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Abstract 
 

Floods are among the most frequent and damaging disasters worldwide, affecting millions 
of people and causing high economic losses. Traditional ground-based monitoring systems 
often lack sufficient coverage, particularly in vulnerable regions, creating a need for more 
reliable tools. Satellite-based Earth Observation (EO) has emerged as a vital resource for 
flood detection, monitoring, and management. Satellites including Sentinel-1, Sentinel-2, 
Landsat, and commercial constellations like Planetscope, Skysat, COSMO-SkyMed 
provide valuable datasets to map inundation, assess damage, and guide emergency 
response.  

This thesis focuses on the Emilia-Romagna floods of May 2023, one of the most severe in 
recent decades in Italy, particularly in Spazzate-Sassatelli. Using Sentinel-2 (open-source) 
and SkySat (commercial) imagery, a modular Python-based algorithm was developed to 
process images based on K-means clustering machine learning method. Results showed 
that algorithm for Sentinel-2 could generate regional maps in less than one minute using 
cloud-based processing such as Google colab, while algorithm for SkySat provided finer-
scale details within ~4 minutes on local hardware. Accuracy assessments confirmed 
Sentinel-2’s effectiveness at large scales, although SkySat offered superior precision in 
urban and narrow floodplain contexts. The Sentinel-2 algorithm offers cleaner and more 
precise flood detection, while SkySat identifies a wider area but with slightly more false 
positives. Overall, both deliver comparable performance. 

Overall, free open data is good for making fast maps of small areas, while very detailed 
commercial images are better for showing local damage clearly besides efficient result for 
large area. In the future, flood monitoring should use more automation, machine learning, 
and real-time systems to respond faster and more effectively. 
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Introduction 
Background: importance of flood monitoring and management 
Floods are among the most destructive and frequent natural hazard worldwide, with 
profound social, environmental, and economic consequences. According to the 
International Disaster Database, floods represent the most common type of weather-related 
disaster, affecting more people than any other natural hazard. Between 2006 and 2015, an 
estimated 800 million individuals were impacted by flood events, and the total economic 
damage exceeded $300 billion globally. These figures highlight the urgent need for 
effective flood monitoring and management strategies [1]. 
 
Despite growing awareness of the ecological and societal importance of river systems and 
their inundation dynamics, the capacity to accurately model and predict flood events 
remains limited. This is largely attributed to the scarcity of consistent, high-resolution in-
situ measurements, particularly in remote regions and developing countries. Traditional 
ground-based monitoring infrastructure, such as gauging stations and field surveys, has 
declined in coverage and quality, creating critical data gaps in many vulnerable areas. [1].   
 
In response to these challenges, remote sensing has emerged as a valuable and increasingly 
indispensable tool for flood observation and analysis. Satellite-based sensors provide 
spatially continuous and temporally frequent datasets that can capture key variables such 
as terrain elevation, river width, flood extent, water levels, and land cover. When integrated 
into hydrological and hydraulic models, these datasets significantly enhance the 
understanding and forecasting of flood dynamics. This is particularly beneficial for data-
scarce catchments, where traditional measurements are unavailable or unreliable [1].  
 
Furthermore, advancements in remote sensing technologies have enabled the development 
of global datasets for parameters such as precipitation, evapotranspiration, temperature, 
and land use. These datasets are critical for modelling flood behavior in ungauged or 
sparsely gauged basins. For instance, demonstrated the successful use of remote sensing 
products to generate flood inundation maps for the large-scale, poorly monitored 
Brahmaputra Basin, underscoring the practical applicability of such tools in flood-prone 
regions [2]. 
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Description of the Study Area 
Emilia Romagna overview 

  
In May 2023, was the hardest rain fall event that estimated once every 200 years. This 
event had two major intense rainfall, in the early May and in mid-May that was more 
intense and because of second event the inundated area exacerbated. On April 20, 2023, 
Civil Protection issued an orange alert (moderate risk) for thunderstorms in Emilia-
Romagna. A few days later, on April 24 and 25, heavy rain and hail hit several provinces, 
including Ferrara, Parma, Reggio-Emilia, and Rimini. The strongest rainfall began on May 
2, leading to a red alert within 12 hours. In just two days, 200 mm of rain fell in Bologna, 
Ravenna, and Forlì-Cesena, mostly affecting the Romagna area, which caused rivers to 
overflow and widespread flooding. By May 4, 23 rivers had overflowed, 15 levees had 
broken, more than 140 landslides had occurred, and there was serious damage to 
infrastructure. The situation worsened with more rainfall on May 9 and 10. On May 16 and 
17, rain reached record levels again, with 300 mm in Forlì and up to 200 mm in Ravenna 
and Bologna. By May 18, around 8,000 volunteer workdays had been dedicated to 
managing the disaster, and a 12-month state of emergency was declared. Before May 25, 
23 rivers had overflowed, 13 had reached critical levels, and the floods caused 50 incidents 
across 42 municipalities. In addition, more than 370 landslides blocked over 700 roads. By 
May 20, the disaster had forced 36,600 people to evacuate and caused 17 deaths, most of 
them elderly.[3] 
 

Figure	1	Flood	risk	in	Italy 
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Area of interest: Spazzate-Sassatelli 
 
The rising rivers quickly created dangerous conditions, with the Sillaro River embankment 
breaking and the Lamone River overflowing, flooding areas near Massa Lombarda and 
Conselice. In response, the Copernicus Emergency Management Service (EMS) Rapid 
Mapping was activated to provide early estimates of flood extent and damage. As part of 
this activation (EMSR659), a detailed impact assessment was carried out in the Spazzate-
Sassatelli area. The analysis showed that around 1,610.9 hectares of land were submerged, 
with flood traces covering an additional 20.8 hectares. [4] 
 Approximately 200 people were affected, out of a local population of about 16,000. The 
built environment suffered moderate damage, mainly to housing. Of 6,568 residential 
buildings, 250 were impacted, one was destroyed, 130 were damaged, and 119 were 
possibly damaged. Other structures, including industrial, commercial, and religious 
buildings remained largely unaffected, showing the localized nature of the flooding. 
Transport infrastructure faced selective impacts. Major roads were not destroyed, but 
smaller routes suffered. 26.9 km of cart tracks were flooded, with 18.3 km damaged, while 
local roads recorded about 1.9 km of confirmed or possible damage due to flooding and 
washouts. Public facilities saw minor effects, with 9.8 hectares of sports and recreation 
areas affected out of a total of 21.6 hectares. [4] 
No damage was reported to energy, communication, or pipeline networks. Agriculture, 
however, faced significant losses. About 1,319.3 hectares of arable land were flooded, over 
10% of the cultivated area, while 182.2 hectares of permanent crops, such as orchards and 
vineyards, were inundated, raising concerns for long-term productivity. Inland wetlands 
and mixed-use agricultural zones also showed some damage.[4] 
 

