generated during the
interaction with the environment. This issue especially holds for tasks such as
peg insertion. Force/Torque sensing is the process which allows the correction of
motion commands during the execution of uncertain task. Usually, in this case,

24

State of the art

wrist-mounted force/torque sensors are employed. The presence of triggering events
and thresholds allows a conditional execution of the manipulation task.

2.4.7 Assembly sequences
This is the essence of what in the next paragraph will be called high-level task
learning or symbolic plan learning. Here, the order and also the logic of
elementary actions, naturally required by a multi-step assembly task is decided.
Knowing a sequence of operations is useful for several reasons:

1. A sequence is a sort of encoding of dependencies (for example the insertion of
B, must be performed before the insertion of A);

2. Having such a dependency scheme allows the management of failures and
recovery enabling context-aware robot operations.

Often, this requires task segmentation before any structure encoding.

2.4.8 Robotic assembly and LfD pipeline
At the beginning we have presented for the first time the LfD pipeline also by
giving a graphical representation for it. Figure 2.1 has an important role through
these research reports due to the fact that effectively summarizes which are the
building blocks of our work. Therefore, the objective here is highlighting some
aspects, specific to manipulation tasks, which can be directly mapped on that
guiding scheme.
In [20], the statistics about the used demonstration methods and learning outcome
are given. In particular, it appears evident that the most used method in LfD ma-
nipulation task is the kinestetic approach, followed by passive observation mehtods.
On the other hand, the great majority of the considered papers had as a learning
outcome a policy trajectory based one.

2.4.9 Robotic assembly, subtasks hierarchy, task learning
As stated before, a full robotic assembly task can be divided into smaller steps
which in turn are called subtasks. Such subtasks are logically organized into a
hierarchy (see Figure 2.7). This concept is crucial for robotic assembly.
In the literature sometimes full-demonstration task are used, otherwise single
demonstrations are provided. One method could be more suitable than the other.

In this context the learning process (whether full-task demonstrations are
provided) can be split in two phases:

25

State of the art

Figure 2.7: Any Full task can be seen as a sequence of Subtasks. After having
been decomposed/segmented, subtasks can be used to structure a plan according
to conditions [4]

1. Phase #1: Task segmentation and hierarchy: the given demonstration
is split into smaller subtask chuncks, which are then learned separately in the
second phase. Moreover, such subtasks are organized into a task hierarchy.
The segmentation is performed using both spatial and temporal reasoning:
the former is useful to uncover the underlying subtasks, the latter to reveal
the temporal dependencies among the individuated chunks. The most used
methods for task segementation are GMM for spatial segmentation and Hidden
Markov Models (HMM) for temporal segmentation [19].

2. Phase #2: Skill learning: using the segmented trajectories, lower level
tasks (reaching, grasping) can be learned using different methods. We have
seen that for skill learning the most used methods are DMP and GMM/GMR.

It is remarkable that the hierarchy obtained by demonstrations analysis can be
either linear or conditional. For explaining this aspect we can use the two most
common mating skills:

• In the pick-and-place case the object must be detected, reached, moved and
then placed. In absence of particular requirements the action to be performed

26

State of the art

can be arranged in a linear fashion.

• In the peg insertion case study such a reasoning does not hold. We are in
presence of tight tolerances, therefore the first time we are executing the task
we can fail. In this case a repositioning behaviour must be learned in order
to execute again the task. You can easily imagine that such a sequence is a
conditional one with respect to the Figure 2.7

Other high-level learning methods are available whether single subtask demon-
strations are available. Behavior tree (BT), Decision tree (DT) and Finite State
machine (FSM) can be exploited, having the prior knowledge of the task structure
and then avoiding to segment the demonstration to uncover it. One of the main
differences with respect to HMM is that the transitions are deterministic, and
hence they are not robust to uncertain demonstrations.

2.4.10 Mating skills issues: motion-based vs contact-based
demonstrations

Figure 2.8: Motion-based and contact-based demonstrations: while in the
former case the the learning of interaction is less important than in the latter. [4]

According to the type of task, demonstrations can be divided into motion-
based and contact-based. They are very different in the way they are able
to interact with the environment. Pick-and-place demonstration are in the first
category and the contact with the environment is limited. The most important
thing is that the given trajectory from a kinematic point of view is coherent with
the prescribed task. On the other hand, for tasks such as insertion, replicating the
motion does not suffice, since the robot has to learn how to interact with the
object in order to respect the tolerances and not to fail.
A fundamental notion underlying the difference between motion-based and contact-
based demonstrations is the compliance. We say that a robot is compliant if
it is able to regulate its movement in response to contact forces. For modeling

27

State of the art

purposes the compliance can be represented using a very well known system: the
mass-spring-damper. This is a proxy for modelling how much the trajectory of the
robot is adapted in response to the contact with the environment. Indeed, we talk
about low-compliance and high-compliance.
To sum up, we want to describe what is the impact on what is learned from the
robot side. In the case a low-compliance is considered, the main objective is to
replicate the behavior at a kinematic level, at the opposite when high-compliance
is considered, the manipulator learns how to interact with the objects.
The works in [22] and [23] could be references for further extension of the presented
issues.

2.5 Safety aspects in HRC
So far, we have introduced the main aspects related to Human-Robot collaboration
(HRC), we have seen the potentialities and the things to be taken into account
whether any industry decided to operate in such a setting. In addition, we have
only mentioned the fact that the most important aspect to be taken into account
is safety. Such an aspect is one of the main topic treated in the current report.
In particular, the objective now is to better analyze all of the issues related to safety,
in a context where the dynamic and, sometimes, highly unstructured nature of the
environment makes it more and more challenging. We will briefly give a classification
of HRC frameworks allowing a better and deeper comprehension. Next, a brief
overview of the safety modes dictated by the ISO/TS 15066 standard is given.
Finally, a summary for possible safety strategies which are standard-compliant
has been made.

2.5.1 Three different levels for HRC
Inspired from the work of Arents et al. [24] a possible classification for HRC frame-
works is the one based on Coexistence, Cooperation, Collaboration. In particular:

Coexistence Here we find humans working in a partially or completely shared
space with a robot, however there are no shared goals.

Cooperation Human works in a shared workspace with a robot sharing a common
goal.

Collaboration This is the strongest modality of HRC, since a human and a robot
share not only the workspace and the goal for which they are operating, but
also the object/artifact on which the work is performed.

It is remarkable that safety must be the highest priority in the setup of any HRC
workcell. All the HRI methods have to be developed in accordance with safety
standards.

28

State of the art

In Figure 2.9, yellow and green circles represent the robot workspace and the
human workspace respectively , while the intersection is the human-robot shared
workspace.

Figure 2.9: Collaboration levels adapted from [24]: (a) Coexistence, (b) Coopera-
tion, (c) Collaboration

2.5.2 Safety standards for collaborative robots and HRC
Generally speaking, safety assurance is a crucial prerequisite in designing any type of
machinery and machinery systems covering both industrial robots and collaborative
robots (cobots). International standards from the International Organization for
Standardisation (ISO) can be divided into three categories or types. While Type
A and Type C are for basic and general machinery design, Type C standards are
for specific machinery design which embraces also cobots. The guidelines provided
by the ISO/TS 15066 [25] standard include some primary safety modes which
represent a reference point in the implementation of HRI methods:

1. Safety-Rated Monitored Stop (SRMS) Human and robot cannot share
the same workspace. More specifically, the robot in its workspace can perform
any operation without restrictions. The worker can enter the robot space only
if the stop status of the robot has been triggered6.

2. Hand Guiding (HG) With respect to the previous mode a manual guidance
device enriches the framework. Such a device can be used to cooperate with
the robot whithin predefined safety ranges.

3. Speed and separation monitoring (SSM) Here, workspaces can be shared
with the only restriction that a protective distance must be mantained all

6Here some cameras or sensors can be used in order to active the stop status whether a human
is detected in the robot’s range of action.

29

State of the art

times7 The use of tracking devices in this context is widespread. A guiding
principle could be to keep a reduced robot operating velocity whether the
reciprocal distance reduces.

4. Power and force limiting (PFL) The robot and the human can interact
with a more reduced distance. Risks have to be minimized adopting suitable
safety measures which are employed to keep the contact forces below specific
predefined thresholds involving passive and/or active measures from the robotic
control system.

The operating modes represent general requirements for HRC contexts, however,
there are not detailed documentation about the implementation of such requirements
in industrial setting. Next, a possible classification for HRC strategies is possible
and is presented following the structure adopted in [26] where they are grouped
into two general categories: pre-collision and post-collision safety strategies.

2.6 Safety strategies for HRC

2.6.1 Pre-collision strategies
Pre-collision strategies are adopted to prevent harmful contact between a
collaborative robot and a human by predicting and/or detecting the relative
movements of both human and robot in advance. Here, a further subdivision can
be introduced with the aim to distinguish the underlying used technology.

Sensor-based safety strategies: focus on the reciprocal distance

These utilise sensors to observe and optimsise the motion of a collaborative robot in
HRC context in order to make the operating phase suitable to the effective distance
between the robot and the human collaborator. They are useful to address the
SRMS and SSM safety modes. Possbile sensors leaveraging this type of strategies
are cameras, radar and AR sensors. Among the others, cameras are the most usable
solution in supporting HRC in industries due to their low cost and affordability.

Prediction model-based safety: focus on the human behaviour

The use of models predicting the human behavior can be devisable to better
support the safety assurance in HRC frameworks. Both human motion, and in
general the human behaviour prediction can be addressed by using stochastic or
learning-based models. Example of statistic models are Gaussian Mixture Models

7The standard exactly defines how such protective distances are designed.

30

State of the art

Figure 2.10: Human-Robot collaboration: safety aspects [26]

(GMM), Hidden Markov Models (HMM) and Gaussian Process Regression (GPR).
These methods tends to extract patterns from human demonstration data in a
given fixed environment. Nonetheless, statistical models suffer of some important
issues:

1. They struggle generalizing the learned patterns;
2. If large datasets are available, they do not scale up.

Tackling such problems is possible if alternative ML-based models are exploited.
We are talking about, mainly of deep-learning architectures such as MLP, CNN

31

State of the art

and recurrent models (e.g., RNN, LSTM), which can extract spatial and temporal
dependencies from visual data.
Summarizing, stochastic models act in a unsupervised fashion, so that they do
not need of large amount of labelled data to be obtained. More accurate models
are the learning-based ones. Leveraging on them complex industrial contexts can
be addressed. The main disadvantage here is that the training phase is time
consuming, and even more important labelled datasets are needed to be compliant
to the supervised setting in which they find place.

Motion planning-based safety: focus on the robot behaviour

While in the previous two approaches the focus was on the relationship between
human and robot in term of reciprocal distances or human behaviour, here the
main focus is on the robot and in particular to the trajectories it carries out.
The common denominator to all of the proposed approaches in this section is the
planning of the trajectory in a way that avoid behavioural interferences between the
human, the robot and the manipulated object in one of the HRC levels.
Heuristic approaches such as Rapid-exploration Random Tree (RRT) can be used
when the planning of the trajectory occurs in an offline and static manner. The main
advantage of such techniques is the existence of robust and efficient algorithms. Also
in this context learning-based technique can be employed in dynamic environments
with the usual disadvantage of being computationally expensive.

2.6.2 Post-collision strategies
Post-collision strategies are tailored for implementing the last presented PFL
safety mode where there is high level of interactivity and vicinity between the
human and the robot.
Here, no sensors are needed to avoid possible contacts; so the essence is on the
reduction of the contact force and the energy exchange that neither the robot nor
the human are damaged. Here, passive strategies are adopted to ensure the HRC
safety. A first measure that can be adopted is the realization of lightweight in order
to reduce the impact force. This as a drawback, since it forces to a reduction of
the accuracy and of the payload.

Collision detection and reduction of contact forces

We have seen for the pre-collision techniques that sensors were used to adapt the
robot motion according to the reciprocal proximity with the operator. The idea for
post-collision strategies is to reduce the contact forces once the collision has been
detected by using internal sensors instead of external ones.
In this field, the most common approach is using supervised learning to classify

32

State of the art

dangerous trajectories and stimulus leading to human-robot collisions; they are
(again) neural-network based methods. Here, a large quantity of collision data is
needed for training the model. A further changes which occurs is that the ability of
executing a task changes according to the operator, and since collision data requires
explicitly an interaction is not so easy to adapt that model to a new human worker.

Compliance control of contact forces

The main aspect that is considered here is the control of the contact force and of
the energy exchanged between human and robot. Here, an hybrid control of both
force and position is realized. Actually, the force and position trajectory required so
that the interact could safely happen must be available this limits the applicability
of these strategies to the HRC safety. The use of intelligent learning methods can
compensate the presence of noise and uncertainty. On the other hand, the fact
that the training process is time-consuming and results in more complex models
limits the usability of the aforementioned methods.

33

Chapter 3

An overview of Learning
from Demonstration
approaches

The objective here is to provide some theoretical insights about the state-of-the-art
methods for Learning from Demonstration. We are indicating in the following the
methods with M1, M2 and M3. Main reference for this part is the paper «Learning
from demonstration for autonomous generation of robotic trajectory: Status quo
and forward-looking overview» by Li et al. [6].

