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Abstract 
The present work investigates the thermo–fluid dynamic behavior of sinusoidal corrugated 
channels, with the objective of establishing quantitative links between vorticity structures, 
pressure losses, and heat transfer performance. Steady-state numerical simulations were 
performed with OpenFOAM (simpleFoam and scalarTransportFoam) for multiple 
corrugation amplitudes and wavelengths, covering a range of Reynolds numbers within the 
laminar and transitional regimes. The analysis of the vorticity field highlights the formation 
of recirculation zones and high-shear regions, whose intensity and occurrence rise with 
geometric corrugation and Reynolds number. These flow structures promote enhanced 
mixing and elevate the heat transfer coefficient, while simultaneously increasing frictional 
losses. Mean vorticity was adopted as indicator of the disturbance imposed by the geometry. 
The results reveal a consistent correlation between vorticity amplification and the growth of 
both Nusselt number and friction factor, emphasizing the central role of vortical dynamics 
in governing the performance of sinusoidal channels. Furthermore, the physical insights and 
empirical power-law correlations developed in this study have broader significance: the 
mechanisms identified here are directly translatable to more complex periodic architectures, 
such as triply periodic minimal surfaces (TPMS), thereby offering a foundation for the 
predictive design and optimization of next-generation compact heat exchangers. 
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1 Introduction 

Vorticity is an inherent feature of fluid flow and plays a key role in heat and mass transfer 
phenomena. It can be artificially generated or naturally occurs in various flow configurations, 
such as near-wall regions of turbulent boundary layers or in flows over curved and rotating 
surfaces. A thorough understanding of vorticity is therefore fundamental for understanding heat 
transfer mechanisms and for developing both active and passive control strategies in numerous 
technological applications. According to Lee et al. [1], the corrugation geometry in plate heat 
exchangers strongly influences the formation of secondary vortices and, consequently, the 
overall heat transfer performance. Their analysis demonstrated that flow separation and 
reattachment near the contact points of adjacent corrugations produce localized vortical 
structures, which intensify fluid mixing and enhance heat transfer by thinning the thermal 
boundary layer. They also observed that sharper geometries, such as triangular corrugations, 
generate stronger vortices and higher heat transfer rates, although at the expense of increased 
pressure losses, thus emphasizing the intrinsic coupling between vorticity generation, thermal 
enhancement, and frictional resistance in corrugated channels. Similarly, XiaoMing Gao et al. 
[2] showed that even a single corrugated wall, compared to a smooth channel, significantly 
alters the flow field by inducing separation and recirculation zones. These structures promote 
local vortices that enhance heat transfer but simultaneously increase hydraulic losses. 

Although these studies have established the qualitative link between vorticity generation, heat 
transfer enhancement, and pressure drop, a quantitative understanding of how specific vortex 
structures correlate with the local and global heat transfer coefficient and friction factor remains 
limited. In particular, the literature lacks a systematic investigation of the relationship between 
the characteristics of vortical flow (strength, size, and spatial distribution) and the thermal 
hydraulic performance across different corrugated geometries. 

Therefore, this thesis aims to establish a correlation between vorticity structures, heat transfer 
coefficient, and friction factor in corrugated channel configurations, providing new insights into 
the fundamental mechanisms that govern thermal enhancement and flow resistance in such 
systems. 

1.1 Influence of wall corrugation on vorticity, pressure losses and heat 
transfer 
 

The presence of wall corrugations in a channel enforces a fundamental modification of the flow 
field: the alternating expansions and contractions, contact points and valleys induce flow 
separation and reattachment, form recirculation zones and vortical structures. 

Increasing wall roughness adding ribs [3], tapes, TPMS (Triple Periodic Minimal Surfaces) 
[4] or just curving the wall may help the development of secondary flow as it’s possible to see 

in Figure 1.1 [3].  

In channels with corrugated or wavy walls it has been shown that recirculation zones appear 
downstream of the crests or “contact points”, and within these zones pairs of counter-rotating 
vortices may develop, which increase mixing between core and wall fluid [5]. Such vortical 
motion promotes disruption of the thermal boundary layer and enhances convective heat 
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transfer, but simultaneously raises the shear and form drag associated with the non-smooth 
geometry, thereby increasing pressure losses. 

 Indeed, experimental and numerical studies show that corrugated channel configurations yield 
significantly higher Nusselt numbers compared with smooth channels, thanks to the enhanced 
mixing and higher vorticity, yet at the expense of markedly higher pressure drop [6]. Moreover, 
parametric studies indicate that the strength of the recirculation zones and vortex generation 
scale with geometrical features (such as corrugation amplitude and wavelength) and flow 
Reynolds number: increasing the corrugation amplitude or steepness elevates vortex intensity 
and hence transfer enhancement, but also amplifies hydraulic penalty [7]. Thus, wall 
corrugation acts as a two-edged mechanism: on one hand it favors vorticity generation and 
improves heat transfer; on the other hand, it increases pressure losses and reduces hydraulic 
efficiency. For this reason, when designing corrugated geometries for heat exchangers or 
enhanced convective systems, it is mandatory to seek an optimal trade-off between thermal gain 
and frictional cost. 

1.2 TPMS and sinusoidal channels 
 

Triply Periodic Minimal Surfaces (TPMS) are complex geometric structures with surfaces that 
repeat smoothly across three dimensions [8]. These surfaces are defined by a single implicit 
function and have transitions between their repeating units, making them suitable for stress, 
fluid flow, and heat transfer applications. Some common TPMS forms include gyroids, 
Schwarz surfaces, and diamond and linoid patterns, each offering unique thermal properties, as 
shown in Figure 1.2 [8]. 

For instance, gyroids are known for their high surface-to-volume ratio and open lattice 
structure, which encourages fluid mixing, a key factor for effective heat transfer. With low 
thermal resistance comparable to traditional heat-dissipating structures, TPMS elements have 
emerged as a promising design strategy for maximizing heat transfer while maintaining 
compact, highly efficient thermal solutions due to the following characteristics:  

Figure 1.1: conceptual 3-D flow pattern inside rib-roughened walls 
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 Low Thermal Resistance: TPMS surfaces facilitate heat dissipation. 

 Enhanced Fluid Mixing: The geometry lessens fluid boundary layers. 

 High Surface-to-Volume Ratio: With an extensive contact area for fluid interaction, 
TPMS geometries make optimal use of available space for thermal exchange. 

However, TPMS designs are not excluded by challenges. Their dense structure can lead to 
increased pressure drop, and their complex shapes typically require additive manufacturing, 
which limits material options and can increase production costs. 

The link between TPMS and vorticity lies in their complex flow paths. The curvature and 
interconnection of TPMS channels promote the formation of secondary flows, recirculation 
zones, and localized acceleration and deceleration of the fluid, all of which contribute to 
vorticity generation. These vortical structures disrupt the thermal boundary layer and enhance 
convective heat transfer through improved fluid mixing. However, the same mechanisms that 
promote vorticity also increase frictional losses, resulting in higher pressure drops. As several 
studies have shown [9], this trade-off between thermal enhancement and hydraulic performance 
is intrinsic to the design of TPMS flow channels. 

A useful way to study and understand the fluid dynamic and thermal behavior of TPMS 
structures is through sinusoidal or corrugated channels, which represent simplified, two-
dimensional periodic systems. These geometries reproduce the essential features of periodicity, 
curvature, and flow separation that are also present in TPMS, but in a more computationally 
tractable form. Lee et al. [10] showed that the periodicity of the wall shape governs the onset 
and strength of recirculating regions, directly linking vortex generation to both Nusselt number 
enhancement and friction factor increase. 

Figure 1.2: Example of TPMS with different geometries 
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1.3 Aim of the work 

Since TPMS geometries can be regarded as a three-dimensional extension of sinusoidal 
periodicity, numerical simulations on sinusoidal channels offer a valuable means of 
investigating the fundamental mechanisms of vorticity generation, boundary-layer disruption, 
and the associated thermal–hydraulic trade-offs. Once these relationships are well understood 
in simpler two-dimensional periodic channels, they can be translated to TPMS structures, where 
the same physical principles govern fluid mixing, pressure losses, and heat transfer 
enhancement within a fully three-dimensional periodic framework. 

The main objective of this work is to establish quantitative correlations between the friction 
factor, vorticity, and Nusselt number, using as a reference dataset the numerical results obtained 
from a wide range of two-dimensional sinusoidal channel configurations. By systematically 
varying the geometric parameters and Reynolds number, the study aims to identify how vortex 
intensity and distribution influence both the heat transfer coefficient and the hydraulic 
performance. This approach provides a foundational understanding that can later be extended 
to more complex periodic geometries such as TPMS. 

The study is organized into three main sections: 

 First, the case setup is presented in detail, including the rationale behind the geometric 
configuration, the mesh generation strategy, the selected boundary conditions and 
thermophysical properties, as well as the numerical models implemented within the 
chosen OpenFOAM solvers. Particular attention is dedicated to the use of symmetry 
shifts and periodic boundary conditions, which were introduced to simplify the 
computational domain and streamline the post-processing phase.  

 The second part focuses on the qualitative analysis of the flow, providing visualizations 
of velocity, vorticity, and temperature fields to illustrate the main features induced by 
the corrugated geometry.  

 Finally, the quantitative results are examined with the aim of establishing empirical 
correlations linking vorticity to both friction factor and Nusselt number, thus offering a 
predictive framework for assessing the thermo-hydraulic performance of sinusoidal 
channels. 
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2 Case study 

2.1 Sinusoidal geometries 
Considering flow of an incompressible Newtonian fluid forced through a wavy sinusoidal 
channel, as in Figure 2.1 [11]: 

The geometry of a sinusoidal channel can be characterized by three key parameters: the 
corrugation amplitude S, the wavelength 𝜆, and the corrugation number 𝛼.  

Parameter S represents the peak-to-trough height of the wall undulations, controlling the 
intensity of the wall modulation; 𝜆 is the distance over which the sinusoidal pattern repeats 
itself, defining the spatial period of the channel; 𝛼 is a dimensionless quantity indicating the 
number of waves per unit length along the channel. These quantities are related through the 
simple geometric relation: 

𝜆 =
2𝜋

𝛼
  

Understanding these parameters is essential for analyzing the flow and thermal behavior within 
sinusoidal channels, as they directly influence the generation of vorticity, the development of 
the thermal boundary layer, and the overall hydraulic resistance. 

In OpenFOAM, the sinusoidal channel geometries were generated using the blockMesh utility, 
which allows for a fully parametric definition of the computational domain. The wall profiles 
are expressed analytically as 

𝑦𝑢 = 1 + 𝑆𝑐𝑜𝑠(𝛼𝑥) 

𝑦𝑙 = 1 − 𝑆𝑐𝑜𝑠(𝛼𝑥) 

where 𝑦𝑢 and 𝑦𝑙  denote the upper and lower walls, respectively.  

By specifying the parameters 𝛼 and S as input variables in the mesh generation script, both the 
geometry and the mesh resolution can be systematically varied.  

The specific values of the corrugation amplitude and corrugation wavenumber used in this study 
were selected based on previous investigations reported in the literature on sinusoidal channels 
[11] . These values provide a well-established reference framework and ensure that the selected 

Figure 2.1: Sinusoidal channel geometry 

(2.1) 

(2.2) 
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geometries are representative of conditions that significantly influence flow structures, vorticity 
generation, and heat transfer. By following this reference, the study maintains consistency with 
earlier works while allowing for systematic exploration of the impact of geometric variations 
on thermo-fluid dynamic performance. 

Chosen configurations are depicted in Figure 2.2: 

 

To compare different configurations, hydraulic diameter has been defined as: 

𝐷ℎ =
4𝐴𝑙𝑎𝑡

2𝑝
 

Figure 2.3 illustrates that an increase in wall corrugation leads to a larger wetted perimeter, 
which consequently reduces the hydraulic diameter of the channel.  

(2.3) 

Figure 2.2: Chosen geometries 
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2.2 Mesh generation 

The definition and parametrization of the computational mesh represent a fundamental step in 
achieving reliable numerical simulations. The quality of the domain discretization directly 
affects both the accuracy of the results and the stability of the numerical solution. However, a 
highly refined mesh inevitably increases the number of cells and the overall computational cost. 

