POLITECNICO DI TORINO

Master degree course in Computer Engineering

Master Degree Thesis

Post-Training Quantization of a
Transformer-based Autonomous
Driving Neural Network

N\ 1859 ,}"

-\ \ e
- = #,‘
Advisors Candidate
Prof. Mario Roberto CASU Giovanni GADDI

Dr. Edward MANCA

ACADEMIC YEAR 2024-2025

Summary

The ongoing development of Autonomous Driving (AD) systems has resulted in an
increased demand for perception models that combine high accuracy with computa-
tional and energy efficiency. Recent advancements include BEVFusion, a state-of-
the-art multi-sensor fusion Neural Network (NN) framework that combines camera,
and LiDAR into a unified representation called Bird’s-Eye View (BEV). This ap-
proach enables robust spatial reasoning and 3D object detection. In this scenario,
BEVFusion reaches competitive performance on large-scale benchmarks such as
NuScenes, a dataset for multi-modal AD NNs, providing training data from cam-
era and LiDAR sensors with 3D object annotations. However, BEVFusion’s com-
putational and memory requirements make real-time deployment on embedded or
resource-constrained devices extremely difficult despite its high accuracy.

An important optimization in NN deployment is quantization. The objective of
this technique is to substitute floating-point with integer arithmetic, minimizing the
accuracy loss of the resulting NN. Therefore, the use of integer operations results
in Quantized NN (QNN) that are lighter and easier to deploy in resource constraint
scenarios.

This thesis investigates the application of Post-Training Quantization (PTQ)
in BEVFusion to lower its deployment requirements, without changing the model
structure nor retraining it. To this end, I developed a comprehensive framework to
apply PTQ, incorporating a per-module calibration strategy that allows for quan-
tization of NN weights and activations of the most computational-intensive layers.
Moreover, with the objective of minimizing the common instabilities of PTQ, I
linearly vary the scale parameters to find the best of each quantized layer of this
NN.

Furthermore, I propose a Mixed-Precision Quantization (MPQ) exploration en-
gine. MPQ is an established technique that tries to identify tradeoffs between the
number of bits and overall accuracy for each layer of the NN independently. To
explore this design-space, I propose a Genetic Algorithm (GA). GAs are a class of
optimization engines well known for their scalability and complexity. The GA-based
MPQ design space exploration varies the number of bits of weights and activations
of each quantized layer of the NN, trying to keep the cosine similarity between the
original and the quantized NN activations of each sub-module as close as possible.

11

Experimental evaluations conducted on NuScenes metrics such as mean Average
Precision (mAP) and NuScenes Detection Score (NDS) show that the suggested
quantization methods preserve the fundamental perception capabilities of the orig-
inal design while achieving a significant decrease in model size and computational
requirements. Additionally, the study validates the benefits of quantization on
state-of-the-art accademic and industry AD NNs, establishing a path to deploy
these big and complex NNs into an AD edge-context.

II1

Ringraziamenti

Giunto al termine di questo percorso di studi, che culmina con la presentazione della
mia tesi, riconosco non solo di aver strutturato e consolidato le mie competenze
nell’Ingegneria Informatica come professionista, ma soprattutto di essere maturato
come persona. Le conoscenze acquisite, le amicizie coltivate e i legami stretti in
questi anni rappresentano il vero valore di questa esperienza. Desidero dedicare
questo spazio finale, con profonda gratitudine, a chi ha creduto in me, offrendomi
supporto e sopportazione.

La mia riconoscenza piu profonda va ai miei genitori: a mio padre Andrea, per
la sua costante capacita di incoraggiarmi e infondermi la giusta motivazione nei
momenti di maggiore fatica, e a mia madre, per essere stata un sostegno morale
prezioso, sempre presente con la sua vicinanza e sensibilita. Questa gratitudine
si estende a mia sorella Anna, punto di riferimento, la cui presenza silenziosa &
sempre stata una fonte di forza e grande sostenitrice. Questa conquista e in gran
parte anche vostra; senza il vostro appoggio incondizionato, non sarei mai arrivato
fin qui.

Un ringraziamento sincero va a tutti gli amici che hanno reso unico questo per-
corso. A Torino, nel primissimo anno di universita, ho conosciuto Mirko e Giorgio,
che con serieta e leggerezza, sono stati i depositari di grasse risate e hanno facilitato
I'interazione della mia personalita con il mondo del Politecnico, rivelandosi com-
pagni di studio, di svago e di sostegno essenziali, insieme a Pietro e Simone, con i
quali negli ultimi anni ho condiviso "anche troppo": le mura, i pasti e gli inevitabili
stress pre-esame.

Un pensiero speciale va a Francesco, il mio amico di piu lunga data e un ri-
ferimento costante. La nostra amicizia, nata e cresciuta nel tempo, si ¢ rivela-
ta una presenza rassicurante e insostituibile durante i momenti pitu impegnativi,
aiutandomi a ritrovare I’equilibrio quando ne avevo piu bisogno.

Infine, ringrazio Nicoletta, un’amica piu recente ma insostituibile: negli ultimi
mesi € stata a me vicina, offrendo un supporto emotivo costante. La ringrazio per
le discussioni stimolanti, le camminate rigeneranti, i preziosi consigli e le nostre
classiche chiacchierate ragionevoli.

Esprimo immensa gratitudine al docente Mario Roberto Casu, che mi ha affian-
cato e indicato la prospettiva di questa tesi. Sebbene il percorso non abbia sempre

v

tamente la mia conoscenza nel mondo dell’informatica e della sua applicazione nel
mondo. Lo ringrazio sinceramente per il tempo dedicatomi, a dispetto dei suoi
innumerevoli impegni professionali.

Un ringraziamento speciale a Edward: correlatore ¢ amico. E stato il promotore
entusiasta di questo progetto e senza la sua visione e il suo supporto costante questo
lavoro non avrebbe avuto questa forma e questo finale. La sua disponibilita e stata
fondamentale, fornendo idee cruciali, riscontri tempestivi e soluzioni pratiche per
ogni problema.

Grazie

Contents

1 Introduction 1
1.1 Context and Background 1
1.1.1 The Rise of Transformer Models in 3D Perception and Au-
tonomous Driving L oo 1
1.1.2 The Paradigm of Edge Computing and the Constraints of
Embedded Systems 4
1.2 Thesis Motivation oo 6

1.2.1 The Necessity of Compressing Complex Transformer Models 6
1.2.2 Develop and Apply a Post-Training Quantization (PTQ) Scheme 7

1.3 Thesis Outline 9

2 The BEVFusion Model 11
2.1 Dataset and Evaluation Metrics 11
2.1.1 The NuScenes Dataset for Autonomous Driving 11

2.1.2 Evaluation Metrics: NDS and mAP 13

2.2 BEVFusion Architecture Overview 15

2.2.1 Bird’s Eye View (BEV) and Sensor Fusion for 3D Perception 15
2.2.2 Key Modules: Input Encoders (Camera/LiDAR), Feature

Fusion, and Detection Head 16
2.2.3 Detailed Structural Breakdown, Referencing
the mmdetection3d Implementation 17
3 Quantization of BEVFusion 21
3.1 Neural Network Quantization 21
3.1.1 Floating-Point Precision vs. Integer Precision 21
3.1.2 Post-Training Quantization (PTQ) and Quantization-Aware
Training (QAT) 24
3.1.3 Linear Quantization: Scale (8) and Zero Point (Z) 26
3.2 The Proposed Three-Stage PT(Q Technique for BEVFusion 28
3.2.1 Stage 1 (Baseline Calibration): Min/Max Statistics for Initial
S8 and Z Determination 29

VI

3.2.2 Stage 2 (Per-Module Optimization): Search for Two « Fac-

tors to Maximize Output Similarity

3.2.3 Stage 3 (MPQ Search): Introduction to the Genetic Algo-
rithm Search Space

3.3 Results of Uniform ("Flat") Quantization
3.3.1 Performance of the int8 Uniform Model
3.3.2 Performance of the int4 Uniform Model
3.3.3 Summary of Other Bit-Widths: int16 and Ternary (int2) . .
3.3.4 Per Class Comparison Across All Uniform Bit-Widths

4 Mixed-Precision Search Algorithm and Results

4.1 Introduction to MPQ Search Algorithms
4.1.1 Sensitivity-Based and Heuristic-Based Search Techniques . .
4.1.2 The Need for a Cost Function Balancing Accuracy Preserva-

tion and Bit-Cost Minimization

4.2 The Proposed Genetic Algorithm (GA) for MPQ Optimization . . .
4.2.1 Rationale for Employing NSGA-IT
4.2.2 Optimization Setup: Search Space, Encoding, and Operators
4.2.3 The Fitness Functions

4.3 Optimal MPQ Results and Network Analysis
4.3.1 Presentation of the Pareto Front: Optimal Trade-offs
4.3.2 The Final Mixed-Precision Model: Detailed Layer-by-Layer

Bit Assignmento

4.3.3 Final Comparison: Full-Precision vs. Uniform Quantization

vs. Optimal MPQ

4.4 FEmbedded System Feasibility Analysis
4.4.1 Projected Memory Reduction

5 Conclusions and Future Work
5.1 Summary of Findings L.
5.2 Contributions,

5.3 Future Worko
5.3.1 Extension to Other Large Transformer Architectures
5.3.2 Exploration of Alternative Optimization Strategies

List of Figures

Bibliography

VII

30

32
33
33
34
34
35

41
41
41

44
45
45
46
48
20
51

o1

93
o4
54

55
95
25
26
o6
o6

57

58

Chapter 1

Introduction

1.1 Context and Background

The foundational Transformer architecture, introduced in the seminal 2017 paper
Attention Is All You Need [1], initiated a paradigm shift in sequence modeling.
Originally developed for Natural Language Processing (NLP), it swiftly displaced
Recurrent Neural Networks (RNNs) by demonstrating a superior ability to capture
long-range dependencies in text, all while being significantly more parallelizable.
Its core mechanism, Self-Attention, allows the model to compute a representation
for each element in a sequence by dynamically weighing its relationship with all
other elements. This ability to assess context globally, rather than through the
constrained local-receptive fields of architectures like CNNs, was the key to its suc-
cess. This revolution soon propagated to computer vision. The key breakthrough
came with models like the Vision Transformer (ViT)[2], which demonstrated that
by partitioning images into a sequence of patches (treated as "tokens'), the same
Transformer architecture could achieve state-of-the-art results in image classifica-
tion, object detection, and segmentation.

1.1.1 The Rise of Transformer Models in 3D Perception
and Autonomous Driving

Transformer-based architectures have demonstrated strong performance and are
increasingly prevalent in 3D object detection leaderboards.

Advantages and Architectural Development

Transformers, founded on the attention mechanism, have shown compelling capa-
bilities in computer vision tasks, particularly in 3D object detection where they
offer distinct advantages over conventional convolutional architectures:

Introduction

1. Flexible Interactions and Receptive Fields: The query—key—value design in
Transformers allows for more flexible interactions between different data rep-
resentations. Furthermore, the self-attention mechanism provides a larger ef-
fective receptive field compared to standard convolutions[3].

2. Long-Range Dependencies: Transformers effectively capture long-range inter-
actions for faraway objects and learn spatial context-aware dependencies, help-
ing reduce false negatives and improve performancel[4].

The development of Transformer architectures specifically tailored for 3D object
detection has followed three main stages:

1. Novel Transformer Modules: This stage incorporated new Transformer mod-
ules with specialized attention mechanisms into conventional 3D detection
pipelines to extract more powerful features. For instance, Pointformer[5] in-
troduced Transformer modules into point backbones, using point features and
coordinates as queries and applying self-attention to corresponding features.

2. DETR-like Architectures: Inspired by DETR|6], this stage introduced query-
based Transformer encoder—decoder designs. These methods utilize a set
of object queries to interact with features and predict 3D bounding boxes.
DETR3D[7], for example, generates 3D reference points for each object query,
projecting these 3D locations onto multi-view image planes to aggregate fea-
tures as keys and values, and applying cross-attention to decode the 3D box.

3. Vision Transformer (ViT)-like Architectures: Drawing inspiration from ViT|[2],
this stage involved splitting inputs such as point clouds or voxels into patches
and applying self-attention locally and across patches[4].

A critical challenge faced by Transformer-based models is the quadratic time and
space complexity inherent to fully connected self-attention, which requires defining
proper query—key—value triplets and specialized attention mechanisms.

Applications Across Different 3D Detection Modalities

Transformers have been broadly adapted across various types of 3D object detec-
tors, showcasing their versatility across different sensor modalities and data repre-
sentations.

In LiDAR-based 3D object detection, Transformers have been successfully in-
corporated into grid-based (voxel/pillar) and point-based approaches:

o Voxel and Grid-Based Methods: Grid-based detection backbones increasingly
adopt Transformer-based architectures. Voxel Transformer (VoTr)[8] was pro-
posed to exploit long-range contextual dependencies among voxels. SECOND|9]-
like pipelines using sparse convolutions have inspired successors integrating

2

1.1 — Context and Background

Transformer models such as CT3D[10] and VoTr[8], achieving notable per-
formance gains. CT3D[10] utilizes a channel-wise Transformer for better
proposal refinement, while SWFormer[11] replaces conventional convolutional
backbones with novel voxel-based Transformer designs.

 Point-Based Methods: Pointformer[5] introduced a point-based Transformer
designed to replace the PointNet[12] backbone for point cloud understanding.

In camera-based detection, Transformers play a crucial role in multi-view aggre-
gation and feature fusion, particularly in addressing depth ambiguities:

o Multi-View Detection: Multi-view 3D object detection has advanced rapidly
with BEV perception and Transformer-based fusion. Query-based multi-view
detection models generate BEV object queries that interact with camera view
features through cross-view attention. DETR3D([7] and BEVFormer|[13] lever-
age Transformers to fuse multi-view image features. BEVFormer[13] intro-
duces dense grid-based BEV queries, applies spatial cross-attention to aggre-
gate image features, and uses temporal self-attention to fuse information from
past frames.

o Monocular Detection: Transformers can also fuse image and depth features in
monocular 3D object detection, such as in MonoDTR][14].

Transformers enable semantic alignment and feature aggregation across hetero-
geneous sensor modalities, such as camera images and LiDAR point clouds|3]:

o Deep and Intermediate Fusion: Many recent multi-modal methods employ
Transformer architectures with specialized cross-attention mechanisms for fea-
ture fusion. TransFusion[15] produces object queries from initial detections
and applies cross-attention to LiDAR and image features. BEVFusion[16]
provides a unified and efficient modality fusion framework by projecting multi-
modal features into a shared BEV space and applying Transformer-based fu-
sion. FUTR3D[17] proposes a unified fusion framework integrating object
queries with multi-sensor features, while UVTR[18] fuses object queries with
image and LiDAR voxels in a Transformer decoder.

o Fusion Strategies: Transformer-based fusion yields strong performance on vari-
ous benchmarks. Rol heads using Transformer decoders enable effective multi-
modal feature fusion during Rol refinement.

The implementation of Transformer models marks a pivotal shift in architecture
design for 3D object detection. By enabling sophisticated spatial, temporal, and
cross-modal feature interactions, Transformers have driven significant performance
gains across LiDAR-based, camera-based, and multi-modal perception systems.

3

Introduction

1.1.2 The Paradigm of Edge Computing and the Constraints
of Embedded Systems

The Paradigm of Edge Computing and the Necessity of Model Quanti-
zation

The paradigm of edge computing is fundamentally driven by the need to relocate
computation from remote cloud servers to the proximity of data sources, namely
sensors, cameras, [0T terminals, and embedded systems positioned at the network
perimeter. This architectural shift has become indispensable in the context of per-
vasive IoT deployments and the advent of advanced communication technologies
such as 5G[19], which collectively generate massive volumes of latency-sensitive
data. Traditional cloud-centric architectures are insufficient for meeting the strin-
gent requirements of modern intelligent applications, thereby motivating a decen-
tralized computing model that enables real-time processing near the data origin.
The rapid migration toward edge computing is catalyzed by several key advantages[19]:

o Low Latency: Proximity between edge devices and data sources reduces end-
to-end delays from potentially hundreds of milliseconds in cloud scenarios to
only a few milliseconds or microseconds, which is critical for latency-sensitive
applications such as autonomous driving and interactive VR/AR systems.

o Enhanced Privacy and Security: Processing data locally mitigates privacy risks
associated with transmitting sensitive information (e.g., face images, speech,
or private documents) to remote cloud servers .

o Network Efficiency and Scalability: By performing computation at the edge,
backbone network load is significantly reduced, alleviating congestion and im-
proving scalability as billions of connected devices generate continuous data
streams.

e Energy Savings: Local offloading reduces the communication overhead for
battery-powered devices, improving overall energy efficiency.

