
POLITECNICO DI TORINO

Laurea magistrale in Ingegneria Meccanica

Airsat: development of a two-dimensional

free-flyer simulator

Relatore Candidato

Prof. Stefano Mauro Ernesto Russo

Correlatore:

Ing. Matteo Melchiorre

Ing. Laura Salamina

Dott. Davide Sorli

Dott. Martina Ferrauto

A.A. 2024/2025

Contents

List of Figures VI

List of Tables VII

List of Acronyms VIII

Abstract 1

1 Introduction 2

1.1 Objectives . 2

2 State of art 4

2.1 Spacecraft simulator systems . 4

2.1.1 POSEIDYN testbed . 6

2.1.2 PINOCCHIO testbed . 9

2.1.3 DISCOWER ATMOS . 10

3 Design of the simulator: Bill of materials and CAD representation 14

3.1 Description of components . 14

3.1.1 Metal profile . 14

3.1.2 Thruster . 16

3.1.3 Air bearing . 17

3.1.4 Solenoid valve . 18

3.1.5 Air tank . 20

I

CONTENTS

3.1.6 Pressure regulator . 20

3.1.7 Arduino . 21

3.1.8 Reaction wheel . 22

3.1.9 Motor . 23

3.1.10 Battery . 25

3.1.11 IMU . 26

3.2 CAD Design . 27

3.2.1 Motor supports and tank holder 28

3.2.2 Control board support . 30

3.2.3 Miscellaneous Supports . 31

3.2.4 Complete CAD . 32

4 Digital twin and control strategy 34

4.1 Purpose of the model . 34

4.2 Digital twin . 35

4.2.1 Body . 36

4.2.2 Sensors . 37

4.2.3 Actuation . 39

4.2.4 Control . 45

4.2.5 Model results with sinusoidal trajectory 53

4.2.6 Model results with parabolic trajectory 61

5 Arduino code 64

5.1 Arduino functions . 64

5.1.1 Control logic . 65

5.1.2 Data acquisition . 65

5.1.3 Actuators control . 66

5.2 Code structure . 67

6 Design of the Control board 69

6.1 Control board . 69

II

CONTENTS

6.1.1 Command block . 70

6.1.2 Sensor block . 70

6.1.3 Valve block . 71

6.1.4 Motor block . 71

6.2 Electrical circuit . 73

7 Experimental results 74

7.1 Test bench setup . 74

7.2 Experimental tests . 75

7.2.1 Test 1: predefined rotation . 76

7.2.2 Test 2: reaction to an external disturbance 81

8 Conclusion 88

8.1 Future works . 89

A Matlab scripts 90

A.1 Main script . 90

A.2 Trajectory form . 99

A.3 Angular limitation . 101

A.4 w limitation . 102

Bibliography 105

III

List of Figures

2.1 Summary of spacecraft simulator systems 5

2.2 Line-up of the first- to fourth-generation floating spacecraft simulators

used on the POSEIDYN testbed . 7

2.3 Overview of the main elements of the POSEIDYN testbed 7

2.4 Schematic software architecture of the floating spacecraft simulator . . 9

2.5 PINOCCHIO platform . 10

2.6 Scheme of the GNC architecture of PINOCCHIO 10

2.7 DISCOWER ATMOS . 11

2.8 Avionics Plate . 12

3.1 Cross-section of aluminium profiles . 15

3.2 Automatic connector . 15

3.3 Aluminium profiles Structure assembled 16

3.4 Thruster . 17

3.5 MAGER air bearing HPC series . 18

3.6 3D representation of the valve . 19

3.7 Valve picture . 19

3.8 Air tank . 20

3.9 Pressure regulator . 21

3.10 Arduino Nano ESP32 . 22

3.11 Reaction wheel technical drawing . 23

3.12 Reaction wheel . 23

3.13 Motor picture . 24

IV

LIST OF FIGURES

3.14 Motor driver picture . 25

3.15 12V 0.65Ah NiCd Battery pack . 26

3.16 IMU MPU9250 . 27

3.17 Exploded view of motor supports and tank holder 29

3.18 Motor supports and tank holder picture 30

3.19 Control board support . 31

3.20 Miscellaneous Supports . 32

3.21 Airsat 3D assembly . 33

4.1 Simulink Model Homepage . 35

4.2 Body frame Simulink model and technical specifications 36

4.3 Reaction wheel Simulink model and technical specifications 37

4.4 Sensor block and Simulink connections 38

4.5 Sensor subsystem . 39

4.6 NASA thruster equations . 40

4.7 Thruster model . 41

4.8 PWM subsystem . 42

4.9 Entire translation motion subsystem 43

4.10 Motor driver block . 44

4.11 Theorical trajectory . 46

4.12 Theorical velocity profile . 47

4.13 Simulink model of rotation matrix . 52

4.14 Control model . 52

4.15 comparison of the trajectories . 53

4.16 Comparison of x velocities . 54

4.17 Comparison of y velocities . 54

4.18 Comparison of absolute velocities . 55

4.19 Orientation comparison . 56

4.20 Position and orientation error . 57

4.21 Velocity error . 57

V

LIST OF FIGURES

4.22 motor torque output . 58

4.23 motor command voltage . 59

4.24 x-Force scopes . 60

4.25 y-Force scopes . 60

4.26 Parabolic trajectory . 62

4.27 Position and orientation error of parabolic trajectory 62

4.28 Velocity error of parabolic trajectory 63

5.1 Five code states . 68

6.1 Control board . 70

6.2 Protection circuit of data-sheet . 72

6.3 Electrical circuit . 73

7.1 Test bench setup . 75

7.2 Angular acceleration, velocity and position profile 77

7.3 Angular position comparison . 78

7.4 Angular velocity comparison . 79

7.5 Angular velocity comparison zoomed 80

7.6 Disturbance effect on angular position 82

7.7 Disturbance effect on angular velocity 83

7.8 Disturbance effect on angular position with modified script 84

7.9 Disturbance effect on angular velocity with modified script 85

7.10 Motor control torque . 87

VI

List of Tables

3.1 Air bearing performance with 4 bar relative air supply pressure 18

3.2 Parameters of motor model . 24

4.1 Data of pneumatic mode . 40

4.2 Sinusoidal trajectory parameters . 45

4.3 Parabolic trajectory parameters . 61

7.1 LQI parameters of experimental tests 76

VII

Acronyms

ADR Active Debris Removal. 1

CAD Computer aided design. 27, 30, 32, 36

dc duty cycle. 41, 42

FSS Floating Spacecraft Simulator. 2, 6

GNC Guidance navigation and control. 8, 9

HIL Hardware in the loop. 8

IMU Inertial Measurement Unit. 12, 26, 30, 64, 65, 69, 70, 74, 78, 80, 82, 84, 85, 89

LQI Linear Quadratic Integral. 45, 47, 48, 50, 65, 66, 78, 84

LQR Linear Quadratic Regulator. 47, 48

myDAS Mini Dynamic Autonomous Spacecraft Simulator. 2

OOS On-Orbit Servicing. 1

PLA Polylactic acid. 29

PWM pulse-width modulation. 18, 39, 41, 42, 59, 64, 66, 67, 71

VIII

Abstract

Space is evolving into a dynamic environment with expanding opportunities enabled

by advancing technologies. From communication satellites and Earth observation to sci-

entific exploration and future space infrastructure, the number of missions and systems

operating in orbit continues to grow. With this expansion comes the need for more

advanced technologies to manage, service, and interact with objects in space, especially

in complex conditions like microgravity and in the presence of uncooperative or tum-

bling targets. Applications such as On-Orbit Servicing (OOS), Active Debris Removal

(ADR), and autonomous inspection rely heavily on robotics and precise control.

To develop and test these technologies, it’s essential to have reliable simulation

platforms that can reproduce, at least partially, the dynamics of space. Conducting

experiments in orbit is expensive and often impractical, so ground-based simulators

(particularly those that replicate microgravity conditions) are a key part of the devel-

opment process.

This thesis focuses on the simulation of a robotic system designed for planar mi-

crogravity environments, with the goal of supporting research in autonomous space

operations. The work includes modeling, control, and testing of a system that mimics

the behavior of a free-floating satellite in space. The study covers the full development

of the system, from the conception and realization of the physical robot to the modeling

of its digital counterpart in MATLAB/Simulink, concluding with the design of a control

strategy that ensures precise and stable performance under realistic operating condi-

tions. As a final step, the robot was experimentally tested in a laboratory environment

on a resin-coated planar surface.

1

Chapter 1

Introduction

At the foundation of this research lies the necessity of developing, at the Politecnico

di Torino, a Floating Spacecraft Simulator (FSS) [1], conceptually similar to the Mini

Dynamic Autonomous Spacecraft Simulator (myDAS) [2] platform currently in oper-

ation at the Naval Postgraduate School. The motivation behind such an initiative is

twofold: on the one hand, to provide a versatile experimental facility that enables the

safe testing of guidance, navigation, and control algorithms for spacecraft-like systems;

on the other, to contribute to the advancement of the laboratory’s capabilities in the

field of space robotics and autonomous systems.

1.1 Objectives

This thesis investigates the dynamics and control of a spacecraft operating in a pla-

nar microgravity-like environment, using a testbed that approximates two-dimensional

motion with minimal friction. The aim is to analyze the behavior of the system and de-

velop suitable control strategies for trajectory tracking under conditions that resemble

those encountered in space missions.

The work encompasses a comprehensive analysis of the system architecture, includ-

ing a detailed description of its physical components and their integration. Particular

2

CHAPTER 1. INTRODUCTION

attention is given to the construction of a high-fidelity digital twin, which replicates the

behavior of the real system and serves as a foundation for the design and preliminary

testing of trajectory control strategies.

The first part of the thesis presents a brief overview of related experimental plat-

forms used in the simulation of spacecraft dynamics. This literature review aims to

contextualize the present work, highlighting the main methodologies adopted in the

field and identifying the unique contributions of this study.

3

Chapter 2

State of art

This opening chapter is therefore devoted to a review of the state of the art, with the

objective of situating the present work within its broader scientific and technological

context. Particular emphasis is placed on identifying what has already been achieved in

similar projects in academic environments, and on clarifying the elements of novelty that

this research aims to introduce. By outlining the existing achievements and highlighting

the gaps that remain, the chapter sets the stage for a deeper understanding of the scope,

relevance, and potential impact of the simulator developed in this thesis.

2.1 Spacecraft simulator systems

Before delving into the specific details of the project, it is essential to examine the

existing models and categories of spacecraft simulators. Such an investigation allows

not only for a comprehensive understanding of the different approaches that have been

developed over the years, but also for a clear identification of the conceptual framework

in which the present work can be situated.

Accordingly, the following figure 2.1 [1] is presented , which illustrates the main

classifications of spacecraft simulator systems. This schematic overview serves to orga-

nize the different existing approaches into well-defined categories, thereby facilitating

4

CHAPTER 2. STATE OF ART

Figure 2.1: Summary of spacecraft simulator systems

the identification of the framework within which the present project can be positioned.

Through this classification, it becomes easier to place the present project within the

broader landscape of spacecraft simulators. Specifically, the system under development

is conceived as a laboratory-based dynamic simulator. Unlike kinematic simulators, a

dynamic simulator physically generates the forces and torques acting on the spacecraft

by means of real actuators - the very same type that would be employed in an actual

mission [3].

In this case, the adopted simulation technology relies on a robot capable of moving

in a two-dimensional plane, suspended by means of air bearings that minimize friction

and emulate free-space conditions. The overall system exhibits three degrees of freedom:

5

CHAPTER 2. STATE OF ART

two translational (along the x and y axes) and one rotational (about the out-of-plane

axis).

2.1.1 POSEIDYN testbed

The primary source of inspiration for the present work is the POSEIDYN testbed [4],

developed at the Naval Postgraduate School. Given its strong conceptual similarity to

the system designed in this project, a concise analysis of its architecture and operating

principles is of particular relevance. Accordingly, this section is devoted to an overview

of the models underpinning the POSEIDYN facility, as well as a brief account of its

historical development and research applications.

Since its inception, the POSEIDYN facility at the Naval Postgraduate School has

undergone continuous development, leading to the realization of four successive genera-

tions of FSS, each introducing novel capabilities [4]. The FSS is designed to float on an

air-bearing system, enabling planar motion with negligible friction and thus replicating

the dynamical conditions of orbital free flight. As illustrated in the figure 2.4 actuation

is provided by cold-gas thrusters, arranged to deliver translational manoeuvrability,

while rotation is provided by a reaction wheel. Equipped with onboard sensors, such as

IMUs and cameras, each FSS can operate as an independent spacecraft analogue within

the Hardware-in-the-Loop framework of POSEIDYN[4]. The first generation focused on

rendezvous and docking, incorporating an early prototype of a capture system[5]. The

second generation expanded actuation capabilities by integrating vectorable thrusters

together with a miniature control moment gyroscope, enabling more complex attitude

manoeuvrers[6, 7]. With the third generation, the design philosophy shifted toward a

lightweight structure, replacing the aluminium body with polycarbonate components

fabricated via additive manufacturing, and introducing standardized docking interfaces.

