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Capitolo 1

Introduzione

Negli ultimi anni lo sviluppo di algoritmi per la guida autonoma è stato uno dei
campi più prolifici, e discussi nell’industria automobilistica, ad oggi infatti assistia-
mo a una continua evoluzione di queste tecnologie spinta da un’accesa competizione
tra le case costruttrici.
L’obiettivo è lo sviluppo di algoritmi capaci di sostituirsi, in parte o del tutto, al
guidatore umano nella conduzione del veicolo, con notevoli vantaggi in termini di
efficienza, comfort e sicurezza.
Lo sviluppo di sistemi di guida autonoma rappresenta una sfida complessa, essi
richiedono infatti sistemi di visione in grado di interpretare l’ambiente esterno me-
diante una rete di sensori tra cui videocamere, GPS e LiDAR, e un sistema di
elaborazione in grado di guidare il veicolo verso la destinazione attraverso scenari
sconosciuti e complessi, il tutto garantendo alti standard di sicurezza, e prestazioni
compatibili con un’esecuzione in tempo reale.

1.1 Le competizioni di guida autonoma

Il rapido avanzamento tecnologico ha portato alla nascita di molte competizioni
riguardanti lo sviluppo di hardware e software per la guida autonoma. In queste
competizioni gli studenti universitari, e non solo, hanno l’opportunità di mettersi
alla prova e sviluppare competenze riguardanti un settore sicuramente cruciale nella
mobilità futura.
A oggi si contano decine di competizioni da molte zone del mondo, ognuna con un
interesse ben specifico e con diverse caratteristiche, tra le più importanti troviamo:

• Formula Student Driverles [1].
Una delle competizioni più complete e riconosciute nell’ambito universitario,
richiede lo sviluppo di un veicolo a guida autonoma in ogni suo aspetto.
Viene infatti richiesta oltre alla progettazione dell’intero veicolo in scala 1:1,
lo sviluppo di algoritmi ad hoc e un piano di business corredato da uno studio
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Introduzione

sui costi di produzione.
La valutazione avviene poi sulla base di prove sul campo e di una presenta-
zione del piano di business e dei costi.

• Indy Autonomous Challenge [2].
La IAC è la più prestigiosa competizione riguardante il mondo dei veicoli a
conduzione autonoma, è aperta a squadre studentesche universitarie, e riguar-
da lo sviluppo di un algoritmo di guida autonoma su un’auto da corsa in scala
1 : 1 (Fig. 1.1), il cui telaio è progettato e fornito dall’italiana Dallara Auto-
mobili, leader nello sviluppo e produzione di veicoli da competizione, nonché
fornitore unico dei telai in competizioni di altissimo livello quali Indy Car,
Formula 2 e Formula 3.
La sfida impone lo sviluppo di sistemi con alti requisiti di sicurezza, necessità
dettata dalle elevate velocità richieste dalla sfida.
La competizione prende luogo in alcuni dei più importanti teatri del motor-
sport, quali Indianapolis, Monza e Las Vegas.

Figura 1.1: Veicolo ufficiale della Indy Autonomous Challenge

• DARPA Grand Challenge [3]
La DARPA Grand Challenge indetta da DARPA (Fig. 1.2), il dipartimento
di ricerca avanzata della difesa degli Stati Uniti d’America, è una compe-
tizione di guida autonoma, la cui prima edizione nel 2004 poneva ai team,
studenteschi e non, l’ambizioso obiettivo di sviluppare un veicolo in grado di
attraversare il deserto del Mojave senza intervento umano.
La competizione, nella sua storia conta solo 3 edizioni 2004, 2005 e 2007,
tuttavia una competizione così ambiziosa ha portato importanti innovazioni
nell’ambito della guida autonoma, nel 2005 infatti la Stnaford University ha
sviluppato appositamente per questa competizione il Controllore Stanley, il
quale sarà in parte argomento di questa tesi, diventando a tutti gli effetti il
primo team a portare a termine il percorso lungo più di 240km.
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Introduzione

Figura 1.2: Manifesto della DARPA Grand Challenge del 2004

• Bosch Future Mobility Challenge [4].
Questa competizione, indetta da Bosch Engineering Center Cluj, è stata la
base da cui si è partiti per questo lavoro.
In questa competizione, su cui si lavora su un modello in scala 1:10, si è
chiamati a sviluppare un algoritmo capace di condurre il modello in una scena
cittadina (Fig. 1.3). Lo scopo è quello di superare una serie di prove, tra cui
parcheggio, superamento di incroci e guida in condizioni di traffico.
Questa competizione, che mette al centro la mobilità del futuro, permette agli
studenti di sviluppare conoscenze concrete e sicuramente di fondamentale
importanza in ottica futura, mediante la sperimentazione in un ambiente
realistico.

Figura 1.3: Bosch Future Mobility Challenge
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1.2 La guida autonoma

In termini funzionali, seguendo la classificazione proposta da David Shinar in "Hu-
man Behavior and Traffic Safety" [5], un algoritmo di guida autonoma è composto
da 3 funzioni fondamentali, operanti a diversi a diversi livelli (Fig. 1.4):

• Funzioni strategiche: comprendono tutte le operazione di pianificazione,
tra cui navigazione, selezione delle destinazioni e tappe intermedie.

• Funzioni tattiche: spesso indicate con l’acronimo DDT (Dynamic Driving
Task), comprendono il riconoscimento di oggetti e l’interpretazione dell’am-
biente circostante OEDER (Object and Event Detection and Response).
Le operazioni OEDER portano alla pianificazione delle azioni da svolgere nel
breve periodo, quali, ad esempio, scelta della velocità, direzione e distanza da
mantenere rispetto agli altri veicoli presenti nella carreggiata.

• Funzioni operazionali: riguardano il controllo delle dinamiche laterali e
longitudinali del veicolo tramite l’attuazione dei sistemi di controllo, princi-
palmente sterzo, acceleratore e freno, al fine di attuare le manovre stabilite
dai livelli tattico e strategico.

Figura 1.4: Schema a blocchi sistema di guida autonoma

Ad oggi la SAE (Society of Automotive Engeneers) definisce 6 diversi livelli di guida
autonoma [6] (Fig. 1.5):
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Figura 1.5: Classificazione SAE dei veicoli a guida autonoma

• LIVELLO 0 - NESSUNA AUTOMAZIONE: non è previsto nessun
aiuto al guidatore al quale è totalmente affidata la conduzione del veicolo.

• LIVELLO 1 - ASSISTENZA ALLA GUIDA: il controllo e la super-
visione del veicolo sono affidati al guidatore, al quale viene affiancato un
controllo su uno e uno soltanto dei due principali organi di guida (sterzo o
acceleratore/freno).

• LIVELLO 2 - GUIDA AUTONOMA PARZIALE: il veicolo può con-
dursi autonomamente, gestendo simultaneamente sterzata e accelerazione/-
frenata, tuttavia il guidatore ha comunque il controllo del veicolo a sua
discrezione.

• LIVELLO 3 - GUIDA ASSISTITA CONDIZIONALE: il veicolo è in
grado di condursi autonomamente in un numero limitato di scenari, nei quali
non è richiesta la supervisione umana. Il conducente deve tuttavia essere
reattivo nell’intervento in caso di segnalazione da parte del veicolo.

• LIVELLO 4 - GUIDA ASSISTITA AVANZATA: il veicolo è in grado
di gestire un numero elevato di scenari tuttavia richiede supervisione e al
bisogno, intervento umano.

• LIVELLO 5 - GUIDA AUTONOMA COMPLETA: il veicolo è com-
pletamente autonomo, non richiede supervisione e non è necessario fornire
al guidatore gli apparati per il controllo del veicolo (volante, acceleratore e
freno).
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L’avvento della guida autonoma oltre a ridurre il peso dell’errore umano, può aprire
la via a un sistema di mobilità che non si limita al veicolo, ma include l’infrastrut-
tura stradale, mettendo in comunicazione e permettendo la collaborazione tra tutti
gli agenti che impegnano la strada, limitando ulteriormente i rischi per l’uomo.
Un ulteriore possibile vantaggio risiede nell’ottimizzazione che un controllo auto-
matizzato del veicolo può apportare ai consumi, risultando in questo modo più
economico ed ecologico.
Ad oggi lo sviluppo di queste tecnologie ha portato molti dei veicoli sul mercato
a essere classificati al LIVELLO 1 o LIVELLO 2, con alcune soluzioni nel mondo
commerciale che raggiungono il LIVELLO 3.

1.2.1 Riconoscimento e mantenimento di corsia

Durante questo lavoro si analizzerà in particolar modo uno degli aspetti fonda-
mentali della guida autonoma, ossia il mantenimento di corsia. Il compito del
mantenimento di corsia consiste nell’attuazione delle manovre necessarie al fine di
mantenere il veicolo all’interno della corsia designata, un compito reso difficile dalla
grande varietà di percorsi come strade con una o più corsie, talvolta in assenza di
segnaletica orizzontale (strisce) e con curve più o meno impegnative.
Un sistema di mantenimento di corsia assolve essenzialmente a due compiti:

• Riconoscimento di corsia: consiste nel riconoscere e monitorare costante-
mente la posizione e l’allineamento del veicolo in relazione alla corsia racco-
gliendo informazioni dalle immagini fornite da una o più videocamere montate
a bordo del veicolo.

• Mantenimento di corsia: consiste nel controllo dello sterzo e della velocità
al fine di mantenere il veicolo all’interno della corsia.

Tale sistema, al fine di attuare un controllo efficiente, deve essere progettato alla
luce delle caratteristiche fisiche del veicolo per cui è destinato, pertanto necessita
della conoscenza delle dinamiche laterali e longitudinali del veicolo in questione.

1.3 Presentazione del lavoro svolto
Come è facile intuire il compito di monitorare costantemente il veicolo, l’ambiente
e allo stesso tempo prendere decisioni in tempo reale è oneroso a livello computa-
zionale, per questo i veicoli avanzati dispongono di hardware costosi e con elevata
capacità di calcolo.
Talvolta i limiti della potenza di calcolo a disposizione costringono ad adottare so-
luzioni non ottimali, l’elaborazione dell’immagine è infatti complessa e questo su
hardware limitati è fortemente problematico, costringendo a implementare control-
lori più semplici e veloci con prestazioni in termini di guida inferiori. Attualmente,
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infatti, il sistema di controllo implementato a bordo del modello fa uso di un con-
trollore con pianificazione del guadagno (gain scheduling), capace di mantenere il
veicolo all’interno della corsia rilevata dalla telecamera.
Tale soluzione, pur garantendo un funzionamento stabile, presenta prestazioni li-
mitate e non consente di gestire scenari di guida complessi.
Il lavoro, presentato in questa tesi, nasce quindi a partire da queste considerazio-
ni, con lo scopo di valutare la possibilità di emulare un controllore più complesso,
quindi non eseguibile in tempo reale sulla scheda Raspberry Pi5, mediante una rete
neurale leggera in grado di riprodurne il comportamento.
Si intende quindi sfruttare la capacità delle reti neurali di apprendere relazioni non
lineari e quindi imitare il comportamento di un controllore funzionante, secondo
il paradigma dell’apprendimento tramite imitazione (Imitation Learning), al fine
di ottenere un controllore sofisticato ed efficiente ma computazionalmente poco
oneroso.
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Capitolo 2

La piattaforma sperimentale
utilizzata

La piattaforma, utilizzata durante questo progetto, è un modello in scala 1:10 di un
veicolo a guida autonoma, il modello deriva da una competizione, la BFMC (Bosch
Future Mobility Challenge), alla quale l’ateneo ha partecipato in anni passati.
La BFMC mette alla prova team studenteschi fornendo loro una piattaforma stan-
dardizzata su cui sviluppare un algoritmo di guida autonoma, in grado di guidare il
modello in scala lungo un percorso che simula una scena cittadina, con intersezioni,
ostacoli, segnali stradali e diverse condizioni di visibilità.