These benefits collectively underscore the necessity of shifting intelligence from
centralized cloud infrastructures to distributed edge environments.

Constraints of Embedded Systems on Deep Learning Models

Although edge computing provides the ideal proximity for intelligent processing, the
deployment of deep learning models on heterogeneous embedded systems introduces
profound challenges. Edge devices vary widely in capability, ranging from GPU-
equipped edge servers to highly constrained microcontrollers and compact single-
board computers with memory capacities measured in kilobytes to a few megabytes.

4

1.1 — Context and Background

The constraints of embedded systems impose fundamental obstacles to executing
large-scale deep learning models [19]:

o Limited Computational Resources: Embedded processors lack the high-throughput
parallelism required for large matrix operations central to deep neural net-
works.

o Restricted Memory and Storage: State-of-the-art models such as Transformers
may contain millions or even billions of parameters, requiring hundreds of
megabytes of storage—far exceeding the capabilities of typical edge devices.

o Energy and Thermal Constraints: Battery-powered and thermally limited de-
vices cannot sustain prolonged high-intensity computation required for deep
model inference[20, 19].

In addition to hardware constraints, several operational challenges arise:

« Impracticality of Local Training: Deep model training requires GPU acceler-
ation and substantial memory bandwidth, rendering full local training impos-
sible for most edge devices.

o Communication Overhead in Distributed Settings: When data is distributed
across multiple edge nodes, synchronization of parameters or gradients intro-
duces heavy communication costs, especially over limited wireless links[20].

o Inference Latency: Even optimized mobile processors may achieve only 1-2
frames per second on moderately sized models, far below the ultra-low latency
requirements of real-time applications such as autonomous navigation [20].

These limitations illustrate a fundamental mismatch between the design assump-
tions of modern deep neural networks and the constrained environment of embedded
edge devices.

The Necessity of Model Quantization for Edge Al

To bridge the gap between the computational demands of deep learning and the
limitations of embedded systems, model optimization techniques become indispens-
able. Among these, quantization stands out as a particularly effective strategy.

Quantization reduces the numerical precision of model parameters and activa-
tions—for example, from 32-bit floating-point to 8-bit integers—thereby substan-
tially reducing memory footprint and computational complexity. This provides
several key benefits:

o Reduced Model Size: An 8-bit quantized model occupies only a fraction of the
storage required by its full-precision counterpart.

5

Introduction

e Increased Computational Throughput: Lower-precision arithmetic enables faster
execution on edge-optimized accelerators.

o Lower Energy Consumption: Reduced computational effort directly translates
into power savings, essential for battery-powered devices.

The central challenge of a quantization-focused research effort is to adapt com-
plex, high-fidelity models—particularly large Transformer architectures—to the
strict resource budgets of embedded systems while maintaining acceptable accu-
racy. Successfully achieving this objective will enable real-time, privacy-preserving,
and energy-efficient deep learning on edge devices, thereby fulfilling the broader
vision of pervasive intelligent Edge Al.

1.2 Thesis Motivation

The rapid advancement of autonomous driving systems is fundamentally reliant on
the capabilities of their underlying perception models. State-of-the-art frameworks,
such as BEVFusion [16], have demonstrated high accuracy in 3D object detection
by fusing data from multiple sensors like cameras and LiDAR into a comprehensive
Bird’s-Eye View (BEV) representation. However, this high fidelity comes at a steep
price: the massive computational and memory demands of these complex neural
networks create a critical bottleneck, making their real-time deployment on power
and resource constrained vehicle hardware a formidable challenge. This thesis is
directly motivated by this pressing conflict between algorithmic performance and
practical viability. It seeks to bridge the gap by exploring robust model optimization
techniques that can drastically reduce the deployment requirements of large-scale
perception models without compromising their accuracy.

1.2.1 The Necessity of Compressing Complex Transformer
Models

Transformer architectures have become a cornerstone of modern perception sys-
tems, particularly in 3D object detection for autonomous driving. As discussed
earlier, these models excel at capturing long-range dependencies, integrating multi-
view and multi-modal features, and providing robust spatial-temporal reasoning
[3]. However, their expressive power comes with significant computational and
memory demands, making naive deployment on embedded automotive platforms
impractical.

Autonomous driving systems require real-time perception with strict latency
constraints, processing LiDAR, camera, and radar data at 10-30 Hz to ensure safe
decision-making. Yet, state-of-the-art Transformer models—especially those per-
forming bird’s-eye-view fusion and multi-sensor integration, such as BEVFusion

6

1.2 — Thesis Motivation

[16]—incur high computation and memory overheads due to dense attention oper-
ations, high-dimensional embeddings, and repeated spatiotemporal feature fusion.
Datasets like nuScenes [21] highlight the complexity of real-world traffic scenes, em-
phasizing the need for perception models to maintain both accuracy and efficiency
under challenging conditions.

Embedded AD platforms, constrained by limited memory, processing through-
put, and energy budgets, cannot sustain the full computational load of these large
Transformer architectures [19, 20]. Even high-end automotive SoCs must share
resources across the full perception-planning-control stack, making efficient model
design critical.

Consequently, model compression is essential for deploying Transformer-based
perception systems in autonomous vehicles. Quantization, in particular, reduces
numerical precision of weights and activations (e.g., from 32-bit floating-point to
8-bit integers), thereby decreasing model size, increasing inference speed, and low-
ering energy consumption [22]. Complementary techniques, such as pruning and
knowledge distillation, can further streamline computation while preserving the
geometric and semantic reasoning crucial for robust detection.

Compression is not merely a hardware optimization; it is a prerequisite for
real-time, reliable, and scalable autonomous driving perception. Properly com-
pressed Transformer models can meet the stringent latency requirements of embed-
ded AD systems, maintain high accuracy in complex urban environments captured
in datasets like nuScenes [21], and support multi-modal fusion frameworks such as
BEVFusion [16], ultimately enabling safer and more efficient autonomous mobility.

1.2.2 Develop and Apply a Post-Training Quantization (PTQ)
Scheme

This thesis is motivated by the imperative to bridge the gap between high model
accuracy and practical deployment efficiency. Specifically, it focuses on Post-
Training Quantization (PTQ), a technique that converts a pre-trained FP32
model into a lower-bit representation (e.g., 8-bit integers (INT8)) without the need
for model retraining or access to large annotated datasets [22]. The core research
objective is to develop and rigorously apply a novel PTQ scheme that minimizes
the inherent performance degradation associated with reducing numerical preci-
sion. Current PT(Q methods often struggle to maintain accuracy, particularly for
complex architectures or those with heterogeneous layer sensitivity to quantization
noise. The proposed work aims to contribute a robust PTQ methodology, poten-
tially incorporating advanced techniques like channel-wise or layer-wise calibration,
adaptive rounding strategies, or non-uniform quantization schemes.

The successful development and application of this PTQ scheme will yield com-
pressed models, leading to several practical benefits. Firstly, the reduced precision
directly translates to smaller model memory footprint and faster inference speed

7

Introduction

due to the lower bandwidth requirements and the efficiency of integer arithmetic
on modern hardware. For instance, moving from FP32 to INTS typically results in
a four-fold reduction in model size and potentially significant speedups on accelera-
tors optimized for INT8 operations. Secondly, this work will be applied to practical,
high-impact tasks (e.g., image classification or object detection) to demonstrate the
real-world efficacy of the scheme. The overarching goal is to enable the deployment
of sophisticated Al capabilities on edge devices.

Design Considerations for PTQ in Transformer-Based 3D Detection

Applying PTQ to Transformers for 3D perception presents unique challenges:

o Attention Sensitivity: Self-attention operations are highly sensitive to quanti-
zation errors, as small deviations in key, query, or value tensors can propagate
and degrade object localization or multi-view feature fusion.

o Multi-Modal Fusion: Models integrating LiDAR and camera data, such as
BEVFusion [16], rely on precise feature alignment across modalities. Quanti-
zation must preserve this cross-modal consistency to avoid performance degra-
dation.

o Activation Range Calibration: Dynamic ranges of intermediate activations,
particularly in spatiotemporal and cross-attention layers, must be accurately
estimated. Improper calibration can introduce clipping or saturation artifacts,
reducing detection accuracy.

PTQ Workflow for 3D Perception Models

A typical PTQ workflow for Transformer-based 3D detection involves several key
steps:

1. Layer-Wise Weight Quantization: Convert model weights to lower-precision
integers using per-channel or per-tensor scaling factors. Per-channel scaling is
often preferred for attention and linear projection layers due to higher sensi-
tivity in some channels.

2. Activation Calibration: Pass a small subset of representative sensor data (e.g.,
LiDAR point clouds or multi-view images from nuScenes [21]) through the
network to record activation statistics and determine optimal quantization
ranges.

3. Integer-Only Inference Conversion: Replace floating-point operations with in-
teger equivalents where supported by the target hardware, enabling efficient
execution on automotive SoCs or edge accelerators.

8

1.3 — Thesis Outline

4. FEvaluation and Fine-Tuning: Assess the quantized model’s accuracy and la-
tency. If significant performance loss is observed, lightweight calibration tech-
niques, such as bias correction or outlier clipping, can be applied without full
retraining.

Possible Benefits and Impact on Autonomous Driving

Implementing PTQ may allow Transformer-based 3D detection models to meet
real-time inference requirements on embedded AD platforms while maintaining high
detection performance:

o Reduced Memory Footprint: Lower-precision weights and activations signifi-
cantly decrease storage requirements, enabling deployment on resource-constrained

vehicle SoCs.

o Fuaster Inference: Integer arithmetic operations are more efficient than floating-
point, reducing latency and enabling higher frame rates critical for safety-
critical perception [19].

o FEnergy FEfficiency: Lower computational overhead directly translates to re-
duced power consumption, improving the operational efficiency of electric or
battery-powered vehicles.

By designing and applying a PTQ scheme, autonomous driving systems can
leverage the superior perception capabilities of Transformer models, such as BEV-
Fusion [16], in a manner that is compatible with real-world embedded constraints.
This would enable high-fidelity 3D detection, multi-modal fusion, and real-time in-
ference on production AD platforms without compromising safety or performance.

1.3 Thesis Outline

In Chapter 2 i present the primary object detection model studied in this work:
BEVFusion, a Transformer-based architecture designed for multi-sensor 3D per-
ception in autonomous driving. This thesis first presents the dataset and evalua-
tion metrics used to assess performance, with particular emphasis on the nuScenes
dataset, which provides a comprehensive multimodal benchmark for real-world driv-
ing scenarios. The architecture is then described in detail, highlighting its sensor
fusion strategies, modular design, and the mechanisms enabling bird’s-eye-view
representation from LiDAR and camera inputs.

In Chapter 3 the study then focuses on compressing this complex Transformer
model to meet the constraints of embedded systems and edge computing environ-
ments. A post-training quantization (PTQ) scheme is developed to reduce model
size and computational requirements while preserving detection accuracy. Uniform

9

Introduction

quantization results are analyzed across different bit-widths to evaluate their impact
on performance and efficiency.

In Chapter 4 building upon the PTQ scheme, a mixed-precision quantization
(MPQ) approach is proposed, employing a genetic algorithm to optimize layer-wise
bit assignments. The resulting models are evaluated not only in terms of detection
accuracy and memory footprint but also with consideration for the efficiency of the
quantization process itself, which must operate under hardware constraints. The
work emphasizes developing a quantization methodology that is memory-efficient
during both optimization and inference, maintaining performance while remain-
ing mindful of the practical feasibility of deployment on resource-constrained edge
devices.

In Chapter 5, the thesis concludes with a summary of the key findings and
contributions, followed by a discussion of potential directions for future work, in-
cluding further optimization strategies, deployment on diverse large transformer
models.

10

Chapter 2

The BEVFusion Model

2.1 Dataset and Evaluation Metrics

Choosing a dataset that includes a variety of scenarios, extensive sensor data, and
high-quality annotations is essential for assessing autonomous vehicle perception al-
gorithms. The nuScenes [23] dataset was selected because it offers a comprehensive
multimodal sensor suite with cameras, lidar, and radar, full 360-degree coverage,
diverse conditions such as rain and nighttime, and 3D annotations. Its scale, vari-
ety, and inclusion of semantic maps make it particularly well suited for training and
evaluating contemporary 3D recognition and tracking algorithms. The dataset and
the detection metrics utilized for assessment are described in the following sections.

2.1.1 The NuScenes Dataset for Autonomous Driving

The nuScenes dataset [23] was created to fill major gaps in earlier benchmark
datasets for autonomous vehicle (AV) perception. Previous datasets often did not
include full sensor suites, multimodal data, or a wide variety of driving conditions
and locations. Reliable detection and tracking systems depend on machine learning
models that work best when they have synchronized data from range sensors and
cameras, which motivated the creation of a dataset combining multiple sensor types.
An example nuScenes sample is shown in Figure 2.1.

Multimodal sensing is important because each sensor type has strengths and
weaknesses.

o Cameras provide appearance information but have limited depth accuracy.
o Lidar gives accurate 3D position information but produces sparse data.

« Radar can detect objects at long range and estimate their speed, but its spatial
resolution is lower.

Using all three together improves performance in difficult conditions and adds re-
dundancy, which is important for safety [23].

11

The BEVFusion Model

Radar Lidar A Map

"Ped with pet, bicycle, car makes a u-turn, lane change, peds crossing crosswalk"

Figure 2.1: Example sample from the nuScenes dataset showing synchronized camera
and lidar views with 3D annotations. Image reproduced from the nuScenes dataset [23].

nuScenes is the first AV dataset that includes a complete autonomous-vehicle
sensor setup with 6 cameras, 5 radars, and 1 lidar, giving full 360-degree coverage.
It also includes map information and a wide range of environments and weather.
The dataset contains 1,000 fully annotated 20-second scenes recorded in Boston and
Singapore, with 3D bounding boxes for 23 classes and 8 attributes, plus semantic
maps. Later releases such as nuScenes-lidarseg add point-level semantic labels,
increasing its usefulness for detection, tracking, and segmentation. nuScenes also
introduced new 3D detection and tracking metrics and provided a devkit, evaluation
code, taxonomy, annotator guidelines, and database schema [23].

Within the AV dataset landscape, nuScenes advanced the field in terms of
scale, sensor types, and annotation detail. Earlier datasets such as CamVid[24],
Cityscapes[25], Mapillary Vistas[26], BDD100K [27], ApolloScape[28]|, and D2-
City[29] mainly focused on 2D labels for RGB images. Multimodal datasets have
been less common because they are expensive to collect and annotate. Important
predecessors include:

o KITTI[30]: Included dense lidar scans, front-facing stereo images, GPS/IMU
data, and 200k 3D boxes across 22 scenes.

12

2.1 — Dataset and Evaluation Metrics

« H3DJ[31]: Contained 160 crowded scenes with 1.1M 3D boxes and full 360-
degree object annotation.

« ApolloScape[28]: Provided static depth maps and 70k 3D boxes.

o KAIST[32]: Included RGB, thermal, RGB stereo, 3D lidar, and GPS/IMU
data, offering nighttime coverage but limited size and mostly 2D annotations.

Feature nuScenes | KITTI[30] | H3D[31] Waymo

(2019) (2012) (2019) Open|[33]
(2019)

Full Sensor Suite (6 Yes No (Li- | No (Lidar/- | No (Lidar/-

Cams, 5 Radar, 1 dar/Stereo) | Cam) Cam)

Lidar)

Radar Data Yes (1.3M) | No No No

Number of Scenes 1k 22 160 1k

Size (hr) 5.5 1.5 0.77 5.5

3D Boxes 1.4M 200k 1.1M 12Mf

Night/Rain Data Yes/Yes No/No No/No Yes/Yes

Map Layers 11 0 0 0

Later datasets, such as Waymo Open[33], increased annotation volume through
higher capture frequency. By releasing real-world data with a full 360-degree mul-
timodal sensor suite, rich annotations, and semantic maps across diverse urban
settings and conditions, nuScenes[23] became an important benchmark for large-
scale AV perception research.

2.1.2 Evaluation Metrics: NDS and mAP

The nuScenes detection task requires detecting 10 object classes using 3D bounding
boxes, as well as predicting attributes (e.g., sitting vs. standing) and velocities. The
evaluation metrics are designed to measure many aspects of detection performance,
going beyond traditional Intersection over Union (IoU) metrics.

