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Abstract 

Collaborative robotics blends the precision of industrial manipulators with human 

dexterity in shared workspaces. In practice, safety dictates motion: power-and-force 

limiting and, especially, speed-and-separation monitoring (SSM) shape behavior to 

maintain provable human–robot clearances. Turning policy into control requires 

phrasing separation and interaction limits as bounds on position, velocity, and 

effort, then generating commands that remain feasible under sensing noise and 

kinematic constraints. For redundant manipulators, task-priority control with null-

space projection achieves the primary end-effector objective while shaping posture, 

respecting joint limits, and accommodating collision-avoidance biases derived from 

perception. Robustness near kinematic singularities is provided by damped least 

squares (DLS) solved via singular-value decomposition (SVD), which attenuates 

ill-conditioned directions in real time. References are either a bounded Cartesian 

attractive velocity (interactive runs) or linear-segment-with-parabolic-blend 

(LSPB) trajectories (time-parameterized runs); both are executed under the same 

SVD-regularized DLS inverse kinematics (IK) and supervisory gating, while light 

Cartesian damping closes residual errors. Coupled with an explicit state-machine 

supervisor that gates approach, stop, hold, repel, and resume, these elements 

provide a principled path from safety policy to executable motion. 

The thesis develops the modeling, algorithms, and implementation to realize that 

framework end-to-end: from velocity-field target acquisition (interactive) and 

LSPB tracking (time-parameterized), to a separate fixed tool center point (TCP) 

regime where redundancy alone is used to reshape posture, through collaborative 

operation that pauses motion inside a risk envelope and resumes only after 

persistent clearance, to a fixed-TCP regime where the arm reconfigures purely in 

the Jacobian null space to increase separation. Observability and transparency are 

emphasized: task-space singular values and condition numbers quantify nearness to 

singularity; linear manipulability and joint-saturation flags expose control effort; 

and a conflict metric reports alignment between tracking and avoidance. An 

acceptance radius and a time-based deadband for decisive stops yield reproducible 

gate behavior; a gentle orientation lock avoids wrist flips; and discrete-time 
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consistency is enforced by tying LSPB sampling to the physics step and performing 

projection/smoothing before integration (notably in the fixed-TCP case). 

Empirically, the unified LSPB–DLS–SVD framework acquires targets without 

overshoot, halts and resumes predictably under SSM-like proximity events, and 

when the TCP is fixed, maintains negligible drift while redistributing motion across 

the redundant chain to maximize clearance. The result is an implementation-level 

account of how trajectory time-parameterization, SVD-regularized DLS IK, and 

null-space safety fields can be composed under explicit state-machine supervision 

to deliver interpretable, robust collision avoidance for collaborative manipulation 

in shared workspaces. 
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Chapter 1 

 

Introduction 

 

This chapter establishes the conceptual foundations for collaborative robotics and 

collision avoidance in shared workspaces. The objective is to situate the problem 

within industrial practice, articulate the safety and control principles that govern 

motion in the presence of humans, and frame the sensing and modelling choices 

that make separation monitoring implementable at the control rates used in modern 

manipulators. 

Collaborative robotics replaces rigid spatial segregation with coordinated human–

robot activity within a common workspace. For practical deployment in human-

occupied environments, robot motion must be readily interpretable by nearby 

workers, degrade gracefully under perception uncertainty, and remain within well-

defined safety envelopes. Industrial practice distinguishes interaction regimes by 

how space and time are shared, ranging from fenced isolation, through coexistence 

and sequential collaboration, to cooperation and fully responsive collaboration in 

which both agents move concurrently and adapt in real time. As responsiveness 

increases, the demands on perception latency and controller update rate tighten, and 

the control system must revise motion online without sacrificing task performance 

or eroding safety margins. 

Safety policy in shared workspaces is commonly structured along two 

complementary lines. Power-and-force limiting (PFL) constrains the consequences 

of contact by bounding forces, torques, velocities, or momentum. Speed-and-

separation monitoring aims to prevent contact by regulating motion as a person 

approaches—slowing, pausing, or stopping to preserve a protective distance [41, 

16]. Realizing these policies in motion requires casting clearance and interaction 

requirements as state and input constraints on position, velocity, and effort; 

coupling those constraints to what the perception system can deliver reliably; and 

enforcing them in the low-level loop via calibrated thresholds, hysteresis, and dwell 
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times so that behavior at the boundary of the protective zone is stable, repeatable, 

and auditable. We adopt SSM semantics with hysteresis and dwell—distinct 

STOP/RELEASE bands and a minimum out-of-risk time—to eliminate chatter and 

make boundary behavior auditable. 

All experiments use a synchronized MATLAB–CoppeliaSim loop that shares one 

clock for sensing, control, and actuation, enabling reproducible STOP/RELEASE 

events and null-space actions (see §5.1). Units and frame conventions used 

throughout (world frame 𝑊, meters, radians, and per-second rates) are declared 

once in §3.5 and reused verbatim in Chapters 4–6. 

Redundant manipulators are particularly well suited to this setting because multiple 

joint configurations can realize the same end-effector pose. Task-priority control 

formalizes the separation between a primary end-effector objective and secondary 

objectives confined to the Jacobian’s null space [1, 2]. Within that null space, 

posture can be organized, joint limits respected, and collision-avoidance biases 

introduced without corrupting the commanded task motion. Because redundancy is 

often exploited near singularities and workspace boundaries, the inverse-kinematics 

computation must remain numerically well-conditioned; damping the least-squares 

solution and filtering ill-conditioned directions with singular-value decomposition 

provide predictable responses while preserving reactivity. 

Time parameterization shapes both human interpretability and actuator demand. 

Trajectories with bounded acceleration and jerk are easier for collaborators to 

anticipate and impose less mechanical stress. Linear segments with parabolic 

blends offer closed-form profiles with well-understood transients and 

straightforward saturation handling, making them practical for real-time tracking 

and for pause/resume under supervisory control. Around such references, light 

Cartesian damping and carefully chosen velocity caps suppress residual errors and 

prevent overshoot when targets are near or when perception updates are 

intermittent. 
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1.1   Aim and Motivation 

This dissertation introduces methodologies for responsive, collision-aware 

collaborative manipulation with a redundant robot operating near a person. The 

overarching aim is to translate high-level safety intent into executable motion: 

behavior should remain legible to an observer, numerically well-conditioned in the 

controller, and consistent at proximity thresholds. The proposed architecture 

integrates a robust inverse-kinematics layer, smooth time-parameterized references, 

proximity-aware behaviors confined to the robot’s redundant degrees of freedom 

and a compact supervisory logic that governs approach, pause, stop, and recovery 

in a predictable way. Figure 1.1 summarizes the resulting architecture: bounded-

jerk LSPB references, SVD-regularized DLS IK, strict null-space containment, and 

explicit STOP–HOLD–RELEASE supervision. 

 

Fig. 1.1 Control architecture adopted in this work. Top: task-space reference generation: vector-

attractive (interactive) or LSPB (time-parameterized) with acceleration/velocity bounds. Middle: 

SVD-regularized DLS IK with posture shaping and joint-limit handling. Bottom: human-aware 

supervision—skeleton-to-capsule distances, null-space repulsion, and explicit STOP–HOLD–

RELEASE gating with leak/latency guards.  



4 
 

Human pose estimates are converted into arrangements of simple geometric 

volumes aligned with major limbs; distances between these volumes and link-level 

robot proxies provide the proximity signals that drive both local avoidance 

tendencies and supervisory gates. 

A key part of the work is the alignment of CoppeliaSim and MATLAB into a single, 

faithful representation of the collaborative cell. Kinematic and dynamic parameters, 

coordinate frames (including the tool center point), unit conventions, and time-

stepping are synchronized so that what is commanded in MATLAB is exactly what 

executes in the simulator, and what is measured in the simulator is what the 

controller expects. Communication and logging are organized to preserve timing 

(controller tick versus physics step), making the virtual cell a realistic stand-in for 

a physical setup and a reliable platform for repeatable experiments and diagnostics. 

Across all scenarios, the implementation relies on a small set of core routines and 

software modules. A kinematic Jacobian routine provides the geometric Jacobian 

and related quantities used to convert task-space references into joint commands 

while keeping numerical conditioning under control. A proximity and collision-

avoidance module processes human–robot distances, shapes avoidance tendencies 

with smooth onsets and caps, and confines these actions to redundant directions so 

the primary objective is not disturbed. Together with posture and joint-limit 

management and the supervisory logic, these components form a compact, reusable 

toolkit. 

This approach is validated through five scenarios of increasing complexity. First, a 

foundational tracking case establishes a clean baseline by driving the tool toward a 

target with a purely attractive task-space velocity field and no person present, 

avoiding time parameterization. Second, an interactive extension introduces a 

nearby operator: the robot advances, then on intrusion halts, holds, gently reshapes 

posture to increase clearance, and resumes once conditions are comfortable again. 

Third, a time-parameterized case adopts linear-segment-with-parabolic-blend 

references to demonstrate smooth, bounded-jerk tracking in the absence of 

interference. Fourth, a supervised pause–resume variant layers proximity 

governance onto those references, pausing within a caution band and resuming from 

a consistent state when the band clears to yield predictable behavior at thresholds. 
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Finally, a fixed-pose reconfiguration case holds the tool pose constant and exploits 

redundancy to adjust posture and enlarge human–robot clearance without inducing 

tool drift, isolating the clearance-management behavior when the primary objective 

is immovable. 

