POLITECNICO DI TORINO

Master’s Degree in Computer Engineering — Al & Data Analytics

Gang Prediction in Graphs for
Anti Money Laundering Detection

THIS THESIS WAS CONDUCTED IN COLLABORATION WITH CHALMERS
UNIVERSITY OF TECHNOLOGY AND TECHNICAL UNIVERSITY OF MUNICH

Technical
of Munich

Supervisors: Candidate:

Francesca Pistilli Pasquale Bianco
Javad Aliakbari

Alexandre Graell I Amat

Rawad Bitar

Academic Year 2024/2025

Abstract

In this thesis, we propose an iterative graph coarsening—learning framework to
detect money laundering gangs in bank transaction networks. Instead of classifying
individual accounts, our goal is to identify groups of accounts that act together to
hide illicit activities.

We begin by providing a mathematical definition of gangs in the context of trans-
action graphs, modeling them as dense and highly interactive subgraphs that share
structural and behavioral similarities, such as transaction patterns. The proposed
method progressively reduces the complexity of the transaction graph through
embedding—based coarsening, where nodes with similar structural and semantic
patterns are merged into super-nodes representing potential groups. This process
preserves the most relevant information while reducing noise and computational
cost and also helping the model to generalize over different nodes and structures.

After each coarsening step, we apply supervised learning on the reduced graph to
detect suspicious groups. To guide the training, we design a coarsening-aware loss
function that combines classification objectives with a consistency term linking
each super-node to its constituent accounts. This encourages coherent group
representations and improves generalization across different graph scales.

We validate our approach on both synthetic and real-world bank transaction datasets
and compare it against state-of-the-art graph neural network and semi-supervised
embedding methods.

Keywords: Money Laundering, Graph Coarsening, Graph Reduction, Graph Neural
Networks, Graph Learning, Semi-Supervised Learning, Anomaly Detection

Table of Contents

List of Tables
List of Figures

1 Introduction
1.1 The global challenge of money laundering
1.2 Traditional AML methods and limitations
1.3 Graph-based approaches in AML
1.4 Position of the thesis

2 Money Laundering Patterns
2.1 Money Laundering Stages
2.1.1 Placement
2.1.2 Layering
2.1.3 Imtegration L
2.2 Common Illicit Transaction Patterns
2.3 Empirical Statistics of Illicit Transactions
2.3.1 Transaction/edge level
2.3.2 Account/node level L
2.3.3 Why this matters
2.4 Evasion Tactics and Countermeasures
2.4.1 Transaction—level evasion
2.4.2 Account-level and temporal evasion

2.4.3 Structural and graph-based evasion

I

v

W NN =

© 0 00 I O O O ot O

e e e
- = O O O

2.4.4 Label and supervision evasion

2.5 Feature Robustness and Evaluation

3 Task

3.1 Gang Definition
3.2 Gang Prediction Task . . .

3.2.1
3.2.2

4 Method

Problem setting. .

Prediction targets.

4.1 Graph Coarsening

4.1.1
4.1.2
4.1.3
4.1.4
4.1.5
4.1.6
4.1.7
4.1.8

Graph Reduction .

Properties of Reduced Graphs

Coarsening as a Type of Graph Reduction

Laplacian Consistent Coarsening

Restricted Spectral Approximation

Decoupling Levels and the Variation Cost

Decoupling Contraction Sets and Local Variation

Local Variation Coarsening Algorithm

4.2 Semantic Variation Cost .

4.3 Graph Learning

4.3.1
4.3.2
4.3.3
4.3.4
4.3.5
4.3.6
4.3.7

5 Results

Problem Setup and Notation

Message Passing and Node Embeddings

Prediction Head and Semi-supervised Loss

Learning on Coarsened Graphs and Lifting

Embedding-Driven Coarsening and Similarity

Coarsening-Aware Loss Function

Training Loop per Level

5.1 Validation on the Cora dataset

5.1.1

Experimental Setup

11
12

13
14
15
15
15

17
17
18
19
20
21
22
23
25
25
27
28
28
28
29
29
30
30
32

34
34
34

5.1.2 Learning Dynamics, 36

5.2 AMLGENTEX Dataset Analysis 37
5.2.1 Generation Process 38

5.2.2 Structure and Features 38

5.3 Application to Synthetic AML Data 39
5.4 Discussiono 39

6 Conclusion and Future Work 40
6.1 Summary of Contributions 40
6.2 Future Work 41
Bibliography 42

A Theorem 9 (Eigenvalue approximation) - Empirical Verification |

B Cosine Similarity Implementation v
C Coarsening-Aware Loss Implementation A\
D Coarsening Evolution on a Small Graph VII

II1

List of Tables

2.1 Common illicit transaction typologies and motifs

5.1 Coarse vs fine accuracy in Cora

v

List of Figures

2.1 Transactions — Normal patterns 7

2.2 Transactions — Laundering patterns

3.1 A real-world ML transaction graph 13
4.1 Toy coarsening example 21
5.1 Accuracy over iterations 36
5.2 Accuracy vs number of nodes 37
D.1 Graph coarsening evolution in KarateClub graph VIII

Chapter 1

Introduction

1.1 The global challenge of money laundering

Money Laundering (ML) is defined as the process of concealing the illicit origin
of criminal proceeds so that the funds appear legitimate [1]. This “cleaning'
conversion is critical for criminals, enabling them to enjoy profits from crimes such
as drug trafficking, corruption, or fraud without exposing their source [2, 3]. Tt is
commonly described in three stages: placement (introducing illicit funds into the
financial system), layering (executing complex transactions to obscure the trail),
and integration (returning laundered money into the legal economy).

The scale of money laundering is vast. The United Nations Office on Drugs
and Crime (UNODC) estimates that between 2-5% of global Gross Domestic
Product (GDP) is laundered each year, amounting to trillions of US dollars in
illicit flows [4]. Similarly, the Financial Action Task Force (FATF) has emphasized
that money laundering erodes the integrity of financial systems worldwide [5].
An International Monetary Fund (IMC) report underlines that illicit finance is a
necessary component of organized crime, transnational corruption, and terrorism
financing, thereby threatening governance and macroeconomic stability [6].

[llicit flows also deprive governments of essential revenues: it has been estimated
that more than $1.3 trillion in illicit capital left sub-Saharan Africa since 1980,
funds that could have supported development and poverty alleviation [7]. Beyond
fiscal losses, money laundering distorts competition, inflates asset markets such as
real estate, and worsens inequality by empowering the corrupt at the expense of
law-abiding citizens.

Tackling ML is therefore critical not only to crime prevention but also to financial
transparency, fair markets, and sustainable economic growth.

1

Introduction

1.2 Traditional AML methods and limitations

Anti-Money Laundering has long been a regulatory and technological priority. Early
systems relied heavily on rule-based monitoring, flagging transactions above fixed
thresholds or involving high-risk jurisdictions [8]; some institutions employ statistical
anomaly detection, identifying transactions or accounts that deviate significantly
from typical patterns (outliers), as potential laundering signals. In addition,
Know Your Customer (KYC) procedures and suspicious activity reports have been
mandated by regulators worldwide. Later approaches introduced statistical anomaly
detection and supervised learning models, leveraging transaction-level features and
classifiers such as decision trees, logistic regression, or neural networks [9].

However, these methods suffer from serious drawbacks. Rule-based systems are
rigid and can be “blind” to novel or sophisticated schemes. Criminals can evade
fixed rules by adapting their behavior — for example, breaking down large sums into
many small “smurfing” deposits below reporting thresholds, or routing transactions
through a web of intermediate accounts to avoid simple pattern triggers. As a result,
purely rule-based monitoring often produces an overwhelming number of alerts,
the vast majority of which turn out to be false positives. In practice, over 90% of
alerts generated by bank Anti-Money Laundering systems are false positives. This
imposes large operational costs, as banks employ hundreds of compliance analysts
to review alerts manually, yet less than 1% of global illicit flows are ultimately
intercepted or seized [10].

Anomaly detection methods, while more flexible, conflate “unusual” with “illicit,”
producing numerous false alarms from legitimate atypical behavior [9]. Supervised
models, on the other hand, face data scarcity and imbalance: confirmed laundering
cases are rare and labels are delayed, while criminals continuously adapt patterns.
Moreover, all these methods struggle with scalability: modern banks process millions
of transactions daily, making real-time monitoring computationally demanding.
In summary, current AML systems trade off between efficiency and effectiveness,
motivating the exploration of fundamentally new approaches.

1.3 Graph—based approaches in AML

A promising direction in recent research is to leverage graph-based machine learning
for money laundering detection. The rationale is that financial transactions do
not occur in isolation; instead, they form networks of interactions between entities
(individuals, businesses, accounts). We can naturally represent a collection of
transactions as a graph, where nodes correspond to accounts (or transactions
themselves) and edges represent money flows. This network view provides crucial

2

Introduction

context: a single transaction that might not raise flags on its own could be part of
a suspicious web of many transfers. By analyzing connections and structures in the
transaction graph, one can detect complex patterns that traditional methods might
miss. Indeed, graph analytics techniques have been shown to reveal “complex webs
of money laundering practices that might be overlooked by legacy systems” [11].

Graph-based machine learning, especially Graph Neural Networks (GNNs), has
thus gained traction in the AML domain. In a GNN model, the features of
each node (e.g. an account’s attributes or transaction statistics) are combined
with information from its neighbors in the graph, allowing the model to learn
propagating patterns of suspicious activity. A seminal example is the work of
Weber et al. (2019), who introduced the large “Elliptic” transaction graph from
the Bitcoin cryptocurrency network and applied Graph Convolutional Networks to
classify illicit vs. licit transactions [12]. Their results showed that incorporating
relational information through graph learning improved detection performance over
traditional classifiers. More recently, Cheng et al. (2023) proposed a group-aware
deep graph learning framework that detects organized laundering by modeling
community-level behavior, showing state-of-the-art performance on UnionPay bank
card data [13]. Surveys confirm that graph-based methods now dominate AML
research, reflecting their ability to reduce false positives by leveraging context and
capturing hidden laundering schemes [11].

Despite these advances, challenges remain. Transaction graphs are massive (millions
of nodes/edges) and dynamic (streaming transactions). Running GNNs at scale
is expensive, and financial data is fragmented across institutions. These issues
underscore the need for scalable, generalizable graph-based methods.

1.4 Position of the thesis

This thesis addresses the detection of money laundering in large-scale transaction
networks by uniting graph-based learning with a lightweight, scalable preprocessing
step. In particular, we employ graph coarsening: a family of techniques that
compresses large graphs into smaller surrogates while retaining the most important
structural information, so that learning can operate efficiently on reduced graphs
and still capture the patterns that matter for detection.

In practice, coarsening serves two purposes here:

e it improves computational tractability (time and memory) for graph neural
models;

« by abstracting away fine-grained noise, encourages the model to focus on
stable, higher-level structures that are characteristic of laundering schemes,

3

Introduction

avoiding, then, outliers.

