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Abstract

This thesis investigates the use of NVIDIA Isaac Sim, a robotics simulation
platform built on NVIDIA Omniverse, designed to simulate and validate AI-
driven robotic solutions within physically realistic virtual environments. The main
objective is to assess the effectiveness of synthetic datasets generated through
Isaac Sim and their applicability in industrial scenarios such as depalletization and
bin-picking.

Synthetic data—artificially produced information obtained from virtual simu-
lations—represents a strategic asset when real data is costly, difficult to acquire,
or prone to bias. To this end, a test environment faithfully reproducing real oper-
ating conditions was developed in Isaac Sim, introducing variability in position,
orientation, lighting, textures, materials, and in the physical characteristics of
boxes/objects and containers. The simulations generate multiple types of outputs
(RGB images, instance/semantic segmentation maps, depth maps, and surface
normals), which are subsequently employed to train modern segmentation networks
(e.g., Mask2Former).

In addition, two robotic hand-simulations: vacuum and parallel-jaw, were
implemented to produce labeled results and gripper information, which also included
unsuccessful attempts on non-graspable objects. Different methods were used to
train the Mask2Former model: supervised on real, synthetic, and mixed datasets;
domain adaptation; and synthetic-only (zero-shot sim-to-real). A GUI, API, and
AI-assisted annotation tool based on SAM are developed to improve the efficiency
of data generation and labeling. The findings demonstrate the potential of synthetic
data and domain adaptation to reduce the sim-to-real gap for industrial vision
tasks.
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Chapter 1

Introduction

In the past few years, the rapid development of artificial intelligence and computer
vision had a profound influence on the realm of industrial robotics. The current
paradigm relies on an increasingly stronger linkage of physical and digital systems,
in which intelligent automation is a fundamental pillar. Difficult tasks, such as
bin-picking (retrieving objects from bulk containers), depalletizing, and autonomous
manipulation, require extremely capable robotic perception systems with the ability
to identify and localize objects precisely in unstructured, cluttered, and highly
variable environments.

The functionality of such systems depends heavily on the deep learning models
powering them, which require enormous quantities of high-quality data for training.
The traditional approach, based only on the collection and annotation of real data,
however,shows severe limitations in both its effectiveness and scalability. These
include:

• High Cost and Time: Gathering real-world data is an expensive process. It
entails building physical scenarios, using specialized hardware (robots, sensors),
and, above all, a very time-consuming and costly manual annotation process,
which is the real bottleneck of the development process.

• Poor Scalability: Generating millions of data samples, as often required for
the generalization of newer neural models, is logistically difficult and sometimes
impossible, especially if it requires disrupting normal production operations.

• Insufficient Diversity and Coverage of Edge Cases: Real data collected,
however numerous in quantity, are only a subset of the possible configurations
a system would encounter in the production environment. It is difficult to
reproduce severe conditions (edge cases) in a systematic and controlled manner,
such as adverse lighting conditions, complex obstacles, or rare but potential
object occurrences.
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Introduction

• Quality and Accuracy of Annotation: Manual annotation is sensitive to
human errors, anomalies, and impurities, and therefore it is difficult to achieve
accurate ground truth, especially for examples such as partitions that require
pixel-level outlines.

To deal with these shortcomings, synthetic data has emerged as a strategic and
promising solution. Produced in controlled, photorealistic and physically realistic
simulated worlds, synthetic datasets allow to reduce the cost of traditional methods
and to generate large scale, fully annotated and diversity-rich data in a fraction
of the time. Yet, this strategy’s success is thwarted by the so-called sim-to-real
gap: the disparity between the distribution of simulated data and real-world data.
The gap, which is mainly due to less than realistic lighting, texture lack, physical
simulation errors, and unmodeled sensor noise, is the main hindrance to directly
transferring models trained solely in simulation.

Here, NVIDIA Isaac Sim, developed on the NVIDIA Omniverse platform, is a
cutting-edge simulation tool, tailored particularly for AI and robotics research. It
enables the creation of photorealistic virtual worlds, as well as the simulation of
physics-based interactions, and the key data such as RGB images, depth maps,
segmentation masks, are automatically rendered, without which computer vision
models cannot be trained. Being such a tool, it is the perfect one on which one can
explore the potential of synthetic data towards industrial application. Developed
entirely at Comau, a global leader in automation, this thesis aims to bridge the
gap between simulation innovation and industrial practice. Guided by real-world
manufacturing challenges, the research focused on delivering a practical, validated
methodology for robotic perception that moves beyond purely theoretical work.

1.1 Motivation and Objectives
The main goal of this thesis is the construction and validation of a systematic
method that exploits the use of synthetic and real-world data to learn high-
performing perception models for industrial robots, directly tackling the sim-to-real
gap problem. It attempts to show that a systematic solution, mixing simulation,
real world data, and latest AI architecture, can speed up the construction time and
enhance the efficiency of autonomous automation systems in a very significant way.

The aim of the present thesis is thus two-fold:

1. Generation and Analysis of Synthetic Datasets: Develop a large-scale
simulation environment in Isaac Sim to generate synthetic datasets (RGB
images, segmentation maps, depth maps, surface normals) with systematic
and controlled changes in appearance of objects, environmental conditions,
and simulation of grasp attempt simulations.

2
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2. Closing the Sim-to-Real Gap: Learn and transfer the latest approaches
to integrate real and synthetic data. It encompasses the considerations of
domain adaptation, fine-tuning, and semi-supervised approaches.

1.2 Thesis Contributions
The thesis work offers a number of novel contributions in the robotic simulation
and computer vision domains:

• Synthetic Data Generation Pipeline: Creation of a modular, extendable
simulation pipeline in NVIDIA Isaac Sim that enables the stochastic con-
struction of scenes, asset variability (objects, containers, textures,lights), and
automated collection of multimodal data.

• Simulation of Robot Grasps: Integrating and testing two grasp modalities,
parallel-jaw gripper and vacuum grip, and diligent logging of results (success,
failure, drop, collision), and handling ungraspable objects as part of simulating
the conditions in the real world.

• Integration of the User Interface and the APIs: Creation of a Graphical
User Interface (GUI) and REST API endpoints that can handle outgoing
requests for dataset creation and user-friendly interaction with the simulation
environment.

• Hybrid Workflow with SAM and Human-in-the-Loop: Developing a
hybrid annotation workflow that incorporates box-to-mask conversion through
the employment of SAM along with a light correction tool by means of a
custom-built web app that dramatically reduces the expense of marking up
real-world datasets.

• Experimental Comparison with Mask2Former: Training and testing
segmentation models on solely synthetic, solely real, and hybrid data, along
with comprehensive training paradigm exploration like zero-shot sim-to-real
transfer, fine-tuning, and semi-supervised learning.

• Evaluation of Domain Adaptation Efficacy: Qualitative review of tech-
niques used to thwart the sim-to-real gap and quantitative evaluation of their
impact on performance in industrial robotics tasks.

1.3 Thesis Structure
The thesis is organized as follows:

3
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• Chapter 2 - Background and Related Works introduces the theoretical
background and the state of the art, such as synthetic data, the NVIDIA
Isaac Sim platform, the sim-to-real gap problem, and the architectures of the
principal models used: Mask2Former and SAM.

• Chapter 3 - Dataset Creation details the process for the creation of the
synthetic dataset and the refining of real data, introducing the simulation
system architecture, scene randomization methods, data acquisition and user
interface implementation.

• Chapter 4 - Experimental setup and implementation details shows
the setting of experiments, specifies dataset, training methods, assessment
matrix and hardware/software setup.

• Chapter 5 - Experimental results presents and analyzes quantitative and
qualitative results of the experiments.

• Chapter 6 - Discussion analyzes the experimental results, including their
implications, effectiveness of planned approaches and research limits.

• Chapter 7 - Conclusion and future work provides conclusions and
discusses possible directions for future research.

4



Chapter 2

Related Work and
Background

This chapter sets out the key ideas and background research that underpin the
thesis. It deals with some themes: contribution of synthetic data for computer
vision and robotics, industrial applications of the NVIDIA Omniverse/Isaac Sim [1]
platform in practice , problems with the sim-to-real gaps and adaptation solutions,
and key models for the project, the Segmentation Anything Model (SAM) [2] and
the Mask2Former [3].