Finally, the fourth generation consolidated the use of polycarbonate structures while

incorporating a dedicated standardized interface for compatibility with robotic manip-

ulator research[8]. This evolutionary progression reflects the constant refinement of the

testbed, both in terms of materials and functionality, in order to support increasingly

6

CHAPTER 2. STATE OF ART

sophisticated experimental scenarios in proximity operations. In the following figure

2.2 [4], the successive evolutions of the robotic platforms are illustrated, while figure

2.3 [4] presents the experimental workspace in which the simulators operate.

Figure 2.2: Line-up of the first- to fourth-generation floating spacecraft simulators used

on the POSEIDYN testbed

Figure 2.3: Overview of the main elements of the POSEIDYN testbed

7

CHAPTER 2. STATE OF ART

The testbed combines the physical dynamics of the free-flying simulators with a real-

time orbital dynamics simulator, implementing a Hardware in the loop (HIL) frame-

work. In this way, Guidance navigation and control (GNC) algorithms can be tested

against realistic scenarios, where the simulated space environment is continuously cou-

pled with the actual response of the physical vehicles. This software-driven integration

makes it possible to replicate proximity operations(such as rendezvous, docking, and

servicing) in a safe and repeatable laboratory setting, without the risks and costs asso-

ciated with on-orbit experiments. The facility therefore serves not only as a mechanical

emulator of microgravity conditions, but as a versatile research environment for the

validation of navigation filters, sensor fusion strategies, and autonomous control laws

under conditions that closely approximate those of real space missions[4].

The software architecture of the POSEIDYN facility, illustrated in figure 2.4 [4],

is structured in a modular and flexible manner, enabling seamless integration between

simulated orbital dynamics, sensor data, and control algorithms. Real-time HIL ex-

ecution allows the physical free-flying simulators to be directly coupled with orbital

dynamics models, ensuring that both sensor readings and actuator commands reflect

realistic mission scenarios. Sensor data are continuously processed and fused through

dedicated filtering modules, while guidance and control outputs are translated into

thruster commands in real time. This modular design makes the architecture highly

scalable and reconfigurable, allowing new sensors, estimation techniques, or control laws

to be incorporated without fundamental modifications to the system[4].

8

CHAPTER 2. STATE OF ART

Figure 2.4: Schematic software architecture of the floating spacecraft simulator

The navigation subsystem of POSEIDYN is designed to provide real-time estima-

tion of the vehicle’s state by exploiting the complementary characteristics of different

sensors. Inertial measurements offer high-frequency data suitable for short-term state

propagation, but they are inherently affected by noise and drift. In contrast, vision-

based observations deliver drift-free relative measurements, although at lower update

rates and with greater sensitivity to environmental conditions. The core of the subsys-

tem therefore lies in the software integration of these data streams, where filtering algo-

rithms such as the Kalman filter are employed to fuse inertial and visual information[4].

2.1.2 PINOCCHIO testbed

A relevant contribution to ground-based experimental platforms for spacecraft GNC

is represented by the PINOCCHIO project, developed at Sapienza University of Rome,

whose current configuration is shown in the figure 2.5 [9]. The first stage of the project,

presented in 2012[10], focused on the design and validation of a low-cost frictionless 2D

testbed. The platform, levitating on air bearings and actuated by cold-gas thrusters,

was conceived to reproduce a planar microgravity environment for testing guidance

strategies, control laws, and navigation sensors. Particular attention was devoted to

9

CHAPTER 2. STATE OF ART

the selection and characterization of inertial sensors in combination with an optical flow

device and a Kalman filter. Experimental campaigns demonstrated the capability of the

platform to perform increasingly complex manoeuvrers – from attitude acquisition to

trajectory tracking and combined translational-rotational motions – highlighting both

the soundness of the architecture and the limitations imposed by air supply duration.

A simplified scheme of its functional architecture is depicted in the figure 2.6 [9].

Figure 2.5: PINOCCHIO platform

Figure 2.6: Scheme of the GNC ar-

chitecture of PINOCCHIO

2.1.3 DISCOWER ATMOS

A recent and noteworthy initiative in the field of space robotics testbeds is ”DIS-

COWER ATMOS” (Autonomy Testbed for Multi-purpose Orbiting Systems) [11], de-

veloped at the KTH Space Robotics Laboratory of Stockholm. ATMOS is conceived

as an open-source, modular free-flyer platform designed to reproduce in a planar con-

10

CHAPTER 2. STATE OF ART

figuration, the near-frictionless conditions of microgravity using an air-bearing support

system. Its architecture includes a modular actuation plate compatible with solenoid

thrusters and propeller-based actuators, and a payload support system that allows test-

ing various configurations and instruments. The entire structure is shown in figure 2.7.

Figure 2.7: DISCOWER ATMOS

One of the most significant contributions of ATMOS lies in its goal to reduce the

cost and complexity of space system validation. By providing a realistic, ground-based

environment that replicates orbital dynamics, ATMOS minimizes the need for expen-

sive in-orbit experiments and accelerates the development cycle of autonomous space

systems. Researchers can perform hardware-in-the-loop simulations, software testing,

and control validation directly on Earth, lowering both logistical and financial barriers

11

CHAPTER 2. STATE OF ART

to experimentation.

Equally important is its open-source nature, which democratizes access to advanced

space robotics research. The complete documentation, bill of materials, and assembly

instructions are freely available online, enabling laboratories and universities worldwide

to replicate and adapt the platform for their own research needs. This open-access ap-

proach fosters collaboration, transparency, and reproducibility, while also promoting the

standardization of experimental methodologies within the space robotics community.

The core of the hardware architecture of ATMOS is the control platform, called

“Avionics Plate”, showed in the following figure, containing controllers commonly used

in autonomous systems like the Pixhawk and an NVIDIA Jetson integrated processing

card.

Figure 2.8: Avionics Plate

Within the context of the DISCOWER project, the NVIDIA Jetson Orin NX serves

as a high-performance edge AI computing module responsible for executing advanced

perception and data processing tasks. It enables real-time processing of sensor in-

puts such as camera feeds and supports the implementation of artificial intelligence

algorithms needed for autonomous decision-making and environmental understanding.

Complementarily, the Pixhawk functions as the flight controller and low-level sensor

fusion unit, managing real-time control of the free-flyer platform by integrating inertial

measurements from the onboard Inertial Measurement Unit (IMU) and other sensors.

12

CHAPTER 2. STATE OF ART

It executes control commands and stabilizes the robot’s attitude and motion, interfac-

ing with propulsion systems to achieve precise manoeuvring. The integration of these

two systems allows DISCOWER’s ATMOS free-flyer to combine robust autonomous

control with sophisticated onboard intelligence.

13

Chapter 3

Design of the simulator: Bill of

materials and CAD representation

This chapter is devoted to the presentation of its main components, with the aim

of providing a comprehensive understanding of the elements that constitute the system

and of facilitating the description of the construction process and its various stages.

3.1 Description of components

3.1.1 Metal profile

The constructed metal framework closely resembles the second generation model

of the POSEIDYN test bench[4]. Aluminium profiles manufactured by Item with a

30x24mm cross-section are employed [12], as illustrated in the figure 3.1.

14

CHAPTER 3. DESIGN OF THE SIMULATOR: BILL OF MATERIALS AND CAD
REPRESENTATION

Figure 3.1: Cross-section of aluminium profiles

The connection between the various profiles is achieved using item automatic-

fastening set [13], as illustrated in the figure 3.2.

Figure 3.2: Automatic connector

These connectors are fastened into the profile grooves and do not require any ad-

ditional machining. The structure consists of four 606mm profiles, which define the

height of the robot, and an additional thirteen 300mm profiles, which are used both

15

CHAPTER 3. DESIGN OF THE SIMULATOR: BILL OF MATERIALS AND CAD
REPRESENTATION

to complete the frame and to support various component mounts. The final assembled

structure is shown in the following figure 3.3.

Figure 3.3: Aluminium profiles Structure assembled

3.1.2 Thruster

The thrusters installed on the robot, which are responsible for generating the trans-

lational motion required to follow the desired trajectory, consist of simple convergent

nozzles with a critical diameter of 1mm. On the rear side, they are equipped with a

quick coupling for the ∅6mm tubing, as illustrated in Figure 3.4 below. Each thruster

is composed of two separate parts that can be screwed together

16

CHAPTER 3. DESIGN OF THE SIMULATOR: BILL OF MATERIALS AND CAD
REPRESENTATION

Figure 3.4: Thruster

3.1.3 Air bearing

The air bearings used in the project, which serve to simulate a microgravity envi-

ronment by allowing nearly frictionless planar motion, are manufactured by MAGER

and correspond to the circular models of the HPC series (Figure 3.5). They feature a

diameter of ∅60mm and a height of 18mm.

17

CHAPTER 3. DESIGN OF THE SIMULATOR: BILL OF MATERIALS AND CAD
REPRESENTATION

Figure 3.5: MAGER air bearing HPC series

The performance of the bearing, evaluated at a reference pressure of 4bar (relative),

is summarized in the table below 3.1 [14].

performances 10µm air gap h

Load [N] Stiffness[N/µm] Air Consumption [l/min ANR] -

525 48 3.1 -

performances maximum stiffness R

Maximum sfiffness [N/µm] Air gap [µm] Load [N] Air consumption [l/min ANR]

51 9.0 575 2.8

Table 3.1: Air bearing performance with 4 bar relative air supply pressure

3.1.4 Solenoid valve

Within the project, the solenoid valves are employed for both the control of the

thrusters and the operation of the air bearings. Specifically, five MatrixMX 821.100C224

valves have been used [15]: four of them control via a pulse-width modulation (PWM)

signal all the thrusters, one valve for each direction, and one used as a digital valve

controls the four air bearing.

18

CHAPTER 3. DESIGN OF THE SIMULATOR: BILL OF MATERIALS AND CAD
REPRESENTATION

The following figures 3.6 present a 3D representation of the valve, followed by a

photograph 3.7 of the actual valve installed on board.

Figure 3.6: 3D representation of the valve

Figure 3.7: Valve picture

19

CHAPTER 3. DESIGN OF THE SIMULATOR: BILL OF MATERIALS AND CAD
REPRESENTATION

3.1.5 Air tank

The compressed air tank adopted in the project is a Smaco S400 model, featuring

a capacity of 1litre and a maximum operating pressure of 20MPa [16]. This tank

supplies the compressed air required to operate both the thrusters and the air bearings.

The following image illustrates the reservoir used.

Figure 3.8: Air tank

3.1.6 Pressure regulator

To reduce the cylinder pressure to the levels required by the thrusters and the air

bearings, two pressure regulators are employed: the first reduces the pressure from

200bar to 7bar, while the second further decreases it to 4bar. One of the pressure

regulator used is depicted in the figure 3.9 below.

20

CHAPTER 3. DESIGN OF THE SIMULATOR: BILL OF MATERIALS AND CAD
REPRESENTATION

Figure 3.9: Pressure regulator

3.1.7 Arduino

An Arduino Nano ESP32 microcontroller, illustrated in the following figure 3.10,

is used as the onboard control unit. This board enables both the physical interfacing

with the system components through its I/O pins and the development and execution

of the control algorithms.

21

CHAPTER 3. DESIGN OF THE SIMULATOR: BILL OF MATERIALS AND CAD
REPRESENTATION

Figure 3.10: Arduino Nano ESP32

The topic of Arduino will be discussed in greater detail in the following chapters,

focusing on both the design of the electrical schematic and the implementation of the

control code.

3.1.8 Reaction wheel

The reaction wheel consists of a simple perforated brass disk, mounted onto the

motor shaft and rotating rigidly with it. This component is responsible for generating

the torque required to rotate the robot about its vertical axis. Below, a sectional

drawing 3.11 of the component is provided, together with a picture 3.12 of the real

component.

22

CHAPTER 3. DESIGN OF THE SIMULATOR: BILL OF MATERIALS AND CAD
REPRESENTATION

Figure 3.11: Reaction wheel technical drawing

Figure 3.12: Reaction wheel

3.1.9 Motor

The reaction wheel is actuated by a Maxon EC 45 Flat Brushless motor, character-

ized by an outer diameter of 42.9mm and a nominal power rating of 30W . The main

technical specifications of the motor are summarized in Table 3.2, which reports the

parameters with heir respective symbols, descriptions, and units of measurement for

23

CHAPTER 3. DESIGN OF THE SIMULATOR: BILL OF MATERIALS AND CAD
REPRESENTATION

clarity and ease of reference[17].