We propose an iterative framework that alternates between coarsening and
graph learning. Coarsening first yields a compact representation of the transaction
network; learning then identifies suspicious activity and propagates those signals
back to the original resolution, where the representation can be refined, and the
cycle repeated. Iterating across levels allows the method to capture both local
motifs and global organization without overburdening computation on the full
graph. The remainder of this thesis is structured as follows:

o Chapter 2 provides an in-depth analysis of money laundering dynamics,
examining its behavioral patterns and identifying how these patterns can be
effectively exposed through data-driven analysis.

o Chapter 3 introduces the mathematical formulation of the problem, defining
the notion of a gang and formalizing the proposed task of gang prediction
within financial transaction networks.

o Chapter 4 presents the core research contributions and proposed methodology.
It is divided into three main sections:

— Section 4.1 introduces the concept of graph coarsening and explains
how it can be employed to reduce large-scale transaction networks while
preserving their key structural properties.

— Section 4.2 extends the coarsening approach to include adaptation to the
feature-space, providing a mechanism to merge nodes based on semantic
similarity.

— Section 4.3 describes the proposed graph learning framework, including
the coarsening-aware loss function and the iterative refinement process
that alternates between learning and coarsening.

o Chapter 5 reports the experimental results obtained on both the Cora dataset
(used for validation) and the AMLGENTEX synthetic dataset, specifically
designed for money laundering detection.

The implementation of all experiments and models described in this thesis is
publicly available at: https://github.com/whiitex/Gang-Prediction.

https://github.com/whiitex/Gang-Prediction

Chapter 2

Money Laundering Patterns

The AMLGENTEX simulator and benchmarking framework [14] recently provided
a principled basis for studying feature engineering and graph-based detection in
a controlled setting. This chapter summarises empirical, structural and temporal
properties common to illicit transactions, catalogues the features used by researchers
and practitioners to detect them and analyses how criminals deliberately modify
these features to evade detection. The discussion draws on AMLGENTEX and its
references, real-world studies of criminal networks and group behaviour [13, 15],
synthetic simulators such as PAYSIM [16], AMLSIM and its successors, as well as
graph-based feature extraction libraries [17, 11].

The goal is twofold:

1. to provide an empirical and methodological foundation for later chapters that
develop graph coarsening and machine learning approaches for Anti-Money
Laundering;

2. to offer practical recommendations for computing, windowing and stress-testing
features.

The analysis is structured around the stages of the laundering process and the
observable consequences in transaction records, followed by a taxonomy of features,
evasion tactics, and robustness considerations.

2.1 Money Laundering Stages

Money Laundering typically unfolds in three stages: placement, layering and
integration [14], covered in the following subsections. Each stage leaves characteristic

5

Money Laundering Patterns

footprints in transaction networks. Many simulators explicitly model these phases
because they influence the design of features.

2.1.1 Placement

In the placement stage, criminals introduce illicit cash or digital funds into the
financial system. Placement often occurs through deposits, purchases of prepaid
cards or mobile money transfers. In the PAYSIM simulator, transaction types such
as Cash-In (deposit to a mobile money account) and Debit (cash-out to a bank
account) increase or decrease an account’s balance, whereas Payment and Transfer
represent peer-to-peer transactions [16]. Because large deposits draw attention,
launderers break funds into smaller amounts (“smurfing”) to stay below regulatory
reporting thresholds. Placement events therefore manifest as bursts of small
incoming transactions spread across multiple accounts. The AMLGENTEX dataset
models these behaviors by generating multiple agents that deposit illicit funds over
a time window and by calibrating deposit amounts to mimic real distributions [14].

2.1.2 Layering

Layering obscures the origin of funds through complex transactions, multiple
accounts and intermediaries. Star and chain patterns dominate this phase: the
star pattern diffuses money from a source node to many recipients, while the
chain pattern transmits funds through a sequence of bridge nodes. These patterns
correspond to the “fan-out” and “fan-in” motifs in earlier simulators (e.g. AMLSIM
and AMLS1M 2.0) and are observed in real networks [13]. Criminals may combine
chains and stars into cyclic structures where funds flow back and forth among the
same accounts, making detection difficult [13]. Layering is thus characterized by
many small transfers among tightly connected accounts, high path lengths and
temporal interleaving of legitimate transactions to camouflage illicit flows. Further
discussion about transaction patterns in Section 2.2.

2.1.3 Integration

Integration reintroduces laundered funds into the legitimate economy through pur-
chases of goods, investments, or business activity. Transfers to merchants, payments
for services, and investments appear in transaction logs. In AMLGENTEX the
integration phase is simulated by connecting laundering accounts back into the
general transaction network, often involving cross-institution transactions spanning
multiple banks or regions [14]. Integration tends to produce transactions with

6

Money Laundering Patterns

amounts similar to normal economic activities but preceded by suspicious layering
behavior.

2.2 Common Illicit Transaction Patterns

Detecting money laundering requires understanding the structural motifs that
criminals employ. Table ?7? lists common typologies derived from AMLGENTEX [14],
AMLSIM [18] and the group-aware [13] study. All patterns are described in Tab. 77.
The normal typologies available are shown in Fig. 2.1 and the money laundering
ones are shown in Fig. 2.2. The fan-in, fan-out, cycle, scatter-gather and gather-
scatter patterns can be of arbitrary size set by the user. Moreover, each typology
is related to a timing schema chosen by the user.

(t1, z1) (t1, 1)

@M@@

(a) Direct pattern. (b) Mutual pattern.

2,)
C (t1, 1) C (t2, T2) @
D
b3 A
W \’v{b”(&
(d) Forward pattern (e) Fan-in pattern of size four. (f) Fan-out pattern of size four.

Figure 2.1: Normal patterns. Each transaction is associated with a time stamp ¢
and an amount x.

The normal patterns and alert patterns reflect typical and suspicious behaviors,
respectively. Notably, patterns such as fan-in and fan-out appear in both normal
and alert categories, emphasizing how criminals often mimic legitimate activity.

The frequency of each motif varies across simulators and real data. AMLGEN-
TEX extends earlier models by simulating cycles, scatter—gather, gather—scatter
and random walks in addition to basic fan-in/out patterns.

7

Money Laundering Patterns

(t2, x2)
®&—0©

)
5

(a) Fan-in pattern of size four.

(e) Gather-scatter pattern of size (f) Stacked bipartite pattern of
(d) Scatter-gather pattern of size SiX. size eight and three layers.
five.

Figure 2.2: Laundering patterns. Each transaction is associated with a time
stamp t and an amount x.

2.3 Empirical Statistics of Illicit Transactions

Beyond structural motifs, statistical properties provide clues about illicit activ-
ity. The most prominent one is the strong unbalancing of data: the positive
class (laundering) is rare relative to benign activity. This manifests at multiple
granularities:

2.3.1 Transaction/edge level

The share of laundering-related transactions is typically well below 1% of all
transactions. Publicly documented synthetic benchmarks mirror this reality for
research: for example, SynthAML reports on the order of 107 transactions with
only O(10%) AML alerts [20]. Other recent synthetic generators likewise target
sub-percent positive rates to emulate production monitoring workloads and, at the
same time, allow customizing the amount of positive transactions [21, 14].

8

Money Laundering Patterns

Typology Alias Description

Fan-out Star A single source distributes funds to many
downstream accounts; used during placement
or layering to disperse proceeds. [13].

Fan-in Reverse star Multiple sources send funds to one central

Scatter—gather

Gather—scatter

Cycle

Chain

Random walk

Temporal cycle

Smurfing

Linear

Random

Burst

account. In layering, criminals gather funds
in a single node before further dispersal or
cash-out.

Combined fan-out followed by fan-in: funds
scatter from a source to multiple intermedi-
aries and are gathered again into one account.
Reverse of scatter—gather: multiple sources
combine funds then redistribute them among
many accounts. Useful for mixing illicit funds
with legitimate money.

Funds circulate among a closed loop of ac-
counts and eventually return to the origin.
Cycles often combine multiple chains and
stars [13].

A sequence of transfers from one account to
the next. Chains reflect layering and can be
arbitrarily long.

Funds move randomly among controlled ac-
counts; used to mimic legitimate activity.
Cycle where edges occur over an extended
period with time lags; emphasizes temporal
ordering [17].

Splitting a large transaction into many small
transfers below reporting thresholds. Often
implemented as a fan-out into multiple de-
posit accounts.

Table 2.1: Common illicit transaction typologies and motifs. The descriptions
synthesize definitions from AMLGENTEX and related simulators[14, 17, 13, 19].

2.3.2 Account/node level

Only a small fraction of accounts participate in laundering within a given observation

window. Modern generators such as AMLGENTEX make this fraction explicitly

configurable (via typology counts/sizes, reuse probabilities, timing schemes, and

9

Money Laundering Patterns

label noise) exactly to reproduce the severe skew observed by institutions [14].

Another important statistic is the evolution of account balances. AMLGEN-
TEX shows that normal accounts exhibit relatively stable balances or gradually
increasing trajectories, whereas laundering accounts display sudden spikes and

subsequent rapid drops corresponding to placement, layering, and integration events
[14].

2.3.3 Why this matters

Such imbalance means that naive thresholds on amounts or volumes are insufficient
as a learning method (positive and negative distributions overlap). Therefore,
learning objectives and metrics must prioritize performance under skew, and also
calibration to operational false-positive is essential. At the macro level, the rarity of
confirmed cases is consistent with policy studies and official estimates that indicate
that only a tiny fraction of criminal proceeds are ultimately detected or recovered

22].

2.4 Evasion Tactics and Countermeasures

Criminals actively adjust their behavior to evade detection. Understanding evasion
tactics informs feature design and model robustness. This section categories
common evasion strategies by feature group and proposes countermeasures.

2.4.1 Transaction—level evasion

e Smurfing and micro—structuring To avoid triggering amount-based thresh-
olds, launderers divide large sums into many small transactions (smurfing).
They exploit different transaction types, such as Cash-In via prepaid cards,
peer-to-peer transfers, or merchant payments, to diversify flow channels [16].

Countermeasure: regulators can aggregate transactions over sub-windows
and compute cumulative sums. AMLGENTEX uses sub-windowing (m = 4
by default) so that consecutive small deposits still produce high cumulative
amounts and counts.

o Channel hopping and currency arbitrage Criminals switch between
channels (mobile wallet, online banking, cash) and convert funds across cur-
rencies to confuse detection. They may route funds through low-risk merchant
categories with small fees.

10

Money Laundering Patterns

2.4.2 Account—level and temporal evasion

e Burst smoothing. Launderers space out illicit transfers with legitimate
activity to smooth transaction counts and avoid peaks. They adjust inter-
arrival times to mimic normal patterns.

Countermeasure: adopt measures such as the coefficient of variation or wavelet-
based burst analysis [15]. Use sub-windowing to detect transient spikes and
compare patterns relative to account cohorts rather than fixed thresholds.

» Synthetic identities and account rotation Criminals open new accounts
with clean KYC profiles, then close or abandon them after laundering. They
transfer funds through networks of “straw persons” or shell companies to
reduce days-in-bank and phone-change indicators.

2.4.3 Structural and graph—based evasion

« Network fragmentation To avoid detection of star or chain motifs, criminals
split flows across multiple smaller patterns and rotate accounts to keep in-
/out-degrees low. They use random walk patterns or scatter—gather motifs
across time to hinder motif counts.

Countermeasure: incorporate multi-hop pattern detection and community
detection. Graph motif counting with time windows captures scatter-gather
patterns, while approximate centrality identifies subtle hubs [17, 11]. Moreover,
graph coarsening that preserves motifs can maintain detection power when
scaling to large networks.

e Cross-institution masking Patterns spanning multiple FIs may evade
detection if each bank observes only partial data.

