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Abstract

Space is evolving into a dynamic environment with expanding opportunities enabled
by advancing technologies. From communication satellites and Earth observation to sci-
entific exploration and future space infrastructure, the number of missions and systems
operating in orbit continues to grow. With this expansion comes the need for more
advanced technologies to manage, service, and interact with objects in space, especially
in complex conditions like microgravity and in the presence of uncooperative or tum-
bling targets. Applications such as On-Orbit Servicing (OOS), Active Debris Removal
(ADR), and autonomous inspection rely heavily on robotics and precise control.

To develop and test these technologies, it’s essential to have reliable simulation
platforms that can reproduce, at least partially, the dynamics of space. Conducting
experiments in orbit is expensive and often impractical, so ground-based simulators
(particularly those that replicate microgravity conditions) are a key part of the devel-
opment process.

This thesis focuses on the simulation of a robotic system designed for planar mi-
crogravity environments, with the goal of supporting research in autonomous space
operations. The work includes modeling, control, and testing of a system that mimics
the behavior of a free-floating satellite in space. The study covers the full development
of the system, from the conception and realization of the physical robot to the modeling
of its digital counterpart in MATLAB/Simulink, concluding with the design of a control
strategy that ensures precise and stable performance under realistic operating condi-
tions. As a final step, the robot was experimentally tested in a laboratory environment

on a resin-coated planar surface.



Chapter 1
Introduction

At the foundation of this research lies the necessity of developing, at the Politecnico
di Torino, a Floating Spacecraft Simulator (FSS) [1], conceptually similar to the Mini
Dynamic Autonomous Spacecraft Simulator (myDAS) [2] platform currently in oper-
ation at the Naval Postgraduate School. The motivation behind such an initiative is
twofold: on the one hand, to provide a versatile experimental facility that enables the
safe testing of guidance, navigation, and control algorithms for spacecraft-like systems;
on the other, to contribute to the advancement of the laboratory’s capabilities in the

field of space robotics and autonomous systems.

1.1 Objectives

This thesis investigates the dynamics and control of a spacecraft operating in a pla-
nar microgravity-like environment, using a testbed that approximates two-dimensional
motion with minimal friction. The aim is to analyze the behavior of the system and de-
velop suitable control strategies for trajectory tracking under conditions that resemble
those encountered in space missions.

The work encompasses a comprehensive analysis of the system architecture, includ-

ing a detailed description of its physical components and their integration. Particular
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attention is given to the construction of a high-fidelity digital twin, which replicates the
behavior of the real system and serves as a foundation for the design and preliminary
testing of trajectory control strategies.

The first part of the thesis presents a brief overview of related experimental plat-
forms used in the simulation of spacecraft dynamics. This literature review aims to
contextualize the present work, highlighting the main methodologies adopted in the
field and identifying the unique contributions of this study.



Chapter 2

State of art

This opening chapter is therefore devoted to a review of the state of the art, with the
objective of situating the present work within its broader scientific and technological
context. Particular emphasis is placed on identifying what has already been achieved in
similar projects in academic environments, and on clarifying the elements of novelty that
this research aims to introduce. By outlining the existing achievements and highlighting
the gaps that remain, the chapter sets the stage for a deeper understanding of the scope,

relevance, and potential impact of the simulator developed in this thesis.

2.1 Spacecraft simulator systems

Before delving into the specific details of the project, it is essential to examine the
existing models and categories of spacecraft simulators. Such an investigation allows
not only for a comprehensive understanding of the different approaches that have been
developed over the years, but also for a clear identification of the conceptual framework
in which the present work can be situated.

Accordingly, the following figure 2.1 [1] is presented , which illustrates the main
classifications of spacecraft simulator systems. This schematic overview serves to orga-

nize the different existing approaches into well-defined categories, thereby facilitating
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Environment Simulator Type Simulator Technology DOF
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Figure 2.1: Summary of spacecraft simulator systems

the identification of the framework within which the present project can be positioned.

Through this classification, it becomes easier to place the present project within the
broader landscape of spacecraft simulators. Specifically, the system under development
is conceived as a laboratory-based dynamic simulator. Unlike kinematic simulators, a
dynamic simulator physically generates the forces and torques acting on the spacecraft
by means of real actuators - the very same type that would be employed in an actual
mission [3].

In this case, the adopted simulation technology relies on a robot capable of moving
in a two-dimensional plane, suspended by means of air bearings that minimize friction

and emulate free-space conditions. The overall system exhibits three degrees of freedom:
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two translational (along the x and y axes) and one rotational (about the out-of-plane

axis).

2.1.1 POSEIDYN testbed

The primary source of inspiration for the present work is the POSEIDYN testbed [4],
developed at the Naval Postgraduate School. Given its strong conceptual similarity to
the system designed in this project, a concise analysis of its architecture and operating
principles is of particular relevance. Accordingly, this section is devoted to an overview
of the models underpinning the POSEIDYN facility, as well as a brief account of its
historical development and research applications.

Since its inception, the POSEIDYN facility at the Naval Postgraduate School has
undergone continuous development, leading to the realization of four successive genera-
tions of F'SS, each introducing novel capabilities [4]. The FSS is designed to float on an
air-bearing system, enabling planar motion with negligible friction and thus replicating
the dynamical conditions of orbital free flight. As illustrated in the figure 2.4 actuation
is provided by cold-gas thrusters, arranged to deliver translational manoeuvrability,
while rotation is provided by a reaction wheel. Equipped with onboard sensors, such as
IMUs and cameras, each FSS can operate as an independent spacecraft analogue within
the Hardware-in-the-Loop framework of POSEIDYN[4]. The first generation focused on
rendezvous and docking, incorporating an early prototype of a capture system[5]. The
second generation expanded actuation capabilities by integrating vectorable thrusters
together with a miniature control moment gyroscope, enabling more complex attitude
manoeuvrers[6, 7]. With the third generation, the design philosophy shifted toward a
lightweight structure, replacing the aluminium body with polycarbonate components
fabricated via additive manufacturing, and introducing standardized docking interfaces.
Finally, the fourth generation consolidated the use of polycarbonate structures while
incorporating a dedicated standardized interface for compatibility with robotic manip-
ulator research[8]. This evolutionary progression reflects the constant refinement of the

testbed, both in terms of materials and functionality, in order to support increasingly
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sophisticated experimental scenarios in proximity operations. In the following figure
2.2 [4], the successive evolutions of the robotic platforms are illustrated, while figure

2.3 [4] presents the experimental workspace in which the simulators operate.

Figure 2.2: Line-up of the first- to fourth-generation floating spacecraft simulators used
on the POSEIDYN testbed

Fourth-Generationi’ Fourth-Generation

Floating Floating
Spacecraft \ Motion Capture Spacecraft
Simulator Cameras Simulator

Third-Generation
Floating

|| 4— Spacecraft
' Simulator

Figure 2.3: Overview of the main elements of the POSEIDYN testbed
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The testbed combines the physical dynamics of the free-flying simulators with a real-
time orbital dynamics simulator, implementing a Hardware in the loop (HIL) frame-
work. In this way, Guidance navigation and control (GNC) algorithms can be tested
against realistic scenarios, where the simulated space environment is continuously cou-
pled with the actual response of the physical vehicles. This software-driven integration
makes it possible to replicate proximity operations(such as rendezvous, docking, and
servicing) in a safe and repeatable laboratory setting, without the risks and costs asso-
ciated with on-orbit experiments. The facility therefore serves not only as a mechanical
emulator of microgravity conditions, but as a versatile research environment for the
validation of navigation filters, sensor fusion strategies, and autonomous control laws
under conditions that closely approximate those of real space missions[4].

The software architecture of the POSEIDYN facility, illustrated in figure 2.4 [4],
is structured in a modular and flexible manner, enabling seamless integration between
simulated orbital dynamics, sensor data, and control algorithms. Real-time HIL ex-
ecution allows the physical free-flying simulators to be directly coupled with orbital
dynamics models, ensuring that both sensor readings and actuator commands reflect
realistic mission scenarios. Sensor data are continuously processed and fused through
dedicated filtering modules, while guidance and control outputs are translated into
thruster commands in real time. This modular design makes the architecture highly
scalable and reconfigurable, allowing new sensors, estimation techniques, or control laws

to be incorporated without fundamental modifications to the system[4].
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TELEMETRY DISPLAY AND DATA

LOGGING EXTERNAL PC

~~ ~~ ~
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Figure 2.4: Schematic software architecture of the floating spacecraft simulator

The navigation subsystem of POSEIDYN is designed to provide real-time estima-
tion of the vehicle’s state by exploiting the complementary characteristics of different
sensors. Inertial measurements offer high-frequency data suitable for short-term state
propagation, but they are inherently affected by noise and drift. In contrast, vision-
based observations deliver drift-free relative measurements, although at lower update
rates and with greater sensitivity to environmental conditions. The core of the subsys-
tem therefore lies in the software integration of these data streams, where filtering algo-

rithms such as the Kalman filter are employed to fuse inertial and visual information|[4].

2.1.2 PINOCCHIO testbed

A relevant contribution to ground-based experimental platforms for spacecraft GNC
is represented by the PINOCCHIO project, developed at Sapienza University of Rome,
whose current configuration is shown in the figure 2.5 [9]. The first stage of the project,
presented in 2012[10], focused on the design and validation of a low-cost frictionless 2D
testbed. The platform, levitating on air bearings and actuated by cold-gas thrusters,
was conceived to reproduce a planar microgravity environment for testing guidance

strategies, control laws, and navigation sensors. Particular attention was devoted to
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the selection and characterization of inertial sensors in combination with an optical flow
device and a Kalman filter. Experimental campaigns demonstrated the capability of the
platform to perform increasingly complex manoeuvrers — from attitude acquisition to
trajectory tracking and combined translational-rotational motions — highlighting both
the soundness of the architecture and the limitations imposed by air supply duration.

A simplified scheme of its functional architecture is depicted in the figure 2.6 [9].