3.1 M1: Behavioral Cloning (BC)
Behavior Cloning or Behavioral Cloning (BC) is one of the simplest methods
for implementing imitation learning.The goal is to learn a policy that mimics
expert behavior by treating it as a supervised learning problem. In mathematical
terms, at the end we are obtaining something similar to:

πθ(st) ≈ at (3.1)

where: πθ is the learned policy parametrized by θ (learned parameters), and st, at

are respectively the state and the action at each time step t.

3.1.1 Mathematical formulation in LfD
Given the dataset D of expert demonstrations, we want to find the policy parameters
θ that minimizes the expected loss. This is a gradient descent minimization, defined
as:

34

An overview of Learning from Demonstration approaches

θ∗ = arg min
θ

NØ
t=1

∥πθ(st) − at∥2
2 (3.2)

From this you can understand that BC is agnostic to the type of function ap-
proximator one wants to use: linear models, radial basis functions, multi-layer
perceptron and so on.

3.1.2 Goal Conditioned Behavior Cloning
There is a variant of the method in which a goal g is also added to the input of the
policy

πθ(st, g) = at (3.3)

An example of the goal is the case where you want to grasp a certain object which
is put in position g = (xg, yg, zg). The policy is trained by using the dataset built
as:

Input (State) [xt, yt, zt, xg, yg, zg]
Output (Action) [∆x,∆y,∆z]

The learned model is executed as follows, at each step t:

1. The state st is observed; this gives xt, yt, zt

2. A goal g is given
3. The action at is computed by using the learned policy πθ

4. The action is executed; this for a robotic manipulator implies the employment
of the Inverse Kinematics to transform ∆x in ∆q.

3.2 M2: Gaussian Mixture Model and Gaussian
Mixture Regression (GMM-GMR)

A Gaussian Mixture Model (GMM) is a generative probabilistic model that
assumes data is generated from a mixture of several multivariate normal distribu-
tions with unknown parameters.
In simple terms, GMM assumes that the observed data distribution is composed of
multiple clusters, each of which can be modeled by a Gaussian distribution, and then
the data points are generated by randomly selecting one of these clusters, finally
drawing a sample from it. The use of GMM in robotics gives several advantages: (i)
multi-modal data can be modeled; (ii) the correlations between different variables
can be captured. The use of GMM in LfD were introduced in 2016 by Calinon in
«A tutorial on task-parameterized movement learning and retrieval» [27].

35

An overview of Learning from Demonstration approaches

3.2.1 Mathematical formulation
Given a D-dimensional continuous variable x ∈ RD, the GMM joint probability
density function p(x) is defined as:

p(x) =
KØ

k=1
πk N (x|µk,Σk) (3.4)

where:

• K is the number of Gaussian components;
• πk are the mixture weights, with qK

k=1 πk = 1 and πk ≥ 0;
• N (x|µk,Σk) is the multivariate normal distribution with mean µk and covari-

ance matrix Σk:

3.2.2 Training a GMM
A GMM is typically trained using the Expectation-Maximization (EM) algo-
rithm which is composed of two steps:

1. E-step (Expectation step): it estimates the probability that each component
generated each data point;

2. M-step (Maximization step): it updates parameters (means, covariance and
mixture weights) to maximize the likelihood;

3.2.3 The Expectation-Maximization (EM) algorithm
The objective of such an algorithm is to maximize the log-likelihood of the observed
data given the parameters of the GMM components.

1. Initialization Set initial values for µk,Σk, πk via K-mean or randomly;

2. E-step Compute posterior probabilities that component k was responsible for
generating the (D-dimensional point) xi for each data point i:

γik = πk N (xi|µk,Σk)qK
j=1 πj N (xi|µj,Σj)

(3.5)

we recall that this is quantifying the responsibility of component k for data
point xi;

36

An overview of Learning from Demonstration approaches

3. M-step Parameters of the clusters are updated according to their responsibili-
ties:

Nk =
NØ

i=1
γik (3.6)

πk = Nk

N
(3.7)

µk = 1
Nk

NØ
i=1

γikxi (3.8)

Σk = 1
Nk

NØ
i=1

γik(xi − µk)(xi − µk)T (3.9)

At this point the log-likelihood can be computed (see next section);

4. Convergence check If the log-likelihood increase is lower than a certain threshold
or the maximum number of iterations is reached, stop; otherwise go back to
step 2.

3.2.4 The Log-likelihood for GMM
In the context of GMM, the log-likelihood is a measure of how well the model
parameters explain the observed data. Given:

• A dataset D = {x1, ..., xN} with xi ∈ RD

• A GMM with parameters Θ = {πk, µk,Σk}K
k=1

The likelihood of the data under the GMM is given by:

L(Θ|D) =
NÙ

i=1
p(xi|Θ) =

NÙ
i=1

KØ
k=1

πk N (xi|µk,Σk) (3.10)

Then, the log-likelihood is simply the natural logarithm of the likelihood:

logL(Θ|D) =
NØ

i=1
log

A
KØ

k=1
πk N (xi|µk,Σk)

B
(3.11)

This measures how well the current GMM model explains the data: in this context,
the higher the better. A feasible stopping criterion is for example:

| logL(new) − logL(old)| < ϵ (3.12)

37

An overview of Learning from Demonstration approaches

3.2.5 Visualization and model selection
Different plots of the log-likelohood with different independent variables can be
used to monitor the training process. In particular:

• Monitor the convergenxe of the EM process by plotting the log-likelihood
against the number of iterations;

• Select the number of components K by plotting the log-likelihood against
different values of K and looking for the elbow point.

After having trained a GMM, it can be used for extracting the so-called gener-
alized trajectory via Gaussian Mixture Regression (GMR).

3.2.6 Gaussian Mixture Regression (GMR)
Applying this method to LfD, GMR is used to generate a smooth and generalizable
representation of the demonstrated trajectories.
In the following, we are giving a practical procedure that summarizes the main
steps for using GMM/GMR in LfD context:

1. Demonstration collection Collect multiple trajectories of the type
{(ti, xi)}T

i=1 (3.13)
each demo is a time series of D-dimensional states xi. At the end, all demon-
strations are stacked into a single dataset:

D =
IC

t
x

D
1
...,

C
t
x

D
N

J
(3.14)

2. GMM training We train a GMM to model the joint distribution over time and
states:

ξ =
C
t
x

D
∈ RD+1 (3.15)

where t is the phase variable (independent) and x is the state variable (depen-
dent). The GMM is trained using the EM algorithm as described before. At
the end the learned model is:

p(t, x) ∼
KØ

k=1
πk N (ξ|µk,Σk) (3.16)

this can be used to estimate:
x̂(t∗) = E[x|t = t∗] (3.17)

with a given uncertainty Var[y|t = t∗] yielding to a smooth trajectory parametrized
by time;

38

An overview of Learning from Demonstration approaches

3. Perform GMR (trajectory generation) Given a query time t∗; the following steps
are performed for each component k of the GMM:

• Split mean and covariance into contributions due to time and state:

µk =
C
µt

k

µx
k

D
, Σk =

C
Σtt

k Σtx
k

Σxt
k Σxx

k

D
(3.18)

• Compute conditional mean and covariance of the state given the time t∗:

µ̂x
k = µx

k + Σxt
k (Σtt

k)−1(t∗ − µt
k) (3.19)

Σ̂xx
k = Σxx

k − Σxt
k (Σtt

k)−1Σtx
k (3.20)

• Compute responsibilities of component k given t∗ in the following way:

hk(t∗) = πk N (t∗|µt
k,Σtt

k)qK
j=1 πj N (t∗|µt

j,Σtt
j)

(3.21)

• Fuse results from all components to get the final output:

x̂(t∗) =
KØ

k=1
hk(t∗) µ̂x

k MEAN (point) (3.22)

Σ̂(t∗) =
KØ

k=1
h2

k(t∗) Σ̂xx
k COVARIANCE (uncertainty) (3.23)

From this we have a fundamental result. The generalized trajectory thus
obtained is given by the set of points {x̂(t)}i with uncertainty {Σ̂(t)}i for
t ∈ [0, T].

3.3 M3: Dynamic Movement Primitives (DMP)
A Dynamic Movement Primitive (DMP) models the motion as a set of
nonlinear differential equations that lead the system towards a goal.
Each dimension of motion is modeled using a second-order differential equation
inspired by a damped spring-mass system, with a learned forcing term to capture
complex shapes.
It is important at this stage to understand what is the 1D formulation of a DMP,
so that, a posterior extension to multiple dimensions can be done. The reference
paper for such a method is in «Dynamical movement primitives: learning attractor
models for motor behaviors» by Ijspeert et al. [28].

39

An overview of Learning from Demonstration approaches

3.3.1 1D DMP fundamental equations
The fundamental equations of a DMP are the ones related to the transformation
system and the canonical system.

Transformation system

This part of the model generates the actual trajectory. The equations are:

τ v̇ = αz(βz(g − y) − v) + f(x) (3.24)
τ ẏ = v (3.25)

where:

• τ is a temporal scaling factor;
• v is the velocity;
• αz and βz are positive constants that determine the system’s damping and

stiffness;
• y is the position (state variable);
• g is the goal position;
• f(x) is the nonlinear forcing term that modulates the trajectory shape;
• x is the phase variable from the canonical system.

Canonical system

This acts as a time surrogate in the sense that it is decoupled from the actual time,
and it is used to drive the transformation system. The equation is:

τ ẋ = −αxx (3.26)

where αx is a positive constant that determines the rate of decay of the phase
variable x. Initial condition is x(0) = 1 and as t → ∞, x → 0.

Forcing term

This is an important part of the DMP as it allows to encode complex behaviors.
The shape of such a term is learned from demonstrations. A common choice is to
use a weighted sum of Gaussian basis functions:

f(x) =
qN

i=1 ψi(x)wiqN
i=1 ψi(x)

· x · (g − y0) (3.27)

where:

40

An overview of Learning from Demonstration approaches

• N is the number of basis functions;
• ψi(x) = exp(−hi(x− ci)2) is the i-th Gaussian basis function with center ci

and width hi
1;

• wi are the weights that need to be learned from demonstrations.

3.3.2 Learning DMP parameters from demonstrations
The steps to follow in order to learn DMP parameters from human demonstrations
are:

1. Record x(t), ẋ(t), ẍ(t)

2. Solve for the desired forcing term

ftarget = τ v̇ − αz(βz(g − y) − v) (3.28)

3. Learn weights wi using regression. In particular:

ftarget ≈ f(x(t)) =
Ø

i

wiϕi(x) ϕi(x) = ψi(x)q
ψi(x) · x · g − x0 (3.29)

4. The solution is obtained by integrating the system of differential equations

τ v̇ = αz(βz(g − y) − v) + f(x)
τ ẏ = v

τ ẋ = −αxx

(3.30)

1Note that this is a scalar function.

41

Chapter 4

Implementation of the LfD
pipeline

This part is dedicated to the description of the employed methods for learning low-
level and high-level tasks. Details on the implementation are provided along with
other useful technical notes for both simulated and real environment, highlighting
also the differences wherever could have eased the comprehension. Most of the
software is written in python and C++, while the used robotic framework is ROS2
Jazzy, the client libraries rclpy and rclcpp constitute a link between the two
parts while giving the standard routines for the management of the fundamental
components of a ROS ecosystem: nodes, topics, actions, services.... The employed
collaborative robot for testing the pipeline and doing the experiments is the
Ufactory xArm6 [29].

4.1 Human demonstrations collection

The datasets on which the learning methods are trained are human demonstrations.
Due to its features exposed in Section 2.1.1, we have chosen the kinestethic approach:
the absence of correspondence issue and the intuitive nature makes it easier to
implement. This holds in both real and simulated environment.

Very briefly: the implementation of a proper subscriber node having subscriptions
to suitable topics guides the human demonstration phase. Then, retrieved end-
effector/joints measurements are collected into csv files which is used to feed the
remaining part of the pipeline.

42

Implementation of the LfD pipeline

4.1.1 Demonstrations collection: steps to follow
More in detail, in this part the following steps are carried out:

1. Run the driver on the robot and activate the free-drive mode (for real envi-
ronment only);

2. Run the program from the package lfd_recorder with needed parameters;
3. Through the rviz interface (simulated) – or manually (real) – guide the robotic

arm in order to execute a given movement. Note that – under the hood – the
node is spinning for collecting measurements constituting the dataset D from
joints or TCP with a structure of the type:

D =
î
t, x(t), y(t), z(t), qx(t), qy(t), qz(t), qw(t)

ïK

k=1
t = 1, ..., Tmax (4.1)

where x, y and z are the cartesian variables and q(·) are the quaternion compo-
nents, Tmax is the duration (in seconds) of the demonstration and K is the
number of collected demonstrations.

4. Terminate the program and (only in case of multiple demonstrations to collect)
back to 2;

5. At this point you will have in a given directory (user defined) the set of csv
files containing raw demonstration data.

All of the functionalities we have just given are implementeed in the package
lfd_demonstration, we dedicate a section to.

☞ lfd_demonstration package

This is the package related to the human demonstrations collection. Two major
executable programs are provided:

• tf_to_pose.py is in order to collect, at a given frequency rate_hz (Hz), the
end-effector pose (position and orientation) using the transformations between
the base_link and the link_tcp attached to the TCP of the robotic arm.
Such information is published by a publisher node on the topic /ee_pose

• demo_recorder.py this attach to the information of the poses the ones re-
lated to the gripper state (angle) from the topic /joint_states1. A node
demo_recorder is subscriber of both topics. At the end the information are
saved in a csv file.