Countermeasure: regulators encourage collaborative detection (e.g., federated
learning) and adopt cross-FI graph representation. AMLGENTEX shows that
patterns often involve up to seven FIs [14], emphasizing the need for data
sharing, but privacy is the main issue here.

2.4.4 Label and supervision evasion

o Adversarial noise and false positives Criminals may intentionally file
false SARs on benign accounts to mislead models or generate noise to degrade
learning.

Countermeasure: incorporate robust statistics, model uncertainty and adversar-
ial training; evaluate models under simulated label noise as AMLGENTEX does

11

Money Laundering Patterns

(class noise, typology noise and neighbor noise) [14]. Use semi-supervised
learning to harness unlabeled data.

2.5 Feature Robustness and Evaluation

Selecting time windows and evaluation metrics is critical for robust detection.
AMLGENTEX uses windows of 7" days (e.g., T' = 30) divided into m equal sub-
windows (m = 4 by default) to compute temporal aggregates. Sub-windowing
captures bursty behavior and mitigates the effect of concept drift [14], that occurs
when the patterns that distinguish normal and suspicious behavior change over time.
Rolling windows can further track evolving patterns and adapt to temporal drift.
When computing graph features, one must decide whether to include the entire
history or only recent transactions; temporal motifs require ordering. Robustness
also involves sensitivity analysis. Features should be tested against changes in
window length, sub-window count, noise injection and sampling.

Evaluation must account for extreme class imbalance.

12

Chapter 3

Task

In this chapter, we define the task of gang prediction. Since the current literature
has not yet established a clear definition of what constitutes a gang, we also
provide our own definition. To this end, we analyzed several papers and examined
transaction graphs such as the one shown in Fig. 3.1.

. Legitimate Nodes
i . Suspicious Nodes

e

An Organized
Money Laundering
Gang

— _’F;’i
soe O/‘ ¥

Figure 3.1: The layout of a real-world money laundering user transaction graph.
The records being reported as high risk of money laundering are colored red, while
the legitimate ones are colored blue.

13

Task

3.1 Gang Definition

Before introducing the formal task, it is important to clarify what a gang is and
what it is not. We can state with confidence that a gang:

1. is not equivalent to a community: communities are typically defined by
dense structural connectivity, whereas gangs can be sparse, overlapping, or
even partially disconnected subgraphs;

2. cannot be identified solely from graph structure: topological patterns
alone are insufficient to discriminate between legitimate and illicit behaviors.

This is illustrated in Fig. 3.1, where the highlighted subgraph contains both
suspicious and legitimate nodes within the same community. As discussed in
Section 2.2, illicit transaction motifs such as fan-in/fan-out often coexist with
legitimate flows. Therefore, while a gang may exhibit certain structural regularities,
it is essentially defined by its coordinated behavioral intent, that is, by a group of
accounts collaborating to disguise the illicit origin of funds. Consequently, detecting
gangs requires the joint modeling of both structural and feature-based information
(e.g., transaction attributes, timing, and node features), rather than relying solely
on connectivity.

At the same time, we can formulate several reasonable assumptions about the
typical properties of a gang:

1. Densely connected: members of a gang tend to exchange money frequently,
forming local clusters of high transaction intensity;

2. Small in size: gangs usually involve a limited number of accounts, as larger
structures are more easily detectable and difficult to coordinate;

3. Multi-account ownership: a single individual may control multiple accounts,
which participate jointly in laundering schemes;

4. Composed of specific transaction motifs: typical structural patterns
include fan-in/fan-out, cycles, or scatter—gather operations, corresponding to
the classical stages of money laundering (placement, layering, integration);

5. Threshold on total transferred value: gangs often operate with amounts
exceeding a certain limit, to achieve meaningful laundering outcomes .

These assumptions are consistent with empirical evidence from real financial net-
works and prior AML research. For instance, Cheng et al. [13] observed that
organized criminal groups in the UnionPay dataset appear as locally dense clusters
of limited size, often formed through repeated interactions among the same subset
of accounts (this is the reason behind the thicker edges). Similarly, synthetic

14

Task

frameworks such as AMLGENTEX [14] model laundering typologies using recurrent
motifs like fan-in/fan-out, emphasizing the structured yet small-scale nature of
such groups. Therefore, although the precise characteristics of gangs may vary,
they generally exhibit strong internal connectivity, repeated cooperative behavior,
and distinguishable transactional patterns that differentiate them from random
legitimate communities.

3.2 Gang Prediction Task

This section formalizes the gang prediction problem addressed in this thesis. We
work on a (possibly dynamic) transaction network where vertices are bank accounts
and edges are monetary transfers. The goal is to learn a model that detects
organized, coordinated illicit activity at the level of groups of nodes, going beyond
purely structural cues.

3.2.1 Problem setting.

Let G = (V,E, X) be a directed, weighted, attributed graph: V is the set of
accounts; £ C V' x V' is the set of transactions (optionally with timestamps and
amounts); and X collects node and edge features (e.g., degree statistics, country
codes, device/IP metadata, KYC-derived attributes). When data are temporal, we
assume an aggregation operator AGG(w) over a time window w that produces a

snapshot G, = (Vi Fy, Xu)-

3.2.2 Prediction targets.

Depending on the operational use case and ground truth availability, we consider
two granularities:

« Node-level (account) prediction. Given G, learn fy : V,, — [0,1] such
that fp(v) is the probability that account v participates in a laundering gang
within window w. We call it fine prediction, because it is applied at a fine
level.

» Group-level (gang) prediction. Given a collection of candidate subgraphs
S ={SCV,}learn gy : S — [0,1] such that gy(5) scores the likelihood that
S is a gang. We call it coarse prediction, because it is applied at a coarse level.

These choices are motivated by the real behavior of financial institutions, which in
practice issue alerts on individual accounts or on small groups of related accounts

15

Task

rather than on single transactions. Moreover, in the case of group—level classification,
the considered groups correspond to the same entities previously defined as gangs,
representing sets of accounts that cooperate to disguise illicit money flows.

16

Chapter 4

Method

In this chapter, we describe the methodology for our graph representation learning
pipeline, which crucially incorporates a graph coarsening technique with strong
theoretical guarantees. The goal of graph coarsening is to reduce the number of
vertices in the graph while preserving its essential structural properties. By working
with a smaller graph, we can significantly accelerate computations (e.g., graph
embeddings or graph neural network operations) without substantially altering the
outcome. Moreover, reducing the graph helps remove outliers and promotes better
generalization during the learning phase.

Loukas (2019) [23] introduced a principled coarsening framework based on Re-
stricted Spectral Approzimation (RSA), which provides theoretical guaranties on
the preservation of spectra, cuts and embeddings. However, Loukas’ method relies
on predefined candidate sets without considering data-driven node representations.
To enhance coarsening, we integrate GNNs to learn node embeddings that guide
the selection of candidate sets. This leads to an iterative procedure:

e Use GNN embeddings to decide which nodes to merge.
o Perform one-level coarsening based on embedding similarity and local variation.
o Retrain the GNN on the coarsened graph to refine embeddings.

» Jointly optimize classification and coarsening consistency losses.

4.1 Graph Coarsening

In this section we will analyze the coarsening method proposed by Loukas [24, 23,
25] and how it is adapted to our use case.

17

Method

Graph coarsening refers to the process of producing a smaller graph (with fewer
nodes) from an original graph by aggregating or contracting groups of original
nodes into super-nodes. Formally, given an original graph G = (V, £, W) with
V| = N number of nodes, |E| = M number of edges and W the edge weight,
a coarsened graph G. = (V., E.,W,.) is constructed where |V,| = N. < N and
each super-node in V, corresponds to a subset of nodes in V. In general, graph
coarsening can be viewed as defining a mapping f : RV — R™e that associates each
finenode with a corresponding super—node.

In the rest of this section, we first explain the principles underlying this approach
Sec. 4.1.1, then describe the algorithmic procedure to obtain the coarsened graph
Sec. 4.1.8, and finally discuss the properties (spectral and cut metrics) that are
approximately preserved in the coarsening process.

4.1.1 Graph Reduction

Consider a positive semidefinite (PSD) matrix L € RY*Y whose sparsity structure
captures the connectivity structure of a connected weighted undirected graph G.
In other words, L(i,j) # 0 only if e;; is a valid edge between vertices v; and v.
Moreover, let « be an arbitrary vector of size N. We can study the following generic
reduction scheme:

Graph Reduction Scheme: Commence by setting Ly = L and zy = x and
proceed according to the following two recursive equations:

_ + —
L,= ngFLe—1Pe , xp = Py,

where P, € RVeXNe-1 are matrices with more columns than rows, £ =1,2,...,c
is the level of the reduction, symbol + (resp. F) denotes the pseudoinverse
(resp. transposed pseudoinverse), and Ny is the dimensionality at level ¢ such
that Ny = N and N, = n < N.Vector z. is lifted back to RY by recursion
Ty = P&y, where 7, = x,.

Graph reduction thus involves a sequence of ¢ 4 1 graphs:
G = G(0 = (‘/07E07W0) G(l = (‘/17E17W1) Gc = (‘/C7EC7 WC) (41)

of decreasing size N = Ny > N; > --- > N, = n, where the sparsity structure of
L; matches that of graph G and each vertex in G, represents one of more vertices
in GG;_1. We can define the reduction ratio simply by:

n
—1- = 4.2
r N (4.2)
18

Method

and we can express the quantities in a more compact form (avoiding the multi-level
setup):

t.= Pzr, L.=PTLP" and & =1z, (4.3)

where P = P.--- P, Pt = P}"-.. P, Il = P*P. The rationale of this scheme is
that vector T should be the best approximation of x given P in an f>-sense, which
is a consequence of the property that II is a projection matrix.

4.1.2 Properties of Reduced Graphs

Below we list some nice property of the above scheme.
Property 1. IIis a projection matrix.

Property 2. If L is PSD, then so is L..

We can further consider the spectrum of the two matrices. Sort the eigenvalues of
L as A\ < X\ < ... < Ay and denote by A\ the k-th largest eigenvalue of L. and
U, the associated eigenvector.

It turns out that the eigenvalues A and) are interlaced.

Theorem 3. For any P with full-row rank and £ =1,...,n, we have:
YA < M < % Mep N,

with v = /\1((PPT)‘1> and v, =)\n((PPT)‘l), respectively the smallest and
largest eigenvalue of (PPT)~! (Discussion and proof omitted, refer to [23].)

One can also say something about the action of L. on vectors.

Property 4. For every vector z € im(II), one has:
xCTchc =2 ILz =2 Lz and 7 =Tz = z.

In other words, reduction maintains the action of L of every vector that lies in the
image of II.

19

Method

4.1.3 Coarsening as a Type of Graph Reduction

Coarsening is a type of graph reduction abiding to a set of constraints that render
the graph transformation interpretable. More precisely, in coarsening one selects
for each level ¢ a surjective (i.e., many-to-one) map ¢, : V,_1 — V; between the
original vertex set V,_; and the smaller vertex set V,. We refer to the set of vertices

Vg(j1 C V,—; mapped onto the same vertex v\ of V; as a contraction set:
VI = {v € Viet pu(v) = v} (44)

Moreover, we constraint it a little more by requiring that the subgraph of G,_;
induced by each contraction set Vf(f)l is connected.