Figura 2.1: Il modello utilizzato
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2.1 Descrizione del modello

Il modello (Fig. 2.1) dopo essere stato utilizzato nella BFMC 2019 è stato mante-
nuto e aggiornato dallo staff LED del Politecnico di Torino e da studenti tesisti che
negli anni si sono succeduti nello sviluppare diversi aspetti della guida autonoma
aggiornando nel tempo il modello con componenti con prestazioni superiori.
Nel particolare il modello fornito presenta un telaio in scala 1:10, il quale misura
37cm di lunghezza, 20cm di larghezza e presenta un interasse di 27cm. A bordo
sono poi alloggiati tutti i componenti necessari alla visione, elaborazione e gli orga-
ni di trasmissione compresi dell’elettronica necessaria al loro funzionamento (Fig.
2.2).
In particolare a bordo si trovano due schede elettroniche con compiti e caratteristi-
che ben distinti:

• Il controllo a basso livello del motore utilizzato per la trazione e del servo-
motore di sterzo è affidato a una scheda NUCLEO-F401RE, il software per
questa scheda è stato fornito inizialmente da Bosch e negli anni leggermente
migliorato. Il compito principale della scheda NUCLEO è ricevere tramite co-
municazione seriale i valori di velocità e angolo di sterzo calcolati dalla scheda
principale e gestire di conseguenza il motore e il servomotore garantendone il
corretto funzionamento.
Il protocollo di comunicazione utilizzato richiede alla scheda di rispondere ai
messaggi inviati dalla scheda Raspberry Pi5 con dei messaggi di conferma che
garantiscono la corretta ricezione ed esecuzione dell’azione richiesta, questo
protocollo garantisce maggiore robustezza e affidabilità alla comunicazione
tra le due schede.

• La logica di alto livello è eseguita su una scheda Raspberry Pi5 [7], ini-
zialmente la BFMC ha messo a disposizione una scheda Raspberry Pi4, la
quale è poi stata sostituita per aumentare la capacità di calcolo. I compiti
di questa scheda sono l’acquisizione/elaborazione delle immagini e il calcolo
dei valori di velocità e sterzo da applicare. Il software presente all’inizio di
questa esperienza comprende un ciclo di visione funzionante e un semplice
controllo, i quali forniscono un’ottima base di partenza per questo lavoro, il
tutto scritto in C++ con il supporto della libreria OpenCV per l’elaborazione
dell’immagine e il riconoscimento delle linee di demarcazione della corsia.

La comunicazione tra le due schede è realizzata mediante un cavo miniUSB che
supporta una comunicazione a 19200bps.
Il compito della cattura immagini è affidato a una fotocamera modello DFRobot
FIT0729, che presenta un sensore a 8 Megapixel e un campo di visione di 75°,
collegata direttamente al Raspberry Pi5 mediante una delle interfacce USB. La fo-
tocamera è montata sul veicolo a un’altezza di 15cm dal suolo, con un arretramento
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Figura 2.2: Schema logico di collegamento delle componenti

di 7cm rispetto all’assale anteriore e con un orientamento di circa 5° verso il basso.
Per l’attuazione dello sterzo è presente a bordo un servomotore RS-610WP.
Per quanto riguarda la trasmissione invece è presente un motore modello Reely
531009 con il relativo driver VNH5019A-E dotato di ponte H per l’inversione di
marcia, all’asse del motore è inoltre collegato un Encoder incrementale AMT10
utilizzato dal controllore NUCLEO,per la gestione in retroazione della velocità.
L’alimentazione per i motori è garantita da una scheda di potenza prototipale for-
nita da Bosch, la quale ha la funzione di alimentare tutti i componenti della vettura
ad eccezione delle due schede programmabili, per le quali è prevista un’alimenta-
zione separata.
A completare la dotazione di sensori di cui è dotato il veicolo troviamo un sensore
IMU (Inertial Measurement Unit, Unità di Misura Inerziale), connesso anch’esso
alla scheda NUCLEO.
Per quanto riguarda le prestazioni offerte dal modello, sono presenti limitazioni sia
per quanto riguarda l’angolo di sterzo che la velocità massima.
In particolare per quanto riguarda l’angolo di sterzo, esso è limitato nell’intervallo
[-25°,+25°], la limitazione è imposta direttamente a livello di programmazione nel
codice eseguito dal controllore NUCLEO, in modo tale da non provocare danni al
modello stesso.
La velocità è invece limitata a 1.8km/h, quest’ultima non è una limitazione impo-
sta dal hardware presente, bensì un limite imposto per evitare velocità eccessive,
alle quali il modello risulterebbe impossibile da controllare efficacemente con la
componentistica presente.
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2.1.1 Miglioramenti hardware apportati al modello

Durante lo svolgimento di questa tesi, in collaborazione con la collega e tesista
Alessia Sedda, sono stati apportati importanti aggiornamenti all’alimentazione del
veicolo.
In primo luogo dove in precedenza veniva utilizzato un powerbank per alimentare
la scheda Raspberry Pi5, la quale fornisce a sua volta alimentazione alla scheda
NUCLEO, è stato montato un gruppo di continuità (UPS) appositamente svilup-
pato per la scheda da noi utilizzata. La scheda Raspberry Pi5 infatti necessita di
una tensione di alimentazione di 5V con un assorbimento di corrente massimo pari
a 5A.
Per questo scopo è stato selezionato l’ UPS HAT (E) prodotto da Waveshare, appo-
sitamente progettato per la serie Raspberry Pi, il quale oltre a essere completamente
compatibile con la scheda presente a bordo, supporta la stessa alimentazione del
Raspberry Pi5 mediante USB-C per la ricarica delle 4 batterie serie 21700.
Durante lo svolgimento dei vari test è stato inoltre necessario sostituire la batteria
LiPo principale utilizzata per l’alimentazione dei motori, a questo scopo è stata
utilizzata una batteria al litio da 7,4V , composta da due celle da 3,6V collegate in
serie, il modello utilizzato è, nello specifico, la Gens ACE 2S 7,4V 6200MHA 100C.

2.2 Il tracciato

Anche il tracciato utilizzato durante il progetto è conforme a quanto indicato da
Bosch durante la BFMC, si tratta di un tracciato con diverse sezioni distinte con
tratti rettilinei, incroci e curve a 90°.
Il tracciato ha misure standard, in particolare le corsie sono larghe 35cm e possono
essere delimitate da linee tratteggiate o continue, entrambe larghe 2cm con i seg-
menti che compongono le strisce tratteggiate misurano di 4,5cm di lunghezza.
Alcuni esempi di tracciato sono riportati in Fig. 2.3.
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Figura 2.3: Esempi di tracciato
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Capitolo 3

Riconoscimento di corsia

Per il modello in questione è già stato sviluppato un algoritmo per il mantenimento
di corsia , il quale è stato argomento di tesi svolte in precedenza da alcuni colleghi
[8], alla quale si rimanda per eventuali approfondimenti riguardante la loro imple-
mentazione.
Tale algoritmo è stato ripreso e vi sono state apportate alcune migliorie con il pre-
zioso aiuto della collega e tesista Alessia Sedda [9].
In particolare, il codice, progettato per essere eseguito a bordo della scheda Ra-
spberry Pi5, è interamente sviluppato in C++. La scelta di questo linguaggio è
motivata dalle ottime prestazioni offerte dai linguaggi compilati rispetto a quelli
interpretati, e dalla vastità di librerie disponibili a supporto dello sviluppo: l’al-
goritmo di visione implementato fa infatti uso di molte delle funzioni fornite dalla
libreria OpenCV [10], la quale mette a disposizione potenti strumenti per l’elabo-
razione delle immagini, e per questo è molto utilizzata nel campo della visione
computerizzata.
Inoltre, il linguaggio C++ supporta nativamente la programmazione a oggetti,
caratteristica che consente una maggiore modularità e riusabilità del codice svilup-
pato.
Entrando nei particolari dell’algoritmo possiamo distinguere due parti fondamenta-
li, la parte relativa alla visione e interpretazione dell’ambiente circostante, la quale
attua il riconoscimento della corsia, argomento di questo capitolo, e una seconda
parte relativa al mantenimento di corsia, mediante il controllo laterale e longitudi-
nale del veicolo, trattata in seguito e parte del lavoro svolto durante questo progetto.
L’implementazione descritta in seguito, è suddivisa essenzialmente in due sezioni.
La prima ha lo scopo di estrarre un’immagine binarizzata nella quale vengono iso-
late linee di demarcazione della corsia, riconoscendone il colore e privilegiando la
segnaletica di cantiere distinta dal colore giallo, ignorando in loro presenza le altre
tipologie di segnaletica.
La seconda parte ha invece lo scopo di modificare il punto di vista dell’immagine,
rimuovendo la prospettiva, e in seguito individuare le linee di demarcazione della
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corsia, generando di conseguenza un riferimento da inseguire.
A partire dal riferimento è necessario poi calcolare gli errori di inseguimento ai quali
il controllore farà riferimento per le sue operazioni (Figura 3.1):

Figura 3.1: Errore di allineamento (ϵ) ed errore laterale (ψ)

• Errore di allineamento: definito come l’angolo tra l’asse longitudinale del
veicolo e la direzione della traiettoria di riferimento.

• Errore laterale: è definito come la distanza tra la traiettoria di riferimento
e il centro di massa del veicolo, spesso posto arbitrariamente in posizione cen-
trale lungo l’asse longitudinale del veicolo, o centralmente in corrispondenza
dell’asse anteriore.

3.1 Riconoscimento del colore
Una volta raccolta l’immagine, di dimensioni 640x480 pixel, essa viene elaborata
tramite una serie di trasformazioni il cui scopo è quello di ottenere un immagine
binaria della corsia che precede il veicolo.
Questa serie di operazioni, particolarmente critica per il funzionamento dell’algo-
ritmo, risulta particolarmente complessa da rendere stabile in ogni condizione di
luce, nonostante la mole di accorgimenti implementati a tale scopo.

Trasformazione HSV

Una volta immagazzinata l’immagine in una variabile di tipo Mat, la prima ope-
razione eseguita consiste nella conversione dell’immagine dal formato RGB (Red-
Green-Blue) al formato HSV (Hue Saturation Value) [11] [12].
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La rappresentazione HSV è una rappresentazione del colore alternativa alla classica
rappresentazione RGB.
All’interno della rappresentazione HSV le tre componenti sono:

• H - Tonalità: rappresenta la tonalità del colore, espressa come angolo in
riferimento alla ruota dei colori (Fig. 3.2).

• S - Saturazione: la saturazione rappresenta la "purezza" del colore, a partire
da 0 in assenza di colore (grigio) fino al valore 1 corrispondente al colore puro.

• V - Luminosità: indica quanto il colore è o meno scuro, un valore di 0
corrisponde a un pixel nero, mentre 1 indica la massima luminosità possibile.

Le tre componenti vengono espresse con valori su 8 bit, ossia nell’intervallo [0,255].
Lo spazio HSV è spesso utilizzato nelle applicazioni in cui è necessaria la mani-
polazione del colore, come ad esempio l’applicazione di filtri o la segmentazione
dell’immagine.

Figura 3.2: Ruota dei colori

3.1.1 Estrazione dei pixel bianchi e gialli

Una volta ottenuta la rappresentazione HSV dell’immagine di partenza, anch’es-
sa immagazzinata in una variabile di tipo Mat, si procede con la creazione di due
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maschere binarie distinte per il riconoscimento dei pixel bianchi e gialli, rispetti-
vamente maskWhite e maskYellow, parte del lavoro svolto dalla collega consiste,
infatti, nella gestione della guida autonoma in presenza di lavori stradali.
A questo scopo è innanzitutto necessario stabilire l’intervallo di valori di colore,
saturazione e luminosità da assegnare ai due colori da individuare.
Stabilire tali intervalli in modo idoneo a ogni possibile condizione di luce non è
tuttavia stato possibile, infatti per ovviare al problema è stata implementata una
procedura manuale di taratura delle due maschere, da eseguire prima dell’avvio
effettivo dell’algoritmo.
Una volta stabiliti gli intervalli ottimali per il bianco e il giallo, questi vengono uti-
lizzati per ottenere le due maschere binarie, in cui un valore di 255 (bianco) indica
un pixel del colore relativo alla maschera corrispondente, mentre 0 (nero) indica un
qualsiasi altro colore. Una volta ottenute le due maschere si procede a classificare
lo scenario di guida [9], in particolare da ogni maschera si estrae il numero di pixel
bianchi e gialli (whitePixels e yellowPixels) e sulla base di questo si classifica
lo scenario in:

• Presenza di lavori stradali: se yellowPixels ≥ whiteP ixels/2, in questo
caso per, il resto dell’algoritmo, viene utilizzata la maschera maskYellow;

• Assenza di lavori stradali: se yellowPixels < whiteP ixels/2, in questa
situazione si sovrappongono le due maschere mediante la funzione bitwise_or
fornita da OpenCV, ottenendo una maschera dove il valore 255 corrisponde a
un pixel bianco o giallo all’interno dell’immagine originale, e si procede con
l’algoritmo utilizzando il risultato di questa operazione.

