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Abstract

Floods are among the most frequent and damaging disasters worldwide, affecting millions
of people and causing high economic losses. Traditional ground-based monitoring systems
often lack sufficient coverage, particularly in vulnerable regions, creating a need for more
reliable tools. Satellite-based Earth Observation (EO) has emerged as a vital resource for
flood detection, monitoring, and management. Satellites including Sentinel-1, Sentinel-2,
Landsat, and commercial constellations like Planetscope, Skysat, COSMO-SkyMed
provide valuable datasets to map inundation, assess damage, and guide emergency
response.

This thesis focuses on the Emilia-Romagna floods of May 2023, one of the most severe in
recent decades in Italy, particularly in Spazzate-Sassatelli. Using Sentinel-2 (open-source)
and SkySat (commercial) imagery, a modular Python-based algorithm was developed to
process images based on K-means clustering machine learning method. Results showed
that algorithm for Sentinel-2 could generate regional maps in less than one minute using
cloud-based processing such as Google colab, while algorithm for SkySat provided finer-
scale details within ~4 minutes on local hardware. Accuracy assessments confirmed
Sentinel-2’s effectiveness at large scales, although SkySat offered superior precision in
urban and narrow floodplain contexts. The Sentinel-2 algorithm offers cleaner and more
precise flood detection, while SkySat identifies a wider area but with slightly more false
positives. Overall, both deliver comparable performance.

Overall, free open data is good for making fast maps of small areas, while very detailed
commercial images are better for showing local damage clearly besides efficient result for
large area. In the future, flood monitoring should use more automation, machine learning,
and real-time systems to respond faster and more effectively.
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Introduction

Background: importance of flood monitoring and management

Floods are among the most destructive and frequent natural hazard worldwide, with
profound social, environmental, and economic consequences. According to the
International Disaster Database, floods represent the most common type of weather-related
disaster, affecting more people than any other natural hazard. Between 2006 and 2015, an
estimated 800 million individuals were impacted by flood events, and the total economic
damage exceeded $300 billion globally. These figures highlight the urgent need for
effective flood monitoring and management strategies [1].

Despite growing awareness of the ecological and societal importance of river systems and
their inundation dynamics, the capacity to accurately model and predict flood events
remains limited. This is largely attributed to the scarcity of consistent, high-resolution in-
situ measurements, particularly in remote regions and developing countries. Traditional
ground-based monitoring infrastructure, such as gauging stations and field surveys, has
declined in coverage and quality, creating critical data gaps in many vulnerable areas. [1].

In response to these challenges, remote sensing has emerged as a valuable and increasingly
indispensable tool for flood observation and analysis. Satellite-based sensors provide
spatially continuous and temporally frequent datasets that can capture key variables such
as terrain elevation, river width, flood extent, water levels, and land cover. When integrated
into hydrological and hydraulic models, these datasets significantly enhance the
understanding and forecasting of flood dynamics. This is particularly beneficial for data-
scarce catchments, where traditional measurements are unavailable or unreliable [1].

Furthermore, advancements in remote sensing technologies have enabled the development
of global datasets for parameters such as precipitation, evapotranspiration, temperature,
and land use. These datasets are critical for modelling flood behavior in ungauged or
sparsely gauged basins. For instance, demonstrated the successful use of remote sensing
products to generate flood inundation maps for the large-scale, poorly monitored
Brahmaputra Basin, underscoring the practical applicability of such tools in flood-prone
regions [2].



Description of the Study Area

Emilia Romagna overview

In May 2023, was the hardest rain fall event that estimated once every 200 years. This
event had two major intense rainfall, in the early May and in mid-May that was more
intense and because of second event the inundated area exacerbated. On April 20, 2023,
Civil Protection issued an orange alert (moderate risk) for thunderstorms in Emilia-
Romagna. A few days later, on April 24 and 25, heavy rain and hail hit several provinces,
including Ferrara, Parma, Reggio-Emilia, and Rimini. The strongest rainfall began on May
2, leading to a red alert within 12 hours. In just two days, 200 mm of rain fell in Bologna,
Ravenna, and Forli-Cesena, mostly affecting the Romagna area, which caused rivers to
overflow and widespread flooding. By May 4, 23 rivers had overflowed, 15 levees had
broken, more than 140 landslides had occurred, and there was serious damage to
infrastructure. The situation worsened with more rainfall on May 9 and 10. On May 16 and
17, rain reached record levels again, with 300 mm in Forli and up to 200 mm in Ravenna
and Bologna. By May 18, around 8,000 volunteer workdays had been dedicated to
managing the disaster, and a 12-month state of emergency was declared. Before May 25,
23 rivers had overflowed, 13 had reached critical levels, and the floods caused 50 incidents
across 42 municipalities. In addition, more than 370 landslides blocked over 700 roads. By
May 20, the disaster had forced 36,600 people to evacuate and caused 17 deaths, most of
them elderly.[3]

Return Period: 50 years Return Period: 100 years
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Figure 1 Flood risk in Italy



Area of interest: Spazzate-Sassatelli

The rising rivers quickly created dangerous conditions, with the Sillaro River embankment
breaking and the Lamone River overflowing, flooding areas near Massa Lombarda and
Conselice. In response, the Copernicus Emergency Management Service (EMS) Rapid
Mapping was activated to provide early estimates of flood extent and damage. As part of
this activation (EMSR659), a detailed impact assessment was carried out in the Spazzate-
Sassatelli area. The analysis showed that around 1,610.9 hectares of land were submerged,
with flood traces covering an additional 20.8 hectares. [4]

Approximately 200 people were affected, out of a local population of about 16,000. The
built environment suffered moderate damage, mainly to housing. Of 6,568 residential
buildings, 250 were impacted, one was destroyed, 130 were damaged, and 119 were
possibly damaged. Other structures, including industrial, commercial, and religious
buildings remained largely unaffected, showing the localized nature of the flooding.
Transport infrastructure faced selective impacts. Major roads were not destroyed, but
smaller routes suffered. 26.9 km of cart tracks were flooded, with 18.3 km damaged, while
local roads recorded about 1.9 km of confirmed or possible damage due to flooding and
washouts. Public facilities saw minor effects, with 9.8 hectares of sports and recreation
areas affected out of a total of 21.6 hectares. [4]

No damage was reported to energy, communication, or pipeline networks. Agriculture,
however, faced significant losses. About 1,319.3 hectares of arable land were flooded, over
10% of the cultivated area, while 182.2 hectares of permanent crops, such as orchards and
vineyards, were inundated, raising concerns for long-term productivity. Inland wetlands
and mixed-use agricultural zones also showed some damage.[4]

Area of intrest
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Figure 2 Area of interest



Consequences within the AOI

Total in
Unit of measurement | Affected
AOI
Flooded area ha 1,316.3
Estimated population Number of inhabitants ~ 200 ~ 7,400
Built-up Residential Buildings No. | 139 2,900
Industrial buildings No. 18 161
Buildings used as places of worship and for religious N ] 6
0.
activities
Communication buildings, stations, terminals and N ) ]
0.
associated buildings
Transportation Airfield runways km 0.3 0.5
Primary Road km 0.0 10.2
Secondary Road km 1.9 12.0
Local Road km 1.7 47.0
Cart Track km 16.9 117.9
Long-distance railways km 0.0 6.7
Facilities Sport and recreation constructions ha 6.4 19.6
Long-distance pipelines, communication and
km 4.2 38.4
electricity lines
Local pipelines and cables km 0.0 0.3
Land use Arable land ha | 1,066.6 | 6,156.0
Permanent crops ha 1494 219.1
Heterogeneous agricultural areas ha 90.3 1,481.5
Other ha 10.0 201.1