Inertial
Sensors

Camera |
[ Microcontroller
& UsB
' "
RS232 CPU

l RS232

’ fr— N
Microcontroller
+

driver

v

Electrovalves ]

Figure 2.6: Scheme of the GNC ar-
chitecture of PINOCCHIO

Figure 2.5: PINOCCHIO platform

2.1.3 DISCOWER ATMOS

A recent and noteworthy initiative in the field of space robotics testbeds is " DIS-
COWER ATMOS” (Autonomy Testbed for Multi-purpose Orbiting Systems) [11], de-
veloped at the KTH Space Robotics Laboratory of Stockholm. ATMOS is conceived

as an open-source, modular free-flyer platform designed to reproduce in a planar con-

10
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figuration, the near-frictionless conditions of microgravity using an air-bearing support
system. Its architecture includes a modular actuation plate compatible with solenoid
thrusters and propeller-based actuators, and a payload support system that allows test-

ing various configurations and instruments. The entire structure is shown in figure 2.7.

Figure 2.7: DISCOWER ATMOS

One of the most significant contributions of ATMOS lies in its goal to reduce the
cost and complexity of space system validation. By providing a realistic, ground-based
environment that replicates orbital dynamics, ATMOS minimizes the need for expen-
sive in-orbit experiments and accelerates the development cycle of autonomous space
systems. Researchers can perform hardware-in-the-loop simulations, software testing,

and control validation directly on Earth, lowering both logistical and financial barriers

11
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to experimentation.

Equally important is its open-source nature, which democratizes access to advanced
space robotics research. The complete documentation, bill of materials, and assembly
instructions are freely available online, enabling laboratories and universities worldwide
to replicate and adapt the platform for their own research needs. This open-access ap-
proach fosters collaboration, transparency, and reproducibility, while also promoting the
standardization of experimental methodologies within the space robotics community.

The core of the hardware architecture of ATMOS is the control platform, called
“Avionics Plate”, showed in the following figure, containing controllers commonly used
in autonomous systems like the Pixhawk and an NVIDIA Jetson integrated processing

card.

Figure 2.8: Avionics Plate

Within the context of the DISCOWER project, the NVIDIA Jetson Orin NX serves
as a high-performance edge Al computing module responsible for executing advanced
perception and data processing tasks. It enables real-time processing of sensor in-
puts such as camera feeds and supports the implementation of artificial intelligence
algorithms needed for autonomous decision-making and environmental understanding.
Complementarily, the Pixhawk functions as the flight controller and low-level sensor
fusion unit, managing real-time control of the free-flyer platform by integrating inertial

measurements from the onboard Inertial Measurement Unit (IMU) and other sensors.

12
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It executes control commands and stabilizes the robot’s attitude and motion, interfac-
ing with propulsion systems to achieve precise manoeuvring. The integration of these
two systems allows DISCOWER’s ATMOS free-flyer to combine robust autonomous

control with sophisticated onboard intelligence.

13



Chapter 3

Design of the simulator: Bill of

materials and CAD representation

This chapter is devoted to the presentation of its main components, with the aim
of providing a comprehensive understanding of the elements that constitute the system

and of facilitating the description of the construction process and its various stages.

3.1 Description of components

3.1.1 Metal profile

The constructed metal framework closely resembles the second generation model
of the POSEIDYN test bench[4]. Aluminium profiles manufactured by Item with a

30x24mm cross-section are employed [12], as illustrated in the figure 3.1.

14
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A
5
@5

* N
Figure 3.1: Cross-section of aluminium profiles

The connection between the various profiles is achieved using item automatic-

fastening set [13], as illustrated in the figure 3.2.
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Figure 3.2: Automatic connector
These connectors are fastened into the profile grooves and do not require any ad-

ditional machining. The structure consists of four 606mm profiles, which define the

height of the robot, and an additional thirteen 300mm profiles, which are used both

15
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to complete the frame and to support various component mounts. The final assembled

structure is shown in the following figure 3.3.

Figure 3.3: Aluminium profiles Structure assembled

3.1.2 Thruster

The thrusters installed on the robot, which are responsible for generating the trans-
lational motion required to follow the desired trajectory, consist of simple convergent
nozzles with a critical diameter of 1mm. On the rear side, they are equipped with a
quick coupling for the @6mm tubing, as illustrated in Figure 3.4 below. Each thruster

is composed of two separate parts that can be screwed together

16
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Figure 3.4: Thruster

3.1.3 Air bearing

The air bearings used in the project, which serve to simulate a microgravity envi-
ronment by allowing nearly frictionless planar motion, are manufactured by MAGER
and correspond to the circular models of the HPC series (Figure 3.5). They feature a
diameter of @60mm and a height of 18mm.

17
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Figure 3.5: MAGER air bearing HPC series

The performance of the bearing, evaluated at a reference pressure of 4bar (relative),

is summarized in the table below 3.1 [14].

performances 10pm air gap h

Load [N] Stiffness[N/pum]  Air Consumption [I/min ANR]
525 48 3.1
performances maximum stiffness R
Maximum sfiffness [N/um] Air gap [um] Load [N] Air consumption [I/min ANR]
51 9.0 575 2.8

Table 3.1: Air bearing performance with 4 bar relative air supply pressure

3.1.4 Solenoid valve

Within the project, the solenoid valves are employed for both the control of the
thrusters and the operation of the air bearings. Specifically, five Matrix MX 821.100C22
valves have been used [15]: four of them control via a pulse-width modulation (PWM)
signal all the thrusters, one valve for each direction, and one used as a digital valve

controls the four air bearing.

18
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The following figures 3.6 present a 3D representation of the valve, followed by a

photograph 3.7 of the actual valve installed on board.

Inlet fitting tube @4 —=

mnl
_I H Iea.ds AWG24 1=500

~  |NW

30

Outlet fitting tube @4

1

Figure 3.6: 3D representation of the valve

P/N MX 821.100C224
SIN 8407797 pat. 5,048,564

WIY 08/25 "
v [ o1

2-8 bar

Figure 3.7: Valve picture

19
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3.1.5 Air tank

The compressed air tank adopted in the project is a Smaco S400 model, featuring
a capacity of 1litre and a maximum operating pressure of 20M Pa [16]. This tank
supplies the compressed air required to operate both the thrusters and the air bearings.

The following image illustrates the reservoir used.

Figure 3.8: Air tank

3.1.6 Pressure regulator

To reduce the cylinder pressure to the levels required by the thrusters and the air
bearings, two pressure regulators are employed: the first reduces the pressure from
200bar to 7bar, while the second further decreases it to 4bar. Ome of the pressure

regulator used is depicted in the figure 3.9 below.

20
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Figure 3.9: Pressure regulator

3.1.7 Arduino

An Arduino Nano ESP32 microcontroller, illustrated in the following figure 3.10,
is used as the onboard control unit. This board enables both the physical interfacing
with the system components through its I/O pins and the development and execution

of the control algorithms.
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Figure 3.10: Arduino Nano ESP32

The topic of Arduino will be discussed in greater detail in the following chapters,
focusing on both the design of the electrical schematic and the implementation of the

control code.

3.1.8 Reaction wheel

The reaction wheel consists of a simple perforated brass disk, mounted onto the
motor shaft and rotating rigidly with it. This component is responsible for generating
the torque required to rotate the robot about its vertical axis. Below, a sectional
drawing 3.11 of the component is provided, together with a picture 3.12 of the real

component.
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Figure 3.11: Reaction wheel technical drawing

Figure 3.12: Reaction wheel

3.1.9 Motor

The reaction wheel is actuated by a Maxon EC 45 Flat Brushless motor, character-
ized by an outer diameter of 42.9mm and a nominal power rating of 30/W. The main
technical specifications of the motor are summarized in Table 3.2, which reports the

parameters with heir respective symbols, descriptions, and units of measurement for
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clarity and ease of reference[17].

Name Symbol Value Unit of measurement
torque constant ke 25.5e — 3 Nm/A
voltage constant ke 25.5e — 3 V/(rad/s)

Inductance L 0.56e — 3 H
Resistance R 1.2 Q
Rotor inertia I, 9.25¢ — 06 kgm?
Disk inertia I, 1.3e — 3 kgm?
coefficient of friction r 0 Nm/(rad/s)

Nominal torque Ch 55e — 3 Nm

Table 3.2: Parameters of motor model

The figure 3.13 provides a visual representation of the component.

Figure 3.13: Motor picture

The DEC 50/5 module (Digital EC Controller) is a compact single-quadrant digital
controller, specifically designed for the control of brushless DC motors (electronically

commutated) with power ratings of up to 250W. This driver is characterized by its
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high versatility, enabled by a wide input supply voltage range (6 to 50V DC') [18]. The

component is illustrated in the figure 3.14 below.

Figure 3.14: Motor driver picture

3.1.10 Battery

To accommodate the requirement for three distinct voltage levels, 12V for the motor,
24V for the valves and 5V for Arduino, two 12V, 0.65Ah RS Pro NiCd batteries are
connected in series, showed in the following figure 3.15 [19]. So, this configuration
supplies both a 12V output and a 24V output. Separately, the Arduino board is
powered by a standard power bank. NiCd cells offer a balanced solution in terms
of weight, robustness, and ease of integration, unlike lead-acid batteries, which are
significantly heavier for the same capacity, and lithium batteries, which require more

complex protection circuitry to ensure safe operation.
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10T 125896/1
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Figure 3.15: 12V 0.65Ah NiCd Battery pack

3.1.11 IMU

For the acquisition of position and velocity data, an MPU-9250 IMU sensor was
employed. This component integrates an accelerometer, a gyroscope, and a magne-
tometer. Further details on the implementation are discussed in the following chapters.

The component is depicted in the figure 3.16 below
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Figure 3.16: IMU MPU9250

3.2 CAD Design

Having now defined all the components that constitute the robot, it is possible
to proceed with the development of the 3D Computer aided design (CAD) model.
In the early stages of a project, a well-designed 3D model is essential for gaining a
clear understanding of how the various elements can be assembled and, ultimately, for
obtaining an accurate overview of the overall dimensions and spatial requirements of
the final system.

In the SolidWorks environment, the ".STEP” files of the commercial components,
downloaded directly from online catalogues, are imported, while the more generic com-
ponents, or those for which no 3D CAD model is provided, are modelled directly within
SolidWorks.

A series of support structures are then designed to secure the various components

to the aluminium-frame body. Since these parts are intended to be manufactured using
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fused-filament 3D printing on a Bambu Lab X1C' printer, they are conceived with the
goal of minimizing the need for printing supports and reducing material consumption.
For this reason, a modular approach is adopted, producing smaller components that can
be assembled together through interlocking features or bolts. To fasten the components
to the aluminium profiles, a set of sliding T-Slot nuts manufactured by Item is used
[20]; these are inserted into the profile grooves and feature threaded M5 holes matching

the dimensions of the screws employed for the assembly.