1. Mean Average Precision (mAP) Instead of using IoU for matching pre-
dictions to ground truth, nuScenes uses a modified Average Precision (AP)
metric where a match is defined based on the 2D center distance (d) on the

ground plane.

o Matching Criterion: A prediction matches a ground truth object if the 2D
distance between their centers on the ground plane is below a threshold.
This removes dependence on object size and orientation.

o Purpose of Center Distance Matching: This approach helps small objects
like pedestrians and bicycles, which would often get 0 IoU even with a
small position error.

13

The BEVFusion Model

o Calculation: AP is computed as the normalized area under the Preci-
sion-Recall curve, considering only recall and precision values above 10

o Averaging: The final mAP is averaged over distance thresholds D =
0.5,1, 2,4 meters and over all object classes C.

2. True Positive (TP) Metrics
In addition to mAP, nuScenes reports five True Positive (TP) metrics for every
prediction that matches a ground truth box within a 2-meter center distance.
Each metric is measured in its natural unit. If a class does not reach at least
10% recall, all TP errors for that class are set to 1. The five TP metrics are:

(a) Average Translation Error (ATE): The 2D Euclidean distance be-
tween box centers (meters).

(b) Average Scale Error (ASE): Defined as 1 — IoU after aligning orienta-
tion and translation between prediction and ground truth.

(c) Average Orientation Error (AOE): The smallest yaw angle difference
(radians), measured over 360° except for barriers (180°).

(d) Average Velocity Error (AVE): The absolute 2D velocity difference
(m/s), using the L2 norm.

(e) Average Attribute Error (AAE): Defined as 1 — accuracy.

The Mean TP metric (mTP) is computed as the average of the cumulative
mean of each TP metric at recall levels above 10%, averaged over all classes.
Metrics that do not apply (e.g., velocity for stationary objects) are not re-
ported.

3. nuScenes Detection Score (NDS)
The NDS combines all detection aspects into a single score, representing both
detection performance and prediction quality—something traditional loU-based
mAP cannot fully capture.

o Formula: NDS is a weighted combination of mAP and the five Mean TP
metrics:

1
NDS = 5 [5- mAP + > (1 —min(1,mTP))

TPeTP metrics

« Weighting: Half of the score comes from detection performance (mAP),
while the other half depends on prediction quality (location, size, orienta-
tion, velocity, and attributes).

« Normalization: Since some TP metrics can exceed 1 (e.g., mATE, mAOE,
mAVE), they are capped between 0 and 1 in the NDS calculation.

14

2.2 — BEVFusion Architecture Overview

In this thesis, the effectiveness of the quantized model is evaluated using all the
metrics described above. However, special focus is placed on mAP and NDS, as
these two give the clearest and most meaningful comparison of detection perfor-
mance and overall model quality.

The mAP metric measures how well the model can correctly detect and classify
objects. This is important for checking if quantization affects the model’s main
detection ability. A large drop in mAP would show that the model has trouble
identifying objects after quantization, which would make it unsuitable.

The NDS, on the other hand, gives a broader view by combining mAP with the
quality of the predicted bounding boxes, including their position, size, orientation,
speed, and other attributes. All the other metrics described above are included
in NDS, but they are also compared separately to better understand the specific
effects of quantization on each aspect of the model. This is especially important in
autonomous driving, where accurate location and movement predictions are needed
for safe decisions. By looking at both detection accuracy and prediction quality,
NDS gives a more complete evaluation of the model.

Focusing on mAP and NDS allows for a clear understanding of how quantization
affects the model, not just in detection performance, but also in its ability to
produce reliable and useful predictions in a complex environment like nuScenes.

2.2 BEVFusion Architecture Overview

2.2.1 Bird’s Eye View (BEV) and Sensor Fusion for 3D
Perception

Accurate and reliable perception in autonomous driving requires robust multi-
sensor fusion, as autonomous systems rely on complementary signals from cameras,
LiDARs, and radars. Cameras provide rich semantic information, LiDAR captures
precise 3D geometry, and radars provide instant velocity measurements. However,
these sensors operate in fundamentally different modalities—perspective view for
cameras versus 3D point clouds for LiDAR—mnecessitating a unified representation
suitable for multi-task, multi-modal feature fusion.

Traditional sensor fusion approaches generally fall into two categories, both of
which introduce significant information loss:

1. LiDAR-to-Camera Projection (Geometric-Lossy): Projects LIDAR point clouds
onto the camera plane to create sparse RGB-D images, which can distort spa-
tial relationships in 3D.

2. Camera-to-LiDAR Projection (Semantic-Lossy / Point-Level Fusion): Aug-
ments LiDAR points with camera features, but only a small portion of camera
information is used, limiting semantic richness.

15

The BEVFusion Model

BEVFusion addresses these limitations by performing fusion in a shared Bird’s-
Eye View (BEV) space, treating geometric and semantic information equally. Ad-
vantages include:

o Information Preservation: Maintains geometric structure and semantic den-
sity.
o Geometric Fidelity: LiDAR-to-BEV projection avoids distortions.

o Semantic Density: Camera features are cast into BEV using predicted depth
distributions.

o Task Agnosticism: BEV representation supports diverse 3D perception tasks.

The transformation of multi-view camera features from perspective view to BEV
is non-trivial due to depth ambiguity. Following prior work (LSS), BEVFusion
predicts a discrete depth distribution for each pixel and uses it to project camera
features into BEV space.

Once LiDAR and camera features are converted into BEV, they are fused el-
ementwise and refined with a convolution-based BEV encoder to compensate for
local misalignments.

Fused BEV features are passed to task-specific heads:

o 3D Object Detection: Uses a class-specific heatmap to predict object centers,
with regression heads estimating size, rotation, and velocity.

« BEV Map Segmentation: Treated as multiple binary segmentation problems
to handle overlapping map classes.

2.2.2 Key Modules: Input Encoders (Camera/LiDAR), Fea-
ture Fusion, and Detection Head

BEVFusion uses a unified BEV representation to integrate multi-modal features for
multi-task 3D perception. Its core modules include:

o Input Encoders:

— Camera Encoder: Extracts semantic features from multi-view RGB images
using a backbone with FPN.

— LiDAR Encoder: Extracts geometric features from voxelized point clouds
and projects them into BEV by flattening along the z-axis.

e Camera-to-BEV Transformation:

— Predicts discrete depth distributions for each pixel.
16

2.2 — BEVFusion Architecture Overview

Image-view Camera Stream
Encoder .
-------------- -, Multi-view

w A Features 5

El |2 5 S
5 < 2 iD 3
]] 2
:E z -"Ei, ego-car T
a £ 2 | | coordinate a
= B @

LiDAR Stream

Point Clouds

3D Backbone
jvr)
m
=

2§
28

i
2

Figure 2.2: General architecture of BEVFusion, illustrating the camera encoder, LIDAR
encoder, view transformer, BEV fusion module, and task-specific heads. Adapted from
BEVFusion [16].

— Projects features into 3D space according to depth.
— Aggregates into BEV grids using BEV pooling.
 Feature Fusion (BEV Encoder): Fuses LiDAR and camera BEV features ele-

mentwise. The BEV encoder refines fused features and corrects for misalign-
ments.

o Task-Specific Heads:

— 3D Object Detection: Center-based formulation with regression of object
attributes.

— BEV Map Segmentation: Independent binary segmentation for each map
class.

This modular design allows BEVFusion to efficiently support multiple 3D per-
ception tasks using a shared BEV representationa as shown in Figure 2.2.

2.2.3 Detailed Structural Breakdown, Referencing
the mmdetection3d Implementation

The BEVFusion [16] architecture in this configuration is a multimodal 3D detection
model that processes both camera and LiDAR data, fusing them into a unified
Bird’s-Eye-View (BEV) representation. Its design integrates a Swin Transformer

17

The BEVFusion Model

[34] for image feature extraction and SECOND [9] components for LiDAR feature
processing, following implementations in mmdetection3d [35].

Input Encoders The input features from Camera (Image) and LiDAR (Point
Cloud) are processed by separate encoders:

o Camera Encoder
Composed of img_backbone and img_neck

The camera branch relies on a Swin Transformer [34] backbone followed by a
Generalized LSSFPN neck.

— Backbone (SwinTransformer)

The Swin Transformer provides hierarchical multi-scale image features
using shifted window self-attention.

The configuration used here corresponds to the Swin-T variant:

embed_dims = 96, depths =[2,2,6,2], num_ heads = [3,6, 12, 24]

— Neck (GeneralizedLSSFPN)
Produces unified 256-channel features for view transformation.

« LiDAR Encoder
Composed of pts_voxel encoder, pts_middle_encoder, pts_backbone and
pts_neck

The LiDAR branch follows SECOND [9], a voxel-based 3D detection architec-
ture.

— Voxel Encoder (HardSimpleVFE)

Implements Voxel Feature Encoding (VFE) through pointwise processing
and voxel-level aggregation.

— Middle Encoder (BEVFusionSparseEncoder)

A sparse 3D CNN module that collapses vertical structure into a dense
2D BEV representation.

— Backbone (SECOND)
A 2D convolutional backbone operating on the BEV feature map.

— Neck (SECONDFPN)
A multi-scale FPN module producing BEV features.

Camera-to-BEV Transformation

18

2.2 — BEVFusion Architecture Overview

 View Transformer (DepthLSSTransform)

Implements the Lift, Splat, Shoot mechanism to convert 2D image features
into a pseudo-BEV representation based on predicted depth.

BEYV Feature Fusion and Refinement

 Fusion Layer (ConvFuser)

Concatenates and refines camera and LiIDAR BEV features, producing a uni-
fied 256-channel representation.

Task Head (3D Detection)

 Detection Head (TransFusionHead)

A Transformer-based proposal refinement module predicting class scores, cen-
ters, dimensions, heights, rotations, and velocities.

19

20

Chapter 3

Quantization of BEV Fusion

3.1 Neural Network Quantization

3.1.1 Floating-Point Precision vs. Integer Precision

The transition from floating-point (FP) precision to integer precision is a corner-
stone of modern neural network optimization, particularly motivated by the neces-
sity for efficient and accurate inference on resource-constrained mobile and edge
devices. While current state-of-the-art Convolutional Neural Networks (CNNs)
have historically been primarily appraised according to classification or detection
accuracy, leading to architectures optimized without primary regard for computa-
tional efficiency, successful deployment on platforms such as smartphones or drones
mandates small model sizes and low latency [36, 37].

The fundamental difference lies in how numerical values are represented and
manipulated during computation, offering stark trade-offs in efficiency, hardware
requirements, and accuracy preservation.

Floating-Point Precision (FP32)

Floating-point representations, typically 32-bit (FP32), serve as the conventional
precision for training deep neural networks, enabling high representational capacity
and allowing weights and biases to be easily adjusted by small gradient amounts.

o High Accuracy and Training Standard: FP32 is the precision in which neural
networks are typically trained and initially represented. Models stored in FP32
are often large and over-parameterized by design to extract marginal accuracy
improvements.

o Computational Cost: FP32 operations are computationally intensive and energy-
consuming. Moving from 32-bit FP to lower integer precision significantly
reduces memory footprint and latency. For example, a 32-bit floating-point

21

Quantization of BEVFusion

addition or multiplication requires substantially more energy and area com-
pared to its 8-bit integer counterpart. Performing inference in FP32 requires
processing elements and accumulators that support floating-point logic.

Limited Numerical Precision in Training: While FP32 is standard, innovations
have introduced lower floating-point precisions, such as half-precision (FP16),
to accelerate training throughput in Al accelerators, although moving below
half-precision has proven challenging without significant tuning [37].

Integer Precision (Fixed-Point Arithmetic)

Integer precision, often referred to as fixed-point arithmetic in the context of in-
ference, involves representing real-valued tensors (weights and activations) as low
bit-width integer values. This approach yields significant benefits in efficiency,
speed, and hardware compatibility.

Efficiency and Computational Gains

Integer-only arithmetic is inherently more efficient than floating-point inference.
The computational cost and memory transfer requirements decrease dramatically
when moving to integer representations:

1. Memory and Latency Reduction: Moving from 32-bit FP to 8-bit integer

(INT8) decreases the memory overhead for storing tensors by a factor of
4. Critically, the computational cost for matrix multiplication can reduce
quadratically, by a factor of 16. Overall, reductions of 4x to 8x in memory
footprint and latency are often realized in practice when using low-precision
fixed integer values.

. Energy Efficiency: Low-precision logic offers exponentially better energy effi-
ciency. For instance, INT8 addition is approximately 30 times more energy
efficient and 116 times more area efficient than FP32 addition, based on 45nm
technology estimates.

. Hardware Optimization: Integer-only inference leverages fast integer-arithmetic
circuits common in CPUs. This is crucial for edge devices, many of which lack
dedicated floating-point units or offer highly optimized integer arithmetic ca-
pabilities [37].

. Integer-Arithmetic-Only Inference: This methodology mandates that all com-
putations, including multiplication, addition, and accumulation, be performed
using low-precision integer arithmetic without requiring floating-point dequan-
tization during inference. Standard implementation often quantizes weights
and activations as 8-bit integers, while retaining bias vectors as 32-bit integers
to minimize quantization error propagation [37].

22

3.1 — Neural Network Quantization

Implementation Complexity and Granularity

Integer quantization schemes, particularly the commonly used uniform affine quan-
tization, rely on three parameters—scale factor (s), zero-point (z), and bit-width
(b)—to map real values (r) to an integer grid (Q(r)) such that r = S(q — Z).

o Accumulator Precision: While inputs (weights and activations) are quan-
tized to low bit-widths (e.g., INTS8), the accumulator utilized in the Multiply-
Accumulate (MAC) operation is typically maintained at a higher bit-width,
such as 32-bits, to prevent overflow as numerous products accumulate during
computation.

o Granularity: Integer quantization can be applied per-tensor or per-channel.
Per-channel quantization, where each output channel of a weight tensor re-
ceives separate quantization parameters, offers better quantization resolution
and accuracy, especially when weight distributions vary widely across chan-
nels. Per-tensor quantization is simpler to implement because all accumulators
use the same scale factor during multiplication [37].

e Uniform vs. Non-Uniform: Uniform quantization, where resulting quantized
values are uniformly spaced, is the de facto method because it maps efficiently
to general computation hardware. Non-uniform quantization can theoretically
capture signal distributions better but is generally harder to deploy efficiently.

Accuracy Trade-offs in Integer Precision

While INT8 quantization is effective, lowering the bit-width increases quantization
noise, which can lead to significant accuracy degradation.

o INTS8 Performance: Integer-only quantization can preserve end-to-end model
accuracy post-quantization. INT8 schemes often result in near floating-point
accuracy. Furthermore, integer quantized MobileNets have demonstrated achiev-
ing higher accuracy compared to FP MobileNets given the same runtime bud-
get on certain hardware[37].

» Low-Bit Integer Performance (INT4 and Below): Moving below INTS8, partic-
ularly to 4-bit weights and activations (W4A4), presents greater challenges.

— Extreme Quantization: Binarization (1-bit) and Ternarization (2-bit) offer
the maximum memory reduction (up to 32x for binarization) and can
be computed efficiently using specialized bit-wise operations (like XNOR
followed by bit-counting). However, achieving high accuracy with extreme
quantization typically requires intensive tuning and advanced techniques.

In summary, floating-point precision serves as the fidelity baseline required for
robust training, while low-precision integer arithmetic (INT8 being the current

23

Quantization of BEVFusion

optimal trade-off point) provides the necessary computational and energy efficiency
for mass deployment on modern hardware.

3.1.2 Post-Training Quantization (PTQ) and Quantization-
Aware Training (QAT)

Since the quantization process introduces noise that can degrade accuracy, two prin-
cipal strategies(Post-Training Quantization (PTQ) and Quantization-Aware Train-
ing (QAT)) have been developed to mitigate this impact while leveraging the hard-
ware efficiency of integer arithmetic.

Post-Training Quantization (PTQ)

Post-Training Quantization (PTQ) is a lightweight and computationally efficient
methodology used to convert a pre-trained FP32 network into a fixed-point network
without requiring the original training pipeline.

1. Computational Efficiency: The overhead of PT(Q is very low and often negli-
gible, as it avoids end-to-end training.

2. Data Requirements: PT(Q methods can be data-free or may only require a
small, unlabeled calibration set. This approach, known as Zero-Shot Quan-
tization (ZSQ), is particularly important when access to the original training
data is limited due to size, proprietary concerns, or security [37].