Figure	2	Area	of	interest 
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Consequences within the AOI     

 Unit of measurement Affected 
Total in 

AOI 

Flooded area  
ha 

 
1,316.3 

Estimated population Number of inhabitants  
~ 200 ~ 7,400 

Built-up Residential Buildings No. 139 2,900 
 

Industrial buildings No. 18 161 
 

Buildings used as places of worship and for religious 
activities 

No. 1 6 
 

Communication buildings, stations, terminals and 
associated buildings 

No. 0 1 

Transportation Airfield runways km 0.3 0.5 
 

Primary Road km 0.0 10.2 
 

Secondary Road km 1.9 12.0 
 

Local Road km 1.7 47.0 
 

Cart Track km 16.9 117.9 
 

Long-distance railways km 0.0 6.7 

Facilities Sport and recreation constructions ha 6.4 19.6 
 

Long-distance pipelines, communication and 
electricity lines 

km 4.2 38.4 
 

Local pipelines and cables km 0.0 0.3 

Land use Arable land ha 1,066.6 6,156.0 

 
Permanent crops  ha 149.4 219.1 

 
Heterogeneous agricultural areas  ha 90.3 1,481.5 

 
Other ha 10.0 201.1 

Table	1	Impact	statistics	(from	EMSR659)	[4]	
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Why this area is suitable for analysis 
 
The Emilia-Romagna region has been selected because it has experienced frequent and 
severe flood events, especially between 2012 and 2025 in Italy. These repeated disasters 
make it an important case study for understanding monitoring of flood. The figure 
presented here illustrates the number of activations and products generated by the 
Copernicus Emergency Management Service (CEMS) specifically for Emilia-Romagna. 
In other words, it shows how often the region has required rapid mapping support during 
floods and how much geospatial information was produced to assist emergency response 
and recovery. This repeated need for CEMS products highlights both the vulnerability of 
the area and its importance in studying flood monitoring and management. 
 

 

 
Spazzate-Sassatelli sits on the active Sillaro floodplain, experienced repeated inundation 
in May 2023, and is covered by Copernicus, Skysat and UVA products and detailed local 
records, exactly the combination is demanded for robust flood detection analysis, mapping 
accuracy and timing exposure.  
 
 
 
 
 

Figure	3	flood	events	by	EMS	 
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Objectives of the Study 
 

• To explore methods for reducing the time needed to produce reliable flood maps. 

 

• To evaluate suitable machine learning method for detecting the desire data as water layer. 

 

• To assess the differences between Sentinel-2 (open-source) and SkySat (commercial) 

imagery in terms of accuracy, detail, and processing time in results of each created 

algorithm. 

 

• To design and test workflows and frameworks that can deliver flood maps more quickly 

and efficiently. 

Background and Literature Review 
Overview of remote sensing in flood detection and management. 

Remote Sensing for Flood Management  
Historical and Current State 

Satellite technology has played an important role in disaster management since the late 
1950s. After the launch of the first U.S. satellite, Explorer 1, in 1958, satellites were first 
used to monitor weather. By the late 1980s, satellite images started to help with disaster 
response, such as during Hurricane Hugo in 1989[5]. In the 1990s, the growth of 
Geographic Information Systems (GIS) made it much easier to use satellite data for many 
purposes, including managing natural disasters[6]; [7]; [8]. For example, in 1992, NASA 
sent images to Hawaii after Hurricane Iniki to help with the response. In 1993, satellite 
images were also used by government agencies like Federal Emergency Response Agency 
(FEMA) and the U.S. Army Corps of Engineers to respond to the Great Midwest Flood. 
These images helped create maps, monitor how the flood was spreading, and check for 
damage to farms and infrastructure. This success led FEMA to support more work on using 
satellites for future flood response [5]. 

To improve coordination between space agencies and disaster response teams, the United 
Nations started the International Charter: Space and Major Disasters in 2000 [9]; [10]. 
Since then, many organizations, including the European Union’s Copernicus program, 
NASA, NOAA, and the U.S. Geological Survey, have used satellite data to help with 
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disaster response. These efforts are now supported by international cooperation through 
the UN Office for Outer Space Affairs (UN-OOSA)[11].  
 
Earth observation has become a vital tool in all stages of flood management. Satellite 
remote sensing provides timely, large-scale data for monitoring floods and assessing 
impacts when ground observations are sparse or disrupted. By capturing inundation 
extents, rainfall estimates, and terrain information from space, remote sensing supports 
better preparedness, real-time flood mapping for emergency response, and post-event 
damage evaluation. It effectively complements in-situ gauge networks, which in Europe 
are not uniformly distributed, helping to “fill the gap” in flood observation. In recent years, 
advances in sensors and data processing (e.g. the European Copernicus program) have 
greatly enhanced the ability to detect and manage floods from space [11][12]. 
 
In this section the primary remote sensing technologies and sensor types used to detect 
and map floods reviewed. 
 

EO Sensors and Platforms  
Remote sensing is the science of acquiring information about the Earth's surface without 
direct physical contact, typically through sensors mounted on satellites or airborne 
platforms. These systems are broadly categorized into active and passive sensors, based on 
their dependence on external energy sources [13]; [14]. 

Passive remote sensing relies on natural energy, primarily sunlight, which is either 
reflected or emitted by the Earth's surface and captured by the sensor. Common passive 
sensors operate in the visible, near infrared, and thermal infrared regions of the 
electromagnetic spectrum. Satellite missions such as Landsat, MODIS, and Sentinel-2 
utilize passive sensing for applications including land cover classification, vegetation 
monitoring, and thermal mapping. However, passive systems are limited by the availability 
of natural light and are often ineffective under cloudy conditions or at night [13] 

In contrast, active remote sensing systems release their own energy toward the target and 
record the reflected signal. This capability allows them to operate independently of sunlight 
and penetrate atmospheric conditions like clouds and rain. Radar (e.g., SAR) and LiDAR 
are typical examples of active sensors. Active remote sensing is especially valuable for 
terrain modeling, surface deformation monitoring, and structural analysis, due to its ability 
to capture high-resolution and geometrically precise data regardless of weather or lighting 
[15], [16] 
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The distinction between active and passive sensors is fundamental for selecting appropriate 
remote sensing techniques, as each has its strengths and limitations depending on the 
application and environmental conditions. 

 

 
Figure 4 illustration of active and passive sensors 

 
Electromagnetic (EM) waves are a form of energy propagation consisting of oscillating 
electric and magnetic fields that are perpendicular to each other and the direction of wave 
propagation. First described by James Clerk Maxwell in the 19th century, these waves 
travel through space at the speed of light, approximately 3 × 10⁸ m/s. The waves are 
generated by the acceleration of charged particles, which create oscillating electric and 
magnetic fields that sustain each other as they propagate. This concept of EM wave 
propagation, with its fundamental principles, was first laid out by Maxwell in 1865 and 
later extended by other researchers, such as Ulaby, Moore, and Fung, who provided further 
insights into the wave’s behavior and applications [17], [18]. 
 