Name Symbol Value Unit of measurement

torque constant kc 25.5e− 3 Nm/A

voltage constant ke 25.5e− 3 V/(rad/s)

Inductance L 0.56e− 3 H

Resistance R 1.2 Ω

Rotor inertia Im 9.25e− 06 kgm2

Disk inertia Ir 1.3e− 3 kgm2

coefficient of friction Γ 0 Nm/(rad/s)

Nominal torque Cn 55e− 3 Nm

Table 3.2: Parameters of motor model

The figure 3.13 provides a visual representation of the component.

Figure 3.13: Motor picture

The DEC 50/5 module (Digital EC Controller) is a compact single-quadrant digital

controller, specifically designed for the control of brushless DC motors (electronically

commutated) with power ratings of up to 250W . This driver is characterized by its

24

CHAPTER 3. DESIGN OF THE SIMULATOR: BILL OF MATERIALS AND CAD
REPRESENTATION

high versatility, enabled by a wide input supply voltage range (6 to 50V DC) [18]. The

component is illustrated in the figure 3.14 below.

Figure 3.14: Motor driver picture

3.1.10 Battery

To accommodate the requirement for three distinct voltage levels, 12V for the motor,

24V for the valves and 5V for Arduino, two 12V , 0.65Ah RS Pro NiCd batteries are

connected in series, showed in the following figure 3.15 [19]. So, this configuration

supplies both a 12V output and a 24V output. Separately, the Arduino board is

powered by a standard power bank. NiCd cells offer a balanced solution in terms

of weight, robustness, and ease of integration, unlike lead-acid batteries, which are

significantly heavier for the same capacity, and lithium batteries, which require more

complex protection circuitry to ensure safe operation.

25

CHAPTER 3. DESIGN OF THE SIMULATOR: BILL OF MATERIALS AND CAD
REPRESENTATION

Figure 3.15: 12V 0.65Ah NiCd Battery pack

3.1.11 IMU

For the acquisition of position and velocity data, an MPU-9250 IMU sensor was

employed. This component integrates an accelerometer, a gyroscope, and a magne-

tometer. Further details on the implementation are discussed in the following chapters.

The component is depicted in the figure 3.16 below

26

CHAPTER 3. DESIGN OF THE SIMULATOR: BILL OF MATERIALS AND CAD
REPRESENTATION

Figure 3.16: IMU MPU9250

3.2 CAD Design

Having now defined all the components that constitute the robot, it is possible

to proceed with the development of the 3D Computer aided design (CAD) model.

In the early stages of a project, a well-designed 3D model is essential for gaining a

clear understanding of how the various elements can be assembled and, ultimately, for

obtaining an accurate overview of the overall dimensions and spatial requirements of

the final system.

In the SolidWorks environment, the ”.STEP” files of the commercial components,

downloaded directly from online catalogues, are imported, while the more generic com-

ponents, or those for which no 3D CAD model is provided, are modelled directly within

SolidWorks.

A series of support structures are then designed to secure the various components

to the aluminium-frame body. Since these parts are intended to be manufactured using

27

CHAPTER 3. DESIGN OF THE SIMULATOR: BILL OF MATERIALS AND CAD
REPRESENTATION

fused-filament 3D printing on a Bambu Lab X1C printer, they are conceived with the

goal of minimizing the need for printing supports and reducing material consumption.

For this reason, a modular approach is adopted, producing smaller components that can

be assembled together through interlocking features or bolts. To fasten the components

to the aluminium profiles, a set of sliding T-Slot nuts manufactured by Item is used

[20]; these are inserted into the profile grooves and feature threaded M5 holes matching

the dimensions of the screws employed for the assembly.

3.2.1 Motor supports and tank holder

The motor and reaction wheel must be positioned as close as possible to the robot’s

central axis in order to ensure correct rotation about its own axis. However, the

compressed-air cylinder is the heaviest single component of the system, and it is there-

fore equally important that it, too, be aligned with the robot’s vertical axis. Building

on this requirement, the support structure is designed with a dual function: it hosts

both the motor and the reaction wheel, and it provides a stable mounting base for the

cylinder.

The exploded view of the structure is shown in the following figure 3.17.

28

CHAPTER 3. DESIGN OF THE SIMULATOR: BILL OF MATERIALS AND CAD
REPRESENTATION

Figure 3.17: Exploded view of motor supports and tank holder

The positioning of this support takes advantage of the two profiles located in the

lower part of the structure, visible in the figure 3.3.

Since these elements perform structural functions, all parts are printed in carbon-

fiber-reinforced Polylactic acid (PLA), with the exception of the component that houses

the cylinder which is made of standard PLA, whose primary role is to ensure correct

alignment between the cylinder and the reaction wheel.

The assembled component is shown in the following image 3.18.

29

CHAPTER 3. DESIGN OF THE SIMULATOR: BILL OF MATERIALS AND CAD
REPRESENTATION

Figure 3.18: Motor supports and tank holder picture

3.2.2 Control board support

In the following chapters, the construction of the control board, which integrates

all the electronic components of the simulator, including Arduino and the IMU, is

discussed in detail. However, knowing the position of the board in advance is essential

to allow for a more efficient assembly and soldering of the components. The board is

therefore placed at the bottom of the robot to increase stability and to minimize the

length of the wires connecting it to the motor and to the batteries. The space between

the two profiles supporting the motor mount is utilized, allowing the control board to

be positioned along the robot’s central axis. The following figures show the support

base CAD and the control board and its support base, connected with the aid of nylon

spacers.

30

CHAPTER 3. DESIGN OF THE SIMULATOR: BILL OF MATERIALS AND CAD
REPRESENTATION

(a) Control board support CAD (b) Control board and its support base

Figure 3.19: Control board support

3.2.3 Miscellaneous Supports

Additional support elements have been designed, such as battery enclosures 3.20a,

a cylindrical holder to be fixed to the mid-height profile for the tank 3.20b, valve

compartments 3.20c, air-bearing mounts 3.20d, and angled structures for integrating

the thrusters 3.20e. The images of the designed components are presented below

31

CHAPTER 3. DESIGN OF THE SIMULATOR: BILL OF MATERIALS AND CAD
REPRESENTATION

(a) battery enclosures (b) Tank holder

(c) valve compartments (d) Air bearing mounts

(e) thrusters support

Figure 3.20: Miscellaneous Supports

3.2.4 Complete CAD

By combining the 3D CAD models of the commercial components with those of the

custom-designed parts, the final assembly of the simulator is obtained. An image of the

complete model is reported below, with the main components highlighted using arrows.

32

CHAPTER 3. DESIGN OF THE SIMULATOR: BILL OF MATERIALS AND CAD
REPRESENTATION

Figure 3.21: Airsat 3D assembly

33

Chapter 4

Digital twin and control strategy

4.1 Purpose of the model

The model has been conceived as a digital twin of the laboratory testbed, providing

a virtual environment in which experiments can be carried out safely and without the

risk of damaging real hardware. This framework serves as a foundation for testing and

validation activities, offering both flexibility and reliability.

In the context of this thesis, the digital twin is employed to investigate control

strategies for trajectory tracking. Specifically, the work focuses on the design of a

controller capable of guiding the robot along a prescribed path while ensuring com-

pliance with predefined velocity limits. Additionally, the control system is expected

to maintain accurate trajectory tracking even in the presence of external disturbances,

such as unexpected force perturbations. This approach not only facilitates a deeper

understanding of the system dynamics but also provides a safe and effective means of

assessing the performance of advanced control solutions prior to their implementation

on the physical platform.

34

CHAPTER 4. DIGITAL TWIN AND CONTROL STRATEGY

4.2 Digital twin

The development of the digital twin of the test bench was initiated using MATLAB

Simulink, in conjunction with the Simscape Multibody extension. The objective of

this model is to replicate the dynamic behaviour of the real system with a high degree

of fidelity. To enhance the clarity and comprehensibility of the Simulink model, its

architecture has been structured into four main subsystems (fig. 4.1): Body, Sensors,

Actuation, and Control. This modular organization facilitates both the description and

the analysis of the system, allowing each functional block to be examined in isolation

before considering their interactions. In the present section, these subsystems will be

introduced individually, while subsequent discussion will place particular emphasis on

the Control subsystem, as it constitutes one of the core themes of this thesis.

Figure 4.1: Simulink Model Homepage

35

CHAPTER 4. DIGITAL TWIN AND CONTROL STRATEGY

4.2.1 Body

The modelling process began with the reproduction of the robot’s physical structure:

as shown in the following figure 4.2, the frame was represented through rigid bodies

whose masses, dimensions, and spatial positions were consistent with those of the CAD

model of the real system. For the sake of computational efficiency, the structural

representation was simplified to a single parallelepiped, while preserving the key physical

parameters necessary for accurate dynamic simulation.

Figure 4.2: Body frame Simulink model and technical specifications

The second physical element incorporated into the model is the reaction wheel,

represented in a simplified form as a rigid disk (figure 4.3) coaxial with the robot and

constrained to rotate solely about its own axis through the use of a revolute joint.

A rigid transformation block is employed to position the reaction wheel at the same

height as in the CAD reference; however, this transformation serves only for spatial

consistency within the model and does not play a critical role in the system’s functional

36

CHAPTER 4. DIGITAL TWIN AND CONTROL STRATEGY

behavior. The choice to model the reaction wheel as an ideal rigid disk was made to

reduce computational complexity while retaining the essential inertial properties that

influence the robot’s rotational dynamics. This abstraction allows the simulation to

capture the wheel’s contribution to attitude control without introducing unnecessary

geometric details that would have minimal impact on the overall system behaviour.

Figure 4.3: Reaction wheel Simulink model and technical specifications

4.2.2 Sensors

The sensor subsystem presents a relatively straightforward configuration. The phys-

ical sensing devices onboard the robot are represented in the model by a Transform

Sensor block, as shown in figure 4.4, which measures the linear accelerations along

the principal axes and the angular velocity about the axis orthogonal to the plane of

motion.

37

CHAPTER 4. DIGITAL TWIN AND CONTROL STRATEGY

Figure 4.4: Sensor block and Simulink connections

A closer inspection of the model connections reveals that the Body Frame (denoted

by B in the Simulink block, as illustrated in Figure 4.4) is attached to the robot, whereas

the Follower Frame (denoted by F) is linked to the World Frame, i.e., the inertial

reference system. This arrangement results in the measured values being inverted with

respect to the desired sign convention. To address this, the sensor outputs are multiplied

by a gain of −1 to ensure consistency in the reference frames. Subsequently, integration

blocks are employed to obtain the corresponding position and orientation quantities

from the measured accelerations and angular velocity. These derived signals are then

utilized in the control subsystem for feedback and state estimation purposes. The

following figure 4.5 represents the subsystem under discussion.

38

CHAPTER 4. DIGITAL TWIN AND CONTROL STRATEGY

Figure 4.5: Sensor subsystem

4.2.3 Actuation

With regard to actuation, two distinct mechanisms can be identified: translational

motion, resulting from the pneumatic thrust generated by the thrusters, and rotational

motion, ensured by the reaction wheel. In the following subsections, the modelling

approaches underlying each of these systems are examined separately, with the aim

of elucidating their respective operating principles and their role within the overall

dynamics of the robot.

Translation motion

As previously discussed, translational motion is provided by pairs of pneumatic

thrusters and solenoid valves, which, through PWM) control, are capable of delivering

a variable thrust force. The magnitude of this force is determined by the supply pressure

of the thrusters, which is controlled by a pressure regulator supplied by the onboard

tank. In the Simulink model, a simplification was introduced: each thruster is repre-

sented as a purely convergent nozzle, while the valve model was omitted. Preliminary

tests demonstrated that including the valve dynamics had no significant impact on the

overall behavior of the system, while unnecessarily increasing the computational load.

39

CHAPTER 4. DIGITAL TWIN AND CONTROL STRATEGY

The thruster model was developed using the governing equations for convergent nozzles

obtained from NASA’s technical resources [21], illustrated in the following figure 4.6,

and its schematic representation is shown in figure 4.7 [21].

Figure 4.6: NASA thruster equations

All the parameters employed in the model are reported in the table below 4.1.