3. Accuracy Threshold: PTQ is generally sufficient for achieving high accuracy
with 8-bit quantization of weights and activations (W8AS)..

PTQ relies on effective techniques, often optimized in a pipeline, to set quanti-
zation parameters and correct errors introduced by fixed rounding and clipping.

Quantization-Aware Training (QAT)

Quantization-Aware Training (QAT) involves fine-tuning a network while modeling
the effects of quantization noise within the training loop.

QAT is typically used when aiming for aggressive low-bit precision (e.g., 4-bit
weights and activations, W4A4) where PTQ techniques alone are insufficient to
mitigate the large quantization error.

1. Requirements: QAT necessitates longer training times, access to labeled train-
ing data, and hyperparameter search, incurring higher costs compared to PT(Q.

2. Mechanism (Simulated Quantization): In the forward pass, QAT simulates
fixed-point inference on floating-point hardware by injecting quantization blocks
into the graph (referred to as fake quantization). This induces quantization
effects, allowing the network parameters to adapt [36].

24

3.1 — Neural Network Quantization

3. Backpropagation and STE: The core challenge in QAT is that the rounding

operation used in quantization is non-differentiable. To propagate gradients,
QAT utilizes the Straight-Through Estimator (STE), which approximates the
gradient of the rounding operator as 1. This allows the training to adjust the
weights, even though the forward pass involves discrete integer values [36].

QAT can be implemented and refined following the techniques:

1. Batch Normalization Folding: During QAT, Batch Normalization (BN) must

be folded into the preceding linear layer (convolutional or fully connected) to
accurately simulate efficient inference behavior. Static folding, where the BN
scale and offset are permanently absorbed into the weights and biases at the
start of QAT, is a common and effective approach. For per-channel quantiza-
tion, BN parameters can be merged into the per-channel scale factor, allowing
the BN layer to remain intact during training and simplifying deployment
conversion.

. Learnable Quantization Parameters: In modern QAT pipelines, the quanti-
zation parameters (scale factor s and zero-point z) are made learnable (real
numbers in the training graph) and optimized alongside the weights using
gradient descent. Learning these parameters directly leads to higher perfor-
mance, especially for low-bit quantization, although it may require adjusting
the learning rate relative to the network weights.

. Initialization: Although QAT can eventually close the accuracy gap, initializ-
ing the process using successful PTQ techniques (like MSE range estimation)
is crucial.

Comparative Summary and Use Case

The choice between PT(Q and QAT hinges on the required accuracy and the resource
constraints of the application.

Feature

Quantization-Aware

(QAT)

Post-Training Quantization (PTQ) Training

No re-training required

Training/Fine-tuning
Computational Cost
Data Requirements
Core Mechanism
Optimal Use Case

Accuracy (W4AS)

Very low/negligible

Data-free (ZSQ) or small calibra-
tion set

Optimizes fixed parameters and ap-
plies corrections

Achieving W8AS8 with minimal ac-
curacy loss

Often incurs larger drops

25

Requires extensive fine-tuning/re-
training

High (same costs as network train-
ing)

Requires full labeled training data
set

Simulates quantization noise dur-
ing training using STE

Achieving aggressive low-bit preci-
sion (e.g., W4A4)

Generally maintains near FP32 ac-
curacy

Quantization of BEVFusion

In practical deployment, PTQ pipelines are typically the first approach utilized to
quickly deploy highly efficient W8AS8 models. If the accuracy requirements demand
even lower bit-widths (W4A8 or W4A4), the investment in QAT becomes necessary
to recover performance.

3.1.3 Linear Quantization: Scale (§) and Zero Point (2)

Linear quantization, often referred to as uniform affine quantization or asymmetric
quantization, is the standard numerical representation scheme employed in deep
learning for transforming floating-point models into fixed-point formats.

The defining characteristic of this quantization method is the affine mapping it
establishes between a continuous real-valued domain (r or x) and a finite, discrete
integer domain (q or x;,:), governed primarily by the scale factor (S or s) and the
zero-point (Z or z).

Affine Mapping

The fundamental correspondence between the real value r (or z) and the quantized
integer value ¢ (or ;) is defined by the affine relationship

r==5(q-2)

This equation is implemented in two stages: quantization (mapping r to ¢) and
dequantization (mapping ¢ back to an approximation 7 or Z).

Scale Factor

The scale factor S (or s) is a crucial parameter defining the resolution of the quan-
tization grid. It is typically represented as an arbitrary positive real number and
is often stored as a floating-point quantity in software. It fundamentally specifies
the step-size of the quantizer.

The scale factor relates the clipping range [a,] and the target bit-width b
through

_B-a
21

During inference implementation, the scale factor enables integer-only arith-
metic. By assigning a single scale factor (s, for weights, s, for activations) to an
entire tensor (or channel), these floating-point scales can be factored out of the
multiply-accumulate (MAC) summation, allowing the main matrix multiplication
operation to be performed purely using low-precision integer arithmetic.

A notable optimization occurs when the scale factor is restricted to a power-
of-two, s = 27%. This restriction allows the scaling operation to be implemented

S

26

3.1 — Neural Network Quantization

through efficient bit-shifting, potentially increasing hardware efficiency, although
it may complicate the trade-off between rounding and clipping errors due to the
restricted expressiveness of the scale factor [37, 36].

Zero-Point

The zero-point Z (or z) is an integer value that ensures computational fidelity, par-
ticularly concerning the exact representation of zero. It is defined as the quantized
value ¢ that corresponds exactly to the real value » = 0. It is an integer of the
same type as the quantized values q.

Exact representation of zero is crucial for two reasons:

1. Zero padding: Efficient implementation of neural network operators often re-
quires zero-padding of arrays around boundaries. If zero could not be exactly
represented, this padding would introduce quantization errors.

2. Activation functions: Operations such as ReLLU, which clamp negative values
to zero, require the exact representation of zero to avoid inducing quantization
error at the layer output.

The quantization process maps a real value x to a clamped integer x;,;:

Tint = clameﬂ + z; 0, 20— 1)
S

The dequantization process approximates the original real value 2:
Trr=s(Tm — 2)

Symmetric and Asymmetric Quantization

The selection of the zero-point Z determines whether the quantization is symmet-
ric or asymmetric, leading to different trade-offs in accuracy and computational
overhead.

In asymmetric quantization, the clipping range [«, /3] is not necessarily symmet-
ric around zero, and consequently the zero-point Z is calculated to be a non-zero
integer.

Benefits include increased expressiveness and a tighter clipping range, especially
when the input data distribution is skewed, such as non-negative ReLLU activa-
tions. However, if both weights and activations use asymmetric quantization (i.e.,
Zy # 0 and Z, # 0), the resulting multiply-accumulate operation introduces an
input-dependent residual term that must be calculated during inference [36]. This
may lead to significant overhead in latency and power, making fully asymmetric
quantization often inefficient for deployment.

27

Quantization of BEVFusion

Symmetric quantization simplifies the scheme by restricting the zero-point to
Z = 0. This reduces the computational overhead associated with managing the
zero-point offset during the MAC operation and simplifies implementation.

In practice, it is common to use symmetric quantization for weights (where Z,, =
0) and asymmetric quantization for activations (where Z, # 0). This combination
avoids the costly data-dependent overhead introduced by two non-zero zero-points
while still allowing activations, which are frequently non-symmetric, to use a tight
non-symmetric range.

In this work, we adopt a Post-Training Quantization (PTQ) approach using
asymmetric, per-channel quantization for weights and activations, as it provides a
tighter dynamic range representation while maintaining deployment efficiency.

3.2 The Proposed Three-Stage PT(Q Technique
for BEVFusion

This work introduces a three-stage PTQ technique designed specifically for BEV-
Fusion. The proposed method combines lightweight per-module calibration, fine-
grained quantization parameter refinement, and a mixed-precision search proce-
dure to achieve stable and accurate low-bit deployment. Each stage is engineered
to minimize memory usage while progressively improving the alignment between
floating-point and quantized outputs.

o Stage 1 establishes robust baseline quantization parameters via per-module
min/max calibration, avoiding the memory bottlenecks of model-level statis-
tics.

« Stage 2 refines these parameters using per-module multiplicative adjustment
factors, optimized to maximize output similarity with minimal overhead.

« Stage 3 employs a multi-objective genetic algorithm to explore mixed-precision
configurations that balance accuracy and computational efficiency.

Together, these stages form a cohesive PT(Q pipeline that is scalable and hardware-
friendly. The following subsections describe each stage in detail.

Target Modules and Scope

The calibration procedure targets all computationally intensive layers within the
network, specifically Conv2D, Linear, and MatMul layers. These layers dominate
both the compute and memory footprint of BEVFusion [16], making accurate initial
quantization essential for effective downstream low-bit deployment.

28

3.2 — The Proposed Three-Stage PT(Q Technique for BEVFusion

3.2.1 Stage 1 (Baseline Calibration): Min/Max Statistics
for Initial § and Z Determination

The calibration strategy used in this stage takes direct inspiration from the PTQ4ViT
framework [38], which demonstrated that careful per-channel min/max estimation
is crucial for stable low-bit post-training quantization.

In this work the procedure is performed per-module (specifically, at the level of
the model’s child modules, referred to here as the main modules)and can be applied
on the whole model. This design choice significantly reduces memory requirements:
rather than storing statistics for entire network-wide tensors, only one module at a
time is processed, making the method scalable to BEVFusion’s large feature maps,
at the cost of increasing the calibration time.

Stage 1 of BEVFusion quantization focuses on establishing baseline quantization
parameters, specifically the scale (8) and zero-point (Z), for both activations and
weights. This initialization is critical to ensure that subsequent integer quantization
preserves the dynamic range and numerical fidelity of the network’s features, while
respecting hardware constraints.

Min/Max Collection Methodology

Due to hardware limitations, storing full activation tensors across the network is
infeasible. Instead, only the channel-wise minimum and maximum values are re-
tained and updated during each forward pass. For a given layer, if z. represents
the set of activation values in channel ¢ for a batch, the running min and max are
updated as:

min, < min(min,, min(z.)), max, < max(max., max(x.))

This approach ensures that the dynamic range of each channel is adequately cap-
tured without exceeding memory constraints, while enabling efficient computation
of scale and zero-point.

Scale and Zero-Point Computation

Once the channel-wise min/max statistics are collected, the scale § and zero-point
Z are computed based on the target bit-width b using uniform affine quantization:

S, = —mazz : IIHDC’ Z. = round <—mslilc>

This calculation supports 16-bit and 8-bit quantization for activations, while
weight quantization can go down to 2 bits, allowing extreme compression for memory-
or energy-constrained deployments. The quantization parameters computed in this
stage serve as the initial values for further fine-tuning and quantization-aware train-
ing in subsequent stages.

29

Quantization of BEVFusion

»»»»»»»»»

(d) al6 (e) W;l (f) w16

Figure 3.1: Distributions of optimized « values for all activation and weight bit-widths.
Each histogram reflects the frequency of o candidates selected as minimizing MSE during
Stage 2 optimization.

Efficiency Considerations

Storing only the per-channel min/max values minimizes memory overhead during
calibration. Moreover, the incremental update at each forward pass avoids the
need for retaining entire feature maps, which is particularly advantageous for high-
resolution BEVFusion inputs. This strategy ensures that calibration is feasible
even on GPUs or accelerators with limited memory while still providing a faithful
approximation of the activation distribution for subsequent integer quantization.
This baseline calibration stage sets the foundation for accurate, low-bit quantiza-
tion of BEVFusion while balancing memory efficiency and computational feasibility.

3.2.2 Stage 2 (Per-Module Optimization): Search for Two
a Factors to Maximize Output Similarity

This optimization stage also draws inspiration from PTQ4ViT [38], which intro-
duced the concept of refining quantization parameters through multiplicative ad-
justment factors. All computations, including forward passes and a-selection, are
localized to individual layers and grouped in main modules, further reducing mem-
ory overhead and enabling the method to scale to BEVFusion’s computationally
heavy architecture.

Stage 2 of BEVFusion quantization builds upon the baseline calibration estab-
lished in Stage 1. After initial scale (8) and zero-point (Z) values are determined,
this stage focuses on per-layer optimization of the quantization parameters by in-
troducing multiplicative adjustment factors «,, and «, for weights and activations,

30

3.2 — The Proposed Three-Stage PT(Q Technique for BEVFusion

respectively. The objective is to minimize the discrepancy between the original
floating-point outputs and their quantized counterparts, thereby preserving feature
fidelity during low-bit deployment.

Scope

For each layer, both weights and activations are refined independently through
o, and «g, allowing the quantization function to adapt to layer-specific dynamic
ranges that were only coarsely captured in Stage 1. Importantly, each (o, ay) pair
is associated with a specific weight /activation bit-width configuration (e.g., W2AS,
W4AS), so the optimization is performed separately for each quantization scenario.

Optimization Procedure and MSE Objective

For each batch of representative input samples, the floating-point output Y3, and
the quantized output Y, (after applying a8 and Z) are compared using a mean
squared error (MSE) metric:

1 Y 2
MSE = > (Vi = Yai)
i=1

The search for optimal «,, and «, is performed via a discrete grid search. Each
candidate value in the search grid is applied multiplicatively to the corresponding
weight or activation scale 8, and the resulting MSE is recorded. To manage memory
constraints, only the occurrence counts of each discrete o value that produces min-
imal MSE in a batch are retained. The optimization is repeated independently for
each quantization bit-width pair (e.g., W2A8, W4A8), ensuring that the selected
a factors are tailored to the corresponding low-bit configuration.

Weighted Average Application

After iterating over all batches, the final «, and «, applied to each layer are
computed as weighted averages of the candidates, using the frequency of occurrence

as weights:
> i(occurrence; - ;)

Ofinal =
>_; occurrence;

This ensures that the most consistently effective o values across batches have
greater influence, while still respecting memory limitations by avoiding full-batch
retention of intermediate outputs.

Efficiency Considerations

By leveraging a discrete search grid and recording only occurrence counts, this
procedure avoids the need to store full activation tensors for each candidate a;, which

31

Quantization of BEVFusion

is critical for high-resolution BEVFusion inputs. The method strikes a balance
between fine-grained per-module quantization optimization and practical memory
usage.

Analysis of a Distributions Across Bit-Widths

To better understand the behavior of the multiplicative factors «,, and «, opti-
mized in Stage 2, six histograms are provided (Figures 3.1). Each « rescales the
quantization scale, so the distribution reveals how much correction was required
beyond the Stage 1 min/max initialization.

Across all bit-widths, the most frequent value is @ = 0.8, indicating that the
Stage 1 dynamic range tends to be slightly overestimated and benefits from uniform
compression. Below is the interpretation for each bit-width.

Activation 8-bit (a8). A dominant peak at 0.8 shows that 8-bit activations only
require moderate scale reduction. Since 8-bit quantization already preserves fine
granularity, small corrections suffice.

Activation 16-bit (al6). Despite near-lossless 16-bit quantization, this his-
togram again peaks sharply at 0.8, suggesting that the Stage 1 range overestimation
is consistent across bit-widths.

Weight 8-bit (w8). A main peak at 0.8 and a secondary peak at 1.2 reveal
module heterogeneity. Most modules benefit from shrinking the scale, but some
require expansion due to an underestimated range in Stage 1.

Weight 4-bit (w4). The distribution peaks at 0.8 but also forms a smooth,
bell-shaped cluster centered near 0.98, reflecting limited precision at 4 bits: many
modules need only minimal tuning, while others favor scale reduction.

Weight 16-bit (w16). A strong peak at 0.8 with smaller peaks at 1.02 and 1.2
indicates fine-grained module-specific adjustments enabled by 16-bit precision.

Weight 2-bit (w2). The noisiest distribution due to extreme quantization con-
straints. Although irregular, the highest bin still occurs at 0.8, showing that range
compression is beneficial even in ultra-low precision.

3.2.3 Stage 3 (MPQ Search): Introduction to the Genetic
Algorithm Search Space

Stage 3 of BEVFusion quantization uses a multi-objective genetic algorithm (NSGA-
IT) to explore the combinatorial search space of Mixed-Precision Quantization

32

3.3 — Results of Uniform ("Flat") Quantization

(MPQ) assignments across all quantized modules. This stage can be indipendent
from «,, and «, factors optimized in Stage 2 and focuses on identifying promis-
ing bit-width configurations (e.g., W2A8, W4AS8) that balance model fidelity and
resource efficiency.