See Figure 4.2 for a clearer schema of the dataflow.

1In particular is the first element of the array float64[] position of a message of type
sensor_msgs/JointState

43

Implementation of the LfD pipeline

4.1.2 Debug: Visualizing demonstrated trajectories
With the objective of carrying out a phase-by-phase debug of the LfD process, some
intermediate plots can be obtained from demonstrated trajectories. This goes to-
ward the direction of making also an a-posteriori comparison between demonstrated
and generated generalized trajectory [6]. Some examples are showed afterwards,
where both timeseries and xy sample trajectories have been reported.

A summarizing schema in Figure 4.2 is reported below for the sake of clarity; Figure
4.1 illustrates that human guides the robot kinesthetically and data collected can
be associated to TCP poses xe or joint variables q timeseries. The demonstration
collection phase is something which is quite general despite the context in which is
applied for. Using other terms, even if the task we are demonstrating is different
(e.g., Peg-in-hole, assembly), types of steps to be performed are very similar to the
ones in 1-5.

Figure 4.1: Human Kinesthetic demonstration. Both task space (xe) and joint
space (q) data can be collected. In our work only task space data were used

Figure 4.2: Schema of real/simulated demonstration collection

Since demonstrations can have a different duration Tmax, a way to align them2 in
order to obtain a coherent dataset for obtaining motion encoding models.

2In case of multiple demonstrations

44

Implementation of the LfD pipeline

4.2 Learning models
Whatever is the approch we are going to use, the learning phase deals with the
extraction of an encoding of the robot motion from the dataset D and chosen
hyperparameters θhyper using a Machine Learning (ML) model. The output of
this phase is a set of parameters θ that – together with task-specific parameters
θtask – will be used in the execution phase for generating generalized trajectories
(see Figure 4.3).

Details about three different learning methods that have experimentally im-
plemented are here provided, starting from the main theoretical results, given in
Chapter 3. Remark: the results from the learning stage are saved into a numpy
file (npz), in order to be easily retrieved for the inference (decoding) part of the
execution phase.

Figure 4.3: Learning phase: general flow for obtaining an encoding from demon-
strated trajectories

4.2.1 Behavior Cloning (BC)
Behavior Cloning (BC) is a learning method based on supervised learning and goes
toward the direction of modeling the robot behavior in a particular function, which
maps robot states to actions to be executed, which is called a policy π in the
field of MDP-based sequential learning. We recall that being the state and actions
respectively s and a the policy π is

π : s → a

More specifically, the objective here is obtaining a parametrization πθ for such a
policy. State and Action spaces are defined as:

45

Implementation of the LfD pipeline

• State space S is made up of current robot position p and rotation r

• Action space A can be modeled as the one-step differences between each
variable, namely ∆p and ∆r. This is only one of the possible choices that can
be made.

Using such ingredients, we can formulate a supervised learning task for the robot
policy where S is the input space, while A is the action space. Then:

π : S → A

The next sections are dedicated to the explanation on: (i) how the demonstration
dataset is transformed in something suitable for supervised learning; (ii) what are
BC learning steps.

i) Data preprocessing for BC

Imitation dataset D is preprocessed in the following way:

1. Each demonstration is uniformly resampled in a time grid tgrid with constant
time step dt; moreover, quaternions are converted into angle-axis representation
(passing through logarithm).

2. For each ti, state (input features) and actions (output features or labels) are
defined as:

st =
1
xt, yt, ztü ûú ý

p

, rx,t, ry,t, rz,tü ûú ý
r

2
at =

1
∆pt,∆rt

2
, ∆pt = pt+1 − pt ∆rt = rt+1 − rt

3. All of the st, at are stacked into X and Y (input and output spaces) to form
the modified supervised dataset D′

D′ = {X, Y }, X = [st] ∈ RM×6, Y = [at] ∈ RM×6

on the aggregated datset z-score metrics xmean, xstd, ymean, ystd.

ii) Learning BC model: obtaining a policy parametrization

Before training the model, a normalized datset is obtained by using z-score param-
eters:

Xn = X − xmean

xstd

, Yn = Y − ymean

ystd

46

Implementation of the LfD pipeline

An MLPRegressor [30] with suitable hyperparameters from scikit-learn library is
used. Using such a library the training reduces to the instruction model.fit(Xn,Yn)
where the method for training it is a standard gradient-based method. The used
loss function, which guides the training phase, is the standard Mean-Squared error.

Trasformation of D into D′ dataset along with the underlying steps are shown
in Figure 4.4.

Figure 4.4: Behavior Cloning: learning phase

4.2.2 Dynamical Movement Primitives (DMP)
Here we want to discover what is inside the box named ’ML Model’ in Figure 4.3,
which – according to the used method – can be arbitrarily complex.
The theory behind DMP has been presented in Section 3.3. Despite the fact
that the DMP theory was been formulated for one-dimensional problems, the
extension to a more general N -dimensional case is quite straightforward: a DMP
for each dimension is fitted, obtained parameters are grouped together and finally
a per-dimension trajectory decoding is performed. The main steps are: (i) Data
preprocessing, (ii) Fit of a 6-dimensional Dynamic Movement Primitive.

(i) Data preprocessing for training DMP

Three types of operations on the demonstration data are performed:

1. Quaternion normalization is useful in order to avoid numerical issues during
the training process, this is in order to obtain from the starting quaternion q
another quaternion qnorm such that

qnorm = [qx, qy, qz, qw] ∥q∥ = 1

47

Implementation of the LfD pipeline

2. Resampling at fixed dt on (x, y, z): a linear interpolation at fixed dt in order
to have a uniform timestep between adjacent samples; on the quaternion
components a SLERP3 is performed.

3. q to log(q) conversion. The reason behind this choice is that DMP works
for euclidean spaces, quaternion are not4. This conversion is also known as
angle-axis representation [32] and can be used safely for DMP fitting. The
inverse transformation can be executed during the trajectory decoding phase.

(ii) 6D DMP fitting

The fitting of a Dynamic Movement Primitive in hyperdimension consists in practice
in reusing 1D fit multiple times. The inputs are the demonstrated trajectories D
and the hyperparameters θhyper = {αz, βz, τ, αx, N}, while the outputs are the DMP
parameters θ = {w,x0,g}. Note that y(t) refers to the generic i− th dimension of
the demonstrated trajectory, it is not the second cartesian component.
Both phases (i) and (ii) have been graphically represented in Figure 4.5.

Figure 4.5: Dynamical Movement Primitives: learning phase

4.2.3 Gaussian Mixture Model (GMM)
Differently from the theoretical formulation for Dynamic Movement Primitives that
is one-dimensional, the GMM model is for obtaining a succint way to represent robot
movements modeling the state-space (task space) variables altogether. That is, a

3SLERP stands for Spherical Linear Interpolation, for further details you can see [31]
4More in particular, it can be said that quaternions live in a 3D manifold which is embedded

in a 4D space

48

Implementation of the LfD pipeline

single multidimensional model is obtained for encoding the generalized trajectories.
In the remaining part of this paragraph the main data preprocessing and training
steps are explained.

(i) Data preprocessing for training GMM

With the objective of making human demonstration data suitable for the training
phase, the following steps are performed:

1. Constant step resampling: for each demonstration a uniform time grid tgrid of
duration tend with step dt is obtained

2. Emisphere continuity for rotations: since in the quaternion space q and −q
are the same rotation, a check is performed on the correct sign in order to
avoid abrupt rotations of π

3. Phase parametrization: for each demonstration is computed a phase parame-
ter, this represents a novelty with respect to the theory presented in Chapter
3, that in a certain way simplifies the problem tractation. For the i-th sample
the phase variable is defined as:

si = tgridi
− t0

tend − t0
∈ [0,1] (4.2)

the gesture progress is delegated to this parameter avoiding the use of the
absolute time and allowing the stacking of multiple demonstrations.

4. Quaternions remapping: for the same motivations given previously for DMP,
here non-minimal representations are converted into something different in
which the learning can occur more efficiently; practically:

q → r = [rx, ry, rz] (4.3)

5. Observations building: for each demo the following matrix is built:

Z[s|y] ∈ RN×6 y = [x, y, z, rx, ry, rz] (4.4)

in which there is one row per resampled point.

(ii) Training GMM

Before fitting the Gaussian Mixture with the Expectation-Maximization procedure
explained in Chapter 3, all of the available demos are vertically stacked:

Z =


Z(1)

Z(2)

...
Z(M)


49

Implementation of the LfD pipeline

with M being the number of demonstrated trajectories. At this point, in order
to approximate the joint distribution of phase and task space variables p(s, y),
a GMM with K component is fitted following the EM procedure. After that, a
parameter Tmean is saved in order to obtain – aposteriori – generalized trajectories.
Figure 4.6 illustrates schematically the steps behind data preprocessing and fitting
phases.

Figure 4.6: Gaussian Mixture Model: learning phase

4.2.4 Trajectory Execution
The execution phase deals with: (i) the decoding of a generalized trajectory
using learned parameters (θ), hyperparameters (θhyper) and task-specific parameters
(θtask); (ii) the reproduction of the learned movements in the real/simulated
environment. Due to its complexity and importance, we have dedicated a whole
section to θtask retrievial given by the cooperation of different hardware and software
modules (RealSense camera, object detector, ArUco/Apriltag detector).

Sim2Real issues and execution phase implementation

In order to tackle the gap between the two environments, we use the functions
provided by the SDK for the real robot, and the MoveIt2 framework for the simu-
lated one. The motivation is that the SDK routines provides – under the hood – a
fine-grained control of the robot, managing in a stratified way the issues concerning
motors, currents and voltages together with velocity and acceleration limits.
On the contrary, passing through the functionalities of MoveIt2 and related high-
level routines this is not possible. Indeed, nonidealities neglection leads to vibrations,
execution errors and non-smooth trajectories.

50

Implementation of the LfD pipeline

This issue management requires a forked implementation of the execution phase
whose summarizing schema is given in the Figure 4.7; it must be noted that the
execution module can be used also to reproduce the demonstrated trajectories, a
problem which is known as trajectory replay. This choice has important limita-
tions with respect to the generalization problem, but it is helpful for debugging
purposes.

Figure 4.7: Execution phase: real and simulated general flow for execution

A) Executing trajectories in simulated environment

The execution step in the simulated environment is – in a certain sense – simpler.
More specifically:

1. The generalized trajectory (or the demonstrated one in case of replay) is,
dimension by dimension, interpolated using cubic splines in order to obtain
a smooth trajectory;

2. The obtained waypoints are then sent to the MoveIt2 framework that execute
the movement on the fake (simulated) robot in the Rviz environment.

Experimental evidence confirms that, if the same implemented code is used for
controlling the real robot, the execution is quite far to be smooth and precise. This
is mainly due to the nonideality issues we have introduced at the beginning of this
paragraph. The schematization of such process is given in Figure 4.8.

B) Executing trajectories in real environment

As far as the real environment is concerned, we can split the execution phase in
two main parts: (i) generalized trajectory post-processing and (ii) robot

51

Implementation of the LfD pipeline

Figure 4.8: Execution phase: simulated environment

control. (Figure 4.9)
The latter is in order to adapt the data to SDK functions and robot hardware5;
the former takes filtered points from post-processing substage and send them to
the robot through the SDK routines for control purposes.
The post-processing phase is, in turn, articulated in three substeps:

1. Quaternion-to-RPY conversion: as already mentioned, the SDK func-
tions require RPY angles for the rotational part of the pose;

2. Downsampling: in order to reduce the number of waypoints to be sent
toward the robot, avoiding the saturation of the command buffer, at this stage
are filtered out all of the points which has a reciprocal distance that is lower
than a given threshold;

3. Singularity check: it is necessary to avoid that the obtained generalized
trajectory passes throug singular configurations.

The control of the robot is mainly executed through the method

set_position(x, y, z, roll, pitch, yaw, speed, acc,radius, wait)

of the class XArmAPI, whose documentation can be found in [33]. About the
parameters:

• x,y,z,roll,pitch,yaw are the 6D-pose waypoint to be reached;
• speed and acc are the velocity and acceleration limits (in mm/s and mm/s2);
• radius is the blending radius (in mm) for the blended motion;
• wait is a boolean variable that adds a little pause after the execution of the

command, if set to True.

5As reported in the user manual of the Ufactory xArm6, there is a buffer for containing
commands that has a limitated capacity

52

Implementation of the LfD pipeline

Figure 4.9: Execution phase: real environment

Inference phase for BC model

How to obtain a generalized trajectory from BC model? Since a policy was obtained,
the inference is nothing but a policy rollout. That is, starting from an initial state
s0, the function π is used in order to compute the action at from which the next
state st+1 can be computed. Also in this case we have computed the duration Tout

as a first step, after that a time grid is created and – finally – for each sample of
such a time grid, the following operations are performed:

1. The current state si is normalized using the z-score metrics computed during
the preprocessing steps, sn

i is obtained;
2. Forward pass:here the model MLP is applied to the current state si in order

to obtain
an

i = MLP (sn
i)

that in term of scikit-learn code is model.predict(s_i),
3. Denormalize the action an

i

ai = an
i · ystd + ymean

4. Splitting of the action: at =
1
∆pt,∆rt

2
5. Next state st+1 is computed as

st+1 = (pt, rt) pt+1 = pt + ∆pt rt+1 = rt + ∆rt

6. Quaternion remapping: angle-axis representation is transformed back to quater-
nion space.

7. For t the sample
xt, yt, zt, qxt , qyt , qzt , qwt

53

Implementation of the LfD pipeline

The generalized trajectory is nothing but

T = {xt, yt, zt, qxt , qyt , qzt , qwt}t (4.5)

Figure 4.10: Behavior Cloning: inference phase

Inference phase for DMP

This paragraph describes the structure and functionalities of the block named
INFERENCE in Figure 4.7. We will use interchangebly here the terms decoding
and inference. Very sintetically, a generalized trajectory is obtained by integrating
the learned DMP system (for the single dimension), this is done using both
hyperparameters and parameters obtained from the learning phase, additionally
some task-specific parameters can be provided in order to have different starting
and goal points. For the integration, the well-known and simple Forward Euler
method is used.
The summarizing schema of DMP decoding is given in Figure 4.11.