2.1 Synthetic data in computer vision and robotics
Synthetic data became more important in computer vision as an annotation cost-
reducing and development time-saving tool. It is best applicable to perception
robotics problems, such as object detection, segmentations, and manipulation
planning, where large expert-annotated datasets do not exist.

Various synthetic datasets have provided evidence for the potential of simulation
for training vision-based robotic perception systems. SceneNet RGB-D [4] provided
millions of photo-realistic indoor scenes with dense labels, making synthetic data
perspective on the tedious work of hand-labelling millions of Samples. Falling
Things [5] took the idea one step further by applying the concept to 3D object pose
prediction for cluttered, physically-realistic scenes, aiming squarely at manipulation
and bin-picking issues. Broadly speaking, the idea behind domain randomization
[6] was to show that adding visual variability during simulation-based training
would dramatically narrow the sim-to-real gap, so that synthetics-only trained
policies are capable of generalising to the physical environment. Those techniques
are well-suited for industrial robots, where synthetics are capable of replacing
cluttered bins, dynamically changing product poses, infrequent failure modes too

5
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complicated or too expensive to implement in the physical environment.
Despite all this benefit, though, synthetic sets are necessarily limited: their value

will depend not only on the diversity and realism they achieve, but also on their
potential for mixture with real data by means of domain adaptation techniques.

2.2 NVIDIA Omniverse and Isaac Sim
NVIDIA Omniverse is an interoperable real-time rendering and simulation plat-
form based on the USD, or Universal Scene Description, standard. It facilitates
collaboration, reuse of content, and domain-overspanning integration in robotics,
simulation, and CAD, among other applications [7]. On top of that, Omniverse is
extended by Isaac Sim with robotics-oriented tools, for example, physics engines,
sensor simulation, domain randomization, and robot control APIs. Among the
most prominent features are:

• integration of physically based rendering with physics simulation;

• programmable scene randomness for closing the sim-to-real gap;

• the Replicator framework for large-scale dataset generation;

• native ROS/ROS2 and industrial robot simulations support;

• GPU acceleration of parallel simulations.

Due to these characteristics, Isaac Sim is also extensively utilized in robotics
research as well as in industrial automation applications (e.g., bin picking, pallet
transport, assembling), where it would be expensive or inconvenient to acquire an-
notated real data. Its success is also validated in recent works, including large-scale
synthetic dataset creation for perception [8] , industrial manipulation benchmark
datasets, and systems, which utilize Isaac Sim both for training robots and for
generating datasets, such as the NVIDIA Isaac Manipulation Dataset [9].

2.3 The sim-to-real gap & domain adaptation
One of the most critical problems in computer vision and robotics is the sim-
to-real gap, i.e., the mismatch between models trained in simulations and their
performances in reality. The sim-to-real gap occurs due to disparity in data
distributions and is normally put down to three factors:

• Appearance gap: variations in texture, lighting, shadow, and material that
simulations typically could not emulate with full realism;

6



Related Work and Background

• Physics gap: errors in simulation of dynamic contacts, frictions, or deforma-
tions;

• Perception gap: the influence of actual sensor imperfections, such as noise,
calibration errors, and distortions, that it is hard to reproduce informatively
in virtual surroundings.

The research community has also advanced some ways of bridging these mis-
matches:

Domain Randomization – Introducing large variations in simulation (e.g.,
randomizing colors, textures, lighting, and camera positions) so that models learn
invariances and generalize more reliably to unobserved real-world scenarios.

Domain Adaptation – While diversifying simulation, these techniques aim at
aligning synthetic and real data distributions. One of the most influential works
in such a direction is Unsupervised Domain Adaptation by Backpropagation by
Ganin et al. (2015) [10], who pioneered the Domain-Adversarial Neural Network
(DANN). It utilizes adversarial training by a gradient reversal layer such that
the feature extractor is compelled to learn domain-invariant representations (see
Figure 2.1). As a part of my thesis work, I have used the DANN methodology,
thereby directly evaluating the performance of adversarial domain adaptation in
tackling the sim-to-real transition in robotics perception problems.

Hybrid Techniques – Combining synthetic and real-world data. Typical
approaches are pretraining with large synthetic sets and then fine-tuning on small
annotated real sets, or by applying unsupervised or semi-supervised schemes with
unlabeled real data. It is typical to use image-to-image translation systems like
CycleGAN [11] to make simulated scenes more real prior to training.

In this thesis, we decided to go with DANN from the various adaptation
techniques, which gives us the possibility to maintain the scalability of synthetic
data while achieving a good real-world performance.

Figure 2.1: Domain-Adversarial Neural Network
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2.4 Mask2Former: core architecture & applica-
tions

Mask2Former is an integrated transformer architecture for semantic, instance, and
panoptic segmentation, put forth by Cheng et al. [3] (see Figure 2.2).

Figure 2.2: Mask2Former architecture diagram [3]

Its main contribution is in terms of the masked attention, through which learnable
queries can iteratively attend to relevant regions in the images and region-level
predictions refine sequentially. It deviates from pixel-wise classification but rather
utilizes a set-based formulation, thus enabling the model to scale better and in a
more flexible manner on varying segmentation tasks.

State-of-the-art results on large benchmark datasets are attained by Mask2Former,
and it is particularly successful in cluttered and unstructured scenes, in which
many objects could overlap or hide one another. Its one-size-fits-all framework is
also a virtue, as the identical architecture is applicable in principle to semantic,
instance, or panoptic segmentation, and hence experimentation is minimized as
well as task-specialized design decisions. Within the purview of this thesis, I used
Mask2Former in its “small” form in particular for instance segmentation task. It
was used in preference to larger variants due to their balance of accuracy and com-
putational needs: the compact model retains the strengths of the full architecture
but is agile enough for practical training as well as deployment in resource-limited
experimental contexts.

8
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2.5 Segment Anything Model
Segment Anything Model (SAM) is a large foundation model for image segmentation
that was introduced in 2023 by Kirillov et al. [2]. It was trained with billions
of mask annotations, and it is a promptable model that can create high-quality
segmentation masks from highly varying inputs such as points, bounding boxes, as
well as from text. Its prowess is in its exceptional few-shot generalization, with
which it can excel in varying domains with absolutely no task-specific retraining.
Among annotation cost and time saving solutions for dataset prep pipelines, SAM
stands out as an exceptionally successful choice. The data preparation process flow
of the thesis utilized the Segment Anything Model (SAM) to make the process
efficient. The process utilized bounding box annotations as the source of the ground
truth, automatically translated by the SAM into segmentation masks.

9



Chapter 3

Dataset Creation: Synthetic
Generation and Real Data
Refinement

This chapter is focused on the development of the pipeline for creating the synthetic
dataset using Isaac Sim and on annotations and corrections of the real dataset.

3.1 Synthetic Dataset Generation

3.1.1 Overall system architecture
The overall organization of the synthetic dataset generation project is split into three
functional modules related to three phases of the process: scene generation, data
acquisition, and grasp simulation. This functional decomposition of the modules
into the phases of the process confers flexibility, reutilizability of the software, and
the potential for extension of the framework to other industrial applications.

• Scene Generation
It Surfaces, objects, and containers are used in this phase to create the world
in NVIDIA Isaac Sim in an automated mode. Random but physically plausible
variability in material, texture, lighting, and object pose is used by the system
to create a new scene in every generation cycle. The PhysX dynamics engine
provided with Isaac Sim uphold physical coherence by the management of
gravity, collision, and body stabilization.

• Data Acquisition

10
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After the scene is stabilized the automated data acquisition module is launched
through the Omni.Replicator framework. This is the module that defines the
virtual sensors (RGB, depth, normals, segmentation) and the synchronization
of the acquisition of the different types of output.

• Grasp Simulation
The final module handles the robotic simulation of grasping actions, testing
two different end-effectors, including a parallel gripper and a suction gripper.
The simulations allow for the recording of the outcome of each attempt
(success, failure, collision, premature release). This information enriches the
dataset, making it suitable not only for perception tasks, but also for studies
in learning-based manipulation and automatic planning.