3.2.1 Motor supports and tank holder

The motor and reaction wheel must be positioned as close as possible to the robot’s
central axis in order to ensure correct rotation about its own axis. However, the
compressed-air cylinder is the heaviest single component of the system, and it is there-
fore equally important that it, too, be aligned with the robot’s vertical axis. Building
on this requirement, the support structure is designed with a dual function: it hosts
both the motor and the reaction wheel, and it provides a stable mounting base for the
cylinder.

The exploded view of the structure is shown in the following figure 3.17.
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Figure 3.17: Exploded view of motor supports and tank holder

The positioning of this support takes advantage of the two profiles located in the
lower part of the structure, visible in the figure 3.3.

Since these elements perform structural functions, all parts are printed in carbon-
fiber-reinforced Polylactic acid (PLA), with the exception of the component that houses
the cylinder which is made of standard PLA, whose primary role is to ensure correct
alignment between the cylinder and the reaction wheel.

The assembled component is shown in the following image 3.18.
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Figure 3.18: Motor supports and tank holder picture

3.2.2 Control board support

In the following chapters, the construction of the control board, which integrates
all the electronic components of the simulator, including Arduino and the IMU, is
discussed in detail. However, knowing the position of the board in advance is essential
to allow for a more efficient assembly and soldering of the components. The board is
therefore placed at the bottom of the robot to increase stability and to minimize the
length of the wires connecting it to the motor and to the batteries. The space between
the two profiles supporting the motor mount is utilized, allowing the control board to
be positioned along the robot’s central axis. The following figures show the support
base CAD and the control board and its support base, connected with the aid of nylon

spacers.
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(a) Control board support CAD (b) Control board and its support base

Figure 3.19: Control board support

3.2.3 Miscellaneous Supports

Additional support elements have been designed, such as battery enclosures 3.20a,
a cylindrical holder to be fixed to the mid-height profile for the tank 3.20b, valve
compartments 3.20c, air-bearing mounts 3.20d, and angled structures for integrating

the thrusters 3.20e. The images of the designed components are presented below
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(a) battery enclosures (b) Tank holder

& Ner

(c) valve compartments (d) Air bearing mounts

(e) thrusters support

Figure 3.20: Miscellaneous Supports

3.2.4 Complete CAD

By combining the 3D CAD models of the commercial components with those of the
custom-designed parts, the final assembly of the simulator is obtained. An image of the

complete model is reported below, with the main components highlighted using arrows.
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Figure 3.21: Airsat 3D assembly
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Chapter 4

Digital twin and control strategy

4.1 Purpose of the model

The model has been conceived as a digital twin of the laboratory testbed, providing
a virtual environment in which experiments can be carried out safely and without the
risk of damaging real hardware. This framework serves as a foundation for testing and
validation activities, offering both flexibility and reliability.

In the context of this thesis, the digital twin is employed to investigate control
strategies for trajectory tracking. Specifically, the work focuses on the design of a
controller capable of guiding the robot along a prescribed path while ensuring com-
pliance with predefined velocity limits. Additionally, the control system is expected
to maintain accurate trajectory tracking even in the presence of external disturbances,
such as unexpected force perturbations. This approach not only facilitates a deeper
understanding of the system dynamics but also provides a safe and effective means of
assessing the performance of advanced control solutions prior to their implementation

on the physical platform.
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4.2 Digital twin

The development of the digital twin of the test bench was initiated using MATLAB
Simulink, in conjunction with the Simscape Multibody extension. The objective of
this model is to replicate the dynamic behaviour of the real system with a high degree
of fidelity. To enhance the clarity and comprehensibility of the Simulink model, its
architecture has been structured into four main subsystems (fig. 4.1): Body, Sensors,
Actuation, and Control. This modular organization facilitates both the description and
the analysis of the system, allowing each functional block to be examined in isolation
before considering their interactions. In the present section, these subsystems will be
introduced individually, while subsequent discussion will place particular emphasis on
the Control subsystem, as it constitutes one of the core themes of this thesis.

SENSORS : 1 ROBOT AIRSAT

kv

1
H

H

[~

_Tg@- ]

fee

xref

.
«

COMMAND ACTUATORS

Figure 4.1: Simulink Model Homepage
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4.2.1 Body

The modelling process began with the reproduction of the robot’s physical structure:
as shown in the following figure 4.2, the frame was represented through rigid bodies
whose masses, dimensions, and spatial positions were consistent with those of the CAD
model of the real system. For the sake of computational efficiency, the structural
representation was simplified to a single parallelepiped, while preserving the key physical

parameters necessary for accurate dynamic simulation.

~ Geometry
Dimensions [349 360 606] mm ~  Compile-time -

» Export

~ Inertia
Type Calculate from Geometry -
Based on Mass ~
Mass 1266 kg ~ Compile-time

> Graphic
» Frames '::}'

Figure 4.2: Body frame Simulink model and technical specifications

The second physical element incorporated into the model is the reaction wheel,
represented in a simplified form as a rigid disk (figure 4.3) coaxial with the robot and
constrained to rotate solely about its own axis through the use of a revolute joint.
A rigid transformation block is employed to position the reaction wheel at the same
height as in the CAD reference; however, this transformation serves only for spatial

consistency within the model and does not play a critical role in the system’s functional
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behavior. The choice to model the reaction wheel as an ideal rigid disk was made to
reduce computational complexity while retaining the essential inertial properties that
influence the robot’s rotational dynamics. This abstraction allows the simulation to
capture the wheel’s contribution to attitude control without introducing unnecessary

geometric details that would have minimal impact on the overall system behaviour.

¥ Geometry
Radius 50 mm ~  Compile-time -
Length B8 mm ~  Compile-time -
» Export
v Inertia
Type Calculate from Geometry w
Based on Density w
} Density 8500 kg/m~3 ~  Compile-time -~
Q » Graphic
) > Frames E::,':I

Figure 4.3: Reaction wheel Simulink model and technical specifications

4.2.2 Sensors

The sensor subsystem presents a relatively straightforward configuration. The phys-
ical sensing devices onboard the robot are represented in the model by a Transform
Sensor block, as shown in figure 4.4, which measures the linear accelerations along
the principal axes and the angular velocity about the axis orthogonal to the plane of

motion.
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Figure 4.4: Sensor block and Simulink connections

A closer inspection of the model connections reveals that the Body Frame (denoted
by B in the Simulink block, as illustrated in Figure 4.4) is attached to the robot, whereas
the Follower Frame (denoted by F) is linked to the World Frame, i.e., the inertial
reference system. This arrangement results in the measured values being inverted with
respect to the desired sign convention. To address this, the sensor outputs are multiplied
by a gain of —1 to ensure consistency in the reference frames. Subsequently, integration
blocks are employed to obtain the corresponding position and orientation quantities
from the measured accelerations and angular velocity. These derived signals are then
utilized in the control subsystem for feedback and state estimation purposes. The

following figure 4.5 represents the subsystem under discussion.
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Figure 4.5: Sensor subsystem

4.2.3 Actuation

With regard to actuation, two distinct mechanisms can be identified: translational
motion, resulting from the pneumatic thrust generated by the thrusters, and rotational
motion, ensured by the reaction wheel. In the following subsections, the modelling
approaches underlying each of these systems are examined separately, with the aim
of elucidating their respective operating principles and their role within the overall

dynamics of the robot.

Translation motion

As previously discussed, translational motion is provided by pairs of pneumatic
thrusters and solenoid valves, which, through PWM) control, are capable of delivering
a variable thrust force. The magnitude of this force is determined by the supply pressure
of the thrusters, which is controlled by a pressure regulator supplied by the onboard
tank. In the Simulink model, a simplification was introduced: each thruster is repre-
sented as a purely convergent nozzle, while the valve model was omitted. Preliminary
tests demonstrated that including the valve dynamics had no significant impact on the

overall behavior of the system, while unnecessarily increasing the computational load.
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The thruster model was developed using the governing equations for convergent nozzles
obtained from NASA’s technical resources [21], illustrated in the following figure 4.6,

and its schematic representation is shown in figure 4.7 [21].

Total Pressure ¥ = Specific Heat Ratio

Total Temperature R =Gas Constant

p =
T =
p = Free Stream Pressure A =Area

_yl

Mass Flow Rate: m = Ap‘ / (V+1
-l 1 -1 2
1 -
Exit Mach: Ae (Y"'l) vy (1t 5 M,
A" M,
. Te v -1 2 -1
Exit Temperature: — =(1+ I—=M)
t
Ly
Exit Pressure: Pe =(1+ Ll ) kR
P,
Exit Velocity: V =M \fYyRT,
Thrust: F=m V, + (pe—po)Ae

Figure 4.6: NASA thruster equations

All the parameters employed in the model are reported in the table below 4.1.

Name Symbol Value Unit of measurement
Temperature T 293 K
Heat capacity ratio vy 1.4 —
Nozzle throat A 7.854e — 7 m?
Gas constant Ryas 287 J/(kgK)
Thrusters’ supply pressure P 7 bar

Table 4.1: Data of pneumatic mode
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Figure 4.7: Thruster model

To obtain an accurate estimate of the force required to achieve the displacement
commanded by the control system, the thruster model alone is insufficient, as it can
only represent the maximum deliverable thrust. For this reason, the thruster model was
complemented with a PWM block, which modulates its output force proportionally to
the theoretical command signal, with a modulation period of 0.01s in accordance with
the valve specifications. The thrust produced by each individual thruster is therefore
computed as the product of its maximum deliverable force and duty cycle (dc) (output
of the PWM block), the latter being a dimensionless value ranging between 0 and 1, as
expressed in eq.(4.2.1)

Fthruster - Fmax -dc (421)

A closer examination of the PWM subsystem reveals that, in addition to the stan-

41



CHAPTER 4. DIGITAL TWIN AND CONTROL STRATEGY

dard PWM block provided by Simulink, several auxiliary blocks have been incorporated
to enhance the correspondence between the model and the real system. As will be dis-
cussed in a later section, the control block generates three output signals (two force
commands and one torque command) which serve as inputs to the respective actua-
tion blocks. As shown in the figure 4.8 before reaching the PWM block, the command
signal undergoes a series of preprocessing steps to ensure correct operation. First, it
is normalized with respect to the force requested by the control block. The resulting
value is then saturated within the range [0, 1], passed through a low-pass filter, and
subsequently adjusted to account for the operational constraints of the solenoid valve.
Specifically, for dc below 0.1, the valve is unable to open, resulting in a null output; con-
versely, for dc above 0.9, the valve’s response becomes slower than the input command,

effectively remaining fully open and producing a constant output of 1.