Each module can select from a set of candidate bit-widths for weights and acti-
vations, forming a large search space. NSGA-II is chosen because it is significantly
faster than traditional MP(Q optimization techniques, though it does not guaran-
tee the globally optimal solution. Instead, it efficiently finds configurations that
tend toward optimality by evolving populations of candidate solutions using selec-
tion, crossover, and mutation guided by multi-objective criteria such as accuracy
preservation and memory or computational cost.

The output of this stage is a set of candidate MPQ assignments per module, each
may be associated with the previously optimized a factors. Detailed GA metrics
and MPQ results are reported in the following chapter.

3.3 Results of Uniform ("Flat") Quantization

This section reports the performance of BEVFusion under uniform quantization
settings, where all layers of the network use the same bit-width for weights and
activations. The following notation is used:

o NQ: Non-quantized floating-point model.

e WbAaQ: Uniform quantization with b-bit weights and a-bit activations. Ac-
tivations are always 8-bit for 2/4/8-bit weights, and 16-bit for 16-bit weights.

e WbAaQ with a (XAQ): Same configuration with per-module scaling factors
 and .

The evaluation uses the standard BEVFusion metrics (NDS, mAP, mATE, mASE,
mAOE, mAVE, mAAE) and two model-size indicators (total bits and relative com-
pression ratio).

The goal of this section is to highlight how accuracy changes across different

uniform quantization depths, with particular emphasis on the practically relevant
8-bit and 4-bit models.

3.3.1 Performance of the int& Uniform Model

Table 3.1 reports the results for the 8-bit model (W8A8). This configuration delivers
accuracy nearly identical to the non-quantized baseline, while reducing the model
size by a factor of 4x. Because the accuracy drop is negligible, 8-bit quantization
can be considered a “free” compression step for BEVFusion.

Overall, the int8 configuration demonstrates that BEVFusion can be quantized
to 8 bits with negligible impact on performance.

33

Quantization of BEVFusion

Table 3.1: Performance metrics of the uniform int8 model.

NDS mAP mATE

mASE

mAOE mAVE

mAAE total

relative rapport

NQ 0.5605 0.6130 0.2969

0.7103

1.5530 0.2671

0.1861

1.17e+09 1.00

1

8Q 0.5612 0.6140 0.2966
8AQ 0.5554 0.6047 0.3000

0.7100
0.7107

1.5547 0.2648
1.5552 0.2721

0.1865 2.92e408 0.25
0.1864 2.92e+08 0.25

4
4

3.3.2 Performance of the int4 Uniform Model

Table 3.2: Performance metrics of the uniform int4 model.

NDS mAP mATE

mASE

mAOE mAVE

mAAE total

relative rapport

NQ 0.5605 0.6130 0.2969

0.7103

1.5530 0.2671

0.1861

1.17e+09 1.00

1

4Q 0.5545 0.6038 0.3002
4AQ 0.5547 0.6043 0.3040

0.7087
0.7095

1.5577 0.2841
1.5610 0.2790

0.1814 1.46e+4-08 0.13

0.1824

1.46e+-08 0.13

8
8

Table 3.2 shows the results for the 4-bit model (W4A8). This configuration
compresses the model by 8x compared to floating-point while suffering only a
mild reduction in NDS and mAP (approximately 1.7%). This makes 4-bit uniform
quantization an attractive operating point for memory-constrained deployments.

The results confirm that 4-bit quantization provides a strong compression-accuracy
trade-off while maintaining acceptable performance.

3.3.3 Summary of Other Bit-Widths:

(int2)

ntl6 and

Ternary

Table 3.3: Global comparison of uniform quantization configurations.

NDS mAP mATE mASE mAOE mAVE mAAE total

relative rapport

NQ 0.5605 0.6130 0.2970 0.710

1.553 0.267

0.186

1.17e+09 1.00

1

2Q 0.0349 0.0249 0.923
2AQ 0.0903 0.0340 0.707
4Q 0.5545 0.6038 0.300
4AQ 0.5547 0.6043 0.304
8Q 0.5612 0.6140 0.297
8AQ 0.5554 0.6047 0.300
16Q 0.5602 0.6124 0.297
16AQ 0.5606 0.6129 0.296

0.933
0.863
0.709
0.710
0.710
0.711
0.710
0.710

1.056 0.976
1.170 0.948
1.558 0.284
1.561 0.279
1.555 0.265
1.555 0.272
1.554 0.267
1.552 0.267

0.944
0.750
0.181
0.182
0.187
0.186
0.186
0.186

7.31e+07 0.06
7.31e4+07 0.06
1.46e+-08 0.13
1.46e+08 0.13
2.92e+08 0.25
2.92e+08 0.25
5.84e+-08 0.50
5.84e+08 0.50

16
16
8

N N = =~ 0o

The 16-bit configuration (W16A16) shows accuracy nearly identical to the floating-
point baseline while halving the model size. It serves mainly as a sanity check for

34

3.3 — Results of Uniform ("Flat") Quantization

the quantization pipeline.

The ternary 2-bit configuration (W2A8) yields a 16x reduction in model size
but introduces severe accuracy degradation, even with a correction as shown in Ta-
ble 3.3. This confirms that uniform 2-bit quantization is unsuitable for BEVFusion
and motivates mixed-precision strategies evaluated later.

3.3.4 Per Class Comparison Across All Uniform Bit-Widths

Table 3.4: Per Class metrics for non-quantized model

Object Class Class AP ATE ASE AOE AVE
car 0.8520 0.1780 0.7500 1.5870 0.2710 0.1960
truck 0.5750 0.3450 0.7940 1.6080 0.2480 0.2270
bus 0.7040 0.3420 0.8610 1.5400 0.4510 0.2630
trailer 0.4000 0.5260 0.8630 1.6110 0.2190 0.1470
construction vehicle 0.2370 0.7560 0.6880 1.5870 0.1180 0.3140
pedestrian 0.8410 0.1360 0.3290 1.5770 0.2310 0.0870
motorcycle 0.6610 0.1980 0.7900 1.5260 0.3730 0.2450
bicycle 0.5150 0.1630 0.8080 1.6340 0.2260 0.0100
traffic_cone 0.6720 0.1330 0.3310 - - -
barrier 0.6730 0.1930 0.8880 1.3070 - -

Table 3.5: Per Class metrics for ternary(int2) uniform model

Object Class Class AP ATE ASE AOE AVE
car 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000
truck 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000
bus 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000
trailer 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000
construction vehicle 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000
pedestrian 0.2490 0.2270 0.3330 1.5030 0.8080 0.5510
motorcycle 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000
bicycle 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000
traffic cone 0.0000 1.0000 1.0000 - - -
barrier 0.0000 1.0000 1.0000 1.0000 - -

A closer inspection of the per-class metrics reveals how quantization affects dif-
ferent object categories (Tables 3.4-3.12). The non-quantized model (Table 3.4)
already shows a large performance spread between categories, with high AP values

35

Quantization of BEVFusion

Table 3.6: Per Class metrics for ternary(int2) with alpha scaling uniform model

Object Class Class AP ATE ASE AOE AVE
car 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000
truck 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000
bus 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000
trailer 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000
construction vehicle 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000
pedestrian 0.2480 0.2350 0.4700 1.4600 0.7660 0.4160
motorcycle 0.0000 0.8020 0.8750 1.2810 1.0250 0.4470
bicycle 0.0000 0.4510 0.8010 1.5760 0.7940 0.1330
traffic cone 0.0770 0.2080 0.5770 - - -
barrier 0.0150 0.3700 0.9090 1.2110 - -

Table 3.7: Per Class metrics for nt4 uniform model

Object Class Class AP ATE ASE AOE AVE
car 0.8470 0.1810 0.7490 1.6040 0.3160 0.1930
truck 0.5650 0.3400 0.7930 1.6060 0.2570 0.2240
bus 0.7110 0.3330 0.8600 1.5390 0.4930 0.2550
trailer 0.3600 0.5550 0.8560 1.6370 0.2180 0.1450
construction vehicle 0.2420 0.7480 0.6830 1.5840 0.1090 0.3080
pedestrian 0.8300 0.1400 0.3260 1.5910 0.2460 0.0800
motorcycle 0.6490 0.2040 0.7900 1.5430 0.3810 0.2380
bicycle 0.4970 0.1700 0.8050 1.6290 0.2520 0.0090
traffic_cone 0.6610 0.1360 0.3360 - - -
barrier 0.6770 0.1960 0.8900 1.2870 - -

for car (0.852), pedestrian (0.841), and motorcycle (0.661), while challenging classes
such as construction__vehicle (0.237) and trailer (0.400) lag behind.

Introducing ternary quantization (int2) leads to a drastic degradation (Tables 3.5
and 3.6). Most vehicle-related classes collapse to AP = 0, and their geometric met-
rics saturate at the worst possible values (ATE, ASE, AOE, AVE = 1.0), confirming
that the network fails entirely to detect or localize them. Only the pedestrian class
retains some functionality, with AP = 0.249 without scaling and a nearly iden-
tical 0.248 with scaling; nonetheless, its orientation and velocity metrics severely
degrade. Alpha scaling provides partial recovery for a few categories—e.g., motor-
cycle, bicycle, and traffic _cone— but the model remains non-viable at 2 bits.

At 4 bits (Tables 3.7 and 3.8), performance returns much closer to the baseline.
All classes regain their characteristic AP ranking structure, and the deviations

36

3.3 — Results of Uniform ("Flat") Quantization

Table 3.8: Per Class metrics for int4 with alpha scaling uniform model

Object Class Class AP ATE ASE AOE AVE
car 0.8480 0.1820 0.7490 1.6030 0.3110 0.1920
truck 0.5630 0.3460 0.7930 1.6100 0.2520 0.2250
bus 0.7130 0.3320 0.8600 1.5380 0.4700 0.2620
trailer 0.3620 0.5510 0.8570 1.6400 0.2110 0.1510
construction vehicle 0.2430 0.7820 0.6910 1.5910 0.1140 0.3060
pedestrian 0.8310 0.1400 0.3310 1.5920 0.2460 0.0800
motorcycle 0.6520 0.2020 0.7880 1.5340 0.3840 0.2360
bicycle 0.5030 0.1720 0.8040 1.6450 0.2430 0.0080
traffic cone 0.6600 0.1350 0.3330 - - -
barrier 0.6670 0.1960 0.8890 1.2960 - -

Table 3.9: Per Class metrics for nt8 uniform model

Object Class Class AP ATE ASE AOE AVE
car 0.8520 0.1780 0.7500 1.5880 0.2710 0.1970
truck 0.5770 0.3460 0.7940 1.6090 0.2470 0.2280
bus 0.7100 0.3440 0.8610 1.5410 0.4440 0.2670
trailer 0.4000 0.5270 0.8630 1.6080 0.2170 0.1480
construction vehicle 0.2350 0.7530 0.6860 1.5890 0.1160 0.3120
pedestrian 0.8420 0.1350 0.3290 1.5790 0.2310 0.0870
motorcycle 0.6650 0.1980 0.7900 1.5260 0.3730 0.2450
bicycle 0.5130 0.1640 0.8070 1.6460 0.2190 0.0090
traffic_cone 0.6740 0.1290 0.3310 - - -
barrier 0.6730 0.1920 0.8880 1.3080 - -

from the non-quantized model become small (typically within 1-2% AP for most
classes). Harder categories such as trailer and construction_vehicle remain slightly
more affected, but geometric errors stay nearly unchanged. Alpha scaling has only
marginal effects at this bit width.

The 8-bit quantization results (Tables 3.9 and 3.10) are essentially indistinguish-
able from the baseline for all classes. AP, ATE, ASE, and AOE values differ only
in the third decimal place, confirming that the model behaves as if unquantized.
Even the most sensitive categories, such as bicycle and construction__vehicle, pre-
serve nearly the same performance.

Finally, the 16-bit quantized models (Tables 3.11 and 3.12) match the non-
quantized results exactly, as expected, since the quantization error becomes negli-
gible at this precision. No class shows any statistically meaningful deviation.

37

Quantization of BEVFusion

Table 3.10: Per Class metrics for int8 with alpha scaling uniform model

Object Class Class AP ATE ASE AOE AVE
car 0.8490 0.1850 0.7500 1.5860 0.2790 0.1990
truck 0.5770 0.3470 0.7950 1.6090 0.2520 0.2280
bus 0.7090 0.3390 0.8610 1.5390 0.4540 0.2610
trailer 0.3980 0.5270 0.8620 1.6140 0.2150 0.1490
construction vehicle 0.2400 0.7470 0.6920 1.6070 0.1110 0.3240
pedestrian 0.8290 0.1430 0.3240 1.5800 0.2310 0.0870
motorcycle 0.6400 0.2020 0.7890 1.5240 0.4020 0.2350
bicycle 0.4850 0.1740 0.8080 1.6290 0.2340 0.0080
traffic_cone 0.6540 0.1400 0.3360 - - -
barrier 0.6670 0.1960 0.8890 1.3090 - -

Table 3.11: Per Class metrics for int16 uniform model

Object Class Class AP ATE ASE AOE AVE
car 0.8520 0.1780 0.7500 1.5870 0.2700 0.1960
truck 0.5760 0.3460 0.7940 1.6070 0.2500 0.2280
bus 0.7050 0.3460 0.8610 1.5410 0.4540 0.2660
trailer 0.4010 0.5240 0.8630 1.6060 0.2160 0.1470
construction vehicle 0.2370 0.7530 0.6860 1.5910 0.1170 0.3130
pedestrian 0.8400 0.1350 0.3280 1.5790 0.2310 0.0870
motorcycle 0.6620 0.1990 0.7910 1.5260 0.3740 0.2410
bicycle 0.5090 0.1630 0.8080 1.6400 0.2210 0.0090
traffic_cone 0.6710 0.1330 0.3310 - - -
barrier 0.6710 0.1930 0.8880 1.3070 - -

Overall, the per-class analysis demonstrates three key points:
1. ternary uniform quantization is too coarse to preserve object-level information,

2. 4-bit weights and 8-/16-bit activations retain nearly all of the baseline perfor-
mance regardless of scaling

3. 8-bit and 16-bit uniform quantization are effectively lossless for this model
across all categories.

38

3.3 — Results of Uniform ("Flat") Quantization

Table 3.12: Per Class metrics for int16 with alpha scaling uniform model

Object Class Class AP ATE ASE AOE AVE
car 0.8520 0.1780 0.7500 1.5870 0.2710 0.1970
truck 0.5760 0.3450 0.7940 1.6080 0.2480 0.2270
bus 0.7080 0.3450 0.8610 1.5410 0.4530 0.2640
trailer 0.4010 0.5240 0.8630 1.6080 0.2160 0.1470
construction vehicle 0.2380 0.7470 0.6870 1.5780 0.1170 0.3130
pedestrian 0.8400 0.1350 0.3290 1.5790 0.2310 0.0870
motorcycle 0.6610 0.1980 0.7910 1.5240 0.3800 0.2410
bicycle 0.5090 0.1640 0.8080 1.6370 0.2200 0.0100
traffic_cone 0.6720 0.1310 0.3320 - - -
barrier 0.6720 0.1930 0.8880 1.3060 - -

39

40

Chapter 4

Mixed-Precision Search
Algorithm and Results

4.1 Introduction to MPQ Search Algorithms

4.1.1 Sensitivity-Based and Heuristic-Based Search Tech-
niques

The development and application of Multi-objective Evolutionary Algorithms (MOEASs)
to many-objective problems (MaOPs)—defined as optimization problems involving
four or more conflicting objectives—has led to the proliferation of specialized search
techniques often categorized as preference-based (implicitly handling sensitivity

to objective differences) or methods transforming the original problem (which en-
compass several heuristic search methodologies).

Sensitivity-Based Techniques

As the number of objectives increases in MaOPs, standard Pareto dominance
loses effectiveness because most solutions become non-dominated. Sensitivity-based
techniques restore selection pressure by refining preference relations to account for
the magnitude or structure of objective differences [39].

Crisp Preference Relations These methods use additional metrics to compare
solutions:

1. (1 — k)-dominance: Counts objectives where x is better, equal, or worse
than x’; introducing k-optimality. For & = 0, it reduces to standard Pareto
dominance [39].

41

Mixed-Precision Search Algorithm and Results

2. Favour relation and SCO: x is favoured over x’ if it is better in more
objectives. SCO establishes a partial order despite non-transitivity.

3. e-preferred: Compares solutions by counting objectives exceeding a threshold
€; ties are broken by the favour relation.

4. Preference ordering (PO, POy ,): Measures efficiency across all k-objective
subspaces, allowing discrimination among mutually non-dominated solutions.