All scenarios are implemented and exercised in CoppeliaSim with MATLAB-

driven control and logging. Common health criteria are enforced: no contacts, a 

minimum clearance margin, and joint-range compliance and performance is 

reported through task-error histories, minimum-distance timelines, state-transition 

histories in the supervisor, joint-speed usage, and indicators of numerical 

conditioning and manipulability. Particular attention is paid to legibility (how the 

motion reads to an observer), repeatability (how behaviors trigger with thresholds, 

hysteresis, and dwell), and practicality (how the stack behaves when perception 

updates are intermittent or when the robot nears kinematic limits). 

The contribution to the field is twofold. First, this work offers a unified, 

implementation-level control stack that maintains tool-level objectives while 

managing human–robot clearance through redundancy, with behaviors that are 

transparent to operators and auditors. By combining robust inverse kinematics, 

either a linear attractive velocity field or time-parameterized LSPB references, a 

proximity-aware posture-reshaping mechanism, and a lightweight supervisor into a 

coherent whole, it provides a practical template for responsive collaborative cells. 

Second, it contributes a reproducible methodology and testbed: a CoppeliaSim-

based pipeline that links perception to geometric modelling, supervision, and 

control, together with diagnostics that expose proximity, effort, and conditioning 

over time. This combination supports comparative studies and offers a clear route 

to adapting the approach to other redundant manipulators and sensing suites. 

1.2   State of the Art 

Research on collaborative manipulation in shared workspaces has converged on a 

control-centric view in which redundancy and null-space projection are the primary 

instruments for maintaining human–robot clearance while pursuing task objectives. 

Classical robot control provides the theoretical backbone: task–priority schemes 

separate a primary end-effector task from secondary behaviors confined to the 
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Jacobian null space, allowing posture regulation, joint-limit avoidance, and 

collision-avoidance postures to coexist with the commanded tool motion [1, 2]. 

Inverse kinematics is typically regularised through damped least squares with SVD 

to ensure numerical stability near singularities and workspace boundaries, a 

practice now standard in redundant manipulation [1, 2, 10]. Recent contributions 

refine how null-space behaviours are shaped specifically for safe human–robot 

collaboration: compliance or avoidance fields are injected in the null space so 

clearance improves without corrupting the primary task, with tunable trade-offs 

between tracking performance and conservativeness [5, 6, 7, 8]. 

Within this frame, redundancy is not only a means to avoid singularities but a 

resource for safety. Analytical parameterizations of 7-DoF arms clarify the 

redundancy manifold of common cobots and how secondary objectives can be 

scheduled along it without inducing wrist flips or joint saturation [12, 2]. Surveys 

on inverse kinematics and control emphasize the practicalities of task-priority 

control under constraints—damping selection, conditioning metrics, saturation 

handling, and priority conflicts—which are essential when safety-oriented 

behaviors run concurrently with tracking [10, 1]. In parallel, human-robot-

interaction (HRI)-focused texts argue for legible, predictable motion and 

transparent supervisory logic, aligning safety behavior with human expectations in 

shared spaces [4]. 

Trajectory time-parameterization and legibility are recurring themes. Simple LSPB 

profiles remain widely used because they bound acceleration and jerk, yield 

deterministic transients, and pair well with velocity/acceleration caps and 

pause/resume logic properties valued in human-robot-collaboration (HRC) where 

humans infer intent from motion [3, 2]. When combined with null-space projection, 

such profiles allow the end-effector to follow smooth references while the posture 

adapts in the background to maintain comfortable spacing. 

Safety supervision in collaborative cells is commonly organized around speed-and-

separation monitoring (SSM). Rather than treating avoidance purely as a potential-

field overlay, SSM-oriented designs employ explicit operating modes: approach, 

caution, pause, stop, recover; with hysteresis and dwell times to prevent chattering 

at thresholds and to make resume behavior reproducible [4, 8, 7]. In this view, the 
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supervisor arbitrates between the primary task and safety-motivated null-space 

behaviors: when proximity becomes critical, progression halts cleanly; when 

conditions improve, motion resumes from a consistent state. 

Perception and proximity modelling underpin these decisions but need not 

dominate the architecture. A common practical strategy is to reduce human pose 

data to lightweight geometric abstractions; simple volumes aligned with major 

limbs, and to approximate robot links with equally simple proxies; these yield fast, 

smooth minimum-distance queries suitable for control-rate use without committing 

to a specific sensor brand or modality [1, 2]. Vision-based HRC studies demonstrate 

that such geometric modelling supports responsive controllers and SSM supervisors 

across a variety of sensing stacks; examples range from skeleton-based pipelines to 

multi-view fusion and point-cloud integration, primarily as enablers for the control 

and supervision layers rather than ends in themselves [11, 16]. Beyond vision, 

model-based distance surrogates (e.g., signed-distance networks or composite 

signed-distance-fields (SDFs) for articulated robots) have been explored to 

accelerate collision queries while preserving controller-friendly gradients, further 

decoupling the control design from raw sensing idiosyncrasies [9]. 

From an implementation standpoint, recent work stresses “system transparency”: 

conditioning measures (singular values, condition numbers), manipulability 

indices, and saturation flags help diagnose priority conflicts between tracking and 

avoidance and make safety behaviour auditable [10, 7]. Simulation-in-the-loop 

workflow commonly combining CoppeliaSim for scene dynamics with MATLAB 

for control/support rapid iteration and controlled evaluation of state machines, null-

space behaviours, and time-parameterised tracking before hardware trials [16]. This 

tooling aligns with the methodological emphasis in the present work: control-first 

design, redundancy-aware safety behaviours, explicit supervision, and 

observability. 

Against this background, current work adopts a task-priority architecture with 

SVD-regularised DLS IK, smooth LSPB references for legibility, and safety 

behaviours confined to the null space to preserve tool-level objectives [1, 2, 3, 10]. 

It follows recent HRC trends that modulate posture rather than tool motion 

whenever possible [5, 6] and employs a compact SSM-oriented supervisor to ensure 
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predictable approach–pause–resume dynamics [4, 7, 8]. Human pose is mapped to 

simple volumetric models to obtain controller-rate distance signals independent of 

any single sensing modality [16, 11, 9]. The emphasis throughout is on 

implementation-level consistency, conditioning, timing, and repeatability, so that 

behaviors are both interpretable to users and defensible to auditors. 

1.3   Collaborative Robotics in Shared Workspaces 

Human–robot collaboration is increasingly framed as the integration of robots into 

human activities so that people, robots, and the workstation environment operate as 

a tightly coupled system. Collaboration is not confined to occasional contact; it 

involves shared commitments in time and space on the same artefacts and 

coordinated behavior that combines robotic precision and repeatability with human 

adaptability and judgment. Within industrial settings this has driven a shift away 

from physical segregation toward cells designed to remove barriers while retaining 

safety. Modern collaborative arms combine passive features such as lightweight 

structures and rounded edges with active functions that detect undesired interaction 

and stop motion when predefined thresholds are exceeded. The aim is a synergistic 

workspace in which the robot’s endurance and accuracy complement human 

dexterity and cognition, enabling tasks of greater variability and complexity than 

either agent could manage alone. 

Collaboration in practice is organized along a spectrum that couples spatial and 

temporal sharing: 

• Cell: the robot operates behind guards; no co-presence. 

• Coexistence: barriers are removed but human and robot do not work on the 

same task simultaneously. 

• Sequential collaboration: human and robot alternate operations at the same 

station. 

• Cooperation: both act on the same artefact with limited coupling. 

• Responsive collaboration: both are in motion on the same artefact and the 

robot adapts online to human actions. 
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Current deployments still cluster around coexistence and sequential collaboration 

because they are easier to certify and operate. The mode that most realizes the 

potential of HRC, responsive collaboration, demands that the system refresh its 

understanding of the scene at a rate compatible with control, adjust motion online, 

and communicate intent through legible kinematics. 

Safety in shared spaces rests on two complementary layers. Power-and-Force 

Limiting bounds the energy exchanged in any incidental contact via risk assessment 

and limits on forces, torques, speeds, or momentum. Speed-and-Separation 

Monitoring pre-empts contact by regulating motion as a person approaches; 

slowing, pausing, or stopping according to clearly defined distance bands. In 

everyday operation SSM governs behavior; it is implemented through explicit 

operating modes with thresholds, hysteresis, and dwell times so behavior near 

boundaries is stable, repeatable, and predictable to non-experts. 

Control and kinematics determine how these behaviors are realized. Redundant 

manipulators, typical of human-scale cobots, admit families of joint configurations 

for the same tool pose. Task-priority formulations exploit this by separating the 

tool-center objective from secondary behaviors confined to directions that do not 

affect the task (the Jacobian null space). Within those directions the robot regulates 

posture, honors joint ranges, and biases itself away from hazards without corrupting 

commanded motion. Because collaborative layouts often push arms toward 

kinematic boundaries, inverse kinematics is commonly regularized, most often via 

damped least squares with SVD, to maintain numerical stability and preserve 

predictable responses. At the trajectory level, time-parameterized profiles with 

bounded acceleration and jerk support legibility, straightforward saturation 

handling, and clean pause/resume semantics. 

Sensing and environment modelling close the loop from intention to action. What 

the controller needs are timely, numerically well-behaved proximity cues rather 

than a specific sensing brand. A practical strategy abstracts the operator’s body with 

simple geometric volumes aligned to major limbs and approximates robot links 

with lightweight proxies; minimum distances between these shapes are then 

evaluated at the controller update rate and provided to both the supervisor and the 
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motion generator. This geometry-first approach keeps the design adaptable to 

different sensing suites and workstation layouts. 

1.3.1 Functions and representative uses in everyday settings 

Collaborative robotics is not a single application but a family of functions that recur 

across sectors. Typical functions include: 

• Assisted positioning and fixturing: the robot holds or pre-positions a 

workpiece while a person aligns, inspects, or fastens. Examples include 

door or panel alignment in assembly lines, jigless drilling, and manual 

fastening on parts that vary slightly batch-to-batch. 