F_x
| num(s) ‘
- b u(u(2) qonts) | " 4 L)

fen pwm?

Figure 4.8: PWM subsystem

Finally, the total translational force is computed as the sum of the contributions pro-
vided by each pair of thrusters, arranged along the four sides of the robot, represented

in the figure 4.9.
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Figure 4.9: Entire translation motion subsystem

Rotational motion

Rotational motion is provided by a reaction wheel, conceptually comparable to a
rigid disk driven by an electric motor. Since the rotating disk has already been mod-
elled as part of the body subsystem, the present section focuses on the modelling of
the electric motor and the corresponding command signal. The development of the
motor model, simulated as a DC motor, requires reference to the fundamental elec-
trical and mechanical equations (4.2.2) governing its operation, namely the loop (or
armature) voltage equation, the torque generation equation, and the rotational equi-
librium equation. These relationships provide the basis for accurately reproducing the
motor’s electromechanical behaviour within the simulation environment. By applying

the Laplace transform to these governing equations, the system can be expressed in
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the frequency domain, thereby facilitating the derivation of a compact mathematical

representation suitable for implementation within the Simulink environment.

V=R-i+L-s-i+k.-w
C. =k, -i (4.2.2)
Con=1-sw+1I, s o+ @

Consequently, the driving torque (4.2.3) delivered by the motor can be expressed

as:

o ke  (Im+ 1) s+ T ke
" LIy +1) 2+ (R Iy + L)+ L-T) s+ (ke ke + R-T)

Vo (4.2.3)

The parameters introduced in the preceding equations are summarized in Table
3.2 previously discussed. As already mentioned, the system input is a torque command,
which must be converted into a voltage signal. Since the motor control voltage is
required to be proportional to the motor speed, the motion torque is first used to
compute the angular acceleration, which is then integrated to obtain the rotational
speed. This value is subsequently normalized with respect to the maximum voltage
of 12V, with an efficiency of 0.95%. The motor driver subsystem is illustrated in the
figure below 4.10.

1/speedmax*12*0.95

Figure 4.10: Motor driver block
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4.2.4 Control

This final section focuses on the control subsystem, which represents the core of the
model. Based on the outcomes of the literature review, a Linear Quadratic Integral
(LQI) controller was selected as the most suitable strategy. The following discussion is
therefore devoted to outlining the operating principles of this control approach and to
clarifying the rationale behind its adoption in the present application. As previously
outlined, the development of a trajectory control system necessarily begins with the
specification of the reference path to be followed. In the present work, a sinusoidal
curve has been selected, as it effectively highlights both translational and oscillatory
dynamics. Nonetheless, the proposed methodology is not confined to this choice, since
it can be readily extended to a broad class of paths and motion profiles. The sinusoidal
function adopted as reference is defined by the following equation (4.2.4), and plotted
in the figure 4.11:

y(x) = as - cos(waﬁl) — ap (4.2.4)

where the constants ay,a; and w define the scaling along the trajectory. The specific

values employed in the simulations are summarized in the following table 4.2.

ay 0.1
Qo 0.5
w 0.1

Table 4.2: Sinusoidal trajectory parameters
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Trajectory
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Figure 4.11: Theorical trajectory

In order to constrain both the maximum velocity and acceleration of the system, the
absolute velocity of the robot along the predefined path was shaped to approximate a
trapezoidal velocity profile, plotted in figure 4.12, characterized by piecewise-constant
acceleration. This choice ensures a smooth yet controllable motion while respecting
physical limitations. As a practical compromise, the maximum acceleration was set to

0.002m/s?, and the maximum velocity was limited to 0.06m/s.
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Figure 4.12: Theorical velocity profile

In order to ensure the scalability of the model to any arbitrary trajectory, identifying
an algorithm capable of effectively constraining the velocity for all possible paths proved
to be a non-trivial task. The adopted solution, detailed in the Appendix A) introduces a
curvilinear coordinate s defined along the trajectory. By means of an external function,
Trajectory form, also shown in Appendix A, the algorithm reconstructs the motion
profile, generating either a trapezoidal velocity profile or, in cases where the imposed
velocity bounds are too high to allow the full development of such a profile, a triangular

one.

Linear Quadratic Integral

The Linear Quadratic Regulator (LQR) and its extension, the LQI, are optimal
control strategies widely employed in modern control theory[22]. Their objective is to

design a feedback controller that minimizes a quadratic cost function (4.2.5) of the form
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J = /OOO (E7()QE(t) +u” (t)Ru(t)) dt (4.2.5)

where £(t) represents the state vector,u(t) the control input, while @) and R are pos-
itive semi-definite and positive definite weighting matrices, respectively. By adjusting
these matrices, it is possible to balance the trade-off between state regulation accuracy
and control effort.

This formulation guarantees stability and performance in a systematic manner, over-
coming the limitations of heuristic tuning approaches such as PID. Among its advan-
tages, LQR/LQI provides robustness to modelling uncertainties, the capability to ad-
dress multi-variable systems within a unified framework, and explicit control over the
compromise between accuracy and energy consumption. In particular, the LQI for-
mulation enhances steady-state performance by introducing an integral action, thus
ensuring rejection of constant disturbances and maintaining trajectory tracking with
negligible steady-state error. In order to advance with the study and development of
the control strategy, a preliminary dynamic analysis of the system is deemed necessary,
with the aim of identifying and understanding the fundamental variables involved in

the regulation process.

Dynamic analysis

The planar robot under consideration exhibits three degrees of freedom: two trans-
lational (x,y) and one rotational (f). To design an optimal controller, the system is
first represented in state—space form.

The state vector is defined as:
T = [1'7 Y, 9, Vg, Uy, W}T

where (z,y) are the planar coordinates, () is the yaw angle,(v,, v,) the linear ve-
locities, and (w) the angular velocity. The input vector collects the generalized forces

and torque acting on the system:

u = [anFyacm]T
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with F,, F,, denoting the translational forces in the inertial frame and C,, the torque
around the out-of-plane axis. The robot dynamics, obtained from Newton—Euler equa-

tions, can be written as:

T = Vg
U=y
) = w
v, = L=
Uy =
o= G

where m is the mass of the robot and I, its polar moment of inertia. In compact

matrix form:

z(t) = Az(t) + Bu(t)

with

( B T r T )
000100 0 0
00 0O0OT1TO 0 0
00 0O0O0°1 0 0

A= , B=
00 0O0O0OTO O 1/m 0 0
00 0O0O0OTO O 0 1/m O

\ 00 0O0O0TF O 0 0 1/L, )

This linear formulation is valid for forces expressed in the inertial frame and serves

as the basis for control design.

Control strategy

In trajectory tracking problems the goal is not merely to stabilize the system around
the origin, but to ensure convergence toward a time-varying reference. For this reason,

the control law is defined on the tracking error
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e(t) = Trep(t) — (1)

where Z,.7(t) denotes the vector of theoretical quantities analytically derived from the
prescribed trajectory. Using the error formulation guarantees that the cost function
penalizes deviations from the desired trajectory, rather than the absolute state absolute
state Z(t). This prevents the controller from converging to the trivial equilibrium at

the origin, which would otherwise be irrelevant when the reference is not zero.

LQI extension

Since an LQI controller has been adopted, it is necessary to extend the state vector
x(t) with an additional component representing the integral of the tracking error. This

auxiliary state, denoted as z(t), whose derivative is defined as
zZ(t) =7 - O7,

where 7 is the reference signal

= [xrefu Yref, QTef]T

and C the output matrix selecting the controlled variables (e.g., positions and rotation
X,y,0).

1

C=10

0

0 0
10
01

o o O

0 0
0 0
0 0

<>]

t
(t)

=

The augmented state vector then becomes & = [

N

Consequently, The augmented system is then:
E(t) = ALQ[g(t) + BLQ[ﬂ<t) + ELQ]F

with
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A 0
—C 0

o3 | B

929
A9 _ ,Byol =

LQI — 7

0
9x3
7E£QI} = [

The final step required to solve the Riccati equation and thus obtain the optimal gain
matrix K consists in selecting appropriate weighting matrices () and R. The matrix
@, commonly referred to as the state weighting matrix or state cost matrix, penalizes
deviations of the system states from their desired values. The matrix R, known as the
control weighting matrix or control cost matrix, penalizes the magnitude of the control
inputs. Regarding the selection of the weighting matrices ) and R, it was decided that,
in the inertial reference frame, the entries of () should be set proportional to the inverse
of the square of the maximum acceptable error for each individual state. Similarly,
the entries of R were chosen proportional to the inverse of the square of the maximum

allowable control input[23].

Q = dzag([l/&i, 1/857 1/637 1/8121:1:7 1/€12)y7 1/82;7 1/612nt17 1/812nty7 1/812nt0])
R - dzag([l/Fﬁ@axﬂ 1/F72Lax7 1/(Cma$)2])7

By solving the equations using MATLAB’s lgr function, as detailed in the Appendix
A, it is possible to obtain the optimal gain matrix K, which is composed of two sub-
matrices, K1 and K,. These sub-matrices allow the control input to be computed as

follows:
u = —Klé - ng

However, it must be emphasized that the forces computed as the output of the LQI
controller are expressed in the inertial (fixed) reference frame, since both the reference
and measured states are defined in this coordinate system, rather than in the robot’s
body frame. Therefore, it becomes necessary to rotate these vectors through a rotation
matrix, making use of the robot’s measured orientation angle . The transformation is

performed using the direct rotation matrix, defined as:

R [005(9) —sin(@)]
sin(0)  cos(0)
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In Figure 4.13, the construction of the rotation matrix performed using Simulink is

shown.

—}

P
@ 2 rotation matrix

theta » sin

Figure 4.13: Simulink model of rotation matrix

The entire control model was therefore consolidated into the following subsystem

4.14.
()«

.G
¥

theta
12)

B

(@D,

Figure 4.14: Control model
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4.2.5 Model results with sinusoidal trajectory

In this final section, the results obtained from the Simulink simulation are presented.
The analysis focuses not only on verifying the correct tracking of the desired trajectory
and compliance with the imposed velocity limits, but also on evaluating the forces and
torques generated during the motion. The first result, illustrated in the following figure
4.15, concerns the trajectories and confirms that the robot successfully maintained the

prescribed path, demonstrating the effectiveness of the implemented control strategy.