5. —e-DOM ranking: Uses mepsd, the minimum € to make x’ weakly dominate
x. The rank is the minimum mepsd over all comparisons.

6. Expansion dominance: Adjusts dominance areas via a parameter S, pro-
viding finer solution ranking.

Fuzzy Preference Relations These extend crisp approaches using membership
functions:

1. (1 — kp)-dominance: Fuzzy version of (1 — k)-dominance with trapezoidal
membership functions p to quantify negligible differences.

2. Fuzzy-dominance-driven GA (FDD-GA): Calculates degrees of domi-
nance (i, and fi,); fuzzy rank of x is the maximum degree of being dominated.

Heuristic-Based Search Techniques

Heuristic-based methods address MaOP challenges such as computational cost and
visualization complexity by transforming the problem into a related one that is
casier to solve using existing MOEA frameworks [39].

Scalarization-Based Methods convert a MaOP into single- or fewer-objective
problems via aggregation or decomposition.

Objective Aggregation:

1. Desirability index: Maps objectives/constraints to desirability functions (0-1)
and aggregates them per category, reducing the number of objectives.

2. Correlation-based aggregation: Groups objectives to maximize intra-group
correlation, combining each group into a single fitness value (m’ < m).

Decomposition Approaches:

1. MOEA/D: Assigns scalarization functions and weight vectors to individuals,
performing selection and crossover within neighborhoods; adaptive strategies
may switch scalarization methods based on Pareto front convexity.

42

4.1 — Introduction to MPQ Search Algorithms

2. MSOPS / MSOPS-II: Evaluates solutions against target vectors via weighted
min-max methods. MSOPS-II dynamically generates targets and reduces com-
plexity.

Dimensional Reduction remove redundant or weakly conflicting objectives:

1. PCA-based reduction: Identifies principal components to retain objectives
with largest contributions.

2. Greedy reduction: Iteratively selects an objective subset minimizing dominance-
structure error 9.

3. Unsupervised feature selection: Uses correlation among non-dominated solu-
tions to discard least-conflicting objectives.

Indicator-Based MOEAs transform MaOPs into single-objective problems by
optimizing quality indicators:

1. IBEA: Compares solutions using dominance-preserving binary indicators (e.g.,
Ie+7 [HD)

2. SMS-EMOA: Maximizes hypervolume using non-dominated sorting; high di-
mensions require approximation heuristics.

Space Partitioning,e R-EMO: Alternates between full-objective iterations and
non-overlapping reduced subspaces, solving a series of related subproblems.

Summary of Sensitivity- and Heuristic-Based Methods

Sensitivity-based techniques and heuristic-based transformations provide comple-
mentary strategies for addressing the scalability issues of MOEASs in many-objective
optimization. Sensitivity-enhanced preference relations restore selection pressure
when Pareto dominance becomes ineffective, while heuristic approaches simplify
the problem through scalarization, objective reduction, indicator optimization, or
space partitioning. Each method introduces its own search bias, influencing conver-
gence and diversity. As a result, adaptive scalarization schemes, dynamic objective-
reduction mechanisms, and hybrid combinations remain key directions for improv-
ing MaOP performance.

NSGA-II [40] is designed for problems with fewer objectives, it remains a stan-
dard reference due to:

1. Well-understood behavior: Its selection based on Pareto sorting and crowd-
ing distance provides a stable comparison point for assessing improvements
introduced by new preference relations.

43

Mixed-Precision Search Algorithm and Results

2. Clear exposure of MaOP challenges: NSGA-II quickly loses discriminatory
power as dimensionality increases, making it useful for illustrating where sensitivity-
based and heuristic methods offer advantages.

3. Availability and extensibility: Its simple, modular structure and widespread
implementation facilitate integration of modified ranking criteria or objective-
reduction strategies.

Thus, NSGA-II is chosen for this work not for superior many-objective perfor-
mance, but for its reliability and interpretability against which enhanced techniques
can be systematically evaluated.

4.1.2 The Need for a Cost Function Balancing Accuracy
Preservation and Bit-Cost Minimization

Designing mixed-precision quantization algorithms for deep neural networks is es-
sentially a balancing act. On one hand, we want to shrink the model or reduce its
computational cost; on the other, we need to keep its accuracy high enough for the
task. In real-world applications like real-time detection, robotics, or autonomous
driving, quantization often has to be aggressive to meet strict speed or hardware
limits. But if we push compression too far, accuracy suffers; if we focus too much on
accuracy, we lose the benefits of quantization. This trade-off becomes even harder
as models grow larger and more complex.

To navigate this trade-off, we need a cost function that properly balances com-
pression and accuracy. Without it, the optimization process may drift toward overly
compact models that no longer work well, or toward overly precise models that are
still too expensive to deploy. A well-constructed cost helps the algorithm explore
useful parts of the search space instead of being dominated by just one objective.

In practice, different phases of quantization may require shifting the focus be-
tween maintaining general model stability and emphasizing task-specific perfor-
mance. As the search progresses, the cost function should highlight the components
that matter most for the final task, while still allowing compression in less critical
areas.

Overall, a balanced cost mechanism works much like preference handling in
many-objective optimization. It helps the optimizer distinguish between candidate
solutions and avoids getting stuck when simple accuracy or compression metrics
aren’t enough. With this guidance, the quantization process can find models that
meet strict efficiency requirements without compromising their functional reliabil-

ity.

44

4.2 — The Proposed Genetic Algorithm (GA) for MP(Q Optimization

4.2 The Proposed Genetic Algorithm (GA) for
MPQ Optimization

4.2.1 Rationale for Employing NSGA-II

The Nondominated Sorting Genetic Algorithm IT (NSGA-II [40]) has become one of
the most influential and widely adopted Multi-objective Evolutionary Algorithms
(MOEASs) due to its balance of computational efficiency, convergence reliability,
and diversity preservation. In contrast to earlier nondominated sorting-based ap-
proaches, NSGA-II introduces key methodological advances that make it particu-
larly suitable for complex multi-objective optimization problems where maintaining
a well-distributed set of high-quality Pareto-optimal solutions is essential.

Motivational Considerations

Classical MOEAs such as the original NSGA exhibited several limitations—high
computational cost, the absence of elitism, and reliance on problem-dependent di-
versity parameters—that restricted their scalability and robustness. The rapid
growth of solution sets in multi-objective search requires not only efficient ranking
mechanisms but also effective selection pressure to guide the population toward the
Pareto-optimal front. NSGA-II addresses these needs through a principled integra-
tion of algorithmic enhancements that reduce complexity, strengthen convergence
guarantees, and enable parameterless density estimation.

Computational Efficiency and Fast Sorting A central motivation for adopt-
ing NSGA-II lies in its fast nondominated sorting procedure, which reduces the
computational burden from O(MN?) to O(MN?) by maintaining for each candi-
date both a domination count and a list of dominated solutions. This improvement
is particularly significant for studies involving moderately large populations or mul-
tiple objectives, where computational overhead can otherwise become prohibitive.

Elitism and Convergence Assurance NSGA-II incorporates an explicit elitist
strategy by forming an intermediate population that merges parents and offspring
before selection. This guarantees that high-quality solutions, once discovered, are
retained across generations. The elitism mechanism plays a pivotal role in acceler-
ating convergence toward the true Pareto-optimal front and preventing the loss of
valuable nondominated solutions—an issue common in earlier MOEA designs.

Parameterless Diversity Preservation Instead of relying on a user-defined
sharing parameter, NSGA-II employs a crowding-distance-based density estimator
and a crowded-comparison operator. This approach promotes uniform spread along
the Pareto front without additional tuning, thereby reducing algorithmic sensitivity

45

Mixed-Precision Search Algorithm and Results

to arbitrary parameter choices. By ranking solutions first by nondomination level
and subsequently by crowding distance, NSGA-IT maintains selection pressure while
encouraging exploration of less populated regions of the objective space.

4.2.2 Optimization Setup: Search Space, Encoding, and

Operators
Pareto Front Advancement Over Generations
® Shown Generations
(] @® Generation 0
[] ' ‘ @ Generation 25
6 o . ‘ Generation 49
°
LIPS ®
' (]
® ®
® ®e °
5 i bt e
e 9
L |
5 o o L]
o
E '
a ' °
°
L]

.

T T T T T T T
1.0 1.2 1.4 1.6 1.8 2.0 2.2
Cost le8

Figure 4.1: Evolution of population distributions across 50 NSGA-II generations. Each
point corresponds to one individual evaluated in terms of total bit-cost and bounding-box
error. The progression illustrates convergence toward the Pareto front.

In order to apply NSGA-II to the quantization-aware design problem, it is essen-
tial to clearly define the search space, solution representation, and the evolutionary
operators governing population dynamics. The following subsections describe the
configuration adopted in this study, emphasizing how individuals are encoded and
how variation operators are tailored to the discrete nature of quantization bit as-
signments.

Search Space and Individual Encoding

The search space is defined by the set of allowable quantization bitwidths for each
quantized layer in the network. In this work, each layer may take one of the discrete
values {2,4,8,16} bits. Accordingly, an individual in the population is represented
as a fixed-length chromosome whose genes correspond to the bitwidth assignments

46

4.2 — The Proposed Genetic Algorithm (GA) for MP(Q Optimization

Random Advancement Over Generations

~

7 Shown Generations

® genera?on 25 P ... ®
¢ G:::::t:::w ® e °® e @ .QJ 1]
g o0 ‘..." .ﬂg
© ‘o ® : ='.'ﬂ
% ° o o L S
L] e @ ’ % ® 5
e o ge 'Y % o s
s ° o & S°% A)
SRR . XL
E ® @ :~. .‘DG @
s ® e ‘.O H e gl x“
4 L] I3 f “h : ’: ®
° oo f‘ oo o o}t. L4
R4 & oo o
%y L33 bey
- o
5] o .' ...t oo, ‘o '.‘
ol e Ta T
o
’ .%% oSt S s i e *
® " _gte *)
| ores! Wy

T T T T T
2.0 2.5 3.0 3.5 4.0
Cost led

Figure 4.2: Evolution of randomly generated populations across 50 generations, evalu-
ated using the same bit-cost and accuracy-error metrics as NSGA-II.

of the quantized layers. This encoding provides a direct mapping between evolu-
tionary search and architectural design choices: each candidate solution specifies
a complete quantization configuration, enabling NSGA-II to explore trade-offs be-
tween accuracy, latency, and model size.

In total, each individual chromosome contains 108 genes, corresponding to the
108 layers subject to quantization. Since each gene may independently take one
of the four discrete bitwidth values 2,4,8,16, the overall size of the search space
becomes

|Q| = 4'08 = 2216 ~ 1.0 x 1065

a combinatorial domain of astronomical scale. This emphasizes the necessity of
an evolutionary approach: exhaustive enumeration or grid-based search is entirely
infeasible.

Mutation Operator

Given the discrete and ordered structure of the quantization levels, mutation plays a
central role in ensuring both local refinement and global exploration. Two mutation
strategies were considered during the experimentation process:

In the first configuration, mutation acted by randomly selecting a subset of genes
and replacing their values with any other bitwidth from the admissible set. This

47

Mixed-Precision Search Algorithm and Results

provides strong exploratory power but may lead to abrupt changes that disrupt
promising solution structures.

To improve stability and better exploit neighborhood information, a second mu-
tation strategy was adopted in later iterations. This refined operator restricts gene
alterations to adjacent bitwidth levels, effectively allowing only multiplicative in-
creases or decreases by a factor of two. For example, a gene encoded as 4 bits
may mutate to 2 or 8 bits, but not directly to 16 bits. This constraint preserves
the discrete hierarchy of quantization choices while enabling smoother transitions
across the search landscape.

Crossover Operator

Crossover is applied to promote the exchange of structural information between
parent solutions. In this setup, a simple yet effective recombination mechanism is
employed: each offspring inherits approximately half of its genes from each parent.
By splitting the chromosome at the midpoint (or another predetermined division),
the operator constructs new individuals that combine quantization patterns from
both contributors. This promotes diversity while maintaining interpretability and
consistency with the fixed-length encoding.

4.2.3 The Fitness Functions

To effectively guide NSGA-II through the mixed-precision quantization search space,
two complementary fitness functions are defined. These objectives reflect the dual
goals of reducing model complexity while preserving the predictive fidelity essen-
tial for downstream tasks. Together, they form the multi-objective optimization
framework within which NSGA-II evaluates and ranks candidate quantization con-
figurations.

Fitness Objective 1: Bit-Cost Minimization

The first fitness function quantifies the total bit-cost associated with a given mixed-
precision assignment. For each layer with weight tensor W quantized to b bits, the
cost is computed as

Fis =Y bi- [Wl,
l

where |W;| denotes the number of parameters in layer [and b, € {2,4,8,16} spec-
ifies its assigned precision. Minimizing Fj;s encourages the algorithm to identify
quantization patterns that significantly reduce memory footprint and computa-
tional overhead. This objective provides NSGA-II with a direct incentive to favor
low-precision choices, particularly in layers with large parameter counts.

48

4.2 — The Proposed Genetic Algorithm (GA) for MP(Q Optimization

Fitness Objective 2: Accuracy Preservation

The second fitness function measures the discrepancy between the full-precision
model and its quantized counterpart. This objective evolves across iterations of the
optimization process to more accurately reflect the factors that influence perfor-
mance:

Cosine-Based Functional Error (Initial Stage). During early exploration,
accuracy preservation is evaluated using the cosine similarity between original and
quantized module outputs:

Feos = 1 — cos(fo(x), fo,(x)) -

This formulation captures high-level representational distortions in activation space
and provides a stable, task-agnostic signal that helps preserve functional consistency
across quantized layers. By penalizing directional changes in activation vectors, this
objective identifies layers where precision must be maintained to prevent early-stage
degradation.

Task-Specific Bounding-Box Error (Refinement Stage). As the optimiza-
tion progresses, the fitness function transitions to a task-specific measure aligned
with the performance requirements of detection architectures. Rather than compar-
ing intermediate activations, the discrepancy is defined directly over the semantic
components of the predicted bounding boxes:

Fbox =« Ecenter + (1 - a) Eyaw+size~

Empirical evaluation indicates that center-point localization and geometric at-
tributes contribute approximately equally to detection performance degradation;
consequently, the weighting parameter is set to o &~ 0.5. This refinement ensures
that the search prioritizes quantization configurations that maintain downstream
detection quality, focusing precision where it yields the greatest impact on model
utility.

The computational cost of evaluating a single candidate further reinforces this
limitation. Computing the task-specific bounding-box error for one mixed-precision
configuration requires approximately 7 seconds, meaning that even a vanishingly
small fraction of the full search space would take longer than the age of the universe
to evaluate. NSGA-II thus provides a practical mechanism for navigating this
immense design space efficiently by focusing evaluations on promising regions of
the Pareto landscape rather than attempting full enumeration.

49

Mixed-Precision Search Algorithm and Results

Multi-Objective Integration in NSGA-II

NSGA-II leverages both fitness objectives simultaneously, treating them as inde-
pendent axes in the Pareto optimization landscape. The bit-cost objective pro-
motes compactness, while the accuracy objective—either cosine-based or task-
specific, depending on the iteration—ensures consistency with full-precision behav-
ior. Through nondominated sorting and crowding-based selection, the algorithm
balances these competing pressures, producing a diverse set of solutions that span
the trade-off frontier.

Together, Fi;is and the accuracy-preservation objective constitute a robust multi-
objective formulation tailored to mixed-precision quantization. By beginning with
a general functional similarity measure and later shifting to domain-specific se-
mantic error, the fitness functions guide NSGA-II from broad exploratory search
toward fine-grained architectural refinement. This staged approach ensures that
the resulting quantization schemes achieve both high compression efficiency and
strong task-level performance.

To visualize the behavior of the evolutionary process under these two objec-
tives, Fig. 4.1 illustrates the distribution of all individuals across 50 generations of
NSGA-II[40]. Each generation contains 100 individuals, plotted according to their
total bit-cost (x-axis) and the bounding-box-derived accuracy error (y-axis). Early
generations exhibit wide dispersion and suboptimal trade-offs, whereas successive
iterations reveal a clear migration toward the Pareto front. This pattern reflects
the combined effect of nondominated sorting, elitism, and crowding-distance-based
diversity preservation in steadily guiding the population toward high-quality com-
promises between compactness and task-level fidelity.