Table 1 Impact statistics (from EMSR659) [4]




Why this area is suitable for analysis

The Emilia-Romagna region has been selected because it has experienced frequent and
severe flood events, especially between 2012 and 2025 in Italy. These repeated disasters
make it an important case study for understanding monitoring of flood. The figure
presented here illustrates the number of activations and products generated by the
Copernicus Emergency Management Service (CEMS) specifically for Emilia-Romagna.
In other words, it shows how often the region has required rapid mapping support during
floods and how much geospatial information was produced to assist emergency response
and recovery. This repeated need for CEMS products highlights both the vulnerability of
the area and its importance in studying flood monitoring and management.
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Figure 3 flood events by EMS

Spazzate-Sassatelli sits on the active Sillaro floodplain, experienced repeated inundation
in May 2023, and is covered by Copernicus, Skysat and UVA products and detailed local
records, exactly the combination is demanded for robust flood detection analysis, mapping
accuracy and timing exposure.



Objectives of the Study

To explore methods for reducing the time needed to produce reliable flood maps.
To evaluate suitable machine learning method for detecting the desire data as water layer.

To assess the differences between Sentinel-2 (open-source) and SkySat (commercial)
imagery in terms of accuracy, detail, and processing time in results of each created

algorithm.

To design and test workflows and frameworks that can deliver flood maps more quickly

and efficiently.

Background and Literature Review

Overview of remote sensing in flood detection and management.

Remote Sensing for Flood Management
Historical and Current State

Satellite technology has played an important role in disaster management since the late
1950s. After the launch of the first U.S. satellite, Explorer 1, in 1958, satellites were first
used to monitor weather. By the late 1980s, satellite images started to help with disaster
response, such as during Hurricane Hugo in 1989[5]. In the 1990s, the growth of
Geographic Information Systems (GIS) made it much easier to use satellite data for many
purposes, including managing natural disasters[6]; [7]; [8]. For example, in 1992, NASA
sent images to Hawaii after Hurricane Iniki to help with the response. In 1993, satellite
images were also used by government agencies like Federal Emergency Response Agency
(FEMA) and the U.S. Army Corps of Engineers to respond to the Great Midwest Flood.
These images helped create maps, monitor how the flood was spreading, and check for
damage to farms and infrastructure. This success led FEMA to support more work on using
satellites for future flood response [5].

To improve coordination between space agencies and disaster response teams, the United
Nations started the International Charter: Space and Major Disasters in 2000 [9]; [10].
Since then, many organizations, including the European Union’s Copernicus program,
NASA, NOAA, and the U.S. Geological Survey, have used satellite data to help with



disaster response. These efforts are now supported by international cooperation through
the UN Office for Outer Space Affairs (UN-OOSA)[11].

Earth observation has become a vital tool in all stages of flood management. Satellite
remote sensing provides timely, large-scale data for monitoring floods and assessing
impacts when ground observations are sparse or disrupted. By capturing inundation
extents, rainfall estimates, and terrain information from space, remote sensing supports
better preparedness, real-time flood mapping for emergency response, and post-event
damage evaluation. It effectively complements in-situ gauge networks, which in Europe
are not uniformly distributed, helping to “fill the gap” in flood observation. In recent years,
advances in sensors and data processing (e.g. the European Copernicus program) have
greatly enhanced the ability to detect and manage floods from space [11][12].

In this section the primary remote sensing technologies and sensor types used to detect
and map floods reviewed.

EO Sensors and Platforms

Remote sensing is the science of acquiring information about the Earth's surface without
direct physical contact, typically through sensors mounted on satellites or airborne
platforms. These systems are broadly categorized into active and passive sensors, based on
their dependence on external energy sources [13]; [14].

Passive remote sensing relies on natural energy, primarily sunlight, which is either
reflected or emitted by the Earth's surface and captured by the sensor. Common passive
sensors operate in the visible, near infrared, and thermal infrared regions of the
electromagnetic spectrum. Satellite missions such as Landsat, MODIS, and Sentinel-2
utilize passive sensing for applications including land cover classification, vegetation
monitoring, and thermal mapping. However, passive systems are limited by the availability
of natural light and are often ineffective under cloudy conditions or at night [13]

In contrast, active remote sensing systems release their own energy toward the target and
record the reflected signal. This capability allows them to operate independently of sunlight
and penetrate atmospheric conditions like clouds and rain. Radar (e.g., SAR) and LiDAR
are typical examples of active sensors. Active remote sensing is especially valuable for
terrain modeling, surface deformation monitoring, and structural analysis, due to its ability
to capture high-resolution and geometrically precise data regardless of weather or lighting
[15], [16]
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The distinction between active and passive sensors is fundamental for selecting appropriate
remote sensing techniques, as each has its strengths and limitations depending on the
application and environmental conditions.

Y
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PASSIVE SENSORS ACTIVE SENSORS

Figure 4 illustration of active and passive sensors

Electromagnetic (EM) waves are a form of energy propagation consisting of oscillating
electric and magnetic fields that are perpendicular to each other and the direction of wave
propagation. First described by James Clerk Maxwell in the 19th century, these waves
travel through space at the speed of light, approximately 3 x 10® m/s. The waves are
generated by the acceleration of charged particles, which create oscillating electric and
magnetic fields that sustain each other as they propagate. This concept of EM wave
propagation, with its fundamental principles, was first laid out by Maxwell in 1865 and
later extended by other researchers, such as Ulaby, Moore, and Fung, who provided further
insights into the wave’s behavior and applications [17], [18].

1 I 1 I 1 | 1 | 1 | 1 | 1 | 1 | I | 1 | 1 | 1 | 1 I 1 l 1 | 1 | 1 | 1 | 1 | 1 | L) | ] | —
400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500 7.5-13x10°
Wavelength (nm)

Long-Wave

Near-Infrared Short-Wave Infrared
Infrared

530-620 nm (G) 585-625 nm (Y) 630-690 am (R) 790-900 nm (NIR) 1550-1750 nm (SWIR1) 2080-2350 nm (SWIR2) 10400-12400 nm (LWIR)

Figure 5 Electromagnetic waves spectrum
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Flood Detection Techniques

Normalized Difference Water Index (NDWI)

The Normalized Difference Water Index (NDWI), which utilizes reflectance values from
the green and near-infrared (NIR) bands, is designed to enhance the spectral distinction
between water surfaces and terrestrial features in these spectral regions. It has been widely
applied in flood mapping and surface water delineation across numerous studies. While
several other water indices have been developed over time, NDWI has consistently
demonstrated superior performance in identifying water bodies. The index produces values
ranging from —1 to +1, with positive values typically indicating the presence of surface
water, particularly in cases of deep and clear water. However, the effectiveness of NDWI
can be compromised in areas with dense vegetation. In such environments, higher NIR
reflectance compared to green reflectance may result in NDWI values resembling those of
non-water land covers, making it more challenging to accurately delineate complex or
diverse flooded landscapes.[19]

The NDWTI is expressed as follow[20]