Trajectory

Teorical trajectory | -
Model trajectory

] 0.5 1 1.5 2

Figure 4.15: comparison of the trajectories
The following figures 4.16, 4.17, 4.18, confirm that the velocity achieved by the model

closely matches the theoretical profile, providing further evidence of the accuracy of the

implemented control approach.
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Figure 4.16: Comparison of x velocities
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Figure 4.17: Comparison of y velocities
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Velocity comparison
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Figure 4.18: Comparison of absolute velocities
A comparison between the theoretical orientation, automatically computed by the

control code to ensure that one face of the robot is always aligned with the direction of

motion, and the simulated orientation obtained from the model is also presented 4.19.
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Figure 4.19: Orientation comparison

It can be observed that the two values perfectly coincide.

Below are shown the time trends of the errors obtained during the simulation. It
can be observed that the position error 4.20 is clean and stable, consistently remaining
below 5 mm, which indicates a high level of control accuracy. The orientation error,
although very small in magnitude, appears slightly more affected by noise, a behaviour
that can also be seen in the velocity error plot 4.21, where small residual oscillations

are present.
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Figure 4.20: Position and orientation error
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Figure 4.21: Velocity error

These disturbances are nevertheless considered tolerable, as the system maintains
satisfactory and repeatable performance. With the same control parameters, the model
can operate correctly even when following different trajectories, such as the parabolic

trajectory whose results are shown at the end of this chapter, thus confirming the
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universality and robustness with which both the control code and the simulation model
were designed.

In the following figures, extracted directly from Simulink through the scope block,
it can be observed that the motor command voltage remains limited, never reaching
the saturation threshold of 12V (fig.4.23). Similarly, the torque delivered by the motor
remains within the range of the maximum torque, which is approximately twice the
nominal value of 55 x 1073 Nm (fig. 4.22).

Figure 4.22: motor torque output
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Figure 4.23: motor command voltage

Finally, the resulting diagrams of the PWM-modulated forces along the x and y

axes, expressed in the robot’s local reference frame, are presented (fig.4.24, fig. 4.25).
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Figure 4.24: x-Force scopes

Figure 4.25: y-Force scopes
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4.2.6 Model results with parabolic trajectory

To further validate the model, additional simulations are carried out using a parabolic
trajectory, and some of the obtained results are presented below.

The equation of the trajectory 4.2.6 is as follows:

2

T
y(x) = a3 - a—; (4.2.6)
1

and the parameters are listed in the following table 4.3.

al 0.1
a2 0.03

Table 4.3: Parabolic trajectory parameters
To avoid repetitive comments, only the trajectory comparison 4.26 and the error
trends over time are reported (fig.4.27 and fig.4.28). Despite a slight increase in error,

still well within acceptable limits, the results confirm that the model, with the same

parameters, can be effectively extended to different trajectories.

61



CHAPTER 4. DIGITAL TWIN AND CONTROL STRATEGY

Trajectory
127 === Theorical trajectory i
1t Model trajectory
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Figure 4.26: Parabolic trajectory

Figure 4.27: Position and orientation error of parabolic trajectory
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Figure 4.28: Velocity error of parabolic trajectory
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Chapter 5
Arduino code

This chapter presents the script developed in the Arduino IDE to implement trajec-
tory control and manage sensors and actuators. The discussion does not focus on the
code itself, but rather on the reasoning and design choices underlying its implementa-

tion.

5.1 Arduino functions

Before proceeding, it is essential to clearly define the roles assigned to the Arduino.
Its primary responsibility is the implementation of the control logic, specifically the
instantaneous calculation of the forces and torques necessary for trajectory execution.
In addition, the Arduino must communicate with the IMU sensor to acquire data on the
robot’s position and orientation on the plane. It is also responsible for managing the
actuators: performing speed control of the brushless motor and operating the pneumatic
valves through PWM signals. Finally, the board handles a set of user interface buttons,

allowing basic interaction between the system and the operator.
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5.1.1 Control logic

Given that the MATLAB script previously presented (and included in Appendix A)
already generates the desired trajectory, it is sufficient to export the reference trajectory
data (namely positions and corresponding velocities) into a header file .h, allowing them
to be read directly by the Arduino script.

A similar approach can be applied to the K gain matrix obtained from the LQI con-
troller. Since this matrix consists of constant values that remain unchanged throughout
the simulation, these parameters can be imported into the Arduino code as predefined
constants, thereby reducing the computational load on the microcontroller. Therefore,
the Arduino is only required to compute the control input vector (denoted as u in Chap-
ter 4) by multiplying the gain matrix K by the error vector, which includes position,
velocity, and integral of position errors. The error vector is evaluated at each time step
by subtracting the sensor-acquired data from the corresponding reference trajectory

values.

5.1.2 Data acquisition

As previously mentioned, the only sensor available on the robot is an IMU, which
provides direct measurements of linear accelerations and angular velocities. Conse-
quently, obtaining linear velocities, positions, and orientations requires numerical inte-
gration of these signals. This introduces a critical challenge within the scope of this
thesis: despite several attempts, relying solely on an inertial sensor proved highly lim-
iting for accurately determining the robot’s planar position. The resulting data often
exhibited significant inaccuracies, including cumulative errors that increased over time.
Conversely, the orientation estimates obtained from the IMU were found to be reliable,
largely due to the implementation of the Mahony filter, which fuses the measurements
from the three IMU sensors. For this specific application, however, data from the mag-
netometer were excluded from the filter, as experimental tests demonstrated that doing

so produced more accurate and drift-resistant results under identical conditions, and
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also simplified the sensor calibration process, eliminating the need for rotations around
its axes. Since an existing open-source library [24] was employed for the implementa-
tion, the mathematical formulation of the Mahony filter is not discussed in detail in
this thesis.

5.1.3 Actuators control
Thruster control

For the reasons mentioned above, although a control strategy for the thruster valves
was theoretically developed and implemented to enable planar translation control, it
was not possible to thoroughly test the proposed approach. Nevertheless, the proposed
strategy involves evaluating the force components along the x and y directions and,
based on their signs, activating the corresponding valves. A suitable PWM signal is
then generated, proportional to the ratio between the required force and twice the

maximum thrust produced by a single actuator.

Motor control

Regarding the brushless motor control, a more elaborate approach was adopted.
The motor driver regulates the motor speed through an analog voltage input, which
is emulated by the Arduino using a high-frequency PWM signal. However, the LQI
controller provides a torque command as its output. This torque is divided by the
wheel’s moment of inertia and then numerically integrated to obtain the theoretical
motor speed required to follow the desired trajectory. It is not sufficient, however,
to simply convert this theoretical speed into an equivalent voltage level. The reason
lies in the significant difference between the reaction wheel’s inertia and the motor’s
own rotor inertia. A sudden increase in speed would cause a large current draw, while
a sharp deceleration would make the motor act as a generator, feeding a potentially
damaging high current back into the battery pack. To prevent such situations, a max-

imum acceleration limit was introduced, forcing the speed to follow a ramped profile
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both during acceleration and deceleration phases, effectively smoothing current spikes.
Specifically, the theoretical speed obtained from the numerical integration is compared
to the actual motor speed. The difference between the two is then checked against the
maximum allowable variation in speed, determined by the imposed acceleration limit.
If this difference exceeds the allowed Av, only the maximum permitted increment (or
decrement) is applied to the current motor speed, producing an updated current speed.
At each control cycle, this new speed replaces the previous value and is converted into
a PWM signal to be sent to the motor driver. For safety reasons, the maximum duty

cycle was limited to 50%, corresponding to a motor speed of approximately 1480rpm.

5.2 Code structure

The functions described above are integrated within the main Arduino program.
Beyond the necessary setup and initialization routines, the overall code can be logi-
cally divided into five distinct stages (four sequential and one alternative) that operate
cyclically.

At startup, the system enters the "IDLE” state, during which the Arduino confirms
that all initializations have been successfully completed. In this state, the simulator
remains inactive, waiting for a start signal to begin the trajectory execution. The start
command can be issued either by pressing a physical button located on the top of the
robot or by typing "start” in the Arduino IDE serial monitor. Once the command is
received, the code transitions to the "READY” state, notifying the operator that the
input has been correctly acquired. A message appears on the serial monitor indicating
that the trajectory execution is about to begin, followed by a 3-second countdown. At
the end of the countdown, the program enters the "RUNNING” state. In this phase,
the actuators (valves and motor) are activated, and the trajectory control is executed
according to the functions previously described. When the simulation time expires
and the trajectory is completed, the system transitions to the ”"COMPLETE” state.

Here, all actuators are reset, and a confirmation message is displayed on the serial
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monitor to inform the operator that the trajectory has been successfully executed.
The code then automatically returns to the "IDLE” state, ready to receive a new
command. At any moment, the operator can interrupt the execution by triggering the
"EMERGENCY” state, an alternative mode designed for safety. This can be activated
by pressing a second button located on the robot’s top panel or by typing "stop” in
the serial monitor. Upon activation, all actuators are immediately disabled, and the
system halts. To resume normal operation, a manual reset of the Arduino is required,
after which the system returns to the "IDLE” state. The five stages described above

are summarized in the following figure 5.1.
IDLE: initializations have been successfully completed.
The robot remains inactive, waiting for a start signal

READY: The robot receive the start input but
remains stationary

RUNNING: actuators are on and trajectory control is
executed

COMPLETE: the trajectory 1s completed, all actuators
are reset

EMERGENCY: all actuators are immediately disabled, and the
system halts.

Figure 5.1: Five code states
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Design of the Control board

This chapter presents the control board assembled for the project, providing justifi-
cation for the choices made regarding the selected components and their placement. For
greater clarity, the description of the control board is divided into four functional blocks,
after which the overall electrical circuit will be presented showing all the components

mounted on the board.

6.1 Control board

The control board, located at the bottom of the robot, was designed and developed
to be positioned as close as possible to the robot’s geometric center, taking advantage
of the space left free by the aluminium profiles that support the motor mounts,as
previously suggested in Chapter 3. Consequently, as shown in the figure 6.1, the central
area of the board is occupied by the IMU sensor.