Una volta ottenuta la maschera si procede ad applicare tale maschera all’imma-
gine, precedentemente trasformata da RGB a scala di grigi, tramite la funzione
bitwise_and fornita da OpenCV, nell’applicazione della funzione logica AND, i pi-
xel bianchi all’interno della maschera si comportano come trasparenti, ne risulta
quindi un’immagine dove le linee di demarcazione della corsia sono isolate dal resto
dell’immagine.

3.1.2 Riempimento delle discontinuità e binarizzazione del-
l’immagine

L’operazione di riempimento delle discontinuità viene applicata all’immagine, ot-
tenuta mediante l’applicazione della maschera, per rimuovere piccole discontinuità
dovute alla presenza di rumore nell’immagine originale.
Per queste operazioni viene definita una matrice unitaria 3x3 (kernel), la quale
definisce la regione locale su cui vengono applicate le seguenti operazioni:

1. Dilatazione: questa operazione eseguita sui singoli pixel dell’immagine per-
mette di espandere le zone bianche.
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Ogni pixel acquisisce il valore massimo presente nella porzione d’immagi-
ne individuata dalla matrice kernel, l’applicazione di questa trasformazione
permette alle zone bianche di espandersi, e di conseguenza le discontinuità di
piccole dimensioni all’interno di zone bianche vengono eliminate.

2. Erosione: questa operazione permette l’espansione delle zone nere.
Al contrario dell’operazione di dilatazione, ogni pixel acquisisce il valore mi-
nimo presente all’interno dell’area individuata dal kernel, tale operazione
permette l’eliminazione di piccole aree isolate di colore bianco.

L’applicazione in sequenza di queste due operazioni permette un generale aumento
della qualità dell’immagine, mantenendo le dimensioni originali degli elementi pre-
senti al suo interno.
Successivamente, al fine di ottenere un immagine binaria delle linee di demarcazio-
ne della corsia, l’intensità dei pixel dell’immagine viene confrontata con una soglia,
in questo caso 180: se il valore del pixel è maggiore della soglia un operazione di
saturazione porta il suo valore al massimo ammesso, ossia 255, in caso contrario al
pixel viene assegnato il valore 0, come mostrato nell’equazione (3.1).

bin(x) =

{
255 se x > 180

0 altrimenti
(3.1)

Il risultato delle operazioni di estrazione del colore è mostrato nella Figura 3.3.

Immagine originale Immagine processata

Figura 3.3: Risultato dell’applicazione delle operazioni di estrazione del colore

3.2 Calcolo del riferimento
In questa fase l’immagine binarizzata viene prima trasformata al fine di ottenere
una visione in prospettiva zenitale della corsia, e successivamente tramite una serie
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di trasformazioni e sfruttando un algoritmo ad hoc viene generato un riferimento
da inseguire e di conseguenza si determinano l’errore di allineamento alla corsia e
quello laterale.

3.2.1 Passaggio alla prospettiva zenitale

Il passo successivo è l’eliminazione della prospettiva dall’immagine, questo viene
fatto mediante un operazione IPM (Mappatura Prospettica Inversa), essa consi-
ste nell’individuare i vertici di un rettangolo all’interno dell’immagine originale, la
quale viene poi deformata per far coincidere tali punti con i vertici di un trapezio
inverso (Fig. 3.4).

(a) Immagine originale (b) Immagine processata

Figura 3.4: Risultato della trasformazione IPM

I punti selezionati all’interno dell’immagine originale (Fig. 3.4 (a)) descrivono
un rettangolo con base di dimensione corrispondente alla larghezza dell’immagine
e altezza pari al 60% dell’immagine, posizionato nella parte bassa del riquadro, la
scelta della posizione favorisce l’eliminazione delle parti di sfondo indesiderate e
riduce di conseguenza la quantità di informazione da elaborare in seguito.

3.2.2 Trasformazione di Hough

La trasformazione di Hough[13] è uno strumento matematico fortemente utilizzato
nel campo della visione artificiale, questo operatore matematico è infatti in grado
di estrarre dallo spazio dell’immagine una rappresentazione matematica delle linee
che la compongono.
In particolare le linee individuate vengono espresse in forma polare, come mostrato
nell’equazione (3.2).
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r = xcos(α) + ysin(α) (3.2)

Tramite l’equazione (3.2), è possibile rappresentare una retta come un punto di
coordinare (r, α), dove r rappresenta la distanza tra la retta e l’origine degli assi e
α l’angolo sotteso tra l’asse x e la direzione perpendicolare alla retta stessa.
L’equazione (3.2) presenta, inoltre, il vantaggio di poter rappresentare anche linee
verticali, a differenza della classica rappresentazione in forma esplicita y = mx+ q.
Tale operazione è altamente costosa dal punto di vista computazionale, è infatti
eseguita su una versione dell’immagine con dimensioni ridotte, in particolare si è
scelto di dimezzare sia l’altezza che la larghezza, in modo tale da mantenere le
proporzioni originali dell’immagine.
La funzione utilizzata nell’algoritmo implementato è HoughLinesP, un’implementa-
zione con approccio probabilistico dell’algoritmo di Hough, la quale fornisce le linee
che compongono l’immagine, espresse tramite due coppie di coordinate cartesiane,
le quali rappresentano i punti estremi del segmento individuato. Il risultato della
trasformata di Hough è rappresentato in Figura 3.5.

Figura 3.5: Rappresentazione delle linee trovate dalla trasformata di Hough, in
particolare vengono evidenziate con colori distinti quelle che compongono la linea
destra e sinistra della corsia.

3.2.3 Riconoscimento delle linee di corsia

Una volta ottenuto, mediante la trasformata di Hough, l’insieme lines delle linee,
che compongono l’immagine, è necessario individuare con precisione le due linee
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che delimitano la corsia.
L’algoritmo implementato esegue questa operazione in 2 passi:

Figura 3.6: Finestra per il riconoscimento delle linee

1. Iterando sull’insieme lines vengono classificati i segmenti individuati come
appartenenti alla linea destra o sinistra, in base alla posizione occupata al-
l’interno dell’immagine (Fig. 3.6).
Sulla base del risultato di questa classificazione si procede con il passaggio
successivo ricercando una o entrambe le linee all’interno dell’immagine.

2. Tramite un algoritmo che implementa uno scorrimento a finestra vengono in-
dividuate le linee di corsia.
L’immagine viene sezionata orizzontalmente in 8 finestre (da qui indicheremo
con S l’insieme delle finestre), per ognuna delle quali viene calcolato l’isto-
gramma (equazione 3.3), ottenendo, per ogni finestra, un vettore contenente
il numero di pixel bianchi nella colonna corrispondente, le linee di corsia si
troveranno dunque in corrispondenza dei massimi all’interno di tale vettore.

Histi(s) =
∑
j∈s

sji i ∈ [0, col], s ∈ S (3.3)

Iterando su S tale procedimento l’algoritmo è in grado di individuare le linee
di corsia in 8 punti a diverse altezza all’interno dell’immagine.
A partire dai punti individuati viene generato il riferimento di centro corsia
come unione dei punti medi della posizione delle due linee individuate in ogni
finestra.
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Figura 3.7: Risultato dell’algoritmo di scorrimento a finestra, considerando 15 fi-
nestre

3.2.4 Calcolo dell’errore di allineamento

Al fine di calcolare l’errore di allineamento ϵ (Fig. 3.1) è necessario individuare la
direzione dell’asse longitudinale del veicolo e quella della traiettoria di riferimento.
Facendo riferimento all’immagine in prospettiva zenitale (Fig. 3.4) l’asse longitu-
dinale del veicolo coincide con la mezzeria dell’immagine.
All’interno dell’algoritmo proposto la traiettoria di riferimento, ottenuta tramite
l’algoritmo di scorrimento a finestra descritto in precedenza, viene approssimata
con una retta tale da minimizzare la distanza media dal riferimento stesso in ogni
suo punto.
L’operazione di approssimazione viene fatta mediante una regressione lineare, il cui
scopo è approssimare un insieme di n punti con una retta di equazione

y = mx+ q (3.4)

dove q rappresenta l’intercetta, ossia l’intersezione con l’asse y, calcolata secondo
l’equazione (3.5)

q =
[(
∑
y)(

∑
x2)− (

∑
x)(

∑
xy)]

[n(
∑
x2)− (

∑
x)2]

(3.5)

e m il rapporto incrementale, ottenibile dall’equazione (3.6)

26



Riconoscimento di corsia

m =
[n(

∑
(xy)− (

∑
x)(

∑
y)]

[n(
∑
x2)− (

∑
x)2]

(3.6)

In particolare il rapporto incrementale m fornisce l’informazione riguardante la
direzione della retta che approssima la traiettoria di riferimento.
La misura in rad dell’errore di allineamento può essere ottenuta come segue

ψ = arctan

(
1

m

)
(3.7)

3.2.5 Calcolo dell’errore laterale

Nell’algoritmo proposto l’errore laterale ϵ (Fig. 3.1) viene espresso in funzione della
dimensione della corsia, in particolare viene calcolato come rapporto tra la distanza
del terzo punto della traiettoria di riferimento con la mezzeria dell’immagine, e la
distanza tra le due linee di demarcazione della corsia (equazione 3.8).

ϵp =
rx − 1

2
c

lr,x − ll,x
(3.8)

dove:

• ϵp è l’errore laterale espresso in funzione della larghezza della corsia

• r punto di rifermento, espresso in pixel

• c numero di colonne dell’immagine

• lr,x − ll,x larghezza della corsia in pixel

A partire dalla dimensione della corsia, che, nel nostro caso, è nota e misura 35cm,
possiamo calcolare l’errore laterale in metri come segue:

ϵ = ϵp · 0.35 (3.9)

La scelta dell’utilizzare il terzo punto della traiettoria di riferimento è dettata da
due fattori principali, in primo luogo si può osservare che nella parte d’immagine
che ritrae la corsia nei punti più vicini all’asse anteriore del veicolo la precisione nel
riconoscimento delle linee è minore, inoltre l’utilizzo di un punto leggermente più
avanzato favorisce un’azione anticipata del controllore.
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Mantenimento di corsia

Lo scopo di un algoritmo di mantenimento di corsia è quello di gestire la sterzata
ed eventualmente accelerare o frenare il veicolo, con lo scopo di mantenere il veicolo
all’interno della corsia designata.
Nella pratica l’obbiettivo è ottenere un controllore in grado di mantenere il sistema
stabile nell’intorno dello stato

e =

[
ψ
ϵ

]
=

[
0°
0m

]
(4.1)

dove ψ è l’errore di allineamento e ϵ l’errore laterale (Fig. 3.1).
Il riferimento (equazione 4.1) corrisponde alla condizione in cui il veicolo è perfet-
tamente allineato e in posizione centrale in relazione alla corsia designata.
Nel campo della ricerca le strategie di controllo più comuni per il mantenimento di
corsia sono:

• Controllo Predittivo del Modello (MPC) [14]: rappresenta una delle
soluzioni più raffinate ed efficaci nel controllo di sistemi non lineari, descritti
dal sistema di equazioni (4.2).
Il principio su cui si basa un MPC è la determinazione dell’azione di controllo
u∗(t : t + TP ) tramite la predizione dell’evoluzione dell’uscita del sistema
ŷ(τ, x(t), u(t : τ)) all’interno dell’intervallo temporale [t : t+ τ ].{

ẋ(t) = f(x(t), u(t))

y(t) = g(x(t), u(t))
(4.2)

Il valore di u∗(t : t+TP ) viene predetto risolvendo un problema di ottimizza-
zione della funzione di costo J(u(t : t+ TP )) appositamente definita.
Matematicamente, in un sistema di elaborazione a tempo discreto con tempo
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di campionamento Tc, ciò si traduce nella risoluzione del seguente problema
di ottimizzazione a ogni tk = k · Tc:

u∗(tk : tk + TP ) = argmin
û(·)

J
(
û(tk : tk + TP )

)
s.t.
˙̂x(τ) = f

(
x̂(τ), û(τ)

)
, x̂(tk) = x(tk),

ŷ(τ) = g
(
x̂(τ), û(τ)

)
,

x̂(τ) ∈ XC , ŷ(τ) ∈ YC , û(τ) ∈ UC , τ ∈ [tk, tk + TP ].

(4.3)

I primi due vincoli imposti garantiscono la coerenza delle soluzioni trovate
con le dinamiche del sistema controllato, mentre XC , YC e UC , sono insiemi
che descrivono eventuali limitazioni aggiuntive imposte al controllore.
La funzione di costo J è una funzione quadratica dell’errore di inseguimento
dell’uscita predetta ỹP , e della variabile di controllo ũ (equazione (4.4)), la
quale, introducendo le matrici diagonali semidefinite positive Q, P ed R,
definisce il comportamento e le prestazioni del controllore.

