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Abstract 

The growing complexity of modern network infrastructures and the heterogeneity of 
firewall and security technologies have made standardization and automation essential 
for effective cyber defense management. The Open Command and Control (OpenC2) 
standard, developed by OASIS, defines a unified language for commanding and control-
ling security components, enabling interoperability between heterogeneous systems th-
rough well-defined producer-consumer interactions. The Stateful Packet Filtering 
(SLPF) profile specifies how OpenC2 commands can be applied to network filtering 
systems, defining standardized actions, targets, arguments and results for managing fi-
rewalls and similar packet filtering technologies. 

This thesis defines a fully-featured Actuator Manager that implements the Open Com-
mand and Control (OpenC2) Stateless Packet Filtering (SLPF) Actuator Profile for mul-
tiple firewall technologies: iptables, OpenStack Security Groups, Kubernetes Network 
Policies and Microsoft Azure Network Security Groups.  
Each of the four selected firewall technologies has been implemented as a dedicated 
SLPF Actuator, managed by the SLPF Actuator Manager. Each actuator extends the Ac-
tuator Manager’s functionality to support the specific firewall mechanisms of the corre-
sponding system. 
The work introduces a modular architecture that clearly separates the logic that depends 
on platform-specific implementations from the general OpenC2 SLPF management, al-
lowing easier extension and integration of additional platforms in the future. 

The implementation is validated through comprehensive testing, including syntactic and 
semantic verification, functional evaluation and performance measurements. 
Finally, the thesis provides a critical assessment of the SLPF profile, evaluating its ex-
pressiveness and applicability across heterogeneous environments. The results confirm 
the feasibility of OpenC2 as a unified, interoperable and automatable control mechani-
sm for diverse network protection systems. 
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1     Introduction 

In an increasingly digital and interconnected world, safeguarding information systems 
against cyberattacks is of central importance. As cyber threats grow in speed, sophistica-
tion and automation, traditional security approaches are no longer sufficient. Attackers 
now can count on advanced technologies to launch highly targeted and rapid assaults, 
making it increasingly difficult to detect and mitigate threats in real time.  
In this rapidly shifting landscape, defensive strategies must evolve accordingly, relying 
on intelligent tools, real-time responses and continuous efforts to safeguard digital infra-
structures and sensitive information.  
To achieve this, organizations often rely on a combination of security solutions from 
multiple vendors. While this multi-vendor approach can enhance protection by covering 
different layers of risk, it also introduces significant challenges such as poor interopera-
bility, as products are not always designed to communicate natively with one another, 
fragmented visibility, which limits the ability to form a unified view of the security sta-
tus, and increased operational complexity, as each solution may require its own configu-
ration and maintenance procedures. 
As the number of integrated tools grows, so does the difficulty of maintaining a cohe-
rent and responsive defense architecture: security workflows become harder to automa-
te, incident response slows down and the risk of misconfigurations increases. In this 
context, the lack of standardized communication mechanisms among components be-
comes a critical bottleneck, limiting the efficiency and effectiveness of cyber defense 
operations. 
This absence of native interoperability often pushes organizations to adopt proprietary 
languages, custom APIs or vendor-specific integration layers to enable communication 
between disparate components. While such solutions can fix compatibility gaps, they 
also add technical complexity, increase maintenance efforts and may lead to long-term 
vendor lock-in. 
One way to overcome these challenges is through the adoption of standardized commu-
nication protocols. In this context, OpenC2 (Open Command and Control) offers a 
valid solution.  
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1.1  Open Command and Control (OpenC2) 

OpenC2 is a standardized language developed by the OASIS consortium, designed to 
allow command and control of cyber defense components in a platform-agnostic and 
vendor-neutral manner. Its core objective is to provide a common syntax and structure 
for issuing security actions, such as blocking IPs, isolating devices or querying status, 
regardless of the specific technologies or vendors involved. 
Unlike traditional approaches that depend on custom integrations or proprietary interfa-
ces, OpenC2 separates what to do (the command) from how to do it (the implementa-
tion). This abstraction allows different cybersecurity components, such as firewalls or 
intrusion detection systems, to receive and understand commands in a consistent format, 
improving coordination and reducing the need for custom development. 
By defining a machine-readable, extensible language for cyber defense operations, 
OpenC2 significantly reduces integration complexity, improves interoperability and al-
lows faster and more coordinated responses to security events. This is really important 
in environments composed of many multi-vendor systems, where creating a unified 
control layer is often difficult and expensive. OpenC2 helps organizations move toward 
automation and orchestration, key parts of modern cybersecurity strategies, without 
being locked into a specific vendor ecosystem. 
To address the wide variety of use cases in cybersecurity, OpenC2 is organized around 
profiles, specifications that define how the core language should be used with specific 
types of systems. These profiles standardize the syntax and parameters for sending 
commands to particular types of components, such as firewalls or threat detectors. By 
doing so, they ensure consistent interpretation and execution of OpenC2 commands 
across implementations. 
Among the existing OpenC2 profiles, the Stateless Packet Filtering (SLPF) profile is 
particularly significant in operational environments. 

1.2  Stateless Packet Filtering Profile (SLPF Profile) 

The SLPF profile defines a standardized set of commands and target specifications for 
controlling packet filtering devices, such as firewalls and routers, without requiring sta-
teful inspection. By creating a common language for managing access control rules 
across heterogeneous platforms, the SLPF profile addresses one of the most frequent 
and important tasks in network defense: the ability to quickly and precisely control traf-
fic flows. 
In multi-vendor environments, where firewalls and filtering components come from dif-
ferent manufacturers with their own command syntaxes and configuration models, the 
SLPF profile provides a unified abstraction layer. This abstraction divides the intent of a 
security action, such as blocking traffic from a malicious IP address, from the specific 
implementation details required by each individual system. As a result, organizations 
can dynamically apply or revoke filtering rules in a consistent and automated manner, 
regardless of the underlying technology. 
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This standardization not only simplifies policy enforcement across complex infrastruc-
tures, but also improves the agility of security operations. Instead of developing and 
maintaining custom scripts or vendor-specific integrations, OpenC2 commands can be 
sent through orchestration tools or threat response platforms, ensuring a faster and more 
uniform deployment of filtering actions. 
Consequently, the operational overhead associated with managing diverse packet filte-
ring systems is significantly reduced, while response times to emerging threats can be 
greatly improved. Furthermore, integrating the SLPF profile into existing security archi-
tectures contributes to reducing reliance on proprietary integrations, laying the founda-
tion for more scalable and adaptable defense strategies. 
In a landscape where rapid and coordinated response is essential, the ability to express 
and enforce filtering actions through a standardized, vendor-neutral interface is a sub-
stantial step toward interoperability and automation in cyber defense. 

1.3  Thesis Structure 

This section provides an overview of the structure of this thesis, outlining the contents 
and focus of each chapter. 
Chapter 2 provides a comprehensive introduction to Open Command and Control 
(OpenC2), presenting its architecture, implementation considerations and profiles. In 
particular, the Stateless Packet Filtering (SLPF) Actuator Profile is analyzed in detail, 
including its actions, targets, arguments and result reporting mechanisms. 
Chapter 3 introduces a set of firewall technologies to which the SLPF Profile can be ap-
plied, namely iptables, OpenStack Security Groups, Kubernetes Network Policies and 
Microsoft Azure Network Security Groups. Each technology is described in terms of its 
key functionalities, rule management capabilities and relevance within the context of the 
SLPF Profile. 
Chapter 4 defines the objectives of this thesis, which are to design, implement and vali-
date a fully-featured Actuator Manager that realizes the OpenC2 SLPF Actuator Profile 
for the firewall technologies discussed in Chapter 3. 
Chapter 5 presents the design and implementation of the SLPF Actuator Manager, detai-
ling how it manages the different firewall systems. The chapter also describes the deve-
lopment of backend-specific actuators responsible for executing SLPF commands wi-
thin the respective firewall environments. 
Chapter 6 focuses on the software libraries and frameworks utilized in the implementa-
tion of the Actuator Manager and the specific actuators. It also reports the validation and 
testing procedures carried out to assess the syntactic and semantic correctness, functio-
nal behavior and performance of the system. 
Finally, Chapter 7 concludes the thesis by providing a critical analysis of the SLPF Pro-
file based on the implementation experience, summarizing the main contributions and 
outlining possible directions for future work. 



2     OpenC2 

2.1  Introduction to OpenC2 

In response to the increasing need for interoperability and automation in cyber defense, 
the Open Command and Control (OpenC2) standard has emerged as a promising so-
lution. Developed by the OASIS OpenC2 Technical Committee, this standard defines a 
common, extensible language for issuing commands and interpreting responses across 
diverse cybersecurity components and platforms. 
OpenC2 is designed to enable machine-to-machine communication between defense 
systems, regardless of vendor, architecture or deployment environment. By standardi-
zing not only how actions are requested but also how outcomes are reported, it facilita-
tes faster, more consistent and automated security operations. Its extensible design allo-
ws it to evolve alongside emerging technologies and support a wide variety of use cases, 
from simple packet filtering to complex multi-step threat mitigation workflows. 
This chapter explores the core principles of OpenC2, including its architecture, message 
structure and operational model, and the SLPF Profile, laying the groundwork for un-
derstanding how it can be applied in real-world cybersecurity environments. 

2.2  OpenC2 Architecture 

At its core, the architecture of OpenC2 [1] is designed to facilitate decoupled and stan-
dardized communication between cybersecurity components. It follows a producer–
consumer model, where commands are generated by a producer (e.g., an orchestrator 
or security automation platform) and received by one or more consumers (e.g., fi-
rewalls, endpoint protection systems or network devices) capable of executing the re-
quested actions. On the receiving side, the consumer interprets the command, carries out 
the action on the specified target and responds with a message indicating the result, 
whether successful or failed. 
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By separating the command generation from the execution logic, OpenC2 ensures that 
producers and consumers can evolve independently, as long as they adhere to the shared 
language and profiles. This abstraction also simplifies integration across heterogeneous 
environments, where tools may differ in purpose, implementation or vendor. 
OpenC2 is transport-agnostic by design, meaning it does not hard-code a specific com-
munication protocol into its architecture. However, to ensure reliable and interoperable 
exchanges between producers and consumers, the OpenC2 specification defines stan-
dardized transport bindings, such as for HTTPS and MQTT, that describe how messages 
should be formatted and transmitted over specific protocols. 

In the OpenC2 architecture, a special type of consumer known as an Actuator Mana-
ger serves as an intermediary between the producer and a set of managed actuators. Un-
like a regular consumer, which directly applies OpenC2 commands to the security func-
tions it provides, an Actuator Manager acts as a translation interface: it receives an 
OpenC2 command from the producer and converts it into the appropriate device-speci-
fic control interface. These managed devices may be heterogeneous and may not expose 
an OpenC2-native interface, making the Actuator Manager responsible for abstracting 
their underlying protocols into a unified control plane. As a result, it enables producers 
to interact with a diverse collection of security tools through a consistent command mo-
del, improving interoperability, scalability and operational consistency. Depending on 
the deployment, an Actuator Manager may also act as a producer toward managed devi-
ces that support OpenC2 natively. 

Each command in OpenC2 encapsulates an action that a producer wishes to perform on 
a specific target, such as "allow traffic", "deny connection" or "update file”. Its structure 
is designed to be concise and flexible, accommodating a wide range of use cases in cy-
ber defense. A valid command consists of the following components: 
• Action (required): what to do (e.g., allow, deny, update); 
• Target (required): the object of the action (e.g., an IPv4 connection, a file); 
• Arguments (optional): parameters that modify the behavior of the command (e.g., 

start/stop time, response requested); 

2 OpenC2 Architecture

OpenC2 is a suite of specifications for Producers and Consumers to command and execute cyber defense functions.

These specifications include the OpenC2 Language Specification, Actuator Profiles (APs), and Transfer Specifications.

The OpenC2 Language Specification and Actuator Profile specifications focus on the language content and meaning at

the Producer and Consumer level of Command and Response while the transfer specifications focus on the protocols for

their exchange. The language is defined abstractly in the Language Specification, permitting flexibility of message

serialization and transfer protocol choices when implementing OpenC2. Interoperability between specific OpenC2

implementations is dependent on the selection of common serialization and transfer mechanisms.

In general, there are two types of participants involved in the exchange of OpenC2 Messages, as depicted in Figure 2-1:

1. Producers: A Producer is an entity that creates and transmits Commands instructing one or more systems to

execute Actions as specified in the Command. A Producer may receive and process Responses in conjunction

with a Command.

2. Consumers: A Consumer is an entity that receives and may act upon a Command. A Consumer may create

Responses that provide any information captured or necessary to send back to the Producer.

Figure 2-1. OpenC2 Message Exchange

The Language Specification defines two distinct content types (i.e., payload structures): Command and Response. The

following example, drawn from the AP for Stateless Packet Filtering [SLPF], illustrates the general structure of OpenC2

Command and Response message payloads, using the common JSON serialization. The example action permits ftp

data transfers to 3ffe:1900:4545:3::f8ff:fe21:67cf from any source.

Command:

{

  "action": "allow",

  "target": {

    "ipv6_connection": {

      "protocol": "tcp",

      "dst_addr": "3ffe:1900:4545:3::f8ff:fe21:67cf",

      "src_port": 21

    }

  },

  "actuator": {

    "slpf": {}

  }

}

In this case the Actuator returns a rule number associated with the allowed interaction.

Standards Track Work Product
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Fig. 2.1 OpenC2 communication model [1]
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• Actuator (optional): the type of system expected to carry out the action (e.g., a state-
less packet filter, an endpoint). 

This modular structure allows OpenC2 to support simple operations (e.g., blocking an 
IP address) as well as more complex tasks that may involve time constraints or multiple 
execution targets. The clear separation of subject (actuator), verb (action), object (target) 
and complements (arguments) also enhances readability and consistency across imple-
mentations. 
The official OASIS OpenC2 Language Specification [2] defines the set of valid values 
for core command elements such as actions, targets and arguments. While the specifica-
tion provides a standardized vocabulary to ensure interoperability, it also allows for ex-
tensibility, particularly in the definition of new actuators, allowing implementations to 
introduce custom types when required by specific operational contexts, as long as they 
remain consistent with the overall syntax and semantics of the language. 
Once a consumer receives a command and processes it, it generates a response to indi-
cate the result. This response follows a similarly structured grammar, enabling reliable 
feedback loops between producers and consumers. A typical response includes: 
• Status (required): a numeric code indicating the outcome of the command execution 

(e.g., success, failure, pending); 
• Status Text (optional): descriptive message providing additional context or explana-

tion related to the status (e.g., error details, confirmation notes); 
• Results (optional): field containing any data or information returned as a consequence 

of the command (e.g., query results). 
This grammar ensures that consumers can provide both machine-readable and human-
friendly information in their responses. 

All OpenC2 messages are required to conform to the rules and constraints defined in the 
official specifications, which outline how the language must be used to ensure consi-
stency, interoperability and correct behavior across compliant implementations. 
The following example illustrates an OpenC2 command that issues an allow action on a 
connection target of type IPv6, specifying the destination address, protocol and source 
port, intended for an SLPF actuator. 

6 OpenC2

Command fields follow typical language patterns, allowing for the identification
of a subject (Actuator), a verb (Action), an object (Target), and complements (Argu-
ments), with each command requiring one Action and one type of Target. OpenC2
Language Specification [8] defines a set of actions, and adding new ones is not
permitted to ensure compatibility with different systems.

However, it is possible to define new Targets beyond those in the specification by
creating a new Actuator Profile. Actuator Profiles establish semantic constraints and
extend the language for specific cyber-defence functions. This is necessary because
not all actions are suitable for every use case, and certain constraints are required to
more accurately model real-world scenarios. The Actuator field allows selecting the
profile that will execute the Action.

All OpenC2 messages must follow the conformance clauses defined in the
specifications, which explain how the language should be used.

The following example illustrates an OpenC2 command in which the Producer
requests that the Consumer, responsible for implementing the StateLess Packet Filter
Profile, permit an IPv6 connection. As seen in the figure, the command indicates the
source port, destination address, and allowed protocol.

Fig. 2.2 example of OpenC2 Command [7]

Then, the Consumer returns, in the OpenC2 Response, a rule number associated
with the allowed interaction.

Fig. 2.2	 OpenC2 command example [1]
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In response to the previously issued command, the consumer returns a message indica-
ting successful execution with a status code 200. The response also includes a result 
field containing the rule number assigned to the newly created filtering rule. Within the 
SLPF profile, this rule number serves as a unique identifier, enabling the producer to 
manage the rule in future operations (such as revoking it). 

2.3  OpenC2 Implementation 

To ensure interoperability across heterogeneous cybersecurity environments, OpenC2 
adopts a layered protocol stack model, as specified in the OpenC2 Architecture Specifi-
cation [1]. This model structures the specification suite into distinct levels, each addres-
sing a different aspect of the communication process, from high-level intent expression 
to secure message transport. 

2.3 Implementation 7

Fig. 2.3 example of OpenC2 Response [7]

2.3 Implementation

OpenC2 language can be integrated into a layer model, such as the one in the figure
below, where different standards and protocols are used. The OpenC2 Language
Specification [8] describes the meaning of the main elements of the language while,
OpenC2 Actuator Profiles [9] outline the specific parts of the language applicable to
the functions of different actuators.