An important aspect considered during the design phase was the modularity of the
board. As can be clearly seen in the figure 6.1, the board features several connectors
and terminal blocks that allow the connection of external components which cannot be
mounted directly on it, such as buttons, the battery pack, valves, and the motor. This

modular design greatly simplifies maintenance and troubleshooting, as the board can
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be easily disconnected from the rest of the system when required.

Transistor NPN BC337

Resistor 1.8kQ Diode 10A10
Fuse 2A

Diode Zener IN 4755

\ Capacitor 25V 220uF
\ Driver DEC Module 50/5

IMU MPU 9250

Arduino Nano ESP32

Figure 6.1: Control board

6.1.1 Command block

The command block consists of the Arduino board and the connectors for the ”start”
and "emergency” buttons mentioned in Chapter 5. The Arduino is positioned in one
corner of the board to minimize space occupation, with its USB port oriented toward
the inner side of the control board to facilitate convenient connection of programming
and power cables.

Since the Arduino was the first component to be positioned, its location effectively
determined the layout of all the remaining elements on the board. This placement served
as a reference point for arranging the connectors, wiring paths, and other modules,

ensuring both functional accessibility and an efficient use of the available surface area.

6.1.2 Sensor block

As previously mentioned, the IMU sensor (currently the only sensor mounted on the
robot) is positioned at the centre of the control board, a choice made to ensure greater

accuracy in data acquisition. The connection between the sensor and the Arduino is

70



CHAPTER 6. DESIGN OF THE CONTROL BOARD

straightforward. In addition to the 3.3V power supply, communication is established
via the I?C interface, a two-wire communication protocol. This interface uses two pins:
SDA, which handles the data transmission between the sensor and the Arduino, and
SCL, which provides the clock signal, regulating the timing and synchronization of the

data transfer.

6.1.3 Valve block

This section of the board performs a crucial function for the operation of the valves,
converting the PWM signal output from the Arduino pins (limited to 3.3V) into a
signal proportional to the 24V required to drive the valves. This voltage adjustment is
achieved using four N PN BC337 transistors. The transistors are connected as follows:
the collector is connected to the load (i.e., the valve), the emitter is tied to the board’s
common ground, and the base is connected to the Arduino pin providing the PWM
signal. To protect the Arduino pin from excessive current, a 1.8k{2 resistor is placed
between the base and the pin, limiting the maximum current that can flow, according
to the following equation 6.1.1, where 3.3V is the output voltage of Arduino, while 0.7V
is the commutation voltage of the transistor.

33V —-0.7V
18009

Additionally, as shown on the left side of the figure 6.1, three terminal blocks are

= 1.4mA (6.1.1)

present: the largest is used to connect the 24V power supply, while the two smaller
blocks accommodate the valve power lines. The positive lines are connected in parallel,
whereas the negative lines are connected to the transistor collectors, which act as a
switching stage to ground. This arrangement ensures that the valves receive the correct

voltage and can be safely controlled by the Arduino.

6.1.4 Motor block

This portion of the board is the largest, as it houses the motor driver, the connectors

for interfacing the board with the motor, and the driver protection system, as specified
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in the driver’s data-sheet. The connections between the driver and the motor are not
discussed here, as they strictly follow the manufacturer’s technical instructions [18].
Greater emphasis, however, is placed on the driver protection circuit, which has been
slightly modified compared to the recommendations in the manual. The following figure
6.2 shows the protection circuit suggested in the data-sheet, which calls for a 7A fast-
acting fuse, a 54V TVS diode, and a 220 F capacitor rated at 63V.

FU1

+VSupply ,' ,' +Vcc Module 1 >
7A
D1 C1
SMBJ54A 220u/63V
(. .l
._l T~
Gnd Gnd

Figure 6.2: Protection circuit of data-sheet

In the present application, the motor is powered at 12V, well below the driver’s
maximum allowable voltage of 50V, and the motor has a nominal current of 2.02A.
Therefore, the protection circuit components used were adapted accordingly: a 2A
fuse, a 43V 1N4755 Zener diode, and a 220uF capacitor rated at 25V.

This protection circuit, however, safeguards only the motor driver and not the power
source. To prevent potential damage to the batteries, in addition to the software-
based limitations previously described in the code section, a 10410 diode was added in
series with the fuse. This diode prevents any current generated by the motor during
unintended braking from flowing back to the battery pack. The use of a power resistor
was also considered to aid in energy dissipation. However, thanks to the implementation
of the speed ramp, the motor’s regenerative effect is significantly mitigated, making the
diode sufficient for the current setup. In future iterations, a more advanced circuit
could be designed to exploit regenerative braking, allowing the energy produced during

deceleration to be recovered and used to recharge the batteries.
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6.2 Electrical circuit

To summarize the observations made above and to clarify the various connections
implemented, the following figure 6.3 shows the electrical schematic of the circuit as-
sembled on the perfboard. The diagram highlights the main components along with
their respective connections. The batteries are represented as two ideal 12V voltage

sources.
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Figure 6.3: Electrical circuit
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Chapter 7
Experimental results

The final chapter of this thesis is devoted to the presentation of the experimental
results, with the aim of validating the design choices made throughout the development
process and confirming the robustness of the implemented control strategy. Before
proceeding, a few considerations must be introduced.

As previously discussed, a major limitation of the simulator lies in the use of the
IMU as the sole data-acquisition sensor. While it provides quite reliable measurements
of the orientation, its estimates of the position are highly inaccurate and therefore
unusable. In addition to this, the resin surface originally intended for testing the robot
exhibited unwanted slopes which, combined with the absence of the valves and thrusters
during the experiments, ultimately made it unsuitable for proper testing. Consequently,
the tests (whose results are presented in this chapter) are performed on a smooth tile

surface, ensuring correct operation of the air bearings.

7.1 Test bench setup

To use the tile as a flat reference surface, a small rectangular platform is set up on
a laboratory desk. It is assembled from four aluminium profiles and equipped with four

screws acting as adjustable feet, allowing the height of the base to be finely tuned. Two
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pictures of the of the platform 7.1a and the complete setup 7.1b are provided below.

(a) rectangular platform setup (b) Tile setup

Figure 7.1: Test bench setup

Unfortunately, due to either a manufacturing defect or prolonged improper storage,
the tile itself is not perfectly flat but slightly warped in its central region. Although the
irregularity is not excessive and is barely noticeable to the naked eye, as will become
clearer in the following sections, the tests carried out are significantly affected by this

imperfection.

7.2 Experimental tests

The experimental tests conducted fall into two categories: in the first, a predefined
rotation is commanded and the resulting response of the robot is observed; in the
second, a zero-orientation hold command is applied, and the robot’s reaction to an
external disturbance is evaluated by manually displacing it by a given angle. This
section presents the two tests and their corresponding results, addressing first the trial
with a predefined rotation and then the test involving an external disturbance. The
control parameters used, namely the maximum errors and maximum forces included in

the @ and R matrices, which are valid for both tests, are reported in the following table
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7.1.
Ex 0.04
Ey 0.04
€o 1
vz 0.004
Evy  0.004
Euw 0.1
Eint, 0.04
Einte, 0.04
€int, 100
Fre: 016
Frer 016
Ciaz  0.15

Table 7.1: LQI parameters of experimental tests

7.2.1 Test 1: predefined rotation

The objective of this test is to verify whether the robot is capable of performing a
30° rotation when a corresponding command, defined by a trapezoidal velocity profile,
is provided. The first step consists in extending the MATLAB script presented in
Appendix A to generate both the rotational trajectory and the associated trapezoidal
velocity profile, since the previously developed functions are not suitable for trajectories
that do not involve variations in the x and y coordinates. After specifying the desired
maximum angular velocity and maximum angular acceleration, the following profiles

7.2 are obtained.
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P 0.02
n |
-\-\-\-"'\-\.
] L L ]
E ]
= L
= ooz ! i i i i i i i i
0 10 20 a0 40 50 a0 70 a0 o0 100
Angular velocity
[ n g —I,r l'. T T T T
= o0osf /
= / Y
L { \
e i 1
-3 o _|_|,I L L L L L L L L L

0 10 20 a0 40 50 60 70 80 a0 100

Angular position
T T T

:

B [rad]

0 10 20 30 40 30 60 70 80 80 100

Figure 7.2: Angular acceleration, velocity and position profile

The maximum angular acceleration (0.015rad/s?) required is computed by enforc-
ing the dynamic equilibrium between the robot and the reaction wheel. Assuming a
maximum motor angular acceleration of 10rad/s?, as discussed in the previous chapter,
while the moment of inertia of the reaction wheel is 0.6204e — 3kgm? and that of the
robot is 0.2kgm?, the correct value of the robot’s angular acceleration is obtained from
the following equation 7.2.1:

g = % - Qpy = 0.031rad/ s> (7.2.1)

As a precaution, the calculated value has been decreased by 50%. The maximum
velocity of 0.075rad/shas been chosen so that the robot requires 5 seconds to reach it
under the imposed acceleration limit, in accordance with the laws of uniformly accel-

erated motion7.2.2.

tramp = Cmaz (722)

amax
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The results are now presented, comparing the theoretical command set, the out-

comes of the model simulation, and the results obtained from the experimental test.
Angular position comparison
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Figure 7.3: Angular position comparison

The comparison of the angular positions (fig.7.3) confirms the robustness of the
developed simulator. The trajectory followed by the model perfectly matches the com-
manded path, making them practically indistinguishable. The experimental test results,
despite all the issues previously mentioned, are still valid, with an initial maximum er-
ror of approximately 1°, according to the maximum 1° error declared in the parameters
of the LQI control, which increases up to approximately 2° over the course of the test.

A similar consideration applies to the velocity curves. With the exception of an
outlier measured by the IMU at the beginning of the simulation, the experimental

test results are otherwise consistent and confirm the validity of the approach. Below,
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both the graph comparing the angular velocities and a zoomed-in view of the curves,

excluding the outlier, are presented for greater clarity.