Green — NIR
Green + NIR

NDWI =

The NDWI is designed to make water areas stand out more clearly in satellite images. It
does this by using the green band, where water reflects a lot of light, and the near-infrared
(NIR) band, where water reflects very little. At the same time, land surfaces like vegetation
and soil reflect much more light in the NIR band. Because of this, water usually appears
with positive NDWI values, making it easy to identify, while land areas have values close
to zero or negative, which helps reduce their influence in the results.[20]

To remove the confusion caused by built-up areas in water detection, their unique
reflectance characteristics need to be studied. Figure illustrated bellow shows how water
of lake, vegetation, and built-up land reflect light across different bands. In the green band,
spectral bands of the Landsat Thematic Mapper (TM2) and near-infrared (NIR) band (TM
4), built-up land reflects light in a similar way to water, both reflect more green light than
NIR. Because of this, the NDWI gives positive values not only for water but also for built-
up land, which can lead to false identification of water areas in NDWI results.[21]

12
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Figure 6 spectral reflectance[21]

However, when we look more closely at the spectral signatures, we see that the average
reflectance of built-up land is much higher in the middle-infrared (MIR) band (TM 5) than
in the green band (TM 2). So, if we replace the NIR band with the MIR band in the NDWI
formula, built-up areas should show negative values, helping to separate them from water.
This idea led to the creation of the Modified NDWI (MNDWTI), which uses the MIR band
instead of the NIR band.[21]

Green — MIR
Green + MIR

MNDWI =

SAR technology

Real Aperture Radar (RAR) is a traditional radar system that utilizes a physical antenna of
fixed size to transmit and receive electromagnetic signals. The antenna’s size is directly
related to the radar’s resolution specifically; the size of the antenna determines the
resolution in the azimuth direction (across the direction of motion). In Real Aperture Radar
(RAR), the radar transmits pulses and receives the reflected signals from objects on the
ground, with the resolution in the range direction (along the line of sight) determined by
the pulse duration and bandwidth. However, the main limitation of RAR is that improving
the resolution requires increasing the physical size of the antenna, which is not practical,
especially in space-based or airborne systems, where space and weight are constrained
[18].
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In contrast to RAR, Synthetic Aperture Radar (SAR) is a more advanced technology that
limits the size of antennas by using the motion of the radar platform (such as a satellite or
aircraft) to simulate a much larger antenna. The basic principle behind SAR is that, as the
radar platform moves along its flight path, it continuously transmits pulses and receives
echoes from the target area. These echoes, captured from multiple positions, are processed
together to simulate a large virtual antenna, or "synthetic" aperture, significantly enhancing
the azimuth resolution [22]

SAR relies on complex signal processing to combine the radar data collected from different
points, allowing it to achieve high resolution despite the relatively small size of the physical
antenna. This technique leverages Doppler shift and phase information from multiple radar
echoes to achieve the desired resolution, which is not limited by the physical size of the

antenna[23]
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Figure 7 Radar backscattering mechanisms for different SAR wavelengths: X- and C-band (top) and L-band
(bottom).[39]

Global Operational SAR Satellites (2025)

Frequency

Satellite / Mission Operator / Agency Band Spatial Resolution Revisit Time Data Accessibility
- . ~12 days (6 .
Sentinel-1A ESA (EU) C-band 5 m (Stripmap mode) days with 2 sats) Public (open data)
TerraSAR-X & . up to 0.25 m 11 days (exact . .
TanDEM-X DLR/Airbus (Germany) X-band (Spotlight) repest) Commercial (Airbus)
. . . Commercial
PAZ - ~ . .
Hisdesat (Spain) X-band 1 m (Spotlight) 11 days (Airbus/Hisdesat)
COSMO-SkyMed (1st . . Commercial &
Gen — 4ysat§) (s ASU/Italian MoD (Italy) X-band ~1 m (Spotlight) <l day Military
COSMO-SkyMed (2nd . . Commercial &
Gen — 2y sates) @n ASU/Italian MoD (Italy) X-band ~0.8 m (Spotlight) ~1-2 days Military
RADARSAT-2 CSA/MDA (Canada) C-band 1 m (Spotlight mode) 24 days Commercial
RADARSAT ~3 m (Stripmap); 1x3 .
Constellation (RCM) CSA (Canada) C-band m Spotlight ~4 days Public
ALOS-2 (Daichi-2) JAXA (Japan) L-band 1x3 m (Spotlight) 14 days Restricted
SAOCOM-1A/1B CONAE (Argentina) L-band ~10 m (Stripmap) 8 days Public for research
SSTL/CSIRO . .
NovaSAR-1 (UK/Australia) S-band 6 m (Stripmap) ~3—4 days Commercial
KOMPSAT-5 KARI (South Korea) X-band 1 m (Spotlight) 28 days Commercial
Gaofen-3 CNSA (China) C-band ~1 m (Spotlight mode) 29 days Restricted
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~60-day

Huanjing-2E MEE/CNSA (China) S-band 5 m (resolution) coverage Restricted

L-SAR 01A/B CNSA (China) L-band ~5 m (high-res mode) ~8 days Restricted
ICEYE ICEYE (Finland) X-band 0.25 m (Spotlight) Hours Commercial
Capella Space Capella Space (USA) X-band ~0.5 m (Spotlight) Hours Commercial
Umbra Umbra Space (USA) X-band 0.25 m (Spotlight) ~4 per day Commercial
Synspective StriX Synspective (Japan) X-band ~1 m (Spotlight) Days Commercial
iQPS (QPS-SAR) iQPS (Japan) X-band ~0.75 m (Spotlight) Days Commercial
Hisea-1 Spacety (China) C-band 1 m (Stripmode) ~15 days Commercial

Table 2 Open source and Commercial SAR Satellites

Optical and Multispectral Imaging (passive sensor)

Optical satellites (e.g. Sentinel-2, Landsat 8/9) capture reflected sunlight in visible and
infrared bands, providing detailed images of inundation extent in clear conditions. These
sensors offer high spatial detail (10-30 m resolution) and rich spectral information to
distinguish water from land. Multispectral imagery has successfully been used to map
floods before, during, and after events, including using infrared bands to enhance water
detection. Very-high-resolution optical data from commercial satellites (e.g. SPOT,
Worldview) have even been employed for detailed urban flood assessments[1].

Optical remote sensing (e.g., visible and near-infrared bands) provides familiar
photographic-like imagery of floods. Multispectral satellites capture reflectance in several
bands, enabling the use of spectral indices to identify water. Water has strong absorption
in near-infrared and shortwave infrared wavelengths, making flooded areas standout (often
as dark or blueish areas in false-color composites). Common water indices include the
Normalized Difference Water Index (NDWI) and its variants (e.g., MNDWI), which
emphasizes open water by combining green, NIR, or SWIR bands[12].

Operational Optical Earth Observation Satellites (as of 2025)

This table presents a comprehensive overview of currently operational optical Earth
observation satellites, categorized by spatial resolution: very high, high, and medium. Each
table entry includes the satellite name (or constellation), spatial resolution, revisit
frequency (temporal resolution), launch year, operator, and data accessibility.