3.1.2 Assets management
The objects utilised within the simulation are items with mixed shape and size,
boxes and industrial bins, chosen on the basis of the type required dataset. The
system has three various asset management modes that serve to allow the system
to be flexible and accommodate various usage settings. These are the different
methods you can use:

• Procedural generation, to automatically generate parallelepipeds with variable
shape and size within some configurable range. With this method, one can
quickly obtain a high diversity of samples that can be used to train strong
computer vision models to generalize to geometric variations.

• Predefined assets chosen from an internal catalog of models available by default
within Isaac Sim. Each asset is uniquely represented by link and materials
and physical properties set to match the simulator’s needs.

• Import of external models, possible through .obj files inserted within an
appropriate directory. One can thus introduce custom objects within the
data set and make the pipeline tractable to specific industrial case studies or
real-world applications.

When, however, you wish to create a dataset filled with generic items, procedural
generation is not implemented. For the boxes and containers, the system also allows
the user to choose freely among the models available by Isaac Sim and these consist
of crates and pallets and other common objects within warehouse and logistical
settings. The full generation configuration — asset data, dimensional intervals,
and physical parameters — is controlled by an input YAML configuration file.

11
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3.1.3 Scene variability
In synthetic data generation, variability serves a critical function: it produces
datasets with greater realism and diversity, which in turn directly improves the
generalization performance of computer vision models. For this purpose, I included
a domain randomization system that randomly alters various aspects of the scene
within each cycle of generation. All the parameters can be configured via a YAML
config file that allows to set the range over which the different attributes can vary.
The things to be randomized primarily are:

• Lighting: Light sources differ by quantity, kind, location, strength, and
hue to simulate various working conditions (i.e., direct, reflected, and diffuse
lighting). Three base lights are employed—Dome Light, Sphere Light, and
Distant Light—which are randomly chosen and parameterized within the
ranges set out by the config file. This randomness supports the simulation of
inhomogeneous scenes and renders the model more insensitive to the lighting
variations common to real-world scenes.

• Materials and Textures: Object surfaces, container surfaces, and floor
surfaces are altered through randomly mixed combinations of textures. These
textures can be edited by the user through the simple addition of .png files to
the special folder (textures/). Materials and properties are generated and set
on the fly at each generation with parameters involving metallicity, roughness,
and reflection moving within the range set out in the config file. This enables
the copying of the immense diversity of surfaces and materials within the real
world.

• Pose and Orientations: Objects are randomly dropped at various positions
and orientations in the workspace. Then Isaac Sim’s physics simulation
automatically computes the final state of equilibrium by making the generated
configurations plausible.

• Camera Parameters: the optical parameters of the virtual camera, i.e., its
focal length and its aperture, are held fixed to ensure consistency between
exposures. But the height of the camera with respect to the scene plane
is varied within a range configurable by the user (minimum and maximum
heights defined within the YAML file). In this manner, different view points of
acquisition are retrieved to simulate the sensor positioning variations typical
of real industrial scenes.

The combination of these randomizations enables the generation of large, photo-
realistic, and highly diverse datasets, enhancing the robustness of deep learning
models during the training phase.

12



Dataset Creation: Synthetic Generation and Real Data Refinement

3.1.4 Automatic scene generation pipeline
There are steps that must be followed in the automated scene creation process.
The first step is to make the floor and the container (or pallet) and give them
a random texture from the script’s folder. You can also use the asset’s default
texture. Next, you put in one to three different types of light sources, like a Dome
Light, Sphere Light, or Distant Light. They are picked at random to make different
lighting conditions. The system can make invisible walls around the spawn area to
make it more likely that things will fall correctly into the container or onto the
pallet. These parts keep things from spreading outside the camera’s view during
the release phase. After the environment is set up, the system creates the objects.
Each object is created at a certain height, which is chosen based on the settings in
the configuration file. Each object gets a random texture, and then it is let go so
that the physics simulation can figure out how it will fall and where it will end up
in the scene. The Omni.Replicator module turns on at the end of this phase. This
module takes care of automatic data collection. Replicator records and saves the
different versions of the scene.

At this point, two algorithms are run :

1. Calculating the stereo depth map: The first algorithm uses the stereo
images that were made to make a more accurate depth map. It uses the
Stereo Semi-Global Block Matching (SGBM) algorithm, which is part of the
OpenCV library and is called by the cv2.StereoSGBM_create function. This
method finds matches and calculates the disparity by comparing small pixel
blocks (blockSize) between the left and right images. From the disparity,
depth is calculated. The P1 and P2 parameters are used to punish changes in
disparity between neighboring pixels.This way we can create a more realistic
depth map.

2. Enhancement of Instance Segmentation Masks: The segmentation
masks are processed by second algorithm. It makes use of the connected-
component analysis implemented by the cv2.connectedComponents function.
This algorithm finds all connected pixel areas (also known as pixel "groups"
or "islands") by analyzing the mask of a single object. An object’s mask
may break up into several non-contiguous pieces if it is partially obscured by
another. By separating and labeling each of these elements separately, this
technique produces masks that make segmentation network training easier.

The system starts the grasp simulation after the post-processing stage, where
various end-effectors and grasping techniques are evaluated. The generation cycle
is finished with this phase, which is covered in more detail in the following section.
The scene is entirely reset at the conclusion of every operation, enabling the creation
of a new one.

13
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3.1.5 Data acquisition with Replicator

The acquisition component uses Isaac Sim’s native Omni.Replicator framework
to create annotated datasets. Replicator enables the definition of virtual sensors,
synchronization of rendering with the physics of the scene, and automatic generation
of the ground truth needed for neural network training. Among the data types
produced are:

• PBR-rendered photorealistic RGB images (see Figure 3.1);

• and automatically generated instance and semantic segmentation annotations
through object tags (see Figure 3.2);

• surface normals and depth maps (see Figure 3.3);

Figure 3.1: RGB Synth image
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Figure 3.2: Segmentation Synth image

Figure 3.3: Depth Synth image

Here are some generated RGB images (See Figure 3.4).
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Synth image 1 Synth image 2

Synth image 3 Synth image 4

Synth image 5 Synth image 6

Synth image 7 Synth image 8

Figure 3.4: Set of synth images.
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3.1.6 Grasp simulation
Grasping simulation is the last stage in the data generation pipeline. Its function
is to determine which grasps are successful with the objects that are in the scene.
Consequently, the data for perception as well as for training robotic manipulation
policies can be created.

We have implemented the two main kinds of end-effectors:

• Suction Gripper

• Parallel Gripper

Suction Gripper
Suction gripper is an extensively used grasping device in industrial environments;
it works great with objects that have flat surfaces. As for the simulation, the
geometric cone (GripperCone) is a representation of the end-effector.

Operating Principle. The adhesion mechanism is simulated with the help
of the Surface_Gripper, which is a special feature in Isaac Sim that creates a
high-adhesion physical joint between two bodies. The method enables one to have
the fine control over the physical parameters of the grasp through the configuration
file, where one can set:

• Maximum Force (absolute_grip_force): The maximum force suction
cup can apply in order to keep the adhesion.

• Maximum Torque (torqueLimit): Resistance to twisting.

• Stiffness and Damping (stiffness, damping): Parameters that charac-
terize the joint’s reaction to forces coming from the outside.

Phases of testing. The testing process for each object in the scene is divided
into three main phases.

Phase 1: Systematic Sampling of Grasp Points. Instead of attempting a
single random grasp, the system exhaustively identifies all possible valid grasp
points on the object’s surface, using the sample_grasp_grid algorithm.

1. Geometry Extraction: The tool inspects the USD prim of the target object
and extracts the entire geometry in the form of a triangle list.

2. Tilt Filtering: For each piece of the geometry, it computes the normal (n)
of the triangle and eliminates surfaces that have an angle with the vertical
axis greater than a specified threshold (max_tilt_deg).
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Mathematical Formulation: The geometry checking criterion, given by (3.1),
is done by calculating the dot product between the unit normal vector of the
triangle (n) and the world’s "up" vector (vup = [0, 0, 1]T ).

cos(θ) = n · vup (3.1)

A grasp is defined as feasible only when cos(θ) > cos(θmax).