It is easy to deduce that contraction sets induce a partitioning of V,_; into N,
subgraphs, each corresponding to a single vertex of V,. Every reduced variable thus
corresponds to a small set of adjacent vertices in the original graph and coarsening
amounts to a scaling operation. An appropriately constructed coarse graph aims to
capture the global problem structure, whereas neglected details can be recovered
in a local refinement phase.

Coarsening can be placed in the context of Scheme 1 by restricting each P, to lie
in the family of coarsening matrices, defined next:

Definition 5 (Coarsening matrix) Matrix P, € R¥VNe-1 is a coarsening
matrix w.r.t. graph G,_; if and only if it satisfies the following two conditions:

1. It is a surjective mapping of the vertex set, meaning that if Py(r,i) # 0 then
Py(r',1) = 0 for every r' # r. In other words, each vertex can belong to exactly
one coarsening set.

2. It is locality preserving, equivalently, the subgraph of Gy_; induced by the
non—zero entries of Py(r,:) is connected for each r.

Proposition 6 (Easy inversion) The pseudo-inverse of a coarsening matrix P
is given by P;" = P, D=2 | where D is the diagonal matrix with D(r,7) = || Py(r,:)]|2-

Proposition 6 carries two consequences.

« Coarsening can be done in linear time. Each coarsening level (both in the
forward and backward directions) entails multiplication by a sparse matrix.

« Both P, and P, have only Ny, — 1 non-zero entries meaning that O(N) and
O(M) operations suffice to coarsen respectively a vector and a matrix L whose
sparsity structure reflects the graph connectivity.

20

Method

4.1.4 Laplacian Consistent Coarsening

A further restriction that can be imposed is that coarsening is consistent w.r.t. the
Laplacian form. Suppose that L is the combinatorial Laplacian of G defined as:

d; ifi=j
L(’l,j) =\ Wi if €ij el
0 otw

where w;; is the weight associated with edge e;; and d; the weighted degree of v;.
For equally weighted graphs (so considering W only contains unit entries), the
combinatorial Laplacian matrix can be defined as L = D — A, where D is a diagonal
matrix built from degrees of vertices and A is the adjacency matrix.

Let’s analyze a toy example taken from the graphs in Fig. 4.1.

v

(a) Graph G (b) Coarse graph G.

Figure 4.1: Toy coarsening example. Grey discs denote contraction sets. The
first three vertices of G forming contraction set Vj' are contracted onto vertex vf.
All other vertices remain unaffected.

Let Gy be a simple path over five vertices as shown in Fig.1, with combinatorial
Laplacian

3 -1 -1 -1 0

-1 3 -1 0 -1
L=|-1 -1 2 0 O
-1 0 0 1 0
0 -1 0 0 1
Suppose a single level with contraction sets Vo(l) = {vy,v9,v3}, ‘/0(2) = {u4},

21

Method

v = {vs}. The choice for P;, P;" and II is

100 % % % 0 0
% é % 0 0 1 00 I 0 0
=10 0 0 1 0f, Pr=11 0 0f, H:PfrPlzggg()O
0 0 0O0T1 010 00010
0 01 0 0 001
so that coarsening results in
9 -1 -1 z(1)4x(2)4x(3)
3
L.=PFfLPf|-1 1 0|, zr. = Pz x(4)
-1 0 1 x(5)
Finally, when lifted z. becomes
z(1)+z(2)+z(3)
x(1)+a:?2)+a:(3)
i = P, = o = | tel4a0)
z(4)
(5)

4.1.5 Restricted Spectral Approximation

This section formalizes how should a graph be reduced such that fundamental
structural properties (e.g., its spectrum and cuts) are preserved. Inspired by work
in graph sparsification, Loukas introduces a measure of approximation that is
tailored to graph reduction. The new definition implies strong guarantees about
the distance of the original and coarsened spectrum and gives conditions such that
the cut structure of a graph is preserved by coarsening.

One way to define how close a PSD matrix L is to its reduced counterpart is to
establish an isometry guarantee w.r.t. the following induced semi-norms:

|lz||lp = VaTLx and ||z ||, = \/x! Lex. (4.5)

Ideally, one would hope that there exists € > 0 such that
(=) llzlle < flwellz. < (1 +€) [l (4.6)

for all x € RY. But since the dimension changes this is impossible except trivially
e = 1. To carry out a meaningful analysis, one needs to consider a subspace of
dimension k£ < n and aim to approximate the behavior of L solely within it. Hence
we define the Restricted Spectral Approximation:

22

Method

Definition 7 (Restricted Spectral Approximation) Let R be a k-dimensional
subspace of RY. Matrices L. and L are (R,¢)-similar if there exists € > 0 such
that

o — 2| < ellz. (4.7)

for all z € R, where 7 = PTPx = Ilx.

Corollary 8. If L. and L are (R,¢)-similar, then:

(1 =e)llzlle < e

L. < (1+¢)lzflr forallz € R (4.8)

To this effect, consider the smallest k eigenvalues and corresponding eigenvectors
and define the following matrices

Up € RV% = [uy, ug, . .., ug and Ax = diag(Ai, Ao, .., M)

In the next Theorem we show that R = span(Uy) suffices to guarantee that the
first k eigenvalues and eigenvectors of L and L. are aligned.

Theorem 9 (Eigenvalue approximation) If L. and L are (Uy,¢ey)-similar,
then
(1+ Ek)Q

1 —e(Mi/X2)
whenever e2 < A\?/)... Crucially, the bound depends on), instead of Ay n_, and

thus can be significantly tighter than the one given by Theorem 3. In Appendix A
a sample script in python to empirically prove this theorem is provided.

MM < M <7 (4.9)

4.1.6 Decoupling Levels and the Variation Cost

Guaranteeing restricted spectral approximation w.r.t. subspace R boils down to
minimizing at each level ¢ the variation cost:

o0 = |y A, (4.10)

The matrix A,_; is carrying
1. the information of target subspace R at the current level
2. accumulated reductions from prior levels.

The precise recursive definition is Ay_; = By_1 (B} L¢_1Be_1)""/? with B,_; =
Py 1By 5 and By = Ay (and Ag = VV T LtY2 when R = span(V)). Moreover: /

23

Method

Proposition 10. L. and L are (R,¢)-similar with ¢ < [[j_;(1 +o,) — 1. /
Crucially, the previous result makes it possible to design a multi-level coarsening
greedily, by starting from the first level and optimizing following levels one at a
time. Given a total target threshold & and an initial cumulative threshold g9 = 0,
the variation cost at each level £ must be chosen carefully to ensure that the overall
approximation error does not exceed ¢’. Specifically, the cumulative error after
level ¢ is given by: /

£ /
1
ee< [[A+on) —1=(1+0o)(l+e1)—1<e = Uzéi—l (4.11)
k=1 14+¢ep4

/ From this relation, we can derive an upper bound on the allowable variation cost
oy for level ¢, which ensures that the cumulative error remains below the target
threshold:

, 1+¢
o' <—— =1 and g =1+¢e_1)1+0)—1 (4.12)
1+ei

Thus, every local variation algorithm operates in the following manner:

Algorithm 1 Multi-level coarsening [23]

Require: Combinatorial Laplacian L, threshold &', and target size n.
:Set £ < 0, Ly < L, and ¢, < 0.
- while N, > n and ¢/ < ¢ do
C+—0+1

Coarsen L,_; using Alg. 2 with threshold ¢’ = 1+

1

2

3

4 e, L and target size n
5: Let L, be the resulting Laplacian of size N, with variation cost o,

6 €g<—(1+85_1)(1+04)—1

7: end while

8

: return L,

Alg. 1 returns a Laplacian matrix L. that is (R, ¢)-similar to L with e <e. < ¢,
where c is the last level £. On the other hand, setting &’ to a large value ensures
that the same algorithm always attains the target reduction at the expense of loose
restricted approximation guarantees.

24

Method

4.1.7 Decoupling Contraction Sets and Local Variation

Suppose that 114 is the (complement) projection matrix obtained by contracting
solely the vertices in set C, while leaving all other vertices in V,_; untouched:

z(2) — 2h) oy,
[Hg:p](z‘)z{) = Zecior weC (4.13)

0, otw

Here, for convenience, the level index is suppressed.

Definition 11 (Local Variation Cost) The local cost of contracting the
variation set C at level £ is defined as:

2
| A

costy(C) = -1

(4.14)

with|| - || the operator norm induced by ||z||.. This isolates the interaction to
the subgraph induced by C' U N(C).

The following proposition shows us how to decouple the contribution of each
contraction set to the variation cost.

Proposition 12 (Decoupling bound) The variation cost is bounded by:

o< Y MEA 2, = 3 coste(O)(IC] - 1) (4.15)
CcePy CeP
where Py = {Vﬁ)l, e Véj_vf)} is the family of contraction sets of level . Hence, one

can minimize an upper bound on g, by selecting disjoint sets with small local costs.

4.1.8 Local Variation Coarsening Algorithm

Building on the above principles, Loukas [23, 24, 25] develops a family of greedy
algorithms for graph coarsening, referred to as local variation coarsening algorithms.
The high-level procedure is as follows.

Starting from a candidate family Fy = {C1,C5,Cs, ...}, that is, an appropriately
sized family of candidate contraction sets, the strategy will be to search for a small
contraction family Py, = {Vﬁ)l, . ,Véj_vf)} with minimal variation cost o, (P is
valid if it partitions Vy_; into N, contraction sets). Every coarse vertex v, € Vy

is then formed by contracting the vertices in Vﬁr On the other hand, since any

25

Method

Algorithm 2 Single-level coarsening by local variation [23]

Require: Combinatorial Laplacian L, 1, threshold ¢’, and target size n.
Form a family of candidate sets F, = {C1,C5,Cs, ...}
Ny < N1, marked < (), 02 + 0
Sort Fy in terms of increasing cost,(C)
while || > 0 and Ny > n and o, < ¢’ do
Pop the candidate set C' of minimal cost s from F
if all vertices of C' are not marked and o’ > \/ o2+ (|C| — 1)s then
marked < marked U C
Py~ P, UC
Ny N, — |C| +1
of o+ (|C| - 1)s
end if
: end while
: Form the N, x N,_; coarsening matrix P, based on P,
. return L, + P/ L, 1P, and oy

—= = e e

permissible contraction family P, should be a partitioning of V},_;, choosing C'
precludes us from selecting any C’ with which it intersects.

Two natural choices for the candidate family are:

o FEdge-based candidates: each candidate set is simply an edge {u,v} (a pair of
adjacent vertices). Contracting an edge means merging its two endpoints.

o Neighborhood-based candidates: each candidate set is a small neighborhood,
for example all vertices within distance 1 of a given vertex, including the
vertex itself. This allows contracting larger clusters, potentially yielding a
higher reduction in one step at the cost of more complex updates.

Alg. 2 sequentially examines candidate sets from JF;, starting from those with
minimal cost. To decide whether a candidate set C' will be added to Py, the
algorithm asserts that all vertices in C' are unmarked, essentially enforcing that
all contraction sets are disjoint. Accordingly, as soon as C' is added to P, all
vertices that are in C' become marked. The algorithm terminates if either the target
reduction is achieved, the error threshold is exceeded, or no candidate sets are left.