Satellite (Launch) Spatial Resolution Revisit Frequency Operator Data Access

0.31 mpan; 1.24 m Maxar

multispectral (VHR) On-demand (daily possible) (USA) Commercial

WorldView-3 (2014)

15



Maxar

WorldView-2 (2009) 0.46 m pan; 1.84 m MS ~1.1 days (USA) Commercial
SkySat Constellation . Planet Labs .
(2016-2020) 0.50 m pan Up to 10x daily (USA) Commercial
Pléiades Neo (2021) 0.30 m pan; 1.2 m MS ~2x daily Airbus Commercial
(France)
BlackSky Gen-3(2025) 35 cm, (NIIRS-5+) <10 hours B(li%(:l)(y Commercial
Jilin-1 Constellation . CGSTL .
2015-) ~0.50-0.75 m pan Up to ~6x daily (China) Commercial
SuperView Neo-1 0.30 m pan; 1.2 m MS Daily (with ~4 sats planned; intraday Siwei Commercial
(2022-2025) (VHR) possible) (China)
0.41 m pan; 1.65 m MS ~3 days (with pointing; part of Maxar Maxar Commercial
GeoEye-1 (2008) (VHR) constellation) (USA)
WorldView Legion Up to 15x per day (with 6-sat Maxar .
(2024) 0.30 m pan (VHR) constellation) (USA) Commercial
Cartosat-3 (2019) 0.25-03 ‘(“V‘;‘Ilﬁ;)” m MS ~<5 days (agile single satellite) ISRO (India) | Govt./Commercial
Satellogic Aleph-1 N ~ i Satellogic .
2016-) 0.70 m pan (VHR) 4x per day (with ~17 sats) (Argentina) Commercial
0.38 m pan; 0.76 m MS On-demand (sub-daily tasking, part of ImageSat .
EROS-C3 (2022) (VHR) EROS constellation) (Israel) Commercial
) 0.50 m pan; 2 m color . . MoD .
Goktiirk-1 (2016) (VHR) ~Daily (sun-sync; ~0.5 m GSD globally) (Turkey) Govt./Commercial
. . MBRSC .
KhalifaSat (2018) ~0.70 m pan (VHR) ~3 days (sun-sync orbit) (UAE) Govt./Commercial
PeruSAT-1 (2016) 0.70 m pan; 2 m MS (VHR) ~Daily (sun-sync, taskable) CgI:II_BA Govt./Commercial

Table 3 Very High Resolution (sub-meter) Satellites

These satellites have high spatial resolution on the order of a few meters (up to ~10 m),
suitable for detailed mapping over large areas.

Satellite (Launch) Spatial Resolution Revisit Frequency Operator Data Access
PlanetScope (Dove) ~ . . Daily global (near all land, >430 Planet Labs .
Constellation (2014) 3 m multispectral (high) CubeSats) (USA) Commercial

Sentinel-2A/2B 10 m (visible/NIR), 20 m & . ESA/EU
(2015/2017) 60 m bands (high) 5 days (global, 2-sat constellation) (Copemicus) Open (Free)
Landsat 8 & 9 15 m pan; 30 m multispectral 8 days (global, with both; 16 days NASA/USGS Open (Free)
(2013/2021) (high) cach) (USA) pen {Free

Resourcesat-2/2A

5.8 m pan; 23 m multispectral

~5 days (with 2 satellites)

ISRO (India)

Govt./Commercial'

Retired 2020

(2011/2016) (high)

((;;(‘]Jlfgl/lz-[l)lls-)‘; 2 m pan; 8 m MS (high) ~4 days (with multisat wide swath) CNSA (China) Govt./Commercial’
C(I;EES;:) 1/ ;)A 2-5 m pan; 8—10 m MS (high) ~3—4 days (multiple cameras) ({BNrEE{/CCﬁlsrz) Open (Free)
VNREDSat-1 (2013) 2.5 m pan; 10 m MS (high) ~3 days (sun-sync orbit) VAST (Vietnam) Govt./Commercial

RapidEye (2008) - 5 m multispectral (high) Daily (5-sat constellation) Planet (Germany) Open (Free)?

Table 4 High Resolution (meter-level) Satellites

! Restricted-access data (not freely available to the public).
2 Rapid Eye imagery was made openly available after the mission ended.
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These satellites have medium spatial resolution (tens to hundreds of meters), used for
regional to global environmental monitoring.

Satellite (Launch) Spatial Resolution Revisit Frequency Operator Data Access
Se“ﬁ“(ezl(')i‘;gﬁ g)LCI) ﬁ)gh?ségsfrizf)l ~1-2 days (with 2 satellites) | ESA/EUMETSAT (EU) Open (Free)
Terra f; ()‘;g;‘z“:“()l;‘)oms) 250 m (bands at best res) | DAY (ngirr;‘gg?li)“g’ Aqua NASA (USA) Open (Free)
S“(‘;,“I‘;E;Pa‘f‘nljgsﬁgzo 375 m (visible/IR) Daily (m"rgrigigts‘i‘ afternoon |\ A A/NASA (USA) Open (Free)
Landsat 8 & 9 (Thermal) 100 m thermal IR 8 days (global, combined) NASA/USGS (USA) Open (Free)
EnMAP (2022) 30 m (hyperspectral) ~4 days (pointable) DLR (Germany) Open (Free)
PRISMA (2019) shm pan; 30 m ~7 days (pointable) ASI (Ttaly) Open (Free)
yperspectral
Himawari-8/9 (2014/2016) 300 m ’b;nkdr:) (visible geloos t‘;ﬁ‘;ﬁ;’;ﬁzgﬁfg) JMA (Japan) Open (Free)

Table 5 Medium Resolution (10-100+ m) Satellites

[24-50]

Free data access for registered scientific users (open data policy with registration)
[50][42]

Satellites and data acquisition

In recent years, the amount of free satellite data has grown in both variety and frequency,
making it possible to create flood maps worldwide at a low cost.[51]

Landsat
The development of Earth observation from space can be clearly seen in the Landsat

program. Starting with Landsat-1 in 1972, the program has advanced its technology while
consistently monitoring land surfaces. This long-term record has become an important
reference for studying changes in Earth’s land environment caused by both natural
processes and human activities.[52]

Landsat 8 carries two key instruments, the Operational Land Imager (OLI) and the Thermal
Infrared Sensor (TIRS), which together provide seasonal global land coverage with spatial
resolutions of 30 meters (visible, NIR, SWIR), 100 meters (thermal), and 15 meters
(panchromatic). Building on this, Landsat 9 was launched with upgraded counterparts,
OLI-2 and TIRS-2, that use advanced technology to capture the highest quality data in 11
spectral bands, while ensuring full compatibility with previous Landsat records. Operating
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in a near-polar orbit, Landsat 9 contributes over 700 new Earth scenes daily and, when
combined with Landsat 8, enables repeat imaging of almost the entire globe every eight
days. All collected data are archived and freely distributed by the USGS Earth Resources
Observation and Science (EROS) Center, ensuring continuity of one of the most valuable
long-term Earth observation records.[53], [54]

Skysat

SkySat, managed by Planet, is a high-resolution constellation of 15 satellites capable of
revisiting any location on Earth up to ten times per day, with a daily imaging capacity of
around 4,000 km?. It enables tasking services, allowing users to define the time and place
of image acquisition. The satellites generate orthorectified panchromatic and four-band
imagery with a spatial resolution of 50 centimeters per pixel.[55]