• Co-manipulation and load sharing: human and robot jointly carry, orient, 

or insert large or flexible components such as cables, trim, or composite 

skins, reducing ergonomic strain while preserving human judgment during 

fit-up. 

• Tool sharing and process assistance: the robot performs repeatable sub-

tasks; screwdriving, sealing, adhesive dispensing, sanding/polishing, while 

a person handles preparation and quality checks; in craft or repair settings, 

the robot acts as a third hand for clamping or steadying. 

• Kitting, sorting, and small-batch handling: collaborative pick-and-place 

for order preparation, packaging, and co-packing where product mixes 

change frequently and human oversight resolves ambiguities. 

We target shared-workspace tasks where motion must communicate intent and 

preserve protective distances. In these settings, PFL and SSM are complementary: 

PFL limits contact severity; SSM regulates approach and halts/resumes with 

verifiable dwell logic. 

• Human-guided automation: operators teach new paths by demonstration, 

then the robot repeats them with higher repeatability; this is common in 

small and medium enterprises where changeovers are frequent. 

• Laboratory and clinical support: sample handling, pipetting, or 

instrument positioning next to technicians; bedside assistance that positions 

tools or cameras under human supervision. 
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• Service and retail demonstrations: coffee preparation, bar tending, or 

interactive kiosks where the robot performs structured motions while people 

operate nearby, highlighting legibility and safety cues. 

These uses share practical characteristics: the robot contributes precision, 

endurance, and repeatability; the human contributes perception, dexterity, and 

context awareness. Collaboration succeeds when motion communicates intent 

clearly, when pauses and resumptions are predictable, and when the system returns 

promptly to productive operation after a cautionary state. 

Collaborative workstations are ultimately socio-technical systems. Task allocation 

(who grasps, who positions, who inspects), layout (reach envelopes, line of sight, 

escape paths), and communication cues (lights, sounds, on-screen prompts, and the 

“feel” of the motion) determine whether collaboration is natural and trusted. 

Transparent instrumentation, conditioning and manipulability indicators, saturation 

flags, proximity timelines, supports tuning and auditing, while simulation that 

mirrors the intended physical cell enables safe rehearsal of procedures and 

systematic evaluation of edge cases before human involvement. 

1.4   Work Description 

The work reported in this thesis builds a practical pathway from high-level safety 

intent to executable motion for collaborative manipulation with a redundant arm. 

The overarching idea is to keep task behavior legible, to use redundancy for 

conservative postural adjustments near people, and to make slow/hold/resume 

decisions transparent and reproducible. To ground this idea in concrete, verifiable 

artefacts, the chapter moves from system context to implementation and evidence: 

it first establishes the experimental platform, then explains how human motion is 

represented and consumed by the controller, and finally presents the staged 

controller configurations and the criteria used to evaluate them. 
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1.4.1 Experimental platform 

A 7-DoF Franka Emika Panda operates in CoppeliaSim while kinematics, 

supervision, and control execute in MATLAB. Figure 1.2 shows the 7-DoF Franka 

platform used in our experiments. 

 

Fig. 1.2 Franka Emika Panda/FR3 collaborative arm used as the primary manipulator in this work. 

The simulator runs in synchronous mode: each control tick advances physics by 

one fixed step. The controller period is an integer multiple of that step so reference 

sampling, Jacobian evaluation, and supervisory transitions share the same clock. 

Frames (base, flange, TCP) are matched across tools; the TCP is verified by 

forward–inverse round-trip checks; joint ordering and limits are cross-checked 

against the simulator model. Lightweight geometric proxies are attached to links 

for distance queries. All logs (poses, joint states, distances, modes) carry control-

tick timestamps for lossless alignment 

1.4.2 Human motion: Modelling and MATLAB implementation 

Human motion is ingested as time-stamped 3D skeletons (major joints). Poses are 

normalized by anchoring a torso frame, aligning axes to the simulator convention, 

reconciling units, interpolating short gaps, and low-pass filtering to suppress jitter 

while preserving natural limb swings. Retargeting maps joint pairs (shoulder–

elbow, elbow–wrist, …) to limb segments; per-sequence segment lengths keep 
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proportions consistent across operators. Each segment becomes a capsule/sphere 

with conservative radii; robot links are approximated by aligned proxies. At each 

tick we compute minimum distances over configured human–robot pairs, debounce 

them, and rate-limit changes to enforce physically plausible approaches. 

Conditioned distances feed both the supervisor (mode gating) and the null-space 

postural shaper (repulsion that preserves the tool objective). 

1.4.3 Core software components 

The implementation relies on a small set of named, reusable elements: a kinematic 

Jacobian routine returning the geometric Jacobian and conditioning indicators each 

tick; a posture-bias routine that converts the de-bounced distance vector into 

smooth, bounded postural references when task progression is permitted; a gated-

avoidance routine that strengthens avoidance and suspends task-space commands 

when risk bands are exceeded; and human-model utilities that provide pose 

ingestion, retargeting, volume instantiation, and animation/replay for repeatable 

experiments. 

1.4.4 Control architecture 

Task execution follows a task-priority formulation with a numerically regularized 

inverse-kinematics layer. Section 3.4 details the two TCP time-laws (vector vs. 

LSPB) and their pause/resume semantics; Section 3.5 fixes the safety thresholds 

used throughout. Tool-center reference, either Cartesian velocities or time-

parameterized trajectories, are mapped to joint commands by a damped least-

squares solver (SVD) so responses remain well conditioned near singularities and 

joint limits. Posture regulation, joint-limit avoidance, and proximity-aware biases 

act strictly in the Jacobian null space so the commanded tool motion remains intact 

whenever redundancy allows. Orientation locking near the target prevents wrist 

flips; an acceptance radius and a terminal-speed floor make arrivals reproducible. 

When time parameterization is required, trajectories follow linear-segment-with-

parabolic-blend profiles; sampling is tied to the physics step for discrete-time 

consistency, and modest Cartesian damping with conservative velocity caps 

suppresses residual errors and overshoot. A compact supervisor implements 

operating modes—track, caution, pause, stop, recovery—with calibrated 
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thresholds, hysteresis, and dwell times to avoid chattering and to guarantee 

predictable resumption. 

1.4.5 Staged experiments 

Behavior is probed in five configurations of increasing richness. The sequence 

begins with clean target acquisition using a purely attractive Cartesian velocity field 

in the absence of a person, establishing baseline tracking and conditioning. Next, a 

nearby operator is introduced: as proximity tightens the controller halts and holds, 

reshapes posture through redundancy to enlarge clearance, and resumes smoothly 

once conditions are comfortable again. The third configuration replaces the 

attractive field with LSPB trajectories to demonstrate smooth, bounded-jerk 

tracking and straightforward saturation handling. The fourth applies proximity 

governance to those trajectories so the path pauses deterministically within a 

caution band and resumes from a consistent state when the band clears, with null-

space posture shaping active throughout. The final configuration fixes the tool pose 

and asks the arm to reconfigure through redundancy alone to increase human–robot 

clearance, isolating posture control and checking for negligible tool drift. 

1.4.6 Data flow, logging and evaluation 

Each control tick reads joint state and tool pose, ingests the de-bounced distance 

vector, and queries for the Jacobian and conditioning indicators. A task-space 

command (velocity or LSPB sample) is formed; the output of the posture-bias or 

gated-avoidance routine is projected into the null space; task and redundancy 

components are summed, capped, and sent to the simulator. Projection and 

smoothing precede integration to preserve discrete-time correctness. The logger 

records joint states, tool poses, distances, supervisor mode and transition causes, 

singular values, manipulability, saturation flags, bias magnitudes, and command 

histories. Performance is assessed on safety/feasibility (no contacts; minimum 

clearance margin; joint limits respected), tracking quality (rms/peak tool error; 

acceptance-radius and terminal-speed behavior; no overshoot in time-

parameterized runs; residual drift while holding), proximity management 

(minimum-distance timelines; time in each mode; pause/resume counts and 

durations; clearance growth while fixed), numerical health (smallest singular value, 
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condition number, manipulability; time in saturation; velocity/acceleration usage; 

alignment between tracking and avoidance), and legibility/repeatability (smooth 

transients; consistent thresholds/hysteresis; reproducible mode transitions under 

replayed human motion). Experiments are repeated from varied initial postures and 

re-playable human traces; ablations disable specific elements (e.g., null-space bias, 

damping, hysteresis) to isolate their effects. 

1.4.7 Contributions 

The thesis contributes: (i) a unified control stack that preserves tool-level objectives 

while managing human–robot clearance strictly through redundancy; (ii) a discrete-

time implementation method in which reference sampling is tied to the physics step 

and projection/smoothing precede integration so resume after pauses is 

deterministic; (iii) a geometry-first proximity pipeline that converts pose streams to 

controller-rate distance cues via simple limb-aligned volumes and link proxies, 

remaining agnostic to sensing brands; (iv) an SSM-oriented supervisor with 

calibrated thresholds, hysteresis, and dwell integrated with time-parameterized 

tracking and redundancy-aware posture shaping; (v) a synchronized MATLAB–

CoppeliaSim environment and logging scheme that mirror a physical cell; and (vi) 

a staged evaluation suite with common metrics intended as a template for 

comparative studies. 

1.4.8 Perspectives 

The artefacts assembled here are designed to transfer cleanly to hardware-in-the-

loop and on-robot trials: the synchronous timing model, controller-rate distance 

signals, and explicit supervision map directly to real-time middleware. Near-term 

extensions include substituting live pose sources for recorded streams, 

incorporating certified reference-governor layers to formalize pause/resume 

envelopes, and enriching the proximity model to include tools and workpieces. 