Figure 4.11: Dynamical Movement Primitives: trajectory decoding

Inference phase for GMM (GMR)

Doing trajectory decoding while having a GMM model, is nothing but doing a
Gaussian Mixture Regression. Using the parameters Tmean and γ previously saved,

54

Implementation of the LfD pipeline

the generalized trajectory duration Tout is computed as:

Tout = γ · Tmean

for clarity, for γ = 0.5 the duration of the generalized trajectory is half the duration
of the mean duration of the demonstrations. At this point a uniform time grid is
built where, for each i, ti = i · dt; as next step a direct mapping to phase domain
can be done

si = ti
Tout

(4.6)

After this preparatory stage, for each obtained si, Gaussian Mixture Regression can
be done as indicated in Chapter 3, the result of which is the trajectory obtained as
E[y|s].
Before achieving the final result the remapping log(q) → q is needed. It is clear
that the information on time ti is saved, while phase variable si is used only for
inferring from the mixture model the expected behavior.

Figure 4.12: Gaussian Mixture Regression: inference phase

We conclude this part giving the summarizing Table 4.1 for the presented learning
methods, where the main features can be found in terms of: theoretical principle,
training and inference phase

PRINCIPLE TRAINING INFERENCE

BC Supervised learning Gradient-based policy rollout
DMP Dynamical systems Weighted LS (forcing term) Euler integration
GMM Probability EM process GM Regression

Table 4.1: Learnine methods features

55

Implementation of the LfD pipeline

4.3 Evaluation metrics
After having presented the implementation details of the LfD pipeline, it is useful
to provide details on the evalutation metrics that will be used for quantifying the
performance of the learned models, focusing on different aspects. In particular:
geometric accuracy, objective and smoothness.

Evaluating geometric accuracy

• Root Mean Square Error (RMSE) measures the average euclidean deviation
between the two trajectories, instant by instant, and is defined as follows:

RMSE =

öõõô 1
N

NØ
i=1

∥xdemo(ti) − xgen(ti)∥2 (4.7)

where xdemo(ti) and xgen(ti) are respectively the demonstrated and generalized
trajectory.

• Hausdorff distance (dH) measures the maximum distance of a set to the
nearest point in the other set. Given two trajectories P = {p1, p2, ..., pN} and
Q = {q1, q2, ..., qN}, it is defined (in discrete form) as:

dH(P,Q) = max
;

max
i

min
j

∥pi − qj∥, max
j

min
i

∥qj − pi∥
<

(4.8)

Such a distance takes into account the global shape of the trajectories without
doing reasoning on time.

Evaluating objective fulfilment

Endpoint error (EE) measure is for evaluating the generalized trajectory from the
point of view of the objective. This is for quantifying how much the final position
of the generated trajectory is distant from the final target of the demonstration. It
is defined as:

EE = ∥xdemo
T − xgen

T ∥ (4.9)

A low endpoint error indicates that the trajectory is terminated in the correct
point. Another way to evaluate whether we have reached or not the objective is
computing the rate of successful experiments with respect to the total.

A measure which can be used for evaluating high-level task is the so-called Task
Success Rate, given by the percentage of total experiments (nT OT AL) of a given

56

Implementation of the LfD pipeline

task successfully completed (nSUCCESS). It is simply defined as

TSR = nSUCCESS

nT OT AL

(4.10)

This is useful even in those cases in which no high-level algorithms are used since,
during the execution, of a certain task some issues can occur whose occurrence is
not deterministic.

Evaluating smoothness

In general, when we talk about smoothness we refer to the metric used for quantifying
how much a certain trajectory is regular and abrupt variations free. Common
method for quantifying the smoothness is the jerk which is the derivative of the
acceleration:

J =
Ú T

0
∥ ...x (t)∥2 dt (4.11)

4.4 Task-specific parameters θtask retrievial
One of the features that some Learning from Demonstration algorithms provide
is the intratask generalization. As previously seen in Chapter 2, this is the
possibility to generate trajectories taking into account user-provided parameters.
A common example is to change the start and goal points for non-periodic trajec-
tories. There are some mehtods which embed this parametrization in the original
formulation (e.g., DMP), other that can be extended to take into account them
(e.g., GMM finds its generalization in Task Parametrized GMM).
This section describes how a vision subsystem, realsense2 camera and the OpenCV
library, can be used for task-parameters (θtask) retrieval. In particular, the parame-
ters we want to retrieve are:

1. y0, which denotes the starting point for a certain task
2. g which denotes the goal point
3. wobj, hobj which are, respectively, the width and height of the object/objects

to be grasped or manipulated. These can be used in order to parametrize the
gripper position.

In first approximation, we will assume that objects geometrical dimensions are
a-priori known and saved in a glossary whose records have the schema

(object_name, obj_height, obj_width)

57

Implementation of the LfD pipeline

Start and goal pose y0 and g are retrieved by using ArUCO tag detection and
identification from the scene. Later, in the next section, we will obtain all the
parameters dynamically using a computer vision model which relies on RGB-D
camera frames.

4.4.1 Pose estimation by using ArUCO tags

The process of obtaining poses passing through ArUCO tags can be summarized in
three different steps:

1. All of the Ntags tags are detected together with their ID by using the OpenCV
provided tools, in particular the following instructions are used:

params = aruco.DetectorParameters()
detector = aruco.ArucoDetector(dictionary, params)
corners, ids, _ = detector.detectMarkers(gray)

- here in particular an ArucoDetector object is created for detecting tags of a
certain dictionary (eg. 4x4), a gray level image (obtained by the realsense2
color stream) is passed to such an object in order to obtain corners and ids of
the markers that are present into the picture.

2. The 6DOF poses of the detected tags with respect to the camera reference
frame are obtained; in particular homogeneous transformation matrices are
obtained

T tagi
cam i = 1, ..., Ntags

3. This is the most important stage in which tags poses T tagi
cam are converted into

the base reference frame by doing some matrix multiplications:

T
tagi
base = T ee

base · T cam
ee · T tagi

cam i = 1, ..., Ntags

note that the matrix T cam
ee is obtained by the simulation environment Rviz sim-

ply: (i) by adding to the launch command a flag for adding both realsense2 cam-
era and its support; (ii) using the tf2_tools for obtaining the homogeneous
transformation matrix between the TCP and the camera_color_optical_frame

58

Implementation of the LfD pipeline

Figure 4.13: ArUCO detection and pose estimation (realsense2+OpenCV)

Figure 4.14: LfD pipeline for learning PICK low-level skill

The reference frames, topics of this discussion are showed in Figure 4.16 that is
from the simulated environment. The tags for the experiments have been generated
using the tool in [34] by which the dictionary, the identifier and the tag dimension
can be chosen.
The vision pipeline based on ArUCO tags is reported below together with the
channel related to camera calibration (see Appendix C). Further details on the
process converting RGB images into ArUco tag detections are given in Appendix
B.

4.5 Hyperparameters
Explaining the LfD pipeline, we have introduced a certain number of user choices,
which are nothing but hyperparameters. They are important for representing the
handles by which we can adjust the obtained results during the demonstration,
learning or execution phase. In the following we are giving, by mean of summarizing
tables, a list of the main hyperparameters.

59

Implementation of the LfD pipeline

Figure 4.15: Vision pipeline (I): start/goal poses ArUCO-based, object geometry
in a static glossary

4.5.1 Demonstration phase hyperparameters
The only relevant demonstration phase hyperparameter which is used is rate_hz
and is related to the nominal frequency at which task space data are collected.

θhyper Description Range

rate_hz Frequency at which are collected data from
topics ee_pose and joint_states

[50,100]

Table 4.2: Demonstration phase hyperparameters

4.5.2 Learning phase hyperparameters
The learning phase hyperparameters are different according to the used learning
method. For BC, DMP and GMM they are reported in Table 4.3, Table 4.4and
Table 4.5 respectively.

60

Implementation of the LfD pipeline

Figure 4.16: Base (base), TCP and camera (cam) frames of the robot model

θhyper Description Range

hidden MLP structure (l1, l2, ..., lN) li ∈ [32,256] N ∈ [1,4]
LR Learning rate [1e-3,1e-2]
MAX_ITER Maximum number of EM iterations [100,450]
activation Employed activation function [50,200]

Table 4.3: Learning phase hyperparameters (BC)

61

Implementation of the LfD pipeline

θhyper Description Range

τ Temporal scaling factor [1.0,2.0]
αz, βz Related to system damping and stiffness [12.0,25.0]
αs Phase decaying factor [1.0,4.0]
N (nBF S) Number of Gaussian basis for forcing term f(x) [50,200]

Table 4.4: Learning phase hyperparameters (DMP)

θhyper Description Range

K Number of Gaussian components [3,10]
γ Execution rescaling [0.5, 2]
reg_covar Regularization for covariance [1e-6, 1e-5]
max_iter Maximum number of iterations [100, 300]
random_state Random seed for the parameter initialization [1, 50]

Table 4.5: Learning phase hyperparameters (GMM)

4.5.3 Execution phase hyperparameters

The real execution using the robot’s SDK, requires to make some choices. In
addition, it is desirable that such parameters are not constant, since different tasks
can require different execution parameters. Table 4.6 sums up such information
together with their description and per-parameter range of variation.

62

Implementation of the LfD pipeline

θhyper Description Range

SPEED Limit on joint speed (mm/s) [70.0,300.0]
ACC Limit on joint acceleration (mm/s2) [300.0,1000.0]
RADIUS Blending radius between segments (mm)

(see description above)
[10.0,30.0]

DIST_MIN_MM Points whose distance (in position) is under
such a threshold are filtered out

[10.0,30.0]

DIST_MIN_RAD Points whose distance (in orientation) is
under such a threshold are filtered out

[1.0,3.0]

Table 4.6: Execution phase hyperparameters

4.6 Low-level skills
Former sections were devoted to the explanation of techniques and details behind
the implementation of the Learning from Demonstration pipeline. At this point,
such a general structure can be used for learning motor primitives that imitate
human behavior. In particular, in our work, this is used for learning low-level skills,
which in some way are reused later in order to build task plans in which condtions
and loops are likely to be included, too. A valid reference for this part of Low-level
skill learning is the Chapter 4 from [3].

For the sake of completeness and with the aim of doing a brief recap before
going on, the main steps behind LfD process are listed hereafter:

1. The human demonstrates the low-level skill and a dataset Dskill is obtained;
2. The Machine learning module extracts the motion encoding model parameters
θskill from the dataset, provided the task-specific parameters that are leading
to trajectory generalization;

3. A generalized trajectory is obtained for the skill, which is followed by the
model execution.

In the following we are giving more details on the fundamental building blocks
(motor skills) for the robot movement. i.e., PICK, PLACE, POUR and SHAKE skills.

4.6.1 PICK

This is one of the most used motion primitives for a robotic manipulator. Dealing
with demonstration and learning of such a movement is less challenging with respect
to other tasks (e.g., the insertion of a peg into an hole), since there are not strict

63

Implementation of the LfD pipeline

requirements on contact control.
In general, PICK movement is a naturally hierarchical task, although in this case
we consider it as a fundamental atomic block. Despite this assumption, knowing
something more about the breakdown the literature gives of it, can be useful for
human demonstration purposes. Phases which are usually individuated are:

1. Approach: here you pass from the current position to a safe position located
above the target. Given the best grasp candidate (user-defined or vision-
guided) the hand is put in a certain position with a suitable offset +z with
respect to the TCP origin (we call it Tpg)

2. Pre-Grasp: here the pre-grasp pose is eventually refined using local information
(eg. proximity to the table and so on)

3. Grasp execution is the crucial part of the movement in which the fingers of
the gripper are closed6 (being consistent with the object dimensions)

4. Lift is the phase when the scene is cleared moving the robot to a carry position
in order to pass to the next task (e.g., place is frequently executed). Many
times this is considered as an hand-off phase.

Phases 1-4 are preceded by a Vision/Sense phase in which the target object is
located and some candidate grasp poses are proposed, whereas it is not hard-coded
for simplicity. The specialized LfD pipeline for PICK is given in Figure 4.14.

4.6.2 PLACE

PLACE primitive is used – not rarely together with PICK – in order to move an
object from the carry to the final position. Again, we consider it atomic, however
splitting it into sub-skills can be helpful for a better comprehension:

1. Approach: Here the manipulator is moved from the carry position to a safe
pre-place pose Tpp above the goal position

2. Pre-place: Tpp is refined in order to meet local requirements and obtain a new
pose definitive pose Tpl

3. Place and release: here the gripper is opened and the manipulator returns to
a safe position.

4.6.3 POUR

POUR is a manipulation task where the robot transfers a liquid from a source
container to a target container by tilting it and controlling the flow according

6The value for the gripper position can be hard-coded or obtained through a vision subsystem.