For this reason, it is essential to identify an optimal compromise between accuracy and 
computational efficiency, adapting the mesh resolution to the specific characteristics of the flow 
or physical field under investigation. Mesh parametrization enables the automation and control 
of this process, allowing rapid adjustments of the resolution or element distribution according 
to different geometric configurations or boundary conditions. 

2.2.1 BlockMesh utility 

Meshes were generated using the blockMesh utility, which allows for the creation of fully 
parametric hexahedral grids with graded cells and curved edges. The domain was constructed 
by defining multiple blocks, each delimited by eight vertices corresponding to the corners of a 
hexahedron.  

Geometry was designed to reproduce a sinusoidal channel with periodic boundary conditions 
in the streamwise direction. The upper and lower channel walls were described using spline 
edges, which interpolate a set of control points defined by the wavelength λ and the corrugation 

amplitude S. This approach enables the generation of smooth sinusoidal profiles without the 
need for additional meshing tools such as snappyHexMeshDict. 

To accurately solve the near-wall region, two additional boundary layers were introduced: one 
adjacent to the upper wall and one to the lower wall. These were implemented by defining two 
extra sets of vertices, each parameterized through the variables 𝑦𝑢 and 𝑦𝑙 . By modifying these 
parameters directly within the blockMeshDict, it is possible to adjust the wall-normal thickness 
of the boundary layers without altering the rest of the geometry (Figure 2.4):  

Figure 3.3: hydraulic diameter for all the configurations 
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The mesh is composed of three main hexahedral blocks. The central block defines the main 
flow domain, while the upper and lower blocks represent the boundary layer regions, each 
refined independently to have a high refinement near wall 

Finally, the cyclicAMI boundary condition was imposed at the inlet and outlet, with the 
separation vector corresponding to one wavelength (λ), ensuring periodicity along the 

streamwise direction. The front and back faces were set as empty, enforcing two-dimensional 
flow conditions. 

2.2.2 Grid convergence study 
 

To ensure that the numerical solution was independent of the computational grid, a grid 
convergence study was performed following the Richardson extrapolation method [12]. 

Richardson extrapolation method is a systematic approach used to estimate the exact solution 
of a numerical problem by analyzing the results obtained with different grid resolutions. The 
method assumes that the discretization error decreases as a power of the characteristic grid size 
h, defined as 

ℎ = √
1

# 𝑜𝑓 𝑐𝑒𝑙𝑙𝑠
 

According to 

𝜙(ℎ) = 𝜙𝑒𝑥𝑎𝑐𝑡 + 𝐶ℎ𝑝 

where 𝜙(h) is the numerical result obtained with grid size h, 𝜙𝑒𝑥𝑎𝑐𝑡  is the asymptotic (or exact) 
value toward which the solution converges, C is a constant related to the magnitude of the 
numerical error, and p is the numerical order of accuracy of the discretization scheme. 

By performing the same simulation on at least three grids of increasing refinement, the apparent 
order p can be estimated as 

(2.4) 

(2.5) 

(2.6) 

Figure 2.4: blockMesh tool 
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𝑝 =
𝑙𝑛 [

𝜙1 − 𝜙2

𝜙2 − 𝜙3
]

ln(𝑟32)
 

Where 𝜙1, 𝜙2, 𝜙3 are the computed results on the coarse, medium, and fine grids, respectively, 
and 𝑟32 =

ℎ2

ℎ3
  is the refinement ratio between the medium and fine grids. Once p is known, the 

extrapolated value corresponding to an infinitely fine grid can be calculated using 

𝜙𝑒𝑥𝑡 = 𝜙3 +
(𝜙3 − 𝜙2)

(𝑟32
𝑝

− 1)
 

This extrapolated value 𝜙𝑒𝑥𝑡 provides an estimate of the solution that would be obtained if the 
grid spacing approached zero, thus minimizing the effect of discretization errors. The method 
also allows for the evaluation of the Grid Convergence Index (GCI), which quantifies the 
relative uncertainty due to grid dependence. 

Simulations were performed at Reynolds equal 500, providing pressure drop ∆𝑝 [Pa] (to 
quantify the relative error bar when evaluating hydraulic quantities) and average temperature 
[K] at the wall (to quantify the relative error bar when evaluating thermal quantities) for each 
grid. 

The order of accuracy of the numerical scheme was estimated from the results using the 
logarithmic relation between successive grid refinements (eq. 2.6). This allowed the calculation 
of the apparent order p and, subsequently, the extrapolated value corresponding to an infinitely 
fine grid, obtained through Richardson extrapolation (eq. 2.7). The apparent percentage errors 
between consecutive grids (coarse–medium and medium–fine) were evaluated, as well as the 
Grid Convergence Index (GCI) for both pairs, using a safety factor of 1.25 to account for 
uncertainties in the estimation of p. 

Finally, the relative errors of each simulation with respect to the extrapolated value were 
computed and plotted against the grid size h. The results showed a monotonic convergence 
toward the asymptotic value, confirming that the mesh resolution adopted for the finest grid is 
within the grid-independent regime. 

In the following section, the grid convergence study is presented for the most corrugated 
geometry; however, the same procedure was also performed for the other configurations. The 
corresponding error bars obtained from these analyses were then applied to the results to 
provide a quantification of the numerical uncertainties.   

(2.7) 
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In Figure 2.5, grids of different sizes are depicted for the most corrugated geometry. 

In Table I, values for grid size h and refinement ratio are defined: 

Table I: grid parameters 

 h 𝑟𝑖𝑗 
Coarse 0.013 / 

Medium 0.009 1.34 
Fine 0.007 1.33 

 

Figure 2.6 shows the values for pressure drop with respect to the extrapolated value and their 

relative error, evaluated as 𝜖𝑖𝑗 =
|𝑑𝑝𝑖−𝑑𝑝𝑗|

|𝑑𝑝𝑖|
∗ 100: 

The grid convergence study confirms that the numerical solution approaches a stable value as 
the grid is refined. The pressure drop (Figure 2.6a) decreases progressively with smaller grid 
size, converging toward the Richardson extrapolated value. The relative error (Figure 2.6b) 
follows a consistent trend, reducing to less than a few percent for the finest grid. 

Using the medium grid adopted in this work, this corresponds to an uncertainty of 
approximately 0.33% which is represented as an error bar in the results of the most corrugated 

geometry for both the pressure drop and the corresponding friction factor. 

Figure 2.6: grid convergence study: (a) pressure drop for each grid, (b) relative error 

Figure 2.5: grid for 𝛼=2.5, S=0.5 mm: (a) coarse (b) medium (c) fine 
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The analysis of the thermal results focuses on the average reached temperature of the upper 
wall. An accurate prediction of this quantity is essential, as it directly affects the reliability of 
the heat transfer results. Ensuring a well-resolved wall temperature distribution therefore 
provides confidence in the correctness and consistency of the thermal performance obtained 
from the simulations.  

In Figure 2.7, grid convergence study (a) and relative error (b) with respect to the extrapolated 
value are shown: 

Similarly to what has been said for pressure drop, can also be applied to the average wall 
temperature: using medium grid it’s possible to achieve 1.6% error bar for the thermal results. 

 

2.3 Boundary conditions 

The numerical simulations were carried out using OpenFOAM and subsequently validated and 
compared with results obtained from STAR-CCM+ to ensure consistency and reliability. The 
computational domain is a 2D sinusoidal channel, where periodic boundary conditions were 
imposed both for the fluid flow and thermal fields to reproduce a fully developed regime. The 
working fluid is water, with a constant Prandtl number equal to 7 and constant thermophysical 
properties: 

𝑃𝑟 =
𝜈

𝐷𝑡
=

𝜇𝑐𝑝

𝑘
 

𝐷𝑡 represents the thermal diffusivity of the fluid, while 𝜈 represents the kinematic diffusivity. 

The mean velocity in the channel is fixed at 2.5 × 10−3 𝑚

𝑠
, while the flow regime was simulated 

at both laminar conditions (Re=10, 100, 300, 500) and turbulent conditions (Re=5000, 10000, 
20000). The variation of the Reynolds number is achieved by changing the dynamic viscosity 
(𝜇) of the fluid while maintaining a constant mean velocity (𝑈𝑚) and Prandtl number; 
consequently, the thermal conductivity (𝑘) was also adjusted to preserve the relationship among 
the thermophysical properties.  

(2.8) 

Figure 2.7: grid convergence study: (a) wall temperature for each grid, (b) relative error 
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The thermal boundary conditions applied to the sinusoidal channel consist of constant 
isothermal temperature of 500 K and a uniform heat flux of 2.5 × 104 W/m

2. These boundary 
conditions are imposed on both sinusoidal surfaces of the channel to reproduce a constant 
thermal load and to study the resulting heat transfer characteristics under steady-state 
conditions. This configuration enables analysis of how the flow and temperature fields interact 
with the wavy geometry while maintaining a controlled and reproducible thermal environment. 
Figure 2.8 shows the imposed thermal boundary conditions. 

 

2.4 OpenFOAM solver 
 

OpenFOAM can solve any different cases: in this work SIMPLE algorithm is used to solve 
hydraulic part of the problem, then flow is “freezed” and thermal part is solved using 
SCALARTRANSPORT algorithm. 

2.4.1 SIMPLE algorithm 
 

Semi Implicit Method for Pressure Linked Equations (SIMPLE) couples u, p momentum and 
mass conservation equations:  

∇ ∙ 𝑢 = 0 

∇ ∙ (𝑢𝑢) − ∇ ∙ 𝑅 = −∇𝑝 + 𝑆𝑢 

Where u is the velocity, p is the kinematic pressure, R is the stress tensor and 𝑆𝑢 is the 
momentum source. 

(2.9) 

(2.10) 

Figure 2.8: Thermal boundary conditions: (a) imposed q'' (b) imposed T 
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In the SIMPLE procedure, these equations are discretized using the finite volume method. First, 
the momentum equation is solved using a guessed pressure field to obtain an intermediate 
velocity u∗. Then, a pressure correction equation is derived from the continuity constraint to 
enforce mass conservation. The corrected fields are updated as: 

𝑝 = 𝑝∗ + 𝛼𝑝𝑝′ 

u = u∗ −
1

𝐴𝑢
∇𝑝′ 

 

where 𝑝′is the pressure correction, 𝐴𝑢is the diagonal coefficient of the discretized momentum 
equation, and 𝛼𝑝is an under-relaxation factor used to ensure numerical stability. 

The algorithm iterates between solving the momentum and pressure correction equations until 
both the velocity and pressure fields satisfy the continuity equation. This method provides a 
robust approach for steady-state incompressible flow problems, as implemented in the 
simpleFoam solver of OpenFOAM. 

2.4.2 SCALARTRANSPORT algorithm 
 

The scalarTransportFoam solver is designed to evolve a passive scalar field 𝑇 by solving a 
generic transport equation that accounts for advection, diffusion, and optional source terms. 
The governing equation can be expressed as: 

𝜕

𝜕𝑡
(𝑇) + ∇ ∙ (𝑢𝑇) − ∇ ∙ (𝐷𝑇∇𝑇) = 𝑆𝑇 

Where T is the transported scalar, u is the velocity field provided by an external flow solver 
(simpleFOAM), 𝐷𝑇 is the scalar thermal diffusivity, and 𝑆𝑇 represents a volumetric source or 
sink term. 

The discretized form of transport equation is solved using finite volume method where: 

 convection term ∇ ∙ (𝑢𝑇) is approximated using upwind or linear schemes. 
 diffusion term ∇ ∙ (𝐷𝑇∇T) is discretized with central differencing. 
 Optional source terms 𝑆𝑇 are included as explicit volumetric contributions. 

The algorithm iteratively updates the scalar field 𝑇 until convergence, ensuring conservation of 
the scalar quantity throughout the computational domain. This makes scalarTransportFoam 
particularly suitable for simulating heat or species transport in a prescribed flow field. 