 
 

 
 

Figure 5 Electromagnetic waves spectrum 
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Flood Detection Techniques  

Normalized Difference Water Index (NDWI) 

The Normalized Difference Water Index (NDWI), which utilizes reflectance values from 
the green and near-infrared (NIR) bands, is designed to enhance the spectral distinction 
between water surfaces and terrestrial features in these spectral regions. It has been widely 
applied in flood mapping and surface water delineation across numerous studies. While 
several other water indices have been developed over time, NDWI has consistently 
demonstrated superior performance in identifying water bodies. The index produces values 
ranging from −1 to +1, with positive values typically indicating the presence of surface 
water, particularly in cases of deep and clear water. However, the effectiveness of NDWI 
can be compromised in areas with dense vegetation. In such environments, higher NIR 
reflectance compared to green reflectance may result in NDWI values resembling those of 
non-water land covers, making it more challenging to accurately delineate complex or 
diverse flooded landscapes.[19] 

The NDWI is expressed as follow[20] 
 

𝑵𝑫𝑾𝑰 =
𝑮𝒓𝒆𝒆𝒏 − 𝑵𝑰𝑹
𝑮𝒓𝒆𝒆𝒏 + 𝑵𝑰𝑹

 

 
The NDWI is designed to make water areas stand out more clearly in satellite images. It 
does this by using the green band, where water reflects a lot of light, and the near-infrared 
(NIR) band, where water reflects very little. At the same time, land surfaces like vegetation 
and soil reflect much more light in the NIR band. Because of this, water usually appears 
with positive NDWI values, making it easy to identify, while land areas have values close 
to zero or negative, which helps reduce their influence in the results.[20] 

To remove the confusion caused by built-up areas in water detection, their unique 
reflectance characteristics need to be studied. Figure illustrated bellow shows how water 
of lake, vegetation, and built-up land reflect light across different bands. In the green band, 
spectral bands of the Landsat Thematic Mapper (TM2) and near-infrared (NIR) band (TM 
4), built-up land reflects light in a similar way to water, both reflect more green light than 
NIR. Because of this, the NDWI gives positive values not only for water but also for built-
up land, which can lead to false identification of water areas in NDWI results.[21] 
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Figure 6 spectral reflectance[21] 

 
However, when we look more closely at the spectral signatures, we see that the average 
reflectance of built-up land is much higher in the middle-infrared (MIR) band (TM 5) than 
in the green band (TM 2). So, if we replace the NIR band with the MIR band in the NDWI 
formula, built-up areas should show negative values, helping to separate them from water. 
This idea led to the creation of the Modified NDWI (MNDWI), which uses the MIR band 
instead of the NIR band.[21] 

 
 

𝑴𝑵𝑫𝑾𝑰 =
𝑮𝒓𝒆𝒆𝒏 −𝑴𝑰𝑹
𝑮𝒓𝒆𝒆𝒏 +𝑴𝑰𝑹

 

 
 

SAR technology 
 
Real Aperture Radar (RAR) is a traditional radar system that utilizes a physical antenna of 
fixed size to transmit and receive electromagnetic signals. The antenna’s size is directly 
related to the radar’s resolution specifically; the size of the antenna determines the 
resolution in the azimuth direction (across the direction of motion). In Real Aperture Radar 
(RAR), the radar transmits pulses and receives the reflected signals from objects on the 
ground, with the resolution in the range direction (along the line of sight) determined by 
the pulse duration and bandwidth. However, the main limitation of RAR is that improving 
the resolution requires increasing the physical size of the antenna, which is not practical, 
especially in space-based or airborne systems, where space and weight are constrained 
[18]. 
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In contrast to RAR, Synthetic Aperture Radar (SAR) is a more advanced technology that 
limits the size of antennas by using the motion of the radar platform (such as a satellite or 
aircraft) to simulate a much larger antenna. The basic principle behind SAR is that, as the 
radar platform moves along its flight path, it continuously transmits pulses and receives 
echoes from the target area. These echoes, captured from multiple positions, are processed 
together to simulate a large virtual antenna, or "synthetic" aperture, significantly enhancing 
the azimuth resolution [22] 

SAR relies on complex signal processing to combine the radar data collected from different 
points, allowing it to achieve high resolution despite the relatively small size of the physical 
antenna. This technique leverages Doppler shift and phase information from multiple radar 
echoes to achieve the desired resolution, which is not limited by the physical size of the 
antenna[23] 

 
Figure 7 Radar backscattering mechanisms for different SAR wavelengths: X- and C-band (top) and L-band 

(bottom).[39] 

 
Global Operational SAR Satellites (2025) 
 

Satellite / Mission Operator / Agency Frequency 
Band Spatial Resolution Revisit Time Data Accessibility 

Sentinel-1A ESA (EU) C-band ~5 m (Stripmap mode) ~12 days (6 
days with 2 sats) Public (open data) 

TerraSAR-X & 
TanDEM-X DLR/Airbus (Germany) X-band up to 0.25 m 

(Spotlight) 
11 days (exact 

repeat) Commercial (Airbus) 

PAZ Hisdesat (Spain) X-band ~1 m (Spotlight) 11 days Commercial 
(Airbus/Hisdesat) 

COSMO-SkyMed (1st 
Gen – 4 sats) ASI/Italian MoD (Italy) X-band ~1 m (Spotlight) <1 day Commercial & 

Military 
COSMO-SkyMed (2nd 

Gen – 2 sats) ASI/Italian MoD (Italy) X-band ~0.8 m (Spotlight) ~1–2 days Commercial & 
Military 

RADARSAT-2 CSA/MDA (Canada) C-band 1 m (Spotlight mode) 24 days Commercial 

RADARSAT 
Constellation (RCM) CSA (Canada) C-band ~3 m (Stripmap); 1×3 

m Spotlight ~4 days Public 

ALOS-2 (Daichi-2) JAXA (Japan) L-band 1×3 m (Spotlight) 14 days Restricted 

SAOCOM-1A/1B CONAE (Argentina) L-band ~10 m (Stripmap) 8 days Public for research 

NovaSAR-1 SSTL/CSIRO 
(UK/Australia) S-band 6 m (Stripmap) ~3–4 days Commercial 

KOMPSAT-5 KARI (South Korea) X-band 1 m (Spotlight) 28 days Commercial 

Gaofen-3 CNSA (China) C-band ~1 m (Spotlight mode) 29 days Restricted 
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Huanjing-2E MEE/CNSA (China) S-band 5 m (resolution) ~60-day 
coverage Restricted 