In Appendix D, we provide an example of the coarsening evolution on a small
graph to build intuition about the process.

26

Method

4.2 Semantic Variation Cost

The local-variation framework in Secs. 4.1.1-4.1.8 controls the structural distortion
induced by coarsening through the graph Laplacian L and the target subspace
carried by A, ;. Because L is derived from the adjacency, these guarantees do
not explicitly account for the semantic information present in node features and
representations. To complement structure, we introduce a semantic analogue of
the variation cost based on node embeddings computed by any GNN.

Embeddings Let &4 denote a GNN defined on the current graph G,_; with
feature matrix X,_; € RNe-1%d Tts embedding matrix is

Ho oy = Pp(Goy, Xp_y) € RVe-174

where each row H,_1 (v, :) summarizes both feature and multi—hop structural context
for node v. Further discussion in Section 4.3.

As seen in Chapter 4.1.7, matrix A carries:
1. the information of target subspace R at the current level
2. accumulated reductions from prior levels.
At the same time, matrix H carries:
1. information of the subspace X, representing the space of node features

2. accumulated reductions from prior levels, because embeddings are recomputed
after each coarsening level.

Hence, we can make matrix A be replaced by H, contributing to the analogous
semantic variation cost at level ¢ defined as:

oM = Hﬂé‘fﬂeq (4.16)

Ly

At the same time, we can also look deeper in each coarsening level:

Definition 13 (Semantic Local Variation Cost) The semantic local cost of
contracting the variation set C' at level ¢ is defined as:

som HHé”He_l Hic tr (H TS Ll H)
costy™™(C) = o1 S o1

27

(4.17)

Method

Proposition 14 (Decoupling bound — semantic) Let P, = {V\",, ..., V"
be a valid family of disjoint contraction sets at level £. Then the semantic variation
cost is bounded by:

2
(01")" < 0 IMEHmllf, = 3 eostp™(©)(C] =1 (418)

CcePy CeP,y

4.3 Graph Learning

This section gives a compact, self-contained overview of graph neural networks
(GNNs) for semi-supervised node classification and explains how learning is inte-
grated with the multi-level coarsening pipeline of Section 4.1 and with the semantic
variation cost discussed in Section 4.2.

4.3.1 Problem Setup and Notation

Let G = (V, E,X) with |V| = N, adjacency A € RV*¥ (combinatorial) Laplacian
L = D — A, node-feature matrix X € RV*% and labels Y € RY. Only a subset
L C V is labeled; the goal is to predict labels for all nodes by exploiting both
features and the graph structure.

Throughout the coarsening pipeline we denote by (Gy, Ly, Xy) the graph, Laplacian
and features at level ¢, and by P, the level-¢ coarsening matrix with pseudoinverse
P;" and projection matrix IT, = P," P, (see Section 4.1). We write N, = |V}|, with
N=Ny>N;>--->N.=n.

4.3.2 Message Passing and Node Embeddings

A GNN layer propagates and transforms information along the edges. In a generic
Message Passing Neural Network (MPNN), the hidden representation hgk) € R% of
node ¢ at layer k is

hY = o(W® - AGG({RY :j e N(i)ULi}})), (4.19)

with learnable weights W) nonlinearity ¢ and a permutation-invariant aggregator
AGG (e.g., sum/mean/attention). We set H(®) = X and stack K layers to obtain

HE) € RV*dx | whose i-th row hl(-K) is the embedding of node 1.
A widely used instance of the message-passing framework is the Graph Convolutional

Network (GCN) [26]. The GCN layer performs a first-order approximation of
spectral graph convolutions by propagating features through a normalized adjacency

28

Method

matrix. With self-loops A = A + I and degree matrix D = diag(fll), the update
rule is

2 (k+1) _ o—(D*”ZAD’I/z ”H(’“)W(k)), HO = X, (4.20)

where o denotes a nonlinear activation function and W% is a learnable weight
matrix. This operation linearly transforms node features, aggregates them from
neighboring nodes with symmetric normalization to stabilize training, and applies a
nonlinear transformation. Other architectures such as GraphSAGE, GAT, APPNP,
and GIN follow the same message-passing template in (4.19), differing mainly in
their aggregation and normalization functions.

Embeddings and their role. The matrix # = H®) summarizes feature and
multi-hop structural context. In our pipeline, embeddings are: (i) the classifier’s
input (via a final linear head), and (ii) a semantic signal to guide coarsening
(Section 4.3.5), since nodes that are close in H are good merge candidates provided
the local-variation cost remains small.

4.3.3 Prediction Head and Semi-supervised Loss

Given H®) | we map to logits Z € RV*C and probabilities p;:

Z = HEOW,y, p; = softmax(Z;). (4.21)
We train with a masked cross-entropy on the labeled set L:
1
Las = — » CHEY:, pi). (4.22)
g 2)

To address class imbalance (typical in AML), one may use class weights o, in (4.22)
or focal loss. In addition, weight decay is applied via the optimizer (AdamW).

4.3.4 Learning on Coarsened Graphs and Lifting

At level ¢, we train the GNN on (L;, X;) to obtain embeddings H, = ®y(Gy, Xy)
and logits Z, € RV**¢. When supervision is given at the fine level, we lift coarse
predictions back using the projector induced by F;:

~ 1 -
Zoy = PfZ, € RNexC 0 — mz CE(Y;, softmax(Z,_y[i])). (4.23)
€L

This keeps the classifier trained where labels actually live, while benefiting from
reduced computation at coarse levels. After training, we can propagate predictions
across levels by composing the lifts, using P = P,--- P, and PT = P, --- PF.

29

Method

4.3.5 Embedding—Driven Coarsening and Similarity

Let Hopo1 = Pg(Gy_1,X¢—1) be the current embeddings and let C' C V,_; be a
candidate contraction set. As seen in Section 4.2 We define a semantic variation
cost analogue that prefers contracting nodes already close in embedding space:

e

costi™(C) = Hic _ TF(HZ,lﬂéLCHéH@,l)

-1 ¢l -1
Candidates are accepted if they are disjoint, have small semantic cost, and do not

exceed the maximum threshold €', optionally enforcing label consistency when some
nodes in C' are labeled.

(4.24)

As an additional constraint, we allow a group of nodes to be coarsened together
only if they satisfy a predefined similarity threshold. In particular, we use the
cosine similarity between node embeddings to quantify how semantically close two
nodes are. Given two node representations h;, h; € R? their cosine similarity is

defined as:
hi h;

[1Pil|2 ([7l
This metric measures the angle between the two embedding vectors, being indepen-

dent of their magnitude and sensitive only to their orientation in the feature space.
The cosine similarity takes values in [—1,1] and can be interpreted as:

Simcos(hi, h]) (425)

1, if they are perfectly aligned (identical direction)
SiMeos (R, hj) = 0, if they are orthogonal (no correlation)
—1, if they point in opposite directions.
By enforcing a minimum cosine similarity threshold, we ensure that only nodes
with highly correlated feature representations, thus likely belonging to the same

semantic or structural neighborhood, are merged during the coarsening process. In
Appendix B a sample script in python to implement the cosine similarity.

4.3.6 Coarsening-Aware Loss Function

The overall training objective combines two complementary components: the
standard classification loss, which ensures predictive accuracy on labeled nodes,
and a coarsening-aware regularization term, which enforces consistency between the
learned embeddings and the hierarchical structure produced by graph coarsening.
Formally, the total loss is defined as:

[’total = £cls +A Ecoarsey (426)

where A is a weighting factor controlling the influence of the coarsening term.

30

Method

Classification loss. The classification objective is implemented as a standard
cross-entropy loss over the labeled nodes L:

cls - |£| ZZY;C logpzcu (427>

el c=1

where Y. is the one-hot encoded true label for node ¢ and class ¢, and p;. =
softmax(Z;). is the predicted class probability obtained from the output logits Z
n (4.21). This term drives the model to correctly classify labeled nodes based on
their learned embeddings.

Coarsening loss. To integrate structural information derived from coarsening,
we define a regularization term that aligns the learned embeddings with the coarse-
level grouping. Let ¢(v) denote the supernode into which node v is merged after
coarsening (we omit the level index for simplicity), and let S’ij = simcqs(h;, hj) be
the cosine similarity between the embeddings of nodes 7 and j. The coarsening loss
encourages embeddings of nodes within the same supernode to be similar, while
discouraging similarity across different supernodes:

£Coarse = *Cwithin + 'Cneg = Z (]- - S’l]) + Z gij (428)

1,5+ p(vi) = (vy) 1,5+ p(vi) # (vj)

The first term promotes intra-supernode compactness, driving embeddings of merged
nodes to align closely in the feature space (Sm ~ 1), while the second term
promotes inter-supernode separation, penalizing similarity between nodes belonging
to different coarse groups (S'ZJ ~ 0). This joint objective ensures that the GNN
learns representations that are both discriminative for classification and consistent
with the structural abstractions induced by the coarsening process.

However, this loss function has a computational complexity of O(N?), where N is
the number of nodes in the graph. Therefore, we need to improve it to make it
usable for large-scale graphs, such as transaction networks.

Let us consider a contraction set Vg(j)l For each pair of nodes within this set, we
should compute their cosine similarity and add it (with a negative sign) to the
coarse loss:

Th.
Wlthm - Z Z 1- % = Z Z 1-— h;rhj (429)
1hallz (1Al

where the denominator is omitted because the embeddings are already normalized.
Moreover, let us consider the embedding of the coarse node v,, into which the

31

Method

elements of the contraction set ‘/;3(1)1 are merged. As already shown in the toy
example in Sec. 4.1.4, the embedding of node v, is:

2 h

-y
1Vl

B 1
v

(%

and:

Wby = XX

vOPR S <
| f71| 7':VZ<—>1]:VZ(—)l

Since the optimization task is invariant to constant factors, we can ignore them and
notice that this is the exact same expression as L\(z:i)thin' Therefore, we can compute
it simply by obtaining He = PH and taking the mean of the trace of H.Hc. The
complexity of this operation is O(K?), where K is the number of nodes that have

been coarsened, but since K < N, it does not significantly slow down the process.

Lastly, we can also consider a way to speed up the computation of L. In this
case, we can approximate this term by evaluating it only on a random sample of
nodes. This idea is conceptually related to the principle of stochastic optimiza-
tion introduced by Robbins and Monro [27], where gradients (or, more generally,
objective terms) are estimated on random subsets of data to achieve efficient and
unbiased approximations of the full objective.

Let K < N be the number of coarsened nodes, and let V = {V,""} denote the
family of contraction sets. Then, the probability of sampling two nodes from the
same contraction set is:

v K
D) ()«
- N = (N\ T N2
) G X
Since we assumed K < N, this probability is very low. Hence, we can approximate
Lyes by computing it over a limited sample of nodes. In Appendix C, we provide a

sample Python script illustrating how to implement the coarsening-aware loss in
PyTorch.

4.3.7 Training Loop per Level

The iterative learning procedure alternates between embedding computation, graph
coarsening, and supervised training. At each level, the model refines its represen-
tations while progressively simplifying the graph structure. The process can be
summarized as follows:

32

Method

1. Embedding computation: the GNN learns node embeddings on the current
graph G,_; using the message-passing layers defined in Eq. (4.19)—(4.20).