2.4.3 Turbulence model  

To properly model the turbulent regime, selecting an appropriate turbulence model is a crucial 
step, as several formulations exist, each with different strengths and limitations depending on 
the type of flow under study. In this work, the Menter SST (Shear Stress Transport) k–ω model 

was adopted, as implemented in OpenFOAM v2412. This model belongs to the class of two-
equation turbulence models, where two additional transport equations are solved: one for the 
turbulent kinetic energy (k): 

(2.11) 

(2.12) 

(2.13) 
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𝐷

𝐷𝑡

(𝜌𝑘) = ∇ ∙ (𝜌𝐷𝑘∇𝑘) + 𝜌𝐺 −
2

3
𝜌𝑘(∇ ∙ 𝑢) − 𝜌𝛽∗𝜔𝑘 + 𝑆𝑘  

 𝐷

𝐷𝑡
(𝜌𝑘) is the material derivative of turbulent kinetic energy. It represents the temporal 

and convective change of k following the fluid motion. 
 ∇ ∙ (𝜌𝐷𝑘∇𝑘) is the turbulent diffusion term. It accounts for the diffusion transport of k 

due to both molecular viscosity and turbulent viscosity. 
 𝜌𝐺 is the production term. Represents the generation of turbulent kinetic energy due to 

velocity gradients (shear). 
 −

2

3
𝜌𝑘(∇ ∙ 𝑢) is the dilatation term, which accounts for compressibility effects, so it 

has been neglected in this study. 
 𝜌𝛽∗𝜔𝑘 is the dissipation term that describes the conversion of turbulent kinetic energy 

into internal energy through viscous effects. 
 𝑆𝑘  is the additional source term. In OpenFOAM, it is typically set to zero. 

and another for the specific dissipation rate (ω): 

𝐷

𝐷𝑡

(𝜌𝜔) = ∇ ∙ (𝜌𝐷𝜔∇𝜔) +
𝜌𝛾𝐺

𝜈
−

2

3
𝜌𝛾𝜔(∇ ∙ 𝑢) − 𝜌𝛽𝜔2 − 𝜌(𝐹1 − 1)𝐶𝐷𝑘𝜔 + 𝑆𝜔 

 ∇ ∙ (𝜌𝐷𝜔∇𝜔) is the diffusion of 𝜔, analogous to the diffusion term in k equation but 
with different coefficients. 

 𝜌𝛾𝐺

𝜈
 is the production of 𝜔, representing the generation of 𝜔 in proportion to the 

production of k. 
 𝜌𝛽𝜔2 represents the dissipation of 𝜔, describing the decay of 𝜔 due to turbulence 

itself. 
 𝜌(𝐹1 − 1)𝐶𝐷𝑘𝜔 is the cross-diffusion term, one of the fundamental features of the 

SST formulation: 𝐹1 is the so-called blending function that switches between 𝑘 − 𝜔 
and 𝑘 − 𝜖 behaviours as it is shown in Figure 2.9 [13]. 

Blending function has a value of 0 < 𝐹 < 1. If F=0 it behaves like 𝑘 − 𝜖, if F=1 it behaves 
like 𝑘 − 𝜔.  

 𝑆𝜔 is the additional term 

Figure 2.9: SST model switches between 

(2.14) 

(2.15) 
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The Menter SST model was specifically developed to combine the advantages of both the k–ε 

and the standard k–ω formulations. It addresses one of the main weaknesses of the classical k–

ω model, namely its excessive sensitivity to the freestream values of ω, which can lead to 

inaccurate predictions in regions far from solid boundaries. By introducing a blending function 
that smoothly transitions between the k–ω model near the walls and the k–ε model in the outer 

regions of the flow, the SST formulation ensures better stability and reliability across the entire 
domain. 

Moreover, the Menter SST model is known for its superior capability to predict flow separation 
and adverse pressure gradient effects, which are critical in complex geometries such as 
corrugated or sinusoidal channels. Its accurate near-wall treatment makes it suitable for solving 
boundary layer behavior without requiring excessively fine grids, thus providing a good balance 
between accuracy and computational efficiency. For these reasons, it represents an optimal 
choice for the present study, where the interaction between separated flow regions and wall heat 
transfer is of primary importance. 

A fundamental parameter that tells if the turbulence model is followed correctly is the wall unit 
y+: is a non-dimensional wall distance that tells how deep the first grid point sits inside the 
turbulent boundary layer. It is defined as: 

𝑦+ =
𝑢𝜏𝑦

𝜈
 

Where y is the distance from the wall to the center of the first cell, ν is the kinematic viscosity, 

and 𝑢𝜏 = √
𝜏𝑤𝑎𝑙𝑙

𝜌
 is the friction velocity based on the wall shear stress 𝜏𝑤𝑎𝑙𝑙  and density ρ. In 

physical terms, y+ partitions the near-wall region into the viscous sublayer (y+ ≲ 5), the buffer 
layer (5 ≲ y+ ≲ 30), and the logarithmic layer (y+ ≳ 30), as can be seen in Figure 2.10 [14]. A 
lower y+ means you are directly resolving the steep velocity and temperature gradients at the 
wall; a higher y+ means you are relying more on modeling assumptions to represent them.  

(2.16) 
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This matters especially when using the Menter k–ω SST turbulence model. SST blends k–ω 
near the wall with k–ε away from the wall, but it is formulated to be integrated all the way to 

the wall without wall functions. To honor that design, the mesh should place the first cell inside 
the viscous sublayer, typically targeting y+<1. With low y+, the ω-equation’s near-wall 
dissipation and the k-equation’s production by mean shear are resolved where their gradients 

are sharpest; the model evaluates the correct balance of production and destruction. As a result, 
predictions of wall shear stress, skin-friction coefficient, and heat flux (hence friction factor 
and Nusselt number) are significantly more reliable. 

2.5 Exploit shift-symmetry and periodicity 
 

The concept of shift symmetry (also known as translational symmetry) plays a key role in this 
work. This type of symmetry describes the property of a system that remains unchanged when 
it is shifted by a certain amount along a spatial or temporal coordinate. 

If a function 𝑓(𝑡) describes the structure or response of a system, shift symmetry means that: 

𝑓(𝑡 + 𝑇0) = 𝑓(𝑡) 
 

or sometimes 

𝑓(𝑡 + 𝑇0) = −𝑓(𝑡) 
 

(2.17) 

(2.18) 

Figure 2.10: Law of the wall 
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for a fixed translation 𝑇0, that in this case will be half wavelength. 

In other words, the system’s configuration or output repeats (or inverts) after a specific shift. 

This periodic or half-wave symmetry is particularly common in systems governed by sinusoidal 
behaviour. 

For example: 

 If the channel wall shape is defined by a sinusoidal function, shifting it horizontally by 
one full wavelength results in an identical geometry (periodicity). 

 Shifting by half a wavelength may produce an inverted geometry that is still 
dynamically equivalent, depending on the boundary conditions (shift-symmetry) 

By validating the shift symmetry for the analyzed configurations, it is possible to restrict the 
post processing to only half of the computational domain without losing accuracy or generality. 
In Figure 2.11 there is a qualitative comparison between what happens in theory and what 
happens in this work: 

Figure 2.11: Shift-symmetry 

To assess the accuracy of the shift symmetry in the sinusoidal channel simulations, the relative 
error in the vorticity along the wall-normal direction (𝑦) was evaluated. The procedure followed 
these steps: 

1. The lower half of the computational domain was translated by 𝜆

2
 in the streamwise 

direction and rotated by 180°, effectively mapping it onto the upper half of the domain. 

2. A line was traced along the 𝑦-direction at 𝑥 =
3𝜆

4
, to allow a pointwise comparison 

between corresponding locations in the two halves of the domain. 

3. At each point along the line, the relative difference between the original vorticity and 
the transformed vorticity was computed: 

𝜖𝑟𝑒𝑙(𝑦)[%] =
∣ ωz

original(𝑦) − ωz
transformed(𝑦) ∣

𝜔𝑧
𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙

(𝑦)
100 (2.19) 
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4. Results were plotted as a function of 𝑦 in Figure 2.12. Relative error was found to be 
approximately constant and very close to zero throughout the domain, confirming that 
the mesh is symmetric and that the shift symmetry is accurately preserved: 

 

This validation demonstrates that it is legitimate to analyze only half of the domain in 
subsequent post-processing, as the flow properties are effectively mirrored and shifted. 

About periodicity, it is important to validate it to guarantee that flow structures, pressure, and 
velocity fields repeat consistently across the boundaries, preventing artificial discontinuities.  
Validating the periodicity of the domain was essential to ensure that the flow reached 
hydrodynamically and thermally fully developed conditions within a single wavelength of the 
sinusoidal geometry.  Figure 2.13 [15] shows what happens theoretically. 

This validation allows each simulation to be performed on only one geometric period, 
significantly reducing computational cost while maintaining physical accuracy. It also ensures 
that the results obtained within this reduced domain are fully representative of the repeating 
flow behavior along the entire channel. 

In OpenFOAM, hydraulically fully developed conditions can be imposed by applying periodic 
boundary conditions at the inlet and outlet of the computational domain, while enforcing a 
specified mean velocity along the channel through an fvOptions source term. Conversely, the 
thermally fully developed conditions can be implemented using a custom boundary condition 
written in Python to ensure that the thermal field exhibits periodic behavior consistent with 
hydrodynamic development. Before applying it to corrugated cases, it’s important to validate it 

with the simpler case.  

Figure 2.12: Relative error of shift-symmetry approximation along y 
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 For thermal cases, the imposed temperature boundary condition was taken to calculate 
dimensionless temperature profiles: 

𝜃∗ =
𝑇(𝑥, 𝑦) − 𝑇𝑤

𝑇𝑏 − 𝑇𝑤
    

With 𝑇𝑏 = bulk temperature and 𝑇𝑤 = wall temperature. 

In Figure 2.14 and 2.15 velocity profile and dimensionless temperature for the parallel flat 
plates case and sinusoidal channel are shown to prove periodicity. 

  

(2.20) 

Figure 2.13: Graphical representation of flow development 

Figure 2.14: fully developed conditions for parallel flat plates 
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Figure 2.15: fully developed condition for sinusoidal flow 
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3 Results 

In this chapter, the main quantities characterizing the flow and heat transfer within the 
sinusoidal channels are presented and analyzed. The quantities of interest are the vorticity, the 
friction factor, and the Nusselt number. 

The following sections present qualitative results for all the simulated geometries. 
Subsequently, in Chapter 4, correlations between the normalized vorticity, friction factor, and 
Nusselt number will be investigated to identify possible relationships linking the hydrodynamic 
and thermal behaviors of the sinusoidal channels. 

Qualitative plots are normalized by the highest value in the corresponding figure to have a 
clearer comparison. 

3.1 Laminar regime 
3.1.1 Hydraulic results 

This section presents the hydrodynamic results obtained for the nine sinusoidal channel 
configurations in the Reynolds number range between 10 and 500. The analysis focuses on the 
behavior of the flow field, with particular attention to the evolution of the velocity and vorticity 
field. These quantities provide insight into how the geometric parameters of the sinusoidal walls 
affect the flow structure, energy dissipation, and pressure losses. 

The sinusoidal corrugation introduces periodic accelerations and decelerations in the flow, 
promoting the formation of vortical structures and local recirculation whose intensity depends 
on both the Reynolds number and the degree of corrugation. By comparing the results across 
all configurations, it is possible to evaluate how the hydrodynamic response of the channel 
evolves from low to moderate Reynolds numbers and how geometric modifications influence 
the overall flow resistance. 

The first part of this analysis focus on the effect of wall corrugation on vorticity enhancement. 

The effect of the wall corrugation on the internal flow was investigated by analyzing the 
velocity field obtained from the numerical simulations. Increasing the corrugation parameter 𝛼 
causes significant modifications in the flow behavior within the sinusoidal channels. As the 
walls become wavier, the local cross-sectional area varies more markedly along the streamwise 
direction, leading to alternating regions of flow acceleration and deceleration. 

For low corrugation levels (Figure 3.1a), velocity along x remains relatively smooth and the 
flow follows the channel contour without noticeable disturbances. When α increases (Figure 
3.1b, c), however, the stronger wall curvature promotes the onset of local recirculation zones in 
the troughs and a clear acceleration of the fluid along the crests. These effects result in a more 
complex velocity distribution along x, with higher spatial gradients and enhanced mixing near 
the wall. 