L-SAR 01A/B CNSA (China) L-band ~5 m (high-res mode) ~8 days Restricted 

ICEYE ICEYE (Finland) X-band 0.25 m (Spotlight) Hours Commercial 

Capella Space Capella Space (USA) X-band ~0.5 m (Spotlight) Hours Commercial 

Umbra Umbra Space (USA) X-band 0.25 m (Spotlight) ~4 per day Commercial 

Synspective StriX Synspective (Japan) X-band ~1 m (Spotlight) Days Commercial 

iQPS (QPS-SAR) iQPS (Japan) X-band ~0.75 m (Spotlight) Days Commercial 

Hisea-1 Spacety (China) C-band 1 m (Stripmode) ~15 days Commercial 

 

Table 2 Open source and Commercial SAR Satellites 

 
 
Optical and Multispectral Imaging (passive sensor) 
 
Optical satellites (e.g. Sentinel-2, Landsat 8/9) capture reflected sunlight in visible and 
infrared bands, providing detailed images of inundation extent in clear conditions. These 
sensors offer high spatial detail (10–30 m resolution) and rich spectral information to 
distinguish water from land. Multispectral imagery has successfully been used to map 
floods before, during, and after events, including using infrared bands to enhance water 
detection. Very-high-resolution optical data from commercial satellites (e.g. SPOT, 
Worldview) have even been employed for detailed urban flood assessments[1]. 
Optical remote sensing (e.g., visible and near-infrared bands) provides familiar 
photographic-like imagery of floods. Multispectral satellites capture reflectance in several 
bands, enabling the use of spectral indices to identify water. Water has strong absorption 
in near-infrared and shortwave infrared wavelengths, making flooded areas standout (often 
as dark or blueish areas in false-color composites). Common water indices include the 
Normalized Difference Water Index (NDWI) and its variants (e.g., MNDWI), which 
emphasizes open water by combining green, NIR, or SWIR bands[12]. 
 
 
Operational Optical Earth Observation Satellites (as of 2025) 
 
This table presents a comprehensive overview of currently operational optical Earth 
observation satellites, categorized by spatial resolution: very high, high, and medium. Each 
table entry includes the satellite name (or constellation), spatial resolution, revisit 
frequency (temporal resolution), launch year, operator, and data accessibility. 
 

Satellite (Launch) Spatial Resolution Revisit Frequency Operator Data Access 

WorldView-3 (2014) 0.31 m pan; 1.24 m 
multispectral (VHR) On-demand (daily possible) Maxar 

(USA) Commercial 
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These satellites have high spatial resolution on the order of a few meters (up to ~10 m), 
suitable for detailed mapping over large areas. 
 

Satellite (Launch) Spatial Resolution Revisit Frequency Operator Data Access 

PlanetScope (Dove) 
Constellation (2014) ~3 m multispectral (high) Daily global (near all land, >430 

CubeSats) 
Planet Labs 

(USA) Commercial 

Sentinel-2A/2B 
(2015/2017) 

10 m (visible/NIR), 20 m & 
60 m bands (high) 5 days (global, 2-sat constellation) ESA/EU 

(Copernicus) Open (Free) 

Landsat 8 & 9 
(2013/2021) 

15 m pan; 30 m multispectral 
(high) 

8 days (global, with both; 16 days 
each) 

NASA/USGS 
(USA) Open (Free) 

Resourcesat-2/2A 
(2011/2016) 

5.8 m pan; 23 m multispectral 
(high) ~5 days (with 2 satellites) ISRO (India) Govt./Commercial1 

Gaofen-1 / -6 
(2013/2018) 2 m pan; 8 m MS (high) ~4 days (with multisat wide swath) CNSA (China) Govt./Commercial1 

CBERS-4 / 4A 
(2014/2019) 2–5 m pan; 8–10 m MS (high) ~3–4 days (multiple cameras) INPE/CNSA 

(Brazil/China) Open (Free) 

VNREDSat-1 (2013) 2.5 m pan; 10 m MS (high) ~3 days (sun-sync orbit) VAST (Vietnam) Govt./Commercial 

RapidEye (2008) –
Retired 2020 5 m multispectral (high) Daily (5-sat constellation) Planet (Germany) Open (Free)2 

Table 4 High Resolution (meter-level) Satellites 

¹ Restricted-access data (not freely available to the public). 
² Rapid Eye imagery was made openly available after the mission ended. 

WorldView-2 (2009) 0.46 m pan; 1.84 m MS ~1.1 days Maxar 
(USA) Commercial 

SkySat Constellation 
(2016–2020) 0.50 m pan Up to 10× daily Planet Labs 

(USA) Commercial 

Pléiades Neo (2021) 0.30 m pan; 1.2 m MS ~2× daily Airbus 
(France) Commercial 

BlackSky Gen-3(2025) 35 cm, (NIIRS-5+) < 10 hours BlackSky 
(USA) Commercial 

Jilin-1 Constellation 
(2015– ) ~0.50–0.75 m pan Up to ~6× daily CGSTL 

(China) Commercial 

SuperView Neo-1 
(2022–2025) 

0.30 m pan; 1.2 m MS 
(VHR) 

Daily (with ~4 sats planned; intraday 
possible) 

Siwei 
(China) Commercial 

GeoEye-1 (2008) 0.41 m pan; 1.65 m MS 
(VHR) 

~3 days (with pointing; part of Maxar 
constellation) 

Maxar 
(USA) 

Commercial 
 

WorldView Legion 
(2024) 0.30 m pan (VHR) Up to 15× per day (with 6-sat 

constellation) 
Maxar 
(USA) Commercial 

Cartosat-3 (2019) 0.25–0.3 m pan; ~1 m MS 
(VHR) ~<5 days (agile single satellite) ISRO (India) Govt./Commercial 

Satellogic Aleph-1 
(2016– ) ~0.70 m pan (VHR) ~4× per day (with ~17 sats) Satellogic 

(Argentina) Commercial 

EROS-C3 (2022) 0.38 m pan; 0.76 m MS 
(VHR) 

On-demand (sub-daily tasking, part of 
EROS constellation) 

ImageSat 
(Israel) Commercial 

Göktürk-1 (2016) 0.50 m pan; 2 m color 
(VHR) ~Daily (sun-sync; ~0.5 m GSD globally) MoD 

(Turkey) Govt./Commercial 

KhalifaSat (2018) ~0.70 m pan (VHR) ~3 days (sun-sync orbit) MBRSC 
(UAE) Govt./Commercial 

PerúSAT-1 (2016) 0.70 m pan; 2 m MS (VHR) ~Daily (sun-sync, taskable) CONIDA 
(Peru) Govt./Commercial 

Table 3 Very High Resolution (sub-meter) Satellites 
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These satellites have medium spatial resolution (tens to hundreds of meters), used for 
regional to global environmental monitoring. 
 