Name Symbol Value Unit of measurement

Temperature T 293 K

Heat capacity ratio γ 1.4 −
Nozzle throat A 7.854e− 7 m2

Gas constant Rgas 287 J/(kgK)

Thrusters’ supply pressure p 7 bar

Table 4.1: Data of pneumatic mode

40

CHAPTER 4. DIGITAL TWIN AND CONTROL STRATEGY

Figure 4.7: Thruster model

To obtain an accurate estimate of the force required to achieve the displacement

commanded by the control system, the thruster model alone is insufficient, as it can

only represent the maximum deliverable thrust. For this reason, the thruster model was

complemented with a PWM block, which modulates its output force proportionally to

the theoretical command signal, with a modulation period of 0.01s in accordance with

the valve specifications. The thrust produced by each individual thruster is therefore

computed as the product of its maximum deliverable force and duty cycle (dc) (output

of the PWM block), the latter being a dimensionless value ranging between 0 and 1, as

expressed in eq.(4.2.1)

Fthruster = Fmax · dc (4.2.1)

A closer examination of the PWM subsystem reveals that, in addition to the stan-

41

CHAPTER 4. DIGITAL TWIN AND CONTROL STRATEGY

dard PWM block provided by Simulink, several auxiliary blocks have been incorporated

to enhance the correspondence between the model and the real system. As will be dis-

cussed in a later section, the control block generates three output signals (two force

commands and one torque command) which serve as inputs to the respective actua-

tion blocks. As shown in the figure 4.8 before reaching the PWM block, the command

signal undergoes a series of preprocessing steps to ensure correct operation. First, it

is normalized with respect to the force requested by the control block. The resulting

value is then saturated within the range [0, 1], passed through a low-pass filter, and

subsequently adjusted to account for the operational constraints of the solenoid valve.

Specifically, for dc below 0.1, the valve is unable to open, resulting in a null output; con-

versely, for dc above 0.9, the valve’s response becomes slower than the input command,

effectively remaining fully open and producing a constant output of 1.

Figure 4.8: PWM subsystem

Finally, the total translational force is computed as the sum of the contributions pro-

vided by each pair of thrusters, arranged along the four sides of the robot, represented

in the figure 4.9.

42

CHAPTER 4. DIGITAL TWIN AND CONTROL STRATEGY

Figure 4.9: Entire translation motion subsystem

Rotational motion

Rotational motion is provided by a reaction wheel, conceptually comparable to a

rigid disk driven by an electric motor. Since the rotating disk has already been mod-

elled as part of the body subsystem, the present section focuses on the modelling of

the electric motor and the corresponding command signal. The development of the

motor model, simulated as a DC motor, requires reference to the fundamental elec-

trical and mechanical equations (4.2.2) governing its operation, namely the loop (or

armature) voltage equation, the torque generation equation, and the rotational equi-

librium equation. These relationships provide the basis for accurately reproducing the

motor’s electromechanical behaviour within the simulation environment. By applying

the Laplace transform to these governing equations, the system can be expressed in

43

CHAPTER 4. DIGITAL TWIN AND CONTROL STRATEGY

the frequency domain, thereby facilitating the derivation of a compact mathematical

representation suitable for implementation within the Simulink environment.
V̄ = R · ī+ L · s · ī+ ke · ω̄

C̄m = kc · ī

C̄m = Ir · s · ω̄ + Im · s · ω̄ + Γ · ω̄

(4.2.2)

Consequently, the driving torque (4.2.3) delivered by the motor can be expressed

as:

C̄m =
kc · (Im + Ir) · s+ Γ · kc

L · (Im + Ir) · s2 + (R · (Im + Ir) + L · Γ) · s+ (ke · kc +R · Γ)
· V̄ (4.2.3)

The parameters introduced in the preceding equations are summarized in Table

3.2,previously discussed. As already mentioned, the system input is a torque command,

which must be converted into a voltage signal. Since the motor control voltage is

required to be proportional to the motor speed, the motion torque is first used to

compute the angular acceleration, which is then integrated to obtain the rotational

speed. This value is subsequently normalized with respect to the maximum voltage

of 12V , with an efficiency of 0.95%. The motor driver subsystem is illustrated in the

figure below 4.10.

Figure 4.10: Motor driver block

44

CHAPTER 4. DIGITAL TWIN AND CONTROL STRATEGY

4.2.4 Control

This final section focuses on the control subsystem, which represents the core of the

model. Based on the outcomes of the literature review, a Linear Quadratic Integral

(LQI) controller was selected as the most suitable strategy. The following discussion is

therefore devoted to outlining the operating principles of this control approach and to

clarifying the rationale behind its adoption in the present application. As previously

outlined, the development of a trajectory control system necessarily begins with the

specification of the reference path to be followed. In the present work, a sinusoidal

curve has been selected, as it effectively highlights both translational and oscillatory

dynamics. Nonetheless, the proposed methodology is not confined to this choice, since

it can be readily extended to a broad class of paths and motion profiles. The sinusoidal

function adopted as reference is defined by the following equation (4.2.4), and plotted

in the figure 4.11:

y(x) = a2 · cos(ω
x

a1
)− a2 (4.2.4)

where the constants a1,a2 and ω define the scaling along the trajectory. The specific

values employed in the simulations are summarized in the following table 4.2.

a1 0.1

a2 0.5

ω 0.1

Table 4.2: Sinusoidal trajectory parameters

45

CHAPTER 4. DIGITAL TWIN AND CONTROL STRATEGY

Figure 4.11: Theorical trajectory

In order to constrain both the maximum velocity and acceleration of the system, the

absolute velocity of the robot along the predefined path was shaped to approximate a

trapezoidal velocity profile, plotted in figure 4.12, characterized by piecewise-constant

acceleration. This choice ensures a smooth yet controllable motion while respecting

physical limitations. As a practical compromise, the maximum acceleration was set to

0.002m/s2, and the maximum velocity was limited to 0.06m/s.

46

CHAPTER 4. DIGITAL TWIN AND CONTROL STRATEGY

Figure 4.12: Theorical velocity profile

In order to ensure the scalability of the model to any arbitrary trajectory, identifying

an algorithm capable of effectively constraining the velocity for all possible paths proved

to be a non-trivial task. The adopted solution, detailed in the Appendix A) introduces a

curvilinear coordinate s defined along the trajectory. By means of an external function,

Trajectory form, also shown in Appendix A, the algorithm reconstructs the motion

profile, generating either a trapezoidal velocity profile or, in cases where the imposed

velocity bounds are too high to allow the full development of such a profile, a triangular

one.

Linear Quadratic Integral

The Linear Quadratic Regulator (LQR) and its extension, the LQI, are optimal

control strategies widely employed in modern control theory[22]. Their objective is to

design a feedback controller that minimizes a quadratic cost function (4.2.5) of the form

47

CHAPTER 4. DIGITAL TWIN AND CONTROL STRATEGY

J =

∫ ∞

0

(
ξ̄T (t)Qξ̄(t) + ūT (t)Rū(t)

)
dt (4.2.5)

where ¯ξ(t) represents the state vector,ū(t) the control input, while Q and R are pos-

itive semi-definite and positive definite weighting matrices, respectively. By adjusting

these matrices, it is possible to balance the trade-off between state regulation accuracy

and control effort.

This formulation guarantees stability and performance in a systematic manner, over-

coming the limitations of heuristic tuning approaches such as PID. Among its advan-

tages, LQR/LQI provides robustness to modelling uncertainties, the capability to ad-

dress multi-variable systems within a unified framework, and explicit control over the

compromise between accuracy and energy consumption. In particular, the LQI for-

mulation enhances steady-state performance by introducing an integral action, thus

ensuring rejection of constant disturbances and maintaining trajectory tracking with

negligible steady-state error. In order to advance with the study and development of

the control strategy, a preliminary dynamic analysis of the system is deemed necessary,

with the aim of identifying and understanding the fundamental variables involved in

the regulation process.

Dynamic analysis

The planar robot under consideration exhibits three degrees of freedom: two trans-

lational (x, y) and one rotational (θ). To design an optimal controller, the system is

first represented in state–space form.

The state vector is defined as:

x =
[
x, y, θ, vx, vy, ω

]T
where (x, y) are the planar coordinates, (θ) is the yaw angle,(vx, vy) the linear ve-

locities, and (ω) the angular velocity. The input vector collects the generalized forces

and torque acting on the system:

u =
[
Fx, Fy, Cm]

T

48

CHAPTER 4. DIGITAL TWIN AND CONTROL STRATEGY

with Fx, Fy denoting the translational forces in the inertial frame and Cm the torque

around the out-of-plane axis. The robot dynamics, obtained from Newton–Euler equa-

tions, can be written as: 

ẋ = vx

ẏ = vy

θ̇ = ω

v̇x = Fx

m

v̇y =
Fy

m

ω̇ = Cm

Iz

where m is the mass of the robot and Iz its polar moment of inertia. In compact

matrix form:

ẋ(t) = Ax(t) +Bu(t)

with 
A =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


, B =



0 0 0

0 0 0

0 0 0

1/m 0 0

0 1/m 0

0 0 1/Iz




This linear formulation is valid for forces expressed in the inertial frame and serves

as the basis for control design.

Control strategy

In trajectory tracking problems the goal is not merely to stabilize the system around

the origin, but to ensure convergence toward a time-varying reference. For this reason,

the control law is defined on the tracking error

49

CHAPTER 4. DIGITAL TWIN AND CONTROL STRATEGY

e(t) = xref (t)− x(t)

where xref (t) denotes the vector of theoretical quantities analytically derived from the

prescribed trajectory. Using the error formulation guarantees that the cost function

penalizes deviations from the desired trajectory, rather than the absolute state absolute

state x(t). This prevents the controller from converging to the trivial equilibrium at

the origin, which would otherwise be irrelevant when the reference is not zero.

LQI extension

Since an LQI controller has been adopted, it is necessary to extend the state vector

x(t) with an additional component representing the integral of the tracking error. This

auxiliary state, denoted as z(t), whose derivative is defined as

ż(t) = r − Cx,

where r is the reference signal

r =
[
xref , yref , θref

]T
and C the output matrix selecting the controlled variables (e.g., positions and rotation

x,y,θ).

C =


1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0


The augmented state vector then becomes ξ =

[
x(t)

z(t)

]
Consequently, The augmented system is then:

ξ̇(t) = ALQIξ(t) +BLQIu(t) + ELQIr

with

50

CHAPTER 4. DIGITAL TWIN AND CONTROL STRATEGY

A
[9x9]
LQI =

[
A 0

−C 0

]
, B

[9x3]
LQI =

[
B

0

]
, E

[9x3]
LQI =

[
0

I

]
The final step required to solve the Riccati equation and thus obtain the optimal gain

matrix K consists in selecting appropriate weighting matrices Q and R. The matrix

Q, commonly referred to as the state weighting matrix or state cost matrix, penalizes

deviations of the system states from their desired values. The matrix R, known as the

control weighting matrix or control cost matrix, penalizes the magnitude of the control

inputs. Regarding the selection of the weighting matrices Q and R, it was decided that,

in the inertial reference frame, the entries of Q should be set proportional to the inverse

of the square of the maximum acceptable error for each individual state. Similarly,

the entries of R were chosen proportional to the inverse of the square of the maximum

allowable control input[23].

Q = diag([1/ε2x, 1/ε
2
y, 1/ε

2
θ, 1/ε

2
vx, 1/ε

2
vy, 1/ε

2
ω, 1/ε

2
intx , 1/ε

2
inty , 1/ε

2
intθ

])

R = diag([1/F 2
max, 1/F

2
max, 1/(Cmax)

2]);

By solving the equations using MATLAB’s lqr function, as detailed in the Appendix

A, it is possible to obtain the optimal gain matrix K, which is composed of two sub-

matrices, K1 and K2. These sub-matrices allow the control input to be computed as

follows:

u = −K1e−K2z

However, it must be emphasized that the forces computed as the output of the LQI

controller are expressed in the inertial (fixed) reference frame, since both the reference

and measured states are defined in this coordinate system, rather than in the robot’s

body frame. Therefore, it becomes necessary to rotate these vectors through a rotation

matrix, making use of the robot’s measured orientation angle θ. The transformation is

performed using the direct rotation matrix, defined as:

R =

[
cos(θ) −sin(θ)

sin(θ) cos(θ)

]

51

CHAPTER 4. DIGITAL TWIN AND CONTROL STRATEGY

In Figure 4.13, the construction of the rotation matrix performed using Simulink is

shown.

Figure 4.13: Simulink model of rotation matrix

The entire control model was therefore consolidated into the following subsystem

4.14.

Figure 4.14: Control model

52

CHAPTER 4. DIGITAL TWIN AND CONTROL STRATEGY

4.2.5 Model results with sinusoidal trajectory

In this final section, the results obtained from the Simulink simulation are presented.

The analysis focuses not only on verifying the correct tracking of the desired trajectory

and compliance with the imposed velocity limits, but also on evaluating the forces and

torques generated during the motion. The first result, illustrated in the following figure

4.15, concerns the trajectories and confirms that the robot successfully maintained the

prescribed path, demonstrating the effectiveness of the implemented control strategy.