Fig. 2.3	 OpenC2 response example [1]

Fig. 2.4	 OpenC2 Documentation and Layering Model [1]
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At the top of the stack lie the Common Content layer and the Function-Specific Content 
layer, which together define the OpenC2 language and its specialized extensions. 
The Common Content layer provides the core structure and semantics of the language, 
establishing a shared vocabulary for expressing commands and responses [2]. It defines 
the fundamental elements, such as actions, targets, arguments and actuators, that allow 
consistent communication across diverse systems. This layer serves as the foundation 
for interoperability, ensuring that all OpenC2 implementations can interpret and ex-
change messages in a uniform manner. 
Building upon it, the Function-Specific Content layer introduces extensions designed 
for specific operational domains. This includes Actuator Profiles, which constrain and 
refine the common language to suit particular defensive capabilities, for example state-
less packet filtering or endpoint control, by specifying the valid combinations of ac-
tions, targets and arguments relevant to each context [3]. 
Beneath the language layers lies the Message/Transfer layer, which bridges OpenC2 
content with the underlying transport mechanisms. It defines how commands and re-
sponses are serialized (typically using JSON) and encapsulated into message constructs 
that include metadata such as message identifiers, timestamps and routing information. 
Standardized transfer specifications exist for widely used protocols like HTTPS and 
MQTT, facilitating efficient and reliable message exchange between producers and con-
sumers.  
At the base of the stack is the Secure Transport layer, which ensures the actual delive-
ry of messages between producers and consumers over secure and reliable communica-
tion protocols. Although OpenC2 itself remains transport-agnostic by design, this layer 
ensures confidentiality, integrity and interoperability across diverse implementations by 
defining specific transport bindings over chosen technologies. Examples of these tech-
nologies include TLS-based protocols such as HTTPS, which provides authenticated, 
ordered and lossless message delivery as specified in the Specification for Transfer of 
OpenC2 Messages via HTTPS [4]. Similarly, the Specification for Transfer of OpenC2 
Messages via MQTT [5] defines message transfer over MQTT, a lightweight publish-
subscribe protocol optimized for efficient and scalable communication in constrained 
environments. Beyond these, other established security mechanisms such as S/MIME 
(Secure/Multipurpose Internet Mail Extensions) and IPsec (Internet Protocol Security) 
can also be leveraged to secure OpenC2 message exchanges depending on the deploy-
ment context and security requirements.  
In this modular and layered architecture, the language is designed to decouple the trans-
port mechanism from its implementation, allowing flexibility in deployment and easier 
integration across diverse platforms. By adopting this structure, OpenC2 supports scala-
ble, secure and standardized cyber defense automation across a wide range of operatio-
nal environments. 
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2.4  OpenC2 Message Transport 

OpenC2 supports message transfer over HTTPS, leveraging the well-established HTTP 
protocol secured by Transport Layer Security (TLS) to ensure confidentiality and inte-
grity of commands and responses. This approach is defined in the Specification for 
Transfer of OpenC2 Messages via HTTPS [4] and represents one of the primary means 
of deploying OpenC2 in modern network environments. 
The connection setup begins with establishing a TCP connection between the OpenC2 
message producer (client) and consumer (server), followed by the standard TLS hand-
shake, which creates a secure and encrypted channel. This secure transport layer protec-
ts the exchanged messages from interception or tampering, providing authentication of 
the communicating parties through certificates. 
Once the TLS connection is established, OpenC2 messages are exchanged using HTTP/
1.1 POST method. Commands and responses are encapsulated within the HTTP request 
and response bodies, formatted as JSON objects adhering to the OpenC2 Language 
Specification [2]. The POST method is preferred because it supports message payloads 
of arbitrary size, suitable for the structured command and response content. The URI 
used in the HTTP request is typically standardized as “/.well-known/openc2”, serving as 
the designated endpoint on the consumer side for receiving and processing OpenC2 
messages. 
Several HTTP headers are essential in the exchange of OpenC2 messages over HTTPS 
ensuring proper identification, routing and processing of commands and responses, as 
shown in Figures 2.5 and 2.6:  
• The HTTP POST request is directed to the URI “/.well-known/openc2”, which is the 

standardized endpoint for OpenC2 messages over HTTPS. 
• The Content-Type header is set to “application/openc2+json;version=1.0", indicating 

the payload format and OpenC2 version used. This allows the receiver to correctly 
parse and interpret the JSON-encoded OpenC2 content. 

• The Date header provides a timestamp of when the message was created, which sup-
ports message correlation and replay protection. 

• The X-Request-ID header carries a unique identifier that links requests and their cor-
responding responses, facilitating reliable tracking. 

The OpenC2 message itself is embedded within the HTTP body as a JSON object con-
taining two main sections: headers and body. 
The headers field carries metadata such as: 
• request_id: matching the X-Request-ID in the HTTP header to link the OpenC2 

message to its HTTP request; 
• created: a Unix epoch timestamp indicating when the message was created; 
• from and to: identifiers of the message sender and receiver, supporting explicit 

addressing within the OpenC2 ecosystem. 
The body contains the actual command or response. 
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Fig. 2.5 HTTP message carrying an OpenC2 Command [10]

The Response to this OpenC2 Command is the following [10]:

Fig. 2.5	 HTTP POST with OpenC2 Command [4]
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Fig. 2.6 HTTP message carrying an OpenC2 Response [10]

2.4 Base Components and Structures

The abstract terminology used to specify OpenC2 data types is unaffected by how
they are implemented in particular scenarios. By defining data types in this abstract
way, OpenC2 ensures flexibility and interoperability, allowing the same commands to
be represented and communicated across different systems and platforms, regardless
of the underlying formats or protocols. OpenC2 data can be divided into two different
types: primitive and structures.

Primitive types are the most basic forms of data in programming languages (e.g.,
binary, boolean, integer). Structures, on the other hand, are collections of multiple
data elements grouped together under a single unit. Some examples of structures
used in OpenC2 include:

• ArrayOf(vtype);

• Choice;

Fig. 2.6	 HTTP Response containing an OpenC2 Response [4]
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2.5  Actuator Profiles 

Within the suite of Open Command and Control (OpenC2) specifications, Actuator Pro-
files play a central role in adapting the general-purpose language to specific cyber de-
fense functions. An Actuator Profile defines the subset of the OpenC2 language [2], in-
cluding actions, targets, arguments and actuator specifiers, that are meaningful in the 
context of a particular operational domain (for example, stateless packet filtering or 
endpoint control). 
Each Actuator Profile provides normative guidance on how the OpenC2 language ele-
ments are to be implemented for a given class of actuators. Specifically, a profile expli-
citly defines which actions are permitted, the targets to which they can be applied and 
the arguments that are supported or required, while also specifying the valid combina-
tions among these elements and how they interrelate within the operational context of 
the actuator. Furthermore, an Actuator Profile can extend the base language by introdu-
cing custom targets or arguments that are specific to its operational domain, while still 
remaining compliant with the OpenC2 framework. 
Beyond the core language elements, an Actuator Profile also defines the structure and 
semantics of actuator specifiers, which identify the specific actuator instance that 
should execute a command. These specifiers may include attributes such as device iden-
tifiers or logical groupings, allowing precise targeting in environments where multiple 
actuators are present. 
Moreover, a profile may also introduce new result types that are specific to its operatio-
nal domain, extending the language with domain-relevant output data. This flexibility 
allows each profile to accurately represent the feedback and telemetry that are most 
meaningful for its corresponding actuator class, while maintaining full compliance with 
the OpenC2 framework. 
This balance between constraint and extensibility allows profiles to adapt to different 
technologies, such as firewalls, endpoint protection systems or intrusion detection tools, 
without fragmenting the standard, while ensuring that commands remain semantically 
appropriate and syntactically valid for the devices or services under management. 
As stated in the OpenC2 Actuator Profile Development Process [3], profiles are develo-
ped following a structured methodology that promotes consistency across specifications 
and ensures compatibility with the core language [2] and architecture layers [1] of 
OpenC2. 
The Stateless Packet Filtering (SLPF) profile stands as the primary Actuator Profile, 
illustrating how OpenC2 can be applied to implement and manage essential cyber de-
fense functions, such as blocking or allowing network traffic and filtering packets based 
on protocol or port across diverse network environments. 
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2.6  Stateless Packet Filtering Profile (SLPF Profile) 

The Stateless Packet Filtering (SLPF) Actuator Profile is designed to allow consistent 
and interoperable control over stateless network filtering devices. It defines the speci-
fic subset of the OpenC2 language that applies to packet filtering operations, constrai-
ning actions, targets, arguments and results to those meaningful in the context of net-
work traffic management. 
Packet filtering operations typically include inspecting individual network packets and 
making allow/deny decisions based on attributes such as source/destination IP addres-
ses, transport protocol or source/destination port number, without maintaining session or 
connection state. These operations form the foundation for implementing firewall rules, 
access control policies and traffic segmentation. 
The SLPF profile builds upon the core OpenC2 Language Specification [2] by utilizing 
a subset of the standard actions, targets and arguments defined in it, while also defining 
additional targets, arguments and result structures specific to stateless packet filtering 
operations, as detailed in the SLPF Actuator Profile specification [6]. 

To maintain consistency across the OpenC2 ecosystem and prevent ambiguity between 
elements originating from different specifications, the SLPF profile assigns a dedicated 
namespace identifier: slpf. This identifier is prefixed to all profile-specific constructs, 
such as custom targets (e.g., “slpf: rule_number”), arguments (e.g., "slpf: direction”), 
and result objects in responses (e.g., “slpf: rule_number”), to clearly distinguish them 
from those defined in the core language. The use of namespaces thus ensures unambi-
guous interpretation of commands and responses, promotes extensibility and facilitates 
interoperability when multiple actuator profiles coexist within the same OpenC2 im-
plementation. 

2.6.1  SLPF Actions 

Within the SLPF Actuator Profile, the set of actions is defined as a subset of those esta-
blished in the OpenC2 Language Specification [2]. These actions represent the funda-
mental operations that a producer can request from a stateless packet filtering actuator, 
each corresponding to a distinct network control behavior. The SLPF profile constrains 
and contextualizes their use to ensure predictable and interoperable execution. Specifi-
cally, the valid actions for the SLPF profile are: 
• allow: permits network traffic whose characteristics match the filtering criteria defi-

ned within the target; 
• deny: blocks network traffic whose characteristics match the filtering criteria defi-

ned within the target; 
• delete: removes a previously defined rule or entry from the filtering configuration; 
• query: initiates an information request toward the actuator, enabling the producer to 

learn the supported options and determine the state or settings of the packet filtering 
device; 
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• update: instructs the actuator to modify or refresh its configuration by obtaining and 
applying a new or updated configuration file or rule sets. 

Each of these actions is bound to a specific set of valid targets and arguments, as defi-
ned within the profile [6], ensuring consistent interpretation and execution across hete-
rogeneous implementations of stateless filtering systems. 

2.6.2  SLPF Targets 
The Stateless Packet Filtering (SLPF) Actuator Profile defines a precise subset of targets 
from the OpenC2 Language Specification [2], while also introducing a profile-specific 
target (rule_number) [6]. Each target identifies the entity or resource upon which an ac-
tion operates, ensuring commands are meaningful and enforceable within stateless pac-
ket filtering devices. The defined targets for packet filtering operations are: 
• features: a collection of capabilities or configurations of the actuator, such as suppor-

ted action-target combinations, profile versions and available operational options. 
• file: configuration or rule files that may be applied to the filtering engine. Each file 

target can include specific attributes such as name, path and hashes to precisely iden-
tify the file involved. 

• ipv4_net: one or more IPv4 addresses specified in CIDR format, allowing the targe-
ting of network segments for filtering purposes. 

• ipv6_net: one or more IPv6 addresses specified in CIDR format, allowing the targe-
ting of network segments for filtering purposes. 

• ipv4_connection: a specific IPv4 network connection identified by a five-element 
tuple. For TCP, UDP or SCTP protocols, this tuple includes the source address, source 
port, destination address, destination port and protocol. 

• ipv6_connection: a specific IPv6 network connection identified by a five-element 
tuple. For TCP, UDP or SCTP protocols, this tuple includes the source address, source 
port, destination address, destination port and protocol. 

• rule_number: a profile-specific identifier for a particular filtering rule, used to preci-
sely identify and delete the rule associated with that number. 

Allow Deny Query Delete Update

ipv4_connection valid valid

ipv6_connection valid valid

ipv4_net valid valid

ipv6_net valid valid

features valid

slpf:rule_number valid

file valid

Table 2.3-2 defines the Command Arguments that are allowed for a particular Command by

the SLPF profile. A Command (the top row in Table 2.3-2) paired with an Argument (the first

column in Table 2.3-2) defines an allowable combination. The subsection identified at the

intersection of the Command/Argument provides details applicable to each Command as

influenced by the Argument.

Table 2.3-2. Command Arguments Matrix

Allow
target

Deny
target

Query
features

Delete
slpf:rule_number

Update
file

response_requested 2.3.1 2.3.2 2.3.3.1 2.3.4.1 2.3.5.1

start_time 2.3.1 2.3.2 2.3.4.1 2.3.5.1

stop_time 2.3.1 2.3.2

duration 2.3.1 2.3.2

persistent 2.3.1 2.3.2

direction 2.3.1 2.3.2

insert_rule 2.3.1 2.3.2

drop_process 2.3.2

2.3.1 Allow

Table 2.3.1-1 summarizes the Command Arguments that apply to all of the Commands

Standards Track Work Product
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Fig. 2.7	 Valid SLPF Action/Target pairs [6]
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Each target can be combined with supported actions as shown in Figure 2.7 extracted 
from the OpenC2 SLPF Specifications [6], enabling precise and interoperable control 
over the packet filtering device 
The namespace identifier ensures that the targets defined by the SLPF profile are uni-
quely scoped and correctly interpreted by actuators. 

2.6.3  SLPF Arguments 
The SLPF Actuator Profile defines a set of arguments that can be used with actions and 
targets, allowing precise control over stateless packet filtering operations. These argu-
ments are divided into those inherited from the OpenC2 Language Specification [2] and 
those introduced specifically by the SLPF profile [6]. 
The language specification provides general-purpose arguments that apply across multi-
ple actuator types. In the context of SLPF, the arguments defined by the language speci-
fications are: 
• start_time: defines when the action should begin; 
• stop_time: defines when the action should end; 
• duration: specifies the length of time for which the action remains active; 
• response_requested: specifies the type of response expected from the actuator when 

executing the command, which can be none, ack, status or complete, depending on the 
required feedback level. 

The SLPF profile introduces arguments designed for packet filtering, which provide 
fine-grained operational control: 
• direction: specifies the traffic flow to which the action applies, with possible values 

ingress, egress or both, specifying respectively whether the filtering action concerns 
ingress traffic, egress traffic or traffic in both directions; 

• persistent: determines whether a rule should persist across device reboots or configu-
ration reloads; 

• insert_rule: specifies the identifier or position of a rule within an ordered rule list, 
typically used in top-down rule sets to control where a new filtering rule should be 
inserted; 

• drop_process: specifies how the actuator should handle packets that are denied by the 
filtering policy. It can take one of three values: none, meaning that the packet is silen-
tly dropped without notifying the source; reject, indicating that the packet is dropped 
and an ICMP host unreachable (or equivalent) message is sent to the source; fal-
se_ack, which instructs the actuator to drop the traffic while sending a false acknow-
ledgment to the source. 

The namespace identifier ensures that the targets defined by the SLPF profile, are uni-
quely scoped and correctly interpreted by actuators. 
These profile-specific arguments are associated with relevant actions and targets, as 
shown in Figure 2.8 extracted from the OpenC2 SLPF Specifications [6], ensuring that 
commands can be applied precisely and consistently.  
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2.6.4  SLPF Results 
Within the OpenC2 framework, results represent the information returned by an actuator 
in response to a command, providing feedback about the execution status or the data 
requested. The SLPF profile extends this concept by defining a set of results that are 
meaningful for stateless filtering operations, ensuring that producers can consistently 
interpret the information returned by packet filtering devices [6]. 
In accordance with the OpenC2 Language Specification [2], every OpenC2 response 
includes a status code and optional result content.  
The SLPF profile specifies the following result types: 
• versions: lists the versions of the OpenC2 language supported by the actuator. This 

allows producers to determine compatibility and ensure that commands conform to 
the capabilities of the receiving device. 

• profiles: identifies the actuator profiles implemented by the device, allowing produ-
cers to understand which OpenC2 profiles are available for interaction. 

• pairs: represents the valid combinations of actions and targets supported by the actua-
tor. 

• rate_limit: communicates the actuator’s command processing rate, providing insight 
into how frequently commands can be issued without overloading the device. 

• rule_number: represents the number of the rule associated with the corresponding 
allow or deny command, providing a precise reference to the rule that was applied. 

The first four results (versions, profiles, pairs and rate_limit) are defined in the OpenC2 
Language Specification [2] and are returned in response to a query action. 
The rule_number argument, instead, is introduced by the SLPF profile [6] itself and is 
returned in response to an allow or deny action. 
As with targets and arguments, all results defined by the SLPF profile are associated 
with the SLPF namespace identifier, ensuring unique scoping and unambiguous inter-
pretation within the OpenC2 ecosystem. 

Allow Deny Query Delete Update

ipv4_connection valid valid

ipv6_connection valid valid

ipv4_net valid valid

ipv6_net valid valid

features valid

slpf:rule_number valid

file valid

Table 2.3-2 defines the Command Arguments that are allowed for a particular Command by

the SLPF profile. A Command (the top row in Table 2.3-2) paired with an Argument (the first

column in Table 2.3-2) defines an allowable combination. The subsection identified at the

intersection of the Command/Argument provides details applicable to each Command as

influenced by the Argument.

Table 2.3-2. Command Arguments Matrix

Allow
target

Deny
target

Query
features

Delete
slpf:rule_number

Update
file

response_requested 2.3.1 2.3.2 2.3.3.1 2.3.4.1 2.3.5.1

start_time 2.3.1 2.3.2 2.3.4.1 2.3.5.1

stop_time 2.3.1 2.3.2

duration 2.3.1 2.3.2

persistent 2.3.1 2.3.2

direction 2.3.1 2.3.2

insert_rule 2.3.1 2.3.2

drop_process 2.3.2

2.3.1 Allow

Table 2.3.1-1 summarizes the Command Arguments that apply to all of the Commands

Standards Track Work Product

oc2slpf-v1.0-cs01 Copyright © OASIS Open 2019. All Rights Reserved. 11 July 2019  - Page 24 of 48

Fig. 2.8	 Valid SLPF Action/Target/Arguments triplets [6]



3     Firewall Technologies 

Building upon the concepts introduced in the previous chapter, this section explores 
how the OpenC2 Stateless Packet Filtering (SLPF) profile can be applied to real-world 
firewall technologies. The SLPF profile provides a standardized and interoperable fra-
mework for expressing packet filtering commands, making it particularly suitable for 
integration with existing network defense components that rely on rule-based traffic 
control. 
To illustrate its practical relevance, this chapter examines four representative firewall 
implementations: iptables, OpenStack Security Groups, Kubernetes Network Poli-
cies and MS Azure Network Security Groups. Although these systems differ in archi-
tecture, deployment context and configuration syntax, they all perform the essential 
function of controlling packet flows based on predefined criteria. By analyzing their re-
spective rule models and management mechanisms, it becomes possible to understand 
how OpenC2, through the SLPF profile, can unify command and control across hetero-
geneous environments, laying the foundation for automation, consistency and coordina-
ted policy enforcement in modern network infrastructures. 