Satellite (Launch) Spatial Resolution Revisit Frequency Operator Data Access 

Sentinel-3A/3B (OLCI) 
(2016/2018) 

300 m (optical 
multispectral) ~1–2 days (with 2 satellites) ESA/EUMETSAT (EU) Open (Free) 

Terra & Aqua (MODIS) 
(1999/2002) 250 m (bands at best res) Daily (Terra morning, Aqua 

afternoon) NASA (USA) Open (Free) 

Suomi NPP & NOAA-20 
(VIIRS) (2011/2017) 375 m (visible/IR) Daily (morning & afternoon 

orbits) NOAA/NASA (USA) Open (Free) 

Landsat 8 & 9 (Thermal) 100 m thermal IR 8 days (global, combined) NASA/USGS (USA) Open (Free) 

PROBA-V (2013) – 
❖Reduced ops 

100 m (VNIR), 300 m 
(SWIR) 

(Global 2-day until 2020; 
partial thereafter) ESA/BELSPO (EU) Open (Free) 

EnMAP (2022) 30 m (hyperspectral) ~4 days (pointable) DLR (Germany) Open (Free) 

PRISMA (2019) 5 m pan; 30 m 
hyperspectral ~7 days (pointable) ASI (Italy) Open (Free) 

Himawari-8/9 (2014/2016) 500 m – 1 km (visible 
bands) 

10 min (continuous 
geostationary imaging) JMA (Japan) Open (Free) 

Table 5 Medium Resolution (10–100+ m) Satellites 

[24-50] 
 
Free data access for registered scientific users (open data policy with registration)  
[50][42] 
 
 
Satellites and data acquisition 
In recent years, the amount of free satellite data has grown in both variety and frequency, 
making it possible to create flood maps worldwide at a low cost.[51] 
 
Landsat 
The development of Earth observation from space can be clearly seen in the Landsat 
program. Starting with Landsat-1 in 1972, the program has advanced its technology while 
consistently monitoring land surfaces. This long-term record has become an important 
reference for studying changes in Earth’s land environment caused by both natural 
processes and human activities.[52] 

Landsat 8 carries two key instruments, the Operational Land Imager (OLI) and the Thermal 
Infrared Sensor (TIRS), which together provide seasonal global land coverage with spatial 
resolutions of 30 meters (visible, NIR, SWIR), 100 meters (thermal), and 15 meters 
(panchromatic). Building on this, Landsat 9 was launched with upgraded counterparts, 
OLI-2 and TIRS-2, that use advanced technology to capture the highest quality data in 11 
spectral bands, while ensuring full compatibility with previous Landsat records. Operating 
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in a near-polar orbit, Landsat 9 contributes over 700 new Earth scenes daily and, when 
combined with Landsat 8, enables repeat imaging of almost the entire globe every eight 
days. All collected data are archived and freely distributed by the USGS Earth Resources 
Observation and Science (EROS) Center, ensuring continuity of one of the most valuable 
long-term Earth observation records.[53], [54] 

 

Skysat 
SkySat, managed by Planet, is a high-resolution constellation of 15 satellites capable of 
revisiting any location on Earth up to ten times per day, with a daily imaging capacity of 
around 4,000 km². It enables tasking services, allowing users to define the time and place 
of image acquisition. The satellites generate orthorectified panchromatic and four-band 
imagery with a spatial resolution of 50 centimeters per pixel.[55] 
 
Band Name  Wavelength 
1 Blue 450 - 515 nm 
2 Green 515 - 595 nm 
3 Red 605 - 695 nm 
4 Near IR 740 - 900 nm 
NA Panchromatic 450 - 900 nm 

Figure 8 Different bands of SkySat 

 

Sentinel2 
Sentinel-2 is equipped with an optical payload that includes visible, near-infrared (NIR), 
and shortwave-infrared (SWIR) sensors, covering 13 spectral bands with spatial 
resolutions of 10, 20, and 60 meters across a 290 km swath. However, as an optical mission, 
its ability to monitor floods is limited to daytime and clear-sky conditions, since solar 
radiation in the visible range cannot penetrate cloud cover[56] 

Band Name  Central Wavelength 
B01 aerosol 443 nm 
B02  (blue) 490nm 
B03  (green) 560nm 
B04  (red) 665nm 
B05  (red edge) 705nm 
B06  740nm 
B07  783nm 
B08  (NIR) 842nm 
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B8A  865nm 
B09  945nm 
B10  1375nm 
B11  (SWIR 1) 1610nm 
B12  (SWIR 2) 2190nm 

Figure	9	Sentinel-2	Bands[57]	

 

Description of Copernicus Emergency management service (CEMS) 

The European Copernicus program uses satellite sensors to support civil protection services 
through its Emergency Management Service (EMS). This service provides rapid damage 
assessment maps for natural or human-made disasters and operates 24/7. Requests for 
activation are approved by the European Commission via the Emergency Response and 
Coordination Centre (ERCC) at DG ECHO (Directorate-General for European Civil 
Protection and Humanitarian Aid Operations), and the full process, from activation to final 
map delivery, is managed through this service. [58] 

The EMS has two main parts: 

1. Mapping: including rapid mapping and risk/recovery mapping, which deliver digital and 
vector-based maps from satellite images to help emergency managers make informed 
decisions. 

2. Early warning: mainly through the European Flood Awareness System (EFAS), which 
helps national and local authorities prepare before major flood events. 

Since 2021, a global near-real-time flood monitoring system (GFM) has been added to the 
Global Flood Awareness System (GloFAS). This system processes all Sentinel-1 images 
using three advanced flood mapping algorithms (HASARD, ALGORITHM2, and 
ALGORITHM3) and combines their outputs to produce fast, reliable, and high-quality 
flood maps.[58] 
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Figure 10 organization of EMS 

 

Rapid mapping and risk and recovery mapping 
delivered Products 

Each Copernicus product is delivered in two formats: a ready-to-print map and a vector 
package that includes geographic datasets. These products follow a strict naming system 
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to keep them consistent. The quality of the input data affects the outcome. if the data quality 
is only medium, then a “partial release” is issued. Both the service provider and the 
European Commission’s Joint Research Centre (JRC) check the quality of every product, 
and if mistakes are detected, corrected versions are produced and released.[59] 
 
Delivered maps are one of the main outputs of the Copernicus Emergency Management 
Service (CEMS) and other disaster response systems, providing essential geospatial 
information before, during, and after flood events. The two most common types are 
delineation maps and grading maps. 
 
• Delineation maps show the exact extent of flooding, usually based on satellite data such 
as Sentinel-1 or Sentinel-2. They highlight the areas covered by water and are produced 
quickly, often within hours, to support emergency operations by indicating which regions, 
infrastructures, and settlements are inundated. 
 