Figure 3.1 shows how the velocity field progressively evolves with increasing corrugation, 
providing a visual representation of the transition from a nearly uniform flow to a more 
structured and dynamic one. 
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Figure 3.1: |𝑢𝑥| distribution at Re=10 for S=0.5 mm(a) 𝛼 = 0.5 (b) 𝛼 = 1.5 (c) 𝛼 = 2.5 

Regarding vertical component of velocity (Figure 3.2): results indicate that |𝑢𝑦| exhibits a trend 
analogous to that of the streamwise component: its magnitude increases as the corrugation 
number (α) increases. This behavior is associated with the stronger curvature of the channel 

walls, which induces more pronounced flow deviation from the main direction and enhances 
the formation of 3 more accentuated local recirculation zones.  

The modification of the velocity field with increasing corrugation is directly reflected in the 
distribution of vorticity inside the channel. As the parameter α grows, the stronger wall 

curvature and the alternation of expansion and contraction zones generate intense shear layers 
near the walls and within the recirculation regions. These shear layers are responsible for the 
increase in local vorticity, especially in the vicinity of the troughs where the flow separates and 
reattaches periodically. 

At low corrugation levels (Figure 3.3a), vorticity (shown in log scale for better comprehension) 
is mainly confined close to the walls, with a relatively smooth and symmetric distribution 
between the upper and lower surfaces. When α increases (Figure 3.3b, c), distinct vortical 
structures appear within the cavities, becoming larger and more energetic as the corrugation 
amplitude grows. This behavior indicates a progressive enhancement of fluid mixing and 
momentum exchange across the cross-section. 

Figure 3.2: |𝑢𝑦| distribution at Re=10 for S=0.5 mm(a) 𝛼 = 0.5 (b) 𝛼 = 1.5 (c) 𝛼 = 2.5 
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Figure 3.3: |𝜔𝑧| distribution at Re=10 for S=0.5 mm (a) 𝛼 = 0.5 (b) 𝛼 = 1.5 (c) 𝛼 = 2.5 

The amplitude of the sinusoidal corrugation plays a key role in determining the intensity of the 
flow disturbances within the channel. As S increases, the wall deformation becomes more 
pronounced, causing larger variations in the local cross-section and stronger curvature effects 
along the streamwise direction. 

Figure 3.4 illustrates how the increase in S influences the overall flow organization and the 
development of vortical structures inside the sinusoidal channels. 

The comparison clearly shows that increasing the corrugation amplitude S strongly affects the 
velocity distribution inside the sinusoidal channels. For both values of the corrugation 
parameter α, a larger amplitude leads to a more pronounced modulation of the flow field. At 

low S (Figure 3.4a, d), the velocity contours remain relatively parallel to the wall and the flow 
follows the sinusoidal shape with only slight distortion. As S increases to intermediate and high 
values (Figure 3.4b–c, e–f), the constriction of the upper region and the expansion of the lower 
region promote local flow acceleration near the crests and the formation of low-velocity zones 

Figure 3.4: 𝑢𝑥  distribution at Re=10 for: 𝛼 = 1.5 (𝑎) 𝑆 = 0.13 𝑚𝑚 (𝑏) 𝑆 = 0.235 𝑚𝑚 (𝑐) 𝑆 =
0.5 𝑚𝑚;  𝛼 = 2.5, (𝑑) 𝑆 = 0.13 𝑚𝑚, (𝑒) 𝑆 = 0.235 𝑚𝑚 (𝑓) 𝑆 = 0.5 𝑚𝑚 
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or weak recirculation within the troughs. The distribution of the transverse velocity component 
provides further insight into how the flow structure evolves as the corrugation amplitude S 
increases. For both corrugation numbers, low S values (Figure 3.5a, d) correspond to a nearly 
one-dimensional flow, with negligible lateral motion and uniform velocity contours. When S 
increases (Figure 3.5b, c, e, f), the deformation of the channel walls promotes the development 
of strong transverse velocity components, especially near the troughs where the flow 
decelerates and secondary recirculation appears. 

In the most corrugated configurations (Figure 3.5c, f), the |𝑢𝑦| distribution highlights the 
presence of well-defined counter-rotating vortices that occupy a large portion of the cross-
section. These vortical structures are more intense for α = 2.5, indicating that both the 

corrugation amplitude and the wall curvature contribute to the generation of secondary motions. 
The resulting increase in lateral velocity components enhances mixing and momentum 
exchange between the core flow and the near-wall regions. 

The vorticity distribution (Figure 3.6) reveals how the wall corrugation significantly modifies 
the near-wall flow behavior. In the less corrugated channels (Figure 3.6a, d), the vorticity close 
to the upper wall is relatively low but remains nearly uniform along the streamwise direction. 
This indicates a stable shear layer, typical of a smooth-wall configuration, where the velocity 
gradients are weakly affected by the wall geometry. 

As the corrugation amplitude increases (Figure 3.6b, c, e, f), distinct peaks of vorticity appear 
in correspondence with the sinusoidal crests and troughs, where the flow accelerates and 
decelerates, respectively. These local peaks reflect strong velocity gradients generated by flow 
separation and reattachment phenomena. At the same time, lower-vorticity zones can be 
observed in the regions corresponding to the bulging parts of the wall, where the flow tends to 
slow down and recirculate. 

Overall, the results highlight that wall corrugation enhances the spatial variability of the 
vorticity field: instead of a uniform shear layer, the flow develops alternating high- and low-

Figure 3.5: |𝑢𝑦| distribution at Re=10 for: 𝛼 = 1.5 (𝑎) 𝑆 = 0.13 𝑚𝑚 (𝑏) 𝑆 = 0.235 𝑚𝑚 (𝑐) 𝑆 =

0.5 𝑚𝑚;  𝛼 = 2.5, (𝑑) 𝑆 = 0.13 𝑚𝑚, (𝑒) 𝑆 = 0.235 𝑚𝑚 (𝑓) 𝑆 = 0.5 𝑚𝑚 
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vorticity regions following the sinusoidal pattern of the channel, leading to more complex near-
wall dynamics and stronger local mixing. 

 

Now, qualitative results are shown varying Reynolds number (without changing the mean 
velocity) while keeping the geometry and boundary conditions unchanged, to isolate the effects 
of inertia on the velocity and vorticity distributions. Figure 3.7 illustrates the progressive 
evolution of the velocity and vorticity fields highlighting the transition from a stable laminar 
regime to a more complex and dynamically structured flow.  

Streamwise velocity shows how the flow structure evolves with the Reynolds number in the 
most corrugated configuration. At low Reynolds numbers (Figure 3.7a), the velocity 

Figure 3.6: |𝜔𝑧 | distribution at Re=10 for: 𝛼 = 1.5 (𝑎) 𝑆 = 0.13 𝑚𝑚 (𝑏) 𝑆 = 0.235 𝑚𝑚 (𝑐) 𝑆 =
0.5 𝑚𝑚;  𝛼 = 2.5, (𝑑) 𝑆 = 0.13 𝑚𝑚, (𝑒) 𝑆 = 0.235 𝑚𝑚 (𝑓) 𝑆 = 0.5 𝑚𝑚 

Figure 3.7: |𝑢𝑥| distribution for 𝛼 = 2.5, S=0.5 mm: (a) Re=10 (b) Re=100 (c) Re=300 (d) Re=500 
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distribution closely follows the sinusoidal wall shape with smooth gradients. As Re increases 
(Figure 3.7b, d), the velocity contours become progressively flatter and more aligned with the 
streamwise direction, indicating the growing influence of inertia and the reduction of viscous 
effects. The flow accelerates along the crests and decelerates within the troughs, while the shear 
layers near the walls become thinner and more localized. This behavior confirms the transition 
from a viscosity-dominated regime to an inertia-dominated one as the number of Reynolds 
increases. 

Figure 3.8 shows the vertical component of velocity as Re is increased for the most corrugated 
configuration. 

The maps of the normalized transversal velocity component show the progressive reduction of 
transversal motion with increasing Reynolds number. At low Reynolds numbers (Figure 3.8a), 
the higher viscosity allows the flow to adapt smoothly to the sinusoidal geometry, generating 
broad regions of transversal velocity near the wall. As Re increases (Figure 3.8b, c, d), inertial 
effects become dominant, and the flow tends to remain aligned with the main streamwise 
direction, resulting in smaller 𝑢𝑦 values confined in narrow zones close to the wall curvature. 
This shows that, for constant mean velocity, higher Reynolds numbers primarily reduce viscous 
diffusion without amplifying the intensity of transversal motion. 

Vorticity along z reveals how the rotational features of the flow evolve with increasing 
Reynolds number. At low Reynolds numbers (Figure 3.9a), the vorticity is mainly confined 
near the wall, forming smooth layers that follow the sinusoidal contour. As the Reynolds 
number increases (Figure 3.9b, c, d), the vorticity distribution becomes more structured, with 
thinner and more intense shear layers developing along the curved walls. These localized 
regions of high vorticity correspond to stronger velocity gradients produced by the alternation 
of acceleration and deceleration zones along the geometry. At the highest Reynolds number 

Figure 3.8: normalized |𝑢𝑦| distribution for 𝛼 = 2.5, S=0.5 mm: (a) Re=10 (b) Re=100 (c) Re=300 (d) 
Re=500 
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(Figure 3.9c, d), the core flow remains mostly irrotational, while the near-wall regions exhibit 
concentrated bands of vorticity, confirming the progressive dominance of inertial effects and 
the reduction of viscous diffusion.  

In the final part of the hydraulic analysis, the evolution of the flow structures is examined as 
both the Reynolds number, and the corrugation intensity are increased. The results show that, 
while at low Reynolds numbers the flow remains attached and follows the sinusoidal wall 
profile, higher Reynolds numbers promote the formation of recirculation zones (Figure 3.10b, 
c) within the troughs of the channel. These regions become more pronounced as the wall 
corrugation increases, enhancing fluid mixing and momentum exchange across the cross-
section. 

To better illustrate this behavior, streamlines at Re = 500 are compared for different geometries 
(Figure 3.10): it’s evident that this effect will be emphasized with results in turbulent regime. 

Figure3.9: normalized |𝜔𝑧| distribution for 𝛼 = 2.5, S=0.5 mm: (a) Re=10 (b) Re=100 (c) Re=300 (d) 
Re=500 

Figure 3.10: streamlines for velocity magnitude at Re=500; S=0.5 mm: (a) 𝛼 = 0.5 (𝑏) 𝛼 = 1.5 (𝑐) 𝛼 = 2.5 
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3.1.2 Thermal results 
 

In this section, the thermal results are presented considering the two imposed thermal boundary 
conditions: constant wall temperature and constant heat flux. For each case, the temperature 
distributions within the sinusoidal channels are analyzed to highlight the influence of the 
geometric configuration on the heat transfer characteristics. The comparison among different 
geometries is performed at constant Reynolds number to illustrate how the corrugation affects 
the thermal field and fluid mixing. Subsequently, for the most corrugated configuration, the 
effect of the Reynolds number is examined to assess the evolution of thermal behavior with 
increasing flow inertia. These qualitative results provide an overview of the temperature 
patterns, while the quantitative evaluation of the heat transfer performance will be discussed in 
detail in Chapter 4. 

3.1.2.1 Imposed temperature BC 

As shown in Figure 3.11, at Re = 10 the comparison between the three configurations with S = 
0.5 mm varying corrugation number α reveals that, at such low Reynolds numbers, the flow 

remains completely laminar without any recirculation. This regime corresponds to the so-called 
purely laminar shear flow region, where the influence of the channel geometry on the heat 
transfer is negligible. In this condition, the thermal exchange is almost entirely dominated by 
conduction, and the variations in corrugation do not lead to any significant enhancement of the 
temperature field. 

At Re = 500, flow behavior changes significantly compared to the low-Reynolds regime. As 
shown in Figure 3.12, the higher inertia of the fluid promotes the onset of recirculation zones 
and stronger secondary flows within the corrugations. These effects enhance fluid mixing and, 
consequently, improve the convective heat transfer. Overall, comparing 𝛼 = 2.5  and 𝛼 =
1.5 (Figure 3.12b, c),  it’s not possible to notice great differences.  