64

Implementation of the LfD pipeline

to some approach. It is a continuous task which is executed in proximity of the
target in which the main aim is to transfer a certain volume of a liquid without
spilling it or knocking the container [35]. This is a more challenging task due to
the fact there is fluid uncertainty due to viscosity; in addition, liquid control is not
trivial since can be executed both in open7 or closed loop (using for instance visual
servoing). In this case the following microphases can be individuated [36]:

1. Approach upright: move source near target while keeping it vertical
2. Align: position lip above the rim, stabilizing it
3. Pour : tilt to initiate and regulate flow; track level/volume
4. Stop & cut stream: reverse tilt smoothly
5. Retract: return to a safe position

Other details on pouring task together learned by DMP together with parametriza-
tion issues are discussed in [35].

Open-loop fluid control

This section illustrates how the liquid is poured within the target recipient subject
to constraints of volumes, that is: how to ensure that a certain quantity of a
certain liquid is poured within the target recipient? The fact of employing human
demonstrations for pouring task avoids the explicit modeling of the map tilt → flow.
Moreover, we work under the following assumptions:

1. The geometry of the bottle together with its neck properties are apriori known;
2. The pose of the target recipient is fixed and apriori known;
3. No sensing of flow or liquid level is adopted;
4. The calibration of tilt vs flow is embedded in the demonstration and is refined

during execution, so that a timed motion can be adopted.

For the sake of clarity, what we are implicitly demonstrating embed a sort of
function of the type

q(θi) ≈ ∆V
∆t (4.12)

where q is the volume flow, θi is the tilt angle and ∆V , ∆t are respectively the
volume and the time interval.

7When executed in closed-loop a map tilt → flow is obtained

65

Implementation of the LfD pipeline

4.6.4 SHAKE

The SHAKE movement consists of a periodic (or rhythmic) and bounded oscillation
of the end-effector which holds a container, finalized to mix the content without
spilling or losing the grasp. Microphases can be individuated as:

1. Pose for shaking: a certain orientation of the end-effector is chosen for executing
the shake movement

2. Rythmic shake where the periodic movement is executed a certain number of
times

3. Stop and hold: shaking ends and a pre-place position is assumed by the
end-effector

We can describe the shake movement from two different perspectives, in particular
there are a spatial and a temporal pattern. The former consists of oscillations along
a chosen axis, while the latter is a periodic motion having smooth start and stop
points in order to avoid shocks.
Rhythmic movements have an important role in many tasks (e.g., polishing, wiping)
and they have different properties with respect to discrete motions such as PICK or
PLACE; in particular, they carry information like frequency, amplitude and phase.
Such aspects are well described in [37], where Fourier Movement Primitives (FMP)
are used to learn oscillating movements from demonstrations in the Fourier frequency
domain, this is a good choice for the nature of skills to be learnt.
In the reference paper [37] all of the implementation details are given, however the
interesting point we want to highlight is the alternative used approach of learning
a GMM over complex weights related to the Discrete Fourier Transform (DFT) of
time-domain windows of the human-demonstrated periodic skills.

4.7 High-level tasks
Low-level learned skills can be the basic building blocks to create complex robot
behaviors. In particular, they can be combined together with the aim of executing
a more complex task. There are tipically two ways to obtain high-level task plans:

1. By using High-level learning methods (see Chapter 2) which build task plans
from demonstrations;

2. By using a Programmatic approach, that is giving explicitly the (eventually
conditioned) sequence of actions to be performed.

In the following we are going to follow the second approach that is the most
immediate, which uses directly the learned primitives without other learning steps.
Any motion skill can be used either in its "original form" imitating exactly what

66

Implementation of the LfD pipeline

the human had demonstrated, or in the parametrized form. At this aim, we will
use the following notation:

• PRIMITIVE for indicating the non-parametrized motion primitive
• PRIMITIVE(par1,...,parN) in order to indicate that skills whose execution

is parametrized by a bunch of parameters {par1,...,parN}

where PRIMITIVE is one among PICK, PLACE, POUR... This formalism to indicate
motion primitives and their parametrized version is similar to the one used in [3].

4.7.1 Pick-and-place

We have introduced the pick-and-place task in Section 2.4.2 stating that it con-
stitutes a fundamental subtask for industrial applications, and any other more
complicate assembly task. It is one of the most elementary high-level tasks where
two low-level skills primitives are executed in cascade, that is PICK followed by
PLACE as shown in Figure 4.17. Using a pseudocode notation:

function PICK_AND_PLACE(ID_object, ID_goal){
PICK(ID_object)
PLACE(ID_goal)

}

Figure 4.17: PICK_AND_PLACE() flowchart

67

Implementation of the LfD pipeline

4.7.2 Collecting objects in a recipient/basket
Going a step further, we can reuse the PICK_AND_PLACE at a higher level, for
executing other plans, for example bin sorting or – more simply – collecting
different objects in a recipient/basket.

function COLLECT_OBJECTS(ID_target){
ID_objects = retrieve_parameters(color_scene)
for ID_object in ID_objects:

PICK_AND_PLACE(ID_object,ID_target)
}

The routine retrieve_parameters(color_scene) is a vision-guided function
which dinamically obtains task parameters from the current scene. Figure 4.19
shows the annotaded image with detected ArUco tags and poses.

Figure 4.18: COLLECT_OBJECTS: flowchart. len is assumed to be the length of
the array containing objects information

4.7.3 Pour a drink in a container
Here we want to exploit the POUR skill to issue a more complete task where: (i) a
source liquid recipient is picked; (ii) the drink is poured inside the container; (iii)
the source recipient is replaced back.

68

Implementation of the LfD pipeline

Figure 4.19: Detected objects from the real scene. The image is annoted with
detected ArUco IDs and reference frames

Giving a sort of pseudocode the high-level task we want to perform here can be
described as:

function POUR_DRINK(ID_drink, ID_glass, quantity){
pick(ID_drink)
pour_and_align(ID_glass)
wait(quantity)
place(ID_drink)

}
quantity is a recipe-specific parameter and intrinsic of the type of mixture to be
prepared; it is important for parametrizing the waiting time which is intrinsically
based on the fluid dynamics we described in Section 4.6.3. Another way to visualize
the sequence of steps is using the flowchart similar to the one in Figure 4.20.
For the sake of clarity, we assume here that the gripper management (open/close)
is embedded in the PICK() (close) and PLACE() (open) procedure.
4.7.4 Prepare a mixture of drinks
What if we wanted to mix more than one drink? We have to reuse the high-level
task POUR_DRINK() many times as the number of ingredients constituting the
mixture recipe. By using a sort of pseudocode, as before, we can say that preparing
the composite drink implies:

function PREPARE_MIXTURE(Recipe [], ID_glass){
for item in Recipe: POUR_DRINK(item.id, item.quantity)
SHAKE(ID_glass)
PLACE(ID_glass)

}

69

Implementation of the LfD pipeline

Figure 4.20: POUR_DRINK() flowchart

Figure 4.21: Pouring a liquid

We also are giving the flowchart in Figure 4.22, as we have done before. Finally,
in order to conclude this section, we can say that the tasks we have executed on

70

Implementation of the LfD pipeline

the robot are organized as in a pyramid in which we have low-level and high-level
tasks. The interesting fact is that the tasks from an higher level use the ones of a
lower level as constituting blocks.

Figure 4.22: PREPARE_MIXTURE() flowchart

Preparing the mixture asking for help: introducing Human-Robot Col-
laboration

We can exploit this last experiment in order to introduce the aspect related to
Human-Robot Collaboration (HRC). To this aim, what if the source containers
were corked? Moreover, in order to shake the final mixture without spilling any
liquid it could be convenient that the destination container/glass was corked. The
fact of screwing/unscrewing a cap from a bottle is a challenging task, that – in
addition – is also quite hard to demonstrate. For this reason, we could ask for help
to the human in order to: (i) remove the caps for pouring, (ii) put the cap on the
destination container before shaking.
At this point, we need a modfied version of the task POUR_DRINK which include
human collaboration and the corresponding modified version of PREPARE_MIXTURE.

71

Implementation of the LfD pipeline

For the sake of clarity, the actions performed by a human are introduced with the
notation: [HUMAN] Action to be performed.

function POUR_DRINK_HRC(ID_drink, ID_glass, quantity){
pick(ID_drink)
bring_to_human()
[HUMAN] Unscrew the cap from the bottle
pour_and_align(ID_glass)
wait(quantity)
give_to_human()
[HUMAN] Screw the cap and place the bottle

}

The modified routine using the just defined task is:

function PREPARE_MIXTURE_HRC(Recipe [], ID_glass){
for item in Recipe:

POUR_DRINK_HRC(item.id, item.quantity)
PICK(ID_glass)
bring_to_human()
[HUMAN] Screw the cap
SHAKE(ID_glass)
give_to_human()
[HUMAN] Take the container with the prepared mixture

}

In order to simplify the experiments, some assumptions have been done: (i) the
quantity of liquid to pour is fixed to be 100 mL, thus making easier the interaction
of the robot with the environment; (ii) demonstrations are given in order to empty
each bottle, this avoids seeking for the minimum tilt θ0 at which some liquid is
poured; (iii) a single recipe is available. Such assumptions do not invalidate the
main reasoning which is done – instead – on the robot movement. Two snapshots
of the complete experiment are shown in Figure 4.23.

4.8 Knowledge of the robot: motion primitives
and tasks

We have: (i) detailed the implementation of the LfD pipeline in each stage; (ii)
explained the theoretical and implementative details behind learning methods; (iii)
made some examples to specialize the pipeline for chosen motion skills. At this
point, it should be clear that through Learning from Demonstration, at the end, we
have obtained motor skills knowledge which is splittable in two classes as showed
in Figure 4.24:

72

Implementation of the LfD pipeline

(a) Robot towards human (b) Human screws the cap

Figure 4.23: Human screwing the cap on the bottle: the robot goes to the human
(a) and asks for help for screwing the cap (b)

1. Motion Primitives: the basic building blocks for the robot behavior which
can be either discrete or periodic, parametrized or not.

2. Tasks: these are the composition of motion primitives and are for defining
more complex behavior.

In general, robotic tasks are made up of motion primitives. However, there are
not limitations on the fact that a task could be defined in function of another task
creating an even higher level of abstraction. For instance, in the following example
a three-level hierarchy occurs:

• 3rd level: COLLECT_OBJECTS task. This use repeteadly the PICK_AND_PLACE
high-level task.

• 2nd level: PICK_AND_PLACE task. This is the composition of PICK and PLACE
low-level skills.

• 1st level: PICK and PLACE motion primitives learnt, they are the single pieces
demonstrated by the human teacher.

For the sake of simplicity, we have obtained using LfD (low-level) or using a
programmatic approach (high-level) only few primitives and tasks, this general
reasoning can be extended to expand the knowledge, for example treating the
PEG_IN_HOLE task, in which another low-level skill is needed (INSERT). Another
way to visualize this notions, beyond the use of pseudocodes and flowcharts, is the
one given in Figure 4.24. On the bottom-right there are the motion building blocks,
on the left we have high-level tasks, and top-right we have an example unrolling of
a generic task. Some snapshots of the execution of the learned motion primitives
is illustrated in Figure 4.25, where sample generated generalized trajectories are
reported in red.

73

Implementation of the LfD pipeline

Figure 4.24: Robot knowledge: motion primitives (bottom-right) are the building
blocks for tasks (left) which are nothing but a sequence of low-level skills (top-right)

Figure 4.25: Learned low-level skills’ snapshots. Sample trajectories are given
in red. Note that while for PICK, PLACE and POUR you have point-to-point
trajectories, for SHAKE there is a periodic one

4.9 Two-finger parallel gripper management
Among all possible tools8 we use a two-finger parallel gripper (Figure 4.26)
for executing our manipulation tasks. Till now we have dedicated most of the
paragraphs to motion encoding/decoding and related learning method, without
further details about the gripper managemenent, that is the aim of this section.

8Vacuum gripper (for suction-based manipulation) and Bio gripper are examples of other tools
can be used for our robot (see https://www.ufactory.cc/xarm-collaborative-robot/).

74

https://www.ufactory.cc/xarm-collaborative-robot/

Implementation of the LfD pipeline

In our LfD pipeline, we decouple grasp synthesis from gripper actuation. More
specifically, demonstrations provide the end-effector approach and grasp-pose to be
imitated and generalized (continuous) while the gripper is commanded through a
discrete event (open/close). The gripper position (how much we have to close/open
the jaws) is determined:

1. Statically, whether the employed vision subsystem does provide only start/goal
poses and object geometrical insights are stored in a static glossary (see Figure
4.15);

2. Dinamically, in the situation where a more sophisticated ad-hoc Computer Vi-
sion architecture (eg. GraspNet-1billion [38]) is employed. How we mentioned
in the dedicated section, we can obtain by using it not only many candidate
grasp poses, but also the object geometrical dimensions.