 

 
 

Figure 11 Delineation map version 1 
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• Grading maps go further by assessing the level of damage across different sectors, 
including housing, transport, public services, and land use. They categorize the damage 
(e.g., destroyed, damaged, or possibly damaged) and are especially useful for recovery 
planning, resource allocation, and insurance purposes[60],[61] 
 
 

 
 

Figure 12 Grading map last released report 

 

Timeline for emergency response 

In flood mapping and specifically critical situations, time is a key factor. “For the 14 
activations related to an EFAS pre-tasking request, the first crisis information provided was 
delivered on average 16:05 h after the activation start. Without pre-tasking, the delivery 
time for the first product was on average 28:47 h after the activation start.”[62] 
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Figure	13Timeline	for	EMS[81]	

 
Review of EO-based flood extent and depth mapping 

Estimation of flood depth is much harder and equally important as flood extent estimation 
to address the risks and emergency responses[63]. Teng J et all.(2022) assessed three 
simple models to estimate depth of flood water by varied DEM inputs. In this research 
showed that FwDET (Floodwater Depth Estimation Tool) was the best in performance, 
HAND (Height Above Nearest Drainage) was suitable for users who have access to flood 
extent and TVD( TengVaze Dutta) was very good at deep waters.[63] FwDET determines 
water depth by subtracting the local floodwater elevation (measured above mean sea level) 
from the topographic elevation at each grid cell within the flooded area. This flooded area 

is supplied to FwDET as a GIS polygon 
layer or optionally as a raster when using 
FwDET-GEE, allowing flexibility 
regardless of how the flood extent was 
originally derived. Both the elevation of 
the terrain and the floodwater are obtained 
from a Digital Elevation Model (DEM). 
Although any DEM can be used, its spatial 
and vertical resolution significantly 
influences the accuracy of the depth 
estimates.[64] 

HAND estimates flood depth at specific 
locations by combining observed water 
levels with a Digital Elevation Model 
(DEM). TVD determines the maximum 
surface water level in flooded regions 

Figure	14	methods	of	estimation	of	flood	depth	[63] 
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using a flood extent raster and a DEM adjusted for terrain slope. FwDET calculates flood 
depth by using a flood extent raster and a DEM, estimating surface water levels by 
interpolating from the boundary of the inundated area.[63] 

Another method called FLEXTH is used to estimate flood depth and enhance flood 
mapping by utilizing inundation maps, easily accessible Digital Terrain Models (DTMs), 
and open-source software. The approach is largely automated, requiring minimal user 
input, and can process very large regions efficiently[65]. 
 

K-means Clustering 
Clustering is a common method used in data science to group similar data points together 
and separate them from those that are different. There are four main types of clustering 
methods: 
1. Connectivity-based clustering: groups data points based on how close they are to each 
other. 
2. Centroid-based clustering: represents each cluster by a central point (called a centroid). 
3. Distribution-based clustering: groups data that follows the same statistical pattern. 
4. Density-based clustering: forms clusters where data points are densely packed, while 
points in sparse areas are treated as noise. 

To group data effectively, clustering methods need a way to measure how similar or 
different data points are. One of the most popular centroid-based methods is K-means 
clustering. It is an unsupervised algorithm, meaning it does not require labelled data. K-
means divides a dataset into a chosen number of groups (K) based on the similarity between 
data points. 
The algorithm works by finding the center (centroid) of each cluster and assigning every 
data point to the nearest centroid. It then updates the centroids repeatedly until the positions 
stop changing. The goal is to minimize the distance between data points and their cluster 
centers. This is represented by the following equation: 

𝐿!" =# # ‖𝑥# − 𝑏!‖$
#∈&!

!

!'(
 

where K is the number of clusters, 𝐺!is the group of data points in cluster k, and 𝑏!is the 
centroid of that cluster. K-means is a fast and simple algorithm that works well with large 
datasets and produces good results in many applications. However, it has one main 
limitation it is sensitive to the number of clusters chosen. If K is not selected properly, the 
results may not represent the data accurately.[66] 
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Accuracy assessment 
Accuracy assessment is a fundamental process in evaluating the reliability and performance 
of classification results derived from remote sensing or spatial analysis. It measures the 
degree of agreement between a model and the reference, or “ground truth data” [67]. 
 
Among the available various metrics, Precision, Recall, and the F1-score are commonly 
employed because they provide complementary insights into the classification 
performance. These metrics are derived from the confusion matrix, which summarizes the 
relationship between predicted and observed classes in terms of true positives (TP), false 
positives (FP), false negatives (FN), and true negatives (TN)[68]. 
 
Precision 
measures the proportion of correctly predicted flooded layer relative to all pixels identified 
as flood by the ground truth data, which is CEMS, indicating how many pixels of the 
detected floods are truly correct. It is defined as: 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 
 
High precision implies that most of the areas detected as flooded correspond to actual 
floods, reflecting a low rate of false alarms[69] 
 
Recall 
also known as sensitivity or true positive rate, measures the proportion of actual flooded 
areas that were correctly identified by the algorithm. It is calculated as: 
 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 
 
A higher recall indicates that the model effectively detects most of the real flood extents, 
even if it occasionally misclassifies non-flooded regions as flooded[70] 
 
F1-score 
combines both precision and recall into a single indicator by calculating their harmonic 
mean: 
 

𝐹1 − 	𝑠𝑐𝑜𝑟𝑒 =
2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙  

This metric provides a balanced measure between omission errors (missed floods) and 
commission errors (false detections) and is particularly useful when the dataset is 
imbalanced, meaning that flooded and non-flooded areas are not equally represented [71] 
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Methodology 
The main aim of the study is to propose an efficient and user-friendly method to achieve 
flooded area raster layer in a logical time for two different sources of data, Sentinel 2 and 
Skysat. Furthermore, comparison of open-source data and commercial data by 
implementing a machine learning method and finally data trustworthy by validation 
methods. For this thesis, a set of computer codes was developed to detect and map floods 
using satellite images. The code framework was designed in a modular way, meaning each 
part of the code has a clear role, and all parts work together to produce the final flood 
extent. It should be mentioned that an unsupervised machine learning method called k-
means clustering which is part of partitional (or centroid-based) clustering was used to 
separate water from non-water areas.  

Overall workflow 

Two different ways of getting floodmap from the Sentinel-2 and Skysat data has been 
implemented. To achieve the results, due to the lighter volume of data for sentinel-2, a 
cloud based Jupiter notebook environment that is provided by google has been used which 
is termed Google colab. Advantage of Google colab is free access to computing resources, 
including GPUs and TPUs; nevertheless, In the free version of Colab that is free of charge 
there is very limited access to GPUs. Usage limits are much lower than there are in paid 
versions of Colab. With paid versions of Colab it is possible to upgrade to powerful 
premium GPUs subject to availability and your compute unit balance. It should be 
mentioned that the algorithm for sentinel data works very well with the free version of 
Colab. 
 