 

 

Figure 3.11: Temperature distribution for S=0.5 mm at Re=10: (a) 𝛼 = 0.5 (b) 𝛼 = 1.5 (c) 𝛼 = 2.5 
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Figure 3.13 illustrates the temperature distribution for the most corrugated configuration as the 
Reynolds number increases. To allow a consistent comparison among different Reynolds 
numbers and operating conditions, the analysis is carried out using the dimensionless 
temperature θ, defined as 

𝜃 =
𝑇(𝑥, 𝑦) − 𝑇𝑚𝑖𝑛

𝑇𝑤𝑎𝑙𝑙 − 𝑇𝑚𝑖𝑛
 

which allows normalizing the thermal results and isolating the influence of the flow regime 
from the absolute temperature values. 

At low Reynolds numbers (Figure 3.13a), the thermal field is mainly governed by conduction, 
with smooth, stratified temperature gradients developing along the channel and very limited 
fluid mixing. In this regime, the heat transfer process is dominated by diffusion, and the 

Figure 3.12: Temperature distribution at Re=500 for S=0.5 mm: (a) 𝛼 = 0.5 (b) 𝛼 = 1.5 (c) 𝛼 = 2.5 

Figure 3.13: Temperature distribution for 𝛼 = 2.5, S=0.5 mm: (a) Re=10 (b) Re=100 (c) Re=300 (d) Re=500 

(3.1) 
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isotherms appear almost parallel to the wall, indicating weak interaction between the core flow 
and the near-wall region. 

As the Reynolds number rises (Figure 3.13c, d), convective transport becomes progressively 
more important. The increase in flow inertia promotes the onset of vortical structures and 
recirculation zones within the corrugated cavities, which significantly enhance fluid mixing. 
This enhanced mixing contributes to a more homogeneous temperature field throughout the 
channel cross-section, reducing the local temperature gradients and thinning the thermal 
boundary layer near the walls. Consequently, the overall thermal performance improves as the 
flow regime transitions from conduction-dominated to convection-dominated behavior. 

The progressive change in the temperature distribution with Reynolds number clearly 
demonstrates the strong dependence of the heat transfer mechanisms on the flow dynamics 
induced by surface corrugation.  

This normalization effectively removes the influence of absolute temperature levels and 
highlights the spatial variations due solely to the hydrodynamic regime and geometry. In this 
way, the analysis focuses on the intrinsic flow–thermal coupling, enabling a clearer 
interpretation of how changes in Reynolds number modify the heat transfer characteristics 
within the corrugated channel. 

 

3.1.2.2 Imposed heat flux BC 
 

In Figure 3.14, corresponding to the case with constant wall heat flux, the temperature 
distribution exhibits a progressive increase along the streamwise direction, as expected due to 
the continuous energy input at the wall. In contrast to the constant wall temperature condition, 
the thermal field here is characterized by a variable wall temperature that adapts to the local 
heat transfer rate. For the lowest Reynolds number (Figure 3.14), temperature contours remain 
smooth and stratified, indicating that heat transfer is still dominated by conduction.  

As the Reynolds number increases (Figure 3.15) convective contribution becomes more 
significant, leading to enhanced mixing and a more uniform temperature field. 

Figure 3.14: Temperature distribution at Re=10 for S=0.5 mm: (a) α=0.5 (b) α=1.5 (c) α=2.5 
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The comparison has been made again with the dimensionless temperature distribution evaluated 
in this case as:  

𝜃 =
𝑇(𝑥, 𝑦) − 𝑇𝑚𝑖𝑛

𝑇𝑤𝑎𝑙𝑙 − 𝑇𝑚𝑖𝑛
 

Compared to the low-Reynolds regime, the flow now exhibits a much stronger convective 
contribution, which leads to a thinner thermal boundary layer and a more uniform temperature 
field across the channel. The increase in Reynolds number enhances fluid mixing, particularly 
in the regions downstream of the corrugation peaks. However, when comparing the two most 
corrugated configurations (α = 1.5 and α = 2.5), the visual differences in the temperature field 

appear relatively small. This suggests that under the imposed heat flux condition, the amplitude 
of the corrugation rather than the corrugation wavenumber may play a more dominant role in 

Figure 3.15: Temperature distribution at Re=500 for S=0.5 mm: (a) α=0.5 (b) α=1.5 (c) α=2.5 

Figure 3.16: Temperature distribution for S=0.5 mm, 𝛼 = 2.5: (a) Re=10 (b) Re=100 (c) Re=300 (d) Re=500 

(3.2) 
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influencing the overall thermal behavior and heat transfer performance. Similar qualitative 
behavior is also observed under constant wall temperature conditions 

At Re = 10 (Figure 3.16a), the flow is fully laminar, and the temperature distribution is mainly 
governed by conduction, resulting in smooth and stratified contours. With increasing Reynolds 
number (Figure 3.16c, d), convective transport becomes progressively more significant, leading 
to a noticeable thinning of the thermal boundary layer and a more uniform temperature field 
within the channel. Beyond Re=300 (Figure 3.16c, d), the presence of recirculation zones 
enhances fluid mixing, which further promotes heat transfer and reduces temperature gradients 
near the wall. This overall trend highlights the transition from conduction-dominated to 
convection-dominated heat transfer as the flow inertia increases. 

3.2 Turbulent regime 

The following section presents the qualitative results obtained for the turbulent flow regime. 
This part of the analysis directly follows the laminar case and aims to highlight the main 
differences in flow behavior and thermal response when turbulence develops within the 
corrugated geometries.  

As already introduced in chapter 2.4, to validate the turbulence model, the near-wall mesh was 
designed so that the first cell of the boundary layer satisfies 𝑦+ < 1. Figure 3.17 shows the 𝑦+ 
local distribution in the most corrugated configuration. 

The analysis focuses on the most corrugated configurations, corresponding to α = 2.5 and α = 

1.5, with corrugation amplitudes S = 0.13, 0.235, and 0.5 mm. These cases were selected 
because they exhibit the strongest influence of the wall undulations on the flow structures and 
heat transfer mechanisms, allowing a clear comparison between laminar and turbulent regimes. 
The selected Reynolds numbers for this analysis are 5000, 10000, 20000. 

Regarding the thermal analysis, only the isothermal wall condition (imposed wall temperature) 
was considered. This choice was made primarily to simplify the post-processing phase and 
ensure a consistent comparison among configurations. Moreover, as already discussed in the 
previous sections, the overall trend of Nusselt number enhancement with increasing vorticity 

Figure 3.17: 𝑦+ verification for Re=20000, 𝛼 = 2.5, 𝑆 = 0.5 𝑚𝑚 
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remains similar for both imposed temperature and imposed heat flux boundary conditions, 
making the isothermal case sufficiently representative for the purposes of this study. 

3.2.1 Hydraulic results 

This section analyzes the qualitative hydraulic results for all the configurations. The aim is to 
illustrate how the increase in wall corrugation influences the flow structure and promotes the 
formation of vortical motions within the channel. Initially, the visualization is performed using 
the surface line integral convolution (LIC) of the velocity vector field (U), which provides an 
intuitive representation of the local flow direction and the presence of vortical structures along 
the corrugated walls. This method allows highlighting the transition from predominantly 
aligned flow regions to more complex recirculating zones induced by the wall undulations. 
Through Figure 3.18 it becomes possible to clearly identify how periodic geometry enhances 
the mixing and disrupts the near-wall flow, revealing the mechanisms responsible for the 
increased vorticity and, consequently, for the improvement in heat transfer performance 
observed in the turbulent regime. 

From the LIC visualization, it is evident that the only configuration in which no significant 
vortical structures are present is the least corrugated one, corresponding to α = 1.5 and S = 0.13 

mm. In this case, the flow remains almost completely attached to the wall, and the velocity field 
follows the surface profile smoothly, without the formation of recirculation zones or strong 
shear layers. The fluid motion is therefore mainly unidirectional, resembling the behavior 
typically observed in the laminar regime. 

However, as soon as the wavelength is reduced, the situation changes noticeably: even for the 
configuration with α = 1.5 and S = 0.235 mm, distinct recirculation regions begin to appear near 

the troughs, marking the onset of vortical motion. These structures originate as the local 
curvature of the wall becomes sufficient to cause flow separation, creating enclosed zones 
where the fluid rotates before reattaching downstream. 

As the corrugation becomes more pronounced, the flow field evolves into a far more complex 
pattern. The number and intensity of the vortices increase, and they begin to occupy a larger 
fraction of the channel cross-section (Figure 3.18c, f). In the most corrugated geometry (Figure 
3.18c), multiple vortices coexist within each period leading to a flow field characterized by 
strong mixing and high local vorticity. This proliferation of vortical structures is a clear 
indication of how wall modulation intensifies the fluid’s rotational dynamics, a mechanism that, 

as will be seen in the thermal analysis, plays a key role in enhancing heat transfer efficiency. 
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As the corrugation amplitude increases, a clear intensification of the velocity gradients is 
observed. The near-wall regions exhibit higher velocity peaks, while the low-speed zones 
within the troughs become more pronounced and spatially extended. This behavior indicates 
that the flow undergoes stronger acceleration and deceleration phases as it adjusts to the wavy 
surface. 

In the more corrugated cases (Figure 3.19c, f), significant nonzero velocity magnitudes are 
visible even inside the recirculation regions. The presence of finite velocity values in these areas 
confirms that the flow is not stagnant but involves vortical motion with measurable tangential 
velocity components. These localized swirling structures enhance the local vorticity, as the 
velocity changes rapidly both in magnitude and direction. The progressive growth of high-
velocity and recirculating regions with increasing corrugation highlights the intensification of 
mixing and shear effects that underline the improved heat transfer performance in the turbulent 
regime. 

As shown in Figure 3.20a, d, for S = 0.13 mm the transverse motion is weak and confined, with 
very low |𝑢𝑦| values. As the corrugation increases, the peaks of the vertical velocity component| 
become stronger, especially near the walls. The enhanced wall curvature produces sharper shear 
layers and well-defined recirculation cells within the troughs, causing high-|𝑢𝑦| regions to 
expand and shift closer to the surface. The amplification of near-wall |𝑢𝑦| clearly indicates 
stronger vortical activity and increased cross-stream mixing. 

 

Figure 3.18: LIC of U vector for Re=5000: α=1.5: (a) S=0.13 mm, (b) S=0.235 mm, (c) S=0.5 mm. α=2.5: (d) 
S=0.13 mm, (e) S=0.235 mm, (f) S=0.5 mm 
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Figure 3.19: normalized velocity along x for Re=5000: α=1.5: (a) S=0.13 mm, (b) S=0.235 mm, (c) S=0.5 mm. 

α=2.5: (d) S=0.13 mm, (e) S=0.235 mm, (f) S=0.5 mm 

Figure 3.20: normalized velocity along y for Re=5000: α=1.5: (a) S=0.13 mm, (b) S=0.235 mm, (c) S=0.5 mm. 
α=2.5: (d) S=0.13 mm, (e) S=0.235 mm, (f) S=0.5 mm 
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What has been shown before is now summed with the qualitative results of vorticity along z 
in Figure 3.21. 

It is evident that as the corrugation increases, the region characterized by high vorticity (red 
shades) progressively expands, covering a larger portion of the flow domain. For S = 0.13 mm, 
the strong vorticity remains confined near the wall, where shear stress is highest, while the core 
of the channel remains mostly unaffected 

In the most corrugated configuration (S = 0.5 mm), the vorticity distribution becomes much 
broader, with elevated vorticity values not only near the wall but also in the central part of the 
troughs. This indicates that the entire flow field is more dynamically active, with vortical 
structures penetrating further into the channel. Such behavior enhances the mixing of fluid 
particles and promotes stronger momentum and thermal exchange between the wall and the 
core region. As will be discussed in the next section, this intensified mixing directly contributes 
to the improvement of the heat transfer performance observed for highly corrugated geometries. 