Whatever is the way we retrieve such an information, it must be a value between
0mm (totally closed fingers) and 850mm (totally opened fingers). Then:

pgrip ∈ [0, 850]

Figure 4.26: xArm gripper

From a practical point of view the gripper actuation is interleaved between the
different phases of low-level skill execution. For example for PICK_AND_PLACE the
pseudocode which includes gripper actuation is:

const p_APERTO=850
function PICK_AND_PLACE(ID_object, ID_goal){

PICK(ID_object)

75

Implementation of the LfD pipeline

--- M A N A G E G R I P P E R ---
p_grip = lookup(ID_object)
set_gripper_position(p_grip)

PLACE(ID_goal)
set_gripper_position(p_APERTO)

}

Note that here lookup(ID_object) is a call to the subsytem which retrieves, either
statically or dinamically, gripper position for objects to be manipulated. The
block-diagram representation of the same concepts is given in Figure 4.27.

Figure 4.27: Pick and place with gripper management

Both factors of handling separately the gripper actuation and demonstrating
singularly subtasks, impact the way the human teacher has to demonstrate motion.
There are some works in which the information on the gripper position is used
to segment subtasks. For instance, if you decide that for a pick-and-place task
until the target pose is not reached, gripper jaws are opened, you can use such an
insight for dividing pick from place part. This trick is used, for example, in [39]
where multidimensional DMP is trained for pick and place, after that a gripper
position-guided segmentation is performed.
Moreover, in this implementation the gripper position is considered as an additional
state variables and then a generalized trajectory is generated for the gripper
fingers, treating it as an additional joint to control, in a continuous fashion. The
demonstration dataset, under this assumption, is defined as:

D =
î
t, x(t), y(t), z(t), qx(t), qy(t), qz(t), qw(t), pgrip(t)

ïK

k=1
t = 1, ..., Tmax

In demonstrated motions there are two common approaches for the finger of the
gripper: vertical and horizontal, as shown in Figure 4.28.

76

Implementation of the LfD pipeline

(a) Vertical approach (b) Horizontal approach

Figure 4.28: Horizontal and Vertical approaches

77

Chapter 5

Experimental results

In this chapter we provide the main results for all the learning methods for low
and high-level motor skills learned through the process of LfD. In particular, we
provide quantitative results, by means of evaluation metrics and qualitative results
giving some significant plots, using Table 5.1 as a reference for measurement units.

Metrics RMSEpos RMSEori EEpos EEori dH J ttrain

Unit m deg m deg m m/s3 s

Table 5.1: Units for used metrics

5.1 Low-level skills

5.1.1 PICK

As shown in Table 5.2, the best performing model for RMSE metrics is GMM;
DMP is the best as far as the EE is concerned. GMM achieves best result also
for geometric accuracy (dH) and smoothness (J) metrics. Figure 5.1 shows the
YZ plane projection of the generated trajectories on which the given results on
Hausdorff’s distance dH can be justified. A graphical interpretation of the EEpos

error can be found in quaternion components timeseries plots illustrated in Figure
5.2.

5.1.2 PLACE

As far as the PLACE primitive is concerned, results are slightly different. In particular,
best performing model for RMSE is BC, even if the difference with GMM is almost

78

Experimental results

RMSEpos RMSEori EEpos EEori dH J ttrain

BC 0.22 10.29 9.45E-03 0.33 0.15 2348.81 34.52

DMP 0.15 6.55 2.74E-07 0.0002 0.18 335.11 0.47

GMM 0.063 5.0047 1.76E-02 1.63 0.051 89.011 2.03

Table 5.2: Quantitative results (PICK)

Figure 5.1: PICK - Projection on YZ plane

negligible. As before, DMP confirm its dominance with respect to other models
when considering the precision in object fulfillment EE. GMM holds, also in
this case, best performances on dH and J . As an example, the projection on the
XY-plane is shown in Figure 5.3.

79

Experimental results

Figure 5.2: PICK - Quaternion components timeseries

RMSEpos RMSEori EEpos EEori dH J ttrain

BC 0.14 36.02 7.95E-04 0.41 0.11 755.22 35.21

DMP 0.25 47.13 3.35E-07 0.0002 0.21 469.69 0.45

GMM 0.17 39.18 2.12E-01 11.27 0.20 162.69 2.10

Table 5.3: Quantitative results (PLACE)

5.1.3 POUR

Considering the POUR skill, the best models as far as the accuracy is concerned
are BC, having best RMSEpos and dH and GMM having the best RMSEori index.
DMP, instead is the best for training time ttrain and object fulfillment. GMM
remains the best model for smoothness of the generated trajectories. XZ-plane
projection of the generated trajectories and position timeseries are given respectively
in Figure 5.4 and Figure 5.5.

80

Experimental results

Figure 5.3: PLACE - Projection on XY plane

RMSEpos RMSEori EEpos EEori dH J ttrain

BC 0.09 59.27 5.45e-04 0.35 0.14 892.38 51.47

DMP 0.15 61.13 2.8e-07 2.3E-04 0.31 809.05 0.67

GMM 0.09 17.38 4.3e-02 24.07 0.22 473.60 3.06

Table 5.4: Quantitative results (POUR)

5.1.4 SHAKE

Differently than PICK, PLACE and POUR that are discrete (point-to-point) move-
ments, SHAKE is a ripetitive and hence periodic movement, as we said before. The
learning methods we used so far, are not suitable fot this purpose, at least in the
original formulation. In particular, some other theoretical aspects must be included
which go into the direction of handling frequency and phase terms.
Despite this fact, we remind that there is another strategy to reproduce demon-
strated movement skipping the learning phase: this is what we call trajectory
replaying. This is similar to the fact we had learned the identity function f(x) = x.

81

Experimental results

Figure 5.4: POUR - Position (x, y, z) timeseries

It is quite clear – at this point – that all of the advantages a learning method can
offer are lost: generalization, re-parametrization and so on. In the work [37], there
is an illustration of demonstrated WIPING skills. These movements are very similar
to our demonstrated SHAKE primitives. For this reason, we give it for the sake of
completeness in Figure 5.6.

5.2 High-level tasks

With the objective of evaluating high-level tasks, a certain number of experiments,
for each task, have been executed and for each of them we monitor: the Task
Success Rate (TSR) and the Subtask Success Rate (SSR). Since high-level
movements are aposteriori composed, one can choose different models for different
parts according to what is more important for that specific task. Summarizing
tables for obtained success metrics and used learning models are reported hereafter
for each high-level executed task.
Remark: The number of experiment Nexp to be executed has been chosen according
to the task complexity and success variability.

82

Experimental results

Figure 5.5: POUR - Projection on XZ plane

5.2.1 Pick-and-place, collecting objects

PICK_AND_PLACE task has been executed in its "standard form", that is without
using vision and, then, task parametrization. For both PICK and PLACE phases,
GMM is used as motion encoder. This leads to excellent TSR and SSR as reported
in Table 5.5.

Differently, COLLECT_OBJECTS task is a more challenging one due to several
factors:(i) the PICK_AND_PLACE task is repeated and the impact of random events
is higher, (ii) the vision subsystem is used, wrong or faulting tags detection imply
a partially/completely wrong execution of the task. Overall, we have good results
(further details can be found in Table 5.5), the phase causing the experiment fail is
PICK mainly due to incorrect tag’s detection and pose estimation.
Table 5.6 illustrates the choices of the model for each subtask for both presented
high-level tasks.

83

Experimental results

Figure 5.6: Demonstrations in the xy plane (different colors represent different
demonstrations) [37]

Nexp TSR SSRPICK SSRPLACE

PICK_AND_PLACE 5 100% 100% 100%

COLLECT_OBJECTS 15 73.3% 73.3% 100%

Table 5.5: High-level task evaluation: PICK_AND_PLACE, COLLECT_OBJECTS

PICK PLACE

PICK_AND_PLACE GMM GMM

COLLECT_OBJECTS DMP DMP

Table 5.6: Learning models used for each subtask

5.2.2 Pour a drink, prepare a mixture
With the objective of focusing the attention on the movement, POUR skill has been
executed with fixed start and goal positions and without liquid inside the bottle.
Overall, 9/10 of the experiments were successufully executed; the error was during

84

Experimental results

the PLACE phase.
The final PREPARE_MIXTURE experiment has more variability due to: i) multiple

bottles to handle, ii) liquid inside the bottle, iii) parametrization of the obtained
trajectories in order to reuse skills without re-training. Despite this fact, we have
obtained very good success rates as in previous tasks.
Similarly than before, task and subtask success rates and per-subtask used motion
encoder are reported in Table 5.7 and Table 5.8.

Nexp TSR SSRPICK SSRPLACE SSRPOUR

POUR_DRINK 10 90% 100% 90% 90%

PREPARE_MIXTURE 10 80% 100% 100% 80%

Table 5.7: Success rates (task and subtask) for POUR_DRINK

PICK PLACE POUR SHAKE

POUR_DRINK GMM GMM DMP trajectory replay

PREPARE_MIXTURE DMP DMP DMP trajectory replay

Table 5.8: Learning models for each subtask

85

Chapter 6

Conclusion

In this work we have explored how to make collaborative manipulation learn-
able and reusable by implementing an end-to-end Learning from Demonstration
pipeline tailored for the UFACTORY xArm6 cobot: from kinesthetic demonstration
collection to real and simulated robot execution. In particular, the pipeline is used
for low-level skill learning, which can be arranged in customized high-level plans.
In addition, the use of a vision subsystem (Intel RealSense + ArUCO) allows to
parametrize the skills to newly dynamically obtained goal poses. This is reducing
per-task motion engineering while retaining generality.

6.1 Methodology

From the methodological point of view:

1. Three complementary motion encoders were implemented and trained: BC for
policy imitation, DMP for retargetable movement primitives, GMM-GMR
for probabilistic trajectory synthesis;

2. Decoded generated trajectories were executed with a fine-grained controller for
the real robot, while MoveIt was used for simulation purposes; thus solving
the Sim2Real gap;

3. Evaluation criteria covered geometric accuracy, objective fulfillment and motion
quality. These naturally expose a thread-off between methods: GMM-GMR
tends to give – overall – more accurate results, while DMP simplifies the goal
re-targeting.

86

Conclusion

6.2 Contributions
The main contributions of this work are:

• A modular LfD pipeline from demonstration to real-robot execution;
• A comparative implementation of three learning methods on the same

platform and task.
• A vision-based parametrization layer that retrieves task frames to reuse skills

without retraining.
• Programmatic task-level controllers that are able to compose learnable

primitives into reliable plans.

6.3 Limitations
Since some assumptions were done, there are some limits on what we have presented
so far. In particular:

1. The vision front-end uses ArUco-based pose retrievial and a static geometric
glossary, that is implicitly constraining the grasp synthesis;

2. SHAKE primitive was replayed rather than learned with a tailored learning
method for rhythmic movements.

3. High-level plans were composed in a programmatic way instead of relying
on a learned symbolic model

6.4 Future works
In Chapter 2 we have seen that for each step of the Learning from demonstration
pipeline there is a certain number of choices that can be made. Developing the
present work, we chose a particular path in a big tree of possibilities, making a set
of assumptions while taking into account available time and resources.
Different skills have been tested – PICK, PLACE, POUR, SHAKE which – then –
have been composed into higher-level tasks (pick-and-place, collect objects, single
and multiple drink pouring).

Some extensions are possible, involving both practical and theoretical aspects
about learning methods and LfD pipeline implementation.

Integrate vision subsystem with GraspNet-1B We retrieved task parameters
such as ArUCO tag poses by using the OpenCV library on RGB images from the
Realsense. The depth stream was not used at all; there are some interesting
papers [38] that – relying on both color and depth channels – retrieve from the
scene, for each object the so-called grasp groups, data structures containing

87

Conclusion

Figure 6.1: LfD pipeline and related choices for each aspect

information about the pose of the object together with their geometrical
properties. In other words, such a network solves one-shot the problem we
have split into two parts: one devoted to poses (dynamically solved), the other
to object dimensions (statically obtained). The schema of such a modified
vision system is showed in Figure 6.2.

TP-GMM A fundamental feature of LfD-based learned skills is the parametriza-
tion, that is not naturally embedded for each method like in DMP. We explored
parametrization only for DMP, however an extension of GMM is possible,
introducing the so-called Task Parametrized GMM (TP-GMM) [6]

High-level learning methods We adopted programmatic task composition for
obtaining high-level tasks. Integrating high-level learning methods based
on Hidden Markov Models (HMM), Behavior Trees (BT) and Finite State
Machine (FSM) allows to complete the impleted pipeline for learning both
low and high level. The use of tailored evaluation metrics would be required.

88

Conclusion

Introducing rhythmic movement Our work was mainly devoted to the low-
level learning of discrete (or point-to-point) movements. Another category of
motions which often can occur in practical applications is periodic or rhytmic
motions. Different learning method have been explored. Just for giving two
examples, Rhytmic DMP [40] and Fourier Movement Primitives [37].

Figure 6.2: Modified vision subsystem relying on GraspNet-1B [38]: static glossary
is replaced by a dedicated grasp proposal network

These further steps would improve the overall system making it more autonomous,
since manual assumptions are reduced. However, collectively the obtained results
show that few LfD demonstrations can deliver accurate, adaptable and maintanable
behavior while having low integration efforts.