2. Graph coarsening: candidate merges are selected based on the learned
embeddings and the semantic cost; accepted contractions define the projection
matrix P, and produce the coarse graph Gy.

3. Training with custom loss: the model is trained on the coarsened graph us-
ing the coarsening—aware loss Eq. (4.28), which balances classification accuracy
and embedding consistency.

4. Tteration: the process repeats on GGy until the desired reduction ratio or the
maximum number of levels is reached.

This hierarchical training loop allows embeddings to guide the coarsening decisions
in a task-driven manner, while the coarsened graphs provide a simplified yet
semantically meaningful structure for subsequent learning. Algorithm 3 presents
the full iterative procedure.

Algorithm 3 GNN Iterative Training with Custom Loss

Require: Adj matrix A, Node features X, Labels Y, Number of levels num_levels,
Number of epochs per level num_epochs_per_lev

1: // initialization
Create GNN model fy
Split nodes into train/val/test indices

// iterative learning
for level = 1 to num_levels do

// 1. Generate node embeddings
7 +— fg(A, X)

// 2. Coarsen the graph
9: P, G. < apply_graph_coarsening(G, Z, ratio, max__cost)

10: // 3. Train on coarsened graph
11: Extract features X., adjacency A., and labels Y, from G.

12: for epoch = 1 to num_epochs_per_lev do

13: Train fy on G, using the Coarsening—Aware Loss
14: end for

15: end for

16: // Evaluate
17: Test on coarse graph G, (corse-level accuracy)
18: Propagate predictions to original graph and test (fine-level accuracy)

33

Chapter 5

Results

In this chapter we present the experimental evaluation of the proposed iterative
learning framework. The experiments were designed with two main objectives. First,
we aimed to validate the correctness and stability of the iterative coarsening—learning
procedure on a well-known benchmark dataset, Cora, where standard graph neural
network (GNN) baselines are available for comparison. Second, we evaluated the
same pipeline on a synthetic anti-money laundering (AML) dataset generated with
the AMLGENTEX framework [14], in order to assess its behavior on transaction
networks that more closely resemble the application domain of our study.

5.1 Validation on the Cora dataset

The Cora citation network contains 2,708 scientific publications classified into
seven categories, connected by 5,429 citation edges, and described by 1,433 binary
attributes corresponding to the presence of specific words in each document. This
dataset provides a well-established benchmark for validating graph representation
learning methods under controlled conditions.

5.1.1 Experimental Setup

We used Cora to evaluate the general behavior of the iterative coarsening—learning
pipeline. At each iteration, the graph was reduced using the local variation (LV)
coarsening algorithms described in Chapter 4.1: one based on neighborhood
variation and one based on edge variation. We tested different reduction
ratios r € {0.50,0.75,0.85,0.95}, where r indicates the fraction of removed nodes.
After each coarsening step, we trained the model using the coarsening-aware loss

34

Results

introduced in Chapter 4.3. Model accuracy was computed separately on the coarse
graph and on the reconstructed fine graph to measure consistency across hierarchical
levels.

Similarity Epochs Accuracy Accuracy

nodes

threshold per level coarse fine
1 256 64.42 46.19

0.50 2 220 52.77 23.43
) 5 186 59.31 22.84
10 187 57.39 22.80

1 592 63.08 75.99

0.75 2 553 53.20 84.13
’ 5 515 41.43 79.59
10 370 54.51 61.51

1 894 66.55 86.48

0.85 2 847 64.22 85.64
) 5 699 54.38 83.02
10 534 53.51 83.35

1 1874 82.16 87.96

0.95 2 1530 78.64 86.04
) 5 1314 74.21 86.92
10 1119 67.64 81.92

Table 5.1: Coarse vs fine accuracy in Cora for different similarity thresholds (50%,
75%, 85%, 95%), num_epochs_per_lev (1, 2, 5, 10) and levels = 100.

Table 5.1 summarizes the main numerical results. As observed, increasing the
threshold results in a larger number of preserved nodes and a consistent improvement
in both coarse and fine accuracies, because it becomes less likely for nodes to be
similar (even if they belong to the same class). At low thresholds (e.g., 0.5), the
model produces highly compressed graphs with fewer than ~200 nodes but exhibits
limited fine-level accuracy, below 50%.

In contrast, higher thresholds such as 0.85 and 0.95 yield substantially higher
performance, reaching up to 82.16% on the coarse level and 87.96% on the fine
level, even if coarsening more than half of the original graph! Interestingly, for
these higher thresholds, the fine accuracy remains stable across multiple epoch
settings (typically above 85%), suggesting that the coarsening process effectively
preserves discriminative features. However, after a certain number of epochs (e.g.,
10), both coarse and fine accuracies tend to slightly decrease, indicating potential

35

Results

overfitting or diminishing returns from additional optimization.

Overall, the results highlight a clear trade-off between graph compactness and
classification accuracy, with thresholds around 0.85-0.95 and epochs around 1-5
offering the best balance.

5.1.2 Learning Dynamics

To analyze the optimization behavior, we visualize accuracies for different reduction
ratios in two complementary views.

GNN Accuracy vs Level

0.9
Lo Tao Y e
2 ~ A -
Jaex * ey \‘,.».ﬁmmnﬂmwwwwwmwv
¥y o] e R il P e g Ly
Ny, m O AR L S kK ok

o
1

0.8 /

0.7

4dEen

—u

o
o

Accuracy

o
n

1 \
1 T
1 1
[1
1

I
—e— Coarse, th=0.5 ~
0.4 -+=- Fine, th=0.5 I\
—— Coarse, th=0.75
-+- Fine, th=0.75 \
—e— Coarse, th=0.85 \
-+- Fine, th=0.85 H
—e— Coarse, th=0.95 ‘r'(‘ P e e il
0.2 -+- Fine, th=0.95 S

0.3

0 20 40 60 80 100
Level

Figure 5.1: Coarse (solid) and fine (dotted) accuracies during training for different
similarity thresholds (50%, 75%, 85%, 95%) and num_epochs_per_lev = 2.

In Figure 5.1 we can see the evolution of accuracy over iterations. As expected, the
learning proceeds promisingly as far as the coarsening is kept low. The coarsening
becomes more invasive when the similarity threshold is low, producing smaller
graph which lose too much information, hence resulting in low accuracy.

The next figure plots accuracy against the number of nodes in the current (coarsened)
graph. Moving to the right corresponds to progressively finer graphs (more nodes),
hence the graph should be read from right to left, which is the direction of the
learning.

Figure 5.2 shows that the coarsening is not making the learning impossible and
the model manages to achieve good results even when the amount of nodes is

36

Results

GNN Accuracy vs Number of Coarse Nodes

0.9

AIPOR gyt g = B TR I TS RS S =
i
e =

\

0.8

e

0.7

Accuracy
o
o
A
Febt

o
wn

—e— Coarse, th=0.5
-+- Fine, th=0.5
Coarse, th=0.75
Fine, th=0.75
—e— Coarse, th=0.85
-+- Fine, th=0.85
—e— Coarse, th=0.95
-+«- Fine, th=0.95

0.4

0.3

s S

0.2

500 1000 1500 2000 2500
Number of Coarse Nodes

Figure 5.2: Coarse (solid) and fine (dotted) accuracies as a function of the number
of nodes in the coarsened graph for different similarity thresholds (50%, 75%, 85%,
95%) and num_epochs_per_lev = 2.

reduced to about 25% of the original graph. This confirms that the reduced
representations still preserve the key structural and feature information required for
classification. In practice, this means that the proposed iterative pipeline is able to
learn robust embeddings that generalize well across hierarchical levels, maintaining
discriminative capacity even under severe dimensionality reduction.

5.2 AMLGentex Dataset Analysis

The AMLGENTEX dataset [14] is a synthetic benchmark specifically designed
for research on anti-money laundering (AML) detection. It was developed to
address the scarcity of open, realistic financial transaction data, which in practice
is inaccessible due to privacy and regulatory constraints. The dataset aims to
emulate the complex characteristics of real banking networks while maintaining
full controllability and transparent ground truth.

37

Results

5.2.1 Generation Process

AMLGENTEX is generated using an agent-based simulation framework that models
both legitimate and illicit financial activities. The system represents a population
of synthetic bank accounts as agents that interact through monetary transactions
forming a dynamic, directed multigraph. Each transaction (u,v,a) corresponds to
a money transfer from account u to account v with associated attributes a such as
amount, timestamp, and transaction type.

The generation process integrates multiple components:

Blueprint network: a scale-free base graph is created where the in-degree
and out-degree distributions follow a Pareto law, reproducing the heterogeneity
typically observed in real transaction networks.

Typologies: predefined transaction patterns are injected into the network to
simulate normal and suspicious behaviors (e.g., fan-in, fan-out, cycle, scatter—
gather, layering). These typologies correspond to canonical money-laundering
schemes described in financial intelligence literature.

Agent dynamics: each node is assigned a demographic profile (age, income,
spending behavior) and interacts over time according to probabilistic rules.
Money inflow and outflow are controlled by a synthetic income distribution
fitted to real salary statistics.

Stages of laundering: the simulator reproduces the three classical AML
phases (placement, layering, and integration), so that illicit transactions can
be traced along multi-step propagation paths.

5.2.2 Structure and Features

At each discrete time step ¢, the dataset provides a transaction graph G; =
(VmEtaXt;Yi)i

V; is the set of accounts active at time t;
E; is the multiset of transactions among them:;

X, contains node-level features derived from both static customer information
(age, income, type) and aggregated transactional statistics such as total
inflow /outflow, number of counterparties, and transaction frequency;

Y, is the set of binary labels marking whether an account is involved in any
laundering operation within a time window.

38

Results

Graphs can be aggregated over windows of time to obtain static snapshots suitable
for node classification. Each node’s label is set to 1 if it participates in at least one
suspicious transaction pattern during the aggregation window, otherwise 0.

5.3 Application to Synthetic AML Data

After validating the pipeline on Cora, we applied the same procedure to a synthetic
anti-money laundering dataset generated with the AMLGENTEX framework [14].
This dataset models a realistic banking scenario where nodes correspond to ac-
counts and edges to monetary transactions. Although the simulation captures key
challenges of AML detection—such as class imbalance, temporal drift, and adaptive
adversarial behaviour—the resulting classification problem is considerably harder
than in academic benchmarks like Cora.

In this setting, the model was trained to predict whether each account participates in
money-laundering activity, using node features derived from aggregated transaction
statistics. Despite extensive hyperparameter tuning and multiple coarsening ratios,
the model did not show meaningful convergence: both training and validation
accuracies remained close to random guessing. This suggests that, while the
iterative learning mechanism works well on graphs with well-separated classes and
relatively smooth signals, it struggles in domains with extreme imbalance and
weakly correlated features, such as money-laundering networks. In such cases,
the difficulty is intrinsic to the data rather than the model, since illicit nodes are
intentionally designed to mimic the behavior of normal accounts.

5.4 Discussion

The experiments highlight two main aspects of the proposed framework.

 the iterative coarsening and learning strategy can effectively retain classifica-
tion accuracy on benchmark datasets even when large portions of the graph
are collapsed, confirming the theoretical intuition that coarsening acts as a
regularizer and improves generalization [23].

o its performance strongly depends on the signal-to-noise ratio of the underlying
node features. In the AML case, where fraudulent nodes are extremely sparse
and their features highly camouflaged, no consistent learning signal could be
extracted.