Figure 4.15: comparison of the trajectories

The following figures 4.16, 4.17, 4.18, confirm that the velocity achieved by the model

closely matches the theoretical profile, providing further evidence of the accuracy of the

implemented control approach.

53

CHAPTER 4. DIGITAL TWIN AND CONTROL STRATEGY

Figure 4.16: Comparison of x velocities

Figure 4.17: Comparison of y velocities

54

CHAPTER 4. DIGITAL TWIN AND CONTROL STRATEGY

Figure 4.18: Comparison of absolute velocities

A comparison between the theoretical orientation, automatically computed by the

control code to ensure that one face of the robot is always aligned with the direction of

motion, and the simulated orientation obtained from the model is also presented 4.19.

55

CHAPTER 4. DIGITAL TWIN AND CONTROL STRATEGY

Figure 4.19: Orientation comparison

It can be observed that the two values perfectly coincide.

Below are shown the time trends of the errors obtained during the simulation. It

can be observed that the position error 4.20 is clean and stable, consistently remaining

below 5 mm, which indicates a high level of control accuracy. The orientation error,

although very small in magnitude, appears slightly more affected by noise, a behaviour

that can also be seen in the velocity error plot 4.21, where small residual oscillations

are present.

56

CHAPTER 4. DIGITAL TWIN AND CONTROL STRATEGY

Figure 4.20: Position and orientation error

Figure 4.21: Velocity error

These disturbances are nevertheless considered tolerable, as the system maintains

satisfactory and repeatable performance. With the same control parameters, the model

can operate correctly even when following different trajectories, such as the parabolic

trajectory whose results are shown at the end of this chapter, thus confirming the

57

CHAPTER 4. DIGITAL TWIN AND CONTROL STRATEGY

universality and robustness with which both the control code and the simulation model

were designed.

In the following figures, extracted directly from Simulink through the scope block,

it can be observed that the motor command voltage remains limited, never reaching

the saturation threshold of 12V (fig.4.23). Similarly, the torque delivered by the motor

remains within the range of the maximum torque, which is approximately twice the

nominal value of 55× 10−3Nm (fig. 4.22).

Figure 4.22: motor torque output

58

CHAPTER 4. DIGITAL TWIN AND CONTROL STRATEGY

Figure 4.23: motor command voltage

Finally, the resulting diagrams of the PWM-modulated forces along the x and y

axes, expressed in the robot’s local reference frame, are presented (fig.4.24, fig. 4.25).

59

CHAPTER 4. DIGITAL TWIN AND CONTROL STRATEGY

Figure 4.24: x-Force scopes

Figure 4.25: y-Force scopes

60

CHAPTER 4. DIGITAL TWIN AND CONTROL STRATEGY

4.2.6 Model results with parabolic trajectory

To further validate the model, additional simulations are carried out using a parabolic

trajectory, and some of the obtained results are presented below.

The equation of the trajectory 4.2.6 is as follows:

y(x) = a22 ·
x2
1

a21
(4.2.6)

and the parameters are listed in the following table 4.3.

a1 0.1

a2 0.03

Table 4.3: Parabolic trajectory parameters

To avoid repetitive comments, only the trajectory comparison 4.26 and the error

trends over time are reported (fig.4.27 and fig.4.28). Despite a slight increase in error,

still well within acceptable limits, the results confirm that the model, with the same

parameters, can be effectively extended to different trajectories.

61

CHAPTER 4. DIGITAL TWIN AND CONTROL STRATEGY

Figure 4.26: Parabolic trajectory

Figure 4.27: Position and orientation error of parabolic trajectory

62

CHAPTER 4. DIGITAL TWIN AND CONTROL STRATEGY

Figure 4.28: Velocity error of parabolic trajectory

63

Chapter 5

Arduino code

This chapter presents the script developed in the Arduino IDE to implement trajec-

tory control and manage sensors and actuators. The discussion does not focus on the

code itself, but rather on the reasoning and design choices underlying its implementa-

tion.

5.1 Arduino functions

Before proceeding, it is essential to clearly define the roles assigned to the Arduino.

Its primary responsibility is the implementation of the control logic, specifically the

instantaneous calculation of the forces and torques necessary for trajectory execution.

In addition, the Arduino must communicate with the IMU sensor to acquire data on the

robot’s position and orientation on the plane. It is also responsible for managing the

actuators: performing speed control of the brushless motor and operating the pneumatic

valves through PWM signals. Finally, the board handles a set of user interface buttons,

allowing basic interaction between the system and the operator.

64

CHAPTER 5. ARDUINO CODE

5.1.1 Control logic

Given that the MATLAB script previously presented (and included in Appendix A)

already generates the desired trajectory, it is sufficient to export the reference trajectory

data (namely positions and corresponding velocities) into a header file .h, allowing them

to be read directly by the Arduino script.

A similar approach can be applied to the K gain matrix obtained from the LQI con-

troller. Since this matrix consists of constant values that remain unchanged throughout

the simulation, these parameters can be imported into the Arduino code as predefined

constants, thereby reducing the computational load on the microcontroller. Therefore,

the Arduino is only required to compute the control input vector (denoted as u in Chap-

ter 4) by multiplying the gain matrix K by the error vector, which includes position,

velocity, and integral of position errors. The error vector is evaluated at each time step

by subtracting the sensor-acquired data from the corresponding reference trajectory

values.

5.1.2 Data acquisition

As previously mentioned, the only sensor available on the robot is an IMU, which

provides direct measurements of linear accelerations and angular velocities. Conse-

quently, obtaining linear velocities, positions, and orientations requires numerical inte-

gration of these signals. This introduces a critical challenge within the scope of this

thesis: despite several attempts, relying solely on an inertial sensor proved highly lim-

iting for accurately determining the robot’s planar position. The resulting data often

exhibited significant inaccuracies, including cumulative errors that increased over time.

Conversely, the orientation estimates obtained from the IMU were found to be reliable,

largely due to the implementation of the Mahony filter, which fuses the measurements

from the three IMU sensors. For this specific application, however, data from the mag-

netometer were excluded from the filter, as experimental tests demonstrated that doing

so produced more accurate and drift-resistant results under identical conditions, and

65

CHAPTER 5. ARDUINO CODE

also simplified the sensor calibration process, eliminating the need for rotations around

its axes. Since an existing open-source library [24] was employed for the implementa-

tion, the mathematical formulation of the Mahony filter is not discussed in detail in

this thesis.

5.1.3 Actuators control

Thruster control

For the reasons mentioned above, although a control strategy for the thruster valves

was theoretically developed and implemented to enable planar translation control, it

was not possible to thoroughly test the proposed approach. Nevertheless, the proposed

strategy involves evaluating the force components along the x and y directions and,

based on their signs, activating the corresponding valves. A suitable PWM signal is

then generated, proportional to the ratio between the required force and twice the

maximum thrust produced by a single actuator.

Motor control

Regarding the brushless motor control, a more elaborate approach was adopted.

The motor driver regulates the motor speed through an analog voltage input, which

is emulated by the Arduino using a high-frequency PWM signal. However, the LQI

controller provides a torque command as its output. This torque is divided by the

wheel’s moment of inertia and then numerically integrated to obtain the theoretical

motor speed required to follow the desired trajectory. It is not sufficient, however,

to simply convert this theoretical speed into an equivalent voltage level. The reason

lies in the significant difference between the reaction wheel’s inertia and the motor’s

own rotor inertia. A sudden increase in speed would cause a large current draw, while

a sharp deceleration would make the motor act as a generator, feeding a potentially

damaging high current back into the battery pack. To prevent such situations, a max-

imum acceleration limit was introduced, forcing the speed to follow a ramped profile

66

CHAPTER 5. ARDUINO CODE

both during acceleration and deceleration phases, effectively smoothing current spikes.

Specifically, the theoretical speed obtained from the numerical integration is compared

to the actual motor speed. The difference between the two is then checked against the

maximum allowable variation in speed, determined by the imposed acceleration limit.

If this difference exceeds the allowed ∆v, only the maximum permitted increment (or

decrement) is applied to the current motor speed, producing an updated current speed.

At each control cycle, this new speed replaces the previous value and is converted into

a PWM signal to be sent to the motor driver. For safety reasons, the maximum duty

cycle was limited to 50%, corresponding to a motor speed of approximately 1480rpm.

5.2 Code structure

The functions described above are integrated within the main Arduino program.

Beyond the necessary setup and initialization routines, the overall code can be logi-

cally divided into five distinct stages (four sequential and one alternative) that operate

cyclically.

At startup, the system enters the ”IDLE” state, during which the Arduino confirms

that all initializations have been successfully completed. In this state, the simulator

remains inactive, waiting for a start signal to begin the trajectory execution. The start

command can be issued either by pressing a physical button located on the top of the

robot or by typing ”start” in the Arduino IDE serial monitor. Once the command is

received, the code transitions to the ”READY” state, notifying the operator that the

input has been correctly acquired. A message appears on the serial monitor indicating

that the trajectory execution is about to begin, followed by a 3-second countdown. At

the end of the countdown, the program enters the ”RUNNING” state. In this phase,

the actuators (valves and motor) are activated, and the trajectory control is executed

according to the functions previously described. When the simulation time expires

and the trajectory is completed, the system transitions to the ”COMPLETE” state.

Here, all actuators are reset, and a confirmation message is displayed on the serial

67

CHAPTER 5. ARDUINO CODE

monitor to inform the operator that the trajectory has been successfully executed.

The code then automatically returns to the ”IDLE” state, ready to receive a new

command. At any moment, the operator can interrupt the execution by triggering the

”EMERGENCY” state, an alternative mode designed for safety. This can be activated

by pressing a second button located on the robot’s top panel or by typing ”stop” in

the serial monitor. Upon activation, all actuators are immediately disabled, and the

system halts. To resume normal operation, a manual reset of the Arduino is required,

after which the system returns to the ”IDLE” state. The five stages described above

are summarized in the following figure 5.1.

Figure 5.1: Five code states

68

Chapter 6

Design of the Control board

This chapter presents the control board assembled for the project, providing justifi-

cation for the choices made regarding the selected components and their placement. For

greater clarity, the description of the control board is divided into four functional blocks,

after which the overall electrical circuit will be presented showing all the components

mounted on the board.

6.1 Control board

The control board, located at the bottom of the robot, was designed and developed

to be positioned as close as possible to the robot’s geometric center, taking advantage

of the space left free by the aluminium profiles that support the motor mounts,as

previously suggested in Chapter 3. Consequently, as shown in the figure 6.1, the central

area of the board is occupied by the IMU sensor.

An important aspect considered during the design phase was the modularity of the

board. As can be clearly seen in the figure 6.1, the board features several connectors

and terminal blocks that allow the connection of external components which cannot be

mounted directly on it, such as buttons, the battery pack, valves, and the motor. This

modular design greatly simplifies maintenance and troubleshooting, as the board can

69

CHAPTER 6. DESIGN OF THE CONTROL BOARD

be easily disconnected from the rest of the system when required.

Figure 6.1: Control board

6.1.1 Command block

The command block consists of the Arduino board and the connectors for the ”start”

and ”emergency” buttons mentioned in Chapter 5. The Arduino is positioned in one

corner of the board to minimize space occupation, with its USB port oriented toward

the inner side of the control board to facilitate convenient connection of programming

and power cables.

Since the Arduino was the first component to be positioned, its location effectively

determined the layout of all the remaining elements on the board. This placement served

as a reference point for arranging the connectors, wiring paths, and other modules,

ensuring both functional accessibility and an efficient use of the available surface area.

6.1.2 Sensor block

As previously mentioned, the IMU sensor (currently the only sensor mounted on the

robot) is positioned at the centre of the control board, a choice made to ensure greater

accuracy in data acquisition. The connection between the sensor and the Arduino is

70

CHAPTER 6. DESIGN OF THE CONTROL BOARD

straightforward. In addition to the 3.3V power supply, communication is established

via the I2C interface, a two-wire communication protocol. This interface uses two pins:

SDA, which handles the data transmission between the sensor and the Arduino, and

SCL, which provides the clock signal, regulating the timing and synchronization of the

data transfer.

6.1.3 Valve block

This section of the board performs a crucial function for the operation of the valves,

converting the PWM signal output from the Arduino pins (limited to 3.3V) into a

signal proportional to the 24V required to drive the valves. This voltage adjustment is

achieved using four NPNBC337 transistors. The transistors are connected as follows:

the collector is connected to the load (i.e., the valve), the emitter is tied to the board’s

common ground, and the base is connected to the Arduino pin providing the PWM

signal. To protect the Arduino pin from excessive current, a 1.8kΩ resistor is placed

between the base and the pin, limiting the maximum current that can flow, according

to the following equation 6.1.1, where 3.3V is the output voltage of Arduino, while 0.7V

is the commutation voltage of the transistor.