J
(
u(t : t+ Tp)

)
=

∫ t+Tp

t

(
∥ỹp(τ)∥2Q + ∥ũ(τ)∥2R

)
dτ + ∥ỹp(t+ Tp)∥2P . (4.4)

Il controllo predittivo del modello, nell’ambito della guida autonoma, offre
la possibilità di gestire efficacemente anche limitazioni complesse, come la
presenza di altri veicoli o di eventuali ostacoli in carreggiata.

• Controllo PID [15]: un controllore Proporzionale Integrale Derivativo è un
controllo in retroazione, in grado di attuare un’azione correttiva sulla base di
tre termini (Fig. 4.1):

Figura 4.1: Schema di in controllore PID

a) Termine proporzionale: determinato dal prodotto del guadagno pro-
porzionale Kp e dell’errore di inseguimento corrente, fornisce un’azione
correttiva solo nel momento in cui è presente un errore.
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b) Termine integrale: calcolato integrando nel tempo l’errore di inse-
guimento e pesando tale risultato con il fattore moltiplicativo ki, tie-
ne in considerazione gli errori passati, accumulandoli e accrescendo di
conseguenza la risposta correttiva per errori persistenti nel tempo.

c) Termine derivativo: tramite il calcolo della derivata dell’errore si è in
grado di stimarne il futuro andamento, e di conseguenza applicare un
fattore di smorzamento al sistema.

Un controllore PID presenta tra i sui vantaggi la facilita e la velocità di pro-
gettazione, caratteristiche che lo hanno reso estremamente diffuso nell’ambito
dell’automazione.
Lo svantaggio principale risiede nella necessità di integrare e differenziare
l’errore di inseguimento nel tempo, un’operazione tipicamente onerosa.

• Controllore Stanley [16]: si tratta di una strategia di controllo sviluppata
appositamente per l’inseguimento di una traiettoria.
La legge di controllo applicata per il calcolo del valore di sterzo è riportata
nell’equazione (4.5).

δ = ψ + arctan

(
kϵ

v + kv

)
(4.5)

dove:

– δ:valore di sterzo calcolato

– ψ: errore di allineamento

– ϵ: errore laterale

– v: velocità del veicolo

– k: parametro da tarare, tale parametro influisce sull’intensità con cui il
controllore corregge l’errore laterale

– kv: costante, tipicamente piccola, utile a evitare valori eccessivi di sterzo
con velocità molto ridotte.

Il controllore Stanley , non richiedendo il calcolo del gradiente degli errori di
inseguimento risulta computazionalmente molto efficiente, al pari di soluzioni
come controllori con pianificazione del guadagno, ma con il vantaggio della
gestione dell’angolo di sterzo in funzione della velocità.
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4.1 Modello cinematico del veicolo

Nell’applicazione riguardante questa tesi, viste le velocità contenute, le dinamiche
laterali del veicolo sono ridotte al minimo, e per questo risultano trascurabili, è
quindi sufficiente nella progettazione del controllo fare riferimento a un modello
cinematico.
Un modello cinematico è una semplificazione del reale moto di un oggetto, ottenuto
tenendo in considerazione solo le relazioni cinematiche inerenti ad accelerazioni e
velocità del baricentro del veicolo.
Il modelli cinematici tipicamente utilizzati nella modellazione di autoveicoli assimi-
lano il veicolo a un corpo rigido con soli tre gradi di libertà nel sistema di riferimento
dello stesso, rispetto ai sei gradi di libertà introdotti nei modelli dinamici più com-
plessi (Fig. 4.2), in particolare i gradi di libertà concessi al veicolo nel modello
cinematico in questione sono:

1. Spostamento lungo la coordinata x (asse longitudinale)

2. Spostamento lungo la coordinata y (asse trasversale)

3. Imbardata, ossia la rotazione rispetto all’asse z

Figura 4.2: Sistema di riferimento del veicolo

Il modello può essere quindi descritto dal sistema di equazioni, espresse nel sistema
di rifermento del veicolo (Fig. 4.2):
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{
ax = v̇x − rvy

ay = v̇y + rux
(4.6)

dove:

• ax e ay: accelerazione longitudinale e trasversale del veicolo

• vx e vy: velocità longitudinale e trasversale del veicolo

• r: velocità angolare di imbardata

4.1.1 Modello cinematico monotraccia

Il modelli cinematico monotraccia [17], il quale sarà il riferimento per la proget-
tazione dei controllori in questa tesi, semplifica il moto di un veicolo trascurando
tutti i trasferimenti di carico e le dinamiche che ne conseguono, inoltre non vengono
tenute in conto le differenti traiettorie seguite dai quattro pneumatici, collassandoli
in due sole ruote, poste a una distanza pari all’interasse del veicolo l, lungo l’asse
longitudinale. Il baricentro del veicolo viene poi posto in un punto arbitrario lungo
tale asse, data la forte somiglianza con il mezzo questo modello viene spesso indi-
cato con il nome di modello cinematico a bicicletta.
Tale semplificazione permette di rappresentare il moto di un veicolo con il seguente
sistema equazioni differenziali a tempo continuo:


ẋ = v · cos(ψ + β)

ẏ = v · sin(ψ + β)

ψ̇ = v
lr
· sin(β)

(4.7)

β = arctan

(
lr

lr + lf
· tan(δ)

)
(4.8)

dove:

• β: angolo tra il vettore velocità del centro di massa e l’asse longitudinale del
veicolo.

• lr e lf : distanza dal baricentro dell’asse posteriore e anteriore.
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Figura 4.3: Modello cinematico monotraccia

4.2 Implementazione dei controllori

La scelta del controllore da utilizzare deve necessariamente tenere conto delle spe-
cifiche e delle potenzialità del modello in questione, in particolare data la limitata
potenza di calcolo a disposizione non è possibile implementare un controllore allo
stato dell’arte, come ad esempio un controllore MPC.
Per questo motivo durante questo lavoro sono stati utilizzati controllori più leggeri,
ma comunque in grado di svolgere con discreta efficacia il compito assegnato.
In particolare, nella prima parte del lavoro è stato utilizzato il controllore con piani-
ficazione del guadagno [8] (gain scheduling) sviluppato durante il lavoro dei tesisti
precedenti, mentre in seguito è stato sviluppato un Controllore Stanley.
Prima di procedere con le prove e l’implementazione dei controllori, al software
presente sono state apportate alcune modifiche con lo scopo di rendere la sua ese-
cuzione a tempo discreto.
In primo luogo è stata implementata la classe Semaphore, utilizzata al fine di sin-
cronizzare l’esecuzione dei thread adibiti alla cattura delle immagino, alla comu-
nicazione con la scheda Nucleo e all’esecuzione del controllo. L’implementazione
della classe Semaphore è mostrata nel Listato 4.1.
La classe Semaphore permette di interrompere l’esecuzione dei thread mediante la
chiamata del metodo wait(), in attesa della chiamata del metodo signal() da
parte di un gestore di interrupt, eseguito ciclicamente con periodo fisso Tc.
Il tempo di campionamento Tc viene tarato appositamente per ogni versione del
software, in funzione del tempo di esecuzione del controllo.
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1 class Semaphore{
2 private:
3 std:: mutex mtx;
4 int count;
5 public:
6 explicit Semaphore (int initialValue) : count(

initialValue){}
7 void wait(){
8 while (true){
9 mtx.lock();

10 if (count > 0){
11 count --;
12 mtx.unlock ();
13 break;
14 }
15 mtx.unlock ();
16 std:: this_thread ::yield ();
17 }
18 }
19 void signal (){
20 mtx.lock();
21 count ++;
22 mtx.unlock ();
23 }
24 void reset() {
25 mtx.lock();
26 count = 0;
27 mtx.unlock ();
28 }
29 };

Listato 4.1: Implementazione della classe semaphore

4.2.1 Controllore con pianificazione del guadagno

La strategia di controllo implementata prevede un controllo diviso in due fasi, nella
prima si determina un primo valore di sterzo δψ, basato sul valore del rapporto
incrementale m (equazione 3.6), a tale valore viene successivamente sommato un
valore correttivo δϵ calcolato sulla base dell’errore ϵp (equazione 3.8). L’angolo di
sterzo viene poi calcolato come la somma dei due valori.

δ = δψ + δϵ (4.9)
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Controllo basato sull’errore di allineamento

La strategia di controllo consiste nell’applicare un comando proporzionale al valore
dell’errore di allineamento, in particolare valori elevati del modulo m indicano pic-
coli angoli di errore e di conseguenza il controllore impone un angolo di sterzo basso,
contrariamente, al decrescere del valore assoluto di m, viene aumentato l’angolo di
sterzo.
La strategia implementata è riassunta all’interno della Tabella 4.1, la quale forni-
sce il modulo del valore di sterzo da applicare in relazione al modulo del rapporto
incrementale m.

Tabella 4.1: Relazione tra |m| e |δψ|

|m| |δψ|

2 ≤ |m| < 3.15 20
3.15 ≤ |m| < 3.48 17
3.48 ≤ |m| < 3.7 14
3.7 ≤ |m| < 4.05 11
4.5 ≤ |m| < 4.33 9
4.33 ≤ |m| < 6 6
6 ≤ |m| < 8.14 5
8.14 ≤ |m| < 10 4
10 ≤ |m| < 12 3
12 ≤ |m| < 14 2

|m| ≥ 16 1

Una volta ottenuto il modulo, il segno dell’angolo di sterzo viene imposto concorde
con il rapporto incrementale m (Equazione 4.10).

δψ = |δψ| · sgn(m) (4.10)

Controllo basato sull’errore laterale

Una volta calcolato δψ, il fattore correttivo basato sull’errore laterale δϵ viene cal-
colato applicando la Tabella 4.2.
Al fine di mantenere la stabilità del controllo si è data la priorità alla correzione
dell’errore di allineamento, in quanto più critico per il corretto mantenimento di
corsia, per questo motivo la correzione dell’errore laterale viene attuata solo se il
valore di sterzo δψ è nell’intervallo [-10°, 10°], in più tale correzione viene appli-
cata solo se concorde al valore di sterzo δψ in modo da non inficiare la correzione
dell’errore angolare.
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Tabella 4.2: Relazione tra δψ, ϵ e δϵ

δψ[deg] ϵ[m] δϵ[deg]

−10 ≤ δψ ≤ 0

−0.10 ≤ ϵ < −0.05 -1
−0.20 ≤ ϵ < −0.10 -1.5
−0.30 ≤ ϵ < −0.20 -2.5
−0.40 ≤ ϵ < −0.30 -3.5
−0.50 ≤ ϵ < −0.40 -4.5

ϵ < −0.50 -5

0 ≤ δψ ≤ 10

0.05 ≤ ϵ < 0.10 1
0.10 ≤ ϵ < 0.20 1
0.20 ≤ ϵ < 0.30 2
0.30 ≥ ϵ < 0.40 2
0.40 ≥ ϵ < 0.50 3

ϵ > 0.50 3

Controllo della velocità

Nella soluzione implementata la velocità viene mantenuta costante a un determinato
valore durante le fasi di rettilineo, la velocità di riferimento in rettilineo è di circa
RefSpeed=0,08m/s , nel momento in cui è richiesto un valore di sterzo maggiore la
velocità viene diminuita per concedere più tempo al controllore di agire e correggere
l’errore di inseguimento.
L’algoritmo per il controllo della velocità è riassunto nella Tabella 4.3.

Tabella 4.3: Relazione tra l’angolo di sterzo δ e la velocità v

|δ|[deg] v[m/s]

0 ≤ |δ| < 2 RefSpeed
2 ≤ |δ| < 3 RefSpeed·0.9
3 ≤ |δ| < 4.5 RefSpeed·0.85
4.5 ≤ |δ| < 6 RefSpeed·0.75

6 ≤ |δ| 0.068

4.2.2 Controllore Stanley

Parte del lavoro svolto durante la stesura di questa tesi è stato finalizzato allo svi-
luppo di in controllore alternativo all’originale proposto negli anni passati.
Tra le possibili scelte, data la potenza limitata, la scelta è ricaduta sul Controllo-
re Stanley [16] [18], una soluzione sviluppata appositamente per l’inseguimento di
una traiettoria e ben nota nel campo della ricerca sulla guida autonoma per le sue
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grandi potenzialità.