3. Grid and Ray-Casting: Firstly, the system outlines a 2D grid (in the XY
plane) over the target object. Next, it fires a vertical ray downward from each
vertex of this grid to figure out a possible grasp point on the surface of the
object.
The grid density—which consequently dictates the grasp granularity—is a very
important configuration parameter. In particular, the grid_step_m parameter
specifies the distance (in meters) between the vertices: a lower value results
in more detailed and finer sampling, whereas a higher value speeds up the
process but makes the sampling less detailed.
Mathematical Formulation: The exact point of intersection is found by cal-
culating t from the geometrical definitions of the ray and the plane of the
object’s triangle. The ray is given parametrically by P(t) = O + tD, and the
plane of the triangle by (P − P0) · n = 0.

O represents the origin of the ray (a point on the 2D grid).
D is the direction vector of the ray (e.g., the vertical down vector).
t is the scalar parameter that defines the distance along the ray to the

intersection point.
P0 is a known point belonging to the plane of the triangle.
n is the unit normal vector of the triangle’s surface .

The value of t that defines the intersection is computed as:

t = (P0 − O) · n
D · n

(3.2)

The precise point of intersection on the object, Pintersect, is then calculated
using the ray definition: Pintersect = O + tD.

4. Grasp Pose Calculation: From a surface ray-casting operation, a candidate
point on the surface is given. The pose (position and orientation) of the
gripper’s suction cone is finally determined. The main concern here is to find
a rotation that makes the gripper’s axis be completely perpendicular to the
object’s surface at the calculated grasp point.
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Mathematical Formulation: The orientation is determined by computing the
rotation R which aligns the standard approach vector of the gripper (vgripper)
with the unit normal vector (n) of the grasped surface. This rotation is
represented in terms of the axis-angle representation (a, θ).
The geometric variables that participate are:

n The unit normal vector of the triangle surface at the point of intersection.
vgripper The initial, predetermined approach direction of the gripper (e.g.,

generally the negative Z-axis: [0, 0, −1]T ).
a The vector that denotes the rotation axis which transforms vgripper into n.
θ The angle of rotation about a.

The axis and angle are found by means of vector algebra, as detailed below.
The rotation quaternion is consequently obtained from the axis-angle pair:

a = vgripper × n (3.3)
θ = arccos(vgripper · n) (3.4)

Phase 2: Grasp Simulation Execution. A full physics simulation for each
candidate pose is run, controlled by a state machine, after the scene has been reset
to guarantee that each test is independent. The operations conducted are:

• Kinematic positioning,

• Grasp attempt,

• Dynamic physics activation,

• Execution of a validation trajectory (lifting, moving, and lowering).

Phase 3: Results Analysis and Grasp Map Generation. Each simulation
ended with the recording of a status code (grip_status_code) that categorizes
the result:

• Successful Grasp (Code 3)

• Object Dropped (Code 2)

• Failed Grasp (Code 1)

• Collision (Code -1)
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The experiments conclude with the visual representation of the grasp map
based on the accumulated data.

Mathematical Formulation: Each 3D grasp point (Pworld) is mapped to 2D pixel
coordinates (pimage) by the camera’s intrinsic matrix K and extrinsic matrix [R|t]
as per the pinhole camera projection formula (3.5).

pimage = K[R|t]Pworld (3.5)

The final output is a single composite image where each grasp attempt is displayed
as a colored circle based on its outcome, thus enabling the immediate visual
assessment of the grasp strategies. See Figure 3.5 and Figure 3.6.

Figure 3.5: RGB Picking Image Figure 3.6: Grasp Map Image

Parallel Gripper

While the suction gripper is suitable for flat surfaces only, the parallel gripper
becomes a more versatile tool, since it can grab almost any object by simply
squeezing it from the sides. For this simulation, a standard industrial gripper
model, the Robotiq 2F-85, was employed, and it was dynamically loaded into
the simulation environment.

The functional verification of a gripping device is something radically different
from the set of operations that we usually perform on the suction gripper, and is
based on a Finite State Machine (FSM) that logically leads the gripper through
the consecutive steps of the operation from positioning to lifting the object.

Operating Principle. The grasping mechanism does not use a special joint, but
relies on Isaac Sim’s standard physics. The stability of the grasp is guaranteed by
the two most important factors:

1. Closing Force: Control of Grip is achieved by setting target positions for
the three actuation joints of the gripper.
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2. Friction: A material with extremely high static and dynamic friction coeffi-
cients has been assigned to the inner surfaces of the gripper’s fingers. This is
done to completely eliminate the slipping of the object once it is grasped.

The testing phases are divided into three main stages through which the whole
process is orchestrated.

Phase 1: Spherical Grasp Point Sampling. This sampling strategy tests
approach directions originating from multiple points around the object, thus
simulating a varied set of possible real-world scenarios.

1. Object Information via OBB: The system first computes the object’s
Oriented Bounding Box (OBB). The OBB, defined as the smallest oriented
bounding box that encloses the object, provides essential geometric properties:
the geometric center (c), the size (s), and the object’s orientation matrix
(A = {ax, ay, az}) corresponding to the OBB axes.

2. Sampling on a Virtual Sphere: The generate_grasp_poses function
generates candidate approach points (p) on a virtual sphere surrounding the
OBB.
Mathematical Formulation: A point p on a sphere centered at c with radius r
is produced using spherical coordinates, as shown in equation (3.6), where θ
and ϕ are random variables used for uniform sampling of the sphere’s surface.

p = c + r ·

sin θ cos ϕ
sin θ sin ϕ

cos θ

 (3.6)

The radius r is computed as r = 1
2 ||s|| + δ, where:

c is the geometric center of the OBB (vector).
s is the vector defining the dimensions of the OBB.
δ is a safety offset specified by the parameter GRIPPER_APPROACH_OFFSET.
θ, ϕ are the random angular variables used for spherical coordinate generation.

3. Approach Orientation Calculation: For each sampled point p, a calcula-
tion is performed to define the final 6D gripper pose (position and orientation)
necessary for a correct approach.
Mathematical Formulation: An orthonormal basis for the gripper’s rotation
R = [vx, vy, vz]T is constructed. The primary approach direction, vx (the
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unit vector pointing from p toward the object’s center c), is obtained from
formula (3.7):

vx = c − p
||c − p||

(3.7)

The components of this formulation are:

c The geometric center of the OBB.
p The candidate point on the virtual sphere.
vx The resulting unit vector representing the desired approach direction of

the gripper.

The other two perpendicular vectors, vy and vz, are sequentially derived
via cross products using the longest axis of the OBB (along) to guarantee a
collision-free and stable lateral orientation. This resulting rotation matrix is
then converted to quaternion format for simulation execution.

4. Safety Filter: Candidate poses located below a minimum required height
from the ground (MIN_SAFE_HEIGHT_Z) are systematically removed from the
set of valid grasps.

Phase 2: Runtime Execution through a State Machine (FSM) Given a
candidate pose, the grasping FSM conducts a simulation by moving through the
following states one after another:

1. NEXT_POSE State: This serves as the initialization and reset state. After
saving the output of the last run, it resets the gripper to its fully open
configuration and moves it kinematically to the next candidate pose while
suppressing any residual velocity.

2. APPROACH State: Manages the controlled linear movement of the gripper
towards the object along the approach vector (vx). The system, employing
a ray-OBB intersection test (Slab method), halts the motion at a specified
pre-grasp distance (STOP_DISTANCE).

3. GRASP State: The command to close the fingers is sent to initiate grasping.
Grasp success in this state is inferred if the fingers cease closing before reaching
their fully closed position. This intermediate halt confirms that the fingers
have achieved physical contact and are securely squeezing the object.

4. LIFT State: After the previous state if the gripper has made contact, it
will try to lift the object vertically. The distance between the object and
the gripper is always monitored to make sure that the object is kept within
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a certain tolerance boundary. The operation is classified as successful for
this state if the object maintains the grasp and reaches the target height
(LIFT_HEIGHT_Z).

Phase 3: Results Analysis Following the termination of each FSM cycle, a
boolean result is registered to formally classify the outcome of the grasping attempt:

• Success (GraspResult.SUCCESS): The operation was successful, meaning the
object was grasped, lifted, and maintained stable until reaching the specified
target height.