I =
3.3V − 0.7V

1800Ω
= 1.4mA (6.1.1)

Additionally, as shown on the left side of the figure 6.1, three terminal blocks are

present: the largest is used to connect the 24V power supply, while the two smaller

blocks accommodate the valve power lines. The positive lines are connected in parallel,

whereas the negative lines are connected to the transistor collectors, which act as a

switching stage to ground. This arrangement ensures that the valves receive the correct

voltage and can be safely controlled by the Arduino.

6.1.4 Motor block

This portion of the board is the largest, as it houses the motor driver, the connectors

for interfacing the board with the motor, and the driver protection system, as specified

71

CHAPTER 6. DESIGN OF THE CONTROL BOARD

in the driver’s data-sheet. The connections between the driver and the motor are not

discussed here, as they strictly follow the manufacturer’s technical instructions [18].

Greater emphasis, however, is placed on the driver protection circuit, which has been

slightly modified compared to the recommendations in the manual. The following figure

6.2 shows the protection circuit suggested in the data-sheet, which calls for a 7A fast-

acting fuse, a 54V TVS diode, and a 220µF capacitor rated at 63V .

Figure 6.2: Protection circuit of data-sheet

In the present application, the motor is powered at 12V , well below the driver’s

maximum allowable voltage of 50V , and the motor has a nominal current of 2.02A.

Therefore, the protection circuit components used were adapted accordingly: a 2A

fuse, a 43V 1N4755 Zener diode, and a 220µF capacitor rated at 25V .

This protection circuit, however, safeguards only the motor driver and not the power

source. To prevent potential damage to the batteries, in addition to the software-

based limitations previously described in the code section, a 10A10 diode was added in

series with the fuse. This diode prevents any current generated by the motor during

unintended braking from flowing back to the battery pack. The use of a power resistor

was also considered to aid in energy dissipation. However, thanks to the implementation

of the speed ramp, the motor’s regenerative effect is significantly mitigated, making the

diode sufficient for the current setup. In future iterations, a more advanced circuit

could be designed to exploit regenerative braking, allowing the energy produced during

deceleration to be recovered and used to recharge the batteries.

72

CHAPTER 6. DESIGN OF THE CONTROL BOARD

6.2 Electrical circuit

To summarize the observations made above and to clarify the various connections

implemented, the following figure 6.3 shows the electrical schematic of the circuit as-

sembled on the perfboard. The diagram highlights the main components along with

their respective connections. The batteries are represented as two ideal 12V voltage

sources.

Figure 6.3: Electrical circuit

73

Chapter 7

Experimental results

The final chapter of this thesis is devoted to the presentation of the experimental

results, with the aim of validating the design choices made throughout the development

process and confirming the robustness of the implemented control strategy. Before

proceeding, a few considerations must be introduced.

As previously discussed, a major limitation of the simulator lies in the use of the

IMU as the sole data-acquisition sensor. While it provides quite reliable measurements

of the orientation, its estimates of the position are highly inaccurate and therefore

unusable. In addition to this, the resin surface originally intended for testing the robot

exhibited unwanted slopes which, combined with the absence of the valves and thrusters

during the experiments, ultimately made it unsuitable for proper testing. Consequently,

the tests (whose results are presented in this chapter) are performed on a smooth tile

surface, ensuring correct operation of the air bearings.

7.1 Test bench setup

To use the tile as a flat reference surface, a small rectangular platform is set up on

a laboratory desk. It is assembled from four aluminium profiles and equipped with four

screws acting as adjustable feet, allowing the height of the base to be finely tuned. Two

74

CHAPTER 7. EXPERIMENTAL RESULTS

pictures of the of the platform 7.1a and the complete setup 7.1b are provided below.

(a) rectangular platform setup (b) Tile setup

Figure 7.1: Test bench setup

Unfortunately, due to either a manufacturing defect or prolonged improper storage,

the tile itself is not perfectly flat but slightly warped in its central region. Although the

irregularity is not excessive and is barely noticeable to the naked eye, as will become

clearer in the following sections, the tests carried out are significantly affected by this

imperfection.

7.2 Experimental tests

The experimental tests conducted fall into two categories: in the first, a predefined

rotation is commanded and the resulting response of the robot is observed; in the

second, a zero-orientation hold command is applied, and the robot’s reaction to an

external disturbance is evaluated by manually displacing it by a given angle. This

section presents the two tests and their corresponding results, addressing first the trial

with a predefined rotation and then the test involving an external disturbance. The

control parameters used, namely the maximum errors and maximum forces included in

the Q and R matrices, which are valid for both tests, are reported in the following table

75

CHAPTER 7. EXPERIMENTAL RESULTS

7.1.

εx 0.04

εy 0.04

εθ 1

εvx 0.004

εvy 0.004

εω 0.1

εintx 0.04

εintey 0.04

εintθ 100

Fmax 0.16

Fmax 0.16

Cmax 0.15

Table 7.1: LQI parameters of experimental tests

7.2.1 Test 1: predefined rotation

The objective of this test is to verify whether the robot is capable of performing a

30◦ rotation when a corresponding command, defined by a trapezoidal velocity profile,

is provided. The first step consists in extending the MATLAB script presented in

Appendix A to generate both the rotational trajectory and the associated trapezoidal

velocity profile, since the previously developed functions are not suitable for trajectories

that do not involve variations in the x and y coordinates. After specifying the desired

maximum angular velocity and maximum angular acceleration, the following profiles

7.2 are obtained.

76

CHAPTER 7. EXPERIMENTAL RESULTS

Figure 7.2: Angular acceleration, velocity and position profile

The maximum angular acceleration (0.015rad/s2) required is computed by enforc-

ing the dynamic equilibrium between the robot and the reaction wheel. Assuming a

maximum motor angular acceleration of 10rad/s2, as discussed in the previous chapter,

while the moment of inertia of the reaction wheel is 0.6204e − 3kgm2 and that of the

robot is 0.2kgm2, the correct value of the robot’s angular acceleration is obtained from

the following equation 7.2.1:

αa =
Irw
Ia

· αrw = 0.031rad/s2 (7.2.1)

As a precaution, the calculated value has been decreased by 50%. The maximum

velocity of 0.075rad/shas been chosen so that the robot requires 5 seconds to reach it

under the imposed acceleration limit, in accordance with the laws of uniformly accel-

erated motion7.2.2.

tramp =
vmax

amax

(7.2.2)

77

CHAPTER 7. EXPERIMENTAL RESULTS

The results are now presented, comparing the theoretical command set, the out-

comes of the model simulation, and the results obtained from the experimental test.

Figure 7.3: Angular position comparison

The comparison of the angular positions (fig.7.3) confirms the robustness of the

developed simulator. The trajectory followed by the model perfectly matches the com-

manded path, making them practically indistinguishable. The experimental test results,

despite all the issues previously mentioned, are still valid, with an initial maximum er-

ror of approximately 1◦, according to the maximum 1◦ error declared in the parameters

of the LQI control, which increases up to approximately 2◦ over the course of the test.

A similar consideration applies to the velocity curves. With the exception of an

outlier measured by the IMU at the beginning of the simulation, the experimental

test results are otherwise consistent and confirm the validity of the approach. Below,

78

CHAPTER 7. EXPERIMENTAL RESULTS

both the graph comparing the angular velocities and a zoomed-in view of the curves,

excluding the outlier, are presented for greater clarity.

Figure 7.4: Angular velocity comparison

79

CHAPTER 7. EXPERIMENTAL RESULTS

Figure 7.5: Angular velocity comparison zoomed

It is clear that in both graphs, of position and velocity, although the experimental

data generally follow the theoretical profile, the measured signal appears noisy. Is

more evident that when the commanded velocity is zero, the experimental signal tends

to oscillate within a range of approximately 0.02rad/s. This oscillation consequently

induces the fluctuations observed in the angular position graph as well. The reasons

behind this phenomenon are manifold: the IMU ’s measurement inaccuracies and the

slight inclination of the test surface certainly contribute to the disturbance. However,

another important factor is the behaviour of the motor driver. For command voltages

below 0.1V , the driver forces the motor to operate at its minimum speed of 62rpm

(approximately 6.5rad/s). During the braking phase, the motor reaches this minimum

speed and consequently remains at that value. Conservation of angular momentum

80

CHAPTER 7. EXPERIMENTAL RESULTS

7.2.3 requires that the robot’s angular velocity also becomes constant, settling around

a fixed value.

Ia ·∆ωa + Irw ·∆ωrw = 0 (7.2.3)

Nonetheless, the controller detects an increasing velocity error and responds by increas-

ing the torque command so that the motor rotates in the opposite direction. As soon

as the command voltage exceeds the 0.1V threshold, the motor is able to influence the

robot’s motion again through a variation in speed, until it once more drops back to

the minimum of 6.5rad/s, thus creating an infinite loop. A simplified way to estimate

the corresponding angular velocity of the robot when the reaction wheel reaches the

threshold value of 6.5rad/s is to consider two instants in time, t1 and t2. At t1, both

the motor and the robot have zero angular velocity, while at t2 the motor rotates at the

critical speed, and the robot’s angular velocity is unknown. By applying the angular

momentum conservation equation introduced earlier 7.2.3, the robot’s angular velocity

is found to be approximately 0.02rad/s, which corresponds to the limiting value around

which the velocity fluctuations are observed.

7.2.2 Test 2: reaction to an external disturbance

The objective of this test is instead to evaluate the robot’s response in the presence of

an external disturbance and, consequently, its ability to return to a predefined reference

position. As a trajectory, a vector of zeros was assigned for both angular position and

angular velocity. Before applying a disturbance in position, consisting of rotating the

robot by a certain angle, data were collected in order to analyse the robot’s behaviour

in the absence of disturbances, around the zero position.

81

CHAPTER 7. EXPERIMENTAL RESULTS

Figure 7.6: Disturbance effect on angular position

Before applying the disturbance, it is observed (fig. 7.6) that despite the command

to maintain the zero position, the IMU readings indicate a deviation, occasionally ex-

ceeding the maximum error threshold of 1◦. This phenomenon is consistent with the

behaviour of the motor driver at low speeds, as discussed in the previous section. As

illustrated in the graph 7.6, two angular displacements are applied in opposing direc-

tions. Following the first disturbance, despite the oscillations, the robot successfully

returned to the requested zero position. Conversely, after the second external rotation,

the system exhibited greater difficulty in re-establishing the target position. A plausible

explanation for this discrepancy lies in the manual application of the disturbance; in

the second instance, the robot may have been displaced from its axis, shifting it onto a

region of the plane with different surface inclinations.

82

CHAPTER 7. EXPERIMENTAL RESULTS

Figure 7.7: Disturbance effect on angular velocity

In the plot 7.7 showing the angular velocity over time, both the instants in which

the external disturbances are applied and the previously discussed effect of the motor

driver are clearly visible. In fact, apart from the moments when the disturbance is intro-

duced, the rotational velocity remains approximately within the interval of ±0.02rad/s.

Unfortunately,similar to the previous test, this measurement also contains an outlier in

the angular velocity plot 7.7 that appears shortly after the first applied displacement.

Since this point is clearly attributable to a sensor reading error, it is excluded from the

analysis and will not be further discussed.

From both tests, it is evident that this behaviour of the driver is particularly prob-

lematic, as it prevents a proper assessment of the controller’s performance. For this

reason, a modification was introduced in the Arduino code to enforce a forced shutdown

83

CHAPTER 7. EXPERIMENTAL RESULTS

of the motor. Specifically, an additional if condition was implemented: whenever the

theoretical torque computed by the LQI controller is less than 0.01Nm and the mea-

sured velocity error fall below 0.02rad/s, the driver’s ENABLE pin is pulled to ground,

effectively disabling the motor.

This modification was tested by repeating Test 2, this time applying the external

disturbance only once while the robot attempted to maintain its reference orientation.

Figure 7.8: Disturbance effect on angular position with modified script

The orientation results show a markedly different behaviour compared to the pre-

vious tests. Before applying the disturbance, the robot’s orientation remains at zero,

as the motor is effectively turned off. Only after the disturbance is applied, the IMU

detects an angular displacement, prompting the motor to react and reduce the result-

ing error. Once the error falls back within the allowed threshold, the motor is disabled

84

CHAPTER 7. EXPERIMENTAL RESULTS

again. As a consequence, the residual oscillations observed in the plot 7.8 can be at-

tributed to small micro-movements of the robot around its equilibrium position, as well

as possible inaccuracies from the IMU sensor and the applied filter. The fact that the

steady-state error is not exactly zero is expected and can be explained by the chosen

control parameters and by the limit introduced in the Arduino code.