Velocity comparison
_SIEt
2 model
experimental
— — —upper +0,02 rad/s limit
= = =lower -0,02 rad/s limit
1.5
W
& 1
3
0.5

Figure 7.4: Angular velocity comparison
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Velocity comparison
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Figure 7.5: Angular velocity comparison zoomed

It is clear that in both graphs, of position and velocity, although the experimental
data generally follow the theoretical profile, the measured signal appears noisy. Is
more evident that when the commanded velocity is zero, the experimental signal tends
to oscillate within a range of approximately 0.02rad/s. This oscillation consequently
induces the fluctuations observed in the angular position graph as well. The reasons
behind this phenomenon are manifold: the IMU ’s measurement inaccuracies and the
slight inclination of the test surface certainly contribute to the disturbance. However,
another important factor is the behaviour of the motor driver. For command voltages
below 0.1V, the driver forces the motor to operate at its minimum speed of 62rpm
(approximately 6.5rad/s). During the braking phase, the motor reaches this minimum

speed and consequently remains at that value. Conservation of angular momentum
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7.2.3 requires that the robot’s angular velocity also becomes constant, settling around
a fixed value.
I, - Awg + Ly - Awyyy, =0 (7.2.3)

Nonetheless, the controller detects an increasing velocity error and responds by increas-
ing the torque command so that the motor rotates in the opposite direction. As soon
as the command voltage exceeds the 0.1V threshold, the motor is able to influence the
robot’s motion again through a variation in speed, until it once more drops back to
the minimum of 6.5rad/s, thus creating an infinite loop. A simplified way to estimate
the corresponding angular velocity of the robot when the reaction wheel reaches the
threshold value of 6.5rad/s is to consider two instants in time, ¢; and ¢,. At t;, both
the motor and the robot have zero angular velocity, while at ¢, the motor rotates at the
critical speed, and the robot’s angular velocity is unknown. By applying the angular
momentum conservation equation introduced earlier 7.2.3, the robot’s angular velocity
is found to be approximately 0.02rad/s, which corresponds to the limiting value around

which the velocity fluctuations are observed.

7.2.2 Test 2: reaction to an external disturbance

The objective of this test is instead to evaluate the robot’s response in the presence of
an external disturbance and, consequently, its ability to return to a predefined reference
position. As a trajectory, a vector of zeros was assigned for both angular position and
angular velocity. Before applying a disturbance in position, consisting of rotating the
robot by a certain angle, data were collected in order to analyse the robot’s behaviour

in the absence of disturbances, around the zero position.
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Figure 7.6: Disturbance effect on angular position

Before applying the disturbance, it is observed (fig. 7.6) that despite the command
to maintain the zero position, the IMU readings indicate a deviation, occasionally ex-
ceeding the maximum error threshold of 1°. This phenomenon is consistent with the
behaviour of the motor driver at low speeds, as discussed in the previous section. As
illustrated in the graph 7.6, two angular displacements are applied in opposing direc-
tions. Following the first disturbance, despite the oscillations, the robot successfully
returned to the requested zero position. Conversely, after the second external rotation,
the system exhibited greater difficulty in re-establishing the target position. A plausible
explanation for this discrepancy lies in the manual application of the disturbance; in
the second instance, the robot may have been displaced from its axis, shifting it onto a

region of the plane with different surface inclinations.
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Figure 7.7: Disturbance effect on angular velocity

In the plot 7.7 showing the angular velocity over time, both the instants in which
the external disturbances are applied and the previously discussed effect of the motor
driver are clearly visible. In fact, apart from the moments when the disturbance is intro-
duced, the rotational velocity remains approximately within the interval of £0.02rad/s.
Unfortunately,similar to the previous test, this measurement also contains an outlier in
the angular velocity plot 7.7 that appears shortly after the first applied displacement.
Since this point is clearly attributable to a sensor reading error, it is excluded from the
analysis and will not be further discussed.

From both tests, it is evident that this behaviour of the driver is particularly prob-
lematic, as it prevents a proper assessment of the controller’s performance. For this

reason, a modification was introduced in the Arduino code to enforce a forced shutdown
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of the motor. Specifically, an additional if condition was implemented: whenever the
theoretical torque computed by the LQI controller is less than 0.01Nm and the mea-
sured velocity error fall below 0.02rad/s, the driver’s ENABLE pin is pulled to ground,
effectively disabling the motor.

This modification was tested by repeating Test 2, this time applying the external

disturbance only once while the robot attempted to maintain its reference orientation.

Angular position

| &‘
bo=hap- - |
— — T —U W&\&%L\MAA:&M'\JVW
5t
— =10
=
-157T1
=20
_SIEt
o5t experimental
—_— exlemal upper 1° error
disturbance — — —lower 17 error
=30

0 20 40 60 80 100 120 140 160 180 200 220 240 260
time [s]

Figure 7.8: Disturbance effect on angular position with modified script

The orientation results show a markedly different behaviour compared to the pre-
vious tests. Before applying the disturbance, the robot’s orientation remains at zero,
as the motor is effectively turned off. Only after the disturbance is applied, the IMU
detects an angular displacement, prompting the motor to react and reduce the result-

ing error. Once the error falls back within the allowed threshold, the motor is disabled
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again. As a consequence, the residual oscillations observed in the plot 7.8 can be at-
tributed to small micro-movements of the robot around its equilibrium position, as well
as possible inaccuracies from the IMU sensor and the applied filter. The fact that the
steady-state error is not exactly zero is expected and can be explained by the chosen

control parameters and by the limit introduced in the Arduino code.
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Figure 7.9: Disturbance effect on angular velocity with modified script

Similar observations can be made from the angular velocity plot. The direct readings
from the IMU gyroscope confirm that, both at the beginning of the test and at steady
state, the velocity, disregarding measurement noise, is effectively zero. Consequently,
the oscillations observed following the disturbance are solely due to the undesired effect
of gravity, which causes the robot to oscillate around a stable equilibrium position.

As previously mentioned, the implementation of the if condition in the Arduino
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code required two checks: one on the control torque and the other on the velocity error.
The limitation on the control torque excludes from the control action all those values
that would require very low command voltages. This prevents the motor from operat-
ing in its non-linear low-voltage region. However, since the computation of the control
torque depends on both the position error and the velocity error, and the magnetometer
was excluded from the attitude estimation, the angles are obtained solely through nu-
merical integration, which may not be highly accurate over long measurement periods.
As a result, small errors can accumulate over time, potentially leading to a reported
displacement even when no actual movement occurs. This effect is evident in the plot
7.8, where after approximately 200s the measured error exceeds the maximum allowable
error of 1°. Consequently, this cumulative error also appears in the torque plot 7.10.
Therefore, if an orientation estimation error were to occur and the second constraint on
velocity were not in place, the robot would attempt to compensate for a non-existent

error, resulting in an unnecessary corrective motion.
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Figure 7.10: Motor control torque
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Chapter 8
Conclusion

This final chapter presents the conclusions drawn from the work carried out in this
thesis, summarizing the main results and evaluating the effectiveness of the implemented
solutions.

The objective of developing a control strategy capable of guiding the robot along a
predefined trajectory has been successfully achieved. This control logic was validated
both in a virtual environment, through physical model, and in laboratory conditions.
In both cases, the results were consistently positive, demonstrating the effectiveness of
the proposed approach. This outcome is particularly significant considering the various
challenges encountered during the experimental phase, most notably the limitations
imposed by the available test surfaces, which made the validation of the simulator
more complicated.

At the same time, the project is well-prepared with a view toward future devel-
opments. It provides a detailed physical model built in Simscape within the MAT-
LAB/Simulink environment, a reliable MATLAB control script capable of delivering
appropriate gains for a wide range of trajectories, and an advanced Arduino IDE com-
mand script. The latter has already proven effective in the current setup while still
being structured in a way that facilitates modifications and further improvements.

From a practical and constructive standpoint, the simulator also demonstrates ro-
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bustness and versatility. Its modular design, the use of slotted aluminum profiles, and
the flexibility enabled by 3D printing not only simplified the assembly process but also
greatly ease any future adjustments or redesigns. Equally noteworthy is the control
board, which is well-organized and carefully structured, ensuring compatibility with

additional components should future developments require an expanded setup.

8.1 Future works

This thesis can be considered a solid foundation for a more complex project, where
new control strategies can be explored and implemented. At this stage, it is useful to
reflect on the aspects that could be further enhanced. In particular, complementing the
IMU with additional sensors could improve the accuracy of data acquisition, providing
the opportunity to test and refine the control of the valves and thrusters, which in this
work were less extensively explored due to practical testing constraints.

Additionally, the physical model developed in Simscape could be further enriched
by introducing the possibility of simulating force and torque disturbances. This would
allow for the virtual evaluation of scenarios such as undesired inclinations or asymme-
tries in the thruster jets, providing a more realistic and flexible environment to validate

and optimize control strategies before implementation.
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Appendix A

Matlab scripts

A.1 Main script

m=9.56;
base=0.349; Ym
larghezza=0.360;
altezza=0.606;

Iz=1/12*m*(base~2+larghezza"2) ;

%hValve

P_rid=7; Ybar

rapp=0.433; %b critical ratio
Cv=15.7; %N1l/bar conductance
Cv=Cv*1e-3/60; %m~3/s
Pi=1e5;%Pa initial condition
R_gas=287; %J/kg/K

Temp=293; %K

td=6e-3; %m tube diameter
Len=0.3; %m tube lenght
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44

45

46

47

gam=1.4; Yspecific heat ratio
dn=1e-3; %m nozzle diameter
A=pi/4*dn~2; Ymnozzle
pwmdt=0.01; Y%s

%motor

kw=374*2xpi/60; Y%rad/s/V
ke=1/kw; %V/rad/s
kc=25.5e-3; %Nm/A
L=0.56e-3; %H

R=1.2; Johm
taum=17.1e-3; Y%s

kw_t= 17.7; Yrpm/mNm
kw_t=kw_t*2*pi/60%1000;
kt_w=1/kw_t;

Imotore=92.5%10"-3%10"-4; %kgm~2

Cn_m=55e-3; Y%Nm

B_att=0;

speedn=2940; Jrpm
speedmax=4370*2*pi/60;%rad/s

%reaction wheel
phi_r=100e-3;%mn
density=7900; %kg/m3

spessore=8e-3;’m

Iwvheel=1/2*x(density*(pi*phi_r~2/4*spessore))*phi_r~2/4;

% trajectory
dt=0.1;

T=100;

t = 0:dt:T; % time

APPENDIX A. MATLAB SCRIPTS
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C_max=2%*54.8e-3;

% Nm

% examples of trajectory x(o), y(o)