Modello fisico di riferimento

Il modello cinematico adottato è quello monotraccia descritto nella sezione 4.1.1,
con una semplificazione, il baricentro del veicolo viene posizionato sull’asse anteriore
(Fig. 4.4). Questa semplificazione porta a far coincidere l’angolo di sterzo δ con
l’angolo tra l’asse del veicolo e la velocità del baricentro β.
Il modello risulta quindi completamente descritto dal seguente sistema di equazioni:


ẋ = v · cos(ψ + δ)

ẏ = v · sin(ψ + δ)

ψ̇ = v
lr
· sin(δ)

(4.11)

Figura 4.4: Modello monotraccia utilizzato per la progettazione del controllore
stanley

Strategia di controllo

Il controllore Stanley (equazione 4.12) segue una strategia di controllo differente
dal controllore con pianificazione del guadagno visto in precedenza, nonostante ne
condivida alcune caratteristiche funzionali.

δ = ψ + arctan

(
kϵ

v + kv

)
, δ ∈ [−δmax, δmax] (4.12)
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Dall’equazione (4.12) si può notare che similmente al controllore presentato in pre-
cedenza l’angolo di sterzo viene calcolato come la somma di due contributi, i quali
sono però indipendenti nel controllore Stanley.
In particolare il primo contributo

δψ = ψ (4.13)

Ha lo scopo di correggere l’errore di allineamento, con risultati simili a quelli otte-
nuti dal controllore con pianificazione del guadagno (PG).
Un approccio diverso viene invece utilizzato per la correzione dell’errore laterale
(equazione 4.14), infatti tale correzione avviene indipendentemente dal valore di
δψ.

δϵ = arctan

(
kϵ

v + kv

)
(4.14)

La differenza fondamentale tra i due controllori presi in esame, a favore del con-
trollore Stanley risiede nella gestione dello sterzo in funzione della velocità, infatti
nella correzione dell’errore laterale il controllore Stanley tiene in conto la velocità,
fornendo un azione più dolce tanto maggiore è la velocità del veicolo.
Questo permette di non gestire la velocità in funzione dello sterzo bensì il contra-
rio, l’azione sullo sterzo si adatta alla velocità favorendo una maggiore stabilità
permettendo velocità più sostenute.
L’implementazione del controllo è mostrata in Listato 4.2.

1 float k = 0.1;
2 float kv = 0.001;
3

4 steering_value = heading_err + std:: atan2((k*lateral_error) /
(refSpeed + kv));

Listato 4.2: Calcolo dell’angolo di sterzo nel controllore Stanley
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Capitolo 5

Emulazione tramite rete neurale

Lo scopo di questo lavoro è valutare la possibilità di sostituire gli algoritmi di rico-
noscimento e mantenimento della corsia presentati nei capitoli 3 e 4 con una rete
neurali in grado di emularne il comportamento.
In questo contesto il vantaggio principale offerto da una rete neurale, risiede nel
suo costo computazionale costante. Essa infatti, a differenza algoritmi presentati
in precedenza, nella fase di inferenza ha un costo computazionale costante e indi-
pendente dal valore dei parametri che ne definiscono il comportamento.
Tale caratteristica può permettere l’esecuzione di controllori complessi anche su
hardware limitati.
Nell’ambito dell’automazione e della guida autonoma, tra le tecniche più utilizzate
figurano:

• Apprendimento per rinforzo (Reinforcement Learning, RL) [19]: è un pa-
radigma nel campo delle reti neurali, nel quale il modello interagisce con un
ambiente dinamico al fine di sviluppare autonomamente una legge di controllo
ottimale.
Durante la fase di apprendimento l’agente, osservando l’ambiente esterno, as-
sume una serie di decisioni, e riceve una ricompensa/penalità sulla base della
bontà della decisione presa (Fig. 5.1), adattando la propria politica compor-
tamentale al fine di massimizzare la ricompensa cumulata nel tempo.
Il comportamento della rete neurale può quindi essere condotto verso le pre-
stazioni desiderate adottando diverse strategie di ricompensa.
Questo paradigma è classificato nelle tecniche di addestramento non super-
visionato, dove è la rete stessa a dover sviluppare una legge di controllo in
grado di massimizzare la funzione di ricompensa.
Tale paradigma è tuttavia molto dispendioso e difficile da controllare, dal
momento che viene richiesta la simulazione anche fisica dell’ambiente oltre al-
l’inferenza e all’adattamento dei parametri della rete neurale durante la fase
di addestramento.
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Nel campo della guida autonoma è possibile allenare una rete neurale a ese-
guire compiti come il mantenimento di corsia, tuttavia l’approccio esplorativo
della rete, soprattutto nelle fasi iniziali, ne impedisce l’allenamento a bordo
dei un modello fisico, anche se in scala, del veicolo, richiedendo l’utilizzo di
software di simulazione costosi e complessi.

Figura 5.1: Schema generale del processo di apprendimento per rinforzo

• Allenamento per imitazione (Imitation Learning, IL) [20]: è un paradig-
ma di allenamento supervisionato, il quale prevede che la rete neurale venga
allenata a partire da un dataset, che descrive il comportamento di un agente
esperto, sia esso umano o un controllore precedentemente implementato e te-
stato.
All’interno del datatset sono raccolti una serie di esempi dai quali la rete
neurale deve estrapolare la relazione che lega gli stati osservati e la corretta
azione da compiere.
Formalmente lo scopo della rete neurale, in fase di allenamento, è quello di
apprendere una legge di controllo π(a|s) che approssimi nel modo migliore pos-
sibile la legge di controllo dell’agente esperto, come mostrato nell’equazione
(5.1).

π(a|s) ≃ π∗(a|s) (5.1)

Dove:

– s: stato dell’ambiente

– a: azione calcolata

– π∗(a|s): legge di controllo dell’agente esperto
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I vantaggi dell’apprendimento per imitazione si riflettono in una fase di alle-
namento più rapida ed economica, e in un comportamento più prevedibile del
modello allenato, in quanto esso riflette il comportamento dell’agente esperto
utilizzato durante la creazione del dataset, dal quale il modello eredita, tut-
tavia, anche le limitazioni e gli errori.
Nel campo della ricerca sulla guida autonoma [21], è possibile allenare reti
neurali al fine di emulare sia guidatori umani che controllori automatici.

In questo lavoro si è scelto di implementare una rete neurale in grado di eseguire
simultaneamente il riconoscimento e il mantenimento di corsia, mediante appren-
dimento per imitazione dei controllori presentati nel capitolo 4.
La scelta di seguire l’approccio dell’apprendimento per imitazione è dettata dalla
maggiore velocità e stabilità durante la fase di allenamento della rete neurale.

5.1 Datatset

Durante questo lavoro si è scelto di generare il dataset interamente a bordo del
modello in scala, non ricorrendo alla generazione di immagini sintetiche.
Al fine di ottenere un dataset rappresentativo della legge di controllo applicata dai
controllori per il mantenimento di corsia implementati nei capitoli 4.2.1 e 4.2.2,
sono state apportate una serie di modifiche al software sviluppato in precedenza.
Nello specifico al codice è stato aggiunto un sistema di acquisizione sistematica dei
dati su file, che prevede la creazione di un apposito file in formato CSV relativo ad
ogni prova svolta con il veicolo (Listato 5.1).
All’interno del file log.csv, relativo ad ogni prova del modello, vengono riportati

1 // Creazione e scrittura del file di log
2 string log_path = ".../ log.csv";
3 ofsteram logFile(log_path);
4 logFile << "iteration ,steeringvalue ,speedvalue ,slope ,offset";
5 ...
6 while(true){ // Ciclo di elaborazione e controllo
7 ...
8 // Scrittura dei dati sul file di log
9 logFile << iter_cont << "," << steeringvalue << "," <<

speedvalue << "," << m << "," << center_lane [3].x-
birdsEyeView.cols / 2 << endl;

10 ...
11 }

Listato 5.1: Generazione del file CSV
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i valori ottenuti dal ciclo di riconoscimento della corsia: il rapporto incrementale
m e l’errore laterale in rapporto alla dimensione della corsia ϵp; oltre alle uscite del
controllore: angolo di sterzo δ e la velocità v, come mostrato nel Listato 5.1.
Ai dati contenuti nel file data.csv viene associato un indice incrementale, usato
come identificativo per abbinare i valori di uscita del controllo con la relativa im-
magine catturata dalla fotocamera, le quali vengono salvate durante l’esecuzione in
formato PNG.

Figura 5.2: Esempio di immagine contenuta nel dataset

La procedura di raccolta dati è stata eseguita facendo percorrere al veicolo in scala
il tracciato guidato autonomamente da uno dei due controllori.
Per ogni immagine acquisita è stato registrato il corrispondente comando di sterzo
emesso dal controllore.
Poiché questo metodo avrebbe prodotto due dataset distinti, ciascuno composto da
immagini differenti etichettate solo con uno dei due controllori, è stata introdotta
una fase di elaborazione offline, eseguita per comodità a bordo della scheda Rasp-
Berry Pi5.
Durante l’elaborazione offline, ogni immagine registrata è stata processata anche
mediante il controllore non utilizzato durante la sua generazione, ottenendo in que-
sto modo, per lo stesso frame, entrambe le etichette di sterzo.
Questo processo consente di massimizzare la quantità di dati disponibili e garanti-
sce la comparabilità diretta tra i due controllori sulle medesime condizioni visive.
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Il dataset ottenuto mediante questo processo risulta quindi composto di 1800 im-
magini, etichettate con i comandi di sterzo δST e δPG, rispettivamente ottenuti
mediante l’elaborazione delle immagini dal controllore Stanley e dal controllore con
pianificazione del guadagno, tali informazioni sono immagazzinate all’interno del
file dataset.csv.
In previsione della fase di allenamento il dataset è stato suddiviso in modo casuale
in tre sottoinsiemi:

• Insieme di addestramento: utilizzato nella fase di allenamento della rete,
comprende circa l’80% dei dati raccolti.

• Insieme di validazione: utilizzato per valutare l’andamento dell’appren-
dimento della rete neurale durante l’allenamento, è composto dal 10% dei
dati.

• Insieme di test: riservato alla fase finale, nella quale le capacità sviluppate
dalle reti neurali vengono valutate, comprende il restante 10% dei dati.

L’utilizzo assegnato ai singoli elementi del dataset è riportato nel campo "utilizzo"
del file dataset.csv.
Un esempio del contenuto del file datset.csv e della relativa immagine sono
visionabili nella Figura 5.2 e nella Tabella 5.1.

Tabella 5.1: Contenuto del file dataset.csv relativo alla Figura 5.2

id δgs δstanley ψ ϵ utilizzo

47 -7.5 -14.2016 -12.355 -0.005689 training

5.2 Architetture delle reti neurali utilizzate
La scelta dell’architettura della rete neurale gioca un ruolo di fondamentale impor-
tanza, la rete neurale utilizzata deve infatti rispettare due criteri fondamentali:

a) Allenamento stabile: la rete neurale deve avere caratteristiche che ne ren-
dano possibile l’allenamento in tempi contenuti e con dataset di dimensioni
limitate.
Per questo motivo vengono preferite reti delle quali siano reperibili versioni
pre-allenate su dataset generici, quale ad esempio ImageNet, in modo tale da
poterne sfruttare le capacità di generalizzazione sviluppate.

b) Efficienza in fase di inferenza: data la limitata potenza computazionale
della scheda a disposizione si prediligono modelli efficienti e non eccessiva-
mente profondi.
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Non sono ritenute valide architetture che richiedono tempi di inferenza supe-
riori a 200ms sulla scheda Raspberry Pi5.

Tra le opzioni prese in considerazione due architetture sono state scelte per questo
lavoro, ResNet18 e MobileNet V3 - Small, entrambe queste reti sono rese di-
sponibili all’interno del framework PyTorch, il quale ne mette inoltre a disposizione
una versione pre-allenata sul dataset ImageNet [22] [23].

5.2.1 ResNet18

ResNet18 [24] è un’architettura convoluzionale composta da 18 livelli con pesi, ap-
partenente alla famiglia delle Residual Networks.
La sua caratteristica principale è l’utilizzo dei blocchi residuali, moduli che inclu-
dono una scorciatoia (skip connection) in grado di facilitare la propagazione del
gradiente e di stabilizzare l’addestramento.
Ogni blocco è costituito da due convoluzioni 3×3 seguite da Batch Normalization
e attivazione ReLU (Fig. 5.3).
La presenza delle skip connection permette alla rete di apprendere trasformazioni
residue, rendendo possibile l’addestramento di architetture più profonde e miglio-
rando la capacità di generalizzazione.
ResNet18 offre un buon compromesso tra capacità rappresentativa e complessità
computazionale ed è spesso impiegata come estrattore di caratteristiche (backbo-
ne) in modelli di visione basati sul deep learning.