Following the comparison between different geometries, is important to show how the fluid 
changes its behavior when the onset of turbulence increases. To do so, Figure 3.22 shows how 
vorticity develops and increases its magnitude when passing from Reynolds equal to 5000 to 
20000. 

At first glance the vorticity distribution looks qualitatively similar, because the strongest values 
sit in thin near-wall layers and around separation, which saturate the color scale. However, the 
volume-averaged vorticity increases with Re, as will be shown in the quantitative discussion of 
the results. This trend follows what is expected: higher Re thins the viscous layer and 
strengthens the shear in the separation shear-layer, so |𝜔𝑧 | ∼ U/δ grows and the near-wall 
contribution weights more in the domain average. Recirculation cells remain in the same 
locations but become more energetic, with larger nonzero velocities inside the cavities. 
Consistently, it is expected that Nusselt number will rise with Re since the thermal boundary 

Figure 3.21: normalized vorticity along z for Re=5000: α=1.5: (a) S=0.13 mm, (b) S=0.235 mm, (c) 

S=0.5 mm. α=2.5: (d) S=0.13 mm, (e) S=0.235 mm, (f) S=0.5 mm 
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layer is thinner and the turbulent diffusivity is higher, enhancing wall-normal mixing even if 
the mean |𝜔𝑧 | shading appears comparable.  

In short, the maps show similar topology, while integral metric reveal the monotonic growth of 
rotational intensity that underpins the observed heat transfer increase. 

3.2.2 Thermal results 
 

As discussed before, results for turbulent regime are shown only for the isothermal wall 
temperature boundary condition. Dimensionless temperature 𝜃 is used to display the results, as 
in section regarding laminar results. 

Figure 3.23 shows the dimensionless temperature θ for Re = 5000 under isothermal walls. The 

left column refers to α = 1.5, the right to α = 2.5; rows (a, c) and (d, f) correspond to S = 0.13, 
0.235, and 0.5 mm. 

For α = 1.5 with S = 0.13 mm (Figure 3.23a), temperature is mostly layered: a thin hot band 
near the wall and a cold blue core. With S = 0.235 mm (Figure 3.23b), the isotherms bend over 
the troughs, and the warm layer thickens slightly. At S = 0.5 mm (Figure 3.23c), a clear warm 

Figure 3.23: dimensionless temperature distribution for Re=5000: α=1.5: (a) S=0.13 mm, (b) S=0.235 mm, (c) 

S=0.5 mm. α=2.5: (d) S=0.13 mm, (e) S=0.235 mm, (f) S=0.5 mm 

Figure 3.22: normalized vorticity distribution for α=2.5, S=0.5 mm: (a) Re=5000, (b) Re=10000, (c) Re=20000 
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pocket forms inside the cavity and the hot layer near reattachment becomes thinner; this is total 
evidence of stronger mixing. 

The α = 2.5 cases show the same trend but stronger. Even at S = 0.13 mm (Figure 3.23d) the 
warm region is broader than for α = 1.5. At S = 0.235 mm (Figure 3.23e) a distinct warm patch 
appears downstream of the trough. For S = 0.5 mm (Figure 3.23f) a large warm area fills much 
of the section and the isotherms are strongly distorted. In short: more corrugation pushes warm 
fluid into the core and thins the near-wall thermal layer, which is consistent with enhanced 
mixing and higher heat transfer. 

Similarly to what has been shown for the laminar results, the most corrugated geometry will be 
displayed comparing the thermal behavior when increasing the Reynolds number, to understand 
how the temperature distribution changes (Figure 3.24). 

The trends align with the vorticity evidence discussed earlier. As Re rises, the near-wall thermal 
layer becomes thinner and the red band intensifies, indicating steeper wall-normal temperature 
gradients and therefore higher local heat flux. Isotherms bend more strongly over separation 
and reattachment, and the warm pocket inside the cavity becomes tighter and closer to the wall, 
while the channel core remains comparatively colder at the same axial location. Overall, higher 
Re produces sharper thermal gradients and more distorted isotherms, exactly the qualitative 
signature of an increasing Nusselt number noted in the quantitative results, with the 
accompanying cost of higher frictional losses (chapter 4). 

4 Discussion 

In this chapter, a quantitative discussion of the hydraulic and thermal performance of the 
sinusoidal channels is presented. Building on the qualitative observations introduced in the 
previous section, the analysis focuses on the relationship between the normalized friction factor 
and Nusselt number with the normalized mean vorticity within the channel. This approach aims 
to show how the flow structures and associated velocity gradients influence both pressure losses 
and heat transfer enhancement across different geometrical configurations and Reynolds 
numbers. 

The friction factor is evaluated according to the Darcy-Weisbach correlation: 

𝑓 =
∆𝑝

𝐿
∙

𝐷ℎ

2𝜌𝑢𝑚
2

 

Figure 3.24: dimensionless temperature distribution for α=2.5, S=0.5 mm: (a) Re=5000, (b) Re=10000, (c) Re=20000 

(4.1) 
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where ∆𝑝

𝐿
 is the pressure gradient, automatically computed in OpenFOAM. To assess the effect 

of wall corrugation, this quantity is normalized by the friction factor of the reference parallel-
plate channel, evaluated as: 

𝑓0 =
64

𝑅𝑒
 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑙𝑎𝑚𝑖𝑛𝑎𝑟 𝑟𝑒𝑔𝑖𝑚𝑒 (𝑅𝑒 < 2300) 

𝑓0
1 = 0.3164 ∙ 𝑅𝑒−0.25𝑓𝑜𝑟 𝑡𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑡 𝑟𝑒𝑔𝑖𝑚𝑒 (3000 < 𝑅𝑒 < 105) 

Local vorticity is defined as: 

𝜔 = ∇ × 𝑈 

With 𝑈 = (𝑢𝑥 , 𝑢𝑦, 𝑢𝑧). 

Since the simulations are performed on a two-dimensional domain, with a single cell in the z-
direction, only the z-component of vorticity is relevant: 

𝜔𝑧 =
𝜕𝑢𝑦

𝜕𝑥
−

𝜕𝑢𝑥

𝜕𝑦
 

Vorticity along z is then averaged on all the domain using a surface average function object on 
OpenFOAM: 

|𝜔𝑧|̅̅ ̅̅ ̅ =
∫ |𝜔𝑧|𝑑𝐴

𝐴

∫ 𝑑𝐴
𝐴

 

A is the surface over which the mean is averaged and dA is the infinitesimal local area. 

To investigate possible correlations between vorticity and the global performance parameters 
(Nusselt number and friction factor), the mean vorticity was normalized using two different 
approaches. 

In the first normalization, the mean spanwise vorticity of the studied corrugated channel, |𝜔𝑧̅̅̅̅ | 
was divided by the corresponding value obtained in the flat channel at the same Reynolds 
number: 

 

|𝜔𝑧̅̅̅̅ |

|𝜔𝑧,0̅̅ ̅̅ ̅|
=

|𝜔𝑧̅̅̅̅ |(𝑅𝑒𝑥)

|𝜔𝑧̅̅̅̅ |(𝑅𝑒𝑥 , 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑓𝑙𝑎𝑡 𝑝𝑙𝑎𝑛𝑒𝑠)
 

This ratio highlights how much the vorticity field is intensified with respect to the reference 
case of parallel flat plates, thus allowing a direct assessment of the flow structure 
enhancement induced by the surface corrugation. 

                                                             
1 Blasius correlation for friction factor in turbulent regime 

(4.3) 

 

(4.2) 

 

(4.4) 

 

(4.5) 

 

(4.6) 

 

(4.8) 
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The second normalization, which will later be used to correlate the Nusselt number in the 
laminar regime, quantifies the relative increase of vorticity with respect to the so-called 
“laminar cutoff,” corresponding to Re = 10. In this case, the mean vorticity of each 
configuration is compared to its value at Re = 10, to evaluate the effective growth of vorticity 
as the flow becomes more energetic and mixing increases: 

|𝜔𝑧̅̅̅̅ |

|𝜔𝑧,0̅̅ ̅̅ ̅|
=

|𝜔𝑧̅̅̅̅ |(𝑅𝑒𝑥)

|𝜔𝑧̅̅̅̅ |(𝑅𝑒 = 10)
 

This approach was adopted because the hydraulic diameter used for normalization (see Chapter 
2.3) was defined to penalize the corrugated geometries. Consequently, when the Nusselt 
number is computed in its raw form, the smoother channels tend to appear more efficient at low 
Reynolds numbers, leading to a non-monotonic trend with increasing corrugation. Such 
behavior would make it difficult to establish a clear correlation between Nusselt number and 
mean vorticity. By normalizing vorticity with respect to the laminar reference case, the analysis 
compensates for this geometric bias and enables a more consistent, monotonic comparison 
between vorticity growth and heat transfer enhancement across the different geometries. 

Nusselt number is calculated as: 

𝑁𝑢 =
ℎ𝐷ℎ

𝑘
 

where h [W/(m²·K)] is the convective heat transfer coefficient and k [W/(m·K)] is the thermal 
conductivity of the fluid. The evaluation of h depends on the imposed thermal boundary 
condition: 

 Imposed wall temperature: ℎ =
𝑞′′

∆𝑇𝑙𝑜𝑔
 with ∆𝑇𝑙𝑜𝑔 =

𝑇𝑜𝑢𝑡−𝑇𝑖𝑛

log (
𝑇𝑠−𝑇𝑖𝑛

𝑇𝑠−𝑇𝑜𝑢𝑡
)
 

 Imposed heat flux at the wall: ℎ =
𝑞′′

∆𝑇𝑠𝑏
 with ∆𝑇𝑠𝑏 = 𝑇𝑠 − 𝑇𝑏𝑢𝑙𝑘  

Under the T imposed condition, the system behaves analogously to a conventional heat 
exchanger, and the Nusselt number can be directly obtained through the logarithmic mean 
temperature difference.  

In contrast, for the imposed heat flux case, the difference between surface temperature and bulk 
temperature varies along the corrugated walls. Therefore, the heat transfer coefficient must be 
computed at several streamwise sections, and a spatially averaged value is used to evaluate the 
mean Nusselt number. Bulk temperature is evaluated on each section as: 

𝑇𝑏𝑢𝑙𝑘 =
∫ 𝜌𝑢𝑇𝑑𝐴

𝐴

∫ 𝜌𝑢𝑑𝐴 
𝐴

 

Similarly, the Nusselt number was normalized according to the flow regime to enable a 
consistent comparison with the vorticity-based indicators. 

(4.9) 

 

(4.10) 

 

(4.8) 
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In the laminar regime, the normalized Nusselt number was expressed as its relative increase 
with respect to the value at Re = 10, following the same approach adopted for the vorticity 
normalization: 

𝑁𝑢

𝑁𝑢0
=

𝑁𝑢(𝑅𝑒𝑥)

𝑁𝑢(𝑅𝑒 = 10)
 

This formulation highlights the actual growth of convective performance as the flow develops 
and strengthens, allowing a direct comparison between the enhancement of vorticity and the 
corresponding increase in heat transfer. 

In the turbulent regime, instead, normalization was performed using the classical ratio 𝑁𝑢/𝑁𝑢₀, 
where 𝑁𝑢₀ represents the Nusselt number for the limiting case of parallel flat plates: 

𝑁𝑢

𝑁𝑢0
=

𝑁𝑢(𝑅𝑒𝑥)

𝑁𝑢(𝑅𝑒𝑥 , 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑓𝑙𝑎𝑡 𝑝𝑙𝑎𝑡𝑒𝑠)
 

The reference value 𝑁𝑢₀ was computed using the Gnielinski correlation, which provides an 
accurate estimate of the Nusselt number for fully developed turbulent flow in smooth channels: 

𝑁𝑢0 =
(𝑓/8)(𝑅𝑒 − 1000)𝑃𝑟

1 + 12.7(𝑓/8)0.5(𝑃𝑟0.66 − 1)
 

This choice is appropriate because, in turbulent conditions, the differences among the various 
corrugated configurations become more pronounced, and the ratio 𝑁𝑢/𝑁𝑢₀ exhibits a clear, 
monotonic trend that can be effectively correlated with the evolution of mean vorticity. 