Figure 7.9: Disturbance effect on angular velocity with modified script

Similar observations can be made from the angular velocity plot. The direct readings

from the IMU gyroscope confirm that, both at the beginning of the test and at steady

state, the velocity, disregarding measurement noise, is effectively zero. Consequently,

the oscillations observed following the disturbance are solely due to the undesired effect

of gravity, which causes the robot to oscillate around a stable equilibrium position.

As previously mentioned, the implementation of the if condition in the Arduino

85

CHAPTER 7. EXPERIMENTAL RESULTS

code required two checks: one on the control torque and the other on the velocity error.

The limitation on the control torque excludes from the control action all those values

that would require very low command voltages. This prevents the motor from operat-

ing in its non-linear low-voltage region. However, since the computation of the control

torque depends on both the position error and the velocity error, and the magnetometer

was excluded from the attitude estimation, the angles are obtained solely through nu-

merical integration, which may not be highly accurate over long measurement periods.

As a result, small errors can accumulate over time, potentially leading to a reported

displacement even when no actual movement occurs. This effect is evident in the plot

7.8, where after approximately 200s the measured error exceeds the maximum allowable

error of 1◦. Consequently, this cumulative error also appears in the torque plot 7.10.

Therefore, if an orientation estimation error were to occur and the second constraint on

velocity were not in place, the robot would attempt to compensate for a non-existent

error, resulting in an unnecessary corrective motion.

86

CHAPTER 7. EXPERIMENTAL RESULTS

Figure 7.10: Motor control torque

87

Chapter 8

Conclusion

This final chapter presents the conclusions drawn from the work carried out in this

thesis, summarizing the main results and evaluating the effectiveness of the implemented

solutions.

The objective of developing a control strategy capable of guiding the robot along a

predefined trajectory has been successfully achieved. This control logic was validated

both in a virtual environment, through physical model, and in laboratory conditions.

In both cases, the results were consistently positive, demonstrating the effectiveness of

the proposed approach. This outcome is particularly significant considering the various

challenges encountered during the experimental phase, most notably the limitations

imposed by the available test surfaces, which made the validation of the simulator

more complicated.

At the same time, the project is well-prepared with a view toward future devel-

opments. It provides a detailed physical model built in Simscape within the MAT-

LAB/Simulink environment, a reliable MATLAB control script capable of delivering

appropriate gains for a wide range of trajectories, and an advanced Arduino IDE com-

mand script. The latter has already proven effective in the current setup while still

being structured in a way that facilitates modifications and further improvements.

From a practical and constructive standpoint, the simulator also demonstrates ro-

88

CHAPTER 8. CONCLUSION

bustness and versatility. Its modular design, the use of slotted aluminum profiles, and

the flexibility enabled by 3D printing not only simplified the assembly process but also

greatly ease any future adjustments or redesigns. Equally noteworthy is the control

board, which is well-organized and carefully structured, ensuring compatibility with

additional components should future developments require an expanded setup.

8.1 Future works

This thesis can be considered a solid foundation for a more complex project, where

new control strategies can be explored and implemented. At this stage, it is useful to

reflect on the aspects that could be further enhanced. In particular, complementing the

IMU with additional sensors could improve the accuracy of data acquisition, providing

the opportunity to test and refine the control of the valves and thrusters, which in this

work were less extensively explored due to practical testing constraints.

Additionally, the physical model developed in Simscape could be further enriched

by introducing the possibility of simulating force and torque disturbances. This would

allow for the virtual evaluation of scenarios such as undesired inclinations or asymme-

tries in the thruster jets, providing a more realistic and flexible environment to validate

and optimize control strategies before implementation.

89

Appendix A

Matlab scripts

A.1 Main script

1 m=9.56;

2 base =0.349; %m

3 larghezza =0.360;

4 altezza =0.606;

5

6 Iz =1/12*m*(base ^2+ larghezza ^2);

7

8 %Valve

9 P_rid =7; %bar

10 rapp =0.433; %b critical ratio

11 Cv =15.7; %Nl/bar conductance

12 Cv=Cv*1e -3/60; %m^3/s

13 Pi=1e5;%Pa initial condition

14 R_gas =287; %J/kg/K

15 Temp =293; %K

16 td=6e-3; %m tube diameter

17 Len =0.3; %m tube lenght

90

APPENDIX A. MATLAB SCRIPTS

18 gam =1.4; %specific heat ratio air

19 dn=1e-3; %m nozzle diameter

20 A=pi/4*dn^2; %nozzle

21 pwmdt =0.01; %s

22

23 %motor

24 kw =374*2* pi/60; %rad/s/V

25 ke=1/kw; %V/rad/s

26 kc =25.5e-3; %Nm/A

27 L=0.56e-3; %H

28 R=1.2; %ohm

29 taum =17.1e-3; %s

30 kw_t= 17.7; %rpm/mNm

31 kw_t=kw_t *2*pi /60*1000;

32 kt_w =1/ kw_t;

33 Imotore =92.5*10^ -3*10^ -4; %kgm^2

34 Cn_m =55e-3; %Nm

35 B_att =0;

36 speedn =2940; %rpm

37 speedmax =4370*2* pi/60;%rad/s

38

39 %reaction wheel

40 phi_r =100e-3;%m

41 density =7900;%kg/m3

42 spessore =8e-3;%m

43 Iwheel =1/2*(density *(pi*phi_r ^2/4* spessore))*phi_r ^2/4;

44

45 % trajectory

46 dt =0.1;

47 T=100;

48 t = 0:dt:T; % time

91

APPENDIX A. MATLAB SCRIPTS

49 C_max =2*54.8e-3; %Nm

50

51 % examples of trajectory x(σ), y(σ)

52

53 %sinusoide

54 % a1=0.1;

55 % a2=0.5;

56 % omega =0.1;

57 % x_t=@(time) a1*time;

58 % y_t=@(time) a2*cos(omega*time)-a2;

59

60 %parabola

61 % a1=0.1;

62 % a2 =0.03;

63 % x_t=@(time) a1*time;

64 % y_t=@(time) a2^2* time .^2;

65

66 %retta

67 % a1=0.1;

68 % x_t=@(time) a1*time;

69 % y_t=@(time) 0*time;

70

71 %zero zero

72 x_t=@(time) 0*time;

73 y_t=@(time) 0*time;

74

75

76 x = x_t(t); % x position

77 y = y_t(t); % y position

78

79 % 2. velocity

92

APPENDIX A. MATLAB SCRIPTS

80 dx_dt = gradient(x, t);

81 dy_dt = gradient(y, t);

82

83 % 3. abs velocity

84 velocity = sqrt(dx_dt .^2 + dy_dt .^2);

85

86 % 4. time start and time end

87 t_inizio = 0; % Tempo di inizio

88 t_fine = 25; % Tempo di fine

89

90 % 5. index of time start and time end

91 [~, idx_inizio] = min(abs(t - t_inizio)); % Indice per il tempo

di inizio

92 [~, idx_fine] = min(abs(t - t_fine)); % Indice per il tempo

di fine

93

94 % 6. Trajectory lenght

95 Leng = trapz(t(idx_inizio:idx_fine), velocity(idx_inizio:

idx_fine));

96

97 % a_max and v_max

98 a_max = 0.002; %m/s2

99 v_max = 0.06; %m/s

100

101 x_sigma=@(s) x_t(s*t_fine);

102 y_sigma=@(s) y_t(s*t_fine);

103

104

105 [sigma , dsigma ,t_flat] = Trajectory_form(a_max , v_max ,t,Leng);

106

107 xr = x_sigma(sigma);

93

APPENDIX A. MATLAB SCRIPTS

108 yr = y_sigma(sigma);

109

110

111 ds=diff(sigma);

112 dx_ds = gradient(xr,sigma);

113 dx_ds(ds==0) =0;

114

115 dy_ds = gradient(yr,sigma);

116 dy_ds(ds==0) =0;

117

118 xp_r=dx_ds .* dsigma (1: end);

119 xp_r(end)=xp_r(end -1);

120

121 yp_r=dy_ds .* dsigma (1: end);

122 yp_r(end)=yp_r(end -1);

123

124 %Filter

125 fc = 1; % cut frequency [Hz]

126 [b, a] = butter(2, fc /(100/2));

127 xp = filtfilt(b, a, xp_r);

128 yp = filtfilt(b, a, yp_r);

129

130 v_mod = sqrt(xp_r .^2 + yp_r .^2);

131

132 xpp=gradient(xp ,t);

133 ypp=gradient(yp ,t);

134

135

136 %%automatic theta for different trajectories

137 % theta_in = atan2(yp_r , xp_r);

138 % theta = angular_limitation(t, theta_in , sigma ,Leng);

94

APPENDIX A. MATLAB SCRIPTS

139 % theta=unwrap(theta);

140 %

141 % w_in = diff([theta (1), theta]) / dt; % angular velocity

142 % w_ltra = w_limitation(t, w_in , sigma);

143 %

144 % fc = 1; % frequenza di taglio [Hz]

145 % [b, a] = butter(2, fc /(100/2));

146 % w_f = filtfilt(b, a, w_l);

147 % w=[w_l (1:9) ,w_f (10: end)];

148 %

149 % thetapp=gradient(w,t);

150

151 % %theta and w if x and y are 0

152 dtramp = 0.1;

153 pos_finale = pi/6; % Final position

154 alpha_max = 0.015;

155 omega_max = alpha_max *5;

156

157 % 2. Time for trapezoidal w profile

158 t_ramp = omega_max / alpha_max;

159 pos_ramp = 2 * (0.5 * alpha_max * t_ramp ^2);

160 pos_cruise = pos_finale - pos_ramp;

161 t_cruise = pos_cruise / omega_max;

162

163 % Total time

164 t_movimento = 2 * t_ramp + t_cruise;

165

166 % 3. time vector

167 tramp1 = 0: dtramp:t_ramp;

168 tramp2 = (t_ramp + dtramp):dtramp :(t_ramp + t_cruise);

169 tramp3 = (t_ramp + t_cruise + dtramp):dtramp:t_movimento;

95

APPENDIX A. MATLAB SCRIPTS

170

171 % stop time

172

173 t_stazionamento = (t_movimento + dtramp):dtramp:T;

174

175 % 4. Trapezoidal w profile

176 w_rampa_up = alpha_max * tramp1;

177 w_cruise = omega_max * ones(size(tramp2));

178

179 % final delta t

180 dt3 = tramp3 - (t_ramp + t_cruise);

181 w_rampa_down = omega_max - alpha_max * dt3;

182 w_rampa_down(w_rampa_down < 0) = 0;

183

184 % keep w 0 at the end

185 w_zero = zeros(size(t_stazionamento));

186 % Vettore w completo

187 w = [0,w_rampa_up , w_cruise , w_rampa_down , w_zero];

188

189 % 5. theta

190 % Acceleration

191 theta_rampa_up = 0.5 * alpha_max * tramp1 .^2;

192

193 % Constant w

194 pos_fine_rampa1 = 0.5 * alpha_max * t_ramp ^2;

195 theta_cruise = pos_fine_rampa1 + omega_max * (tramp2 - t_ramp);

196

197 % Deceleration

198 pos_inizio_rampa_down = pos_fine_rampa1 + omega_max * t_cruise;

199 theta_rampa_down = pos_inizio_rampa_down + omega_max * dt3 - 0.5

* alpha_max * dt3 .^2;

96

APPENDIX A. MATLAB SCRIPTS

200

201 % end of deceleration

202 theta_rampa_down = min(theta_rampa_down , pos_finale);

203

204 % keep last theta

205 theta_stazionamento = pos_finale * ones(size(t_stazionamento));

206

207 % final vector

208 theta = [0,theta_rampa_up , theta_cruise , theta_rampa_down ,

theta_stazionamento];

209

210 alphatot =[alpha_max*ones(size(tramp1)),zeros(size(tramp2)),-

alpha_max*ones(size(tramp3)),zeros(size(t_stazionamento)) ,0];

211

212 %%NO automatic orientation , keep theta 0

213 % theta=zeros(size(t));

214 % w=diff([theta (1), theta]) / dt;

215

216

217 %LQI

218 x_ref = [xr;

219 yr;

220 theta;

221 xp;

222 yp;

223 w]’;

224 e_ref =[xr;

225 yr;

226 theta];

227

228 xref=timeseries(x_ref ,t);

97

APPENDIX A. MATLAB SCRIPTS

229 eref=timeseries(e_ref ,t);

230

231 Au = [0 0 0 1 0 0

232 0 0 0 0 1 0

233 0 0 0 0 0 1

234 0 0 0 0 0 0

235 0 0 0 0 0 0

236 0 0 0 0 0 0];

237

238 Bu = [0 0 0

239 0 0 0

240 0 0 0

241 1/m 0 0

242 0 1/m 0

243 0 0 1/Iz];

244

245 Cu=[eye(3,3) zeros (3)];

246

247 n=size(Au ,1);

248 m=size(Bu ,2);