Figura 5.3: Architettura di ResNet18

Dal momento che la rete neurale ResNet18 è stata sviluppata per il compito della
classificazione di immagini, sono necessari alcuni adattamenti per permetterne l’u-
tilizzo in contesti regressivi, quale è l’emulazione dei controllori in questione.
In particolare la "testa" classificatrice, composta da un livello completamente con-
nesso (FC ) seguito da un blocco softmax (Fig. 5.3 (a)), è stata completamente
sostituita con un livello completamente connesso che presenta un’uscita di dimen-
sione 1, come mostrato nel Listato 5.2.
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La rete neurale così ottenuta presenta una struttura portante convoluzionale pre-
addestrata su ImageNet, impiegata come estrattore di caratteristiche dall’immagine
in ingresso, e una testa regressiva in grado di fornire il valore di angolo di sterzo da
attuare.

1 model = models.resnet18(pretrained=True)
2 model.fc = nn.Linear(model.fc.in_features , 1)

Listato 5.2: Definizione della rete ResNet

5.2.2 MobileNet V3-Small

MobileNet è una famiglia di reti convoluzionali sviluppate da Google appositamente
per garantire efficienza e stabilità su dispositivi mobili ed embedded.
Per questo progetto si è scelto di utilizzare la terza iterazione di questa famiglia
di reti, MobileNet V3 [25], la quale è stata resa disponibile in due versioni che
differiscono per dimensioni e capacità espressiva:

a) MobileNet V3 - Small: rete neurale ottimizzata per dispositivi con risorse
limitate

b) MobileNet V3 - Large: rete neurale di dimensioni maggiori, pensata per
massimizzare l’accuratezza su datatset complessi

In questo lavoro, data la limitata capacità di calcolo a disposizione si è optato per
la versione MobileNet V3 - Small.
L’architettura di MobileNet V3 deve la sua efficienza ad alcune soluzioni tecniche
innovative implementate all’interno della sua struttura portante (backbone):

• deepwise convolution [26]: rappresenta un’alternativa notevolmente più
efficiente rispetto alle convoluzioni tradizionali.

• Inverted residual block con linear bottleneck [27]: introdotte con Mo-
bileNet V2, permettono di combinare alta capacità espressiva e bassi costi di
esecuzione.
L’architettura, mostrata in Figura 5.4, prevede un’iniziale espansione dei ca-
nali, seguita da una deepwise convolution e da una finale compressione dei
canali, quest’ultima garantisce che ingresso e uscita del blocco mantenga-
no le stesse dimensioni, permettendo l’implementazione delle skip connection
caratteristiche di ResNet.

• Funzioni di attivazione ottimizzate per le architetture mobile, hard-swish e
hard-sigmoid (Fig. 5.5).
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Figura 5.4: MobileNet V3 Inverted residual block

Figura 5.5: Funzioni Hard-Swish e Hard-Sigmoid

La rete neurale utilizzata, descritta dalla classe LaneKeepingMobileNetV3 (Listato
5.3), fa uso della struttura portante di MobileNetV3-Small al fine di estrarre le
caratteristiche dall’immagine in ingresso, e di una testa regressiva con il compito di
interpretare le caratteristiche estratte dalla rete convoluzionale fornendo il relativo
comando di sterzo.
La testa regressiva si compone di un livello lineare con 128 neuroni, seguito da una
funzione di attivazione ReLu e da un secondo livello lineare con uscita singola.
Questa configurazione rappresenta un compromesso efficace: è sufficientemente
espressiva da modellare la relazione tra immagine e angolo di sterzo, ma al tempo
stesso leggera da addestrare e adatta a garantire un’inferenza rapida.

5.3 Allenamento delle reti neurali

5.3.1 Ampliamento artificiale del dataset

Data la dimensione ridotta del dataset raccolto sono state sperimentate diverse
tecniche con il fine di ottenere una quantità di dati maggiore.
Le immagini contenute all’interno del dataset, vengono quindi sottoposte a una
catena di trasformazioni [28], tra queste vi è un primo gruppo di trasformazioni
preliminari, applicate online a tutte le immagini che compongono il dataset:
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1 class LaneKeepingMobileNetV3(nn.Module):
2 def __init__(self , pretrained=True):
3 super().__init__ ()
4

5 # Backbone MobileNetV3 -Small
6 self.backbone = models.mobilenet_v3_small(
7 weights=models.MobileNet_V3_Small_Weights.DEFAULT

if pretrained else None
8 )
9

10 # Numero di feature in uscita
11 in_features = self.backbone.classifier [0]. in_features
12

13 # Rimuovo il classifier
14 self.backbone.classifier = nn.Identity ()
15

16 # Sostituisco la testa classificatrice con una
17 # piccola testa FC con uscita singola
18 self.head = nn.Sequential(
19 nn.Linear(in_features , 128),
20 nn.ReLU(inplace=True),
21 nn.Linear (128, 1)
22 )
23

24 def forward(self , x):
25 feat = self.backbone(x) # (B, in_features)
26 out = self.head(feat) # (B, 1)
27 return out

Listato 5.3: Definizione della rete basata su MobileNet-Small

• Rimozione dello sfondo: le immagini, inizialmente di dimensione 640x400
pixel, vengono processate in modo tale da escludere la porzione superiore
dell’immagine, mediante la trasformazione descritta dalla classe BottomCrop,
riportata nel Listato 5.4, ottenendo in questo modo un’immagine di dimen-
sione 640x300 pixel.
Tale operazione ha lo scopo, data la scarsa varietà del dataset, di rimuove-
re porzioni dell’immagine non significative in relazione al compito designato,
evitando adattamenti basati su informazioni irrilevanti da parte della rete
neurale.

• Variazione della luminosità: con lo scopo di ottenere una rete robusta in
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1 class BottomCrop:
2 def __init__(self , width , height):
3 self.width = width
4 self.height = height
5

6 def __call__(self , img):
7 w, h = img.size
8 left = (w - self.width) // 2
9 top = h - self.height

10 right = left + self.width
11 bottom = h
12 return img.crop((left , top , right , bottom))

Listato 5.4: Classe BottomCrop

ogni condizione di luce, le immagini vengono elaborate in modo da modificar-
ne la luminosità.
La trasformazione applicata è descritta dalla classe RandomLight, la cui im-
plementazione è riportata nel Listato 5.5.
La classe RandomLight è definita da tre parametri, high e low, i quali rappre-
sentano rispettivamente il massimo e il minimo valore di luminosità applicabili
all’immagine, e la probabilità p con la quale la trasformazione viene applicata
all’immagine.

1 class RandomLight:
2 def __init__(self , low , high , p):
3 self.low = low
4 self.high = high
5 self.p = p
6

7 def __call__(self , img):
8 if random.random () < self.p:
9 factor = random.uniform(self.low , 0.9) if random.

random () < 0.5 else random.uniform (1.1, self.
high)

10 enhancer = ImageEnhance.Brightness(img)
11 img = enhancer.enhance(factor)
12 return img

Listato 5.5: Classe RandomLight
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• Ridimensionamento: le immagini vengono in fine ridimensionate, portan-
dole alla dimensione 224x224, in modo tale da renderle compatibili con l’in-
gresso delle due reti neurali utilizzate.
Tale operazione

Un esempio del risultato di questa sequenza di trasformazioni è mostrato nella Fi-
gura 5.6.

Figura 5.6: Esempio di applicazione delle trasformazioni preliminari

Al fine di ampliare il dataset sono state ulteriormente applicate, solo sulle immagini
destinate al training; le seguenti trasformazioni:

• Capovolgimento orizzontale: al fine di risolvere la differenza tra il numero
di immagini relative a curve verso destra e verso sinistra, dovuta alla confor-
mazione del tracciato su cui è stato generato il dataset, durante la fase di
allenamento, le immagini, fornite alla rete,vengono capovolte orizzontalmente
con una probabilità del 50%.
Al fine di mantenere la correttezza del dato fornito alla rete, se l’immagine
viene capovolta orizzontalmente, viene invertito il segno del valore di angolo
di sterzo fornito come etichetta alla rete.

• Anticipazione del valore di sterzo: tale tecnica, sperimentata durante
l’allenamento, prevede di fornire alla rete il valore del comando di sterzo re-
lativo a un istante futuro, nel caso in questione 3 iterazioni successive.
Tale operazione, eseguita con probabilità del 50%, incentiva un’azione anti-
cipata della rete. In questo modo è possibile compensare la latenza presente
sia nell’esecuzione del controllore, utilizzato durante la generazione del data-
set, che durante la fase di inferenza della rete neurale stessa, permettendo di
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ottenere prestazioni di guida per alcuni aspetti migliori rispetto al controllore
originale.

5.3.2 Allenamento del modello

Funzione di costo

Per applicazioni regressive le funzioni di costo più diffuse nell’ambito della ricerca
sono:

• Errore Quadratico Medio (Mean Squared Error, MSE ): rappresenta una
delle funzioni di perdita più utilizzate nell’addestramento di reti regressive.
Tale metrica esprime la discrepanza tra i valori obbiettivo y e quelli stimati
dal modello ŷ, penalizzando in modo progressivo errori di maggiore entità.
Matematicamente la funzione MSE viene definita su N campioni come:

MSE(y, ŷ) =
1

N

N∑
i=1

(yi − ŷi)
2 (5.2)

Il principale svantaggio della funzione di perdita MSE è la sensibilità alla
presenza di valori anomali all’interno del dataset.

• Errore Assoluto Medio (Mean Absolute Error, MAE ): funzione di perdi-
ta che penalizza linearmente la discrepanza tra i valori obbiettivo y e quelli
stimati dal modello ŷ, come mostrato nell’equazione (5.3).

MAE(y, ŷ) =
1

N

N∑
i=1

|yi − ŷi| (5.3)

Al contrario di MSE, la funzione di perdita MAE è meno sensibile ai va-
lori anomali all’interno del dataset, risultando tuttavia meno incisiva quan-
do, in fasi avanzate dell’addestramento, la rete commette errori di piccole
dimensioni.

• Huber Loss[29]: la funzione di Huber rappresenta un buon compromesso
tra la sensibilità di MSE e la robustezza di MAE nei confronti delle anomalie
all’interno del dataset.
La funzione di Huber è definita come:

Lδ(y, ŷ) =

{
1
N
(yi − ŷi)

2 se |y − ŷ| < δ
1
N
|yi − ŷi| − 1

2
δ2 altrimenti

(5.4)

dove il parametro δ rappresenta la soglia che divide il comportamento qua-
dratico da quello lineare, come visibile nella Figura 5.7.

50



Emulazione tramite rete neurale

Figura 5.7: Confronto tra funzione MSE (blu) e funzione di Huber con parametro
δ = 1 (verde)

Tra le opzioni sopra citate la scelta per la funzione di perdita, in questo lavoro, è
ricaduta sulla funzione di Huber [30], tale scelta è dovuta alla presenza, all’interno
del dataset, di valori anomali in numero non trascurabile rispetto alla dimensione
del dataset stesso.
La soglia che definisce il passaggio tra il comportamento lineare e quadratico δ = 2
è stata scelta a partire da alcune considerazioni sul compito specifico del man-
tenimento di corsia e sulle prestazioni osservate durante la prova dei controllori
tradizionali.
Vengono infatti classificati come "normali" errori contenuti nell’intervallo [-2°, +2°],
intervallo all’interno del quale si vuole che la rete apprenda con la massima sensi-
bilità, valori al di fuori di questo intervallo vengono invece penalizzati con minore
intensità, in quanto vengono potenzialmente attribuiti ad anomalie all’interno del
dataset.