3.1  iptables 

iptables [7] is a widely used Linux utility that provides packet filtering, network ad-
dress translation (NAT) and other packet-mangling capabilities within the kernel. It ope-
rates by organizing rules into chains, which are grouped within tables depending on 
their function, commonly the filter table for general packet filtering, the nat table for 
address translation and the mangle table for specialized packet alterations. 
Each rule specifies match criteria, such as source and destination IP addresses, protocols 
(TCP, UDP, ICMP) or ports and associates them with actions that determine how packe-
ts are handled: accept, drop or reject. 
iptables rules can be combined to form complex policies that govern the flow of net-
work traffic, providing both fine-grained control and high flexibility for administrators. 
Rules in iptables are evaluated sequentially and the first match determines the fate of a 
packet. This allows for layered policies where general rules can be overridden by more 
specific ones and policies can be applied per interface or per network zone. 
Administrators can persist and manage rules through saved configurations, scripts or 
higher-level tools. 
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It is important to note that rules configured directly in iptables are not persistent: they 
exist only in memory and are lost upon system restart unless explicitly saved and reloa-
ded. 
From the perspective of OpenC2 and the SLPF profile, iptables serves as a practical 
example of a packet filtering actuator that can be controlled programmatically. The 
SLPF profile’s commands can be mapped to iptables operations: for example an allow 
command corresponds to adding a rule that accepts matching packets, while a deny 
command corresponds to a rule that drops or rejects traffic. Targets defined in SLPF, 
such as ipv4_net, ipv6_net, ipv4_connection, ipv6_connection and file, can be directly 
applied to iptables criteria, allowing precise specification of which packets are affected. 
Arguments like direction and drop_process further refine how rules are applied and 
scheduled within iptables chains. 
This approach demonstrates how the abstract definitions of SLPF translate into concre-
te, operational firewall management on Linux systems. 

3.1.1  iptables Chains and Rules 
The core functionality of iptables [7] focuses on defining rules that inspect and control 
network packets as they traverse a Linux system. These rules are organized into tables, 
each serving a specific purpose, and within each table rules are grouped into chains, 
which represent sequences of packet-processing steps. The most commonly used table is 
the filter table, which handles standard packet filtering tasks. 
Within this table, three default chains are defined: INPUT, OUTPUT and FORWARD. 
The INPUT chain processes packets destined for the local host, allowing administrators 
to accept, reject or drop incoming traffic based on a variety of criteria. 
The OUTPUT chain deals with packets generated locally by the host, controlling what 
traffic leaves the system. 
The FORWARD chain is responsible for packets that are routed through the system to 
other destinations, such as in the case of a Linux machine acting as a router or gateway. 
Administrators can also define custom chains to group related rules, simplifying rule 
management and allowing more modular configurations. When a packet reaches a rule 
with a jump to a custom chain, it is processed according to the rules in that chain and 
then returned to the original chain unless explicitly directed otherwise. 

Each chain contains a sequence of rules that match specific packet characteristics. 
A rule typically defines one or more match criteria, such as source or destination IP 
address, transport protocol (TCP, UDP, ICMP), source or destination ports. These 
match criteria determine whether the rule applies to a given packet. Once a packet mat-
ches a rule, the target of the rule specifies the action to be taken. Standard targets inclu-
de ACCEPT, which allows the packet to proceed to its destination; DROP, which si-
lently discards the packet without notifying the sender; REJECT, which discards the 
packet while sending an error message (such as ICMP unreachable) back to the sender. 
Additional actions can also be implemented via extensions. 
Furthermore, iptables allows administrators to delete filtering rules explicitly specifying 
its exact match with the `-D` option. 
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It is important to note that iptables evaluates rules in a top-down order, meaning the 
first rule that matches a packet dictates its fate. If no rules match, the chain's policy de-
termines the default behavior, which can be set to ACCEPT, DROP or REJECT. 
Figure 3.1 illustrates an ACCEPT rule inserted into the INPUT chain, specifying an 
IPv4 source address of 10.0.2.6, an IPv4 destination address of 10.0.2.15, using the TCP 
protocol with both source and destination port 80, while the chain’s default policy is set 
to ACCEPT. 

iptables rules are not persistent across system reboots, for this reason the current 
configuration can be saved to disk using the iptables-save command. 
The resulting file, typically stored in `/etc/iptables/rules.v4` (`/etc/iptables/rules.v6` for 
IPv6 rules) or a custom location, can then be restored with iptables-restore, either ma-
nually or automatically during system startup. 
This mechanism allows administrators to create reusable rule sets or deploy predefined 
firewall configurations directly from stored files. 

3.1.2  IPv4 and IPv6 address handling 
iptables primarily operates on IPv4 traffic, but its companion tool ip6tables extends the 
same rule-based filtering model to IPv6. 
Both utilities share an almost identical syntax and semantics: rules for IPv6 are written 
and managed in the same way as for IPv4, except that they apply to IPv6 packet headers 
and address structures. 
This separation ensures compatibility with dual-stack environments, where IPv4 and 
IPv6 traffic are processed independently according to their respective tables. 

Fig. 3.1	 Example of ACCEPT rule in INPUT chain
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3.2  OpenStack 

OpenStack is an open-source cloud computing platform designed to provide scalable 
and flexible infrastructure-as-a-service (IaaS) solutions. It allows organizations to de-
ploy and manage large pools of compute, storage and networking resources in a multi-
tenant environment. Within this framework, virtual machines represent the fundamen-
tal compute units provided to users, enabling the deployment of isolated workloads that 
can be dynamically created, configured and connected to virtual networks. 
OpenStack is composed of multiple components, with Neutron [8] responsible for net-
working functionalities including Security Rules, which act as virtual firewalls for in-
stances. These rules enable administrators to control the flow of ingress and egress traf-
fic at the virtual machine level, specifying IP address, protocol type (TCP, UDP, ICMP), 
port range and traffic direction (ingress or egress). Each instance belongs to a project 
(tenant) and can be associated with one or more Security Groups, which are collections 
of rules that provide fine-grained, tenant-specific access control. This design ensures 
network isolation between projects and allows administrators to manage access policies 
consistently across multiple tenants. 
Unlike traditional firewalls, OpenStack Security Rules function as a white-list system: 
only traffic that matches explicitly defined rules is permitted while all other traffic is 
implicitly denied. There is no separate `deny` action; the absence of an allow rule auto-
matically blocks the traffic. 
The rules are stored persistently within OpenStack’s centralized database, ensuring that 
they remain effective across system restarts and can be deleted or dynamically modified 
to reflect changing security requirements. This design provides a consistent and scalable 
approach to enforcing network isolation and protecting workloads within cloud envi-
ronments. 
In this context, the SLPF profile can be used to automate and enforce security rules wi-
thin OpenStack environments, mapping SLPF profile commands into OpenStack opera-
tions: for instance an allow command corresponds to creating a security rule that permi-
ts matching traffic, while a delete command removes an existing rule. 
Targets defined in SLPF, such as ipv4_net, ipv6_net, ipv4_connection and ipv6_connec-
tion, can be applied to the IP addresses and connections specified in security rules, al-
lowing precise targeting of network flows. Arguments like direction define whether the 
rule applies to ingress or egress, refining how traffic is controlled across projects and 
tenants. 

3.2.1  OpenStack Security Groups and Rules 
In OpenStack, Security Groups act as virtual firewalls that control inbound and out-
bound traffic to and from instances. Each security group is composed of one or more 
Security Rules, which define the specific network traffic that is permitted for associa-
ted virtual machines. When an instance is launched, it is attached to one or more securi-
ty groups and all network traffic is filtered according to the cumulative set of rules defi-
ned within those groups. 
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Security groups operate at the virtual network interface (vNIC) level, meaning they 
apply directly to the network interfaces of instances rather than to shared network seg-
ments. 

OpenStack security rules are unidirectional: each rule applies either to ingress or egress 
traffic. Consequently, separate rules must be created to allow bidirectional communica-
tion. Figure 3.2 presents an example of an ingress security rule. 

Each rule within a security group is associated with a unique identifier (id) and defines 
a set of parameters that determine how traffic is filtered [9]. Among the key attributes, 
the direction field specifies whether the rule applies to ingress (incoming) or egress 
(outgoing) traffic, while the ethertype identifies the IP version (IPv4 or IPv6). The re-
mote_ip_prefix field specifies the source or destination IP address range in CIDR nota-
tion, depending on the traffic direction, while remote_group_id allows referencing 
another security group instead of a static IP range, enabling more dynamic and scalable 
relationships between instances. 
The protocol parameter defines the transport protocol used, such as TCP, UDP, ICMP, 
or SCTP and the port_range_min and port_range_max values indicate the range of 
allowed destination ports (when both values are equal, the rule applies to a single port). 
For example, Figure 3.2 shows an ingress security rule specifying IPv4 as the ethertype, 
a source IP address of 192.168.0.201/32, the TCP protocol and a port range of 80:80 to 
indicate a single port. The rule’s unique identifier is also indicated. 
Together, these parameters define the exact conditions under which traffic is permitted 
to or from an instance’s network interface, providing granular control comparable to 
traditional firewall mechanisms.  
Administrators can dynamically create, modify or delete security groups and their rules 
through the OpenStack Dashboard (Horizon), the OpenStack Command-Line Interface 
(CLI) or programmatically via the Neutron API. 

Fig. 3.2	 Example of ingress Security Rule
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3.3  Kubernetes 

Kubernetes [10] is an open-source platform designed to orchestrate and manage con-
tainerized applications at scale, providing automated deployment, scaling and mainte-
nance of workloads across clusters of machines. 
A cluster is the fundamental unit of Kubernetes, consisting of a set of nodes (physical 
or virtual machines) that run containerized applications. Each node hosts one or more 
pods, which are the smallest deployable units in Kubernetes. A pod can contain one or 
more tightly coupled containers that share storage, network and runtime resources, and 
it provides the basic building block for running applications in the cluster.  
A key organizational concept in Kubernetes is the namespace, which allows cluster 
administrators to logically isolate resources such as pods, services and network configu-
rations. Namespaces make it possible to manage multi-tenant environments and separate 
development, testing and production environments within the same cluster. 
Network Policies are a core feature in Kubernetes that define how pods can communi-
cate with each other and with external endpoints. They function as programmable and 
declarative firewalls within the cluster, allowing administrators to control ingress (in-
coming) and egress (outgoing) traffic at the pod level. Each policy specifies rules that 
select which pods are affected using labels, the traffic direction (ingress or egress), al-
lowed protocols (TCP, UDP or SCTP), IP blocks and port ranges.  
Kubernetes Network Policies enforce a default deny behavior only for the pods they 
select: unless explicitly allowed by a policy, traffic to or from these pods is blocked. 
In this way, Network Policies effectively create a whitelist-like model for selected pods, 
restricting communication strictly to the rules defined. 
Pods without any applied Network Policy remain fully accessible, meaning that the de-
fault cluster behavior is allow-all. 
Network Policies are persistently stored in the cluster’s etcd database, ensuring that the 
rules remain effective across pod rescheduling, node failures or cluster restarts. 
Policies are dynamic: they are automatically enforced as pods are created, deleted or 
moved across nodes, reflecting the current state of the cluster without requiring manual 
updates to firewall configurations. This makes them particularly suitable for highly dy-
namic environments where workloads are frequently changing. 
From the perspective of OpenC2 and the SLPF profile, Kubernetes Network Policies 
represent a practical example of a programmable packet filtering actuator. SLPF com-
mands such as allow and delete can be mapped to creating or removing policy rules. 
Targets like ipv4_net, ipv6_net, ipv4_connection and ipv6_connection can be applied to 
pod selectors and IP blocks to precisely define which traffic is affected. Arguments such 
as direction distinguish between ingress rules, egress rules or both, providing fine-grai-
ned control over traffic flows in the cluster. 

3.3.1  Kubernetes Network Policies 
Kubernetes Network Policies [10] are objects that define rules for controlling network 
traffic to and from pods. They provide a mechanism for administrators to enforce fine-
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grained network segmentation within a cluster, allowing isolation of workloads and pro-
tection of sensitive services. 
A Network Policy applies only to the pods within the namespace it is created in and it is 
implemented dynamically by the cluster’s network plugin using the Container Net-
work Interface (CNI). 
The primary mechanism for selecting which pods a Network Policy affects is labels. 
Labels are key-value pairs attached to pods that serve as identifiers or attributes, such as 
`app=frontend` or `role=db`. Within a Network Policy, pod selectors use these labels to 
determine the target set of pods for the rules. By using labels, policies can flexibly apply 
to dynamically changing workloads, automatically including new pods that match the 
selector without needing manual updates. Enforcement is handled in real time by the 
network plugin, which monitors pod labels, namespace assignments and rule definitions 
to permit or deny traffic according to the policy. 
A Network Policy consists of one or more ingress and/or egress rules that define how 
traffic is allowed to flow to or from the selected pods. Each rule specifies a unique 
name within the namespace, Policy Types (the direction of the network policy: ingress, 
egress or both), pod selectors to identify the source or destination pods affected by the 
rule, IPBlock objects to permit traffic from or to specific IP ranges, protocol (TCP, 
UDP or SCTP) and port ranges or individual ports that are subject to the policy. 
Network Policies can also be deleted when no longer needed, allowing administrators to 
revoke previously defined traffic permissions, or managed in bulk through YAML files, 
which define their configuration declaratively. By storing policies as YAML manifests, 
administrators can version, share and reapply them easily using Kubernetes command-
line tools such as kubectl apply. This approach permits efficient policy management 
across environments, allowing consistent deployment, modification and removal of 
network security rules. 
Figure 3.1 shows an example of an ingress Network Policy. In the Spec section (short 
for specification), the detailed configuration of the policy is defined, including the pod 
selector (in this case `oc2-net-10-17-2-44-32=true`) which identifies the pods the policy 
applies to, the traffic direction (ingress), the protocol (TCP), the port being controlled 
(80) and the source IP address from which traffic is allowed (10.17.1.62/32). 

Fig. 3.3	 Example of ingress Network Policy
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3.4  MS Azure 

Microsoft Azure (MS Azure) is a cloud computing platform developed by Microsoft 
that provides a wide range of infrastructure, platform and software services. It enables 
organizations to deploy and manage applications across Microsoft-managed data centers 
worldwide, offering high scalability, resilience and integration with enterprise ecosy-
stems. 
In the context of network security, Azure provides multiple mechanisms to control and 
filter traffic within virtual networks, primarily through Network Security Groups and 
Azure Firewall. 
An Azure Network Security Group (NSGs) acts as a distributed, stateful firewall that 
allows or denies inbound and outbound traffic to network interfaces (NICs), subnets or 
virtual machines [11]. Each NSG contains a list of security rules that define how traffic 
is filtered based on parameters such as source and destination IP addresses, protocols 
(TCP, UDP, ICMP) and ports. Each rule also specifies the direction (inbound or out-
bound) and the action (allow or deny), as well as optional tags to simplify configuration 
across Azure services (e.g., “Internet,” “VirtualNetwork,” “LoadBalancer”). 
The rules are evaluated in priority order, from the lowest number to the highest, until a 
match is found. Default rules always exist to allow essential Azure infrastructure com-
munication while blocking unwanted traffic. 
Azure NSGs operate according to an explicit allow/deny model, effectively functioning 
as a whitelist/blacklist hybrid. If no rule matches a given packet, the default action is to 
deny the traffic, providing a secure baseline configuration. 
Rules in NSGs are persistent, stored and managed as part of the Azure resource confi-
guration. They can be deleted or dynamically modified through the Azure Portal, the 
Azure CLI, PowerShell or REST APIs and changes take effect immediately across the 
infrastructure. 
From the perspective of OpenC2 and the SLPF profile, Azure NSGs can act as packet-
filtering actuator. Actions such as allow and deny directly correspond to Azure security 
rule configurations, while targets like ipv4_net, ipv6_net, ipv4_connection and ipv6_-
connection can map to Azure’s address and port definitions. Arguments such as direc-
tion are also directly applicable, as each rule explicitly defines whether it applies to in-
bound or outbound traffic. This makes Azure’s network security features a practical 
real-world environment where the SLPF profile could be applied to automate firewall 
policy management across cloud networks. 

3.4.1  MS Azure NSGs and Security Rules 
Azure Network Security Groups (NSGs) [11] are logical containers for a set of securi-
ty rules that control inbound and outbound traffic at the level of network interfaces, 
subnets or virtual machines. Each NSG is created within an Azure Resource Group, a 
logical container that organizes and manages related resources such as virtual networks, 
virtual machines and storage accounts. While the resource group does not directly affect 
the behavior of the NSG, it provides the necessary context for its identification and life-
cycle management within the Azure environment. 
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Each NSG can be associated with one or more resources, allowing fine-grained control 
over network communication within a virtual network. NSGs provide stateful filtering, 
meaning that once a connection is allowed in one direction, the return traffic is automa-
tically permitted without requiring an explicit rule. 

Each security rule within an NSG specifies conditions that determine whether a packet 
is allowed or denied. The main parameters of a rule include the name, which must be 
unique within the network security group, the priority, which determines the order in 
which rules are evaluated, the direction of traffic (inbound or outbound), the source 
and destination, which can be individual IP addresses, ranges or service tags, the pro-
tocol (TCP, UDP, ICMP or Any), and the port or port range. Rules also include an ac-
tion field, which explicitly sets whether matching traffic is allowed or denied, underli-
ning how Azure NSGs supports explicit deny rules. 
Figure 3.4 shows an example of an inbound security rule configured to block all inco-
ming traffic, with a priority value of 65500. 

Rules within an NSG are evaluated in priority order, from the lowest number to the 
highest, stopping at the first match. This deterministic processing ensures that the most 
specific or critical rules are applied first, while default rules enforce security by denying 
traffic not explicitly allowed. 
Two rules cannot share the same name and they cannot have the same combination of 
priority and direction, ensuring that each packet matches exactly one rule at a given eva-
luation step. However, rules with the same priority but opposite directions (one inbound, 
one outbound) are valid and are evaluated independently within their respective traffic 
flows. 
NSGs are persistent, meaning that rules remain effective across virtual machine restarts 
or network changes and can be modified dynamically through the Azure portal, CLI or 
REST API. Administrators can also create or delete rules, supporting automation and 
integration with deployment pipelines. 

Fig. 3.4	 Example of an inbound Azure security rule [11]
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The objective of this thesis is to design, implement and evaluate a fully-featured Ac-
tuator Manager that implements the Open Command and Control (OpenC2) Stateless 
Packet Filtering (SLPF) Actuator Profile for multiple firewall technologies [6]. 
The project aims to demonstrate the interoperability and flexibility of OpenC2 by apply-
ing its standardized command structure to heterogeneous environments, namely ipta-
bles, OpenStack Security Groups, Kubernetes Network Policies and Microsoft 
Azure Network Security Groups (NSGs). 
The implementation will cover the entire set of SLPF-defined language elements, ensu-
ring full support for: 
• Actions: query, allow, deny, delete and update, which respectively request status or 

configuration information, permit traffic, block traffic, remove existing filtering rules 
and update the actuator’s configuration. 

• Targets: features, ipv4_net, ipv6_net, ipv4_connection, ipv6_connection, file and the 
profile-specific rule_number. 

• Arguments: from the core Language Specification (such as start_time, stop_time, du-
ration and response_requested) and the SLPF profile (such as direction, persistent, 
insert_rule and drop_process). 