  

(4.12) 

 

(4.13) 

 

(4.11) 
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4.1 Vorticity analysis 

The first part focuses on the laminar regime, where vorticity mainly arises from shear and 
recirculation induced by channel geometry. The second part extends the discussion to turbulent 
conditions, examining how the onset of turbulence and increase in Reynolds amplify the 
vorticity distribution through the domain. 

4.1.1 Laminar Regime 
 

Globally, an increase in both the corrugation amplitude and the Reynolds number leads to a 
progressive rise in the mean vorticity within the domain (Figure 4.1).  

This trend reflects the stronger velocity gradients and enhanced flow curvature induced by the 
wall geometry and the higher inertial effects associated with larger Reynolds numbers. At low 
corrugation levels, the flow remains relatively smooth and aligned with the main direction, 
resulting in limited rotational motion. As the corrugation amplitude increases, the alternating 
wall curvature promotes local flow acceleration and deceleration, which amplifies shear and 
generates stronger vortical regions near the surface.   

Similarly, at higher Reynolds numbers, the inertia of the fluid accentuates these mechanisms, 
leading to more pronounced flow separation and larger recirculating zones. As a result, the 
spatially averaged vorticity over the entire domain systematically increases; the peak values are 
reached in the configurations with higher S. 

The trend observed for mean vorticity is further confirmed by the analysis of the maximum 
vorticity values within the domain, as shown in Figure 4.2. For each configuration, the 
maximum vorticity increases progressively with the Reynolds number, following a behavior 
like that of the spatially averaged vorticity. This growth reflects the combined effect of the 
higher inertial forces and the intensified velocity gradients induced by the wall corrugation. As 

|𝜔𝑧
̅̅ ̅̅̅|[1/s] 

Figure 4.1: average vorticity trend increasing Reynolds for different corrugation degrees 
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the corrugation amplitude increases, the flow experiences stronger curvature and sharper 
accelerations near the peaks and troughs of the sinusoidal surfaces, which locally enhance the 
rotational motion. Consequently, configurations characterized by larger 𝛼 and higher Reynolds 

numbers exhibit more intense vortex cores and stronger shear layers. However, while the mean 
vorticity provides a global measure of flow rotation, the maximum values reveal the presence 
of localized regions of intense vortical activity. As shown in Figure 4.3, the normalized mean 

|𝜔𝑧,𝑚𝑎𝑥|[
1

𝑠
] 

Figure 4.2: maximum vorticity for each configuration increasing Reynolds 

Figure 4.3: normalized average vorticity in function of Reynolds for all configurations 
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vorticity increases with the Reynolds number and exhibits a trend that closely follows the 
previous ones.  

This correlation reflects the global nature of both quantities: as the corrugation enhances mixing 
and promotes the formation of recirculating regions, the average vorticity in the domain rises.  

All different parameters show the same pattern: most corrugated geometry wins in terms of 
vorticity, thanks to the localized peaks that influence the average vorticity among the whole 
domains. Instead, less corrugated geometry tends to match the behavior of a smooth pipe.  



 

45 
 

4.1.2 Turbulent regime 
 

Starting from the qualitative results, it is immediately evident that in turbulent flow the mean 
vorticity within the channel increases even more significantly than in the laminar regime. The 
stronger mixing and the presence of fine scale vortical structures enhance the overall rotational 
intensity of the flow, especially near the corrugated walls where shear layers and recirculation 
zones become more energetic. To better quantify this behavior, the following section shows the 
normalized mean vorticity in turbulent conditions, allowing a direct comparison with the 
laminar results and highlighting how the onset of turbulence amplifies the influence of wall 
corrugation on the global vorticity field. 

Figure 4.4 and 4.5 shows the average vorticity and normalized average vorticity with increasing 
Re. 

The results clearly show that the two configurations with the highest corrugation amplitude are 
those that most effectively promote the development of vorticity, confirming what was already 
observed qualitatively in Chapter 3. However, the configuration with α = 2.5 demonstrates a 

superior ability to enhance vorticity compared to the one with α = 1.5, even when considering 

a smaller corrugation amplitude (S = 0.13 mm) with a shorter wavelength.  

  

Figure 4.4: average vorticity in turbulent regime as the Reynolds increases 

|𝜔𝑧
̅̅ ̅̅̅|[1/s] 
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4.2 Friction factor analysis 
The analysis of the friction factor results provides insight into how the geometric 
characteristics of the channel and the flow conditions affect the overall pressure losses. Before 
discussing the normalization procedure applied to the data, it is useful to highlight that the 

Figure 4.6: experimental moody diagram 

Figure 4.5: normalized average vorticity in turbulent regime as the Reynolds increases 

|𝜔𝑧̅̅̅̅ | |𝜔𝑧,0̅̅ ̅̅ ̅|Τ [/] 
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general trend of the computed friction factor follows the behavior typically observed in the 
Moody diagram [16] (Figure 4.6). 

In the Moody chart, the friction factor is plotted as a function of the Reynolds number, 
showing three distinct regions: at low Reynolds numbers, the flow is laminar and the friction 
factor decreases proportionally to 1/Re; as Re increases, a transition region appears where the 
behavior becomes less regular; finally, in the turbulent regime, the friction factor tends to 
level off or slightly increase, especially in the presence of surface roughness or geometrical 
irregularities. 

The numerical results exhibit a consistent evolution with these theoretical trends, showing a 
gradual reduction of the friction factor as the Reynolds number increases, with deviations that 
can be attributed to the enhanced flow disturbances and secondary motions induced by the 
corrugated geometry.  

Figure 4.7 shows the variation of the friction factor with the Reynolds number for the 
different geometric configurations analyzed. The overall behavior closely resembles the 
characteristic trend observed in the Moody diagram. As in the classical representation, at low 
Reynolds numbers the flow remains laminar, and the friction factor decreases proportionally 
to 1/Re. As Re increases, the curves gradually approach an asymptotic region where the slope 
becomes less steep. 

In this context, the effect of channel corrugation plays a role analogous to surface roughness in 
the Moody chart: increasing the corrugation amplitude or corrugation wavenumber (𝛼) 
anticipates the deviation from the laminar 1/Re trend, leading the friction factor to reach its 

Figure 4.7 friction factor trend with increasing Reynolds number 
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asymptotic behavior at lower Reynolds numbers. This indicates that stronger geometric 
perturbations enhance flow disturbances and promote an earlier transition toward a more mixed, 
higher-loss regime. The configurations with larger α and smaller spacing S therefore exhibit 

higher friction factors and a faster approach to the asymptotic region, consistent with the 
behavior expected for rougher surfaces in the Moody diagram. 

4.2.1 Laminar Regime 
 

Figure 4.8 shows the trend of 𝑓 𝑓0Τ   for all the simulated configurations in laminar regime: 

It can be observed that friction factor tends to increase with the Reynolds number, indicating 
that the relative impact of wall corrugation on pressure losses becomes more significant as the 
flow inertia grows. In other words, while the absolute friction factor decreases with Reynolds 
number for all geometries, its reduction is less pronounced in the corrugated channels than in 
the smooth reference one. This behavior suggests that the flow disturbances and recirculation 
zones induced by the surface undulations intensify with increasing Reynolds number, 
enhancing momentum exchange and leading to higher normalized losses. The amplitude and 
wavelength of the corrugation further modulate this effect, with larger amplitudes and shorter 
wavelengths producing stronger deviations from reference behavior. 

Finally, the quantitative relationship between the normalized friction factor and the normalized 
mean vorticity was investigated through a global fitting procedure. For each configuration and 
Reynolds number, the values of (𝑓 𝑓0Τ − 1) and (|𝜔𝑧|̅̅ ̅̅ ̅ |𝜔𝑧,0|̅̅ ̅̅ ̅̅ ̅⁄ − 1) were extracted and combined 
into a single dataset. Error bars were included to account for the uncertainty associated with the 
pressure-drop evaluation. The resulting points were then fitted in log–log space using a power-
law model with an additional offset term, expressed in the general form: 

Figure 4.8: normalized friction factor in function of Reynolds for all configurations 
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(
𝑓

𝑓0
 −  1) =  𝐴 · (

|𝜔𝑧|̅̅ ̅̅ ̅

|𝜔𝑧,0|̅̅ ̅̅ ̅̅ ̅ −  1)

𝐵

+  𝐶 

where A, B, and C are fitting coefficients determined through nonlinear regression. The fit 
provides an excellent correlation (R² ≈ 0.98), confirming that the normalized friction factor 
scales almost linearly with the normalized mean vorticity across all configurations and 
Reynolds numbers. This result supports the interpretation that the global vorticity field 
effectively captures the degree of flow disturbance and momentum exchange induced by the 
wall corrugation, which directly translates into increased frictional losses. The presence of a 
small offset term C accounts for residual effects not directly linked to vorticity, such as local 
flow asymmetries or secondary circulation near the walls. The obtained relation is the 
following: 

𝑓

𝑓0
  =  5.45 · (

𝜔̄𝑧

𝜔̄𝑧0
−  1)

1.17

+  1.53 

As shown in Figure 4.9, the fitted curve provides an excellent representation of the overall trend 
between the friction factor and the mean vorticity. The smooth power-law dependence captures 
the progressive growth of frictional losses with increasing vorticity, confirming the strong 
coupling between the global flow rotation and the hydraulic performance of the corrugated 
channels: it is possible to notice that the normalized friction factor is directly proportional to 
the normalized vorticity with an exponential power of 1.17. The close agreement between the 
data points and the fitted curve across all geometrical configurations and Reynolds numbers 

Figure 4.9: fitting curve correlation between normalized friction factor and normalized average vorticity 

(4.13) 

 

(4.14) 

 



50 
 

further supports the idea that the mean vorticity can be considered a reliable global indicator of 
the additional dissipation mechanisms introduced by wall corrugation.   

This may be a rule of thumb for the preliminary design of corrugated and complex geometries, 
like TPMS. 

4.2.2 Turbulent regime 
 

In turbulent regime, the mechanisms contributing to pressure losses become significantly more 
complex due to the enhanced mixing, flow separation, and the formation of multiple 
recirculation zones within the corrugated channels. To better understand how these effects 
influence the overall flow resistance, this section first presents the raw friction factor data as a 
function of the Reynolds number for all the six configurations. 

Finally, the normalized friction factor trends will be compared with the normalized vorticity 
results discussed in the previous paragraph, to assess the correlation between flow structure 
intensity and pressure losses. Figure 4.10 shows the raw friction factor trend with increasing 
Reynolds while Figure 4.11 shows the normalized friction factor. 

As expected, the most corrugated configurations exhibit higher overall friction factors due to 
the stronger flow disturbances and recirculation zones induced by the geometry. Moreover, 
these configurations reach an asymptotic value of the friction factor earlier, meaning that 
beyond a certain Reynolds number, further increases in Re no longer lead to a significant 
reduction of friction losses. This behavior is consistent with what is shown in the Moody 
diagram discussed in the previous paragraph, where rough surfaces tend to approach an 
asymptotic limit.   

Figure 4.10: friction factor trend with increasing Reynolds in turbulence regime  
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Consequently, when the results are normalized, the ratio between the corrugated and parallel 
flat planes friction factors continues to increase with Reynolds number. This occurs because 
the friction factor of the corrugated cases remains nearly constant, while that of the smooth 
channel keeps decreasing, leading to a progressively higher normalized value. Figure 4.12 
shows the fitting curve for normalized friction factor and vorticity. 

As for laminar regime, to find a rule of thumb also in turbulent regime, the same global fitting 
procedure was displaced: unfortunately, the obtained correlation seems fails to describe the 
global trend of friction factor with respect to vorticity (Figure 4.12). 

This result confirms the earlier observation that establishing a clear correlation between the 
friction factor and vorticity becomes more challenging in the turbulent regime, due to the 
increased complexity and variability of the flow structures. 