Procedura di Allenamento del modello

L’addestramento della rete neurale è stato eseguito seguendo una procedura iterati-
va basata sulla discesa del gradiente, utilizzando l’ottimizzatore Adam e la funzione
di perdita di Huber, descritta nell’equazione (5.4).
L’addestramento è stato condotto per un numero prefissato di epoche, monitorando
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l’andamento sia della loss di addestramento sia della loss di validazione al fine di
monitorare l’andamento dell’allenamento.
L’implementazione della funzione utilizzata per l’addestramento dei modelli neurali
è mostrata del Listato 5.6.
Al fine di ottimizzare l’addestramento, sono state fatte diverse scelte progettuali:

1 def train_model(model , trainloader , valloader , epochs , lr,
loss_function , device):

2 model.to(device)
3 optimizer = optim.Adam(model.parameters (), lr=lr)
4 criterion = loss_function
5 train_losses = []
6 val_losses = []
7 for epoch in range(epochs):
8 model.train()
9 total_loss = 0

10 for batch_idx ,(img , target) in enumerate(trainloader):
11 img , target = img.to(device), target.to(device)
12 optimizer.zero_grad ()
13 output = model(img)
14 loss = criterion(output , target)
15 loss.backward ()
16 optimizer.step()
17 total_loss += loss.item()
18 t_loss = total_loss / len(trainloader)
19 train_losses.append(t_loss)
20 model.eval()
21 val_loss = 0.0
22 with torch.no_grad ():
23 for img , target in valloader:
24 img , target = img.to(device), target.to(device

)
25 outputs = model(img)
26 loss = criterion(outputs , target)
27 val_loss += loss.item()
28 val_loss /= len(valloader)
29 val_losses.append(val_loss)
30 if (epoch +1)%10 == 0 and epoch != 0:
31 if val_losses [-1] >= val_losses [-9] * 0.9:
32 lr = lr/10
33 return (train_losses , val_losses)

Listato 5.6: Funzione di training utilizzata
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• Addestramento in mini-batch: il dataloader deputato alla fornitura dei
dati di allenamento è stato diviso in mini-batch di dimensione 16.
Tale scelta si è rivelata un buon compromesso tra la velocità di convergenza
garantita da batch di piccole dimensioni, e la stabilità tipica di batch di grandi
dimensioni.

• Tasso di apprendimento (learning rate, lr): la gestione del tasso di ap-
prendimento è stata automatizzata all’interno della funzione di allenamento
(Listato 5.6 linea 30-32).
All’inizio dell’addestramento il valore del tasso di apprendimento è imposta-
to a 10−3 in caso di modelli non ancora allenati, e 10−5 nel caso si rendano
necessari allenamenti successivi.
A intervalli regolari di 10 epoche viene verificato che il modello abbia mostra-
to un miglioramento pari ad almeno il 10% nelle ultime 10 epoche, in caso
contrario il valore lr viene diminuito di un ordine di grandezza.

• Congelamento dei pesi della struttura convoluzionale: i pesi relativi
ai primi livelli convoluzionali delle due reti sono stati congelati nella fase di
addestramento.
Questa scelta permette di salvaguardare le capacità di generalizzazione svi-
luppate dai modelli pre-allenati su ImageNet.
Al fine di stabilire un buon compromesso sono stati eseguiti alcuni test,
sbloccando gradualmente l’aggiornamento dei livelli convoluzionali finali della
struttura portante delle reti neurali.
I risultati hanno evidenziato come bloccare l’aggiornamento del 75% dei pesi
della backbone porti a buoni risultati, con tempi di addestramento ridotti e
mantenendo ottime capacità di generalizzazione.

La procedura di allenamento descritta è stata seguita per l’addestramento di en-
trambe le architetture neurali in esame, senza la necessità di modifiche sostanziali.
Seppure la procedura di addestramento sia stata la medesima, la rete neurale ba-
sata su MobileNetV3 si è dimostrata notevolmente più efficiente durante il training
rispetto alla rete neurale basata su ResNet.
L’addestramento è stato portato avanti, diminuendo gradualmente il tasso di ap-
prendimento fino al raggiungimento di situazione stabile nella quale la funzione di
Huber relativa all’insieme di validazione non ha più mostrato miglioramenti.
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(a) (b)

Figura 5.8: Andamento delle Loss durante l’addestramento delle reti basate su
MobileNetV3, utilizzando i valori di sterzo generati dal Controllore Stanley (a) e
con Pianificazione del Guadagno (b)

(a) (b)

Figura 5.9: Andamento delle Loss durante l’addestramento delle reti basate su
ResNet18, utilizzando i valori di sterzo generati dal Controllore Stanley (a) e con
Pianificazione del Guadagno (b)

Le Figure 5.8 e 5.9 mostrano l’andamento della Huber Loss relativa all’insieme di
allenamento (training_set) e a quello di validazione (validation_set), rispet-
tivamente per l’addestramento delle reti neurali basate su MobileNetV3-Small e
ResNet18.
La procedura ha portato all’ottenimento di 4 reti neurali:
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• MobileNet-ST: architettura basata su MobileNet V3 - Small, addestrata
sul dataset relativo al controllore Stanley, Figura 5.8(a).

• MobileNet-PG: architettura basata su MobileNet V3 - Small, addestrata
sul dataset relativo al controllore con programmazione del guadagno, Figura
5.8(b).

• ResNet-ST: architettura basata su ResNet18, addestrata sul dataset rela-
tivo al controllore Stanley, Figura 5.9(a).

• ResNet-PG: architettura basata su ResNet18, addestrata sul dataset re-
lativo al controllore con programmazione del guadagno, Figura 5.9(b).

Dai grafici mostrati emergono alcune differenze nel comportamento delle due archi-
tetture, e nella complessità dei datatset utilizzati.
In particolare emerge come la rete basata su ResNet18, nonostante raggiunga ri-
sultati equivalenti a quelli ottenuti dalla rete neurale basata su MobileNetV3 sul-
l’insieme di validazione, presenti una migliore capacità di adattamento all’insieme
di addestramento, mostrando le maggiori capacità della architettura.
Il continuo miglioramento della funzione di Huber sull’insieme di addestramento
senza riscontri positivi in termini di validazione, suggerisce tuttavia come per un
corretto addestramento di ResNet18 sia necessario un dataset più ampio.
Dai grafici in Figura 5.8 e 5.9 si nota come la funzione di Huber sull’insieme di
validazione, durante l’addestramento delle reti MobileNet-ST e ResNet-ST, risulti
più stabile. Inoltre al termine dell’allenamento si nota una differenza minore tra
i risultati ottenuti sull’insieme di validazione e quello di allenamento rispetto ai
risultati ottenuti dalle medesime architetture allenate sul dataset PG.

5.4 Inferenza della rete sulla scheda RaspBerry Pi5
Lo sviluppo della rete neurale è stato eseguito interamente con l’ausilio del fra-
mework PyTorch [31], è stato pertanto necessario esportare la rete neurale in modo
ottimizzato e indipendente dall’ambiene Python, in modo da permetterne l’esecu-
zione sulla scheda RaspBerry Pi5.
A tale scopo viene utilizzata la funzione torch.jit.script(), fornita all’interno
di PyTorch, la quale permette di trasformare un modello in una rappresentazio-
ne statica del grafo computazionale, successivamente essa viene ottimizzata ap-
positamente per dispositivi mobili tramite le funzioni optimize_for_mobile() e
_save_for_lite_interpreter(), come mostrato nel Listato 5.7.
L’esecuzione di modelli sviluppati all’interno di PyTorch in ambiente c++ è suppor-
tata dalla libreria libTorch appositamente sviluppata.
All’interno del codice, eseguito bordo del modello, sono quindi stati sostituiti i con-
trollori per il mantenimento di corsia e il ciclo di riconoscimento di corsia presentati
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1 model.eval()
2 model.to(’cpu’)
3 scripted = torch.jit.script(model)
4 optimized = optimize_for_mobile(scripted)
5 optimized._save_for_lite_interpreter("...")

Listato 5.7: Esportazione ottimizzata della rete neurale

nei capitoli 3 e 4, da una singola chiamata all’esecuzione della rete neurale, come
mostrato nel Listato 5.8.

1 torch::jit:: script :: Module model = torch::jit::load ("path");
2 ...
3 while(true){
4 ...
5 cv::Mat cropped = bottomCrop(frame , 640, 300);
6 cv::Mat resized;
7 cv:: resize(cropped , resized , cv::Size (224 ,224));
8 torch :: Tensor tensor = matToTensor(resized);
9 tensor = tensor.unsqueeze (0);

10 at:: Tensor output = model.forward ({ tensor }).toTensor ();
11 steeringvalue = output.item <float >();
12 ...
13 }

Listato 5.8: Importazione e inferenza della rete neurale
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Capitolo 6

Analisi dei risultati

In questo capitolo vengono descritte le procedure di test e i confronti svolti sui
diversi controllori proposti, al fine di evidenziarne le differenze.

6.1 Errore di regressione delle reti neurali sull’in-
sieme di test

La qualità dell’emulazione, condotta dalle reti neurali addestrate nel capitolo 5.3.2,
è stata valutata sull’insieme di test.
Come durante l’addestramento è stata usata la funzione di perdita di Huber per
misurare l’errore di regressione sui dati forniti.
I risultati ottenuti dai 4 modelli addestrati sono riportati nella tabella 6.1.
I risultati indicano che l’architettura basata su ResNet18 ottiene un errore medio
inferiore nella stima del valore di sterzo, evidenziando capacità superiori in termini
di emulazione.

Tabella 6.1: Risultati dei modelli allenati sull’insieme di test (ST: Stanley, PG:
pianificazione del guadagno

Modello Huber loss

ResNet-PG 1.777
ResNet-ST 1.785

MobileNet-PG 2.063
MobileNet-ST 2.312
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6.2 Efficienza computazionale
Per valutare l’applicabilità delle architetture neurali in un contesto di controllo in
tempo reale, è stato misurato il tempo di esecuzione medio per ciascuna delle due
architetture proposte, confrontandolo con i controllori tradizionali già implementati
sulla piattaforma.
In questo capitolo, per tempo di esecuzione del controllore si intende l’intervallo
compreso tra la fine dell’acquisizione dell’immagine e la produzione dell’angolo di
sterzo.
La media T e la deviazione standard σT dei tempi di esecuzione misurati sperimen-
talmente sono riportate nella Tabella 6.2.

Tempo di esecuzione
Controllore T [ms] σT [ms]

P.G. 17 2
Stanley 17 2

ResNet18 128 24
MobileNetV3-Small 70 25

Tabella 6.2: Tempi di esecuzione dei controllori proposti

I tempi riportati nella Tabella 6.2 sono stati utilizzati per determinare il tempo
di campionamento (Tc), scelto mantenendo un ragionevole margine di sicurezza,
secondo quanto riportato nell’equazione 6.1.

Tc ≥ T + 2σT (6.1)

I valori di tempo di campionamento, utilizzati durante le prove successive, per ogni
controllore sono riportati nella tabella 6.3.

Controllore Tc [ms]
P.G. 50

Stanley 50
ResNet18 200

MobileNetV3-Small 150

Tabella 6.3: Tempi di campionamento

I risultati ottenuti dalle architetture neurali prese in analisi mostrano un significati-
vo vantaggio nell’utilizzo delle reti neurali basate su MobileNetV3-Small, in quanto
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più ottimizzate ed efficienti soprattutto su dispositivi mobili.
La differenza di tempo di esecuzione nei confronti dei controllori tradizionali è piut-
tosto elevata, tuttavia, almeno nel caso dei modelli basati su MobileNetV3-Small il
tempo di esecuzione non risulta eccessivamente penalizzante.
Un aspetto critico che emerge analizzando le tabelle 6.2 e 6.3 riguarda la deviazione
standard dei tempi di esecuzione σT per le reti neurali, una variabilità elevata infatti
impedisce di abbassare il tempo di campionamento se non aumentando significati-
vamente il rischio di un esecuzione non correttamente discretizzata, costringendo
la scelta di tempi di campionamento molto maggiori dei tempi di inferenza medi
delle reti neurali.

6.3 Mantenimento di corsia su strada rettilinea

Durante le prove il modello in scala viene posto all’inizio di un tratto di strada
rettilinea, in una posizione arbitrariamente scelta, con i seguenti errori di insegui-
mento:

[
ψ
ϵ

]
=

[
-7°

−0.15m

]
(6.2)

La scelta di tale condizione iniziale deriva dalla volontà di valutare le prestazioni
del controllo in condizioni non banali, esaltando in questo modo le differenze tra le
diverse soluzioni.
Dalla posizione iniziale il controllore viene avviato, e durante la sua esecuzione ven-
gono salvati i valori dell’errore di allineamento e dell’errore laterale.
Il valore assoluto degli errori di inseguimento è utilizzato per un’analisi statistica,
determinandone il valore medio e la deviazione standard una volta esaurito il tran-
sitorio iniziale. L’eliminazione del transitorio, della durata pari approssimativa al
15% della durata della prova, permette di valutare la stabilità del mantenimento di
corsia una volta raggiunta una posizione centrale nella corsia.
La prova è considerata svolta con successo se il modulo dell’errore laterale non su-
pera il valore di 0,17m durante la prova, il superamento di tale soglia comporta
l’uscita del modello dalle linee di demarcazione della corsia.
La prova viene ripetuta due volte, in modo tale da ottenere delle misure statistica-
mente più affidabili.
I risultati ottenuti dai controllori tradizionali, presentati nei capitoli 3 e 4 sono

riportati nelle Figure 6.1 e 6.2, tali risultati rappresentano il riferimento per la valu-
tazione delle prestazioni offerte dalle reti neurali addestrate durante questo lavoro.
Le prove condotte mostrano come entrambi i controllori abbiano mantenuto il mo-
dello in scala all’interno della corsia in entrambe le prove condotte.
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Figura 6.1: Risultati delle prove svolte utilizzando il controllore Stanley

Figura 6.2: Risultati delle prove svolte utilizzando il controllore con progettazione
del guadagno

L’analisi statistica, di cui i risultati sono mostrati in Figura 6.3, mostra che il con-
trollore Stanley garantisce prestazioni superiori al controllore con pianificazione del
guadagno, ottenendo valori inferiori di media e deviazione standard per entrambe
le prove.
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Il test di mantenimento di corsia è stato svolto con le medesime modalità anche

Figura 6.3: Confronto statistico degli errori d’inseguimento dei controllori Stanley
(ST) e con pianificazione del guadagno (PG)

utilizzando le reti neurali ottenute nel capitolo 5.3.2.