In contrast to the structured progression observed in Fig. 4.1, the random-
generation baseline in Fig. 4.2 demonstrates no meaningful movement toward the
Pareto front. Although purely random sampling occasionally produces individuals
with low accuracy error, these candidates almost always achieve such performance
by relying on excessively large bitwidth assignments, resulting in substantially
higher total bit-costs. Because random search lacks any form of selection pres-
sure, nondominated sorting, or elitism, the sampled individuals remain scattered
in dominated regions of the objective space without developing coherent trade-offs.
This comparison underscores that the seemingly competitive low-error solutions
found by chance are not viable, and that guided evolutionary pressure is essential
for discovering efficient mixed-precision quantization configurations.

4.3 Optimal MPQ Results and Network Analysis

This section reports the outcomes of the multi-objective mixed-precision quantiza-
tion (MPQ) framework derived through NSGA-II. We first characterize the Pareto-
optimal trade-offs achieved during the search process, then present the detailed

50

4.3 — Optimal MPQ Results and Network Analysis

bit-allocation of the final mixed-precision configuration, and finally compare full-
precision, uniform quantization, and the full suite of MPQ variants. The analysis
highlights the distinct roles played by whole-model search (“C” variants), module-
wise optimization (non-“C” variants), error-oriented and weight-oriented objectives
(“E” and “W”), and the influence of quantization schemes (alpha-aware “A” ver-
sus min—max “Q”). The introduction of a distance-error objective (“DE”) further
refines the search by aligning optimization pressure with downstream detection
performance.

4.3.1 Presentation of the Pareto Front: Optimal Trade-offs

The Pareto front constructed by NSGA-II encapsulates a diverse spectrum of quan-
tization configurations that optimally balance accuracy preservation and bit-cost
reduction. Each solution in the front represents a nondominated trade-off: no
candidate can be improved in accuracy without incurring greater memory or com-
putational cost.

A clear structure emerges in the distribution of solutions across the front. Uni-
form 4-bit quantization (4AQ) provides a strong lower-bound on bit-cost while pre-
serving the majority of the full-precision model’s performance. Error-oriented MPQ
variants (E-type) populate central regions of the front, characterized by moderate
bit-cost and strong preservation of NDS, mAP, and geometric detection metrics.
Conversely, weight-oriented configurations (W-type) explore the extreme compres-
sion region, achieving significant bit-cost reductions at the expense of accuracy—
suitable for highly resource-constrained deployment.

Full-model NSGA-II searches (C variants) produce more coherent precision dis-
tributions and improved Pareto smoothness compared to module-wise searches.
Finally, the incorporation of the distance-error objective in MPQ-DE_CAE yields
the most favorable global trade-off, demonstrating that task-aligned fitness formu-
lations meaningfully influence convergence.

4.3.2 The Final Mixed-Precision Model: Detailed Layer-
by-Layer Bit Assignment

From the set of Pareto-optimal solutions, the MPQ-DE_CAE configuration emerges
as the most balanced architecture when jointly considering accuracy and efficiency.
This configuration benefits from: (i) full-model optimization (C), ensuring inter-
actions across modules are captured; (ii) alpha-aware quantization (A), which en-
hances dynamic range representation; (iii) error-oriented objectives (E), prioritizing
accuracy retention; and (iv) distance-error measurement (DE), which directly re-
flects downstream detection sensitivity.

The resulting mixed-precision pattern exhibits a structured allocation of bitwidths

51

Mixed-Precision Search Algorithm and Results

Table 4.1: Performance comparison of full-precision (NQ), uniform quantization (4AQ),
and all MPQ variants. “C” indicates full-model NSGA-II search, while non-“C” variants
use module-wise search. “E” and “W” denote error-oriented and weight-oriented objec-
tives, respectively. “A” indicates alpha-aware quantization and “Q” min—max quantiza-
tion. “DE” introduces a distance-error objective.

NDS mAP mATE mASE mAOE mAVE mAAE total relative rapport
NQ 0.5605 0.6130 0.297 0.710 1.553 0.267 0.186 1.17e4+09 1.0000 1.00
4AQ 0.5547 0.6043 0.304 0.710 1.561 0.279 0.182 1.46e+08 0.1250 8.00
MPQ-AE 0.5166 0.5654 0.319 0.716 1.514 0.418 0.208 1.70e+08 0.1456 6.87
MPQ-AW 0.2050 0.1442 0.539 0.784 1.260 0.828 0.521 1.04e+08 0.0886 11.28
MPQ-CAE 0.5162 0.5679 0.316 0.713 1.553 0.439 0.209 1.38¢+08 0.1177 8.50
MPQ-CAW 0.4217 0.4080 0.344 0.710 1.556 0.573 0.197 1.32¢e+08 0.1129 8.85
MPQ-CQE 0.5084 0.5441 0.312 0.714 1.533 0.414 0.198 1.42e+08 0.1218 8.21
MPQ-CQW 0.3847 0.3474 0.331 0.708 1.547 0.648 0.203 1.32e+08 0.1132 8.84
MPQ-DE_CAE 0.5422 0.5874 0.305 0.712 1.556 0.310 0.189 1.21e4+08 0.1033 9.68
MPQ-QE 0.5053 0.5583 0.322 0.715 1.549 0.492 0.209 2.39¢e+08 0.2044 4.89
MPQ-QW 0.1521 0.0971 0.553 0.800 1.298 1.232 0.610 1.07e+08 0.0916 10.92

MPQ-RCAE 0.4949 0.5239 0.345 0.742 1.549 0.389 0.194 1.49e+-08 0.1271 7.87
MPQ-RCAW 0.4413 0.4420 0.352 0.715 1.548 0.519 0.212 1.31e+08 0.1124 8.90
MPQ-RCQE 0.4878 0.5222 0.328 0.729 1.528 0.473 0.203 1.76e4+08 0.1509 6.63
MPQ-RCQW 0.4515 0.4708 0.344 0.728 1.541 0.563 0.204 1.29e408 0.1105 9.05

across the network. Early feature-extraction layers and heads responsible for local-
ization, orientation, and size prediction consistently retain higher precision (8-16
bits), reflecting their sensitivity to quantization noise. Mid-level fusion and trans-
formation layers operate effectively at 4-8 bits, while later or redundant pathways
are aggressively quantized to 2—4 bits. This heterogeneous precision assignment is
difficult to achieve through manual design or uniform quantization and highlights
the nuanced layer-wise importance captured through NSGA-II.
For reference, the genome of the MPQ-DE__CAE configuration is:

(4,4,16,4,8,4,8,2,8,4,8,4,2,8,4,4,4,4,2,2,4,2 4,
4,4,2,4,4,4,4,8 4,4,4,8,2,2,4,16,8,2,2,2,8,2,16,
2,4,2,8,2,4,8,8,2,4,4,8,8,4,16,4,8,2,2,4,8,2,2,
2,4,4,4,8,2,4,2,4,4,2,4,2,8,2,4,2,4,2,8,4,8 4,4,
16,4,4,4,16,8,4,4,4,8,4,4,4,4,4)
A full mapping of these bit values to their corresponding network layers is pro-
vided in Appendix 5.3.2. This appendix enables reproducibility and facilitates

layer-level analysis of quantization sensitivity, providing insights into which com-
ponents benefit most from higher precision and which can be safely compressed.

52

4.3 — Optimal MPQ Results and Network Analysis

4.3.3 Final Comparison: Full-Precision vs. Uniform Quan-
tization vs. Optimal MPQ

Table 4.1 summarizes the performance of all evaluated quantization schemes. Sev-
eral conclusions can be drawn:

Accuracy—Efficiency Behavior. Full-precision (NQ) achieves the highest accu-
racy but incurs the largest bit-cost. Uniform 4-bit quantization (4AQ) achieves an
8x compression with minimal degradation. The best MP(Q configuration, MPQ-
DE__CAE, surpasses 4A(Q in accuracy while delivering an even greater compression
ratio (approximately 9.7x).

Influence of Optimization Strategy. FError-oriented MPQ variants (E) consis-
tently outperform weight-oriented ones (W) on accuracy metrics. Full-model search
(C) dominates module-wise search, confirming the importance of capturing global
interactions. Min—max-only quantization (Q) performs slightly below alpha-aware
quantization (A), though it remains competitive in several metrics.

Effect of Fitness Formulation. Replacing cosine similarity with distance-error
(DE) markedly improves downstream task performance. MPQ-DE_CAE achieves
the highest accuracy among all MPQ variants while maintaining one of the lowest
bit-costs, illustrating the benefit of semantically aligned fitness functions.

Best Overall Trade-off. Among all evaluated configurations, MPQ-DE CAE
provides the most compelling balance:

o NDS of 0.5422 (only ~3% below full precision),

« mAP of 0.5874,

« total bit-cost of 1.21 x 10%,

« relative cost of 0.1033,

« and a rapport score of 9.6786, the highest accuracy-to-cost ratio.

This demonstrates that mixed-precision quantization guided by NSGA-II can
exceed uniform quantization in both accuracy and compression, providing a prin-
cipled route to highly efficient yet performance-preserving model deployments.

53

Mixed-Precision Search Algorithm and Results

4.4 Embedded System Feasibility Analysis

4.4.1 Projected Memory Reduction

The primary benefit of mixed-precision quantization lies in its ability to tailor the
bitwidth of each layer to its actual sensitivity, enabling substantial compression
without uniformly sacrificing precision. It is important to note that the reported
memory savings apply only to the layers that undergo quantization; non-quantized
components (e.g., certain normalization, positional encoding, or auxiliary heads)
contribute additional overhead and therefore limit the total achievable reduction
when considering the full model.

Given the total bit-costs reported in Table 4.1, the memory footprint of the
quantized portions can be approximated as

where [y represents the accumulated bit-cost across all quantized layers.
A comparison across quantization strategies highlights several observations:

e Uniform 4-bit quantization (4AQ) achieves an approximate 8 x reduction
for the quantized layers relative to their full-precision form, serving as a strong
baseline.

« Mixed-precision weight-focused configurations (W variants) achieve
the smallest bit-costs, corresponding to up to 11x compression for the quan-
tized subset of the model, though at the cost of notable performance degrada-
tion.

« Error-oriented mixed-precision configurations (E variants) maintain
competitive accuracy while achieving 6-9x compression of the quantized lay-
ers, demonstrating effective precision allocation.

e The MPQ-DE__CAE configuration offers the best global trade-off, reduc-
ing the quantized-layer memory footprint to roughly 10% of its full-precision
equivalent while preserving near-baseline detection performance.

Despite these substantial reductions, the complete model—including both quan-
tized and non-quantized components—remains relatively large by current standards
for embedded and edge AI hardware. Modern deployments increasingly target sub-
10 MB total footprints for real-time applications, placing additional pressure on
architectural pruning, operator fusion, or hybrid compression strategies beyond
quantization alone.

These observations emphasize that while MPQ provides meaningful compression
for hardware-limited settings, further model-level optimization is required to meet
the strict memory and compute budgets of contemporary embedded platforms.

54

Chapter 5

Conclusions and Future
Work

5.1 Summary of Findings

In this work, we proposed a general post-training quantization (PTQ) methodology
for transformer-based detection models. The method is designed to be architecture-
agnostic and can be applied to a wide range of large-scale transformer networks,
not limited to BEVFusion[16]. By selectively quantizing layers based on their sen-
sitivity, we achieve meaningful memory reductions relative to the quantized layers,
while preserving accuracy. While the primary goal was to develop a flexible and
generalizable quantization approach, we also analyzed the feasibility of deploying
these models on resource-constrained embedded platforms. Even with PTQ, the
overall model remains relatively large for current edge devices, indicating that ad-
ditional compression techniques or architectural adaptations may be needed for
deployment [22, 19].

5.2 Contributions

The key contributions of this thesis are:

o A general PTQ framework that can be applied across various transformer
architectures to reduce memory footprint while maintaining performance.

« Integration of a multi-objective search strategy (NSGA-II) to identify optimal
quantization configurations that balance accuracy and resource efficiency [40].

e Demonstration that the method is broadly applicable and not tied to any
specific architecture like BEVFusion.

99

Conclusions and Future Work

o Insights into the practical constraints of deploying large transformer models
on embedded platforms, serving as guidance for future optimization efforts.

5.3 Future Work

5.3.1 Extension to Other Large Transformer Architectures

Future research can extend this PTQ methodology to other transformer-based mod-
els, including Vision Transformers (ViT), Swin Transformers, and hybrid architec-
tures [2, 34]. Each architecture exhibits different layer sensitivities, suggesting that
tailored quantization profiles could further optimize the trade-off between mem-
ory efficiency and accuracy. Combining PTQ with quantization-aware training or
model pruning could improve the feasibility of deploying these networks on edge
devices without compromising their general applicability.

5.3.2 Exploration of Alternative Optimization Strategies

The current approach employs a multi-objective genetic algorithm (NSGA-II) to
identify optimal quantization configurations. Future work could explore new evalu-
ation metrics within the GA framework to better capture model efficiency, robust-
ness, and deployment constraints. Additionally, alternative search paradigms for
layer-wise « selection, such as reinforcement learning, Bayesian optimization, or
differentiable search methods, could offer faster convergence and more flexible ex-
ploration of the quantization search space. These extensions would further enhance
the generality and practicality of the proposed PTQ methodology.

56

List of Figures

2.1

2.2

3.1

4.1

4.2

Example sample from the nuScenes dataset showing synchronized
camera and lidar views with 3D annotations. Image reproduced
from the nuScenes dataset [23]. Lo 12
General architecture of BEVFusion, illustrating the camera encoder,
LiDAR encoder, view transformer, BEV fusion module, and task-
specific heads. Adapted from BEVFusion [16]. 17

Distributions of optimized « values for all activation and weight bit-
widths. Each histogram reflects the frequency of « candidates se-
lected as minimizing MSE during Stage 2 optimization. 30

Evolution of population distributions across 50 NSGA-II generations.

Each point corresponds to one individual evaluated in terms of total
bit-cost and bounding-box error. The progression illustrates conver-
gence toward the Pareto front. 46
Evolution of randomly generated populations across 50 generations,
evaluated using the same bit-cost and accuracy-error metrics as NSGA-

IL 47

o7

Bibliography

[1] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and 1. Polosukhin, “Attention is all you need,” 2023.

[2] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Un-
terthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and
N. Houlsby, “An image is worth 16x16 words: Transformers for image recog-
nition at scale,” 2021.

[3] J. Mao, S. Shi, X. Wang, and H. Li, “3d object detection for autonomous
driving: A comprehensive survey,” International Journal of Computer Vision,
vol. 131, no. 8, pp. 1909-1963, 2023.

[4] R. Qian, X. Lai, and X. Li, “3d object detection for autonomous driving: A
survey,” Pattern Recognition, vol. 130, p. 108796, 2022.

[5] X. Pan, Z. Xia, S. Song, L. E. Li, and G. Huang, “3d object detection with
pointformer,” 2021.

[6] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and S. Zagoruyko,
“End-to-end object detection with transformers,” 2020.

[7] Y. Wang, V. C. Guizilini, T. Zhang, Y. Wang, H. Zhao, and J. Solomon,
“Detr3d: 3d object detection from multi-view images via 3d-to-2d queries,” in
Conference on robot learning, pp. 180-191, PMLR, 2022.

[8] J. Mao, Y. Xue, M. Niu, H. Bai, J. Feng, X. Liang, H. Xu, and C. Xu, “Voxel
transformer for 3d object detection,” in Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision (ICCV), pp. 3164-3173, October 2021.

9] Y. Yan, Y. Mao, and B. Li, “Second: Sparsely embedded convolutional detec-
tion,” Sensors, vol. 18, no. 10, 2018.

[10] H. Sheng, S. Cai, N. Zhao, B. Deng, Q. Liang, M.-J. Zhao, and J. Ye,
“Ct3d++: Improving 3d object detection with keypoint-induced channel-wise
transformer,” 2024.

[11] P. Sun, M. Tan, W. Wang, C. Liu, F. Xia, Z. Leng, and D. Anguelov,
“Swiormer: Sparse window transformer for 3d object detection in point
clouds,” in European Conference on computer vision, pp. 426442, Springer,
2022.

[12] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning on point

58

Bibliography

sets for 3d classification and segmentation,” in Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pp. 652-660, 2017.

[13] Z. Li, W. Wang, H. Li, E. Xie, C. Sima, T. Lu, Q. Yu, and J. Dai, “Bevformer:
learning bird’s-eye-view representation from lidar-camera via spatiotemporal
transformers,” IFEFE Transactions on Pattern Analysis and Machine Intelli-
gence, 2024.

[14] K.-C. Huang, T.-H. Wu, H.-T. Su, and W. H. Hsu, “Monodtr: Monocu-
lar 3d object detection with depth-aware transformer,” in Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 4012—
4021, 2022.