Band Name Wavelength

1 Blue 450 - 515 nm
2 Green 515-595 nm
3 Red 605 - 695 nm
4 Near IR 740 - 900 nm
NA Panchromatic 450 - 900 nm

Figure 8 Different bands of SkySat

Sentinel2

Sentinel-2 is equipped with an optical payload that includes visible, near-infrared (NIR),
and shortwave-infrared (SWIR) sensors, covering 13 spectral bands with spatial
resolutions of 10, 20, and 60 meters across a 290 km swath. However, as an optical mission,
its ability to monitor floods is limited to daytime and clear-sky conditions, since solar
radiation in the visible range cannot penetrate cloud cover[56]

Band Name Central Wavelength
BO1 aerosol 443 nm
B02 (blue) 490nm
B03 (green) 560nm
B04 (red) 665nm
BO5 (red edge) 705nm
B06 740nm
B07 783nm
BOS8 (NIR) 842nm
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BSA 865nm
B09 945nm
B10 1375nm
Bl11 (SWIR 1) 1610nm
B12 (SWIR 2) 2190nm

Figure 9 Sentinel-2 Bands[57]

Description of Copernicus Emergency management service (CEMS)

The European Copernicus program uses satellite sensors to support civil protection services
through its Emergency Management Service (EMS). This service provides rapid damage
assessment maps for natural or human-made disasters and operates 24/7. Requests for
activation are approved by the European Commission via the Emergency Response and
Coordination Centre (ERCC) at DG ECHO (Directorate-General for European Civil
Protection and Humanitarian Aid Operations), and the full process, from activation to final
map delivery, is managed through this service. [58]

The EMS has two main parts:

1. Mapping: including rapid mapping and risk/recovery mapping, which deliver digital and
vector-based maps from satellite images to help emergency managers make informed
decisions.

2. Early warning: mainly through the European Flood Awareness System (EFAS), which
helps national and local authorities prepare before major flood events.

Since 2021, a global near-real-time flood monitoring system (GFM) has been added to the
Global Flood Awareness System (GloFAS). This system processes all Sentinel-1 images
using three advanced flood mapping algorithms (HASARD, ALGORITHM2, and
ALGORITHM3) and combines their outputs to produce fast, reliable, and high-quality
flood maps.[58]
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Figure 10 organization of EMS

Rapid mapping and risk and recovery mapping

delivered Products

Each Copernicus product is delivered in two formats: a ready-to-print map and a vector
package that includes geographic datasets. These products follow a strict naming system
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to keep them consistent. The quality of the input data affects the outcome. if the data quality
is only medium, then a “partial release” is issued. Both the service provider and the
European Commission’s Joint Research Centre (JRC) check the quality of every product,
and if mistakes are detected, corrected versions are produced and released.[59]

Delivered maps are one of the main outputs of the Copernicus Emergency Management
Service (CEMS) and other disaster response systems, providing essential geospatial
information before, during, and after flood events. The two most common types are
delineation maps and grading maps.

* Delineation maps show the exact extent of flooding, usually based on satellite data such
as Sentinel-1 or Sentinel-2. They highlight the areas covered by water and are produced
quickly, often within hours, to support emergency operations by indicating which regions,
infrastructures, and settlements are inundated.

Estimated frooded area for Spazzate-Sassatelli
EMSR659_Delineation map (]
EMSR659_area of intrest [}

Figure 11 Delineation map version 1
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* Grading maps go further by assessing the level of damage across different sectors,
including housing, transport, public services, and land use. They categorize the damage
(e.g., destroyed, damaged, or possibly damaged) and are especially useful for recovery
planning, resource allocation, and insurance purposes[60],[61]

Grading map for Spazzate-Sassatelli

EMSRG59 _area of intrest
EMSR659_Estimated Area of Flooding(grading)
EMSR659 _Estimated flood (delineation)
Condition of Buildings

Possibly damaged

Damaged

Destroyed

#c-0 NNO

Possibly damaged Area
Condition of roads
Damaged —

Possibly damaged —

Figure 12 Grading map last released report

Timeline for emergency response

In flood mapping and specifically critical situations, time is a key factor. “For the 14
activations related to an EFAS pre-tasking request, the first crisis information provided was
delivered on average 16:05 h after the activation start. Without pre-tasking, the delivery
time for the first product was on average 28:47 h after the activation start.”’[62]
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POST ACTIVATION
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of feedback

E0 Dota Acquisiton and Pricct Delvery can b0 repeated mltipls e

Figure 13Timeline for EMS[81]

Review of EO-based flood extent and depth mapping

Estimation of flood depth is much harder and equally important as flood extent estimation
to address the risks and emergency responses[63]. Teng J et all.(2022) assessed three
simple models to estimate depth of flood water by varied DEM inputs. In this research
showed that FWDET (Floodwater Depth Estimation Tool) was the best in performance,
HAND (Height Above Nearest Drainage) was suitable for users who have access to flood
extent and TVD( TengVaze Dutta) was very good at deep waters.[63] FWDET determines
water depth by subtracting the local floodwater elevation (measured above mean sea level)
from the topographic elevation at each grid cell within the flooded area. This flooded area

a) HAND

Address
Point

Height Above
Nearest
Drainage

Inundation | inundation extent
© Extent 5
. i e
—

Boundary Surface Water Levels

Figure 14 methods of estimation of flood depth [63]

is supplied to FWDET as a GIS polygon
layer or optionally as a raster when using
FwDET-GEE, allowing flexibility
regardless of how the flood extent was
originally derived. Both the elevation of
the terrain and the floodwater are obtained
from a Digital Elevation Model (DEM).
Although any DEM can be used, its spatial
and vertical resolution significantly
influences the accuracy of the depth
estimates.[64]

HAND estimates flood depth at specific
locations by combining observed water
levels with a Digital Elevation Model
(DEM). TVD determines the maximum
surface water level in flooded regions
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using a flood extent raster and a DEM adjusted for terrain slope. FWDET calculates flood
depth by using a flood extent raster and a DEM, estimating surface water levels by
interpolating from the boundary of the inundated area.[63]

Another method called FLEXTH is used to estimate flood depth and enhance flood
mapping by utilizing inundation maps, easily accessible Digital Terrain Models (DTMs),
and open-source software. The approach is largely automated, requiring minimal user
input, and can process very large regions efficiently[65].

K-means Clustering

Clustering is a common method used in data science to group similar data points together
and separate them from those that are different. There are four main types of clustering
methods:

1. Connectivity-based clustering: groups data points based on how close they are to each
other.

2. Centroid-based clustering: represents each cluster by a central point (called a centroid).
3. Distribution-based clustering: groups data that follows the same statistical pattern.

4. Density-based clustering: forms clusters where data points are densely packed, while
points in sparse areas are treated as noise.

To group data effectively, clustering methods need a way to measure how similar or
different data points are. One of the most popular centroid-based methods is K-means
clustering. It is an unsupervised algorithm, meaning it does not require labelled data. K-
means divides a dataset into a chosen number of groups (K) based on the similarity between
data points.

The algorithm works by finding the center (centroid) of each cluster and assigning every
data point to the nearest centroid. It then updates the centroids repeatedly until the positions
stop changing. The goal is to minimize the distance between data points and their cluster
centers. This is represented by the following equation:

k
Lm=) > lw= bl
k=1 1EGK

where K is the number of clusters, Gy is the group of data points in cluster k, and by is the
centroid of that cluster. K-means is a fast and simple algorithm that works well with large
datasets and produces good results in many applications. However, it has one main
limitation it is sensitive to the number of clusters chosen. If K is not selected properly, the
results may not represent the data accurately.[66]
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Accuracy assessment

Accuracy assessment is a fundamental process in evaluating the reliability and performance
of classification results derived from remote sensing or spatial analysis. It measures the
degree of agreement between a model and the reference, or “ground truth data” [67].