6.3.1 Risultati dell’architettura basata su ResNet18

Dai risultati riportati nelle Figure 6.4 e 6.5 è possibile osservare come entrambe le
reti basate su ResNet18 abbiano eseguito con successo il mantenimento della corsia.
Le analisi statistiche svolte sull’andamento degli errori di inseguimento durante le

prove, (Figura 6.6), mostrano tuttavia risultati contrastanti con quanto atteso: al
contrario di quanto ottenuto dai controllori tradizionali, la rete ResNet-ST mostra
risultati leggermente peggiori di ResNet-PG, sia in termini di valore medio che di
varianza per entrambi gli errori di inseguimento.
L’analisi delle prestazioni dei modelli basati su ResNet18, mostra prestazioni signi-
ficativamente inferiori rispetto a quanto mostrato dai controllori tradizionali, con
errori di inseguimento significativamente superiori in valore medio.

6.3.2 Risultati dell’architettura basata su MobileNetV3

I risultati ottenuti dalle prove di mantenimento di corsia in rettilineo svolte con le
reti neurali basate su MobileNetV3 sono riportati nelle Figure 6.7 e 6.8.
I due modelli in esame si sono dimostrati in grado di mantenere il veicolo all’interno
della corsia designata.
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Figura 6.4: Risultati della prova svolta utilizzando la rete ResNet-PG

Figura 6.5: Risultati della prova svolta utilizzando la rete ResNet-ST

L’analisi statistica condotta sugli errori di inseguimento, i cui risultati sono visibili
in Figura 6.9, mostra prestazioni in termini di valore medio, comparabili a quelle dei
controllori tradizionali, ottenendo, in particolare con il modello MobileNet-PG, una
deviazione standard degli errori minori rispetto a quanto ottenuto sperimentalmente
con il controllore con pianificazione del guadagno.
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Figura 6.6: Confronto statistico degli errori d’inseguimento tra i controllori tradi-
zionali e le reti neurali basate su ResNet18

Come atteso, sulla base dei risultati ottenuti dai controllori tradizionali, la rete
neurale MobileNet-ST presenta risultati migliori di MobileNet-PG in termini di
valore medio degli errori di inseguimento, seppure con uno scarto minimo.

Figura 6.7: Risultati della prova svolta utilizzando la rete MobileNet-PG
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Figura 6.8: Risultati della prova svolta utilizzando la rete MobileNet-ST

Figura 6.9: Confronto statistico degli errori d’inseguimento tra i controllori tradi-
zionali e le reti neurali basate su MobileNetV3

6.3.3 Analisi dei risultati

I risultati ottenuti nelle prove sono riassunti nella Tabella 6.4 e graficamente nella
Figura 6.10.
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Errore di allineamento Errore laterale
Controllore ψ σψ ϵ σϵ

P.G. 2.84 2.18 0.027 0.031
Stanley 2.16 1.76 0.010 0.015

ResNet-PG 3.73 1.74 0.041 0.037
ResNet-ST 4.46 1.81 0.044 0.039

MobileNet-PG 3.14 1.60 0.027 0.028
MobileNet-ST 3.06 2.01 0.025 0.028

Tabella 6.4: Risultati dell’analisi statistica sugli errori di inseguimento registrati
durante la prova

Figura 6.10: Confronto statistico degli errori d’inseguimento tra i controllori tradi-
zionali e i modelli addestrati

I risultati evidenziano che le soluzioni che garantiscono prestazioni di guida migliori
nelle condizioni in esame sono i controllori tradizionali, in particolar modo il con-
trollore Stanley.
Confrontando tra loro i quattro modelli addestrati, quello che ha fornito i migliori
risultati, in termini di valore medio degli errori di inseguimento, è MobileNet-
ST, con uno scarto minimo nei confronti di MobileNet-PG, tale risultato si pone
in contrapposizione con quanto evidenziato dalle prove sull’insieme di test. Infatti,
nonostante i modelli basati su ResNet18 ottengano risultati migliori nelle prove sul-
l’insieme di test , la prova sul campo di mantenimento di corsia mostra prestazioni
superiori per le reti neurali basate su MobileNetV3 Small, verosimilmente grazie
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alla maggiore efficienza computazionale in fase di inferenza, la quale permette di
operare con un tempo di campionamento inferiore, come già stabilito nell’analisi
dei tempi di esecuzione condotta nel capitolo 6.2.
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Capitolo 7

Conclusioni e sviluppi futuri

7.1 Conclusioni

Analizzando il lavoro svolto per questa tesi sono emerse alcune considerazioni ri-
guardo all’applicazione delle reti neurali nell’ambito della guida autonoma e più in
generale nell’ambito dei controlli automatici.
L’utilizzo di modelli di deep learning per l’emulazione di controllori deterministici
rappresenta una soluzione promettente, capace di combinare la solidità dei metodi
deterministici con la flessibilità delle architetture neurali.
I risultati ottenuti durante le prove dei modelli hanno inoltre evidenziato la capa-
cità delle reti neurali prese in esame di eseguire con successo il controllo di corsia,
ottenendo una buona accuratezza e robustezza in diverse condizioni.

L’aspetto più critico emerso durante le fasi di prova è stata l’efficienza computazio-
nale del modello in fase di inferenza.
I risultati sperimentali hanno infatti mostrato che i modelli meno complessi e più
efficienti ottengono prestazioni di guida statisticamente migliori rispetto ai modelli
basati su reti neurali complesse e meno ottimizzate, nonostante queste ultime ot-
tengano risultati migliori nei test di regressione. I migliori risultati ottenuti dalle
architetture più efficienti sono ragionevolmente dovuti ai minori tempi di inferenza,
i quali permettono una correzione più rapida ed efficiente degli errori di insegui-
mento.

Tra gli altri aspetti critici si è evidenziata la necessità di un dataset di grandi di-
mensioni, all’interno del quale siano presenti in quantità elevata esempi di tutte le
manovre che il veicolo è chiamato a compiere, nella maggiore varietà possibile di
scenari.
La dimensione del dataset influisce direttamente sulla robustezza e la ripetibilità
del controllo che la rete neurale mette in atto, risultando a tutti gli effetti uno degli
aspetti più rilevanti per ottenere prestazioni di guida di alto livello.
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Le tecniche di aumento sintetico dei dati, utilizzate durante questo lavoro di tesi, si
sono rivelate inoltre valide al fine di addestrare una rete neurale di piccole dimen-
sioni, risultando quindi consigliate anche qualora si avesse disponibilità maggiore
di dati.

Un aspetto importante emerso, data la bassa quantità di dati raccolti, è l’impor-
tanza di adottare strategie atte a evitare la condizione di overfitting del modello
all’insieme di addestramento, utilizzando tecniche come il congelamento di parte
della rete neurale in fase di addestramento, e la terminazione anticipata dell’ad-
destramento (early stopping), oltre alla scelta di un’architettura correttamente di-
mensionata alla quantità di dati a disposizione.

Analizzando, infine, il ruolo dei controllori utilizzati per la generazione del dataset,
la loro qualità risulta un fattore rilevante nell’addestramento del modello e nelle
sue prestazioni.
Questo aspetto è testimoniato dal fatto che il controllore Stanley, risultato il mi-
gliore nelle prove sperimentali, è alla base del modello con le prestazioni migliori,
MobileNet-ST.
Tuttavia nonostante la sua importanza, il controllore originale, non rappresenta il
fattore più determinante nelle prestazioni della rete neurale addestrata. Il compor-
tamento della rete infatti può essere influenzato da modifiche mirate all’interno del
dataset.
In conclusione è possibile affermare che un controllore con buone prestazioni age-
voli la rete neurale nell’ottenimento di prestazioni di alto livello, rappresentando
un imprescindibile punto di partenza, nonostante ciò, la rete neurale mantiene una
capacità di generalizzazione che può essere sfruttata tramite un’attenta progetta-
zione del dataset al fine di migliorarne le prestazioni.

7.2 Sviluppi futuri

Il lavoro presentato in questa tesi ha dimostrato la possibilità di emulare il controllo
di corsia tramite l’utilizzo di una rete neurale appositamente addestrata, lasciando
tuttavia molto spazio per sviluppi futuri.
Le possibili soluzioni per migliorare le prestazioni ottenute durante questo lavoro
di tesi sono molteplici, tra queste vi è un miglioramento dell’hardware, l’utilizzo di
architetture più espressive o efficienti, la sperimentazione di strategie non super-
visionate per l’addestramento dei modelli, e lo sviluppo di nuove funzionalità da
includere nel dataset.

Nell’ottica di un miglioramento prestazionale del modello in scala, le componenti
elettroniche più influenti, e quindi preferibilmente aggiornabili, sono la scheda su
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cui viene eseguito il controllo, e la fotocamera utilizzata per l’acquisizione delle
immagini.
L’aggiornamento della scheda RaspBerry Pi5 con una piattaforma che offra pre-
stazioni superiori permetterebbe l’utilizzo di reti neurali con dimensioni e capacità
espressive superiori, mantenendo contemporaneamente il tempo d’inferenza all’in-
terno di un intervallo accettabile e permettendo un significativo miglioramento delle
prestazioni di guida.
Un altro aggiornamento significativo nell’ottica di un miglioramento dell’hardware
del modello in scala è la sostituzione della fotocamera, a favore di un modello che
presenti un campo visivo (FOV) più ampio, tale da permettere una visione perife-
rica migliore. Il FOV è rilevante nelle fasi di curva dove una maggiore informazione
visiva laterale permette una predizione dell’angolo di sterzo più accurata, oltre a
permettere lo sviluppo di funzionalità quali il riconoscimento della segnaletica stra-
dale o una efficace gestione del veicolo all’interno degli incroci.

Dal punto di vista della scelta dell’architettura della rete neurale vi è la possibilità,
se supportata da un hardware adeguato, di sfruttare la maggiore capacità messa a
disposizione da modelli più profondi, come ad esempio la rete MobileNetV3-Large,
la quale mantenendo le caratteristiche della rete MobileNevV3-Small utilizzata in
questo progetto, ne aumenta le capacità a un costo computazionale maggiore.
L’utilizzo di una rete neurale con maggiori capacità espressive rende necessario ol-
tre ad un adeguata potenza computazionale, l’utilizzo di un dataset di dimensioni
adeguate, in modo da poter sfruttare le potenzialità della rete, riducendo il rischio
di overfitting.

Un’ulteriore direzione di sviluppo riguarda la possibilità di integrare tecniche di
addestramento non supervisionato a partire dal modello ottenuto tramite adde-
stramento per imitazione.
Questa strategia di addestramento in due fasi rappresenta una soluzione significa-
tivamente più veloce rispetto a un addestramento non supervisionato tradizionale,
offrendo inoltre maggiori possibilità di progettazione del comportamento del mo-
dello, tramite la scelta del controllore iniziale e applicando le tecniche di aumento
sintetico del dataset descritte in questa tesi.

Un’ulteriore prospettiva di sviluppo, al fine di ampliare le capacità del veicolo di
gestire scenari di vario genere, riguarda la possibilità di ampliare il dataset inclu-
dendo nuove etichette e informazioni, permettendo alla rete di apprendere compiti
aggiuntivi senza la necessità di riprogettare interamente il controllo.
Questo approccio permetterebbe alla rete di apprendere una vastità di nuove fun-
zionalità tra le quali, il controllo della velocità, il riconoscimento degli ostacoli, e il
riconoscimento della segnaletica stradale.
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