These findings emphasize the importance of domain-specific representation learning
and the potential need for additional supervision signals or relational priors.

39

Chapter 6

Conclusion and Future Work

The goal of this thesis was to design and evaluate an iterative learning framework
capable of operating on hierarchical representations of graphs, with the long-term
aim of applying it to the detection of money-laundering activities in financial trans-
action networks. The central hypothesis was that combining graph coarsening with
a coarsening-aware learning strategy could improve generalization and scalability
while preserving the expressive power of graph neural networks (GNNs).

6.1 Summary of Contributions

We proposed a framework that alternates between graph coarsening and learning
phases, progressively reducing the graph size and refining node embeddings across
levels. The process is guided by a coarsening-aware loss, explicitly enforcing
consistency between coarse and fine representations. This allows information to
flow between hierarchical levels and helps the model maintain predictive accuracy
despite structural simplification.

To support and validate this approach, we:

o Reviewed and analyzed relevant literature on graph reduction and coarsening,
including spectral and optimal transport—based methods.

« Implemented local-variation (LV) coarsening algorithms, both edge-based
and neighborhood-based, providing a balance between structural fidelity and
computational efficiency.

e Developed and tested a custom coarsening-aware loss to align representations
across successive graph hierarchies.

40

Conclusion and Future Work

» Conducted extensive experiments on the Cora dataset to verify the correctness
and stability of the iterative framework.

« Applied the method to a synthetic anti-money laundering dataset (AMLGENTEX

to assess its performance in a more challenging, domain-specific context.

6.2 Future Work

Future developments of this research could focus on exploring more deeply how
the coarsening framework proposed by Loukas [23] can be adapted to achieve
meaningful results in the context of money-laundering detection.

One promising direction is to incorporate illicit transaction patterns as candidate
contraction sets within the coarsening process. In this formulation, nodes that
are known or suspected to participate in coordinated activities (e.g., accounts
involved in the same laundering scheme) would be assigned a higher probability of
being merged during coarsening. This would produce coarse representations that
more explicitly encode group-level criminal behavior, rather than relying purely on
structural similarity or spectral criteria.

Once such a domain-aware coarsening step is defined, a graph neural network could
then be trained on the resulting hierarchical graphs to learn discriminative features
not only at the individual node level, but also at the group or community level.
This approach could help the model capture higher-order relational dependencies
typical of money-laundering operations—such as small, densely connected clusters
of coordinated accounts—while maintaining computational efficiency.

41

Bibliography

United Nations Office on Drugs and Crime. Money Laundering: Ouerview.
https://www.unodc.org/unodc/en/money-laundering/overview.html.
2025 (cit. on p. 1).

Doug Hopton. Money laundering: a concise guide for all business. Routledge,
2020 (cit. on p. 1).

Michael Levi. «Money laundering and its regulation». In: The Annals of the
American Academy of Political and Social Science 582.1 (2002), pp. 181-194
(cit. on p. 1).

United Nations Office on Drugs and Crime. Estimating Illicit Financial Flows
Resulting from Drug Trafficking and Other Transnational Organized Crimes.
Research Report October 2011. Accessed: 2025-10-04. United Nations Office
on Drugs and Crime, 2011. URL: https://www.unodc.org/documents/data-
and-analysis/Studies/Illicit_financial flows_2011_web.pdf (cit.
on p. 1).

Kern Alexander. «The international anti-money-laundering regime: the role

of the financial action task force». In: Journal of Money Laundering Control
4.3 (2001), pp. 231-248 (cit. on p. 1).

Martin Jullum, Anders Lgland, Ragnar Bang Huseby, Geir Anonsen, and
Johannes Lorentzen. «Detecting money laundering transactions with machine
learning». In: Journal of Money Laundering Control 23.1 (2020), pp. 173-186
(cit. on p. 1).

Landry Signé, Mariama Sow, and Payce Madden. [llicit Financial Flows in
Africa: Drivers, Destinations, and Policy Options. Tech. rep. Policy Brief.
Accessed: 2025-10-04. Africa Growth Initiative, Brookings Institution, 2020.
URL: https://www.brookings . edu/wp- content /uploads/2020/02/
Illicit-financial-flows-in-Africa.pdf (cit. on p. 1).

Adetoyese Omoseebi, Godwin Ola, and Jackson Tyler. « Rule-Based Systems
in AML». In: (2023) (cit. on p. 2).

42

https://www.unodc.org/unodc/en/money-laundering/overview.html
https://www.unodc.org/documents/data-and-analysis/Studies/Illicit_financial_flows_2011_web.pdf
https://www.unodc.org/documents/data-and-analysis/Studies/Illicit_financial_flows_2011_web.pdf
https://www.brookings.edu/wp-content/uploads/2020/02/Illicit-financial-flows-in-Africa.pdf
https://www.brookings.edu/wp-content/uploads/2020/02/Illicit-financial-flows-in-Africa.pdf

BIBLIOGRAPHY

[10]

[11]

[12]

[18]

Zhiyuan Chen, Le Dinh Van Khoa, Ee Na Teoh, Amril Nazir, Ettikan Kan-
dasamy Karuppiah, and Kim Sim Lam. «Machine learning techniques for
anti-money laundering (AML) solutions in suspicious transaction detection: a
review». In: Knowledge and Information Systems 57.2 (2018), pp. 245-285
(cit. on p. 2).

Sarah N Welling. «Smurfs, money laundering, and the federal criminal law:
the crime of structuring transactionsy». In: Fla. L. Rev. 41 (1989), p. 287
(cit. on p. 2).

Bruno Deprez, Toon Vanderschueren, Bart Baesens, Tim Verdonck, and
Wouter Verbeke. «Network Analytics for Anti-Money Laundering-A System-
atic Literature Review and Experimental Evaluation». In: arXiv preprint
arXiv:2405.19383 (2024) (cit. on pp. 3, 5, 11).

Mark Weber, Giacomo Domeniconi, Jie Chen, Daniel Karl I Weidele, Claudio
Bellei, Tom Robinson, and Charles E Leiserson. « Anti-money laundering
in bitcoin: Experimenting with graph convolutional networks for financial
forensics». In: arXiv preprint arXiv:1908.02591 (2019) (cit. on p. 3).

Dawei Cheng, Yujia Ye, Sheng Xiang, Zhenwei Ma, Ying Zhang, and Changjun
Jiang. « Anti-money laundering by group-aware deep graph learning». In: IEEE
Transactions on Knowledge and Data Engineering 35.12 (2023), pp. 12444-
12457 (cit. on pp. 3, 5-7, 9, 14).

Johan Ostman et al. «AMLgentex: Mobilizing Data-Driven Research to
Combat Money Laundering». In: arXiv preprint arXiv:2506.13989 (2025)
(cit. on pp. 5-12, 15, 34, 37, 39).

David Savage, Qingmai Wang, Xiuzhen Zhang, Pauline Chou, and Xinghuo
Yu. «Detection of Money Laundering Groups: Supervised Learning on Small
Networks.» In: AAAI Workshops. 2017 (cit. on pp. 5, 11).

Edgar Lopez-Rojas, Ahmad Elmir, and Stefan Axelsson. «PaySim: A financial
mobile money simulator for fraud detection». In: 28th Furopean Modeling
and Simulation Symposium, EMSS, Larnaca. Dime University of Genoa. 2016,
pp. 249-255 (cit. on pp. 5, 6, 10).

Jovan Blanusa, Maximo Cravero Baraja, Andreea Anghel, Luc Von Nieder-
hdusern, Erik Altman, Haris Pozidis, and Kubilay Atasu. «Graph Feature
Preprocessor: Real-time Subgraph-based Feature Extraction for Financial
Crime Detectiony. In: (2024), pp. 222-230 (cit. on pp. 5, 9, 11).

Matthew Weber, Manuel Gomez-Rodriguez, and Shin Nakajima. AMLSim:
Anti-Money Laundering Simulation. GitHub repository. https://github.
com/IBM/AMLSim. 2020 (cit. on p. 7).

43

https://github.com/IBM/AMLSim
https://github.com/IBM/AMLSim

BIBLIOGRAPHY

[19]

[22]

[26]

[27]

28]

Erik Altman, Jovan Blanusa, Luc Von Niederhdusern, Béni Egressy, Andreea
Anghel, and Kubilay Atasu. «Realistic synthetic financial transactions for anti-
money laundering models». In: Advances in Neural Information Processing
Systems 36 (2023), pp. 2985129874 (cit. on p. 9).

Rasmus Ingemann Tuffveson Jensen, Joras Ferwerda, Kristian Sand Jgrgensen,
Erik Rathje Jensen, Martin Borg, Morten Persson Krogh, Jonas Brunholm
Jensen, and Alexandros losifidis. «A synthetic data set to benchmark anti-
money laundering methodsy. In: Scientific Data 10.661 (2023). po1: 10.1038/
s41597-023-02569-2. URL: https://www.nature.com/articles/s41597-
023-02569-2 (cit. on p. 8).

Toyotaro Suzumura, Hiroki Kanezashi, and IBM Research. AMLSim: Anti-
Money Laundering Simulator. https://github.com/IBM/AMLSim. Multi-
agent simulator with configurable typologies and alert rates. 2021 (cit. on
p. 8).

Ronald F Pol. «Anti-money laundering: The world’s least effective policy
experiment? Together, we can fix it». In: Policy design and practice 3.1
(2020), pp. 73-94. DOIL: 10.1080/25741292.2020 . 1725366. URL: https:
//doi.org/10.1080/25741292.2020.1725366 (cit. on p. 10).

Andreas Loukas. «Graph reduction with spectral and cut guaranteesy. In:
Journal of Machine Learning Research 20.116 (2019), pp. 1-42 (cit. on pp. 17,
19, 24-26, 39, 41).

Andreas Loukas and Pierre Vandergheynst. «Spectrally approximating large
graphs with smaller graphs». In: International conference on machine learning.
PMLR. 2018, pp. 3237-3246 (cit. on pp. 17, 25).

Yu Jin, Andreas Loukas, and Joseph JaJa. « Graph coarsening with preserved
spectral properties». In: International Conference on Artificial Intelligence
and Statistics. PMLR. 2020, pp. 4452-4462 (cit. on pp. 17, 25).

Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. «Simple
and deep graph convolutional networks». In: International conference on
machine learning. PMLR. 2020, pp. 1725-1735 (cit. on p. 28).

Herbert Robbins and Sutton Monro. «A stochastic approximation method».
In: The annals of mathematical statistics (1951), pp. 400-407 (cit. on p. 32).

Wayne W Zachary. «An information flow model for conflict and fission in
small groupsy. In: Journal of anthropological research 33.4 (1977), pp. 452-473
(cit. on p. I).

Wayne W Zachary. « An information flow model for conflict and fission in

small groupsy. In: Journal of anthropological research 33.4 (1977), pp. 452-473
(cit. on p. VII).