• Failure (GraspResult.FAILURE): Indicates a failure, which may include
the grasp being empty, the object being released or dropped during the lift
trajectory, or the state machine sequence failing to complete successfully.

Unlike the evaluation results for the suction gripper, the data generated by the
parallel gripper tests are typically saved to a JSON file for detailed post-analysis.

3.1.7 User interfaces: GUI and REST API endpoints
To control the complexity of the process of creating the data and to offer an
efficient means by which to display the results, an overall interface system has been
constructed. This has a client-server architecture.

System Architecture
The infrastructure is broken down into two major sections: a backend that per-
forms scene generating and a client that has a graphical user interface (GUI) for
visualization and control.

Backend (Server)

The backend is the computational heart of the system. It performs all operations
that are resource-intensive, like starting Isaac Sim, handling physics, photorealistic
rendering, and running grasp simulations. In order to enable remote control, it
provides a sequence of endpoints by means of a REST API. By means of such
decoupling, long and complex generation procedures can be started without needing
continuous user intervention.

Frontend (Client GUI)

It is a desktop application that can be run in standalone mode to provide an
easy-to-use interface. It is intended to provide an interface to initiate and set up
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generation jobs in the backend as well as display the generated synthetic data. The
server communication is carried out by standard HTTP requests to the REST API.

Technology Stack
The GUI in the application was designed in Python using the CustomTkinter library,
which is an author’s reimplementation of the standard Tkinter library, seeking to
give the widgets a more modern appearance and feel and extreme customizability.
Other principal libraries are:

• Requests: For communications over http with the API in the backend.

• Pillow (PIL): For raster image processing and display.

• Multiprocessing and Threading: To keep the interface responsive at all
times by threading the 3D visualization and network tasks onto individual
threads and processes.

• Open3D: As an external viewer for the point cloud data (.pcd, .npy).

Interface Structure
The main window is made up of two vertically arranged panels (See Figure 3.7).

Control Panel (Left):

It is responsible for the configuration and the initiation of the processes. It holds:

• Generation Section: There is a set of checkboxes (replicator, grip,
gripper) to choose which of the pipeline modules to run. Two buttons, "Gen-
erate Scene" and "Regenerate Data," initiate the respective actions throughout
the server.

• Configuration Editor: There is a special button that pops up a modal
dialog (YamlEditorWindow) whereby the config.yaml file can be edited in
real-time. The file is transmitted to the backend during generation, making
it possible to configure simulation parameters in great detail in a permanent
way without the necessity of editing the source code.

• Remote File Browser: There exists a tree view of the server’s file and folder
structure that’s loaded dynamically. The user can choose the files they wish,
download, and show them.
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Visualization Panel (Right):

The panel functions as an analysis workspace of the retrieved information.

• Integrated Viewer: The panel shows the file’s contents when a file is chosen.
The file’s type is detected by the system, and the display is customized
accordingly: images are shown in place, and text files (such as JSON) are
presented in a formatted text area.

• External 3D Visualization: In the case of complex file formats such as
the point clouds (.npy, .pcd), the client initiates an external process that
employs the Open3D library. This design decision (multiprocessing) prevents
blocking the main GUI thread, allowing for a seamless user experience.

Figure 3.7: Client interface

REST API Endpoints (Backend)
The backend provides a streamlined yet flexible REST API so that the client can
communicate with the generation pipeline. The most essential endpoints are shown
as follows.

GET /list_files

• Lists all output files that exist in the server.

• Payload: None.

• Response: A JSON object with the list of file paths. E.g., {"status":
"success", "files": ["img0/rgb.png", . }.
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GET /get_document

• Downloads a file directly from the server. The path can include subdirectories.

• URL Parameters: The complete path to the file being searched for.

• Response: The raw binary content of the file (e.g., image/png).

POST /generate_scene

• Starts a new scene generation session at the beginning.

• Payload: A JSON object with the chosen options ({"options": [.]}) or
ideally a multipart/form-data payload containing the options as well as the
user-defined config.yaml file.

• Response: A JSON confirmation response. Eg, {"status": "success",
"message": "Generation started."}.

POST /regenerate

• Initiates the regeneration process, typically using an active scene to generate
new data (e.g., re-running the simulation of the grasp by itself).

• Payload: Similar to /generate_scene.

• Response: A JSON confirmation message.

3.2 Real Dataset Correction and Integration

3.2.1 Box-to-Mask conversion with SAM
The available real-world dataset had a limitation in that the annotations were only
in the form of the bounding box coordinates. However, the problem to be solved
was instance segmentation. Thus, the masks for the whole dataset would have had
to be created from scratch, which is a very time-consuming and labor-intensive
process that practically blocks the development.

We implemented a semi-automatic conversion method based on the Segment
Anything Model (SAM) to get through the limitation. SAM has different input
modalities (prompts) that help the segmentation process:

• Point Input: The user may indicate one or more points on the image to
represent the object of interest (foreground points) or the background to be
excluded (background points). Usually, a single point is enough to segment
unambiguous objects.
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• Bounding Box: When a bounding box is given around an object, SAM is
limited to find and segment the most obvious object within that box. This
prompt is very effective, because it gives the model a clear spatial context.

• Approximate Mask: One may give SAM a low-resolution or inaccurate
mask (e.g., one that is quickly hand-drawn). The model treats this as a zero
point to eventually come up with a highly detailed and more precise version,
thus a very strong tool for refinement.

• Text: Although it wasn’t a core feature of the original model, subsequent
extensions and systems have incorporated text prompts to segment objects
referred to by words (e.g., “segment the blue chair”).

Adopted Strategy: "Box-to-Mask" Conversion

Even though our real-world dataset was annotated with bounding boxes, and thus it
seemed straightforward to choose this input mode for segmentation, the preliminary
analysis of the data revealed a major limitation: the original annotations were
incomplete in many cases. For a large number of instances, the bounding boxes did
not cover the whole object but only one visible face or a partial segment. If these
partial bounding boxes were used as input prompts for SAM, the segmentation
masks would have been correspondingly incomplete, so the whole process would
have been ineffective. In order to get past this obstacle and perform complete
object segmentation, a very important step in data preprocessing was set, deciding
not to feed the original annotations directly to SAM but to enlarge each bounding
box programmatically. This was done by increasing the size of the box by a certain
percentage in each direction. The expansion of the bounding box turned out to be
a crucial point in the strategy. When given a larger initial bounding box, SAM
had to look at a larger visual context. As a result, the model no longer segmented
the portion that had only been annotated previously. Instead, the most visually
salient and complete object instance contained within the new, enlarged box was
accurately recognized and fully delineated. In this way, the enlarged bounding
box serves as an effective "hint" for the segmentation model to isolate the entire
desired object instance. This approach not only made it possible to use the existing
imperfect annotations that had been made, but also facilitated their automatic
correction, thus, increasing the robustness and effectiveness of the segmentation
process to the maximum extent (see Figure 3.8).
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box label

⇒

segmentation label

Figure 3.8: Conversion dataset

3.2.2 Human-in-the-loop annotation correction
Even though SAM is precise, the masks that are generated can be less precise in
scenarios that are complicated, such as partial occlusions or objects that have ill-
defined edges. In order to produce a dataset of the highest quality, it was necessary
to implement a vital human-in-the-loop validation process via a custom-built
annotation application.

The platform is a web application developed in React (see Figure 3.9). The
interface allows a human operator to load an image with the masks automatically
generated by SAM and to make accurate and efficient corrections.

The significant features of the application are:

• An interactive canvas that allows smooth navigation through zoom and pan,
which is very important for working on high-resolution details.

• Direct polygon editing tools, which enable users to refine the edges of the
masks just by dragging the existing vertices.

• The possibility to create new masks from scratch to annotate objects that
SAM may not have seen.

• A side panel for managing individual annotations (rename, hide, delete).

After validation, the corrected masks are saved in JSON format that can be
easily integrated into the training pipeline.
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Figure 3.9: React app used for fixing annotation
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Chapter 4

Experimental Setup and
Implementation Details

The aim of this chapter is to first identify the datasets that were used, the train-
ing configurations, the experimental approaches, the evaluation metrics, and the
hardware and software environment

4.1 Datasets and splits
Our experimental strategy hinges on the use of three separate datasets, which have
been intentionally designed to facilitate thorough model training and extensive
model testing against the sim-to-real challenge.