Longer-term, the same architecture can support learned postural priors filtered for 

safety, multi-arm cells coordinating null-space behaviors, and digital-twin 

deployments that tie logged indicators (conditioning, manipulability, proximity 

timelines) to line-level metrics such as cycle time and ergonomic load. 
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1.5  Thesis organization 

This dissertation is structured to move from system-level motivation and style to 

kinematic methods, human–robot safety mechanisms, implementation, and staged 

experimental evidence, before closing with a literature-grounded discussion and the 

concluding outlook. 

Chapter 1 – Introduction: The opening chapter states the aim and motivation for 

safe, legible human–robot collaboration with a 7-DoF Franka Emika Panda in a 

shared bench-top cell, surveys the state of the art, frames collaborative operation in 

shared workspaces, and delineates the work description that anchors the remainder 

of the thesis (Sections 1.1–1.4). These parts set the problem, scope, and 

contributions that subsequent chapters elaborate.  

Chapter 2 – Collaborative Work-Cell Architecture and Safety Framework: 

This chapter describes the overall system architecture of the collaborative cell, 

including sensing, supervision, interface contracts, and safety instrumentation. It 

introduces the components, their dataflow, and the invariants required for 

deterministic operation; it also outlines transfer/extension perspectives that are 

revisited after the experiments.  

Chapter 3 – Kinematic Model, Time-Law References, and Safety Variables: 

Here the thesis adopts an operational 6×7 kinematic formulation for the Panda in 

CoppeliaSim, explains how it is exercised in a synchronized human–robot scene, 

and fixes the interfaces used throughout (e.g., translational DLS–SVD IK, null-

space projector, and supervisor thresholds). The chapter then develops the two TCP 

reference generators—vector-attractive versus LSPB with pause/resume 

semantics—and consolidates the global safety variables and thresholds (distance 

hysteresis, dwell, tracking tolerances, leak bounds) that standardize logging and 

diagnosis for the experiments.  

Chapter 4 – Human Model, Distances, and Safety Behaviors: The HRI layer is 

formalized: skeleton-derived capsule proxies, clearance distances and nearest-pair 

queries, and two safety behaviors—continuous repulsive fields blended with the 

posture bias, and an SSM-style supervisor with explicit STOP/RELEASE 
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hysteresis and dwell that pauses/resumes an LSPB time law without corrupting its 

schedule. The chapter then extends to fixed-TCP avoidance in redundancy with 

leak-bounded null-space action and provides the variables, thresholds, and health 

flags reused later.  

Chapter 5 – Implementation & Software Architecture (CoppeliaSim): This 

chapter documents the deterministic six-stage per-tick pipeline—from scene 

input/output (I/O) and geometric lifting, through distance queries and supervisory 

logic, to task-space tracking and joint-space synthesis—together with post-

processing, determinism/test hooks, and the mode scripts that instantiate operating 

behaviors (5 scenarios). It also details runtime monitors and reproducibility 

provisions (seeds, artifacts, log bundles).  

Chapter 6 – Experimental Evaluation (Scenarios S1–S5): Using the unified 

MATLAB↔CoppeliaSim stack, five scenarios progressively introduce 

supervision, human proximity, LSPB timing, and fixed-TCP null-space avoidance. 

A uniform metric dictionary and logging protocol underpin the figures/tables and 

the reproducibility checklist. Representative results (e.g., LSPB ramp–cruise–ramp 

tracking with dwell compliance, low conditioning numbers, strict null-space 

containment) are reported alongside scenario-specific settings and outcomes.  

Chapter 7 – Discussion in the Context of the Literature: The evidence from 

Chapter 6 is positioned against core HRC themes: strict null-space containment to 

preserve tool-level objectives, explicit SSM hysteresis/dwell semantics for 

predictable pause/release, and controller-rate, sensor-agnostic proximity signals 

(skeleton-to-capsule distances, link proxies). The discussion is organized around 

the staged scenarios and the synchronized loop that makes timing/conditioning 

comparable to prior work.  

Chapter 8 – Conclusions & Future Work: The thesis closes by distilling 

contributions and outlining future extensions; these are framed in terms of method 

generalization, formal safety supervision, richer distance fields, and hardware 

transferability (as previewed by the architecture and metrics fixed earlier). 
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Chapter 2 

Collaborative Work-Cell Architecture and Safety 

Framework 

This chapter formalizes the collaborative work-cell and safety framework that the 

rest of the thesis depends on, specifying both the physical stack (7-DoF Franka 

Emika Panda, sensing suite, calibration artifacts, and fixtures) and the synchronized 

MATLAB↔CoppeliaSim software loop that drives experiments under 

deterministic timing. We define global and tool frames, hand–eye and scene 

calibrations, and the transform registry that guarantees a single source of truth for 

kinematics and distances; we then make explicit the tick-level contracts—clock 

source, cycle time, jitter and latency budgets, message ordering, and failure 

semantics—that bound all controller and supervisor reactions. The cell is organized 

as a three-layer pipeline: (i) scene I/O and geometric lifting, which ingests raw 

streams (robot state, human skeleton) and emits rigid-body poses plus capsule 

proxies with health flags; (ii) proximity and safety signaling, which computes 

nearest-pair distances, applies hysteresis and dwell timers, and exposes a small, 

typed interface of safety variables; and (iii) motion generation and supervision, 

where LSPB time-law references and damped least-squares (SVD) tracking are 

guarded by an SSM-style supervisor that can STOP and RELEASE without 

corrupting the LSPB schedule. Throughout, we enforce strict null-space 

containment for avoidance and posture shaping so that corrective actions do not 

leak into task-space objectives; we also codify bounds on joint limits, 

velocity/acceleration, and manipulability to prevent pathological configurations. 

Finally, we specify logging schemas (signals, units, sampling), determinism hooks 

(seeds, mode scripts), and integrity checks (range assertions, timeout escalations, 

safe fallback states), so that Chapters 3–6 can build on a reproducible, auditable, 

and implementation-ready foundation. 
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2.1 Shared-workspace scenario and cell layout 

This section fixes the geometry and conventions of the collaborative workcell used 

in all experiments. The setting is a bench-top scene in CoppeliaSim where a 7-DoF 

Franka Emika Panda and a virtual human share a rectangular table. MATLAB runs 

the kinematics, supervision, and control; CoppeliaSim provides geometry and 

physics in synchronous stepping so every control tick advances the scene by one 

fixed step [16]. The intent is to keep frame definitions and regions explicit so that 

proximity, gating, and tracking later in the chapter have a precise spatial meaning 

and can be reproduced. 

A single human stands along one long edge of the table and manipulates parts on 

the surface. The Panda is mounted approximately at the midline of the opposite 

long edge so the tool center point (TCP) covers the central task zone without 

pushing joints toward their limits. The nominal task zone is centered on the tabletop, 

positioned so the TCP works in the robot’s dexterous region, well inside joint limits 

and away from singular postures, with comfortable clearance to the table edges. 

Targets used in later scenarios lie within this zone and are chosen to avoid posture 

flips during approach and to keep the tool on the robot half of the bench. 

A simple frame hierarchy is used consistently in the simulator, controller, and logs: 

• World frame: fixed to the table; x runs along the long edge, y points from 

the human side toward the robot side, and z is vertical. 

• Robot base frame: rigidly attached to the Panda model; its world→base 

transform is measured once at scene setup and treated as constant. 

• TCP frame: attached to the flange; its z-axis is aligned with the nominal 

approach direction used in the scenarios (downward toward the table). Units 

and frame conventions used throughout (world frame 𝑊; meters, radians, 

and per-second rates) are declared once in §3.5 and reused verbatim in 

Chapters 4–6. 

For analysis and visualization a torso-anchored human frame is maintained, and 

limb-aligned segment frames (introduced in §2.3) are used internally when 

constructing the simple geometric volumes employed for proximity queries. The 
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human region itself is modelled as a rectangular prism along the far edge of the 

table; it captures typical bench-top actions such as leaning in to place or remove a 

part, and brief withdrawals to the edge of the region. Its width spans the fixture area 

plus a small lateral buffer; its depth allows a natural stance; and its height extends 

from floor to chest so hands and forearms are represented when the operator leans 

over the surface. This region is not a guard; it is the reference volume used to 

position the human surrogate and to define the link–limb distances monitored at 

control rate. 

Clearance reasoning uses lightweight geometry on both sides. Each robot link is 

paired with a simple proxy volume aligned to its local frame; the tool (when 

present) has its own proxy. On the human side, limbs are represented by simple 

volumes aligned to segment axes (§2.3). A fixed set of links–limb pairs is monitored 

continuously (for example, upper-arm↔upper-arm, forearm↔forearm, 

hands↔tool) so that minimum-distance queries focus on the interactions that occur 

at a table rather than wasting computation on irrelevant combinations. A nominal 

approach vector (the TCP 𝑧-axis) is recorded per target so the supervisor can prefer 

deceleration aligned with the final approach. Keep-out margins at the table’s human 

edge prevent the TCP from overhanging the operator side during automated 

approaches; these margins are the same ones later used to define “stop” bands in 

the SSM-inspired policy. 

The first implementation step was a mapping layer that guarantees MATLAB and 

CoppeliaSim represent the same geometry. Homogeneous transforms for 

world→base and base→TCP are stored in a registry and used identically by the 

simulator and the controller. The mapping was validated by round-trip checks (pose 

→ inverse kinematics → forward kinematics) and by placing calibration points on 

the table: points transformed in MATLAB coincide with the same locations in 

CoppeliaSim within numerical tolerance. This alignment is what allows logs, 

figures, and controller decisions to have an unambiguous spatial meaning 

throughout the projects. 