In the second attempt, to achieve the inundated layer, Skaysat data has been used. In this 
data because of more volume of data, Google Colab was not proper, specifically in the 
desired raster file which should be uploaded on the local files of Colab. So, it increase the 
time of process besides the limitation of computing in this environment. In this reason, data 
processing has been done in the local computer with Visual Studio code editor. In both 
cases methods are similar but some codes are different in each. The general workflow is in 
this order: 
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Figure 15 workflow of the process 

All the executed codes are available in represented repository, included NDWI_open-
source-data and Local-GeoTIFF-skysat, in the GitHub website[72]. 
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Data and Tools 
Datasets 
In this thesis four datasets have been utilized. The open source data , specifically Sentinel-
2,is taken from European satellite earth observation organization which is termed 
Copernicus data space Ecosystem and for commercial ultra-high images SkySat images 
from company named Planet, Copernicus emergency management service reports, which 
provide delineation and grading maps which uses two different SAR datasets ,PAZ & 
Cosmo, in order to have a robust ground data for water detection.  
 

 

Figure	16	timeline	of	data	[74][75][76][77][83]	

 

Software and Tools  
Data processing and analysis were carried out using a combination of open-source data, 
commercial data and codes. QGIS (version 3.28.3-Firenze) was used for spatial 
visualization. To handle large geospatial datasets and perform flood mapping analyses, 
Python codes were written and implemented using two platforms: Visual Studio Code (VS 
Code), which was primarily used for local data processing and debugging, and Google 
Colab, which was utilized for cloud-based execution due to its computational efficiency 
and integrated libraries. The scripts incorporated packages such as GDAL, Rasterio, 
Pandas, and Google earth engine (GEE) to preprocess satellite imagery, calculate water 
index, and generate classified flood maps. 
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Data limitations 
Although open-source data like CDSE (Copernicus Data Space Ecosystem) offer vast 
amount of data, but the scarcity of exact time and date is felt in this study. Mostly it is hard 
to find the exact time of happened event to monitor the event. Besides that, resolution of 
free data is not comparable to commercial data. Another limitation is availability of high 
or ultra-high resolution data. For acquiring the resolution, bellow the 3m approximately, 
the good amount of money should be paid to access these data. 

 

Data processing 
Sentinel-2 pipeline (Google Colab) 
In this part, the code uses Google Earth Engine (GEE) platform to import Sentinel-2 
satellite images with requested date and other details, together with Google Colaboratory 
(Colab) as the working environment. Colab is a hosted Jupyter Notebook service that 
requires no setup and provides free access to computing resources, including GPUs and 
TPUs, which makes it convenient for running the workflow online without the need for 
local installations of packages. The code automatically downloads images for the study 
area, removes cloud-covered pixels, and calculates the Normalized Difference Water Index 
(NDWI) to highlight water. For sentinel-2 there are two main bands should be considered 
for extraction of water layer. Band 3 for Green and band 8 for near IR. so the formula for 
Sentinel 2 is in this order: 

𝑁𝐷𝑊𝐼 =
𝐵3 − 𝐵8
𝐵3 + 𝐵8 

A k-means clustering method is then used to separate flooded areas from non-flooded ones. 
Permanent water bodies are removed to keep only newly flooded areas, and small noise 
patches are filtered out. The images are then mosaicked by date and labelled, making it 
possible to track flooding across time. With this method it’s possible to have a flood map 
less than 1 minute. The main code and the modular helpers are in this order: In the main 
code there is a close contact with google earth engine. In this part, all the main features 
such as details of area of interest, flood event data, cloud threshold which sets the maximum 
acceptable cloud coverage and lags for time range (days) after event are taken to execute 
the order. modular helpers are in this order and are imported in the main code: 
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Module Purpose  Key functions  Inputs  Outputs  
Upload.py -Load Sentinel-2 L2A image collection for 

a given area and date range. 
- Generate a mask of permanent water 
bodies 

-ee.ImageCollection 
-filter  
-water_history 

-Image from  
-satellite 

-s2_collection 
get_permanent_
water 

date_utiliz
e.py 

-Compute post-flood and reference date 
ranges from a flood event date. 

-Parse 
-format 

-event_date_str 
-post_lag 
-days_before_start 
-days_before_end 

get_date_ranges 

filter.py -Remove Small Flood Areas -process_image 
-mask_clouds 

-mask_collection 
-roi 
-min_area 

-mask_clouds,  
remove_small_
area 

Threshold.
py 

-Classification on NDWI -Clusterer 
-Clustered 
-flood_cluster 
-flood_mask 

-ndwi_img, aoi,  
-n_clusters=2 

classify_kmean
s 

Mosaic.py -Mosaic Sentinel-2 images by acquisition 
date using median. 
-Keeps only mosaics that fully cover the 
AOI. 

-add_date 
-mosaic_on_date 

-collection 
- roi 

-mosaic_s2 

Table 6 modules with their function 

 

 
 

Figure 17 executed codes in Colab and Flood map 

 
 
 
The workflow of open- source data code is illustrated in the next page: 



	 31	

 

Figure	18	Sentinel-2	workflow	
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SkySat pipeline (Local processing) 
In the SkySat image we have higher data resolution besides 5 different spectral Bands. To 
calculate the NDWI for our data bands 2 and 4 as Green and NIR should be considered.  

𝑁𝐷𝑊𝐼 =
𝐵2 − 𝐵4
𝐵2 + 𝐵4 

This prompt has done with the codes besides using several Python Standard Libraries and 
Numerical Packages: 
 
Package Purpose 

os File and directory operations, environment variables, paths 

json Read/write JSON data for configs or metadata 

warnings Manage warning messages (e.g. suppress GDAL/rasterio 
warnings). 

contextlib Provides contextmanager decorator for creating custom with ... 
blocks (used to manage GDAL environment). 

Numerical Packages 
NumPy Core array & matrix math; numerical operations, masking, 

statistics. 

SciPy (ndimage) Morphological image processing (e.g., binary_opening, 
binary_fill_holes, label), smoothing, filtering, connected 
components. 

Geospatial / Remote Sensing Packages 
Package Purpose 
rasterio Read, write, and manage raster (GeoTIFF) data. Interface to 

GDAL. Handles CRS, transform, metadata. 

rasterio.enums Provides resampling methods (nearest, bilinear, cubic) for 
reprojection/resampling. 

rasterio.warp Function to reproject raster between different CRS or align to a 
target grid. 

Machine Learning & image processing packages: 
scikit-learn Unsupervised clustering (e.g., K-means for separating 

water/non-water classes). 

Pillow (PIL) Handles non-georeferenced image operations like saving 
previews (PNG/JPEG), visualization, array-to-image 
conversion. 

Table	7	used	packages	in	the	helper	module	

 

 

The workflow of Skysat code is depicted in the next page: 
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Figure	19	SkySat	workflow	
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While Google Colaboratory and Earth Engine were used for cloud-based processing, 
Visual Studio Code (VS Code) Version: 1.104.1 served as the primary local development 
environment for building and running the Python modules for this part of the study. It 
works on very high-resolution satellite images stored locally on the computer. By the code, 
it reads the Green and Near-Infrared (NIR) bands, calculates NDWI, and classifies water 
by clustering, also it can clean the results by removing very small patches.  