4.1.1 Dataset Composition
Synthetic Dataset (Source Domain): With the help of the modular pipeline
described in Chapter 3, the synthetic dataset is produced; it is the main source for
data augmentation and domain randomization techniques. The dataset includes
about 1,800 visually different images in total, and for each image, multimodal
ground-truth annotations (RGB, depth, normals, and instance segmentation masks)
are generated automatically.

Annotated Real Dataset (Target Domain): The dataset is a representation
of our target domain and thus reflects the real environment for the operations.
The collection consists of 1,700 pictures of the real world taken in an industrial
warehouse. Moreover, these pictures were corrected and carefully annotated through
a hybrid Segment Anything Model (SAM) and Human-in-the-Loop process, as
described in the previous chapter.

Here some real image (see Figure 4.1):
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Real image 1 Real image 2

Real image 3 Real image 4

Figure 4.1: Set of real images annotated.

Unannotated Challenge Dataset (External Evaluation): Here we only
have unannotated real images depicting the most challenging kinds of arrangements
of objects, i.e., tightly packed boxes that are strictly aligned. The main goal
was to perform a thorough qualitative examination of the model’s ability for
zero-shot generalization and the capability to accurately differentiate instances
in tightly packed, out-of-distribution scenarios, which were not explicitly present
in the training data. This collection made it possible to visually examine model
robustness in an especially demanding operational scenario where the maximum
level of segmentation ambiguities is reached. Here some images (see Figure 4.2) :
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Real image not annotated 1 Real image not annotated 2

Real image not annotated 3 Real image not annotated 4

Figure 4.2: Set of real images not annotated.

4.1.2 Data Splits
The annotated real dataset was divided in a way to allow for a thorough and
unbiased evaluation of model performance:

• Training Set: 70% of the real annotated data.

• Validation Set: 20% of the real annotated data.

• Test Set: 10% of the real annotated data.

The artificial data was solely intended to serve as the source domain for training
purposes.

In order to keep the experiments fair, the splits were made in a stratified manner
to ensure that the subsets are representative of the total data distribution variability.
It is also of great importance that the Validation and Test Sets consist solely of
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images from the Real Dataset; hence, they provide a genuine measurement of the
model’s performance in the target domain.

4.2 Training configurations
In the instance segmentation experiments, the small variant of the Mask2Former
architecture, a cutting-edge Transformer-based model for complex segmentation
tasks, was applied. The major configurations and hyperparameters used are
enumerated in Table 4.1 .

Table 4.1: Hyperparameters and Configurations for Domain Adaptation Training.

Parameter Value / Description

Base Architecture Mask2Former (Small)
Backbone Swin Transformer-Small, pre-trained on ImageNet-

22K and fine-tuned on the COCO dataset for In-
stance Segmentation.

Optimizer AdamW (Adam with Weight Decay).
Learning Rate (Initial) 5 × 10−5.
Scheduler Cosine Annealing.
Weight Decay 10−2.
Batch Size (Per GPU) 4 total images per training step (2 from Source

domain + 2 from Target domain).
Training Duration 50 Epochs.
DA Technique Domain-Adversarial Neural Network (DANN)
Adversarial trade-off (λent) gradually increased from 0 to 1.
Data Augmentation Applied to both domains (Source and Target), in-

cluding standard techniques such as random flip-
ping, scaling variations, and cropping.

4.3 Experimental Methodology and Setups
In order to effectively assess the efficiency of various integration techniques and
how much the model relies on the amount of real data, Baseline 1 (Real-Only),
and Experimental Setups 1 and 2 with a scaled budget of real images were carried
out. This method allows to measure the added value of synthetic data when the
availability of target data is very limited.
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Hence, their comparative results were based on the following subsets of annotated
real data, which were used for training or fine-tuning:

• Full Real Dataset

• 250 images

• 50 images

• 30 images

• 20 images

• 10 images

For this purpose, the setups that were compared are described in the following
subsections:

4.3.1 Baseline 1: Real-Only
The model was developed only by an annotated real dataset. This trial sets the
benchmark performance that can be achieved with a limited amount of high-quality
real data and acts as a reference for all other configurations.

4.3.2 Baseline 2: Synthetic-Only (Zero-Shot Sim-to-Real)
The model was built only by using the synthetic dataset and later was tested
directly on the real test set. The main target of the setting here is to measure the
inherent "sim-to-real gap" and to assess the model’s ability to generalize zero-shot
from the simulated to the real domain.

4.3.3 Experimental Setup 1: Mixed-Data Training
The model used the combined dataset (real + synthetic) from the very beginning
to learn. This approach i.e. "direct mixing" allows the model to be exposed to both
the domains during the learning process.

4.3.4 Experimental Setup 2: Synthetic Pre-training and
Real Fine-tuning

This is how we adapt our main domain strategy. The model was pre-trained on a
the synthetic dataset to learn features that are both general and robust, and then
it was further trained (fine-tuned) on a small but high-quality real dataset in order
to specialize in the target domain’s features.
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4.3.5 Experimental Setup 3: Semi-Supervised Learning
(SSL)

In order to prove the effectiveness of utilizing unlabeled data and to expand the
range of potential applications, the model was trained using also a semi-supervised
methodology.

The training dataset was a composite one and it consisted of:

• A portion of the real image set (with labels).

• The rest of the real images (without labels).

• The entire synthetic dataset (with labels).

The goal of this arrangement was to gauge how far the addition of unlabeled
data (both real and synthetic) would lead to the performance being better than in
the case of pure supervised training.

4.3.6 Experimental Setup 4: Domain Adaptation and Com-
parison with Baseline

The aim of this experiment was to compare the results of the training that was
done only on the synthetic data with those of the domain adaptation techniques.

Phase 1: Synthetic Baseline (Unsupervised)

The model was initially developed only with the use of the synthetic data set
(without any real images see The Baseline 2 used at 4.3.2) to figure out the
performance baseline when the target data is missing.

Phase 2: Unsupervised Domain Adaptation (UDA)

At the second stage, an Unsupervised Domain Adaptation (UDA) plan was carried
out. Training was done with:

• All synthetic images (as the source domain with labels).

• All real images (as the target domain without labels).

The goal of this comparison was to find out if the adoption of the Domain
Adaptation technique would result in a substantial increase in the performance of
the real domain compared to the model that was only trained on the synthetic set.
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4.4 Evaluation metrics
The applications of machine learning models have been assessed by typical metrics
of the COCO benchmark. A special emphasis has been made on the mean Average
Precision at an IoU threshold of 0.5 (mAP50) that served as the main comparison
metric.

4.4.1 Mean Average Precision (mAP)
Mean Average Precision (mAP) is an aggregated measure of the model’s capability
to not only detect the objects correctly (classification precision) but also locate
them accurately (spatial precision).

First of all, for each class and for different Intersection over Union (IoU) thresh-
olds, the Average Precision (AP) is defined as the area under the precision-recall
curve. After this, the mAP stands for the average of the APs over all the classes
taken into account.

The main variants are:

• mAP: The mean of the APs is computed for IoU thresholds ranging from 0.5
to 0.95 (step 0.05), according to the COCO protocol.

• mAP50: AP is calculated with a fixed IoU threshold of 0.5, meaning that a
prediction is considered correct if the predicted mask and the ground truth
mask have an overlap of at least 50%.

• mAP75: AP is calculated with a fixed IoU threshold of 0.75, which is much
more strict than the previous one.

In simpler terms, for a given IoU threshold (e.g., 0.5):

AP =
Ú 1

0
p(r) dr (4.1)

where p(r) is the precision as a function of the recall (r). mAP50 is thus the average
of the APs calculated at an IoU threshold of 0.5 for all classes.