 

 

 

  

Figure 4.11: friction factor trend with increasing Reynolds in turbulence regime  
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4.3 Normalized Nusselt analysis 
 

4.3.1 Laminar regime 
 

From theory, it is known that for the case of parallel flat plates in 2D the Nusselt number is Nu 
= 7.54 [2] when a constant temperature boundary condition is imposed. In the case of constant 
heat flux, the corresponding value Nu is expected to be higher (Nu=8.235 for parallel flat 
plates), and this trend is confirmed by the present results. Since in this analysis the Nusselt 
numbers are normalized with respect to the laminar reference case (Re = 10), the absolute 
difference between the two values becomes less relevant. Therefore, to investigate the 
correlation with the mean vorticity, it is sufficient to present only one of the two normalized 
quantities, as both exhibit the same relative trend with respect to the reference condition. 

Figure 4.12: data set for normalized friction factor and vorticity 
for both 𝛼 = 2.5, 1.5 at Re=5000, 1000, 2000 
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Figure 4.13 shows the evolution of the normalized Nusselt number as a function of the Reynolds 
number, following the same approach adopted in the previous paragraph for the friction factor 
and the mean vorticity. 

 

For the lowest corrugation (α = 0.5, panel a), the heat transfer remains almost unchanged as Re 

increases, showing a very limited enhancement even at higher flow intensities. This indicates 
that for mildly perturbed geometries, the flow structure remains predominantly laminar, and 
convective effects do not significantly intensify. 

In contrast, for larger corrugation amplitudes (α = 1.5 and α = 2.5, panels b and c), the Nusselt 
number exhibits a more pronounced growth with Reynolds number. This trend reflects the 
increasing contribution of vortical motion and fluid mixing induced by the wavy geometry, 
which becomes progressively stronger as 𝛼 increases. 

Figure 4.13: Nusselt number increase as a function of the Reynolds number for 𝛼 = 0.5 (𝑎), 1.5 (𝑏), 2.5 (𝑐) 
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It is also worth noting that the only configuration showing a clear increase in the Nusselt number 
already at Re = 100 is the most corrugated one (α = 2.5, S = 0.5). This behavior can be explained 
by examining the corresponding streamline plots (Fig. 4.14), where the onset of recirculation 
zones and vortical structures is already visible at this relatively low Reynolds number. These 
early-formed vortices enhance the local fluid mixing and promote heat transfer, leading to an 
earlier deviation from the purely laminar trend observed in smoother geometries: 

Following the same approach of chapter 4.2, a quantitative correlation was also established 
between the normalized Nusselt number and the normalized mean vorticity through a global 
fitting procedure. For each geometric configuration and Reynolds number, the values of 
(𝑁𝑢𝑇/𝑁𝑢𝑇,0) and (𝜔̄𝑧/𝜔̄𝑧,0) were extracted and combined into a single dataset, allowing the 
identification of a general trend across all tested cases. Error bars were included to account for 
the uncertainty associated with the thermal evaluation. 

The resulting data points were fitted in log–log space using a power-law model with an 
additional offset term, expressed in the general form: 

(
𝑁𝑢𝑇

𝑁𝑢𝑇,0
− 0.5) = 𝐴 ⋅ (

|𝜔𝑧
̅̅ ̅̅̅|

|𝜔𝑧,0|̅̅ ̅̅ ̅̅ ̅ − 0.5)𝐵 + 𝐶 

 

where A, B, and C are fitting coefficients obtained through nonlinear regression. The correlation 
provides a very good agreement (R² ≈ 0.985), indicating that the normalized Nusselt number 
follows a power-law dependence on the normalized mean vorticity. This result quantitatively 
confirms that the enhancement in heat transfer is directly related to the intensification of vortical 
motion within the channel. 

 

The fitted relation can be expressed as: 

𝑁𝑢𝑇

𝑁𝑢𝑇,0
= 0.49 ⋅ (

𝜔𝑧̅̅̅̅

𝜔𝑧,0̅̅ ̅̅ ̅
− 0.5)3.6 + 0.95 

 

Figure 4.14: onset of recirculation zones when increasing Reynolds from (a) Re=10, to (b) Re=100 

(4.17) 

 

(4.18) 
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As shown in Figure 4.15, the fitted curve accurately reproduces the overall trend between the 
normalized quantities. 

The monotonic power-law reflects the progressive increase in convective heat transfer with the 
growth of the mean vorticity, with a power of 3.6, which is associated with stronger secondary 
flows and enhanced fluid mixing. The small offset term C accounts for residual effects not 
directly captured by the mean vorticity, such as local flow asymmetries or near-wall thermal 
gradients. The close agreement between the numerical data and the fitted curve across all 
Reynolds numbers and geometrical configurations further supports the interpretation that the 
mean vorticity acts as a reliable global indicator of the heat transfer enhancement mechanisms 
induced by the wall corrugation. 

The same approach was adopted for the imposed heat flux boundary condition: the following 
equation was then obtained with R² ≈ 0.98: 

𝑁𝑢𝑞′′

𝑁𝑢𝑞′′,0
= 0.74 ⋅ (

𝜔𝑧̅̅̅̅

𝜔𝑧,0̅̅ ̅̅ ̅
− 0.5)4.37 + 0.96 

 
Figure 4.16  shows the curve fitting the data. 

The curve obtained for the constant heat flux case (𝑁𝑢𝑞
′′) exhibits a slightly steeper slope, with 

a power of 4.16 suggesting a somewhat stronger sensitivity of the heat transfer enhancement to 
the increase in vorticity. Nevertheless, the general behavior of the two datasets remains 
consistent. 

Figure 4.15: curve fitting for normalized 𝑁𝑢𝑇  as function of normalized vorticity 

(4.19) 
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Once a certain threshold of vorticity is exceeded, corresponding to Reynolds numbers of 
approximately 10 and 100, and extending up to 300 and 500 for less corrugated geometries, the 
Nusselt number begins to rise rapidly, following an almost exponential trend with respect to 
vorticity. This behavior clearly indicates that the intensification of vortical structures in the flow 
strongly promotes convective heat transfer, independently of the imposed thermal boundary 
condition. Although slightly higher values of the normalized Nusselt number are achieved 
under constant heat flux, both correlations confirm that the increase in heat transfer is directly 
linked to the strengthening of the flow recirculation and mixing phenomena induced by wall 
corrugation. 

Finally, the reliability of these correlations is supported by the high values of the determination 
coefficient R², equal to 0.985 for the constant wall temperature case and 0.98 for the constant 
heat flux case. These results demonstrate that the fitted curves provide an excellent 
representation of the numerical data, confirming the robustness and coherence of the proposed 
relationship between vorticity intensity and heat transfer enhancement in laminar regimes. 
These two correlations may be used for a preliminary design of heat pipes or heat transfer 
enhancement method, because they lead to the possibility of tuning the vorticity in such a way 
that we can increase the heat exchange, therefore the Nusselt number, keeping under control 
the pressure drop, represented by the friction factor. 

 

Figure 4.16: curve fitting for normalized 𝑁𝑢𝑞′′ as function of normalized vorticity 
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4.3.2 Turbulent regime 
 
Figure 4.17 shows the raw results for the Nusselt number, while Figure 4.18 in normalized 
form: 
The observed trends closely follow those previously identified for the mean vorticity. In 
particular, the two configurations with the largest corrugation amplitude exhibit the highest 
Nusselt numbers, as the stronger recirculation zones and more intense fluid mixing promote 
higher convective heat transfer. Immediately after these, the configurations with the shorter 
wavelength (𝛼 =  2.5) also display a significant enhancement, confirming that a reduced 
period effectively strengthens the mixing even with a lower amplitude. Finally, the two 
configurations with α = 1.5 show the lowest Nusselt values, consistent with their weaker 
vortical structures and more limited flow interaction.  

Finally, using the same approach as in previous paragraphs, a fitting curve procedure is applied. 
The used equation is the following: 

(
𝑁𝑢𝑇

𝑁𝑢𝑇,0
− 1) = 𝐴 ⋅ (

𝜔𝑧̅̅̅̅

𝜔𝑧,0̅̅ ̅̅ ̅
− 1)𝐵 + 𝐶 

  

Figure 4.17: Nusselt number evolution in turbulence with increasing Reynolds 

(4.20) 
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The curve (Figure 4.19) fitting equation is then found with a fitting parameter of R² ≈ 0.988: 

𝑁𝑢𝑇

𝑁𝑢𝑇,0
= 1.51 ⋅ (

𝜔𝑧̅̅̅̅

𝜔𝑧,0̅̅ ̅̅ ̅
− 1)0.74 + 0.58

Figure 4.18: Normalized Nusselt number evolution in turbulence with increasing Reynolds 

Figure 4.19: curve fitting for normalized 𝑁𝑢𝑇  as function of normalized vorticity 

 

(4.21) 
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Overall, the obtained results highlight the key role of vorticity in governing heat transfer 
enhancement under turbulent conditions. The strong correlation between the normalized 
Nusselt number and the normalized mean vorticity indicates that the development of coherent 
vortical structures directly translates into improved convective efficiency. This confirms the 
physical consistency of the proposed relationship and reinforces the validity of using vorticity-
based indicators to predict the thermal behavior of corrugated channels.  
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5 Conclusions 

The present work explored the correlation between flow vorticity and the thermo-hydraulic 
performance of sinusoidal corrugated channels through detailed numerical simulations. The 
two-dimensional computations, performed using OpenFOAM, enabled a quantitative 
assessment of how geometric parameters and Reynolds number influence the development of 
vortical structures, and how these structures, in turn, govern both the heat transfer coefficient 
and the friction factor. 

The results demonstrated that increasing the corrugation amplitude promotes the formation of 
recirculation zones and significantly enhances the overall vorticity within the channel. This 
intensification of vortical motion strengthens the mixing between the core flow and near-wall 
regions, leading to a marked increase in the Nusselt number. At the same time, the stronger 
vorticity also generates higher velocity gradients and wall shear stresses, resulting in a 
corresponding rise in the friction factor. Configurations with shorter wavelengths (α = 2.5) 

exhibited intermediate behavior, confirming that both the amplitude and the spatial frequency 
of the corrugation play a decisive role in determining the flow organization and the associated 
thermal and hydraulic performance. 

A key outcome of this study was the establishment of quantitative correlations linking the mean 
vorticity to both the Nusselt number and the friction factor. The numerical data were 
successfully fitted using power-law relationships, yielding high coefficients of determination 
(R² ≈ 0.98–0.99). These correlations reveal that both heat transfer and pressure losses scale 
nonlinearly with the mean vorticity. Beyond a critical vorticity threshold, corresponding to the 
onset of strong recirculation and enhanced mixing, the Nusselt number rises sharply, indicating 
that the vorticity field acts as the primary driver of convective heat transfer enhancement in 
corrugated geometries. 

The relationships obtained in this work provide a physically consistent and predictive link 
between the flow topology and the global performance of the channel. They represent a first 
step toward a generalized framework capable of connecting local flow dynamics to macroscopic 
heat transfer behavior. In the future, these vorticity-based correlations could serve as practical 
design guidelines or rules of thumb for the preliminary optimization of complex geometries, 
allowing engineers to estimate the trade-off between heat transfer enhancement and frictional 
penalty from simple flow metrics.  

5.1 Further works 

Although the present study provided valuable insights into the relationship between vorticity 
and the thermo-hydraulic performance of sinusoidal channels, several directions remain open 
for future investigation. A natural continuation of this research would involve extending the 
analysis to three-dimensional corrugated geometries. In contrast to the two-dimensional 
configuration adopted in this work, three-dimensional channels would allow the capture of 
spanwise flow variations, secondary vortical motions, and complex turbulent structures that can 
significantly affect both heat transfer and pressure losses. Investigating these effects would lead 



 

61 
 

to a more realistic and comprehensive understanding of the flow physics that govern practical 
heat exchanger systems. 

Another important step would be to expand the database by including a wider set of geometric 
configurations and Reynolds numbers. A broader range of cases would enable a more accurate 
fitting of the empirical trends identified in this study, improving the robustness and generality 
of the proposed correlations. A larger dataset could better describe the transition region where 
the scaling behavior of the Nusselt number and the friction factor with vorticity changes, 
providing more precise predictive models. 

Overall, extending this methodology toward three-dimensional domains and to a wider range 
of geometrical configurations would represent a valuable step forward in developing a general 
and predictive framework for the design and optimization of advanced corrugated channels and 
heat transfer surfaces. 
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