For reproducibility, each run logs the world→base and base→TCP transforms, the 

operator-region dimensions, the list of monitored links–limb pairs, and all target 

poses with their tolerances. With these metadata, any later plot of minimum 
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distance, state transitions, or tracking error can be traced to an exact cell geometry 

and frame convention. 

2.2 Robot Model and Link-Proxy Representation 

This section formalizes the robot side of the workcell: the kinematics, the controller 

reasons about, the frame conventions anchoring all geometric quantities and the 

surrogate link geometry used for real-time clearance evaluation. The Franka Emika 

Panda model embedded in CoppeliaSim is treated as the single source of truth; 

MATLAB mirrors its joint ordering and link frames so quantities computed in 

MATLAB and rendered in CoppeliaSim refer to the same configuration at every 

control tick. 

2.2.1 Ground-truth kinematics  

Forward kinematics and the geometric Jacobian are evaluated against the 

simulator’s exact frame definitions. SVD-regularized DLS inverse kinematics, 

manipulability indices, and link-proxy placement are therefore referenced to the 

same geometry that drives rendering and collision. With synchronous stepping, 

forward kinematics/jacobian (FK/J) evaluation, projection, and integration share 

the simulator’s clock, eliminating frame/sign drift and timing skew; edits to tool 

offsets or base placement are made once in the scene and propagate automatically, 

improving fidelity and reproducibility [1, 2]. 

2.2.2 Kinematic description and numerical health 

The Panda is a seven-revolute-joint arm with redundancy advantageous for posture 

shaping. At each tick, the TCP pose is obtained by composing the simulator’s 

transforms; the spatial Jacobian is factorised via SVD to log the smallest singular 

value, condition number, and a manipulability index. These indicators are later used 

to interpret slow/hold/resume events as proximity-driven or authority-limited. 

Orientation uses rotation matrices internally and quaternions in logs to avoid 

parameterization artefacts. 
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2.2.3 Frames and transform registry 

The world frame is fixed to the tabletop (𝑥 along the long edge, 𝑦 toward the human 

side, 𝑧 vertical). Figure 2.1 sketches the world, base, and TCP frames and the 

transforms used in this work.  

 

Fig. 2.1 World–base–TCP frames and transform checks. The world frame is fixed to the tabletop; 

the base frame is attached to the Panda base; the TCP frame is attached to the flange and updated by 

FK. Transforms are round-trip checked (pose → IK → FK) to verify consistency between MATLAB 

and CoppeliaSim. 

The base frame is rigidly attached to the Panda; its world→base transform is 

measured once and stored. The TCP frame is attached to the flange and updated by 

FK. A shared transform registry and round-trip checks (pose → IK → FK) verify 

concordance between MATLAB and CoppeliaSim within numerical tolerance. 

2.2.4 Link-proxy geometry 

Exact mesh distances are replaced by conservative primitives (capsules/cylinders 

for elongated links, spheres for compact ones) rigidly attached to link frames. 

Parameters are chosen to bound meshes with a small inflation margin. This yields 

closed-form sphere–sphere/sphere–capsule/capsule–capsule distances that are 

smooth in time and inexpensive to evaluate; properties essential for high-rate 

supervision without chatter [17, 18, 21]. 
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2.2.5 Monitored pairs and signals  

Only plausible interactions for the bench-top layout are tracked (e.g., proximal links 

vs. upper arms, mid–distal links vs. forearms, terminal link/tool vs. hands). Table 

2.1 enumerates the link–limb pairs monitored at each controller tick and how their 

signals are consumed. 

Link (robot) Limb (human) Rationale 
Signal used (global/per-

pair) 

Link 1–2 (proximal) Upper arm 
Likely closest 

during approach 
global + per-pair 

Link 3–5 (mid–

distal) 
Forearm Mid-reach per-pair 

Link 7 / Tool Hand Near manipulation global + per-pair 

Table 2.1 Monitored link–limb pairs and signal usage. For each pair, 𝑑𝑚𝑖𝑛 is logged every tick; the 

supervisor consumes the global minimum for mode gating, while the per-pair vector biases null-

space posture to increase spacing from currently critical limb. 

 Per-pair minimum separations are computed each tick; the supervisor consumes 

the global minimum for mode gating, while the full vector biases null-space posture 

to increase spacing from currently critical limbs. Figure 2.2 illustrates how per-pair 

distance signals generate a posture bias confined to the Jacobian null-space. 

Distances are debounced and rate-limited before use. 

 

Fig. 2.2 Posture bias in the null-space from per-pair distances. The redundancy policy steers joints 

away from the currently critical human limb without altering the primary task. 
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2.2.6 Target-aligned approach 

Each target carries a nominal approach direction (TCP 𝑧 at the goal) used to shape 

terminal deceleration and holding behaviour and to diagnose conflicts between 

tracking and avoidance. 

Diagnostics and logging. Every tick records world→base and base→TCP 

transforms, joint states, per-pair and global distances, Jacobian singular values and 

condition number, manipulability, and joint saturation flags, providing the evidence 

base for later analyses of proximity management, dexterity, and control effort (see 

§5.1 for synchronized logging and replay). 

2.3 Human pose acquisition and geometric modelling 

This section describes how human motion enters the control loop and how it is 

represented for clearance evaluation. The pipeline has two complementary roles: (i) 

animate a human mannequin in CoppeliaSim so the scene reflects realistic operator 

motion; and (ii) produce smooth, control-rate distance signals between the person 

and the robot’s link proxies that the supervisor and redundancy-aware control can 

consume. 

2.3.1 Pose acquisition and normalization 

Human motion is provided as a time-stamped skeletal pose stream containing 3D 

joint key-points for the major limbs. The stream is normalized before use: a torso-

anchored reference frame is established, axes are aligned with the workcell’s world 

frame, units are reconciled, short gaps are bridged by interpolation, and jitter is 

attenuated with a low-pass filter chosen to preserve natural limb swing. A simple 

retargeting step maps joint key-points to limb segments (e.g., shoulder–elbow, 

elbow–wrist), with segment lengths estimated per sequence so proportions remain 

coherent across operators [11, 16]. 

2.3.2 Mannequin animation in simulation 

The normalized pose stream drives a full-body mannequin in CoppeliaSim at the 

controller update rate, so the virtual operator moves like the recorded one. Each 
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tick, the mannequin’s torso and limb segment frames are updated from the pose 

stream, yielding a visually faithful representation that also anchors the geometric 

abstractions used for clearance. This decouples visualization from control: the 

mannequin conveys what the operator is doing, while separate, lightweight volumes 

provide the numerically well-behaved distances needed by the controller. 

2.3.3 Geometric abstraction for clearance 

Clearance reasoning uses elementary volumes aligned to human limbs and robot 

links. On the human side, each limb segment is instantiated as a simple geometric 

volume aligned to its segment axis (cylindrical or capsule-like where appropriate; 

spherical for compact parts such as hands). On the robot side, link-aligned proxies 

are defined as in §2.2. Minimum distances are then evaluated between a fixed set 

of limbs–link pairs (e.g., upper arm vs. proximal links, forearm vs. mid–distal links, 

hands vs. terminal link/tool), chosen to reflect plausible interactions at a bench-top 

station. 

In addition to limb volumes, a torso-centred keep-out cylinder (diameter ≈ 0.40 m) 

defines a conservative personal space around the operator. While primarily a visual 

and supervisory aid, it yields a single, intuitive scalar; the tool-to-torso-zone 

distance that complements the per-pair limb distances and provides a coarse 

warning band for approach/hold decisions. 

These abstractions admit closed-form distance queries (sphere–sphere, sphere–

cylinder/capsule), which are smooth under motion and inexpensive to compute, 

ensuring that proximity can be evaluated every control tick without numerical 

artefacts [9, 17, 18, 21]. 

2.3.4 Distance computation and signal conditioning 

For each monitored limb–link pair, the minimum separation is computed at the 

controller tick. Two signals are produced: (i) the global minimum across all pairs, 

used by the supervisor to escalate modes (track → caution → pause/stop → 

recovery), and (ii) the full vector of per-pair distances, used by the redundancy 

policy to bias posture away from whichever limb currently dominates proximity. 
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Before entering the control stack, distances pass through a short-horizon de-

bouncer and a rate limiter so that isolated spikes or unrealistically fast changes do 

not provoke chattering or oscillatory mode switching. 

2.3.5 Interfaces and timing 

The entire pose-to-distance pipeline is clocked by the same synchronous stepping 

used for robot control: one controller tick updates the mannequin, regenerates limb 

volumes, evaluates all limb–link distances, conditions the signals, and publishes the 

global minimum and per-pair vector to both the supervisor and the posture-shaping 

process. Figure 2.3 outlines the synchronous pose-to-distance pipeline executed 

each controller tick. 

 

Fig. 2.3 Synchronous pose-to-distance pipeline. Each tick: mannequin update → limb-volume 

generation → limb–link distance evaluation → debouncing and rate limiting → publication of global 

minimum and per-pair vector to the supervisor and the null-space posture shaper. 

This ensures that animation, proximity, and control share a common time base and 

frame convention, eliminating hidden latencies between what is seen in the scene 

and what the controller reacts to. 
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2.3.6 Reproducibility 

Each run stores the pose-stream identifier and sampling rate, the limb-volume 

parameters (segment radii and lengths), the list of monitored limbs–link pairs, and 

the keep-out cylinder dimensions, alongside the logged distance timelines. With 

these metadata, distance plots and state-transition histories elsewhere in the thesis 

can be traced back to an exact human-model configuration and timing. 