This approach is especially useful for small study areas where detailed, high-resolution 
images are needed. The reason which these codes are not executed on Google Colab is the 
limitation of access to computing resources in this service, so for huge data using more 
powerful processor or buying the full access to Google Colab is a must. The processing 
takes, based on provided data, generally 4 or 6 minutes until the final result is saved on 
output folder in the local computer. This test was done on a MacBook pro with a M1 
processor and 16 GB of RAM. The time can change depending on the computer’s hardware 
and the size of the input file. All analyses were implemented in Python v3.11.13 using a 
modular architecture. 

 
Figure	20	atmosphere	of	VScode	and	the	executed	code	
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Results 
This chapter presents the results of applying the developed flood mapping framework to 
Sentinel-2 and SkySat imagery. The findings are organized into three parts: (1) flood extent 
mapping, (2) processing times, and (3) accuracy comparisons. Together, these results 
demonstrate the performance and applicability of the proposed methodology. 

Flood Extent Maps  
The framework successfully produced flood maps from both Sentinel-2 and SkySat 
datasets. 

Sentinel-2 outputs 
The Sentinel-2 pipeline generated regional flood extent maps at 10 m spatial resolution. 
These maps provided a clear overview of the inundated areas, making it possible to rapidly 
assess the flood event across the region in two different dates 23 and 28 of may2023, 
however due to the reason ground truth data , Cosmo with SAR data,  is taken on 21 of 
May, it is decided to choose the nearest time which is 23 of May.  

 

Figure	21	comparison	EMS	report	and	acquired	results	
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SkySat outputs 
The SkySat pipeline produces much higher resolution flood maps (sub-meter level). These 
results were particularly valuable for detecting smaller water bodies, narrow inundation 
lines, and floodwater in urban environments like pavements, streets and roads. Compared 
to Sentinel-2, SkySat outputs revealed more detailed boundaries of the flooded area and 
reduced errors in complex landscapes. 

 

 

Figure	22	result	of	high-resolution	data	
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Processing Time  
The time performance of the two pipelines was also evaluated. 

•Sentinel-2 (Google Colab): 

Processing in Colab was almost fast, with flood maps generated in less than one minute. 
This is achieved thanks to the cloud-based infrastructure, which eliminates the need for a 
local computer. 

•SkySat (Local Processing): 

The SkySat pipeline was executed on a MacBook with an M1 processor and 16 GB of 
RAM. The time required to process a single tif file with the size of about 1.5 GB and 
generate the final flood mask was approximately 4 to 5 minutes, nevertheless, it is totally 
related to the volume of input data and configurations of used computer. 

 

Figure	23	time	of	code	execution	
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Accuracy assessment 
In this matter, three assessment such as precision and recall and F1-Score has been done. 
It should be mentioned that Copernicus emergency management service results have been 
used as ground truth data. The ground truth data is originally SAR data from COSMO and 
PAZ satellites, so the ground truth data is highly trustworthy.  

•Sentinel-2 accuracy: 

At the regional scale, the results from Sentinel-2 achieved good agreement with reference 
data. However, there are some small areas which is not detected in my results compare to 
EMS report. 

Precision 0.8462 (84.6%) 
Recall 0.7372 (73.7%) 
F1-score 0.7879 (78.8%) 

Table	8	assessment	for	Sentinel-2	workflow	

 
Figure	24	results	in	Vs	code	

•SkySat accuracy: 

SkySat results provided higher precision, particularly in urban zones and narrow 
floodplains. The high-resolution data allowed, in precision assessment, 7 out 10 pixels 
roughly detected correctly flood, while 3 out of 10 were false positive. This happens 
because of the area of interest and some parts which are included in ground truth data and 
excluded in Skysat result. Overall, it presents acceptable results.  

Precision 0.7156 (71.6%) 
Recall 0.8976 (89.8%) 
F1-score 0.7963 (79.6%) 

Figure	25assessment	for	Skysat	workflow	
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Figure	26	results	in	Vs	code 

 

 

Summary of Findings 

•The framework successfully generated flood maps for both Sentinel-2 and SkySat 
datasets. 

•Sentinel-2 ensured fast, while SkySat provided fine-scale detail. 

•Processing time was minimal in Earth Engine (<1 minute per scene) but longer in local 
processing (4-5 minutes per file on M1 MacBook, 16 GB RAM). 

• The accuracy results show that both the Sentinel-2 and SkySat algorithms performed well 
in detecting flooded areas, but each has different strengths. The Sentinel-2 algorithm 
achieved higher precision (84.6%), meaning it was more accurate in identifying actual 
flooded pixels and made fewer false detections of non-flooded areas. However, its recall 
(73.7%) was lower, indicating that it missed some true flooded regions. In contrast, the 
SkySat algorithm had a lower precision (71.6%) but a higher recall (89.8%), meaning it 
detected most of the real flooded areas but also included more false positives. The F1-
score, which balances precision and recall, was similar for both methods (78.8% for 
Sentinel-2 and 79.6% for SkySat). Overall, Sentinel-2 provides more reliable and cleaner 
flood detection, while SkySat is more sensitive and captures a larger extent of the flood, 
even if it slightly overestimates the flooded area. 
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Conclusion 
In this study two algorithms for open-source satellite data and commercial high-resolution 
imagery to produce flood maps has been created based on machine learning method K-
means clustering and has been analyzed accuracy assessment for each. With a specific 
focus on the May 2023 flood event in the Spazzate-Sassatelli area of Emilia Romagna. The 
findings demonstrate that the developed Python-based workflow can generate flood maps 
in less than one minute for open-source data and about 4-6 minutes for commercial data 
depending on the volume of provided data. When compared with the official EMS report, 
the implemented approach proved to be highly efficient, offering timely outputs suitable 
for emergency applications. Furthermore, better illustration of inundated areas as a matter 
of details, like roads and streets for damage assessments and critical zones in danger with 
ultra-high resolution images from satellite. 

In addition to the processing speed, Open-source data is more suitable for monitoring larger 
regions, while commercial ultra-high-resolution imagery provides detailed insights into 
critical zones, including streets and built environments, which are crucial for damage 
assessment and risk management.  

The results show that the Sentinel-2 algorithm is more accurate but slightly misses some 
flooded areas, while the SkySat algorithm detects more flooded regions but includes more 
false positives. Overall, both perform similarly, with Sentinel-2 providing cleaner results 
and SkySat offering more details for flood detection. it should be mentioned that in both 
cases F1-score as was almost 80%. 

Future work should integrate advances in Earth observation and machine learning to 
improve accuracy, reduce dependency on manual intervention, and enhance the reliability 
of real-time disaster mapping. 
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