89

Appendix A

Basics of Markov Decision
Processes in RL and LfD

Markovian Decision Process is the mathematical tool by which we can provide the
main theoretical results and formal proofs for both RL and LfD. In general, a MDP
is defined as the tuple:

< S,A,∆0, P, R, λ > (A.1)

where S is the set of the possible states st ∈ S, A the set of the possible actions
at ∈ S, ∆0 is the probability distribution of the initial state s0; P (st+1|st, at) is the
probability transition function; given the state st an action is chosen using a certain
policy π : S → A. Finally, after the interaction with the environment at time t a
certain reward r = R(st, at, st+1) is obtained where R is the reward function and
λ is the discount factor. Now, in RL the objective is maximizing the cumulative
reward given by

Gt = E[
∞Ø

t=0
λtR(st, at, st+1)] (A.2)

A trajectory τ is defined as the set of H + 1 states and H actions and reward, that
is

τ = (s0, a0, r0, s1, a1, r1, ..., sH) (A.3)

where H is the trajectory length or epidsode horizon. In LfD, a demonstration
dataset Ddemo of N samples is defined as:

Ddemo = {τi, i ∈ [0, N)} (A.4)

where the single demonstration is

τi = (st, at, st+1, t ∈ [0, L)) (A.5)

90

Basics of Markov Decision Processes in RL and LfD

It appears quite clear that at here is chosen by the demonstrator according its own
policy πteacher. Finally, consideriding the (A.5), its probability under the policy π
is given by:

pπ(τ) = ∆0(s9) ·
H−1Ù
t=0

π(at|st) · P (st+1|st, at) (A.6)

91

Appendix B

Fiducial markers in Robotics

Fiducial markers are simple patterns with known geometry that you can attach to
objects in order to identify them and detect the 6DOF pose in a precise way. Some
examples are reported in Figure B.1. A more detailed explanation can be found in
the article by Jurado-Rodriguez et al. [41].

Figure B.1: Examples of fiducial markers [41]

In the following there is a synthesis of the core ideas behind such type of
identifiers:

1. An engineered pattern makes them easy to find. In particular they have:
(i) black and white borders; (ii) a square shape, in this way some thresholding
technique can be used in order to detect them;

2. They have encoded bits so that they can have a unique identifier which is
related in particular to the grid into the square. In this way

UNIQUE TAG → UNIQUE CODE → UNIQUE OBJECT.

92

Fiducial markers in Robotics

3. The known geometry enable the pose recognition from a single view. More
in details, the square constituting the code is a known-size one, whose corners
can be detected and made an homography. At this point a PnP (Pin-hole)
problem is solved to retrieve the object pose by an homogeneous transformation
matrix.

4. They allow an object recognition via association in a way that each
identifier can be mapped to an object/class.

B.1 ArUco marker detection process

In our work we used ArUco1 fiducial tags, whose implementation can be found in
the paper [42] from 2014. Hereafter, we are going through the fundamental steps,
illustrated in Figure B.2, that allows the tag’s code retrievial starting the RGB
image. Given a certain tag dictionary (e.g., 4x4, 5x5, etc.)

1. Image segmentation: the RGB image (Figure B.2(a)) is converted in a gray-
scale one, from this an intermediate representation is extracted using some
thresholding approach (e.g., Canny or some other more robust method) (Figure
B.2(b)).

2. Contour extraction and filtering: Next, a contour extraction procedure is
carried out. Most of the obtained contours are irrelevant for our purposes, for
this reason most of them are discarded (Figure B.2(c));

3. Marker Code extraction: for each of the obtained contours the internal area
is analyzed, removing the perspective, with the objective of extracting the
associated code. An useful step for doing so is obtaining a binary image, which
is afterwards dividd into a regular grid whose elements are associated, by
using a majority voting technique, with 0 or 1 (see Figure B.2(d)-(f)).

The reference paper [42] gives, also, more details for generating marker dictionaries,
and other technicalities that go outside the purposes of this Appendix.

1ArUco stands for Augmented Reality University of Cordoba

93

Fiducial markers in Robotics

Figure B.2: Image process for automatic marker detection. (a) Original
image. (b) Result of applying local thresholding. (c) Contour detection. (d)
Polygonal approximation and removal of irrelevant contours. (e) Example of
marker after perspective transformation. (f) Bit assignment for each cell. [42]

Figure B.3: Examples of generated ArUco of different sizes n

94

Appendix C

Robotic vision system, Intel
RealSense D435 camera

C.1 Configuration of the visual system
"Vision allows a robotic system to obtain geometrical and qualitative information
on the surrounding environment to be used both for motion planning and control"
[43]. For a robotic system, the vision subsystem consist of one or more cameras.
As far as robotic manipulators are concerned, the main feature of the vision layer
is the camera placement. In the fixed configuration there are two alternatives:

1. eye-to-hand: in this case the camera assumes a fixed pose with respect to the
base frame of the robotic arm. The advantage of such a choice is that the
vision sensor observes always the same scene, however this is a disadvantage
in some complex applications (e.g., assembly) where the occlusion problem is
present;

2. eye-in-hand: is the configuration in which the camera is mounted on the
manipulator’s wrist. Now, the scena changes for the camera, however, we can
say that occlusions are absent. Finally, the accuracy is in general higher with
respect to the other approach.

The two configurations are illustrated in Figure C.1 from the paper [44].

C.2 The Intel Realsense D435 camera
The Intel RealSense D435 is a depth camera equipped with stereo vision and
an integrated IMU (Inertial Measurement Unit). It provides RGB and depth data,
enabling at the same time 3D percpetion which can be useful for robotics and

95

Robotic vision system, Intel RealSense D435 camera

Figure C.1: Eye-in-hand(a) and Eye-to-hand (b) configurations [44]

SLAM applications. Its compact design and USB connectivity makes it suitable
for real-time spatial sensing tasks. In the following there is a section dedicated to
specifications.

Figure C.2: Intel RealSense d435 camera

C.2.1 Specifications
The Intel RealSense D435 camera features:

• Depth Technology: Stereo vision
• RGB Sensor: 1920 × 1080 resolution
• Depth Resolution: Up to 1280 × 720 at 30 FPS
• Field of View: 86° × 57° (depth), 69° × 42° (RGB)
• IMU: 6-axis (accelerometer and gyroscope)

96

Robotic vision system, Intel RealSense D435 camera

• Range: 0.1 m to 10 m (optimal up to 3 m)
• Interface: USB 3.0
• Dimensions: 90 mm × 25 mm × 25 mm
• Weight: 72 g

C.2.2 Camera Calibration Procedure
The camera calibration procedure allows the image measurements to be con-
sistently related to the robot coordinate frames. Main reference for this part is
the book [45] in which a detailed description of related topics (e.g., perspective
transformation, camera model) is provided. Hereafter, we are providing some
insights on main parameters that are needed for the calibration procedure:

• Camera Intrinsics: they are the ones allowing the transformation between
camera coordinates (XC , YC , ZC) and the 2D pixels’ image representation:

(XC , YC , ZC) → (u, v) (C.1)

• Camera Extrinsics: they allows the conversion between the world and camera
coordinates:

(XW , YW , ZW) → (XC , YC , ZC) (C.2)

A schema illustrating the flow from world to image is shown in Figure C.3, which
adds more details to the previously provided schemas.

Figure C.3: Camera Calibration. From world coordinates to pixels and
viceversa

Intrinsics retrieval

In this work, we used the factory-provided camera intrinsics. Alternatively, some
procedure based on a chessboard could have been used. More in details, the
intrinsics parameters are:

97

Robotic vision system, Intel RealSense D435 camera

• Focal length and principal point which are for providing a model of the
projective geometry;

• Distortion coefficients are used so that straight lines in the scene could
remain straight in the obtained image.

Such a set of parameters can be used for both camera → world and world →
camera transformations.

Extrinsics retrieval

Camera coordinates, in order to be effectively used must be transformed into world
coordinates. This task is carried out introducing another set of parameters, which
are called Camera Extrinsics. To be more specific, here we are dealing with a
static transformation matrix that describes what is the relationship between the
camera and the end-effector (ee) reference frames. Such a matrix has the following
structure:

T ee
cam =

C
Ree

cam tee
cam

01×3 1

D
(C.3)

where Ree
cam and tee

cam are respectively the rotation and translation between the two
reference frames:

Rcam =
î
Ocam,xcam,ycam, zcam

ï
(C.4)

and
Ree =

î
Oee,xee,yee, zee

ï
(C.5)

adopting the formalism used in [46]. Once the end-effector coordinates have
been obtained, another transformation matrix T ee

world is used for obtaining world
coordinates.

98

Bibliography

[1] Mohd Javaid, Abid Haleem, Ravi Pratap Singh, Shanay Rab, and Rajiv
Suman. «Significant applications of Cobots in the field of manufacturing».
In: Cognitive Robotics 2 (Jan. 2022), pp. 222–233. issn: 2667-2413. doi:
10.1016/j.cogr.2022.10.001. url: https://www.sciencedirect.com/
science/article/pii/S2667241322000209 (visited on 03/28/2025) (cit. on
pp. 1, 2).

[2] Harish Ravichandar, Athanasios S Polydoros, Sonia Chernova, and Aude
Billard. «Recent advances in robot learning from demonstration». In: Annual
review of control, robotics, and autonomous systems 3.1 (2020), pp. 297–330
(cit. on pp. 2, 10, 12).

[3] Sonia Chernova and Andrea L Thomaz. Robot learning from human teachers.
Springer Nature, 2022 (cit. on pp. 3, 6, 63, 67).

[4] Alireza Barekatain, Hamed Habibi, and Holger Voos. «A practical roadmap
to learning from demonstration for robotic manipulators in manufacturing».
In: Robotics 13.7 (2024), p. 100 (cit. on pp. 3, 7–9, 21, 26, 27).

[5] Andr Correia and A. Alexandre. «A survey of demonstration learning». In:
Robotics and Autonomous Systems 182 (Dec. 2024), p. 104812. issn: 0921-8890.
doi: 10.1016/j.robot.2024.104812. url: https://www.sciencedirect.
com/science/article/pii/S0921889024001969 (visited on 03/28/2025)
(cit. on pp. 5, 7, 9).

[6] Weidong Li, Yuqi Wang, Yuchen Liang, and Duc Truong Pham. «Learning
from demonstration for autonomous generation of robotic trajectory: Status
quo and forward-looking overview». In: Advanced Engineering Informatics 62
(2024), p. 102625 (cit. on pp. 10, 34, 44, 88).

[7] Arturo Daniel Sosa-Ceron, Hugo Gustavo Gonzalez-Hernandez, and Jorge
Antonio Reyes-Avendaño. «Learning from demonstrations in human–robot
collaborative scenarios: A survey». In: Robotics 11.6 (2022), p. 126 (cit. on
p. 10).

99

https://doi.org/10.1016/j.cogr.2022.10.001
https://www.sciencedirect.com/science/article/pii/S2667241322000209
https://www.sciencedirect.com/science/article/pii/S2667241322000209
https://doi.org/10.1016/j.robot.2024.104812
https://www.sciencedirect.com/science/article/pii/S0921889024001969
https://www.sciencedirect.com/science/article/pii/S0921889024001969

BIBLIOGRAPHY

[8] Ruchik Thaker. «Human-Robot Interaction: Designing Robots That Can
Naturally Interact and Collaborate With Humans». In: 6 (Aug. 2020). doi:
10.5281/zenodo.14001622 (cit. on p. 12).

[9] John J Dudley and Per Ola Kristensson. «A review of user interface design for
interactive machine learning». In: ACM Transactions on Interactive Intelligent
Systems (TiiS) 8.2 (2018), pp. 1–37 (cit. on p. 12).

[10] Carlos Celemin et al. «Interactive imitation learning in robotics: A survey».
In: Foundations and Trends® in Robotics 10.1-2 (2022), pp. 1–197 (cit. on
p. 14).

[11] Riad Akrour, Marc Schoenauer, and Michèle Sebag. «Preference-Based Policy
Learning». In: Sept. 2011, pp. 12–27. isbn: 978-3-642-23779-9. doi: 10.1007/
978-3-642-23780-5_11 (cit. on p. 16).

[12] W Bradley Knox and Peter Stone. «Combining manual feedback with subse-
quent MDP reward signals for reinforcement learning.» In: AAMAS. Vol. 10.
2010, pp. 5–12 (cit. on p. 16).

[13] W Bradley Knox and Peter Stone. «TAMER: Training an agent manually
via evaluative reinforcement». In: 2008 7th IEEE international conference on
development and learning. IEEE. 2008, pp. 292–297 (cit. on p. 16).

[14] W Bradley Knox and Peter Stone. «Learning non-myopically from human-
generated reward». In: Proceedings of the 2013 international conference on
Intelligent user interfaces. 2013, pp. 191–202 (cit. on p. 16).

[15] Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. «A reduction of imitation
learning and structured prediction to no-regret online learning». In: Proceed-
ings of the fourteenth international conference on artificial intelligence and
statistics. JMLR Workshop and Conference Proceedings. 2011, pp. 627–635
(cit. on pp. 17, 18).

[16] Brenna D Argall. Learning mobile robot motion control from demonstration
and corrective feedback. Carnegie Mellon University, 2009 (cit. on p. 17).

[17] Michael Kelly, Chelsea Sidrane, Katherine Rose Driggs-Campbell, and Mykel
J. Kochenderfer. «HG-DAgger: Interactive Imitation Learning with Human
Experts». In: CoRR abs/1810.02890 (2018). arXiv: 1810.02890. url: http:
//arxiv.org/abs/1810.02890 (cit. on p. 18).

[18] Carlos Celemin and Javier Ruiz-del-Solar. «Coach: Learning continuous ac-
tions from corrective advice communicated by humans». In: 2015 International
Conference on Advanced Robotics (ICAR). IEEE. 2015, pp. 581–586 (cit. on
p. 19).