Each of the four selected firewall technologies has been implemented as a dedicated 
SLPF Actuator, managed by the SLPF Actuator Manager. Each actuator extends the Ac-
tuator Manager’s functionality to support the specific firewall mechanisms of the corre-
sponding system, including a translation layer that maps OpenC2 commands to the nati-
ve rule or policy definitions of the underlying technology. 
To ensure the correctness and reliability of the implementation, the thesis will include a 
three-phase testing and validation process: 
1. Syntax and Semantic Validation: to verify that the implemented actuators correc-

tly interpret and process OpenC2 commands as defined in the SLPF and Language 
Specifications. This includes checking message formatting, field validation and ad-
herence to namespace identifiers. 

2. Functional Testing: to verify that OpenC2 commands produce the intended net-
work behavior on each firewall. These tests will confirm that traffic is correctly al-
lowed or blocked according to the creation or deletion of filtering rules. 

3. Performance Evaluation: to assess the responsiveness and efficiency of each ac-
tuator implementation. On the producer side, latency is measured as the elapsed 
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time between the transmission of an OpenC2 command and the receipt of the corre-
sponding response message. On the consumer side, two metrics are collected: the 
total execution time from command reception to completion, and the specific execu-
tion time of the underlying firewall operation (such as rule insertion or deletion). 
These measurements provide insight into communication overhead and the internal 
processing efficiency of each implementation. 

Additionally, the thesis will conduct a critical analysis of the SLPF profile itself, exa-
mining its design choices, clarity and practical applicability in real-world environments. 
Particular attention will be given to areas such as the granularity of actions, the adequa-
cy of targets and arguments in capturing the behavior and configuration models of diffe-
rent firewalls and the handling of platform-specific differences. 
The outcome of this analysis aims to provide valuable feedback for future revisions of 
the SLPF specification [6] and to contribute to the adoption of OpenC2 as a unified 
standard for cyber defense automation. 



5     SLPF Actuator Manager 

This chapter presents the design and implementation of a fully functional Actuator Ma-
nager compliant with the Open Command and Control (OpenC2) Stateless Packet Filte-
ring (SLPF) Actuator Profile. The implementation aims to provide a concrete realization 
of the SLPF Specification [6] across four heterogeneous firewall technologies: iptables, 
OpenStack Security Groups, Kubernetes Network Policies and Microsoft Azure 
Network Security Groups (NSGs). 
The main goal of this implementation is to validate the interoperability and flexibility of 
OpenC2 by creating a standardized command interface that can consistently manage 
packet-filtering capabilities across diverse platforms. To achieve this, a modular and ex-
tensible architecture has been developed, consisting of a generic SLPF Actuator Ma-
nager and a set of backend-specific actuators responsible for mapping OpenC2 com-
mands to the native syntax and semantics of each firewall system. 
The following sections describe the design and implementation of the proposed solu-
tion, including an explanation of the overall architecture and covering the initialization 
process of the SLPF Actuator Manager as well as that of the specific firewall integra-
tions. It describes how the actuator handles the reception and validation of OpenC2 
commands, including the verification of their actions, targets and arguments according 
to the SLPF Specification [6]. Moreover, the chapter details the implementation of the 
supported actions across the different backend modules, outlining how each platform-
specific component executes the intended packet-filtering operations. 

5.1  SLPF Actuator Manager Architecture 

The SLPF Actuator Manager, namely SLPFActuator, has been designed following a 
modular and extensible architecture that separates core functionalities from platform-
specific implementations. This separation is realized through an object-oriented design 
based on inheritance, where the SLPF Actuator Manager acts as a superclass mana-
ging the generic operations shared by any SLPF-compliant actuator. Platform-specific 
actuators, implemented as subclasses, inherit these functionalities and extend SLPFAc-
tuator to handle the particularities of each firewall technology. 
By adopting this design, common functionalities, such as the handling of standard ar-
guments like start_time, stop_time, duration, response_requested, persistent and inser-
t_rule, are implemented once within the SLPFActuator and are automatically available 
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to all backend modules. This significantly reduces the development effort required to 
integrate additional platforms in the future, as only the backend-specific arguments (di-
rection and drop_process) need to be implemented for each new firewall. 
Each specific implementation must override selected methods of the SLPFActuator su-
perclass to ensure proper operation within its environment, particularly those responsi-
ble for handling the SLPF-specific actions (query, allow, deny, delete and update). In 
addition, each implementation must define how the OpenC2 command targets are map-
ped to the corresponding entities within the specific platform. 
On the other hand, the initialization and shutdown procedures of the SLPFActuator are 
already implemented, ensuring that these fundamental operations do not need to be re-
defined in each backend subclass. 

Since the allow and deny actions create filtering rules that might later be referenced by a 
delete action or that may be persistent across system restarts, the SLPFActuator itself is 
responsible for managing a database of active rules. It maintains a consistent record by 
inserting new entries in response to allow and deny commands and removing rules 
when delete commands are received. Additionally, for backend implementations that do 
not natively support persistent rules, the SLPFActuator coordinates the saving of rules at 
system shutdown and their restoration upon system restart, although each specific im-
plementation must provide the methods to perform these save and restore operations. 

As the start_time, stop_time and duration arguments can be used to schedule the execu-
tion of OpenC2 commands at a future time, the SLPFActuator also includes a schedu-
ling mechanism. This scheduler is responsible for delaying command execution until 
the defined start time and, when specified, automatically revoking their effect at the end 
time (as determined by the stop_time or duration arguments). Each platform-specific 
actuator is associated with its own dedicated scheduler, ensuring correct handling of ti-
ming parameters within the respective backend environment. 
To ensure reliability across system restarts, the SLPFActuator saves any pending or 
scheduled commands in a dedicated database table, allowing them to be restored and 
resumed upon reboot. Figure 5.1 illustrates the overall architecture of the system. 

Fig. 5.1 SLPF Actuator Manager Architecture
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As specified in the SLPF Actuator Profile Specification [6], the update action allows an 
actuator to refresh its active filtering rules based on the contents of a file provided as 
target. When an update command is received, all currently active rules in the specified 
firewall are removed and replaced with those defined in the file. To support this beha-
vior, the SLPFActuator can operate in two modes: DB mode and FILE mode. 
In DB mode, the actuator uses the rules stored in the internal database. For each allow 
or deny command received, a new rule is added to the database, while a delete com-
mand removes the corresponding one. If an update command is received while in DB 
mode, all active filtering rules are removed from both the database and the specific bac-
kend implementation, the actuator switches to FILE mode and the update command is 
executed. 
In FILE mode, the actuator applies the rules specified in the file used as target of the 
update command. If an update command is received while in this mode, the filtering 
rules in the specific backend implementation are refreshed again according to the new 
file. Delete commands have no effect in FILE mode, as there are no entries in the data-
base. If an allow or deny command is received while in FILE mode, all currently active 
rules in the specific firewall (those defined by the last target file received) are removed, 
the actuator switches to DB mode and the new rule is added to the database. 

When a command is received, the SLPFActuator first performs a validation phase to 
ensure the command (and its associated action, target and arguments) conform to the 
OpenC2 Language Specification [2] and the SLPF Specification [6]. 
Once validated, the command is handled by the method corresponding to its specified 
action. Within this method, the SLPFActuator verifies the type correctness of the target 
and arguments, while the specific backend implementation ensures that the requested 
elements are actually supported. During this process, the backend implementation may 
also supply custom data to the SLPFActuator, containing information useful for execu-
ting allow, deny and delete commands, which the actuator will store in the internal data-
base. 
Subsequently, default values are assigned to any arguments that were not explicitly pro-
vided. 
For commands that manage filtering rules, such as allow, deny or delete, the SLPFAc-
tuator interacts with the internal database accordingly, also storing any associated cu-
stom data provided by the backend implementation. 
Finally, the command is scheduled for background execution at the specified start time, 
with its effect automatically revoked at the designated end time (when specified), and a 
response is sent back to the producer. Since the action, target and arguments have alrea-
dy been fully validated, a response can be sent to the producer even before the com-
mand is actually executed by the specific backend implementation. The execution itself 
is handled by the actuator corresponding to the targeted firewall, where platform-speci-
fic operations are performed according to the native syntax and semantics of the under-
lying system. 
This architecture ensures both consistency and reliability across heterogeneous plat-
forms, while maintaining extensibility, allowing new backend actuators to leverage the 
core functionalities without duplicating fundamental logic. 
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5.2  SLPFActuator Initialization 

The initialization process of the SLPFActuator, as well as that of each specific backend 
implementation, is based on configuration files. This design choice avoids the use of 
static attributes, allowing configuration flexibility, easier maintenance and facilitating 
deployment across different environments without requiring code modifications. 
Being the superclass, the SLPFActuator is not instantiated directly. Instead, its initializa-
tion is performed as the final step of the startup procedure of each specific backend im-
plementation, which provides all the necessary parameters required to correctly initiali-
ze the core actuator. These parameters include: 
• Actuator specifiers, used to identify the specific implementation: hostname, name-

d_group, asset_id and asset_tuple. Among these, asset_id serves as the primary speci-
fier, providing a unique identifier for the given actuator instance. 

• Database configuration parameters, namely db_path_directory, which specifies the  
absolute path to the directory containing (or where to create) the database; db_name, 
which defines the database name; db_commands_table_name and db_jobs_table_na-
me, which indicate the tables used respectively to store active filtering rules and sche-
duled but not yet executed commands in case of a system shutdown. 

• The update parameter update_directory_path defines the absolute path to the default 
directory that contains the files used for update commands. 

None of these parameters are strictly required for initialization. When one or more are 
not provided, default values are automatically assigned during the initialization process. 
After parameter setup, the actuator proceeds with database initialization. If the databa-
se or the required tables are not present, they are automatically created. 
The actuator then checks its current operating mode, DB mode or FILE mode, to de-
termine which data source will be used for active filtering rules. 
Next, persistent rules are restored in case the specific backend implementation does not 
natively support persistence across restarts. This operation is performed by calling a me-
thod that must be overridden by each backend implementation, as the restoration pro-
cess depends on the underlying firewall system. 
Subsequently, the scheduler responsible for command execution management is initia-
lized. Each backend actuator is associated with its own scheduler instance, designed to 
ensure that only one command is executed at a time. If the execution intervals of two 
commands overlap, the second command is delayed until the first has completed. This 
serialized execution model prevents race conditions and ensures consistent modification 
of filtering rules, avoiding potential conflicts between concurrent operations. 
Finally, any previously scheduled but unexecuted commands, which were saved in the 
database due to a system shutdown, are restored and reloaded into the scheduler. This 
mechanism guarantees operational continuity and command reliability, ensuring that no 
scheduled actions are lost between system restarts. Once all pending commands have 
been restored, the scheduler is started, marking the completion of the initialization pro-
cess. 
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5.3  Query action 

The query action is used to initiate an information request toward the actuator, allo-
wing the producer to obtain details about the actuator’s capabilities and configuration. 
Through this action, the producer can learn which options are supported and determine 
the current settings of the packet-filtering device. Specifically, a query response can in-
clude several types of information: versions, lists the versions of the OpenC2 language 
supported by the actuator; profiles, identifies the actuator profiles implemented by the 
device; pairs, represents the valid combinations of actions and targets supported by the 
actuator; rate_limit, communicates the actuator’s command processing rate. 
SLPFActuator provides a complete base implementation of the query action. In this 
default implementation, the actuator returns: 
• as version, the OpenC2 language version supported by the SLPFActuator, namely 1.0; 
• as profiles, the list of actuator profiles implemented by the SLPFActuator; 
• as pairs, the complete set of action–target combinations defined in the SLPF Specifi-

cation [6]; 
• while the rate_limit feature is currently not implemented. 
If a specific backend implementation supports a different OpenC2 language version or 
does not implement some of the actions or targets defined in the SLPF Specification [6], 
it must explicitly override this method to accurately report the supported features to the 
producer. This ensures that the producer always receives an accurate and current de-
scription of the actuator’s capabilities, preserving interoperability and preventing invalid 
command execution. 

5.4  Allow and deny actions 

The allow and deny actions are responsible for managing the packet-filtering rules that 
determine which network traffic is permitted or blocked by the actuator. Both actions 
support the same set of targets, namely ipv4_net, ipv6_net, ipv4_connection and ipv6_-
connection, and share a common set of arguments: start_time, stop_time, duration, re-
sponse_requested, direction, insert_rule and persistent. The only exception is the dro-
p_process argument, which is exclusively supported by the deny action. Given their 
nearly identical structure and behavior, these two actions are handled and implemented 
together. Because the ipv4_net and ipv6_net targets define only a single address as spe-
cified in the OpenC2 Language Specifications [2], the SLPFActuator is designed to in-
terpret this address as the destination of the traffic to be permitted or blocked. 
When processing an allow or deny command, the SLPFActuator first verifies the type 
correctness of the command’s target, the parameters it contains and all provided argu-
ments. It then performs an overall validity check to ensure the coherence of the com-
mand. In particular, the actuator verifies that if a source or destination port is specified, 
a corresponding protocol must also be defined, since ports cannot be specified indepen-
dently of a protocol. Furthermore, it ensures that the protocol value is one of TCP, UDP 
or SCTP, as these are the only protocols that support source and destination ports accor-
ding to the SLPF Specification [6]. 
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Regarding the command arguments, the actuator enforces the constraints defined in both 
the OpenC2 Language Specification [2] and the SLPF Specification [6]. Specifically, it 
checks that the arguments start_time, stop_time and duration are not used simultaneou-
sly and that if the insert_rule argument is present, the response_requested argument 
must also be included. If any of these conditions are violated, the actuator returns a re-
sponse to the producer with status code 400 (Bad Request). Additionally, if a command 
includes the insert_rule argument and a rule with the same rule number already exists in 
the database, the actuator rejects the command and responds with status code 501 (Not 
Implemented) and status text ‘Rule number currently in use’ as specified in the SLPF 
Specification [6]. 
After these initial validations, the command is passed to the specific backend implemen-
tation for further verification. This backend-level validation allows each platform-spe-
cific module to check whether the requested action, target and arguments are supported 
and to return any custom data that may be required for the later execution of the com-
mand. These data are then stored in the internal database by the SLPFActuator. Backend 
implementations that do not support certain features must explicitly override this me-
thod to provide their own behavior. 
Default values are then assigned to arguments that were not explicitly provided: the 
current date and time for start_time (when both stop_time and duration are not speci-
fied.), ‘both’ for direction, ‘true’ for persistent and ‘none’ for drop_process. If the dura-
tion argument is present but either start_time or stop_time is missing, the actuator com-
putes the missing value according to the relation ‘stop_time = start_time + duration’ as 
defined in the OpenC2 Language Specification [2]. 
Before proceeding with database management, the actuator checks its current operating 
mode. If it is in FILE mode, all active filtering rules previously loaded from the file 
specified in the update command are deleted from the backend implementation. This 
operation is carried out through a method that must be overridden by each specific im-
plementation, as the process of removing rules depends on the characteristics of the un-
derlying firewall system. 
The actuator then proceeds to the database management phase, where the validated 
command, together with its action, target, arguments and any associated custom data, is 
recorded in the database. A unique rule_number is assigned to the new entry and retur-
ned to the producer to allow future reference to that specific rule. 
Next, the command is scheduled for execution at the defined start time and, if an end 
time has been specified, the corresponding removal of the rule is also scheduled. The 
actual execution of these operations is handled by the specific backend implementation, 
meaning that each implementation supporting the allow and deny actions must override 
the corresponding methods to define how network traffic is permitted or blocked within 
its native environment. To perform the requested action, the backend implementation 
receives from the SLPFActuator the target and the relevant arguments required for 
command execution, specifically the direction argument in the case of an allow action, 
and both direction and drop_process in the case of a deny action, as well as any custom 
data necessary to complete the operation. Finally, a success response is sent back to the 
producer, including the assigned rule_number. 
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If any unexpected error occurs during the execution of the allow or deny command, the 
SLPFActuator returns a response with status code 500 (Internal Error) and status text 
‘Rule not updated’, as specified in the SLPF Specification [6]. 

5.5  Delete action 

The delete action is responsible for removing an existing filtering rule from the system. 
It supports the target rule_number and the arguments response_requested and start_ti-
me. 
When managing a delete command, the SLPFActuator first performs a type check on 
the target and arguments. Unlike allow and deny commands, a validity check and bac-
kend validation are not necessary, since the target and all arguments are already fully 
supported by the SLPFActuator. If the start_time argument is not explicitly provided, it 
is set to the current date and time. 
The actuator then checks whether a rule with the specified rule number exists in the da-
tabase. If no matching rule is found, a response with status code 500 (Internal Error) is 
sent to the producer. If the rule exists, it is retrieved from the database along with its ac-
tion, target, arguments and any associated custom data and the execution of the delete 
command is scheduled for the specified start time. 
The delete command also interacts with allow or deny commands that include a stop_-
time argument. When the scheduled execution time of the delete command arrives, the 
actuator checks for any scheduled process intended to revoke the effect of the corre-
sponding allow or deny command. If such a process exists, it is cancelled; if the process 
has already completed, the rule has already been removed from the database and the de-
lete command execution terminates. 
Similarly, the start_time argument of an allow or deny command influences the beha-
vior of a delete command. If the start time of a scheduled allow or deny command has 
not yet arrived, the rule exists in the database but has not yet been applied in the specific 
backend implementation. In this case, the scheduled command that would activate the 
rule is cancelled. 
Finally, unless the rule has already been removed due to a stop_time argument from an 
allow or deny command, the delete command removes the rule from both the database 
and the specific backend implementation. 
The execution of the delete action is delegated to the specific backend implementation, 
which is responsible for defining how filtering rules are removed within its native envi-
ronment. To carry out the deletion, the backend implementation receives from the SLP-
FActuator the command to be removed, including its action, target and arguments, as 
well as any custom data associated with the original command. 
If any unexpected error occurs during the execution of a delete command, the SLPFAc-
tuator returns a response with status code 500 (Internal Error) and status text ‘Firewall 
rule not removed or updated’, as specified in the SLPF Specification [6]. 
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5.6  Update action 