2.4 Proximity metrics and clearance policy 

This section specifies how proximity is quantified and how those quantities govern 

motion. The objective is a policy that is numerically well-behaved at control rate, 

transparent to audit, and predictable to an observer: slow early, hold decisively, and 

resume smoothly once comfortable spacing is re-established. 

2.4.1 Distance signals and conditioning 

At each control tick the workcell computes minimum separations between a fixed 

set of limb-aligned human volumes and link-aligned robot proxies (defined in §2.2–

§2.3). Two signals are produced: 

• A global minimum distance, used to gate operating modes;  

• A vector of per-pair distances, used to bias posture in redundant directions. 

Before entering the supervisor and the posture shaper, distances pass through a short 

debouncing filter and a rate limiter. Debouncing removes isolated spikes (e.g., 

transient pose jitter); rate limiting enforces physically plausible approach speeds so 

that supervisory logic is not driven by artefacts. Conditioning is strictly causal and 

bounded so that latency is predictable and small relative to the control period. 

2.4.2 Clearance bands and invariants 

Clearance is organized into three concentric bands around the robot–human 

separation: 

• safe band: normal tracking is permitted; 
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• caution band: tracking is allowed but conservative behaviour is 

encouraged (reduced speeds, stronger postural bias away from the nearest 

limb); 

• stop band: motion toward the goal is suspended; only posture reshaping in 

redundancy (and any necessary damping) remains active to increase 

spacing. 

Band limits are chosen with respect to the bench-top layout (table depth, reach 

envelopes) and are expressed in the world frame so they are invariant to the robot’s 

posture. Two invariants govern behaviour: 

• Monotonic escalation: once a more conservative mode is entered (safe → 

caution → stop), the system cannot jump directly to a less conservative 

mode without first satisfying the exit conditions of the current one; 

• Non-chattering transitions: all band boundaries are paired with hysteresis 

margins and minimum dwell times so that brief fluctuations do not cause 

oscillatory mode switching. 

The caution band is typically paired with a gentle reduction of commanded tool 

speed and an increase in postural bias; the stop band enforces a hold at the current 

task progress while redundancy is used to expand clearance. 

2.4.3 Mapping distance to postural demand 

The per-pair distance vector is converted to a “clearance demand” that shapes 

posture inside the Jacobian null space. The mapping obeys three principles: 

• smooth onset: demand rises continuously as a limb approaches the caution 

band, avoiding discontinuities in joint commands; 

• saturation: demand caps at a finite level to prevent excessive joint 

velocities even when a limb is very close; 

• locality: only the pairs currently near their limits contribute materially, so 

posture changes are relevant to the active interaction. 

This demand does not interfere with the primary task directions; it is confined to 

redundant directions so that tool motion proceeds unchanged whenever redundancy 
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permits. When redundancy is exhausted (e.g., near singularities or joint limits), the 

supervisor, not the postural shaper, resolves the conflict by reducing or suspending 

task progression. 

2.4.4 Gate logic and timers 

Mode transitions are driven by the global minimum distance, subject to hysteresis 

and dwell: 

• enter caution when the global minimum falls below the caution threshold; 

exit when it rises above the caution threshold plus hysteresis for at least the 

dwell time; 

• enter stop when the global minimum falls below the stop threshold; exit 

when it rises above the stop threshold plus hysteresis and remains there for 

the dwell time. 

While stopped, the controller maintains a stable hold: task references are frozen; 

posture reshaping continues; damping and velocity caps remain active. Resumption 

re-enables tracking from the frozen reference (or, for time-parameterised runs, from 

a consistent resume point) so that motion continues without discontinuities. 

2.4.5 Terminal behaviour at targets 

To make arrivals legible and repeatable, target definitions (see §2.1) include an 

acceptance radius, an orientation tolerance, and a nominal approach direction (TCP 

𝑧 at the goal). Near the goal the supervisor enforces a terminal-speed floor and an 

orientation lock to avoid wrist flips. If a proximity event occurs inside the 

acceptance radius, the hold is performed with respect to the recorded approach 

direction; resumption continues along that direction to the same terminal pose. 

2.4.6 Consistency and logging 

All policy decisions are tied to the control clock used for animation and kinematics. 

Every tick records the global minimum distance, the per-pair vector, the current 

mode, any transition event (with reasons and timestamps), and the instantaneous 

values of the thresholds, hysteresis margins, and dwell timers. This record allows 
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later chapters to trace slow/hold/resume decisions to measurable proximity 

conditions and to verify that the invariants (monotonic escalation, non-chattering 

transitions) were respected. 

2.4.7 Scope of the envelope 

The clearance policy guarantees: (i) no commanded progression toward the goal 

while within the stop band; (ii) conservative tracking within the caution band with 

redundancy-confined posture reshaping; and (iii) deterministic resume from a well-

defined state once clearance persists beyond the release thresholds. It does not, by 

itself, certify contact forces; rather, it provides the proactive separation 

management on which the rest of the control architecture builds. 

2.5 Supervisory gating and operating modes 

This section formalizes the state machine that governs approach, slowdown, holds, 

and resumptions in the shared workspace. The supervisor sits between proximity 

signals (§2.4) and motion generation (§2.2–§2.3), producing at each control tick a 

small set of directives: whether task progression is permitted, the current speed 

scale for tool motion, and the gain schedule for redundancy-confined postural 

reshaping. Its design targets three properties: monotonic escalation (once behaviour 

becomes more conservative it cannot immediately become less so), non-chattering 

transitions (thresholds are paired with hysteresis and dwell times), and deterministic 

resume (motion continues from a well-defined, reproducible state). 

2.5.1 Mode set and responsibilities 

The supervisor operates over a finite set of modes: 

• init: one-time alignment and health checks after start/reset. 

• track: normal task execution; tool motion follows the reference; postural 

reshaping is present but minimal. 

• caution: task execution continues with a conservative speed scale; postural 

reshaping gains increase to bias the arm away from the nearest limb(s). 
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• hold: commanded progression toward the goal is suspended; only damping 

and redundancy-confined postural reshaping remain active to enlarge 

spacing. 

• recovery: a short, deterministic ramp that re-enables task motion after a 

cleared hold; speed and postural gains return smoothly to track values. 

• fault (latent): entered on stale/invalid proximity data or internal 

consistency violations; the system behaves like a hold until data integrity is 

restored, then proceeds through recovery. 

Each mode emits a tuple (task_enabled, speed_scale, posture_gain) and a small set 

of flags (orientation-lock, terminal-speed floor). The orientation lock prevents wrist 

flips near the goal; the terminal-speed floor ensures legible arrivals. 

2.5.2 Transitions, thresholds, and timers 

Mode transitions are driven by the conditioned global minimum distance 𝑑𝑚𝑖𝑛(from 

§2.4), with distinct entry and release thresholds to realise hysteresis: 

• track → caution when 𝑑𝑚𝑖𝑛 <  𝑑𝑐𝑎𝑢𝑔ℎ𝑡. Release to track when 𝑑𝑚𝑖𝑛 >

𝑑𝑐𝑎𝑢𝑔ℎ𝑡 + ℎ𝑐𝑎𝑢𝑔ℎ𝑡 for at least 𝑇𝑐𝑎𝑢𝑔ℎ𝑡 . 

• caution → hold when 𝑑𝑚𝑖𝑛 < 𝑑𝑠𝑡𝑜𝑝. Release to recovery when 𝑑𝑚𝑖𝑛 >

𝑑𝑠𝑡𝑜𝑝 + ℎ𝑠𝑡𝑜𝑝 for at least 𝑇𝑠𝑡𝑜𝑝 . 

• recovery → track after a fixed ramp time 𝑇𝑟𝑒𝑐 or once the commanded speed 

scale reaches 1 with bounded jerk. 

Thresholds satisfy 𝑑𝑠𝑡𝑜𝑝 <  𝑑𝑐𝑎𝑢𝑔ℎ𝑡 and margins ℎ𝑠𝑡𝑜𝑝, ℎ𝑐𝑎𝑢𝑔ℎ𝑡  > 0. Dwell times 

𝑇𝑠𝑡𝑜𝑝  and 𝑇𝑐𝑎𝑢𝑔ℎ𝑡 are chosen as small integers of the control period to keep timing 

discrete and auditable. The fault mode preempts all others: it is entered if proximity 

data are stale beyond 𝑇𝑠𝑡𝑎𝑙𝑒 if distances become non-finite, or if internal consistency 

checks (e.g., contradictory timers) fail. 

2.5.3 Actions per mode 

Figure 2.4 summarizes the supervisor’s actions in each mode: 
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Fig. 2.4 Supervisor actions per mode. Distances gate transitions; within each mode the supervisor 

sets (task_enabled, speed_scale, posture_gain) and applies orientation lock or terminal-speed floor 

near targets. Recovery uses a jerk-limited ramp; fault mirrors hold and requires restored data 

integrity before recovery. 

• track: task progression enabled; speed_scale = 1; posture_gain at baseline; 

velocity caps and light Cartesian damping active. 

• caution: task progression enabled; speed_scale reduced via a smooth, 

distance-dependent map; posture_gain increased with smooth onset; 

velocity caps tightened. 

• hold: task progression disabled; the last valid tool reference is frozen 

(Cartesian-velocity case) or the time-parameterised reference index is held 

(trajectory case). Damping remains; posture reshaping continues in the 

Jacobian null space to enlarge clearance; the commanded tool velocity along 

the recorded approach direction is zero. 