[15] C. Zhou, L. Yu, A. Babu, K. Tirumala, M. Yasunaga, L. Shamis, J. Kahn,
X. Ma, L. Zettlemoyer, and O. Levy, “Transfusion: Predict the next token and
diffuse images with one multi-modal model,” 2024.

[16] Z. Liu, H. Tang, A. Amini, X. Yang, H. Mao, D. Rus, and S. Han, “Bevfu-
sion: Multi-task multi-sensor fusion with unified bird’s-eye view representa-
tion,” 2024.

[17] X. Chen, T. Zhang, Y. Wang, Y. Wang, and H. Zhao, “Futr3d: A unified
sensor fusion framework for 3d detection,” in proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 172—181, 2023.

[18] Y. Li, Y. Chen, X. Qi, Z. Li, J. Sun, and J. Jia, “Unifying voxel-based repre-
sentation with transformer for 3d object detection,” Advances in Neural Infor-
mation Processing Systems, vol. 35, pp. 18442-18455, 2022.

[19] F. Wang, M. Zhang, X. Wang, X. Ma, and J. Liu, “Deep learning for edge com-
puting applications: A state-of-the-art survey,” IEEE Access, vol. 8, pp. 5b8322—
58336, 2020.

[20] J. Chen and X. Ran, “Deep learning with edge computing: A review,” Pro-
ceedings of the IEEFE, vol. 107, no. 8, pp. 1655-1674, 2019.

[21] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Krishnan,
Y. Pan, G. Baldan, and O. Beijbom, “nuscenes: A multimodal dataset for
autonomous driving,” arXiv preprint arXiv:1905.11027, 2019.

[22] A. Gholami, S. Kim, Z. Dong, Z. Yao, M. W. Mahoney, and K. Keutzer, “A
survey of quantization methods for efficient neural network inference,” 2021.

[23] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Krishnan,
Y. Pan, G. Baldan, and O. Beijbom, “nuscenes: A multimodal dataset for
autonomous driving,” 2020.

[24] G. J. Brostow, J. Shotton, J. Fauqueur, and R. Cipolla, “Segmentation and
recognition using structure from motion point clouds,” in Computer Vision —
ECCYV 2008 (D. Forsyth, P. Torr, and A. Zisserman, eds.), (Berlin, Heidelberg),
pp. 44-57, Springer Berlin Heidelberg, 2008.

[25] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson,
U. Franke, S. Roth, and B. Schiele, “The cityscapes dataset for semantic urban
scene understanding,” in Proceedings of the IEEE Conference on Computer

59

Bibliography

Vision and Pattern Recognition (CVPR), June 2016.

[26] G. Neuhold, T. Ollmann, S. Rota Bulo, and P. Kontschieder, “The mapillary
vistas dataset for semantic understanding of street scenes,” in Proceedings of
the IEEE International Conference on Computer Vision (ICCV), Oct 2017.

[27] F. Yu, W. Xian, Y. Chen, F. Liu, M. Liao, V. Madhavan, T. Darrell, et al.,
“Bdd100k: A diverse driving video database with scalable annotation tooling,”
arXiv preprint arXiv:1805.04687, vol. 2, no. 5, p. 6, 2018.

[28] P. Wang, X. Huang, X. Cheng, D. Zhou, Q. Geng, and R. Yang, “The apol-
loscape open dataset for autonomous driving and its application,” IEEFE trans-
actions on pattern analysis and machine intelligence, vol. 1, 2019.

[29] Z. Che, G. Li, T. Li, B. Jiang, X. Shi, X. Zhang, Y. Lu, G. Wu, Y. Liu,
and J. Ye, “D%city: A large-scale dashcam video dataset of diverse traffic
scenarios,” 2019.

[30] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous driving? the
kitti vision benchmark suite,” in 2012 IEEE Conference on Computer Vision
and Pattern Recognition, pp. 3354-3361, 2012.

[31] A. Patil, S. Malla, H. Gang, and Y.-T. Chen, “The h3d dataset for full-surround
3d multi-object detection and tracking in crowded urban scenes,” in 2019 In-
ternational Conference on Robotics and Automation (ICRA), pp. 9552-9557,
2019.

[32] A. Patil, S. Malla, H. Gang, and Y.-T. Chen, “The h3d dataset for full-surround
3d multi-object detection and tracking in crowded urban scenes,” in 2019 In-
ternational Conference on Robotics and Automation (ICRA), pp. 9552-9557,
2019.

[33] J. Mei, A. Z. Zhu, X. Yan, H. Yan, S. Qiao, L.-C. Chen, and H. Kretzschmar,
“Waymo open dataset: Panoramic video panoptic segmentation,” in Computer
Vision — ECCV 2022 (S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and
T. Hassner, eds.), (Cham), pp. 53-72, Springer Nature Switzerland, 2022.

[34] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo, “Swin
transformer: Hierarchical vision transformer using shifted windows,” 2021.

[35] M. Contributors, “MMDetection3D: OpenMMLab next-generation plat-
form for general 3D object detection.” https://github.com/open-mmlab/
mmdetection3d, 2020.

[36] M. Nagel, M. Fournarakis, R. A. Amjad, Y. Bondarenko, M. Van Baalen,
and T. Blankevoort, “A white paper on neural network quantization,” arXiv
preprint arXiv:2106.08295, 2021.

[37] A. Gholami, S. Kim, Z. Dong, Z. Yao, M. W. Mahoney, and K. Keutzer, “A
survey of quantization methods for efficient neural network inference,” in Low-
power computer vision, pp. 291-326, Chapman and Hall/CRC, 2022.

[38] Z. Yuan, C. Xue, Y. Chen, Q. Wu, and G. Sun, “Ptq4vit: Post-training quan-
tization for vision transformers with twin uniform quantization,” in European
conference on computer vision, pp. 191-207, Springer, 2022.

60

https://github.com/open-mmlab/mmdetection3d
https://github.com/open-mmlab/mmdetection3d

Bibliography

[39] C. Von Liicken, B. Baran, and C. Brizuela, “A survey on multi-objective evolu-
tionary algorithms for many-objective problems,” Computational optimization
and applications, vol. 58, no. 3, pp. 707-756, 2014.

[40] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist mul-
tiobjective genetic algorithm: Nsga-ii,” IEEE Transactions on Evolutionary
Computation, vol. 6, no. 2, pp. 182-197, 2002.

Appendix: Quantized Layer (Genome

This appendix contains the complete set of quantized layers used in the model. Each
table corresponds to a top-level module (e.g. img_backbone, img_neck, view_transform,
etc.). When the tables are read sequentially, they form the complete genome of

the individual in the evolutionary setting, the position is indicated by the ID in

the tables.

Table 1: img backbone — Stage 0 Quantized Layers

ID Layer Type
1 patch__embed.projection conv2d
2 stages.0.blocks.0.attn.w_msa.qkv linear
3 stages.0.blocks.0.attn.w_ msa.proj linear
4 stages.0.blocks.0.attn.w_msa.q_k matmul matmul
5 stages.0.blocks.0.attn.w_msa.attn_v_matmul matmul
6 stages.0.blocks.0.ffn.layers.0.0 linear
7 stages.0.blocks.0.ffn.layers.1 linear
8 stages.0.blocks.1l.attn.w_ msa.qkv linear
9 stages.0.blocks.1l.attn.w__msa.proj linear
10 stages.0.blocks.1l.attn.w_msa.q k matmul matmul
11 stages.0.blocks.1l.attn.w_msa.attn_v_matmul matmul
12 stages.0.blocks.1.fin.layers.0.0 linear
13 stages.0.blocks.1.ffn.layers.1 linear
14 stages.0.downsample.reduction linear

61

Bibliography

Table 2: img backbone — Stage 1 Quantized Layers

ID Layer Type
15 stages.1.blocks.0.attn.w_msa.qkv linear
16 stages.1l.blocks.0.attn.w__msa.proj linear
17 stages.1.blocks.0.attn.w_msa.q k matmul matmul
18 stages.1.blocks.0.attn.w_msa.attn_v_matmul matmul
19 stages.1.blocks.0.fIn.layers.0.0 linear
20 stages.1.blocks.0.ffn.layers.1 linear
21 stages.1.blocks.l.attn.w_ msa.qkv linear
22 stages.l.blocks.l.attn.w_msa.proj linear
23 stages.1.blocks.l.attn.w_msa.q k matmul matmul
24 stages.1.blocks.l.attn.w_msa.attn_v_matmul matmul
25 stages.1.blocks.1.ffn.layers.0.0 linear
26 stages.1.blocks.1.ffn.layers.1 linear
27 stages.l.downsample.reduction linear

62

Bibliography

Table 3: img backbone — Stage 2 Quantized Layers

ID Layer Type
28 stages.2.blocks.0.attn.w_ msa.qkv linear
29 stages.2.blocks.0.attn.w_ msa.proj linear
30 stages.2.blocks.0.attn.w_msa.q k matmul matmul
31 stages.2.blocks.0.attn.w__msa.attn v _matmul matmul
32 stages.2.blocks.0.ffn.layers.0.0 linear
33 stages.2.blocks.0.ffn.layers.1 linear
34 stages.2.blocks.1l.attn.w_ msa.qkv linear
35 stages.2.blocks.l.attn.w_msa.proj linear
36 stages.2.blocks.l.attn.w_msa.q k matmul matmul
37 stages.2.blocks.l.attn.w_msa.attn_v_matmul matmul
38 stages.2.blocks.1.ffn.layers.0.0 linear
39 stages.2.blocks.1.ffn.layers.1 linear
40 stages.2.blocks.2.attn.w_ msa.qkv linear
41 stages.2.blocks.2.attn.w__msa.proj linear
42 stages.2.blocks.2.attn.w_msa.q k matmul matmul
43 stages.2.blocks.2.attn.w_msa.attn_v_matmul matmul
44 stages.2.blocks.2.ffn.layers.0.0 linear
45 stages.2.blocks.2.ffn.layers.1 linear
46 stages.2.blocks.3.attn.w_ msa.qkv linear
47 stages.2.blocks.3.attn.w__msa.proj linear
48 stages.2.blocks.3.attn.w_msa.q_k matmul matmul
49 stages.2.blocks.3.attn.w_msa.attn_v_matmul matmul
50 stages.2.blocks.3.ffn.layers.0.0 linear
51 stages.2.blocks.3.ffn.layers.1 linear
52 stages.2.blocks.4.attn.w_ msa.qkv linear
53 stages.2.blocks.4.attn.w__msa.proj linear
54 stages.2.blocks.4.attn.w_msa.q k matmul matmul
55 stages.2.blocks.4.attn.w_msa.attn_v_matmul matmul
56 stages.2.blocks.4.ffn.layers.0.0 linear
57 stages.2.blocks.4.ffn.layers.1 linear
58 stages.2.blocks.5.attn.w_msa.qkv linear
59 stages.2.blocks.5.attn.w__msa.proj linear
60 stages.2.blocks.5.attn.w_msa.q k matmul matmul
61 stages.2.blocks.5.attn.w_msa.attn_v_matmul matmul
62 stages.2.blocks.5.ffn.layers.0.0 linear
63 stages.2.blocks.5.ffn.layers.1 linear
64 stages.2.downsample.reduction linear

63

Bibliography

Table 4: img backbone — Stage 3 Quantized Layers

ID Layer Type
65 stages.3.blocks.0.attn.w_ msa.qkv linear
66 stages.3.blocks.0.attn.w_ msa.proj linear
67 stages.3.blocks.0.attn.w_msa.q k matmul matmul
68 stages.3.blocks.0.attn.w_msa.attn v _matmul matmul
69 stages.3.blocks.0.ffn.layers.0.0 linear
70 stages.3.blocks.0.ffn.layers.1 linear
71 stages.3.blocks.1l.attn.w_msa.qkv linear
72 stages.3.blocks.1l.attn.w__msa.proj linear
73 stages.3.blocks.l.attn.w_msa.q_k matmul matmul
74 stages.3.blocks.l.attn.w_msa.attn_v_matmul matmul
75 stages.3.blocks.1.ffn.layers.0.0 linear
76 stages.3.blocks.1.ffn.layers.1 linear

Table 5: img neck — Lateral and FPN Convolution Layers

ID Layer Type
77 lateral convs.0.conv conv2d
78 lateral convs.l.conv conv2d
79 fpn_convs.0.conv conv2d
80 fpn_ convs.l.conv conv2d

Table 6: view_ transform — Quantized Convolution Layers

ID Layer Type
81 dtransform.0 conv2d
82 dtransform.3 conv2d
83 dtransform.6 conv2d
84 depthnet.0 conv2d
85 depthnet.3 conv2d
86 depthnet.6 conv2d
87 downsample.0 conv2d
88 downsample.3 conv2d
89 downsample.6 conv2d

Table 7: fusion_ layer — Quantized Convolution Layer

ID Layer

Type

90 0

conv2d

64

Bibliography

Table 8: pts_backbone — Block 0 Quantized Convolution Layers

ID Layer Type
91 blocks.0.0 conv2d
92 blocks.0.3 conv2d
93 blocks.0.6 conv2d
94 blocks.0.9 conv2d
95 blocks.0.12 conv2d
96 blocks.0.15 conv2d

Table 9: pts_ backbone — Block 1 Quantized Convolution Layers

ID Layer Type
97 blocks.1.0 conv2d
98 blocks.1.3 conv2d
99 blocks.1.6 conv2d

100 blocks.1.9 conv2d

101 blocks.1.12 conv2d

102 blocks.1.15 conv2d

Table 10: pts_neck — Deblock Convolution Layers

ID Layer Type
103 deblocks.0.0 conv2d

Table 11: bbox_head — Layers

ID Layer Type

104 shared conv conv2d
105 heatmap head.0.conv conv2d
106 heatmap head.1 conv2d

107 decoder.0.ffn.layers.0.0 linear
108 decoder.0.ffn.layers.1 linear

65

	Introduction
	Context and Background
	The Rise of Transformer Models in 3D Perception and Autonomous Driving
	The Paradigm of Edge Computing and the Constraints of Embedded Systems

	Thesis Motivation
	The Necessity of Compressing Complex Transformer Models
	Develop and Apply a Post-Training Quantization (PTQ) Scheme

	Thesis Outline

	The BEVFusion Model
	Dataset and Evaluation Metrics
	The NuScenes Dataset for Autonomous Driving
	Evaluation Metrics: NDS and mAP

	BEVFusion Architecture Overview
	Bird's Eye View (BEV) and Sensor Fusion for 3D Perception
	Key Modules: Input Encoders (Camera/LiDAR), Feature Fusion, and Detection Head
	Detailed Structural Breakdown, Referencing the mmdetection3d Implementation

	Quantization of BEVFusion
	Neural Network Quantization
	Floating-Point Precision vs. Integer Precision
	Post-Training Quantization (PTQ) and Quantization-Aware Training (QAT)
	Linear Quantization: Scale (S) and Zero Point (Z)

	The Proposed Three-Stage PTQ Technique for BEVFusion
	Stage 1 (Baseline Calibration): Min/Max Statistics for Initial S and Z Determination
	Stage 2 (Per-Module Optimization): Search for Two Factors to Maximize Output Similarity
	Stage 3 (MPQ Search): Introduction to the Genetic Algorithm Search Space

	Results of Uniform ("Flat") Quantization
	Performance of the int8 Uniform Model
	Performance of the int4 Uniform Model
	Summary of Other Bit-Widths: int16 and Ternary (int2)
	Per Class Comparison Across All Uniform Bit-Widths

	Mixed-Precision Search Algorithm and Results
	Introduction to MPQ Search Algorithms
	Sensitivity-Based and Heuristic-Based Search Techniques
	The Need for a Cost Function Balancing Accuracy Preservation and Bit-Cost Minimization

	The Proposed Genetic Algorithm (GA) for MPQ Optimization
	Rationale for Employing NSGA-II
	Optimization Setup: Search Space, Encoding, and Operators
	The Fitness Functions

	Optimal MPQ Results and Network Analysis
	Presentation of the Pareto Front: Optimal Trade-offs
	The Final Mixed-Precision Model: Detailed Layer-by-Layer Bit Assignment
	Final Comparison: Full-Precision vs. Uniform Quantization vs. Optimal MPQ

	Embedded System Feasibility Analysis
	Projected Memory Reduction

	Conclusions and Future Work
	Summary of Findings
	Contributions
	Future Work
	Extension to Other Large Transformer Architectures
	Exploration of Alternative Optimization Strategies

	List of Figures
	Bibliography