The update action instructs the actuator to modify or refresh its configuration by obtai-
ning and applying a new configuration file or rule set. It supports the file target, which 
includes three key attributes: name, which is mandatory and specifies the name of the 
file; path, which, when present, defines the absolute location of the file; hashes, which 
may contain one or more cryptographic digest values used to verify the integrity of the 
file before it is applied. Within the SLPFActuator, the supported hashing algorithms are 
MD5, SHA1 and SHA256, in accordance with the definitions provided in the OpenC2 
Language Specification [2]. The action also supports the response_requested and start_-
time arguments. 
When processing an update command, the SLPFActuator begins by performing a bac-
kend validation to verify that the action and the file extension are actually supported by 
the specific firewall implementation. This validation step is executed through the same 
mechanism used for the allow and deny actions, checking whether the action, target and 
arguments are implemented by the backend module. 
After confirming backend support, the actuator performs type checking on the com-
mand target, including its name, path and hashes attributes, as well as on the command 
arguments. The presence of the name attribute is verified, as mandated by the SLPF 
Specification [6]. Next, the absolute file path is determined by the path parameter in the 
command target, if provided; otherwise, it is derived by combining the name specified 
in the target with the default directory defined by the update_directory_path parameter 
set during initialization. Once the full path has been resolved, the actuator verifies that 
the corresponding file actually exists. 
If the file is successfully located, its MD5, SHA1 and SHA256 hashes are computed 
and compared with the corresponding values specified in the command target (if provi-
ded), ensuring the integrity and validity of the file before execution. 
If the start_time argument is not explicitly specified, it is set to the current date and time 
and the command is scheduled for execution at that moment. 
When the scheduled time is reached, the SLPFActuator checks its current operating 
mode. If it is in DB mode, it switches to FILE mode, removing all filtering rules stored 
in the database and any active rules in the specific backend implementation. This clea-
nup is performed using the same method employed by the allow and deny actions when 
switching from FILE mode back to DB mode, ensuring consistent state management 
across both directions of mode transition. Additionally, any pending jobs in the schedu-
ler associated with the deleted database rules are also canceled. 
Finally, the actuator invokes the method responsible for the actual execution of the up-
date action. Each backend implementation that supports this action must explicitly over-
ride this method, defining how the configuration or rules file is applied within its native 
environment. For correct execution, the SLPFActuator provides the backend implemen-
tation with the file name and absolute path of the file to be processed. 
If any unexpected error occurs during the execution of an update command, the SLP-
FActuator returns a response with status code 500 (Internal Error) and status text ‘File 
not updated’, as specified in the SLPF Specification [6]. 
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5.7  Database management 

The database represents a fundamental component of the developed SLPF Actuator im-
plementation. It enables the persistent storage and structured management of active fil-
tering rules created through allow and deny commands received from the producer, as 
well as their deletion upon delete commands and their restoration after system restarts. 
Each backend implementation of the SLPFActuator interacts with two dedicated databa-
se tables: one for active filtering rules and another for scheduled commands. 
The active filtering rules table stores all the essential information associated with each 
allow or deny command received from the producer. This includes the rule number 
(the unique identifier of each rule), the action (allow or deny) and, in the case of deny 
action, the drop_process argument, which can assume the values none, reject or fal-
se_ack. It also records the direction argument (ingress, egress or both), the target type 
(ipv4_net, ipv6_net, ipv4_connection or ipv6_connection) and all its parameters, such as 
source and destination addresses, protocol, and source and destination ports. Storing 
this information allows for easy reconstruction of the command when a delete action 
must be executed. Additional stored fields include the start_time and stop_time argu-
ments, which define the activation and deactivation times of the rule, and the persistent 
argument, which specifies whether the rule must survive system restarts. The table also 
keeps any custom data returned by the backend implementation, as well as scheduler 
data used to track the processes responsible for activating or revoking rules in response 
to start_time or stop_time arguments when a delete command is received from the pro-
ducer.  
The scheduled commands table, on the other hand, stores information about com-
mands that were scheduled for execution but had not yet been executed at the time of 
system shutdown. Specifically, it maintains the process identifier responsible for execu-
ting the command, the corresponding execution date and time, and the action, target and 
arguments defining the command itself. This ensures that any pending operations are 
not lost during restarts, preserving consistency and allowing for automatic resumption 
of scheduled tasks. 
The class defining the database provides all the necessary methods for managing both 
active filtering rules and scheduled command entries, offering a unified and coherent 
interface for database interactions. 
The database is entirely managed by the SLPFActuator itself. As a result, each new bac-
kend implementation can rely on the existing infrastructure without the need to reim-
plement its own database management logic. During initialization, the actuator automa-
tically creates the required tables for each backend implementation within the shared 
database environment. This approach simplifies the integration process, ensures uniform 
behavior across implementations and enhances system scalability by allowing new plat-
forms to be supported with minimal development effort. 
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5.8  SLPFActuator shutdown 

The shutdown procedures of the SLPFActuator are essential to ensure the correct and 
consistent operation of the system and are entirely managed by the actuator itself. 
During this phase, all non-persistent commands are removed from both the internal da-
tabase and the corresponding backend implementation, ensuring that only rules explici-
tly marked for persistence remain active. 
Then, all remaining persistent rules within the specific backend implementation are sa-
ved, allowing them to be properly restored when the system restarts. Each backend im-
plementation that does not natively support rule persistence must override the corre-
sponding method to ensure that the SLPFActuator can handle this process correctly 
across restarts. 
Finally, all processes associated with scheduled but not yet executed commands are sto-
red in the database, preserving their state for future recovery. Once this operation is 
completed, the scheduler linked to the specific backend implementation is shut down, 
ensuring a clean and reliable termination of all background activities. 

5.9  SLPF Actuator for iptables 

To manage the filtering rules related to the iptables ecosystem, a dedicated subclass of 
the SLPFActuator has been implemented, named SLPFActuator_iptables. 
SLPF Commands are applied in the iptables environment through the creation of cu-
stom chains: three dedicated to IPv4 traffic and three to IPv6 traffic, each structured to 
handle input, output and forward packet flows. 
The iptables framework enables the creation and deletion of filtering rules of type allow 
and deny. Since these rules are natively non-persistent, it can interact with rule files ha-
ving the ‘.v4’ and ‘.v6’ extensions. This interaction allows the active filtering rules to be 
properly saved when the device is shut down and restored at startup. The saving and re-
storation of rules are performed by overriding the corresponding methods of the SLPF 
Actuator Manager and using the iptables-save and iptables-restore commands, or ip6ta-
bles-save and ip6tables-restore for IPv6 addresses. 
Furthermore, iptables supports updating the current active rule set with the content of a 
rule file, which allows the correct implementation of the update action. Thus, the me-
thod used by the SLPFActuator to clear all active filtering rules during a transition bet-
ween DB mode and FILE mode (or vice versa) is properly overridden and implemented 
to remove all active rules across all iptables and ip6tables chains. 
This versatility makes iptables a natural fit for the SLPF profile, allowing for the full 
implementation of all its actions, targets and arguments, with the only exception of the 
drop_process argument set to false_ack, which is not natively supported by the firewall. 
For this reason, the SLPFActuator_iptables class does not need to redefine the query 
action: since it supports all the features required by the SLPF profile, it can rely directly 
on the implementation already provided by the SLPF Actuator Manager. 
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5.9.1  SLPFActuator_iptables Initialization 
The initialization of SLPFActuator_iptables is carried out entirely through configura-
tion files, which provide all the parameters required to properly set up the actuator. 
This approach offers significant advantages, including greater flexibility and simplified 
maintenance, as changes to the actuator’s behavior can be made without modifying the 
code. 
The configuration files provide the parameters required to correctly initialize the SLPF 
Actuator Manager (as described in Subchapter 5.2). The most important parameter is 
asset_id, which is set to iptables if not specified in the configuration file. In addition, 
the configuration includes parameters specific to the iptables environment: 
• iptables_rules_directory_path, which specifies the absolute path to the directory 

where the iptables rule files will be saved in the event of a system shutdown or an up-
date action. 

• iptables_rules_v4_filename and iptables_rules_v6_filename, which define the file-
names for the IPv4 and IPv6 rule files, respectively. 

• iptables_input_chain_name, iptables_output_chain_name and iptables_forwar-
d_chain_name, which allow customization of the names of the chains that will be 
created to manage iptables filtering rules. 

• iptables_cmd and ip6tables_cmd, which specify the base command to interact with 
the iptables environment, which, being a command-line-only firewall, requires expli-
cit command invocation for all operations. 

None of these parameters are strictly mandatory for the actuator’s correct initialization: 
default values are automatically assigned to all parameters if they are not explicitly spe-
cified, ensuring that SLPFActuator_iptables can function properly. 
After validating the provided parameters, SLPFActuator_iptables creates three custom 
chains for IPv4 filtering rules, one each for input, output and forward, and three corre-
sponding chains for IPv6 filtering rules, only if they do not already exist. These custom 
chains are then linked to the three main chains: INPUT, OUTPUT and FORWARD. 
Next, the actuator verifies the existence of the directory specified by iptables_rules_di-
rectory_path. If the path is valid, it creates the files corresponding to the IPv4 and IPv6 
filtering rules. Finally, SLPFActuator_iptables calls the initialization method of the 
SLPF Actuator Manager, marking the completion of its own initialization process. 

5.9.2  Allow and deny actions 
SLPFActuator_iptables supports both the allow and deny actions by overriding the cor-
responding methods of the SLPF Actuator Manager in order to implement these opera-
tions within the iptables environment. As explained in Subchapter 5.4, this actuator re-
ceives from the SLPFActuator the target of the allow or deny action, the direction ar-
gument and, in the case of a deny action, the drop_process argument. The iptables ac-
tuator does not require custom data to perform its actions, therefore they are not retrie-
ved from the SLPF Actuator Manager or stored in the database. 
When the actuator needs to execute an allow or deny action, the first step is to construct 
the iptables command. The command begins with the iptables_cmd or ip6tables_cmd 
parameter provided during initialization, depending on whether the target specified in 
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the OpenC2 command is IPv4 or IPv6. Next, the actuator selects the appropriate custom 
chain in which to insert the filtering rule based on the value of the direction argument. 
Since the FORWARD chain is not explicitly managed by the OpenC2 specifications, a 
rule is inserted into this chain for both ingress and egress commands. 
The actuator then determines the correct position for the new rule among the existing 
active rules in the specific iptables chain. This step is essential because iptables proces-
ses rules using a first-match approach: packets are evaluated against the rules in the 
order they are listed and the first matching rule determines the action taken. Placing the 
rule in the correct position ensures that it has the intended effect, allowing more specific 
rules to be evaluated before more general ones, which guarantees the proper functioning 
of the firewall. 
Next, if the command target is of type ipv4_connection or ipv6_connection, the actuator 
sets the source and destination addresses, the protocol and the source and destination 
ports accordingly. For targets of type ipv4_net or ipv6_net, the specified address, used 
as the destination address as explained in Subchapter 5.4, is applied. 
Finally, the actuator specifies the iptables target to be applied: ACCEPT for an allow 
action, DROP for a deny action or REJECT for a deny action with the drop_process ar-
gument set to reject. Once the command is fully constructed, SLPFActuator_iptables 
executes it via the command line. 
If the OpenC2 command specifies a direction of both, separate iptables commands are 
constructed and executed to insert the rule into the corresponding custom input and out-
put chains, as well as into the forward chain. 

5.9.3  Delete action 
The SLPFActuator_iptables handles the delete action by overriding the corresponding 
method of the SLPF Actuator Manager, allowing the removal of specific rules within 
the iptables environment. As described in Subchapter 5.5, the actuator receives from the 
SLPFActuator the OpenC2 command specifying the rule to be deleted. As with the al-
low and deny actions, no custom data is required for this operation and thus it is not re-
trieved from the SLPFActuator. 
In iptables, a rule within a chain can be removed by specifying its exact match using the 
‘-D’ option. This approach is adopted because rule numbering in iptables is dynamic 
and cannot be reliably tracked by an external program. To implement deletion, the ac-
tuator constructs an iptables command to be executed from the command line in much 
the same way as for the allow and deny actions and described in Subchapter 5.9.2, but 
with the addition of the ‘-D’ option. The OpenC2 command received from the SLPFAc-
tuator is used to determine the rule details. Finally, the constructed iptables command is 
executed. 
If the OpenC2 command specifies a direction of both, separate iptables commands are 
constructed and executed to delete the rule from the corresponding custom input and 
output chains, as well as from the forward chain. 
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5.9.4 Update action 
The SLPFActuator_iptables handles the update action by overriding the corresponding 
method of the SLPF Actuator Manager, allowing the content of a rule file to be applied 
within the iptables environment. As specified in Subchapter 5.6, the actuator receives 
from the SLPFActuator the name and the path of the file to be used for the update ac-
tion. 
The filtering rules contained in this file are used to update the corresponding system 
rule file managed by iptables, located in the directory specified by the iptables_rules_-
directory_path parameter, obtained during iptables initialization, with the filename ipta-
bles_rules_v4_filename or iptables_rules_v6_filename, depending on the extension of 
the file received as the target of the OpenC2 command. 
During the backend verification phase, which takes place before the action is actually 
scheduled by the SLPF Actuator Manager, SLPFActuator_iptables verifies that the file 
specified as the target of the update command has a supported extension, either ‘.v4’ or 
‘.v6’. If the file extension is invalid, the actuator returns a response to the producer with 
status code 400 (Bad Request). 
To perform the update action, SLPFActuator_iptables first examines the extension of the 
file specified in the OpenC2 command. If the file has a ‘.v4’ extension, the update is 
applied to the file designated by iptables_rules_v4_filename, if the file has a ‘.v6’ ex-
tension, the update targets the file identified by iptables_rules_v6_filename. Once the 
appropriate file is selected, its content is updated and loaded into the iptables environ-
ment, activating the filtering rules contained within. 

5.10  SLPF Actuator for OpenStack 

To manage OpenStack Security Groups and their associated Security Rules, a dedica-
ted subclass of the SLPFActuator has been implemented, named SLPFActuator_open-
stack. 
In the OpenStack environment, SLPF Commands are enforced through the dynamic 
creation of dedicated Security Groups, each associated with the specific OpenStack 
ports referenced by the IPv4/IPv6 subnet or connection targets in the command. 
The OpenStack networking service enables the creation and deletion of security rules of 
type allow, but it does not support the explicit definition of deny rules, as its security 
model is based on a default deny policy. For this reason, the deny action is not imple-
mented and when the actuator receives a deny command it returns a response with sta-
tus code 501 (Not Implemented) to the producer. 
Security rules in OpenStack are natively persistent, which means that the OpenStack 
networking service, unlike iptables, does not require the management of external files to 
preserve the current rule set across system restarts. Consequently, this actuator does not 
override the SLPFActuator methods responsible for saving and restoring filtering rules 
upon reboot. 
Moreover, since the OpenStack networking service does not support updating the active 
filtering rules with the content of an external file, SLPFActuator_openstack does not 
implement the update action. 
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When an update command is received, a response with status 501 (Not Implemented) is 
sent back to the producer. Similarly, the actuator does not override the method used by 
the SLPF Actuator Manager to delete all active filtering rules when switching between 
DB mode and FILE mode (or vice versa), since this actuator does not support the 
FILE mode due to the absence of the update action. 
Because of these unimplemented features, SLPFActuator_openstack overrides the query 
action to accurately report the action-target pairs that are actually supported by this ac-
tuator. 

5.10.1  SLPFActuator_openstack Initialization 
Similarly to the previous actuator, the initialization of SLPFActuator_openstack is enti-
rely managed through a configuration file that specifies all the parameters required for 
the actuator’s setup. The configuration file includes all parameters needed to correctly 
initialize the SLPF Actuator Manager. The most important of these parameters is asse-
t_id, which is set to openstack if not specified in the configuration file. In addition, the 
file defines several parameters specific to the OpenStack environment: 
• environment_variables_file specifies the absolute path to the file containing the en-

vironment variables required to establish a connection with OpenStack. 
• project_name defines the name of the OpenStack project to be associated with the 

SLPFActuator_openstack. 
• security_group_base_name specifies a standard prefix for constructing new security 

group names. 
• security_group_base_description specifies a standard description for constructing 

new security group. 
The environment_variables_file and project_name parameters are mandatory, as they 
are essential for the actuator’s correct operation. If either of these parameters is missing, 
the initialization process is immediately terminated with an error. Otherwise, if securi-
ty_group_base_name or security_group_base_description are not provided, default va-
lues are automatically assigned to them. 
A key part of the initialization process consists of establishing a connection with the 
OpenStack environment. During this phase, the environment variables defined in the 
file specified by environment_variables_file are loaded into the operating system. These 
variables are then used to authenticate and establish an authorized connection to Open-
Stack. 
Subsequently, the actuator retrieves from OpenStack the project identified by the pro-
ject_name parameter. If the specified project cannot be found, the initialization process 
is aborted and an error is returned. 
Finally, SLPFActuator_openstack invokes the initialization method of the SLPF Actua-
tor Manager, completing its own setup phase. 
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5.10.2  Allow action 
The SLPFActuator_openstack supports the allow action by overriding the corresponding 
method of the SLPFActuator to enable the creation of an OpenStack security rule. 
A fundamental aspect of the SLPFActuator_openstack’s behavior when handling an al-
low command occurs during the backend verification phase, before the action is actually 
scheduled by the SLPF Actuator Manager. In this phase, the actuator provides the SLP-
FActuator with the necessary custom data for the future execution of the allow com-
mand: specifically, the ID of the security group where the rule controlling ingress traffic 
will be inserted (if the direction argument is ingress or both) and the ID of the security 
group where the rule controlling egress traffic will be inserted (if the direction argument 
is egress or both). To determine these IDs, the actuator first identifies all relevant Open-
Stack ports (network interfaces) that will be affected by the command. For targets of 
type ipv4_connection or ipv6_connection, if the direction is ingress or both, the actuator 
selects the ports whose fixed IP address matches the destination address of the target. 
Otherwise, if the direction is egress or both, the ports whose fixed IP address matches 
the source address of the target are selected. In the case of targets of type ipv4_net or 
ipv6_net, which specify only a destination network as described in Subchapter 5.4, all 
ports with IPs included in the specified network are selected for an ingress command, 
while for an egress command all ports attached to the OpenStack project defined in the 
configuration file are included. 
If no ports within the OpenStack project match the command’s selection criteria, a re-
sponse with status code 400 (Bad Request) is returned to the producer. 
Once the relevant ports have been identified, the actuator searches within the project for 
a security group named as the concatenation of the security_group_base_name parame-
ter (obtained during initialization) and the IP address identifying the selected ports. If 
such a security group does not exist, it is created with this name and a description equal 
to the security_group_base_description parameter defined during initialization. If the 
security group already exists, the actuator verifies that it does not already contain a se-
curity rule identical to the one specified in the received command. If a matching rule is 
found, a response with status code 400 (Bad Request) is returned to the producer, as 
OpenStack does not allow the insertion of duplicate rules within the same security 
group. 
Once the security groups are found or created, their IDs can be returned to the SLPF Ac-
tuator Manager to be stored as custom data. 

When the command is scheduled for execution, the SLPFActuator_openstack receives 
from the SLPFActuator the OpenC2 command target, the direction and the custom data, 
as described in Section 5.4. The OpenC2 command is translated into an OpenStack se-
curity rule: 
• The security_group_id is set to the value of the ingress_id from the custom data for 

directions ingress or both or to egress_id for directions egress or both. 
• The direction attribute of the security rule is set accordingly. 
• The ethertype is set based on the type of the target: ‘IPv4’ for ipv4_net or ipv4_con-

nection  and ‘IPv6’ for ipv6_net or ipv6_connection. 
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• The remote_ip_prefix defines the source address of the traffic for ingress security 
rules or the destination address for egress security rules. For targets of type ipv4_con-
nection or ipv6_connection, it takes the value of the source address if the direction is 
ingress or the value of the destination address if the direction is egress. For targets of 
type ipv4_net or ipv6_net, it is set to the value specified in the target itself for egress 
commands, while for ingress commands it is set to ‘0.0.0.0/0’ for IPv4 or ‘::/0’ for 
IPv6. 