• recovery: task progression re-enabled with a jerk-limited ramp of 

speed_scale from 0→1; posture_gain decays to baseline; if a time-

parameterised trajectory is used, resumption occurs from the frozen index 

(or a re-timed, nearby sample) to avoid discontinuities; otherwise the 

Cartesian-velocity generator is warm-started from the held pose. 
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• fault: identical to hold with an additional requirement that data integrity be 

restored for 𝑇𝑠𝑡𝑎𝑙𝑒 before entering recovery. 

2.5.4 Interaction with references and IK 

The supervisor never edits the reference’s geometry; it gates access to it. In 

Cartesian-velocity operation, gating sets the commanded tool twist to zero while 

preserving the integrator state; in time-parameterised operation (e.g., LSPB), gating 

freezes the reference sample index and resumes without skipping, so the same 

geometric path is followed with inserted dwell. In all modes, redundancy-confined 

postural reshaping is computed before projection/integration on the same tick (the 

“compute → project → smooth → integrate” ordering), ensuring discrete-time 

correctness and preventing null-space actions from leaking into primary task 

motion. 

The inverse-kinematics layer (SVD-regularised DLS) runs at every tick regardless 

of mode, but its input is modulated: in hold/fault, only the null-space component 

and damping remain; in caution, both task and null-space components are present 

but scaled. Near the goal, the orientation lock fixes the tool’s rotational setpoint to 

avoid wrist inversions; simultaneously, a terminal-speed floor prevents the 

commanded speed from asymptotically vanishing, yielding decisive “arrive and 

stop” behaviour. 

2.5.5 Use of approach direction and keep-out margins 

Each target carries a nominal approach direction (TCP 𝑧 at the goal) and keep-out 

margins at the table’s human edge (§2.1). In caution/hold, deceleration and holding 

are resolved with respect to this direction: vertical slow-downs near the surface and 

holds that do not creep laterally across the table edge. Keep-out margins align the 

stop threshold with workspace geometry, ensuring that automated approaches do 

not overhang the operator side. 

2.5.6 Priority, concurrency, and edge cases 

• Priority: fault > hold > caution > track. Recovery only follows a cleared 

hold/fault. 



34 
 

• Concurrency: if dexterity degrades (e.g., smallest singular value below a 

limit) while in caution, the supervisor may tighten speed caps or escalate to 

hold even if 𝑑𝑚𝑖𝑛 has not crossed the stop threshold, preventing large joint 

excursions during near-singular operation. 

• Goal inside a hold: if the target is reached (within acceptance radius and 

orientation tolerance) while held, the system records completion but 

remains in hold until release conditions are met; on recovery it transitions 

directly to track-idle (no further motion). 

• Lost target: if target validity is withdrawn (e.g., upstream task reset), the 

supervisor enters fault, freezes motion, and awaits a consistent target before 

recovery. 

• Stale distances during recovery: if proximity becomes stale during the 

ramp, recovery is aborted and the system returns to fault/hold. 

2.5.7 Parameters and tuning guidelines 

Thresholds 𝑑𝑐𝑎𝑢𝑔ℎ𝑡,  𝑑𝑠𝑡𝑜𝑝  are set relative to the monitored limb–link pairs most 

likely to dominate around the table (hands vs. terminal link/tool typically define 

𝑑𝑠𝑡𝑜𝑝). Hysteresis margins are at least one to two ticks’ worth of the maximum 

plausible distance change (from the rate limiter), ensuring non-overlap. Dwell times 

are chosen to exceed the longest filter horizon in the proximity pipeline, 

guaranteeing that transitions are driven by sustained conditions rather than filter 

transients. Speed-scale maps are monotone with bounded slope to keep commanded 

accelerations within actuator limits during recovery. 

2.5.8 Timing and logging 

All decisions are tied to the synchronous control clock; timers advance by whole 

ticks, and transition guards evaluate the condition plus elapsed dwell at the tick 

boundary. Every event (entry/exit with reason, thresholds in effect, dwell counters) 

is logged alongside 𝑑𝑚𝑖𝑛 ,the per-pair distance vector, mode, speed_scale, 

posture_gain, and IK conditioning statistics. This record enables audit of each 

slow/hold/resume and supports replication of runs with identical outcomes. 
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2.5.9 Guarantees 

Given valid proximity signals and the configured thresholds, the supervisor 

guarantees that (i) no commanded motion toward the goal is produced while 𝑑𝑚𝑖𝑛  

lies within the stop band; (ii) any resumption is jerk-limited and begins from the 

same geometric state at which the hold occurred; and (iii) transitions respect 

hysteresis and dwell, eliminating chatter. These guarantees make the higher-level 

behaviour legible to an observer and the low-level decisions defensible in analysis. 

2.6 Trajectory timing and discrete-time integration 

This section specifies how motion references and control are tied to the simulator 

clock so that approach/hold/resume behaviour is deterministic and auditable. All 

computations are organised around a single, synchronous timeline shared by 

MATLAB and CoppeliaSim. 

2.6.1 Clocks, rates, and tick semantics 

The simulator advances by a fixed physics step 𝑇𝑝. The controller runs with period 

𝑇𝑐 = n𝑇𝑝 for some small integer n. One control tick k consists of: 

• reading the joint state and tool pose from the simulator at time 𝑡𝑘 , 

• evaluating forward kinematics and the geometric Jacobian, 

• updating proximity, supervision, and reference sampling, 

• composing the joint-velocity command, 

• advancing the simulator by n physics steps to 𝑡𝑘+1. 

All timestamps, logs, thresholds, and timers are expressed on this tick grid; events 

occur only at tick boundaries. This eliminates hidden latency between what the 

scene displays and what the controller computes. 

2.6.2 Reference generation and sampling 

Two reference types are used: 



36 
 

• Cartesian velocity fields (non-time-parameterized): a bounded attractive 

field generates a TCP twist 𝑣𝑡𝑎𝑠𝑘(𝑘) that drives the tool toward the goal. 

Near the goal, a terminal-speed floor prevents asymptotic creep and 

produces decisive “arrive and stop” behaviour. Velocity caps enforce 

actuator-compatible magnitudes. 

• Linear-segment-with-parabolic-blend (LSPB) trajectories (time-

parameterized): position and velocity references 𝑥𝑟𝑒𝑓(𝑡),  𝑥̇𝑟𝑒𝑓(𝑡)  are 

defined by an acceleration–cruise–deceleration profile with bounds on 

||𝑥̇||and ||𝑥̈|| for multi-axis motion, segment times are synchronised so all 

Cartesian components share a common duration. Sampling is performed 

strictly on the controller grid: at tick k, the phase 𝑠𝑘 (0→1) indexes the 

LSPB law and produces 𝑥𝑟𝑒𝑓(𝑘),  𝑥̇𝑟𝑒𝑓(𝑘). The phase is advanced by a fixed 

increment per tick unless gated by the supervisor. 

To avoid drift, reference phase is accumulated in integer tick units (no fractional 

time carried across ticks), and quaternion references are re-normalised after 

interpolation. 

2.6.3 Ordering within a tick 

Each tick follows a fixed computation order that preserves task priority and 

numerical correctness: 

read  →  FK/J  →  proximity update  →  supervisor gate  →  reference sample  → 

 compose task twist  →  form postural bias  →  project into null space  → 

 saturate & damp  →  integrate 

“Project then integrate” ensures redundancy-confined actions do not leak into the 

primary task due to discretisation. Damping and velocity caps are applied after 

composition but before integration, yielding bounded joint increments per tick. 

2.6.4 Pause/hold/resume semantics 

The supervisor (Section 2.5) gates access to references without altering their 

geometry: 
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• Velocity-field operation: in hold, the commanded TCP twist is set to zero 

while the internal integrator state is preserved; on resume, integration 

restarts from the held pose with a jerk-limited ramp on the speed scale. 

• LSPB operation: in hold, the reference phase index 𝑠𝑘 is frozen; on resume, 

the remaining segment is executed from the same phase. If the hold straddles 

a blend boundary, the remainder is re-timed to the tick grid so acceleration 

and jerk limits are still respected. This produces identical path geometry 

with inserted dwell and no time-skips. 

All ramping (recovery) is quantised to the tick grid and bounded in slope so 

commanded accelerations remain within limits. 

2.6.5 Discrete-time integration and stability guards 

Joint-space commands are integrated with a first-order, zero-order-hold scheme 

over 𝑇𝑐. Three guards keep the integration well behaved: 

• Bounded increments: joint velocities are capped so that |∆𝑞𝑖| ≤ 𝑞̇𝑖,𝑚𝑎𝑥𝑇𝑐. 

, preventing aliasing of saturation into oscillation. 

• Orientation lock near the goal: when within an acceptance radius, tool 

orientation is held to avoid wrist inversions as position errors vanish. 

• Conflict limiter: when the avoidance bias aligns strongly against the 

tracking direction and the smallest singular value falls below a threshold, 

task speed is reduced before integration to avoid large joint excursions in 

near-singular postures. 

2.6.6 Consistent logging 

For each tick the logger records: 𝑘, 𝑡𝑘. ; the sampled reference 𝑥𝑟𝑒𝑓(𝑘),  𝑥̇𝑟𝑒𝑓(𝑘).  

(or 𝑣𝑡𝑎𝑠𝑘(𝑘) in velocity-field runs); the supervisor mode and gate outputs (speed 

scale, hold flag); the applied joint command; and FK/J diagnostics (singular values, 

manipulability). By construction, these records are on the same clock as animation 

and proximity, enabling one-to-one reconstruction of any pause/hold/resume 

episode. 
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2.6.7 Determinism and replay 

Because all timing derives from 𝑇𝐶 and all transitions are tick-synchronised with 

explicit hysteresis and dwell, repeated runs with the same initial conditions and the 

same human pose stream produce identical mode sequences and trajectories 

(modulo floating-point tolerance). This determinism is the basis for the comparative 

evaluations reported in later chapters. 