%sinusoide
% al=0.1;
% a2=0.5;
% omega=0.1;
% x_t=0(time)
% y_t=0(time)

hparabola
% al=0.1;
% a2=0.03;
% x_t=0(time)
% y_t=@(time)

hretta
% al=0.1;
% x_t=0(time)
% y_t=0@(time)

Yzero zero

alxtime;

a2*cos (omega*time) -a2;

alxtime;

a2 " 2xtime . 2;

al*xtime;

O*xtime;

X_t=0(time) Oxtime;

y_t=0(time) Ox*time;

x_t(t); % x
y_t(t); %y

e
]

<
]

% 2. velocity

position

position

92



80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

101

102

103

104

105

106

107
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dx_dt = gradient(x, t);
dy_dt = gradient(y, t);
% 3. abs velocity

velocity =

h 4.

t_inizio = O0;

time start and time end
% Tempo di inizio

t_fine = 25; % Tempo di fine

sqrt (dx_dt."2 + dy_dt."2)

I

% 5. index of time start and time end

[T, idx_inizio] = min(abs(t - t_inizio)); % Indice per il tempo
di inizio

[*, idx_fine] = min(abs(t - t_fine)); % Indice per il tempo
di fine

% 6. Trajectory lenght

Leng = trapz(t(idx_inizio:idx_fine), velocity(idx_inizio:
idx_fine));

% a_max and v_max
0.002; %m/s2
0.06; Y%m/s

a_max

v_max
x_sigma=0(s) x_t(s*xt_fine);

y_sigma=Q0(s) y_t(s*xt_fine);

[sigma, dsigma,t_flat] =

Xr = x_sigma(sigma);
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yr = y_sigma(sigma);

ds=diff (sigma);
dx_ds = gradient (xr,sigma);

dx_ds (ds==0)=0;

dy_ds = gradient(yr,sigma);
dy_ds (ds==0) =0;

xp_r=dx_ds .*dsigma (1:end);
xp_r(end)=xp_r(end-1);

yp_r=dy_ds.xdsigma (1l:end);
yp_r(end)=yp_r(end-1);

%hFilter

fc = 1; ¥ cut frequency [Hz]
[b, al] = butter (2, fc/(100/2));
Xp
yp

filtfilt (b, a, xp_r);

filtfilt (b, a, yp_r);
v_mod = sqrt(xp_r."2 + yp_r."2);
xpp=gradient (xp,t);

ypp=gradient (yp,t);

hhautomatic theta for different trajectories
% theta_in = atan2(yp_r, xp_r);

% theta = angular_limitation(t, theta_in,
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139 % theta=unwrap(theta);

140 b

141 % w_in = diff ([theta (1), thetal) / dt; % angular velocity
142 % w_ltra = w_limitation(t, w_in, sigma);
143 %

144 % fc = 1; % frequenza di taglio [Hz]

145 % [b, al = butter(2, fc/(100/2));

146 % w_f = filtfilt(b, a, w_1);

147 % w=[w_1(1:9),w_f(10:end)];

148 YA

149 % thetapp=gradient (w,t);

150
151 % htheta and w if x and y are O

152 dtramp = 0.1;

153 pos_finale = pi/6; % Final position
154 alpha_max = 0.015;
155 omega_max = alpha_maxx*5;

156

157 % 2. Time for trapezoidal w profile

158 t_ramp = omega_max / alpha_max;

159 pos_ramp = 2 *x (0.5 * alpha_max * t_ramp~2);
160 pos_cruise = pos_finale - pos_ramp;

161 t_cruise = pos_cruise / omega_max;

162
0, .
163 % Total time
164 t_movimento = 2 * t_ramp + t_cruise;
165

166 /% 3. time vector

167 trampl O:dtramp:t_ramp;
s tramp2 = (t_ramp + dtramp):dtramp:(t_ramp + t_cruise);

169 tramp3 = (t_ramp + t_cruise + dtramp):dtramp:t_movimento;
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170

171 % stop time

172

173 t_stazionamento = (t_movimento + dtramp):dtramp:T;
174

175 % 4. Trapezoidal w profile

176 W_rampa_up = alpha_max * trampl;

177 Ww_cruise = omega_max * ones(size(tramp2));

178

9 % final delta t

10 dt3 = tramp3 - (t_ramp + t_cruise);
181 w_rampa_down = omega_max - alpha_max * dt3;
152 w_rampa_down (w_rampa_down < 0) = 0;

183

184 % keep w O at the end

185 W_zero = zeros(size(t_stazionamento));

186 % Vettore w completo

187 w = [0,w_rampa_up, w_cruise, w_rampa_down, w_zero];

188

189 % 5. theta

190 % Acceleration

191 theta_rampa_up = 0.5 * alpha_max * trampl. 2;

192

193 % Constant w

194 pos_fine_rampal = 0.5 * alpha_max * t_ramp~2;

195 theta_cruise = pos_fine_rampal + omega_max * (tramp2 - t_ramp);
196

197 % Deceleration

198 pos_inizio_rampa_down = pos_fine_rampal + omega_max * t_cruise;
199 theta_rampa_down = pos_inizio_rampa_down + omega_max * dt3 - 0.5

* alpha_max * dt3.72;
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% end of deceleration

theta_rampa_down = min(theta_rampa_down, pos_finale);

% keep last theta

theta_stazionamento = pos_finale * ones(size(t_stazionamento));

% final vector
theta = [0,theta_rampa_up, theta_cruise, theta_rampa_down,

theta_stazionamento];

alphatot=[alpha_max*ones(size (trampl)),zeros(size(tramp2)),-

alpha_max*ones (size (tramp3)) ,zeros(size(t_stazionamento)) ,0];

%%NO automatic orientation, keep theta 0
% theta=zeros(size(t));

% w=diff ([theta (1), thetal) / dt;

%LQI
x_ref = [xr;
yr;
theta;
Xp;
yps
W]’
e_ref=[xr;
yr;
thetal;

xref=timeseries (x_ref ,t);
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eref=timeseries(e_ref ,t);

Au = [0 00100
00O0O0O1O0
00O0O0OO01

00O0O0OO0O
00O0OO0OO
0 000 O0 0];

Bu = [0 0 O
000
000
1/m 0 O
0 1/m O
00 1/1Iz];

Cu=[eye(3,3) zeros(3)];
n=size (Au,1);
m=size (Bu,2) ;

p=size(Cu,l);

A_ext=[Au zeros(n,p);

-Cu zeros(p,p)]l;

B_ext=[Bu;

zeros (p,m)];

%%0ptimal parameters for x y trajectories
Qu=diag ([500 500 1 50000 50000 5000]);

Quu=diag ([500 500 0.0000001]1);
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260 %0ptimal parameters for x y zero

21 % Qu=diag([1 1 1 5 5 10]);

262 % Quu=diag([1 1 0.00000011);

263

26¢¢ Q_ext=blkdiag (Qu, Quu);

265

266 Ru=diag([1/1.672 1/1.672 1/(C_max) "2]);
267

26s K = 1lqr(A_ext, B_ext, Q_ext, Ru);

269

270 K1
o711 K2

K(:, 1:n); % state gain

1/10000*K(:, n+l:end); % integral gain

A.2 Trajectory form

1 function [sigma, dsigma,t_flat] = Trajectory_form(a_max,

v_max,t,Leng)

3 sigma = zeros(size(t));

4 dsigma = zeros(size(t));

5

6 % Calcola tempo di accelerazione

7 t_ramp = v_max / a_max;

8 L_tri =0.5% a_max * t_ramp~2; ) distanza coperta se profilo
triangolare

9

10 if 2xL_tri >= Leng

1 % PROFILO TRIANGOLARE

12 t_flat=0;

13 t_ramp = sqrt(Leng / a_max); %0.5%L/2/a

14 for i = 1:length(t)
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else

ti =

t(i);

if ti < t_ramp

sigma (i)

dsigma (i)

0.5 * a_max/Leng * ti~2;

a_max/Leng * ti;

elseif ti < 2%t_ramp

else

end

end

td = 2xt_ramp - ti;

sigma (i)

dsigma (i)

sigma (i) =1;

1 - 0.5 * a_max/Leng * td~2;

a_max/Leng * td;

dsigma (i)=0;

% PROFILO TRAPEZOIDALE

t_flat =

costante

for i =

ti =

(Leng - a_max * t_ramp”2) / v_max; % tempo a Vv

1:1length(t)

t(i);

if ti < t_ramp

sigma (i)

dsigma (i)

(2%0.5%a_max)

0.5 * a_max/Leng * ti~2;

a_max/Leng * ti;

elseif ti < t_ramp + t_flat && ti>= t_ramp

sigma (i)

0.5 * a_max/Leng * t_ramp~2 + v_max/

Leng * (ti - t_ramp);

dsigma (i)

v_max/Leng;

elseif ti< 2*t_ramp+t_flat && ti>= t_ramp+t_flat

else

td = 2xt_ramp+t_flat - ti;

sigma (i)

dsigma (i)

1 - 0.5 * a_max/Leng * td~2;

a_max/Leng * td;
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sigma(i)=1;
dsigma (i)=0;
end
end

end
% Normalizza sigma tra [0, 1]
sigma = sigma / max(sigma);

% dsigma=dsigma/max (dsigma) ;

end

A.3 Angular limitation
function theta = angular_limitation(t, theta_in,

% Inizializzazione

theta = theta_in;

% Trova il primo indice in cui s >= 1

idx_stop = find(sigma >= 1, 1, ’first’);

if “isempty(idx_stop)

sigma,Leng)

% Prendi il valore dell’ultimo theta prima di sigma = 1

if idx_stop == 1

theta_locked = theta_in(1); % Tutto sigma >= 1,

blocca subito
else
theta_locked = theta_in(idx_stop - 1);

end

% Blocca i valori successivi
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theta(idx_stop:end) = theta_locked;

end

end

A.4 w limitation

function w = w_limitation(t, w_in,

% Inizializzazione

W = w_in;

sigma)

% Trova il primo indice in cui s >= 1

idx_stop = find(sigma >= 1, 1, ’first’);
if “isempty(idx_stop)
% Prendi il valore dell’ultimo theta prima di sigma = 1
if idx_stop == 1
w_locked = w_in(1); % Tutto sigma >= 1, blocca
subito
else
w_locked = 0;
end

% Blocca i valori successivi

w(idx_stop:end) = w_locked;

end

end
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