• In case of ipv4_connection or ipv6_connection target, the protocol field is set to the 
value specified in the OpenC2 target. 

• The port range is defined, for targets of type ipv4_connection or ipv6_connection, 
based on the source or destination port and represented as a single port in the security 
rule. 

After mapping all the relevant parameters, the security rule is created. 
Finally, all ports in the project that are affected by the OpenC2 command and not yet 
attached to the security group to which the new rule was added, are associated with it. 
If an OpenC2 command specifies a direction of both, two distinct security rules are 
created and inserted into the respective security groups for ingress and egress traffic. 

5.10.3  Delete action 
The SLPFActuator_openstack implements the delete action by overriding the corre-
sponding method of the SLPF Actuator Manager, allowing the removal of security rules 
within security groups. As described in Subchapter 5.5, the actuator receives from the 
SLPFActuator the OpenC2 command to be deleted, along with the custom data contai-
ning the IDs of the security groups where the security rules were inserted. 
First, the ID of the security rule corresponding to the OpenC2 command is retrieved. If 
the security group contains only the security rule to be deleted, all ports attached to the 
security group are disconnected from it and the security group is removed; otherwise, 
only the specific security rule is deleted. 
If the command to be deleted specifies a direction of both, both previously created secu-
rity rules are removed from their respective security groups. 

5.11  SLPF Actuator for Kubernetes 

In order to manage Kubernetes Network Policies, a dedicated subclass of the SLPFAc-
tuator has been implemented, namely SLPFActuator_kubernetes. 
In the Kubernetes environment, SLPF Commands are enforced through the dynamic 
creation of dedicated Labels, which are applied to the pods selected by the IPv4/IPv6 
subnet or connection targets in the command and referenced by the corresponding Net-
work Policies generated to implement the required filtering behavior. 
The Kubernetes network policy framework allows the creation and deletion of network 
policies of type allow, but it does not provide support for explicit deny policies, as Ku-
bernetes enforces a default deny behavior. Consequently, the deny action is not im-
plemented and if the actuator receives a deny command, it responds to the producer 
with status code 501 (Not Implemented). 
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Network policies in Kubernetes are persistent, meaning that the Kubernetes network 
policy framework, like OpenStack, does not rely on external files to maintain the cur-
rent set of policies across system restarts. As a result, this actuator does not override the 
SLPFActuator methods used for saving and restoring filtering rules after a reboot. 
SLPFActuator_kubernetes correctly implements the update action, as it is able to re-
fresh the active network policies within a given namespace using the contents of a 
YAML file. This capability allows the actuator to fully support the FILE mode of the 
SLPF Actuator Manager and therefore it overrides the method used by the SLPFActua-
tor to remove all active filtering rules when switching from DB mode to FILE mode (or 
vice versa). 
However, due to the lack of support for the deny action, SLPFActuator_kubernetes 
overrides the query action in order to provide the producer with the pairs of action-tar-
get combinations that are actually implemented. 

5.11.1  SLPFActuator_kubernetes Initialization 
As with the other implementations, the initialization of SLPFActuator_kubernetes is ful-
ly managed through configuration files. These files define the parameters required to 
properly initialize the SLPF Actuator Manager, the most important of which is asset_id, 
set to kubernetes if not specified in the configuration file. Additional parameters specific 
to the Kubernetes environment are also included: 
• config_file: specifies the absolute path to the Kubernetes configuration file. 
• kube_context: defines the name of the Kubernetes context to be used. 
• namespace: indicates the namespace where the network policies will be managed. 
• subnet_base_label_key: defines the prefix used to create labels associated with pods 

and network policies. 
• generate_name: specifies the prefix used to generate unique names for newly created 

network policies. 
None of these parameters are strictly required for the actuator’s initialization, default 
values are automatically assigned to any parameter not provided. 
A key aspect of the Kubernetes actuator initialization process is establishing a connec-
tion to the Kubernetes cluster. During this phase, the specified configuration file and 
context are loaded, the Kubernetes API clients are instantiated and the namespace defi-
ned in the configuration file is created if it does not already exist. 
Finally, SLPFActuator_kubernetes calls the initialization method of the SLPF Actuator 
Manager, marking the completion of its own initialization process. 

5.11.2  Allow action 
The SLPFActuator_kubernetes supports the allow action by overriding the correspon-
ding method of the SLPF Actuator Manager to enable the creation of new Kubernetes 
Network Policies. As previously explained for OpenStack in Subchapter 5.10.2, a key 
part of processing an allow command takes place during the validation phase handled 
by the specific implementation. In this phase, SLPFActuator_kubernetes provides the 
SLPF Actuator Manager with the custom data to be stored in the database, which are 
required for the future execution of the command. 
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In the case of Kubernetes, these custom data define the labels to be associated with pods 
and network policies. These labels are generated by concatenating the subnet_base_la-
bel_key parameter, received during the actuator’s initialization, with the IP address iden-
tifying the Kubernetes subnet affected by the received allow command. The subnet itself 
is determined using the same logic described in Subchapter 5.10.2 for the OpenStack 
actuator. Once the labels have been created, they are associated with the pods that must 
enable the corresponding network policy and the custom data are returned to the SLPF 
Actuator Manager for storage in the database. If no containers within the namespace 
match the command’s selection criteria, a response with status code 400 (Bad Request) 
is returned to the producer. 
During this validation phase, the actuator also checks that, in the case of targets of type 
ipv4_connection or ipv6_connection, the protocol value is TCP, UDP or SCTP, as these 
are the only protocols supported by Kubernetes. 

When the allow action is scheduled for execution, SLPFActuator_kubernetes receives 
from the SLPF Actuator Manager the target of the command, the direction argument 
and the custom data, as described in Subchapter 5.4. 
The OpenC2 command is translated into a Kubernetes NetworkPolicy object, where the 
main fields are set as follows: 
• podSelector, set to the label defined by the ingress_label parameter in the custom 

data when the direction is ingress or both, or by the egress_label parameter when the 
direction is egress or both. 

• policyTypes, set according to the direction specified in the OpenC2 command (In-
gress or Egress). 

• ipBlock, defines the IP address or subnet representing the source of ingress traffic or 
the destination of egress traffic, following the same logic used for the OpenStack re-
mote_ip_prefix parameter described in Subchapter 5.10.2. 

• protocol, set according to the protocol specified in the target, in the case of ipv4_con-
nection or ipv6_connection targets. 

• port, set, in the case of ipv4_connection or ipv6_connection targets, to the value defi-
ned in the source or destination port parameter, depending on the direction of the 
OpenC2 command. 

Finally, the network policy is created within the namespace specified by the namespace 
parameter obtained during initialization, with a name partially composed using the ge-
nerate_name prefix, also defined in the configuration file. 
If the OpenC2 command specifies a direction of both, two distinct network policies are 
created: one controlling ingress traffic and the other controlling egress traffic. 
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5.11.3  Delete action 
The SLPFActuator_kubernetes implements the delete action by explicitly overriding the 
corresponding method of the SLPF Actuator Manager, enabling the proper removal of 
Kubernetes Network Policies. As described in Subchapter 5.5, the actuator receives 
from the SLPFActuator the OpenC2 command to be deleted along with its associated 
custom data. 
The actuator first locates the name of the Network Policy corresponding to the OpenC2 
command to be removed. Once identified, the NetworkPolicy is deleted. If the deleted 
NetworkPolicy was the last one associated with its corresponding label, that label is 
subsequently removed from all pods that were influenced by it. 
If the OpenC2 command specifies a direction value of both, both Network Policies pre-
viously created to allow the corresponding ingress and egress traffic are deleted. 

5.11.4  Update action 
The SLPFActuator_kubernetes implements the update action by overriding the corre-
sponding method of the SLPF Actuator Manager, allowing the replacement of the active 
network policies within the namespace with those defined in a YAML file provided as 
the target of the command. As specified in Subchapter 5.6, the actuator receives from 
the SLPFActuator the name and path of the target file. 
During the backend verification phase, which occurs before the action is scheduled by 
the SLPF Actuator Manager, SLPFActuator_kubernetes checks whether the file speci-
fied as the target of the update command has a valid and supported extension (‘.yaml’). 
If the file extension is not supported, the actuator responds to the producer with status 
code 400 (Bad Request). 
To correctly perform the update action, the SLPFActuator_kubernetes first deletes all 
existing network policies in the namespace, since they will be replaced by the new ones 
defined in the YAML file. Subsequently, all network policies contained in the file are 
loaded into the Kubernetes environment. 

5.12  SLPF Actuator for MS Azure 

To manage Azure Network Security Groups (NSGs) and their related security rules, 
a dedicated subclass of the SLPFActuator has been implemented, named SLPFActuato-
r_azure. 
Azure supports both the insertion and deletion of allow and deny rules, however, it does 
not support customizing the response to denied traffic. Consequently, the drop_process 
argument of the deny command is not supported by this actuator. 
Security rules in Azure are natively persistent, meaning that the Azure networking mo-
del automatically preserves rule configurations across system restarts or infrastructure 
changes. As a result, this actuator does not override the SLPFActuator methods respon-
sible for saving and restoring filtering rules upon reboot. 
Since Azure does not support updating NSG security rules or configurations from exter-
nal files, SLPFActuator_azure does not implement the update action. 
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When an update command is received, a response with status 501 (Not Implemented) is 
returned to the producer. Likewise, the actuator does not redefine the method used by 
the SLPF Actuator Manager to clear all active filtering rules when switching between 
DB mode and FILE mode (or vice versa), since the absence of the update action implies 
that the FILE mode is not supported. 
Because of these design constraints, SLPFActuator_azure redefines the query action to 
accurately report the action-target pairs that are effectively supported by the actuator. 

5.12.1  SLPFActuator_azure Initialization 
As with the previous actuators, the initialization of the Azure actuator is entirely mana-
ged through a configuration file. In addition to the parameters required to correctly ini-
tialize the SLPF Actuator Manager, the most important of which is asset_id, set to azure 
if not explicitly specified, the configuration file defines several Azure-specific settings: 
• authentication_file, which specifies the absolute path to the authentication file con-

taining the parameters required to establish a connection with the Azure environment, 
namely tenant_id, client_id, client_secret and subscription_id; 

• resource_group_name, which indicates the name of the Azure Resource Group con-
taining the Network Security Groups to be managed; 

• network_security_group_name, which specifies the name of the Network Security 
Group where filtering rules will be created or removed. 

Among these, only authentication_file is mandatory for the correct operation of the ac-
tuator, while default values are automatically assigned to the other parameters if not 
provided. 
As in the OpenStack and Kubernetes actuators, an essential part of the initialization pro-
cess consists of establishing a connection with the Azure environment. 
During this phase, the authentication information specified in authentication_file is used 
to obtain the credentials required to access Azure services and to initialize both a Re-
source Management client, responsible for managing Azure resource groups, and a 
Network Management client, which handles network-related resources such as Network 
Security Groups. The actuator then verifies the existence of the Resource Group speci-
fied by resource_group_name, creating it if it does not already exist. Likewise, it sear-
ches for a Network Security Group matching the name defined by network_security_-
group_name and creates it when necessary. 
Finally, the initialization of the SLPF Actuator Manager is performed, marking the 
completion of the setup process. 

5.12.2  Allow and deny actions 
The SLPFActuator_azure implements the allow and deny actions by overriding the cor-
responding methods of the SLPF Actuator Manager, enabling the management of Azure 
Network Security Group (NSG) rules. 
As described in Subchapter 5.4, this actuator receives from the SLPFActuator the target 
of the allow or deny command, the direction argument and, in the case of a deny com-
mand, the drop_process argument, although the latter has no practical effect since it is 
not supported by the Azure platform. 
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As in the case of the iptables implementation, the Azure actuator does not require cu-
stom data to execute its actions and therefore no additional data is retrieved from or sto-
red in the database. 
When executing an allow or deny action, SLPFActuator_azure first converts the recei-
ved OpenC2 command into a valid Azure Network Security Rule. The mapping bet-
ween OpenC2 parameters and Azure rule fields is performed as follows: 
• Action, set according to the OpenC2 action (allow or deny). 
• Direction, configured as Inbound if the OpenC2 argument direction is ingress or both, 

or as Outbound if it is egress or both. 
• Source and destination addresses, populated with the IP addresses specified in the 

OpenC2 target. 
• Protocol, configured based on the protocol defined in the OpenC2 target, when the 

target type is ipv4_connection or ipv6_connection. 
• Source and destination port ranges, configured according to the port values speci-

fied in the OpenC2 target when applicable (ipv4_connection or ipv6_connection). 
As explained in Subchapter 3.4.1, within a single NSG each Azure Network Security 
Rule must have a unique name and the priority of rules must be unique within each traf-
fic direction. For this reason, each rule is assigned a unique name and priority value. 
To determine an appropriate priority, all existing rules in the NSG are analyzed and the 
new rule is inserted at the position that best reflects its level of specificity. When neces-
sary, the priorities of subsequent rules are adjusted accordingly to preserve the proper 
evaluation order. 
Finally, the newly created security rule is added to the Network Security Group. 
If the OpenC2 command has its direction set to both, two separate rules are created, one 
handling inbound traffic and the other handling outbound traffic. 

5.12.3  Delete action 
The SLPFActuator_azure implements the delete action by overriding the corresponding 
method of the SLPF Actuator Manager, allowing the proper removal of Azure Network 
Security Rules. 
As explained in Subchapter 5.5, the actuator receives from the SLPFActuator the Open-
C2 command to be deleted. Similar to the allow and deny actions, custom data is not 
required for this operation and therefore is not retrieved from the SLPFActuator. 
The actuator first identifies the Azure Network Security Rule corresponding to the 
OpenC2 command to be deleted. Once located, the rule is removed from the Network 
Security Group. 
If the OpenC2 command has its direction set to both, the actuator deletes both rules that 
were previously created to control inbound and outbound traffic, ensuring that all traffic 
affected by the command is properly removed. 
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This chapter presents the practical aspects related to the implementation of the SLPF 
Actuator Manager and its validation. 
The first part focuses on the software tools, frameworks and libraries employed to sup-
port both the management of the SLPF Actuator Manager and its interaction with diffe-
rent network filtering technologies. Specifically, it describes the Python libraries chosen 
for handling the OpenC2 environment (Otupy), database management (SQLite3), task 
scheduling (APScheduler) and integration with OpenStack (OpenStackSDK), Kuber-
netes (Kubernetes Python Client) and Microsoft Azure (Azure SDK for Python). 
iptables, by contrast, is controlled via direct command-line calls through Python’s sub-
process module. Since its management does not involve dedicated libraries, it is not di-
scussed further in this chapter. 
The second part presents the validation phase, which includes a comprehensive testing 
and evaluation process designed to verify both the syntactic and semantic correctness of 
the implementation and its operational behavior. The conducted tests aim to assess the 
correctness of command execution, the consistency of results across heterogeneous plat-
forms and the overall performance of the system in terms of responsiveness and reliabi-
lity. 
Together, these sections demonstrate the feasibility and robustness of the proposed im-
plementation, confirming its compliance with the OpenC2 SLPF Specification [6] and 
its effectiveness as a unified control interface for diverse network protection systems. 

6.1  Otupy 

Otupy [12] is an open-source Python framework designed to provide a flexible, exten-
sible and portable implementation of the OpenC2 standard. Its main purpose is to sim-
plify the creation, transmission and parsing of OpenC2 messages, while offering a solid 
foundation for developing and integrating security tools. 
The strength of Otupy lies in its modular architecture, which decouples the core compo-
nents: profiles, data types, serialization formats and transport protocols can be extended 
or modified without affecting the core library. This is achieved through a modular 
communication stack that allows different transport protocols and serialization formats 
to be combined seamlessly, along with an inheritance-based model for data types and 
meta-serialization, which ensures both consistency and flexibility in message handling. 
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The overall architecture and workflow of Otupy are shown in Figure 6.1.

The framework provides an API closely aligned with the OpenC2 grammar, supporting 
both the data models defined in the standard and common data types used in networking 
and security applications. The API is fully agnostic of serialization and transport details, 
making it intuitive to learn and practical to use. 
Operationally, the main components are the Producer and Consumer, implementing the 
sending and receiving roles of OpenC2 messages. Both rely on Encoder and Transfer 
interfaces for message serialization, such as JSON, and delivery over protocols, such as 
HTTP. 
Actuators translate OpenC2 messages into actual security commands, like iptables rules 
or Kubernetes network policies, and return execution results. 
Otupy implements all objects described in the OpenC2 Language Specification [2] 
(Message, Command, Response, targets and data types), relying on standard Python ty-
pes and widely-used libraries for numbers, strings, IP addresses and other commonly 
used types, while also providing a full definition of the SLPF profile, including all its 
actions, targets, arguments and results [6]. 
Finally, Python ensures portability across platforms, supports reflective programming 
and allows easy integration of new extensions such as profiles, encoders, transfers and 
actuators. The framework has been extensively validated, demonstrating full OpenC2 
compliance and facilitating the development of interoperable tools in heterogeneous en-
vironments. 

6.2  SQLite3 

For managing the internal database of the SLPF Actuator Manager, the SQLite3 library 
was selected. 
SQLite [13] is a lightweight, open-source relational database engine that stores data lo-
cally in a single file, without requiring the deployment or maintenance of a separate da-
tabase server. Its simplicity and integration within the Python standard library make it 
an ideal choice for applications where ease of use, portability and low overhead are es-
sential. Despite its lightweight design, SQLite provides full support for standard SQL 
syntax, transactions and data integrity constraints, ensuring reliable and consistent data 
management. 
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Figure 3: Overall architecture and workflow of Otupy. Security Controller and Security
Servers are examples of external code that uses the framework. Black dashed arrows
represent operations carried out during instantiation of the objects. Black solid arrows
are the external APIs to use the framework. Grayed solid lines are internal interfaces
used when developing extensions. Grayed dashed lines are internal workflows to each
component.

characters and strings, i.e., dashes (which are dropped) and reserved key-
words (which are trailed by an underscore).

The Otupy API in many cases is trivial (e.g., the IPv4Addr is mostly a
plain wrapper of the Python ipaddress.IPv4address class), and hence it
might appear redundant and useless. Nevertheless, it is of utmost importance
for implementing the inheritance model and meta-serialization described in
Sec. 4.2. Moreover, this approach decouples the OpenC2 API from the un-
derlying implementation, and allows future updates of the framework without
a↵ecting the external software that uses it. Finally, this approach speeds up
the learning curve for users that already know OpenC2.