4.5 Hardware and software environment
The hardware and software platform used have a significant impact on the repro-
ducibility and efficiency of Machine Learning experiments. To ensure consistency,
all the training, validation, and synthetic data generation steps were performed on
the technical configuration specified hereafter.
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4.5.1 Hardware

Component Specifications
GPU RTX A1000
CPU Intel Core i7-13700H
RAM 32 GB DDR5

4.5.2 Software and Development Tools
Component Description
Operating System Windows 11
Package Management Conda
Simulation Environment NVIDIA Isaac Sim 4.5
Control Interface CustomTkinter (GUI)
Annotation Application React and Flask (Web App)
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Chapter 5

Experimental Results

This chapter describes and investigates the results achieved from the live experi-
ments, which were planned to check the performance of synthetic data and domain
adaptation methods for the training of instance segmentation models. The main
metrics that has been used for the assessment is Mean Average Precision.

5.1 Quantitative evaluation
The quantitative assessment was carried out by analyzing the performance of
Mask2Former on the real validation set; four major training strategies have been
used for the experiments, as detailed in Table 5.1. The study mainly discusses how
artificially generated data influenced the results in the presence of a large amount
of real data and, most importantly, in the case of a small number of real data.

The numbers in brackets indicate the change in absolute values with respect to
the “Real Only” baseline training.

Detailed Analysis of Results
1. Comparison with Simple Data Mixing The column "Real + Synthetic

(Simple Mix)" points out the fundamental challenge of the sim-to-real gap.
It is clearly shown in the Table 5.1 that mixing synthetic data with real
data without any alignment techniques leads to a very significant drop of the
performance in the data-scarce scenarios (e.g. −0.026 mAP@50 for 10 real
images) missions.
The Negative Impact of Domain Shift: This decrease points to the fact
that the distributional mismatch (the domain shift) between simulation and
reality causes the model to pick up patterns that are peculiar to the synthetic
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domain and that do not generalize well to the real one, thus the gain with the
additional volume of data is annulled.

2. Effectiveness of Domain Adaptation (DA) The evidence is conclusive
that the Domain Adaptation (DANN) approach is the most effective method
for the incorporation of synthetic data.

• Full Real Dataset (1200 Images): Hybrid training with DA reached
a mAP@50 of 0.924 which is 1.5 percentage points higher than the real-
only baseline (0.909). This is the point where synthetic data, if the
distributions are matched, not only fills in the gaps but also increases the
model’s robustness and generalization capability even in case of having a
large amount of labeled real data.

• Low-Data Regime (50 Real Images): In this very important case,
the benefit of Domain Adaptation is dramatically increased, showing an
increase of +0.026 points (from 0.762 to 0.788), which corresponds to
a relative change of 3.4%. The reduction in overfitting to the few real
samples through feature alignment makes it possible to completely exploit
the synthetic domain’s diversity.

3. Zero-Shot Sim-to-Real and Fine-Tuning The unsupervised training (Zero-
Shot Sim-to-Real), which involved synthetic data only without real labels,
achieved a mAP@50 of around 0.578. This is a performance that can hardly be
considered for industrial deployment, but it is still quite significant and shows
a good transfer learning capability, thanks to the Domain Randomization
used in Isaac Sim.
The Fine-Tuning strategy (first training on the entire synthetic set, then
fine-tuning on real data) was able to achieve great results, especially in the
low-data regime.
50 Real Images Case: Fine-Tuning (0.789) and DA (0.788) were able
to achieve almost the same and very competitive performance levels, which
implies that strong pre-training on synthetic data could be considered as a
viable and effective alternative to DANN-based training for limited datasets.

4. Semi-Supervised Evaluation The Semi-Supervised method (labels for 50
real images and the rest of the real data unlabeled) scored the highest absolute
number of the low-data regime (0.794). This finding confirms that the most
promising way to maximize performance when labeling is costly and limited is
to make the most efficient use of unlabeled real data, at the same time taking
advantage of the structural knowledge derived from the synthetic domain.
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Table 5.1: Experimental Results (mAP@50) for Instance Segmentation

Real
Training

Set

Real
Only

Real+Synth
(Simple

Mix)

Domain
Adapt.

(DANN)

Fine-
Tuning
(from

Synth.)

Semi-
Supervised

Full Real (1200) 0.909 0.907
(-0.002)

0.924
(+0.015)

0.913
(+0.004)

—

250 Real 0.849 0.850
(+0.001)

0.854
(+0.005)

— —

50 Real 0.762 0.764
(+0.002)

0.788
(+0.026)

0.789
(+0.027)

0.794
(+0.032)

30 Real 0.758 0.747
(-0.011)

0.783
(+0.025)

— —

20 Real 0.734 0.711
(-0.023)

0.740
(+0.006)

— —

10 Real 0.698 0.672
(-0.026)

0.707
(+0.009)

— —

Unsupervised (0) — 0.578 0.576 — —
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5.2 Qualitative evaluation

5.2.1 Inference results

Our qualitative analysis confirms the model’s ability to segment objects with
high precision even in complex and dense depalletization scenarios. The model
demonstrates robustness to lighting variations, including strong contrasts between
illuminated and shadowed areas, as well as diverse textures and surface patterns.
Segmentation quality remains stable even when additional background elements
(such as the workbench or surrounding structures) introduce additional geometric
complexity. Furthermore, the model preserves accuracy across different object
densities, from scenes with only a few boxes to highly cluttered environments where
occlusions are frequent. Very fine edges or extremely small details may occasionally
be missed. This is expected due to their minimal physical footprint and the use
of the “small” variant of the segmentation architecture. Below are representative
inference examples (Figures 5.1–5.8).

Figure 5.1: Inference 1
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Figure 5.2: Inference 2

Figure 5.3: Inference 3

Figure 5.4: Inference 4
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Figure 5.5: Inference 5

Figure 5.6: Inference 6

Figure 5.7: Inference 7
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Figure 5.8: Inference 8

5.3 Analysis of model performance across datasets

5.3.1 Challenge Dataset evaluation
During qualitative evaluation on the Unannotated Challenge Dataset, the model was
able to generalize a remarkable level of complexity in unseen object arrangements.
Although the boxes were tightly packed and perfectly aligned—conditions that were
not part of the training data—the model managed to correctly identify and segment
most instances. This is indicative of high transfer ability and robustness of the
learned features (see Figure 5.9). Nevertheless, the model in some instances merged
the adjacent boxes into one, particularly when the edges of the boxes were barely
distinguishable. This slight over-segmentation, which is in line with our expectations,
is due to the absence of examples of such strictly aligned and densely arranged
configurations in the training set (see Figure 5.10) . As a result of qualitative
analysis, the model is confirmed to be able to sustain detection performance at a
high level even when faced with out-of-distribution scenarios, thereby revealing not
only its capabilities but also the limitations of its generalization‌ power.
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Figure 5.9: Correct inference on Challenge Dataset

Figure 5.10: Merge inference on Challenge Dataset
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Chapter 6

Discussion

6.1 Interpretation of Results and Role of Syn-
thetic Data

The experimental results clearly show the effectiveness of synthetic data and domain
adaptation techniques in improving the generalization ability of instance segmenta-
tion models for robot perception. In particular, the Domain-Adversarial Neural
Network (DANN) consistently increased the mean Average Precision (mAP) across
both low-data and high-data regimes. The enhancement in value was especially no-
table in limited annotated data settings, thus synthetic data becomes a very viable
solution to the problem of scarce real-world samples, provided that it is properly
aligned with the target domain. On the other hand, the models have exhibited a
qualitatively strong segmentation even in the cases of out-of-distribution scenarios,
e.g., the Challenge Dataset, which contains tightly aligned and densely packed boxes.
The inference quality remained solid, although some cases of over-segmentation and
merging between adjacent instances were observed. These results were expected,
as the model was not explicitly trained on configurations exhibiting such extreme
regularity. On the contrary, the model enhanced its capability to trace the object
boundaries and keep the semantic coherence under the changing of the light and
texture, which means the representations learned are deep and can be transferred
to another domain. Moreover, the experiments emphasize the pivotal insight that
simply blending synthetic and real data without domain alignment will lead to a
drop in performance. The result here is consistent with the theory of the sim-to-real
gap, which refers to the differences in the visual and statistical properties of simu-
lated and real-world images. In this respect, domain adaptation is the only way to
feature invariant representations and generalization that is stable across different
domains. Beyond numerical performance, synthetic data was the main ingredient
that made the scalability and efficiency aspects of the work possible besides just
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the numbers. The NVIDIA Isaac Sim pipeline developed in this work enabled the
automatic generation of photo-realistic and physically consistent datasets enriched
with domain randomization, which introduced controlled variability in lighting,
materials, and object configuration. The range of variations introduced through this
randomization not only increased the robustness of the model, but also allowed for
fewer manual annotation processes, which are both expensive and time-consuming.
When synthetic data is used together with semi-automatic labeling tools, like the
Segment Anything Model (SAM) and human-in-the-loop correction mechanisms,
the result is a quicker and more sustainable dataset creation workflow that is also
appropriate for industrial settings. Moreover, the experimental comparison serves
as an evidence that hybrid training strategies, i.e. the use of synthetic and real data
through fine-tuning or domain adaptation, are the most advantageous in terms of
data efficiency and performance. These methods were able to achieve a significantly
better performance than the real-data baselines that were only used in low-data
regimes, thus demonstrating that synthetic data can be more than just a substitute,
but rather a complementary and stabilizing component in model training.