Among the available various metrics, Precision, Recall, and the F1-score are commonly
employed because they provide complementary insights into the classification
performance. These metrics are derived from the confusion matrix, which summarizes the
relationship between predicted and observed classes in terms of true positives (TP), false
positives (FP), false negatives (FN), and true negatives (TIN)[68].

Precision
measures the proportion of correctly predicted flooded layer relative to all pixels identified
as flood by the ground truth data, which is CEMS, indicating how many pixels of the
detected floods are truly correct. It is defined as:

TP

precision = W

High precision implies that most of the areas detected as flooded correspond to actual
floods, reflecting a low rate of false alarms[69]

Recall
also known as sensitivity or true positive rate, measures the proportion of actual flooded
areas that were correctly identified by the algorithm. It is calculated as:

TP

Recall = TP+—F1V

A higher recall indicates that the model effectively detects most of the real flood extents,
even if it occasionally misclassifies non-flooded regions as flooded[70]

F1-score
combines both precision and recall into a single indicator by calculating their harmonic
mean:

2 X precision X recall
F1 — score =

precision + recall

This metric provides a balanced measure between omission errors (missed floods) and
commission errors (false detections) and is particularly useful when the dataset is
imbalanced, meaning that flooded and non-flooded areas are not equally represented [71]
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Methodology

The main aim of the study is to propose an efficient and user-friendly method to achieve
flooded area raster layer in a logical time for two different sources of data, Sentinel 2 and
Skysat. Furthermore, comparison of open-source data and commercial data by
implementing a machine learning method and finally data trustworthy by validation
methods. For this thesis, a set of computer codes was developed to detect and map floods
using satellite images. The code framework was designed in a modular way, meaning each
part of the code has a clear role, and all parts work together to produce the final flood
extent. It should be mentioned that an unsupervised machine learning method called k-
means clustering which is part of partitional (or centroid-based) clustering was used to
separate water from non-water areas.

Overall workflow

Two different ways of getting floodmap from the Sentinel-2 and Skysat data has been
implemented. To achieve the results, due to the lighter volume of data for sentinel-2, a
cloud based Jupiter notebook environment that is provided by google has been used which
is termed Google colab. Advantage of Google colab is free access to computing resources,
including GPUs and TPUs; nevertheless, In the free version of Colab that is free of charge
there is very limited access to GPUs. Usage limits are much lower than there are in paid
versions of Colab. With paid versions of Colab it is possible to upgrade to powerful
premium GPUs subject to availability and your compute unit balance. It should be
mentioned that the algorithm for sentinel data works very well with the free version of
Colab.

In the second attempt, to achieve the inundated layer, Skaysat data has been used. In this
data because of more volume of data, Google Colab was not proper, specifically in the
desired raster file which should be uploaded on the local files of Colab. So, it increase the
time of process besides the limitation of computing in this environment. In this reason, data
processing has been done in the local computer with Visual Studio code editor. In both
cases methods are similar but some codes are different in each. The general workflow is in
this order:
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data acquisition

/ Sentinel_2 i SkySat ;

Filter(cloud mask)

’

NDWI calculation

’

unsupervised
classification
(K-means clustering)

’

post processing:
water / non water

|

small patches filter

|

output : Flood map

Figure 15 workflow of the process

All the executed codes are available in represented repository, included NDWI open-
source-data and Local-GeoTIFF-skysat, in the GitHub website[72].
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Data and Tools

Datasets

In this thesis four datasets have been utilized. The open source data , specifically Sentinel-
2,is taken from European satellite earth observation organization which is termed
Copernicus data space Ecosystem and for commercial ultra-high images SkySat images
from company named Planet, Copernicus emergency management service reports, which
provide delineation and grading maps which uses two different SAR datasets ,PAZ &

Cosmo, in order to have a robust ground data for water detection.

20May 21May
05:19utc 16:50utc

PAZ PLANET's SkySat COSMO SENTINEL-2

PLATFORM: SATELLITE PLATFORM: SATELLITE PLATFORM: SATELLITE PLATFORM: SATELLITE
OPERATOR: Hisdesat SENSOR :multispectral+ OPERATOR: OPERATOR: ESA

Servicios panchromatic ASI(Italian space SENSOR: multispectral
Estrategicos (Spain) RESOLUTION: 50 cm agency) RESOLUTION: 10m for bands
SENSOR: SAR SENSOR: SAR B2 (Blue),B3 (Green), B4 (Red)
RESOLUTION: 80 cm RESOLUTION: 50 cm and B8 (NIR) .

Figure 16 timeline of data [74][75][76][77][83]

Software and Tools
Data processing and analysis were carried out using a combination of open-source data,

commercial data and codes. QGIS (version 3.28.3-Firenze) was used for spatial
visualization. To handle large geospatial datasets and perform flood mapping analyses,
Python codes were written and implemented using two platforms: Visual Studio Code (VS
Code), which was primarily used for local data processing and debugging, and Google
Colab, which was utilized for cloud-based execution due to its computational efficiency
and integrated libraries. The scripts incorporated packages such as GDAL, Rasterio,
Pandas, and Google earth engine (GEE) to preprocess satellite imagery, calculate water
index, and generate classified flood maps.
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Data limitations

Although open-source data like CDSE (Copernicus Data Space Ecosystem) offer vast
amount of data, but the scarcity of exact time and date is felt in this study. Mostly it is hard
to find the exact time of happened event to monitor the event. Besides that, resolution of
free data is not comparable to commercial data. Another limitation is availability of high
or ultra-high resolution data. For acquiring the resolution, bellow the 3m approximately,
the good amount of money should be paid to access these data.

Data processing

Sentinel-2 pipeline (Google Colab)

In this part, the code uses Google Earth Engine (GEE) platform to import Sentinel-2
satellite images with requested date and other details, together with Google Colaboratory
(Colab) as the working environment. Colab is a hosted Jupyter Notebook service that
requires no setup and provides free access to computing resources, including GPUs and
TPUs, which makes it convenient for running the workflow online without the need for
local installations of packages. The code automatically downloads images for the study
area, removes cloud-covered pixels, and calculates the Normalized Difference Water Index
(NDWI) to highlight water. For sentinel-2 there are two main bands should be considered
for extraction of water layer. Band 3 for Green and band 8 for near IR. so the formula for
Sentinel 2 is in this order:

B3 — B8

NDWI = 58

A k-means clustering method is then used to separate flooded areas from non-flooded ones.
Permanent water bodies are removed to keep only newly flooded areas, and small noise
patches are filtered out. The images are then mosaicked by date and labelled, making it
possible to track flooding across time. With this method it’s possible to have a flood map
less than 1 minute. The main code and the modular helpers are in this order: In the main
code there is a close contact with google earth engine. In this part, all the main features
such as details of area of interest, flood event data, cloud threshold which sets the maximum
acceptable cloud coverage and lags for time range (days) after event are taken to execute
the order. modular helpers are in this order and are imported in the main code:
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Module Purpose Key functions Inputs Outputs