44

https://doi.org/10.1038/s41597-023-02569-2
https://doi.org/10.1038/s41597-023-02569-2
https://www.nature.com/articles/s41597-023-02569-2
https://www.nature.com/articles/s41597-023-02569-2
https://github.com/IBM/AMLSim
https://doi.org/10.1080/25741292.2020.1725366
https://doi.org/10.1080/25741292.2020.1725366
https://doi.org/10.1080/25741292.2020.1725366

Appendix A

Theorem 9 (Eigenvalue
approximation) - Empirical
Verification

We want to write a script to verify:

(1 +—€k)2

M < N < g R
TMAE = k_%l—fi()\k//\z)

whenever €2 < A2/).

For this purpose, we employ a simple dataset to reduce computational complexity;
in particular, we use the KarateClub dataset [28]. We initialize the graph by
creating an instance of the torch_geometric.data.Data class and subsequently
apply the coarsening procedure. The process can be summarized as follows:

Gall, Call, iCs = coarse_graph(

parameters (not of interest here)

)

Here, Gall is a list that stores the coarsened graphs at each iteration, where
Gall[0] corresponds to the initial graph, and Gall[-1] to the most coarsened
graph. The list Call contains all the coarsening matrices, such that Call[i]
maps the initial graph to the graph Gall[i+1]. Finally, the list iCs stores the
atomic coarsening matrices, where each iCs[i] coarsens Gall[i] into Gall[i+1].
Eventually, the lengths of the Call and iCs lists reflect the levels of coarsening.

We can compute 7, and v, leveraging a property of Laplacian coarsening:

v = 5?613 ’%@1(%)

_ w1(vs)
>1 and 7= mgg;\%

I

Tl A W N

15
16
17
18
19
20

Theorem 9 (Eigenvalue approximation) - Empirical Verification

which correspond to the minimum and maximum sizes of the contraction sets,
respectively. In practice, these quantities can be computed in Python as follows.
Since matrix C is stored in a sparse format, it requires specific handling during
computation:

def compute_gamma_1_2(C):

if not C.is_coalesced(): C = C.coalesce()

gammal, gamma2 = None, None

rows, cols = C.indices ()

for r in range(C.size(0)):
mask = rows == r
length = len(cols[mask].tolist())
if gammal is None or length < gammal: gammal length
if gamma2 is None or length > gamma2: gamma2 = length

return gammal, gamma2

The calculation of ¢; involves evaluating all possible values of € derived from the k
top eigenvectors of the Laplacian matrix at a given coarsening level ¢. The final
value is then obtained according to Equation 4.7.

def compute_epsilon_k(L, C, k):
device = C.device

invC = C.t().coalesce ()
invC.values () .fill_(1.0)

vals, vecs = torch.linalg.eigh(L) # first k eigenvectors
epsilons = []
for i in range(k):
u = torch.tensor(vecs[:, i], dtype=torch.float32, device=device)

Pi_u = invC @ (C @ u) # projection with C

num (u - Piuw).Te@L @ (u - Pi_u)
den = torch.max(torch.tensor (0.0, device=device), u.T @ (L @ u))

ratio = torch.sqrt((num / (den + 1e-12)))
epsilons.append(ratio.item())

return np.max([e for e in epsilons if not np.isnan(e)])

To verify the theorem at a specific level ¢, we employ the following procedure:

def verify_th13(G:Data, Gc:Data, C:torch.Temnsor, k=5):
gammal , gamma2 = get_gamma_1_2(C)

L = G.L.to_dense().cpu().numpy()
Lc = Gc.L.to_dense().cpu() .numpy ()

eigenvalues origimnal graph
vals, _ = eigsh(L, k=k, which="SM")
lambda2, lambdak = vals[1], vals[k-1]

eigenvalues coarsened graph

II

Theorem 9 (Eigenvalue approximation) - Empirical Verification

11 vals_c, _ = eigsh(Lc, k=k, which="SM")

12 tilde_lambdak = vals_c[k-1]

13

14 eps_k = compute_epsilon_k(torch.tensor(L, device=C.device), C, k)

15

16 # bounds

17 lower = gammal * lambdak

18 upper =

19 gamma2 * ((l+eps_k)**2 / (1 - eps_k#**2 * (lambdak / lambda2) + le

-9)) * lambdak
0 if eps_k**2 < (lambda2 / lambdak)
else float(’inf’)

return lower <= tilde_lambdak <= upper

Eventually, we extend the verification across all coarsening levels as follows:

def get_epsilon_values(Gall, Call, k=5):
for i in range(len(Call)):
G_orig = Gall[O]
G_coarse = Gall[i+1]
C = Call[il.coalesce()
Csq = C * C # C contains sqrt values
6 assert(verify_th13(G_orig, G_coarse, Csq, k=k))

L I

o

I11

Appendix B

Cosine Similarity
Implementation

The following function computes the mean pairwise cosine similarity among a set
of node embeddings:
def similarity(nodes_features: torch.Tensor):

nodes_features = F.normalize(nodes_features, p=2, dim=1)

s = nodes_features @ nodes_features.T

n = s.shape [0]
return torch.sum(torch.triu(s, diagonal=1)) / ((n - 1) * n / 2)

Given a matrix X € R"*? where each row represents the normalized embedding
of a node, the function first computes the cosine similarity matrix

S=XXT,

since the dot product between two normalized vectors corresponds to their cosine
similarity. It then sums the upper triangular part of S (excluding the diagonal) to
consider each node pair only once, and divides by the total number of unique pairs

@, obtaining the average cosine similarity among all nodes.

This measure provides an indicator of how close, on average, the nodes are in the
embedding space, where higher values correspond to more semantically homogeneous
groups.

IV

Appendix C

Coarsening-Aware Loss
Implementation

The following listing shows the PyTorch implementation of the coarsening—aware
loss introduced in Section 4.3.6. This class extends nn.Module and combines the
standard negative cross-entropy loss with a coarsening regularization term that
enforces embedding consistency across merged nodes. To keep the computation effi-
cient on large graphs, the regularizer is approximated using normalized embeddings
and random negative sampling.

import torch
import torch.nn as nn

class CoarseningAwareLoss (nn.Module):
def __init__(self, coarse_weight: float = 1):
nmnn
Args:
coarse_weight: weight for the coarsening loss term.
super () . __init__()
self .coarse_weight = coarse_weight
self.class_loss = nn.CrossEntropyLoss ()

def forward(
self ,
output: torch.Tensor,
embeddings: torch.Tensor,
labels: torch.Tensor,
train_idx: torch.Tensor,
coarse_loss: bool = True,

nmnn
Args:
output: [N, C] log-probabilities (log_softmax)
embeddings: [N, D] node embeddings
labels: [N] ground-truth class labels
train_idx: indices used for the classification 1loss

v

27
28
29

30

35

Coarsening-Aware Loss Implementation

coarse_loss: whether to include the coarsening regularizer

N = embeddings.shape [0]

1. Classification 1loss
loss_cls = self.class_loss(output[train_idx], labels[train_idx])
if not coarse_loss: return loss_cls

2. Coarsening loss: within-cluster compactness
loss_coarse = -torch.mean(torch.sum(embeddings**2, dim=1))

3. Negative sampling for inter-cluster separation
n_sample = max(int(N * 0.1), 500)

sampled_indicesl = torch.randint (0, N, (n_sample,))
sampled_indices2 = torch.randint (0, N, (n_sample,))

embl = embeddings[sampled_indices1]

emb2 = embeddings[sampled_indices2]

loss_coarse += torch.mean(torch.sum(embl * emb2, dim=1))

4. Weighted combination
return loss_cls + self.coarse_weight * loss_coarse

The first part of the loss computes the standard classification objective on labeled
nodes, while the second introduces a lightweight approximation of the coarsening
regularization. The latter penalizes overly similar embeddings between randomly
sampled nodes and promotes compactness among embeddings of nodes that have
been merged. This implementation achieves good scalability and can be directly
integrated into the iterative training loop described in Section 4.3.7.

VI

Appendix D

Coarsening Evolution on a
Small Graph

Figure D.1 illustrates an example of the coarsening evolution on KarateClub graph
[29] across multiple levels (L = 8, ratio = 0.2). Each node is colored according to
a three-dimensional projection of the eigenvectors of the graph Laplacian matrix,
providing an intuitive visualization of the spectral structure preserved during the
coarsening process. Specifically, the colors correspond to the first three eigenvec-
tors of the Laplacian, normalized for display as RGB values. This visualization
helps build intuition about how spectral properties and structural information are
maintained as the graph becomes progressively coarser.

The coloring was generated using the following script:

L_dense = Gc.L.to_dense().cpu() .numpy ()
, V = np.linalg.eigh(L_dense)

c = Vv[i:, :3]

c = (c - c.mean(axis=0)) / (c.std(axis=0, ddof=0) + 1e-8)
¢ = (¢ - c.min(axis=0)) / (c.ptp(axis=0) + 1e-8)

G.colors = torch.tensor(c, device=device)

VII

Coarsening Evolution on a Small Graph

Graph coarsening evolution — levels = 8, ratio = 0.2

o/ B T o ° & o ®
-9 0 1 4 O
¢« o s N ’ -
o & /0 o o S % ¢ K o °)/
P o v 2 ®
.. P’y o ® ° = ®
o ®
. ° . ® ® ®
° ° & @ ° @
°
. @
&
s C ° b 4 ° ° °
. ® ®
o ° °
® . e
@
o]
® >
hd ° ° °
@
® ® °
o

Figure D.1: Graph coarsening evolution for a small graph. Node colors represent
the first three eigenvectors of the Laplacian matrix. Nodes sharing the same dotted
border are merged into the same super node..

VIII

	List of Tables
	List of Figures
	Introduction
	The global challenge of money laundering
	Traditional AML methods and limitations
	Graph–based approaches in AML
	Position of the thesis

	Money Laundering Patterns
	Money Laundering Stages
	Placement
	Layering
	Integration

	Common Illicit Transaction Patterns
	Empirical Statistics of Illicit Transactions
	Transaction/edge level
	Account/node level
	Why this matters

	Evasion Tactics and Countermeasures
	Transaction–level evasion
	Account–level and temporal evasion
	Structural and graph–based evasion
	Label and supervision evasion

	Feature Robustness and Evaluation

	Task
	Gang Definition
	Gang Prediction Task
	Problem setting.
	Prediction targets.

	Method
	Graph Coarsening
	Graph Reduction
	Properties of Reduced Graphs
	Coarsening as a Type of Graph Reduction
	Laplacian Consistent Coarsening
	Restricted Spectral Approximation
	Decoupling Levels and the Variation Cost
	Decoupling Contraction Sets and Local Variation
	Local Variation Coarsening Algorithm

	Semantic Variation Cost
	Graph Learning
	Problem Setup and Notation
	Message Passing and Node Embeddings
	Prediction Head and Semi-supervised Loss
	Learning on Coarsened Graphs and Lifting
	Embedding–Driven Coarsening and Similarity
	Coarsening-Aware Loss Function
	Training Loop per Level

	Results
	Validation on the Cora dataset
	Experimental Setup
	Learning Dynamics

	AMLGentex Dataset Analysis
	Generation Process
	Structure and Features

	Application to Synthetic AML Data
	Discussion

	Conclusion and Future Work
	Summary of Contributions
	Future Work

	Bibliography
	Theorem 9 (Eigenvalue approximation) - Empirical Verification
	Cosine Similarity Implementation
	Coarsening-Aware Loss Implementation
	Coarsening Evolution on a Small Graph