249 p=size(Cu ,1);

250

251 A_ext =[Au zeros(n,p);

252 -Cu zeros(p,p)];

253

254 B_ext =[Bu;

255 zeros(p,m)];

256

257 %%Optimal parameters for x y trajectories

258 Qu=diag ([500 500 1 50000 50000 5000]);

259 Quu=diag ([500 500 0.0000001]);

98

APPENDIX A. MATLAB SCRIPTS

260 %Optimal parameters for x y zero

261 % Qu=diag ([1 1 1 5 5 10]);

262 % Quu=diag ([1 1 0.0000001]);

263

264 Q_ext=blkdiag(Qu,Quu);

265

266 Ru=diag ([1/1.6^2 1/1.6^2 1/(C_max)^2]);

267

268 K = lqr(A_ext , B_ext , Q_ext , Ru);

269

270 K1 = K(:, 1:n); % state gain

271 K2 = 1/10000*K(:, n+1: end); % integral gain

A.2 Trajectory form

1 function [sigma , dsigma ,t_flat] = Trajectory_form(a_max ,

v_max ,t,Leng)

2

3 sigma = zeros(size(t));

4 dsigma = zeros(size(t));

5

6 % Calcola tempo di accelerazione

7 t_ramp = v_max / a_max;

8 L_tri =0.5* a_max * t_ramp ^2; % distanza coperta se profilo

triangolare

9

10 if 2* L_tri >= Leng

11 % PROFILO TRIANGOLARE

12 t_flat =0;

13 t_ramp = sqrt(Leng / a_max); %0.5*L/2/a

14 for i = 1: length(t)

99

APPENDIX A. MATLAB SCRIPTS

15 ti = t(i);

16 if ti < t_ramp

17 sigma(i) = 0.5 * a_max/Leng * ti^2;

18 dsigma(i) = a_max/Leng * ti;

19 elseif ti < 2* t_ramp

20 td = 2* t_ramp - ti;

21 sigma(i) = 1 - 0.5 * a_max/Leng * td^2;

22 dsigma(i) = a_max/Leng * td;

23 else

24 sigma(i)=1;

25 dsigma(i)=0;

26 end

27 end

28 else

29 % PROFILO TRAPEZOIDALE

30 t_flat = (Leng - a_max * t_ramp ^2) / v_max; % tempo a v

costante (2*0.5* a_max)

31 for i = 1: length(t)

32 ti = t(i);

33 if ti < t_ramp

34 sigma(i) = 0.5 * a_max/Leng * ti^2;

35 dsigma(i) = a_max/Leng * ti;

36 elseif ti < t_ramp + t_flat && ti >= t_ramp

37 sigma(i) = 0.5 * a_max/Leng * t_ramp ^2 + v_max/

Leng * (ti - t_ramp);

38 dsigma(i) = v_max/Leng;

39 elseif ti < 2* t_ramp+t_flat && ti >= t_ramp+t_flat

40 td = 2* t_ramp+t_flat - ti;

41 sigma(i) = 1 - 0.5 * a_max/Leng * td^2;

42 dsigma(i) = a_max/Leng * td;

43 else

100

APPENDIX A. MATLAB SCRIPTS

44 sigma(i)=1;

45 dsigma(i)=0;

46 end

47 end

48 end

49

50 % Normalizza sigma tra [0, 1]

51 sigma = sigma / max(sigma);

52 % dsigma=dsigma/max(dsigma);

53 end

A.3 Angular limitation

1 function theta = angular_limitation(t, theta_in , sigma ,Leng)

2

3 % Inizializzazione

4 theta = theta_in;

5

6 % Trova il primo indice in cui s >= 1

7 idx_stop = find(sigma >= 1, 1, ’first ’);

8

9 if ~isempty(idx_stop)

10 % Prendi il valore dell ’ultimo theta prima di sigma = 1

11 if idx_stop == 1

12 theta_locked = theta_in (1); % Tutto sigma >= 1,

blocca subito

13 else

14 theta_locked = theta_in(idx_stop - 1);

15 end

16

17 % Blocca i valori successivi

101

APPENDIX A. MATLAB SCRIPTS

18 theta(idx_stop:end) = theta_locked;

19 end

20 end

A.4 w limitation

1 function w = w_limitation(t, w_in , sigma)

2

3 % Inizializzazione

4 w = w_in;

5

6 % Trova il primo indice in cui s >= 1

7 idx_stop = find(sigma >= 1, 1, ’first ’);

8

9 if ~isempty(idx_stop)

10 % Prendi il valore dell ’ultimo theta prima di sigma = 1

11 if idx_stop == 1

12 w_locked = w_in (1); % Tutto sigma >= 1, blocca

subito

13 else

14 w_locked = 0;

15 end

16

17 % Blocca i valori successivi

18 w(idx_stop:end) = w_locked;

19 end

20 end

102

Bibliography

[1] Marcello Romano Markus Wilde, Casey Clark. Historical survey of kinematic and

dynamic spacecraft simulators for laboratory experimentation of on-orbit proximity

maneuvers. Progress in Aerospace Sciences, 110:100552, 2019.

[2] Josef Kulke. Design of a simplified floating spacecraft simulator. Master’s the-

sis, Helmut-Schmidt-Universität / Universität der Bundeswehr Hamburg, August

2022.

[3] Francesco Bologna. Design, integration and testing of a small floating spacecraft

simulator. Master’s thesis, Politecnico di Torino and Naval Postgraduate School,

July 2023.

[4] Richard Zappulla II, Josep Virgili-Llop, Costantinos Zagaris, Hyeongjun Park, and

Marcello Romano. Dynamic air-bearing hardware-in-the-loop testbed to experi-

mentally evaluate autonomous spacecraft proximity maneuvers. JOURNAL OF

SPACECRAFTAND ROCKETS, 54(4), 2017.

[5] David A. Friedman, Marcello Romano, and Tracy J. Shay. Laboratory experimen-

tation of autonomous spacecraft approach and docking to a collaborative target.

Journal of Spacecraft and Rockets, 44(1):164–173, 2007.

[6] Jason S. Hall and Marcello Romano. Novel robotic spacecraft simulator with

mini-control moment gyroscopes and rotating thrusters. In 2007 IEEE/ASME

international conference on advanced intelligent mechatronics, pages 1–6, 2007.

103

BIBLIOGRAPHY

[7] Jason S. Hall and Marcello Romano. Laboratory experimentation of guidance and

control of spacecraft during on-orbit proximity maneuvers. In Annalisa Milella

Donato Di Paola and Grazia Cicirelli, editors, Mechatronic Systems, chapter 11.

IntechOpen, Rijeka, 2010.

[8] Josep Virgili-Llop, Jerry V. Drew II, and Marcello Romano. Design and parameter

identification by laboratory experiments of a prototype modular robotic arm for

orbiting spacecraft applications. 6th International Conference on Astrodynamics

Tools and Techniques (ICATT),, Darmstadt, Germany, March 2016.

[9] Marco Sabatini, Giovanni B. Palmerini, Riccardo Monti, and Paolo Gasbarri. Im-

age based control of the “pinocchio” experimental free flying platform. Acta As-

tronautica, 94(1):480–492, 2014.

[10] Marco Sabatini, Marco Farnocchia, and Giovanni B. Palmerini. Design and tests

of a frictionless 2d platform for studying space navigation and control subsystems.

In 2012 IEEE Aerospace Conference, pages 1–12, 2012.

[11] Pedro Roque, Sujet Phodapol, Elias Krantz, Jaeyoung Lim, Joris Verhagen, Frank

Jiang, David Dorner, Roland Siegwart, Ivan Stenius, Gunnar Tibert, Huina Mao,

Jana Tumova, Christer Fuglesang, and Dimos V. Dimarogonas. Towards open-

source and modular space systems with atmos, 2025.

[12] item s.r.l. Profilato 6 – 30×24 mm – leggero – naturale. https:

//www.item24.com/it-it/profilato-6-30x24-leggero-naturale-60888?

length=300&category=tecnica-dei-profilati%2Fprofilati-di-alluminio.

[Online; last consultation 11-04-2025].

[13] item s.r.l. Automatic-fastening set 8 s. https://www.item24.com/en-it/

automatic-fastening-set-8-s-bright-zinc-plated-72462?type=BR8&

closedGroove=3&category=profile-technology%2Ffastening-technology.

[Online; last consultation 11-04-2025].

104

https://www.item24.com/it-it/profilato-6-30x24-leggero-naturale-60888?length=300&category=tecnica-dei-profilati%2Fprofilati-di-alluminio
https://www.item24.com/it-it/profilato-6-30x24-leggero-naturale-60888?length=300&category=tecnica-dei-profilati%2Fprofilati-di-alluminio
https://www.item24.com/it-it/profilato-6-30x24-leggero-naturale-60888?length=300&category=tecnica-dei-profilati%2Fprofilati-di-alluminio
https://www.item24.com/en-it/automatic-fastening-set-8-s-bright-zinc-plated-72462?type=BR8&closedGroove=3&category=profile-technology%2Ffastening-technology
https://www.item24.com/en-it/automatic-fastening-set-8-s-bright-zinc-plated-72462?type=BR8&closedGroove=3&category=profile-technology%2Ffastening-technology
https://www.item24.com/en-it/automatic-fastening-set-8-s-bright-zinc-plated-72462?type=BR8&closedGroove=3&category=profile-technology%2Ffastening-technology

BIBLIOGRAPHY

[14] MAGER Air Bearings. Flat air bearings: Hpr, hpc series datasheet, 2021. [last

consultation 11-14-2025].

[15] Mx 8212/2 nc 2/2 solenoid valve datasheet. Product Datasheet.

[16] Shenzhen CP-Link Electronic Co., Ltd. Smaco s400 portable scuba user’s manual.

[last consultation 11-04-2025].

[17] Maxon. Ec 45 flat ϕ45 mm, brushless, 30 w, hall sensor, wired.

[18] maxon motor ag. 1-Q-EC Amplifier DEC Module 50/5 Operating Instructions,

2015. Order number 380200.

[19] RS PRO. Battery pack (a700000009106018). [last consultation 11-14-2025].

[20] item s.r.l. T-slot nut st. https://www.item24.com/en-it/

t-slot-nut-5-st-m4-bright-zinc-plated-37006?material=verz. [Online;

last consultation 11-04-2025].

[21] NASA Glenn Research Center. Rocket thrust summary. https://www.grc.nasa.

gov/www/k-12/airplane/rktthsum.html, 2025. [Online; last consultation 08-15-

2025].

[22] Riccardo Bevilacqua, Andrew P. Caprari, Jason Hall, and Marcello Romano. Lab-

oratory experimentation of multiple spacecraft autonomousassembly. In AIAA

Guidance, Navigation, and Control Conference, Chicago, Illinois, 2009.

[23] Josep Virgili-Llop, Jerry V. Drew, Richard Zappulla II, and Marcello Ro-

mano. Laboratory experiments of resident space object capture by a space-

craft–manipulator system. Aerospace Science and Technology, 71:530–545, 2017.

[24] Bolder Flight Systems,flybrianfly. Invensense imu library.

105

https://www.item24.com/en-it/t-slot-nut-5-st-m4-bright-zinc-plated-37006?material=verz
https://www.item24.com/en-it/t-slot-nut-5-st-m4-bright-zinc-plated-37006?material=verz
https://www.grc.nasa.gov/www/k-12/airplane/rktthsum.html
https://www.grc.nasa.gov/www/k-12/airplane/rktthsum.html

	List of Figures
	List of Tables
	List of Acronyms
	Abstract
	Introduction
	Objectives

	State of art
	Spacecraft simulator systems
	POSEIDYN testbed
	PINOCCHIO testbed
	DISCOWER ATMOS

	Design of the simulator: Bill of materials and CAD representation
	Description of components
	Metal profile
	Thruster
	Air bearing
	Solenoid valve
	Air tank
	Pressure regulator
	Arduino
	Reaction wheel
	Motor
	Battery
	IMU

	CAD Design
	Motor supports and tank holder
	Control board support
	Miscellaneous Supports
	Complete CAD

	Digital twin and control strategy
	Purpose of the model
	Digital twin
	Body
	Sensors
	Actuation
	Control
	Model results with sinusoidal trajectory
	Model results with parabolic trajectory

	Arduino code
	Arduino functions
	Control logic
	Data acquisition
	Actuators control

	Code structure

	Design of the Control board
	Control board
	Command block
	Sensor block
	Valve block
	Motor block

	Electrical circuit

	Experimental results
	Test bench setup
	Experimental tests
	Test 1: predefined rotation
	Test 2: reaction to an external disturbance

	Conclusion
	Future works

	Matlab scripts
	Main script
	Trajectory form
	Angular limitation
	w limitation

	Bibliography