Uploadpy -Load Sentinel-2 L2A image collection for | -ee.ImageCollection -Image from -s2_collection
a given area and date range. -filter -satellite get permanent
- Generate a mask of permanent water -water_history water
bodies
date utiliz | -Compute post-flood and reference date -Parse -event date str get date ranges
- ranges from a flood event date. -format -post_lag
c.py -days before start
-days before end
ﬁlter.py -Remove Small Flood Areas -process_image -mask_collection -mask_clouds,
-mask clouds -roi remove small
-min_area area
Threshold. | -Classification on NDWI -Clusterer -ndwi_img, aoi, classify kmean
-Clustered -n_clusters=2 s
Py -flood_cluster
-flood_mask
MOS&iC.py -Mosaic Sentinel-2 images by acquisition -add_date -collection -mosaic_s2
date using median. -mosaic_on_date - roi
-Keeps only mosaics that fully cover the
AOL

Table 6 modules with their function

co & FloodMap_opticipynb ¥ & S 2, share @
File Edit View Insert Runtime Tools Help
Q Commands ~ + Code + Text b Runall ~ v A
(6] * as
= Files O X |0 TN 7B R EE
c [ A Q # -—- Convert ImageCollection to list ——
@ flood_list = flood_maps_s2.tolList(flood_maps_s2.size())
[~ count = flood_maps_s2.size().getInfo()
<>
» [ sample_data # -—— Add each flood mask to the map -—
o " for i in range(count):
. date_utiize.py img = ee.Image(flood_list.get(i))
o B filterpy date = ee.Date(img.get('system:time_start')).format('YYYY-MM-dd').getInfo()
n mosaic.py # Clip to AOI for display

B opticalfioodpy mask_clipped = img.select('depth').clip(aoi) # <-—- Only this line is changed
B renamepy # Add flood classification

Map.addLayer (mask_clipped, flood_vis, f'Flood {date}')
B threshold.py

oad # Center and display
B voloadpy Map.centerObject (aoi, 10)
Map

1 TR L SVE s

i ¥
&.’F Al layers on/off =
. A
F = &‘ OpenStreetMap....
o T

%] Flood 2023-05-23

L
&*

Flood 2023-05-28 4 ox
Flood 2023-06-02 &
&

Flood 2023-06-07

Disk 68.63 GB available
—
{3 Variables Terminal v 12:38PM 3 Python3

Figure 17 executed codes in Colab and Flood map

The workflow of open- source data code is illustrated in the next page:
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Main code: FloodMap optic.ipynb

« Area of interest

« Flood event date

« Lags (days after event)
« cloud threshold

1) date ranges

2) load S2 collection (cloud-threshold filtered)

3) compute NDWI + cloud mask (mask_clouds returns 1=cloud, O=clear)
4) mosaic by date (mosaic_s2)

5) KMeans classification (classify_kmeans) -> expected 1=flood, 0=dry
6) remove permanent water + clouds (mask them out)

7) remove small patches (remove_small_area)

8) tag fields + layer_name (add_layer_name)

A

Adds a 'layer_name' Compute post-flood and
property to each reference date ranges from a
image using its date flood event date.

and source property.

Mosaic Sentinel-2 images by
acquisition date using median.
Keeps only mosaics that fully cover
the AOI.

1-Load Sentinel-2 L2A image collection for a given
area and date range, filtered by cloud cover.

1-Remove Small Flood Areas

2-Generates a binary mask where
1 = cloud/cirrus/shadow, 0 = valid
land or water.

Classifies an NDWI image using KMeans clustering.
ndwi_img (ee.Image): Image with NDWI band
named 'NDWI'.

aol (ee.Geometry): Area of interest
for sampling and classification.

n_clusters (int): Number of clusters
(default is 2).

Returns:
ee.Image: Binary flood mask with

'flood class' band (1 = flood, 0 = non-
flood) .

2-Generate a mask of permanent water bodies from
the JRC Global Surface Water dataset.

Figure 18 Sentinel-2 workflow
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SkySat pipeline (Local processing)

In the SkySat image we have higher data resolution besides 5 different spectral Bands. To
calculate the NDWI for our data bands 2 and 4 as Green and NIR should be considered.

NDWI =

B2 — B4
B2 + B4

This prompt has done with the codes besides using several Python Standard Libraries and

Numerical Packages:

Package Purpose

0s File and directory operations, environment variables, paths

j son Read/write JSON data for configs or metadata

Warnings Mangge warning messages (e.g. suppress GDAL/rasterio
warnings).

contextlib Provides contextmanager decorator for creating custom with ...

blocks (used to manage GDAL environment).

Numerical Packages

NumPy

Core array & matrix math; numerical operations, masking,
statistics.

SciPy (ndimage)

Morphological image processing (e.g., binary opening,
binary fill holes, label), smoothing, filtering, connected
components.

Geospatial / Remote Sensing Packages

Package

Purpose

rasterio

Read, write, and manage raster (GeoTIFF) data. Interface to
GDAL. Handles CRS, transform, metadata.

rasterio.enums

Provides resampling methods (nearest, bilinear, cubic) for
reprojection/resampling.

rasterio.warp

Function to reproject raster between different CRS or align to a
target grid.

Machine Learning & image processing packages:

scikit-learn

Unsupervised clustering (e.g., K-means for separating
water/non-water classes).

Pillow (PIL)

Handles non-georeferenced image operations like saving

previews (PNG/JPEG), visualization, array-to-image

conversion.

Table 7 used packages in the helper module

The workflow of Skysat code is depicted in the next page:
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Maincods

FloodMap SKYSAT.ipynb

« inputimage
« output path

indication of Bands
« min area- m2

1) importing packages
2) compute NDWI

3) KMeans classification (classify_kmeans) -> expected 1=flood, 0=dry
4) Small paches removing
5) Write output

def remove_small patches (maskdl: np.ndarray, pixel area m2: float, min area m2: floas) -> np.ndarray:
“wvKeep only connected flood patches >- min area m2 (8-connected).”™
if not min area m2 or min ares m2 <= 0:
return maskel
min pixels = max(l, int(round(min arsa m2 / float (pixel area m2))))
labeled, nlab = ndi.label(mask0l.astyps (np.uints), structure-np.ones((3, 3, dtype-np.uincs))
it nlab
return maskel
sizes = np.bincount (labeled.ravel ())
remove - sizes < min pixels
cleaned = maskol.co .
eyl def compute_ndwi (green: np.ndarray, nir: np.ndarray) -> np.ndarray:
Zor rid in np.where(remave) [0]: g = green.astype (np.float32)
n = nir.astype (np.float32)
if rig == 0: 4 packground
denom = g + n
conzinas with np.errstate(divide='ignore', invalid='ignore'):
cleancdllabeled == rid] = 0 ndwi = (g - n) / denom
ndwi[~np.isfinite (ndwi)] = np.nan
return cleaned :
. return ndwi

vals = ndwi[valid_mask].reshape (-1, 1)

if vals.size == 0:

flood = np.zeros_like (ndwi, dtype=np.uint8)

return flood, {"cluster means": [None, None],

km = KMeans (n_clusters=2, n_init=10, random_ state=42)

km.fit (vals)

means_py . append (None)
else:
means_py.append (£loat (m) )

return £lood.astype (np.uint8), {"cluster means":

def kmeans_flood(ndwi: np.ndarray, valid_mask: np.ndarray)

"flood_cluster": 0}

1)1

labels = np.full (ndwi.shape, fill value=-1, dtype=np.intl6)
labels[valid mask] = km.labels_
means = [np.nanmean (ndwi[labels == k]) for k in (0,
flood_cluster = int (np.nanargmax (means))
flood = (labels == flood_cluster)
means_py = []
for m in means:
if m is None or (isinstance(m, float)

and (np.isnan(m))):

means_py,

-> tuple[np.ndarray, dict]:

"flood_cluster": int (flood_cluster)}

Figure 19 SkySat workflow
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While Google Colaboratory and Earth Engine were used for cloud-based processing,
Visual Studio Code (VS Code) Version: 1.104.1 served as the primary local development
environment for building and running the Python modules for this part of the study. It
works on very high-resolution satellite images stored locally on the computer. By the code,
it reads the Green and Near-Infrared (NIR) bands, calculates NDWI, and classifies water
by clustering, also it can clean the results by removing very small patches.