6.2 Limitations and validity threats

Several limitations, however, have to be taken into account along with the promising
results. First, the synthetic scenes produced were photorealistic, but they still
lacked the ability to fully replicate the physical and optical nuances of the real
world—such as subtle lighting diffusion, lens distortions, or sensor noise. These
differences could be the reasons for the remaining performance gap between models
trained with synthetic and real data. Secondly, it took quite a long time to create
synthetic datasets. Although the pipeline offered automation and reproducibility,
the rendering of physically consistent scenes and the simulation of grasping interac-
tions were very demanding in terms of computational resources. Therefore, a limited
number of synthetic images were generated and used for training, which means that
the dataset is smaller than standard large-scale computer vision benchmarks. This
limitation may have led to a reduction in the variability and statistical completeness
of the synthetic domain. Thirdly, the limitation of the depalletization experiments
with rigid box-like objects only, in terms of the scope, the findings’ generalizability
is restricted. It will be possible that extending the method to different industrial
tasks, such as handling deformable objects or detecting transparent materials, will
require further changes and validation. Fourthly,‌ this evaluation mainly depended
on mAP and qualitative analysis. Although these figures are proper in measuring
segmentation accuracy, there is a chance that they ignore those aspects which are
very important to a robot and have to do with its performance like the robustness
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to partial occlusions, consistency over time, or computational latency during a real-
time operation. The subsequent research should really take these additional factors
into account in order to have a complete picture of the system’s capabilities in the
field. Finally, the domain adaptation method employed—DANN—represents only
one possible approach. Alternative or complementary techniques, such as adversar-
ial image translation (e.g., CycleGAN-based domain stylization), self-supervised
adaptation, or multi-modal feature alignment, could further narrow the sim-to-real
gap. Nevertheless, the stability and robustness of the results obtained confirm the
practical effectiveness and methodological soundness of the proposed approach.

Another limitation encountered during the development process concerns the
parallel gripper simulation. The Robotiq 2F-85 gripper asset is loaded directly from
the Omniverse cloud; a recent update modified the internal structure of the asset
(link hierarchy, joint naming, and physical parameters), making the previously
implemented control logic and state machine incompatible. As a result, the parallel
gripper simulation is currently non-functional unless the code is updated accordingly.
This highlights a critical issue related to the dependency on cloud-distributed assets
and the importance of maintaining stable local versions to ensure reproducibility
and continuity of the system.
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Chapter 7

Conclusions and Future
Work

7.1 Summary of Contributions
The main objective of the thesis was to investigate the utility of synthetic data and
domain adaptation methods to improve the perception capabilities of industrial
robotic systems, with a focus on depalletization tasks. Through the integration
of NVIDIA Isaac Sim, modern deep learning architectures such as Mask2Former,
and advanced annotation methods including the Segment Anything Model (SAM),
a complete framework for data generation, training, and evaluation was designed
and implemented.

The main contributions are as follows:

1. Synthetic Data Generation Pipeline: A modular and extensible pipeline
was developed within NVIDIA Isaac Sim to automatically generate photo-
realistic synthetic datasets with high variability in texture, lighting, object
geometry, and arrangement. The method combines physically based rendering
and physics simulations to ensure realistic and diverse data.

2. Robotic Grasp Simulation: The simulation of two different gripper types:
vacuum and parallel-jaw, was performed to generate successful and failed grasp
samples, providing rich information useful for perception and manipulation
learning.

3. Real Dataset Enhancement and Annotation: A semi-automatic an-
notation workflow was implemented using SAM for box-to-mask conversion,
complemented by a custom human-in-the-loop correction web interface, signif-
icantly reducing annotation time while maintaining label quality.
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4. Hybrid Training and Domain Adaptation: Various experimental setups
were tested, mixing real and synthetic data under different training paradigms.
The integration of Domain-Adversarial Neural Network (DANN) adaptation
demonstrated measurable improvements in segmentation accuracy, particularly
in low-data regimes.

5. Comprehensive Evaluation: Quantitative results, expressed in terms of
mean Average Precision (mAP), and qualitative assessments across multiple
datasets confirmed the robustness of the proposed approach and its ability to
generalize to unseen configurations.

Overall, this work provides a concrete demonstration of how simulation-based
data generation, combined with advanced deep learning techniques, can substan-
tially reduce data acquisition costs, while maintaining competitive performance in
real-world robotic vision tasks.

7.2 Main Findings
The experiments conducted reflect the following key points:

• Effectiveness of Synthetic Data: Synthetic datasets can lead to model
generalization and stability if they are made with enough variability and
realism, even when only a few real samples are available.

• Necessity of Domain Adaptation: Directly mixing real and synthetic data
without alignment causes performance to decrease due to the sim-to-real gap.
Domain adaptation, as implemented through DANN, successfully mitigates
this issue and allows models to learn domain-invariant features.

• Feasibility of a Hybrid Workflow: Combining synthetic data with real-
world annotations and semi-automated labeling methods offers an efficient,
scalable strategy for training high-performance perception systems suitable
for industrial applications.

• Strong Zero-Shot Transfer Capabilities: Although zero-shot sim-to-real
performance remains below supervised baselines, it nonetheless demonstrates
promising transfer potential—an encouraging step toward fully simulation-
trained perception systems.

• Industrial Applicability: The entire workflow—spanning synthetic data
generation, model training, and deployment—was conceived with real manu-
facturing constraints in mind, providing a replicable methodology for similar
industrial contexts.
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7.3 Future Directions
While the presented work achieves promising results, several issues remain open for
future exploration and enhancement:

1. Expansion of the Synthetic Dataset: Increasing the scale and diversity of
the synthetic dataset will improve statistical coverage and domain variability.
Future pipelines could leverage distributed rendering or cloud-based GPU
clusters to accelerate data generation.

2. Parallelization of Image Generation: The current dataset generation
process is computationally intensive and sequential. Future developments
could introduce multi-threaded or distributed processing to parallelize scene
rendering, drastically reducing generation time and increasing throughput.

3. Improved Domain Bridging Techniques: Incorporating more advanced
domain adaptation methods—such as image translation via CycleGAN, con-
trastive domain alignment, or self-supervised feature learning—could further
reduce the visual and statistical discrepancies between synthetic and real
domains.

4. Integration with Real-Time Robotic Control: A natural continuation
involves connecting the perception module directly with robotic control loops,
assessing latency, inference stability, and adaptability under online feedback
conditions.

5. Enhanced Evaluation Metrics: Beyond mAP, future work should incorpo-
rate task-specific metrics, such as grasp success rate, inference latency, and
temporal consistency, providing a more comprehensive view of the system’s
operational effectiveness.

6. Introduction and Segmentation of Object Defects: A potential extension
involves augmenting the synthetic data with realistic defects (e.g., scratches,
dents, deformations, or contamination) and training the model to detect and
segment such anomalies. This addition would greatly expand the practical
utility of the perception system in quality control and inspection applications.

In conclusion, this thesis demonstrates that the combination of synthetic data,
domain adaptation, and modern segmentation architectures represents a powerful
and pragmatic framework for advancing industrial robotic perception. By bridg-
ing simulation and reality, the proposed methodology provides both a scientific
and practical contribution toward scalable, adaptive, and cost-efficient AI-driven
automation systems.
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