A minor deviation from the Language Specification is represented by the
Message object: its syntax is not dictated explicitly, because it is transfer-
specific, and therefore it is defined by each Transfer protocol. Our imple-
mentation defines anyway an internal structure for Messages, based on the
metadata expected by the Language Specification, which is the mean to de-
liver this information to the transfer protocols.

The core elements of the framework are the Producer and Consumer
objects, which implement the OpenC2 Producer and Consumer roles, re-
spectively. Internally, they have a protocol stack made of the Encoder and
Transfer interfaces, which are the Otupy API for serialization and delivery of
Messages, respectively. When instantiated, both the Producer and Consumer
are supplied with concrete implementations of Encoders and Transfers, e.g.,
JSONEncoding for JSON serialization and HTTPTransfer/HTTPSTransfer for
HTTP communication. Additionally, a Consumer object is also provided with

11

Fig. 6.1 Otupy’s architecture and workflow [12]
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SQLite is fully self-contained, meaning that it does not depend on external libraries or 
services, which greatly reduces installation and configuration complexity. It supports 
atomic commit and rollback operations, allowing safe execution of multiple operations 
even in the event of a system failure. The database engine is thread-safe and can handle 
concurrent read operations efficiently, while write operations are serialized to maintain 
data integrity. 
Additionally, SQLite3 allows for flexible schema design and easy adaptation to chan-
ging data requirements, making it suitable for managing diverse types of internal state 
information. Moreover, its Python interface exposes a simple API for executing SQL 
queries, fetching results and handling transactions. 
Overall, SQLite3 combines robustness, simplicity and portability, aligning well with the 
goals of maintaining a compact and self-contained system architecture. 

6.3  APScheduler 

For scheduling OpenC2 commands at predetermined times, the Python APScheduler 
library was selected. 
APScheduler [14] is a lightweight, open-source framework that provides advanced 
scheduling capabilities directly within Python applications, allowing jobs to be executed 
periodically, at specific dates or according to complex recurring rules. 
One of its main advantages is flexibility: APScheduler supports multiple scheduling 
strategies, including date-based scheduling for single events, interval-based for recur-
ring tasks and cron-style scheduling for complex periodic execution. This makes it sui-
table for a wide range of applications, from simple automation scripts to complex back-
ground services. 
Another key benefit of APScheduler is its ability to run tasks in the background without 
blocking the main program execution. It offers multiple execution models, including 
thread-based and process-based job stores, which allows concurrent task execution whi-
le maintaining application responsiveness. 
Additionally, APScheduler allows jobs to be configured to run exclusively, ensuring that 
only one instance of a task is executed at a time. This feature helps prevent race condi-
tions and potential conflicts, providing greater control and reliability in task scheduling. 
The library also provides a user-friendly API for adding, modifying or removing sche-
duled jobs dynamically, along with built-in error handling and logging features. These 
capabilities simplify monitoring, debugging and maintaining scheduled tasks, reducing 
the risk of missed executions or system failures. 
Overall, APScheduler offers a robust and flexible solution for task scheduling in Python 
applications, combining ease of use with powerful features for managing periodic or 
time-specific execution. 
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6.4  OpenStackSDK 

To efficiently manage OpenStack and its associated security groups and rules, the 
Python library OpenStackSDK was chosen. 
OpenStackSDK [15] is the official Python library that provides a high-level and pro-
grammatic interface for interacting with OpenStack services. 
By abstracting the complexity of direct API calls, it allows developers to manage Open-
Stack resources using Python objects and methods, avoiding the need to construct raw 
HTTP requests manually. This abstraction simplifies development, reduces the risk of 
errors and ensures that operations are executed consistently and predictably. 
A key application of OpenStackSDK is the management of networking resources, parti-
cularly security groups and security rules. Through the library, it is possible to create, 
retrieve, modify and delete security groups, as well as define or delete rules that control 
the inbound and outbound traffic of instances. These capabilities provide a reliable and 
programmatic way to enforce network policies, ensuring that access control and isola-
tion requirements are consistently applied across the OpenStack environment. 
The library also includes built-in mechanisms for error handling and exception ma-
nagement, returning clear and structured exceptions when API operations fail. This 
simplifies debugging and allows developers to implement robust error recovery proce-
dures. OpenStackSDK efficiently handles large datasets by supporting automatic pagi-
nation and query filtering, which is especially useful when retrieving extensive lists of 
resources. 
Additionally, the library manages authentication tokens and sessions automatically, 
reducing the complexity associated with credential management. 
Another important feature of OpenStackSDK is its object-oriented design. All Open-
Stack resources are represented as Python objects with dedicated methods for common 
operations, such as create, modify and delete. This approach enhances code readability 
and maintainability, making it easier to develop, extend and automate complex work-
flows. 
Overall, OpenStackSDK is a robust, reliable and developer-friendly tool for managing 
OpenStack resources. Its combination of simplified API interaction, structured error 
handling, support for large datasets, automated session management and object-oriented 
resource representation makes it particularly valuable for automating security group 
configuration and enforcing security rules in dynamic cloud environments. 

6.5  Kubernetes Python Client 

To efficiently manage Kubernetes resources, such as namespaces and network policies, 
the official Kubernetes Python client [16] was selected. 
This library provides a high-level, programmatic interface that abstracts the complexity 
of direct API interactions, enabling developers to manipulate Kubernetes objects throu-
gh Python classes and methods rather than constructing raw HTTP requests. 
The library is organized into multiple API clients, each responsible for a specific 
group of resources. 
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For example, CoreV1Api manages fundamental objects such as Pods, while Networ-
kingV1Api handles Network Policies. 
Each Kubernetes resource type is represented by a dedicated Python class, with attri-
butes that correspond directly to the fields of the API objects. These classes allow deve-
lopers to create new resources in memory, modify existing ones and then pass them to 
the appropriate API client methods to perform create, retrieve or delete operations in the 
cluster. This object-oriented approach improves code readability, ensures proper structu-
ring of resource definitions and eliminates the need to manually construct JSON or 
YAML payloads for API requests. 
Authentication is managed by the library, allowing developers to connect to a cluster 
using either a configuration file (kubeconfig) or a context explicitly specified in code. 
This ensures secure access to the Kubernetes API and simplifies the management of 
credentials and connection settings, enabling seamless communication with clusters wi-
thout requiring manual handling of tokens or certificates. 
A key advantage of the official client is its active maintenance in alignment with Kuber-
netes releases, providing support for new features while properly handling deprecated 
APIs. Additionally, the library offers robust error handling, detailed exception reporting 
and logging capabilities, which simplify monitoring, debugging and the reliable execu-
tion of automated tasks. 
By leveraging the official Kubernetes Python client, developers can manage network 
policies and other cluster resources in a programmatic, scalable and robust manner, whi-
le maintaining consistency with Kubernetes API standards and best practices. 

6.6  Azure SDK for Python 

To implement support for the Microsoft Azure environment, including management of 
Resource Groups and Network Security Groups, the official Azure SDK for Python 
[17] was adopted. This library provides a rich, high‑level interface to interact program-
matically with Azure services, allowing developers to manage cloud resources using 
Python constructs instead of manually handling REST API calls. 
At its core, the SDK enables creation, retrieval, updating and deletion of fundamental 
Azure components. For instance, it supports the provisioning and modification of re-
source groups via the ResourceManagementClient and the management of network se-
curity groups (NSGs) through the NetworkManagementClient. These capabilities make 
it possible to enforce network protection policies and organizational resource structure 
within Azure subscriptions in a consistent and automated way. 
One of the main advantages of the Azure SDK for Python is its integration with Azure’s 
authentication and identity framework. The library supports multiple authentication 
mechanisms, including DefaultAzureCredential, ManagedIdentityCredential and Clien-
tSecretCredential, allowing flexible use across both interactive and automated environ-
ments. Among these, ClientSecretCredential is commonly used for service applications 
and background processes, as it enables secure authentication to Azure Active Directory 
using a tenant ID, client ID and client secret associated with a registered application. 
Once authentication is established, the SDK automatically manages token acquisition 
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and renewal, and the serialization of resource definitions into the appropriate JSON pay-
loads for interaction with Azure APIs. 
Furthermore, the SDK provides dedicated operation groups for managing security ru-
les within Network Security Groups. Through these interfaces, it is possible to list exi-
sting rules, create new ones, modify their properties or remove obsolete entries, all via 
structured API calls. By encapsulating these operations within well-defined client clas-
ses and asynchronous operation pollers, the SDK improves the reliability and maintai-
nability of automation workflows. 
Overall, the Azure SDK for Python provides a robust and maintainable foundation for 
automating the management of resources and network security configurations within 
Azure environments. Its high-level abstractions, integration with Azure’s identity and 
resource management services, and comprehensive support for network security opera-
tions make it a reliable and versatile tool for developing scalable cloud automation solu-
tions. 

6.7  Validation 

This section presents the validation phase of the developed system, aimed at verifying 
the correctness, functionality and performance of the implemented SLPF Actuator Ma-
nager.  
The SLPFActuator_azure, responsible for managing Microsoft Azure environment, 
could not be tested due to the absence of an available Azure infrastructure suitable for 
validation. 
The testing process follows a three-phase approach: syntax and semantic validation, 
functional testing and performance evaluation. 
The first phase focuses on ensuring that OpenC2 commands are properly formatted, in-
terpreted and processed in full compliance with the OpenC2 Language [2] and SLPF [6] 
Specifications. 
The second phase evaluates the actual behavior of the actuators, verifying that each 
command produces the expected network effect on the corresponding firewall. 
Finally, the third phase measures the responsiveness and efficiency of the system throu-
gh latency and execution time analysis, providing insight into both communication ove-
rhead and internal processing performance. 
All tests were conducted using the pytest framework, a widely adopted Python testing 
tool that supports automated test discovery, execution and reporting. 

6.8  Syntax and semantic validation 

The syntax and semantic validation of the SLPF Actuator Manager was performed fol-
lowing an approach closely aligned with the one adopted for the Otupy framework [12], 
while extending it to address all specific aspects of the SLPF profile. 
As in the case of Otupy, the JSON representation of OpenC2 Commands and Responses 
serialized over HTTP was used as the reference format for validation. 
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The input set for testing was constructed by generating all possible OpenC2 Commands 
that could be issued to the Actuator Manager. For each supported action (allow, deny, 
delete, update and query) every valid combination of targets and arguments was consi-
dered. For targets composed of multiple parameters, all possible combinations of para-
meter values were tested, while for arguments that can assume multiple valid values, 
every possible variation was included. 
The resulting commands were categorized into valid and invalid cases. Valid com-
mands are expected to be correctly processed and executed, whereas invalid ones should 
trigger appropriate error responses. 
For the allow and deny actions, commands were considered invalid when a target of 
type ipv4_connection or ipv6_connection specified a source or destination port without 
indicating the corresponding protocol, when start_time, stop_time and duration argu-
ments were used simultaneously, or when the insert_rule argument was present without 
the response_requested argument, in accordance with the SLPF Specification [6]. 
Commands specifying a start_time later than stop_time were also treated as invalid. 
For the update action, commands were marked as invalid if the target did not include 
the required name parameter, as specified in the SLPF Specification [6], or contained 
invalid values for name, path or hashes parameters. 
Table 6.1 summarizes, for each action, the total number of generated commands along 
with the corresponding counts of valid and invalid cases. 

Semantic validation was conducted by deserializing and serializing each command, 
both valid and invalid, and comparing the serialized representation with the original 
JSON message to ensure full structural and semantic consistency. 
Syntactic validation, on the other hand, was carried out through an actual communica-
tion exchange between a producer and a consumer. All generated commands, and rela-
ted responses, were transmitted over HTTP and the resulting message payloads were 
validated against JSON schemas obtained from a third-party repository. 
Additionally, for allow and deny actions containing the insert_rule argument, a duplica-
te command with the same rule number was transmitted to verify that the system correc-
tly rejects attempts to insert multiple filtering rules with identical identifiers, as required 
by the SLPF Specification [6]. 

Action Total commands Valid commands Invalid commands

Query 15 15 0

Allow 217 142 75

Deny 347 228 119

Delete 3 3 0

Update 35 17 18

Table 6.1 Valid and invalid generated commands per action
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For the transmission of invalid delete commands, the same set of valid delete com-
mands was used, but with the corresponding filtering rule (identified by the rule_num-
ber specified in the delete command) absent from the database, ensuring that the system 
correctly handles attempts to delete non-existent rules. 
At the end of the syntax validation phase, cleanup operations were performed to restore 
both the Actuator Manager database and the tested backend implementation to a state 
free of active filtering rules. 
This entire validation process was executed for all tested backend implementations: ip-
tables, OpenStack and Kubernetes. Table 6.2 summarizes the results of semantic and 
syntactic validation tests, which were consistent across all evaluated actuators as a re-
sponse with status 501 (Not Implemented), returned for unsupported actions or proto-
cols, was considered valid, ensuring that all actuators were evaluated in a comparable 
manner. 

6.9  Functional testing 

To evaluate the effectiveness and correctness of the SLPF Actuator Manager, a series of 
functional tests were conducted to observe how ingress and egress network traffic is af-
fected by the application of allow, deny and delete commands. 
These tests were designed to verify that each implemented actuator correctly translates 
SLPF commands into concrete enforcement actions in its respective environment. 
Given the heterogeneous nature of the supported implementations, dedicated test envi-
ronments were set up for each developed actuator to accurately reflect their operational 
characteristics. 

Test Commands Success rate

Decoding commands 617 100%

Encoding commands 617 100%

Sending valid query 15 100%

Sending invalid query 0 -

Sending valid allow 142 100%

Sending invalid allow 75 100%

Sending valid deny 228 100%

Sending invalid deny 119 100%

Sending valid delete 3 100%

Sending invalid delete 3 100%

Sending valid update 17 100%

Sending invalid update 18 100%

Table 6.2 Semantic and syntactic test results
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Traffic between the two nodes of each environment was generated using hping3, a ver-
satile packet-crafting tool widely used for testing network behavior. hping3 allows the 
construction of custom TCP, UDP and ICMP packets, making it particularly suitable for 
validating the effect of filtering rules under controlled conditions. 
To capture the traffic produced during each test, tcpdump was employed. tcpdump is a 
lightweight command-line packet sniffer capable of recording raw network frames di-
rectly from a network interface. Its minimal overhead and high reliability make it ideal 
for collecting detailed traces even in constrained or remote environments such as cloud-
based virtual machines. The resulting packet captures provide a faithful record of all 
inbound and outbound traffic during each experiment. 
Finally, the captured traces were analyzed using Wireshark, a graphical network analy-
sis tool that offers powerful filtering, decoding and visualization capabilities. Wireshark 
enables a fine-grained inspection of packet flows, making it straightforward to determi-
ne whether traffic was allowed or blocked as a result of the applied rules. By combining 
tcpdump’s capture capability with Wireshark’s analysis tools, the evaluation achieves 
both precision and clarity in verifying the functional behavior of each actuator. 
This functional-testing methodology ensures that the SLPF Actuator Manager is valida-
ted not only in terms of syntactic and semantic correctness, but also in its real-world 
ability to influence live network traffic across heterogeneous enforcement environmen-
ts. 

6.9.1  iptables 
To evaluate the functionality of the SLPFActuator_iptables, two virtual machines, VM1  
(IP address 10.0.2.15) and VM2 (IP address 10.0.2.6), were created using VirtualBox 
and attached to the same virtual network, allowing them to communicate with each 
other. 
Figure 6.2 illustrates the test environment used to evaluate the SLPFActuator_iptables. 

Fig 6.2 iptables test environment
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Initially, ICMP, TCP and UDP traffic was generated from VM1 to VM2 and the varia-
tions in the ingress traffic on VM2 were observed as different SLPF commands were 
issued to allow or deny specific types of inbound traffic directed toward VM2. 
At the beginning of the test and until t = 10 s, no filtering rules were active. This inter-
val therefore illustrates the default behavior of iptables, in which all inbound traffic is 
accepted. 
At t = 10 s, a deny command was issued to block all inbound traffic to VM2 originating 
from the network 10.0.2.0/24 (ipv4_net target), which includes VM1. As a result, all th-
ree traffic types were successfully blocked. 
At t = 20 s, an allow command was executed to permit only ICMP traffic originating 
from the IP address 10.0.2.15 associated with VM1 (ipv4_connection target). This step 
not only demonstrates the effectiveness of the allow and deny commands for the ipta-
bles actuator, but also highlights the specificity of iptables rules: only ICMP traffic from 
VM1 is allowed, while non-ICMP traffic from VM1 and all traffic from any other IP 
address continues to be blocked due to the previously issued deny command. 
At t = 30 s, a delete command was issued to remove the rule allowing ICMP traffic and 
a new allow command was applied to permit only TCP traffic from VM1. 
At t = 40 s, the TCP rule was deleted and replaced with an allow rule permitting only 
UDP traffic from the same IP address. 
At t = 50 s, the UDP allow rule was deleted, resulting once again in all inbound traffic 
to VM2 being blocked. 
Finally, at t = 60 s, the deny rule targeting the entire 10.0.2.0/24 network was removed, 
restoring the ability of all three traffic types to reach VM2. 
Figure 6.3 illustrates the results of this test, showing the evolution of inbound traffic re-
ceived by VM2 as different SLPF commands were applied. 

Fig. 6.3 Effect of SLPF commands on VM2 ingress traffic
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To assess the effectiveness of SLPF commands for controlling egress traffic, a second 
test was performed in which ICMP, TCP and UDP traffic was generated from VM2 to-
ward VM1. 
The same procedure used for inbound traffic was repeated, but in this case SLPF com-
mands were issued to allow or deny different types of outbound traffic from VM2, or to 
delete previously installed rules. 
Figure 6.4 presents the results of the egress-traffic test, highlighting how the actuator 
consistently enforces the intended control logic. 

6.9.2  OpenStack 
To evaluate the functionality of the SLPFActuator_openstack, three virtual machines 
deployed within the OpenStack cloud environment were considered: kube0, kube1 and 
kube2. 
Among them, kube0 is the only virtual machine that is directly reachable from outside 
the OpenStack network. Access to kube0 is obtained through a VPN connection to the 
cloud infrastructure, followed by an SSH login to the instance. 
In contrast, kube1 and kube2 are internal OpenStack virtual machines, that is, instances 
that are not exposed externally, and can be accessed only by first connecting to kube0 
and then establishing an SSH session from there. These two instances serve as the end-
points used for generating and exchanging traffic during the functional tests. 
Figure 6.5 illustrates the OpenStack test environment used to validate the SLPFActuato-
r_openstack, showing kube0 as the externally accessible entry point and kube1/kube2 as 
internal instances used for traffic generation and analysis. 