This approach is especially useful for small study areas where detailed, high-resolution
images are needed. The reason which these codes are not executed on Google Colab is the
limitation of access to computing resources in this service, so for huge data using more
powerful processor or buying the full access to Google Colab is a must. The processing
takes, based on provided data, generally 4 or 6 minutes until the final result is saved on
output folder in the local computer. This test was done on a MacBook pro with a M1
processor and 16 GB of RAM. The time can change depending on the computer’s hardware
and the size of the input file. All analyses were implemented in Python v3.11.13 using a
modular architecture.
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Figure 20 atmosphere of VScode and the executed code
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Results

This chapter presents the results of applying the developed flood mapping framework to
Sentinel-2 and SkySat imagery. The findings are organized into three parts: (1) flood extent
mapping, (2) processing times, and (3) accuracy comparisons. Together, these results
demonstrate the performance and applicability of the proposed methodology.

Flood Extent Maps
The framework successfully produced flood maps from both Sentinel-2 and SkySat
datasets.

Sentinel-2 outputs

The Sentinel-2 pipeline generated regional flood extent maps at 10 m spatial resolution.
These maps provided a clear overview of the inundated areas, making it possible to rapidly
assess the flood event across the region in two different dates 23 and 28 of may2023,
however due to the reason ground truth data , Cosmo with SAR data, is taken on 21 of
May, it is decided to choose the nearest time which is 23 of May.

Flood map of Sentinel-2

output layer of algorithm

Sentinel -2 Date: 23_05_2023 [ |
EMSR664_AOI01_DEL_MONITO3 _observedEvent
Skysat image 21.05.2023

Google Satellite

Figure 21 comparison EMS report and acquired results
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SkySat outputs

The SkySat pipeline produces much higher resolution flood maps (sub-meter level). These
results were particularly valuable for detecting smaller water bodies, narrow inundation
lines, and floodwater in urban environments like pavements, streets and roads. Compared
to Sentinel-2, SkySat outputs revealed more detailed boundaries of the flooded area and
reduced errors in complex landscapes.

Floodmap of Skysat

Skysat RGB image 21.05.2023
result of Skysat

detected flood layer [ ]

EMSR664_DEL_observedEvent

NDWI layer

0,412027

-0,479149 .
80 05 1km A

Figure 22 result of high-resolution data
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Processing Time

The time performance of the two pipelines was also evaluated.
*Sentinel-2 (Google Colab):

Processing in Colab was almost fast, with flood maps generated in less than one minute.
This is achieved thanks to the cloud-based infrastructure, which eliminates the need for a
local computer.

*SkySat (Local Processing):

The SkySat pipeline was executed on a MacBook with an M1 processor and 16 GB of
RAM. The time required to process a single tif file with the size of about 1.5 GB and
generate the final flood mask was approximately 4 to 5 minutes, nevertheless, it is totally
related to the volume of input data and configurations of used computer.
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Accuracy assessment

In this matter, three assessment such as precision and recall and F1-Score has been done.
It should be mentioned that Copernicus emergency management service results have been
used as ground truth data. The ground truth data is originally SAR data from COSMO and
PAZ satellites, so the ground truth data is highly trustworthy.

*Sentinel-2 accuracy:
At the regional scale, the results from Sentinel-2 achieved good agreement with reference

data. However, there are some small areas which is not detected in my results compare to
EMS report.

Precision 0.8462 (84.6%)
Recall 0.7372 (73.7%)
Fl-score 0.7879 (78.8%)

Table 8 assessment for Sentinel-2 workflow

Figure 24 results in Vs code

*SkySat accuracy:

SkySat results provided higher precision, particularly in urban zones and narrow
floodplains. The high-resolution data allowed, in precision assessment, 7 out 10 pixels
roughly detected correctly flood, while 3 out of 10 were false positive. This happens
because of the area of interest and some parts which are included in ground truth data and
excluded in Skysat result. Overall, it presents acceptable results.

Precision 0.7156 (71.6%)
Recall 0.8976 (89.8%)
Fl-score 0.7963 (79.6%)

Figure 25assessment for Skysat workflow
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Figure 26 results in Vs code

Summary of Findings

*The framework successfully generated flood maps for both Sentinel-2 and SkySat
datasets.

*Sentinel-2 ensured fast, while SkySat provided fine-scale detail.

*Processing time was minimal in Earth Engine (<1 minute per scene) but longer in local
processing (4-5 minutes per file on M1 MacBook, 16 GB RAM).

* The accuracy results show that both the Sentinel-2 and SkySat algorithms performed well
in detecting flooded areas, but each has different strengths. The Sentinel-2 algorithm
achieved higher precision (84.6%), meaning it was more accurate in identifying actual
flooded pixels and made fewer false detections of non-flooded areas. However, its recall
(73.7%) was lower, indicating that it missed some true flooded regions. In contrast, the
SkySat algorithm had a lower precision (71.6%) but a higher recall (89.8%), meaning it
detected most of the real flooded areas but also included more false positives. The F1-
score, which balances precision and recall, was similar for both methods (78.8% for
Sentinel-2 and 79.6% for SkySat). Overall, Sentinel-2 provides more reliable and cleaner
flood detection, while SkySat is more sensitive and captures a larger extent of the flood,
even if it slightly overestimates the flooded area.

39



Conclusion

In this study two algorithms for open-source satellite data and commercial high-resolution
imagery to produce flood maps has been created based on machine learning method K-
means clustering and has been analyzed accuracy assessment for each. With a specific
focus on the May 2023 flood event in the Spazzate-Sassatelli area of Emilia Romagna. The
findings demonstrate that the developed Python-based workflow can generate flood maps
in less than one minute for open-source data and about 4-6 minutes for commercial data
depending on the volume of provided data. When compared with the official EMS report,
the implemented approach proved to be highly efficient, offering timely outputs suitable
for emergency applications. Furthermore, better illustration of inundated areas as a matter
of details, like roads and streets for damage assessments and critical zones in danger with
ultra-high resolution images from satellite.

In addition to the processing speed, Open-source data is more suitable for monitoring larger
regions, while commercial ultra-high-resolution imagery provides detailed insights into
critical zones, including streets and built environments, which are crucial for damage
assessment and risk management.

The results show that the Sentinel-2 algorithm is more accurate but slightly misses some
flooded areas, while the SkySat algorithm detects more flooded regions but includes more
false positives. Overall, both perform similarly, with Sentinel-2 providing cleaner results
and SkySat offering more details for flood detection. it should be mentioned that in both
cases F1-score as was almost 80%.

Future work should integrate advances in Earth observation and machine learning to
improve accuracy, reduce dependency on manual intervention, and enhance the reliability
of real-time disaster mapping.
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