100

https://doi.org/10.5281/zenodo.14001622
https://doi.org/10.1007/978-3-642-23780-5_11
https://doi.org/10.1007/978-3-642-23780-5_11
https://arxiv.org/abs/1810.02890
http://arxiv.org/abs/1810.02890
http://arxiv.org/abs/1810.02890

BIBLIOGRAPHY

[19] Zuyuan Zhu and Huosheng Hu. «Robot Learning from Demonstration in
Robotic Assembly: A Survey». In: Robotics 7.2 (2018), p. 17. doi: 10.3390/
robotics7020017. url: https://www.mdpi.com/2218-6581/7/2/17 (cit.
on pp. 22, 24, 26).

[20] Victor Hernandez Moreno, Steffen Jansing, Mikhail Polikarpov, Marc G.
Carmichael, and Jochen Deuse. «Obstacles and Opportunities for Learning
from Demonstration in Practical Industrial Assembly: A Systematic Literature
Review». In: arXiv preprint arXiv:2310.00276 (2023). url: https://arxiv.
org/abs/2310.00276 (cit. on pp. 22, 23, 25).

[21] D.A. Duque, F.A. Prieto, and J.G. Hoyos. «Trajectory generation for robotic
assembly operations using learning by demonstration». In: Robotics and
Computer-Integrated Manufacturing 57 (2019), pp. 292–302. doi: 10.1016/
j.rcim.2018.12.007. url: https://doi.org/10.1016/j.rcim.2018.12.
007 (cit. on pp. 23, 24).

[22] ZongWu Xie, Qi Zhang, ZaiNan Jiang, and Hong Liu. «Robot learning from
demonstration for path planning: A review». In: Science China Technological
Sciences 63.8 (2020), pp. 1325–1334 (cit. on p. 28).

[23] Cristian C Beltran-Hernandez, Damien Petit, Ixchel G Ramirez-Alpizar, and
Kensuke Harada. «Accelerating robot learning of contact-rich manipulations:
A curriculum learning study». In: arXiv preprint arXiv:2204.12844 (2022)
(cit. on p. 28).

[24] Janis Arents, Valters Abolins, Janis Judvaitis, Oskars Vismanis, Aly Oraby,
and Kaspars Ozols. «Human–robot collaboration trends and safety aspects: A
systematic review». In: Journal of Sensor and Actuator Networks 10.3 (2021),
p. 48 (cit. on pp. 28, 29).

[25] ISO/TS 15066:2016 Robots and robotic devices – Collaborative robots. Geneva,
Switzerland: International Organization for Standardization, 2016. url: http
s://www.iso.org/obp/ui/#iso:std:iso:ts:15066:ed-1:v1:en (cit. on
p. 29).

[26] Weidong Li, Yudie Hu, Yong Zhou, and Duc Truong Pham. «Safe human–
robot collaboration for industrial settings: a survey». In: Journal of Intelligent
Manufacturing 35.5 (2024), pp. 2235–2261 (cit. on pp. 30, 31).

[27] Sylvain Calinon. «A tutorial on task-parameterized movement learning and
retrieval». In: Intelligent service robotics 9.1 (2016), pp. 1–29 (cit. on p. 35).

[28] Auke Jan Ijspeert, Jun Nakanishi, Heiko Hoffmann, Peter Pastor, and Stefan
Schaal. «Dynamical movement primitives: learning attractor models for motor
behaviors». In: Neural computation 25.2 (2013), pp. 328–373 (cit. on p. 39).

101

https://doi.org/10.3390/robotics7020017
https://doi.org/10.3390/robotics7020017
https://www.mdpi.com/2218-6581/7/2/17
https://arxiv.org/abs/2310.00276
https://arxiv.org/abs/2310.00276
https://doi.org/10.1016/j.rcim.2018.12.007
https://doi.org/10.1016/j.rcim.2018.12.007
https://doi.org/10.1016/j.rcim.2018.12.007
https://doi.org/10.1016/j.rcim.2018.12.007
https://www.iso.org/obp/ui/#iso:std:iso:ts:15066:ed-1:v1:en
https://www.iso.org/obp/ui/#iso:std:iso:ts:15066:ed-1:v1:en

BIBLIOGRAPHY

[29] UFACTORY xArm Collaborative Robot. Product page. UFACTORY. 2023.
url: https://www.ufactory.cc/xarm-collaborative-robot/ (visited on
11/24/2025) (cit. on p. 42).

[30] The scikit-learn developers. MLPRegressor — scikit-learn 1.7.2 documentation.
Version 1.7.2. scikit-learn. 2025. url: https://scikit-learn.org/stab
le/modules/generated/sklearn.neural_network.MLPRegressor.html
(visited on 11/05/2025) (cit. on p. 47).

[31] Wikipedia contributors. Slerp — Wikipedia, The Free Encyclopedia. https:
//en.wikipedia.org/wiki/Slerp. Accessed: 2025-10-07. 2025 (cit. on
p. 48).

[32] Wikipedia contributors. Quaternions and spatial rotation — Wikipedia, The
Free Encyclopedia. https://en.wikipedia.org/wiki/Quaternions_and_
spatial_rotation. Accessed: 2025-10-07. 2025 (cit. on p. 48).

[33] xArm-Developer. xArm-Python-SDK: Python SDK for UFACTORY robots.
https : / / github . com / xArm - Developer / xArm - Python - SDK. Accessed:
2025-10-07. 2025 (cit. on p. 52).

[34] Oleg Kalachev. arucogen: Online ArUco markers generator. https://github.
com/okalachev/arucogen. GitHub repository. 2025 (cit. on p. 59).

[35] Bojan Nemec and Aleš Ude. «Action sequencing using dynamic movement
primitives». In: Robotica 30.5 (Sept. 2012), pp. 837–846. issn: 0263-5747.
doi: 10.1017/S0263574711001056. url: https://doi.org/10.1017/
S0263574711001056 (cit. on p. 65).

[36] Mingshan Chi, Yufeng Yao, Yaxin Liu, Yiqian Teng, and Ming Zhong. «Learn-
ing motion primitives from demonstration». In: Advances in Mechanical
Engineering 9.12 (2017). Article ID: 1687814017737260, pp. 1–13. doi: 10.
1177/1687814017737260. url: https://journals.sagepub.com/doi/10.
1177/1687814017737260 (cit. on p. 65).

[37] Thibaut Kulak, Joao Silverio, and Sylvain Calinon. «Fourier movement prim-
itives: an approach for learning rhythmic robot skills from demonstrations».
In: Proceedings of Robotics: Science and Systems. Corvalis, Oregon, USA,
July 2020. doi: 10.15607/RSS.2020.XVI.056 (cit. on pp. 66, 82, 84, 89).

[38] Hao-Shu Fang, Chenxi Wang, Minghao Gou, and Cewu Lu. «Graspnet-1billion:
A large-scale benchmark for general object grasping». In: Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition. 2020,
pp. 11444–11453 (cit. on pp. 75, 87, 89).

102

https://www.ufactory.cc/xarm-collaborative-robot/
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPRegressor.html
https://en.wikipedia.org/wiki/Slerp
https://en.wikipedia.org/wiki/Slerp
https://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation
https://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation
https://github.com/xArm-Developer/xArm-Python-SDK
https://github.com/okalachev/arucogen
https://github.com/okalachev/arucogen
https://doi.org/10.1017/S0263574711001056
https://doi.org/10.1017/S0263574711001056
https://doi.org/10.1017/S0263574711001056
https://doi.org/10.1177/1687814017737260
https://doi.org/10.1177/1687814017737260
https://journals.sagepub.com/doi/10.1177/1687814017737260
https://journals.sagepub.com/doi/10.1177/1687814017737260
https://doi.org/10.15607/RSS.2020.XVI.056

BIBLIOGRAPHY

[39] Cheems_JH (mouse826612011). DMP_Simulation: A simulation project on
Dynamic Movement Primitives (DMP). https://github.com/mouse826612
011/DMP_simulation. GitHub repository. Latest commit: 3643e94 (2025-02-
27). 2023. (Visited on 10/29/2025) (cit. on p. 76).

[40] Matteo Saveriano, Fares J Abu-Dakka, Aljaž Kramberger, and Luka Peternel.
«Dynamic movement primitives in robotics: A tutorial survey». In: The
International Journal of Robotics Research 42.13 (2023), pp. 1133–1184 (cit.
on p. 89).

[41] David Jurado-Rodriguez, Rafael Muñoz-Salinas, Sergio Garrido-Jurado, and
Rafael Medina-Carnicer. «Planar fiducial markers: A comparative study». In:
Virtual Reality 27.3 (2023), pp. 1733–1749 (cit. on p. 92).

[42] Sergio Garrido-Jurado, Rafael Muñoz-Salinas, Francisco J. Madrid-Cuevas,
and Manuel J. Marín-Jiménez. «Automatic generation and detection of highly
reliable fiducial markers under occlusion». In: Pattern Recognition 47.6 (2014),
pp. 2280–2292. doi: 10.1016/j.patcog.2014.01.005 (cit. on pp. 93, 94).

[43] Bruno Siciliano, Lorenzo Sciavicco, Luigi Villani, and Giuseppe Oriolo. Robotics:
Modelling, Planning and Control. Springer Publishing Company, Incorporated,
2010. isbn: 1849966346 (cit. on p. 95).

[44] Suhas Kadalagere Sampath, Ning Wang, Hao Wu, and Chenguang Yang. «Re-
view on human-like robot manipulation using dexterous hands». In: Cognitive
Computation and Systems 5.1 (2023), pp. 14–29 (cit. on pp. 95, 96).

[45] King Sun Fu, R. C. Gonzalez, and C. S. G. Lee, eds. Robotics: control, sensing,
vision, and intelligence. USA: McGraw-Hill, Inc., 1987. isbn: 0070226253
(cit. on p. 97).

[46] Basilio Bona. Dynamic Modelling of Mechatronic Systems. Torino: CELID,
2018. isbn: 9788867890118 (cit. on p. 98).

103

https://github.com/mouse826612011/DMP_simulation
https://github.com/mouse826612011/DMP_simulation
https://doi.org/10.1016/j.patcog.2014.01.005

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Human-Robot collaboration
	The Learning from demonstration paradigm
	Overview and Thesis structure

	State of the art
	The LfD pipeline: theoretical foundations
	Demonstration method
	Demonstration data and learning space
	Issues related to demonstration data
	Learning methods: introduction
	Learning outcomes
	Refinement Learning: introduction

	Learning refinement and Interactive learning
	Motivation
	Modalities of interaction
	Human feedback in the evaluative space
	The TAMER framework
	Human feedback in Transition (State-Action) space
	DAgger: a framework employing absolute corrections
	COACH: a framework employing relative corrections
	Human-robot interfaces

	Challenges in LfD
	Generalization
	Simultaneous learning of low and high-level behaviors

	Manipulation tasks in robotics
	An overview of manipulation tasks
	Mating skills
	Joining skills
	Research problems in Robotic assembly
	Pose estimation
	Force estimation
	Assembly sequences
	Robotic assembly and LfD pipeline
	Robotic assembly, subtasks hierarchy, task learning
	Mating skills issues: motion-based vs contact-based demonstrations

	Safety aspects in HRC
	Three different levels for HRC
	Safety standards for collaborative robots and HRC

	Safety strategies for HRC
	Pre-collision strategies
	Post-collision strategies

	An overview of Learning from Demonstration approaches
	M1: Behavioral Cloning (BC)
	Mathematical formulation in LfD
	Goal Conditioned Behavior Cloning

	M2: Gaussian Mixture Model and Gaussian Mixture Regression (GMM-GMR)
	Mathematical formulation
	Training a GMM
	The Expectation-Maximization (EM) algorithm
	The Log-likelihood for GMM
	Visualization and model selection
	Gaussian Mixture Regression (GMR)

	M3: Dynamic Movement Primitives (DMP)
	1D DMP fundamental equations
	Learning DMP parameters from demonstrations

	Implementation of the LfD pipeline
	Human demonstrations collection
	Demonstrations collection: steps to follow
	Debug: Visualizing demonstrated trajectories

	Learning models
	 Behavior Cloning (BC)
	Dynamical Movement Primitives (DMP)
	 Gaussian Mixture Model (GMM)
	Trajectory Execution

	Evaluation metrics
	Task-specific parameters task retrievial
	Pose estimation by using ArUCO tags

	Hyperparameters
	Demonstration phase hyperparameters
	Learning phase hyperparameters
	Execution phase hyperparameters

	Low-level skills
	PICK
	PLACE
	POUR
	SHAKE

	High-level tasks
	Pick-and-place
	Collecting objects in a recipient/basket
	Pour a drink in a container
	Prepare a mixture of drinks

	Knowledge of the robot: motion primitives and tasks
	Two-finger parallel gripper management

	Experimental results
	Low-level skills
	PICK
	PLACE
	POUR
	SHAKE

	High-level tasks
	Pick-and-place, collecting objects
	Pour a drink, prepare a mixture

	Conclusion
	Methodology
	Contributions
	Limitations
	Future works

	Basics of Markov Decision Processes in RL and LfD
	 Fiducial markers in Robotics
	ArUco marker detection process

	Robotic vision system, Intel RealSense D435 camera
	Configuration of the visual system
	The Intel Realsense D435 camera
	Specifications
	Camera Calibration Procedure

	Bibliography