Fig. 6.4 Effect of SLPF commands on VM2 egress traffic
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At the beginning of the test, ICMP, TCP and UDP traffic was generated from kube1 to-
ward kube2, and the resulting ingress traffic on kube2 was monitored while SLPF 
commands, responsible for regulating kube2’s ingress traffic, were executed through the 
OpenStack actuator. 
Unlike iptables, the default configuration of OpenStack Security Groups blocks all in-
bound traffic unless explicitly permitted. Consequently, during the initial phase of the 
test, up to t = 10 s, no packets of any type reach kube2, reflecting the baseline enforce-
ment behavior of the OpenStack security model. 
Since the SLPFActuator_openstack, as discussed in Section 5.10, does not implement 
the deny action, it is not possible, unlike in the iptables case, to issue an SLPF deny 
command to block traffic originating from the network to which kube1 belongs. 
At t = 10 s, an allow command is applied to permit only ICMP traffic from kube1 (ip-
v4_connection target). This rule is removed at t = 20 s, which results in ICMP traffic 
being blocked again. 
At t = 30 s, a new allow command enabling only TCP traffic from kube1 is executed. 
This rule is deleted at t = 40 s, causing TCP traffic to stop once more. 
Similarly, at t = 50 s, an allow command for UDP traffic from kube1 is applied and its 
removal at t = 60 s restores the blocking of UDP packets. 
In contrast to the behavior observed with iptables, where each delete command was 
immediately followed by an allow command enabling the next traffic type, here a deli-
berate interval of ten seconds is introduced between consecutive command executions. 
This gap accounts for the slower propagation and application time of security group up-
dates in OpenStack, as further discussed in Section 6.10. 

Fig 6.5 OpenStack test environment
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For the same reason, it can be observed from the graph that SLPF commands do not 
take effect immediately but present an approximate one-second delay. In the case of 
ICMP traffic, which is generated at a higher rate, the impact of SLPF commands is fully 
enforced after approximately two seconds, reflecting the time required for security 
group updates to propagate and be enforced. 
Finally, in the interval from t = 60 s to t = 70 s, no filtering rules are active, thereby ex-
posing once again the default OpenStack behavior, in which all inbound traffic is bloc-
ked. 
Figure 6.6 shows the results of the test, illustrating how kube2’s inbound traffic evolved 
in response to the application of various SLPF commands through the OpenStack actua-
tor. 

To evaluate the effectiveness of SLPF commands in controlling egress traffic, a second 
test was conducted in which ICMP, TCP and UDP traffic was generated from kube2 to-
ward kube1. 
The same procedure used for inbound traffic was followed; however, in this case, SLPF 
commands were applied to allow different types of outbound traffic from kube2, or to 
remove previously applied rules. 
Figure 6.7 presents the results of the egress-traffic test, showing how the OpenStack ac-
tuator enforces the intended traffic control behavior. 

Fig. 6.6 Effect of SLPF commands on kube2 ingress traffic
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6.9.3  Kubernetes 
To evaluate the functionality of the SLPFActuator_kubernetes, the same OpenStack-ba-
sed cluster architecture used in the previous test was considered, consisting of three no-
des: kube0, kube1 and kube2. 
Access to kube0 was obtained through a VPN connection to the cloud environment fol-
lowed by an SSH login, while kube1 and kube2, being internal nodes, were reachable 
only by first connecting to kube0 and then establishing an SSH session from there. 
On kube1 and kube2, two specific Pods were deployed: bsf-0 on kube1 and amf-0 on 
kube2. 
The functional tests were carried out by accessing the containers running inside these 
Pods, namely, the bsf container on kube1 and the amf container on kube2, and genera-
ting traffic directly between them. 
For the purposes of these tests, only TCP and UDP traffic were generated and monito-
red, since the SLPFActuator_kubernetes does not support the ICMP protocol, as explai-
ned in Subsection 5.12.2. 
This setup allowed the evaluation of the actuator’s capability to enforce SLPF com-
mands within a Kubernetes environment. 
Figure 6.8 illustrates the Kubernetes test environment used to validate the SLPFActuato-
r_kubernetes, showing kube0 as the externally accessible entry point and kube1/kube2 
as internal cluster nodes. On kube1 and kube2, the bsf-0 and amf-0 Pods contained the 
bsf and amf containers, respectively, which were used to generate and exchange traffic 
during the functional tests. 

Fig. 6.7 Effect of SLPF commands on kube2 egress traffic
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At the beginning of the test, TCP and UDP traffic was generated from the bsf container 
inside Pod bsf-0 (running on kube1) toward the amf container inside Pod amf-0 (run-
ning on kube2). The ingress traffic received by the amf container was then monitored 
while different SLPF commands were issued through the Kubernetes actuator to regula-
te the ingress traffic directed at this pod. 
During the initial phase of the experiment, up to t = 10 s, no Network Policies were ac-
tive. In Kubernetes, pods that are not selected by any Network Policy remain fully open 
to the cluster network: all inbound and outbound connections are allowed unless expli-
citly restricted. This interval therefore reflects the default allow-all behavior applied to 
pods without assigned policies. 
Although Kubernetes does not provide a built-in deny action, it is possible to define a 
Network Policy that omits all selectors and protocol specifications (no IP blocks, no 
protocol and no ports). Such a policy is interpreted as a rule that effectively denies all 
traffic in the specified direction for the pods it selects [10]. Accordingly, at t = 10 s, an 
allow command was issued to install a policy of this form, thereby blocking all ingress 
traffic to the amf container. 
At t = 20 s, an allow command was issued to enable only TCP traffic originating from 
the bsf container (ipv4_connection target). 
At t = 30 s, this rule was removed and replaced with an allow command permitting only 
UDP traffic. 

Fig 6.8 Kubernetes test environment
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At t = 40 s, the UDP rule was deleted, which caused the amf container to fall back to the 
previously installed deny-all policy and block all inbound traffic once again. 
Finally, at t = 50 s, the initial deny-all policy was removed, restoring the pod to its de-
fault allow-all state and enabling TCP and UDP traffic to flow freely again. 
Figure 6.9 presents the results of this test, illustrating how the inbound traffic received 
by the amf container evolves over time as different SLPF commands are applied throu-
gh the Kubernetes actuator. 

To assess the effectiveness of SLPF commands in controlling egress traffic, a second 
test was performed in which TCP and UDP traffic was generated from the amf container 
toward the bsf container. 
The same procedure used for the ingress test was applied, but SLPF commands were 
instead issued to regulate the egress traffic originating from the amf container. 
Figure 6.10 summarizes the results of this second test, showing the evolution of egress 
traffic from the amf container as the corresponding SLPF commands were applied. 

Fig. 6.9 Effect of SLPF commands on amf container ingress traffic
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6.10  Performance evaluation 

The performance tests were designed to evaluate the responsiveness and efficiency of 
the SLPF Actuator Manager and its underlying actuator implementations in realistic 
operational scenarios. Performance evaluation considers multiple perspectives. 
On the producer side, the component issuing OpenC2 Commands, latency is measured 
as the time elapsed between the dispatch of a command and the receipt of the corre-
sponding response. This metric captures the communication overhead introduced by the 
system, including network delays, serialization and message processing. 
On the consumer side, namely the SLPF Actuator Manager and the individual actuators 
it manages, two complementary metrics are analyzed. First, the total execution time is 
recorded, from the moment a command is received until its complete application within 
the target infrastructure. Second, the specific execution time of the underlying firewall 
operation is measured, such as the insertion or deletion of rules. 
By combining producer-side latency and consumer-side execution metrics, this evalua-
tion provides a comprehensive view of system performance, highlighting potential bot-
tlenecks in communication or rule enforcement. 
As input for the performance test, all valid allow commands that can be issued to the 
SLPF Actuator Manager were used, constructed as described in Subchapter 6.8. This 
included every combination of parameters in target that involve more than one parame-
ter, as well as all possible values for arguments that can assume multiple values. 
Each generated allow command was sent from the producer to the consumer, executed, 
and all metrics described above were recorded. 
Upon successful execution of each allow command, a corresponding delete command 
was issued to the consumer, and the same set of metrics was collected. 

Fig. 6.10 Effect of SLPF commands on amf container egress traffic



6.10 Performance evaluation 65

For each measured metric, a corresponding box plot was generated to visually summa-
rize the distribution of values across all test runs. Box plots provide a compact represen-
tation of key statistical characteristics, including the median, interquartile range and po-
tential outliers, allowing for a quick assessment of variability and consistency in per-
formance. By examining these plots, it becomes easier to identify trends or occasional 
spikes in latency or execution times, offering valuable insight into the behavior of the 
SLPF Actuator Manager. 
Figure 6.11 shows the performance test results for the SLPFActuator_iptables. 

The plot presents multiple box plots, each representing the distribution of measured ti-
mes for a specific metric. The boxes are arranged from left to right according to the type 
of measurement: 
• Producer-side latency: the first two boxes show the time elapsed between sending a 

command and receiving the corresponding response. The first box corresponds to the 
allow command and the second to the delete command. 

• Consumer-side execution times for the allow command: the next two boxes report, 
respectively, the total execution time (from command reception to completion) and 
the time required to perform the actual allow operation in the iptables environment. 

• Consumer-side execution times for the delete command: the last two boxes show 
the total execution time for the delete command and the time specifically spent per-
forming the delete operation in iptables. 

By reading the box plots from left to right, it is possible to compare the latency and exe-
cution characteristics of allow and delete commands at both the producer and consumer 
sides and to identify potential variability or occasional spikes in processing times. 
In particular, it can be observed that producer-side latencies are significantly shorter 
than consumer-side execution times. 

Fig. 6.11 Performance test results for the SLPFActuator_iptables
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As explained in Section 5.1, this is expected: the actuator executes the command asyn-
chronously in the background, and the response is returned to the producer before the 
underlying operation has actually completed. 
It is also evident, from the consumer-side measurements, that the total execution time of 
each command closely mirrors the time required to perform the corresponding firewall 
operation in the iptables environment. This indicates that the majority of the consumer-
side processing time is dominated by the execution of the underlying iptables action 
itself, with only a minimal overhead attributable to the OpenC2 abstraction. 

Figure 6.12 presents the performance results for the SLPFActuator_openstack. 

As shown in the figure, the average values of all measured metrics are significantly hi-
gher than in the iptables case and generally exceed one second, except for the producer-
side total time of the delete command. This behavior is due to the inherent slowness of 
OpenStack in performing management operations and it explains the delays observed 
during the functional tests for the OpenStack actuator, where allow and delete com-
mands were actually applied within the OpenStack environment only after more than 
one second. 
It can also be observed that the consumer-side total time of the allow command is con-
siderably higher than the time required to perform the allow operation itself within the 
OpenStack environment. As explained in Section 5.10.2, this difference is caused by the 
additional processing required to translate the OpenC2 abstraction into the OpenStack-
specific model, such as identifying the relevant OpenStack ports (network interfaces) 
involved in the command and creating the corresponding Security Groups. 

Fig. 6.12 Performance test results for the SLPFActuator_openstack
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Since these steps occur before the action is scheduled by the SLPF Actuator Manager, 
the producer-side total time is similarly increased. 

Figure 6.13 illustrates the performance test results obtained for the SLPFActuator_ku-
bernetes. 

As can be seen from the figure, the average of the measured metrics does not exceed 
approximately half a second. This result highlights the significantly higher responsive-
ness of the Kubernetes environment compared to OpenStack, confirming the efficiency 
of its Network Policy management and the actuator’s handling of rule updates. 
Similar to the OpenStack case, the consumer-side total time for the allow command is 
greater than the time required to perform the allow action itself in the Kubernetes envi-
ronment. This difference is due to the additional processing needed to translate the 
OpenC2 abstraction into the Kubernetes-specific model, such as identifying the pods 
involved in the command and generating the labels to be associated with the respective 
pods and network policies, as explained in Subchapter 5.11.2. 
Since these operations take place before the SLPF Actuator Manager schedules the ac-
tion, the total producer-side time is also correspondingly increased. 

Fig. 6.13 Performance test results for the SLPFActuator_kubernetes



7     Conclusions 

In this thesis, a fully functional SLPF Actuator Manager compliant with the OpenC2 
Stateless Packet Filtering (SLPF) Profile has been designed and implemented. The im-
plementation targets four heterogeneous firewall technologies, iptables, OpenStack Se-
curity Groups, Kubernetes Network Policies and Microsoft Azure Network Security 
Groups (NSGs), providing a concrete realization of the SLPF Specification [6] across 
diverse environments. 
The primary objective was to validate the interoperability and flexibility of OpenC2 by 
creating a standardized command interface capable of consistently controlling packet-
filtering capabilities across multiple platforms. To achieve this, a modular and extensi-
ble architecture was developed, consisting of a generic Actuator Manager and a set of 
backend-specific actuators responsible for translating OpenC2 Commands into the nati-
ve syntax and semantics of each firewall system. 
By adopting this approach, the Actuator Manager provides all the shared mechanisms 
required for proper actuator functioning, including initialization and shutdown procedu-
res, validation of received commands, management of the internal database that tracks 
active filtering rules and the scheduling infrastructure responsible for executing time-
based commands. Likewise, common functionalities, such as handling standard argu-
ments like start_time, stop_time, duration, response_requested, persistent and insert_-
rule, are implemented once within the Actuator Manager and automatically made avai-
lable to all backend modules. 
Thanks to this architecture, integrating a new firewall platform requires implementing 
only the backend-specific logic. In particular, each backend must define the methods 
responsible for translating and executing SLPF Commands, comprising the action, the 
target and the backend-specific arguments direction and drop_process, within the corre-
sponding firewall environment, as well as a small set of auxiliary methods required for 
proper interaction with the Actuator Manager’s workflow. 
This significantly reduces the effort required to support additional technologies and 
reinforces the extensibility and long-term maintainability of the overall system. 

The SLPF Actuator Manager was validated through a combination of semantic and syn-
tactic checks, functional tests and performance measurements. Semantic and syntactic 
validation ensured that OpenC2 commands, including actions, targets and arguments, 
were correctly interpreted and compliant with the SLPF Specification [6]. 
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Functional tests verified the correct enforcement of allow, deny and delete operations 
across all supported backend firewalls, while performance tests measured command la-
tency and execution times to assess responsiveness and efficiency. 

The implementation and evaluation carried out in this work provide concrete evidence 
of the validity and practicality of the OpenC2 SLPF Actuator Profile. Throughout the 
integration of four heterogeneous firewall technologies, the SLPF Specification [6] pro-
ved sufficiently expressive to capture the essential capabilities of stateless packet-filte-
ring systems while remaining generic enough to be applied across platforms with fun-
damentally different architectures and enforcement mechanisms. 
This demonstrates that the SLPF Profile provides an effective foundation for interope-
rability, allowing higher-level automation logic to remain independent of the underlying 
filtering technology. 

Despite its overall effectiveness, the SLPF Profile also presents some limitations that 
emerged during the integration of the four backend technologies. 
A first constraint concerns the representation of network-level filtering through the ip-
v4_net and ipv6_net targets. In their current form, these targets allow specifying only a 
single CIDR block, which must be interpreted either as the source network or as the de-
stination network [6]. This forces implementers to choose one of the two roles and pre-
vents the expression of rules that simultaneously constrain both source and destination 
networks. Allowing both to be specified explicitly would enable more precise and ex-
pressive filtering semantics. 
A second limitation relates to how traffic endpoints are expressed in the ipv4_connec-
tion, ipv6_connection, ipv4_net and ipv6_net targets. The profile mandates that both 
source and destination identifiers be expressed exclusively as IP addresses expressed in 
CIDR notation. While sufficient for basic filtering, this representation is restrictive 
when applied to modern firewalling systems that support higher-level abstractions. 
As observed in the OpenStack and Kubernetes actuators (Sections 5.10.2 and 5.11.2), 
CIDR ranges must first be mapped to the underlying logical entities of the platform, 
namely ports in OpenStack and pods in Kubernetes. For inbound rules, all ports or pods 
whose IP addresses match the specified CIDR must be identified as destinations, for 
outbound rules, the same process applies to determine the corresponding sources. 
In OpenStack, the selected ports must then be associated with appropriate Security 
Groups, which act as the enforcement mechanism for ingress and egress policies. 
In Kubernetes, the corresponding pods must be labeled and those labels are subsequen-
tly referenced in the Network Policies that enforce the filtering behavior. 
For this reason, it would be beneficial for the SLPF Profile to allow targets to be expres-
sed not only as IP-based address ranges but also as string identifiers representing hi-
gher-level objects known to the actuator. For example, in OpenStack this could corre-
spond to the specific OpenStack ports (network interfaces) targeted by the command, 
while in Kubernetes it could refer to the pods affected by the filtering action. Such an 
extension would increase expressiveness, reduce the reliance on IP-based matching and 
better align OpenC2 with the abstractions used by contemporary cloud-native and vir-
tualized firewall technologies. 
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Additionally, this approach would help mitigate issues related to the dynamic assign-
ment of IP addresses to virtual machines and pods, as commonly encountered in Open-
Stack and Kubernetes environments. 
The last limitation concerns the definition of the update action in the SLPF Specifica-
tion [6]. As currently described, update allows an actuator to replace its active filtering 
rules with the contents of a file referenced through a file target, provided that the file 
format is natively supported by the underlying firewall technology. While this approach 
works for systems that natively allow updating active rules from rule files, it becomes 
restrictive for environments that do not offer such functionality, as observed in the 
OpenStack and Microsoft Azure actuator implementations. 
To address this limitation, it would be beneficial to abstract the semantics of the update 
action so that it does not depend on implementation-specific rule files. Instead, the file 
target could contain a list of SLPF allow and deny commands, each with its associated 
targets and arguments, expressed in a standardized format, such as JSON. This approach 
would increase the applicability and usefulness of the update action in several ways. 
First, it would enable the use of all implementation-independent arguments (start_time, 
stop_time, duration, response_requested, insert_rule and persistent). Second, it would 
allow actuators whose native platforms do not support updates to implement the update 
action consistently and correctly, thereby improving interoperability across heteroge-
neous firewall technologies. 

Future developments could focus on extending the SLPF Actuator Manager to integrate 
additional actuators supporting other firewall technologies not covered in this work. 
Thanks to the modular and extensible architecture of the Actuator Manager, new actua-
tors can be implemented by defining the backend-specific methods responsible for 
translating and executing SLPF Commands in the target environment, while relying on 
the shared core functionalities provided by the Actuator Manager. 
This approach would allow the SLPF Actuator Manager to manage a broader range of 
packet-filtering systems, further validating the interoperability and flexibility of the 
SLPF Profile across diverse platforms. 
Moreover, future work could consider extending the SLPF Profile itself to support allow 
and deny targets identified by higher-level entities rather than only by IP addresses, 
enabling more expressive and platform-aware filtering rules across heterogeneous envi-
ronments. 
Finally, the potential of using artificial intelligence and large language models (LLMs) 
to automatically generate OpenC2 commands is currently being investigated in an on-
going thesis, aiming to further simplify command creation and enhance automation in 
network security management. 
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