2.7 Datasets, initial conditions, and scenarios 

This section records what varies and what is held fixed across experiments, so that 

every trajectory, pause/hold/resume episode, and proximity timeline can be 

reproduced from first principles. 

2.7.1 Human-motion traces 

Operator motion is provided as time-stamped skeletal pose streams comprising 3D 

key-points for the major joints. Each trace is (i) trimmed to remove idle pre/post 

segments, (ii) normalised to the world frame defined in §2.1, and (iii) filtered to 

suppress jitter while preserving natural limb swing. For experiments, traces are used 

in two ways: 

• direct replay: the mannequin in CoppeliaSim is animated frame-by-frame 

by the normalised skeleton; 

• phase-shifted replay: the same trace is started at different offsets relative 

to the robot’s approach so that identical motions produce intrusions at 

distinct points along the task, exercising pause and resume at multiple 

phases. 

The identity of the trace and its phase offset are treated as experimental factors and 

logged per run. 

2.7.2 Initial robot postures 

Runs start from a finite set of joint configurations that all realise the same nominal 

tool pose but differ in elbow/wrist posture. Configurations are generated by solving 
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the kinematic task with distinct null-space seeds and retaining only those that (i) 

respect joint limits with margin, (ii) exceed a manipulability threshold, and (iii) 

satisfy minimum link-to-table clearance. One configuration is designated “neutral” 

(high manipulability, low joint excursion to the first target); others probe elbow-

up/elbow-down and wrist-rotated variants. Selection is either fixed (to compare 

scenarios like-for-like) or pseudorandom with a recorded seed (to probe 

sensitivity); in both cases the exact joint vector is logged. 

2.7.3 Targets and task geometry 

Targets lie inside the tabletop zone introduced in §2.1. Each target is defined by a 

pose, an acceptance radius, an orientation tolerance, and a nominal approach 

direction (TCP 𝑧 at the goal). Keep-out margins at the human edge of the table 

bound automated approaches. When two targets are used (e.g., move-out/move-

back), their poses are chosen so that inter-target motion remains in a dexterous 

region without posture flips. Target indices and their tolerances are recorded in the 

run metadata. 

2.7.4 Scenario definitions 

Five controller configurations exercise the same workcell under progressively 

richer conditions. For brevity, they are referred to here by their functional roles: 

• Scenario 1: Target acquisition with a bounded attractive Cartesian velocity 

field in the absence of an operator; 

• Scenario 2: Proximity-aware acquisition that halts and holds on intrusion, 

reshaping posture through redundancy, then resumes when spacing is 

comfortable; 

• Scenario 3: Time-parameterised tracking using linear segments with 

parabolic blends (LSPB) without an operator; 

• Scenario 4: Supervised pause–resume over an LSPB reference in the 

presence of proximity events, with deterministic freeze/resume of the 

trajectory phase; 

• Scenario 5: Fixed-pose reconfiguration in which the TCP is held while 

redundancy alone enlarges spacing. 
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Each scenario inherits the same timing model (§2.6), supervisor (§2.5), and 

proximity pipeline (§2.3–§2.4). What changes is the reference type (velocity field 

vs. LSPB), whether proximity events are present, and whether TCP motion is 

permitted. 

2.7.5 Experimental factors and design 

Across scenarios, experiments vary along four axes: 

• human trace identity and phase (direct vs. phase-shifted replay); 

• initial robot posture (neutral vs. alternative null-space realizations); 

• target index (single-target approach vs. inter-target motion where 

applicable); 

• proximity thresholds (baseline vs. a slightly tighter set used only for 

robustness checks). 

A small factorial design combines these factors to cover representative operating 

conditions while keeping the total run count tractable. For sensitivity studies, one 

factor is swept while others are held fixed at their baseline; ablations toggle 

individual elements (e.g., hysteresis, orientation lock) to isolate their effect. All 

random choices are driven by recorded seeds. 

2.7.6 Fixed constants 

The following items remain invariant within an experimental batch: world→base 

transform, table geometry and operator-region dimensions, control period and 

physics step, filter horizons for distance debouncing/rate limits, and the mapping 

from distance bands to supervisor thresholds/hysteresis/dwell. These constants are 

declared in a run header and repeated across logs for audit. 

2.7.7 Outputs and replay 

Every run yields a time-aligned record at the control tick: joint states; TCP pose; 

sampled references (or task-space twists); global and per-pair distances; supervisor 

mode and transition events (with reasons and dwell counters); Jacobian singular 

values, condition number, and manipulability; and joint-saturation flags. Metadata 
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enumerate the factors above (trace ID/phase, initial posture, target index, scenario 

role) plus a parameter hash. Replaying a run with the same header, seeds, and assets 

reproduces the same mode sequence and motion up to floating-point tolerance. 

2.8 Assumptions, limitations, and safety envelope summary 

This section closes the chapter by making explicit what the workcell model 

guarantees, what it assumes, and where its scope ends. The aim is to separate the 

envelope that is enforced by design from the behaviours that are out of scope for 

this thesis. 

2.8.1 Assumptions 

• Environment and agents: A single human operates on one long side of a 

bench-top table; a 7-DoF Panda works from the opposite side. The tabletop 

is planar and unobstructed; tools and fixtures do not change the gross reach 

geometry during a run. 

• Timing and models: MATLAB (control/supervision) and CoppeliaSim 

(geometry/physics) run in synchronous stepping with a fixed control period. 

The simulator’s Panda model is the authoritative source for forward 

kinematics and Jacobians; joint sensing is idealised (no encoder noise). 

• Human motion signals: Human pose enters as a time-stamped skeleton 

stream with bounded jitter. After normalisation and filtering, residual errors 

and delays are assumed small relative to the control period. Occlusions 

severe enough to corrupt the skeleton are treated as data faults (see §2.5 

fault mode). 

• Proximity representation: Both agents are approximated for clearance by 

simple limb-aligned and link-aligned volumes sized conservatively. 

Monitored link–limb pairs are chosen for realistic interactions at a table; 

distances to unmonitored pairs are not considered by the supervisor. 

• Control authority: Joint limits and velocity caps are enforceable at the 

chosen rates; damping and redundancy-confined posture reshaping can be 

applied without exciting actuator limits. 
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• Task geometry: Targets lie inside the robot’s dexterous zone; acceptance 

radii and orientation tolerances are specified; a nominal approach direction 

(TCP 𝑧 at the goal) is defined for each target. 

2.8.2 Safety framework (what is guaranteed by design) 

• Separation governance: No commanded progression toward the task goal 

is issued while the global minimum human–robot distance lies inside the 

stop band. Within the caution band, task motion is conservatively scaled and 

posture reshaping intensifies; outside, normal tracking proceeds. 

• Deterministic gating: Transitions between track, caution, hold, recovery 

obey monotonic escalation, explicit hysteresis, and minimum dwell times 

tied to the control tick; chattering at thresholds is precluded by construction. 

• Null-space containment: Clearance-seeking posture changes are confined 

to redundant directions; primary task motion is unaffected whenever 

redundancy permits. When redundancy is exhausted (e.g., near 

limits/singularities), the supervisor, resolves the conflict by slowing or 

holding. 

• Terminal behaviour: Near a target, an orientation lock and a terminal-

speed floor yield decisive arrivals without wrist inversions. If a hold occurs 

inside the acceptance radius, resumption continues along the recorded 

approach direction to the same terminal pose. 

• Auditability: Every decision is time-aligned to the control clock and logged 

with the distances, thresholds, dwell counters, and conditioning metrics in 

effect, enabling reconstruction and review of each slow/hold/resume 

episode. 

2.8.3 Transfer and extension (perspectives) 

• Hardware-in-the-loop: The synchronous timing and single-source 

kinematics map directly to real-time middleware; substituting live pose 

input for recorded streams is the first step toward on-robot trials. See 

Chapter 8 for the migration roadmap (ROS 2/real-time executors, certified 

reference governors, and composite SDFs). 
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• Governance layers: The clearance policy can be wrapped by certified 

reference-governor or safety-programmable logic controllers (PLC) layers 

to formalise release/hold envelopes against plant-level constraints. 

• Richer models: The human proxy can be refined (anisotropic limb 

volumes, tool/workpiece geometry), and multi-sensor fusion can replace 

single-stream pose input; multi-arm extensions can coordinate null-space 

policies across robots. 

Taken together, these assumptions, limits, and guarantees define the operating 

envelope for the remainder of the thesis: a reproducible bench-top collaborative cell 

with clear separation governance, deterministic gating, and auditable behaviour, 

within which trajectory generation, inverse kinematics, and redundancy 

management can be evaluated systematically. 
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Chapter 3 

Robotic system kinematic model (Franka Emika Panda) 

The model of a robotic arm is a topic that has been extensively addressed in the 

literature, with well-established formulations for describing geometry, kinematics, 

and motion generation for industrial manipulators and collaborative robots. 

Building on this foundation, the present chapter introduces the robotic system 

adopted in this thesis and the way it is exercised within a shared workspace. The 

platform is a 7-DoF Franka Emika Panda, a lightweight, redundant manipulator 

commonly used in human–robot collaboration studies for its accuracy, integrated 

torque sensing, and ease of integration with simulation and control stacks. Our 

interest is not limited to the robot as a mechanism, but extends to the collaborative 

setting in which it operates: a human co-worker, a shared task region, and a control 

architecture that favors predictable, easily monitored behavior. This aligns with 

contemporary treatments of redundancy resolution, safety supervision, and human-

aware motion as established in the robotics community.  

The collaborative cell is realized in CoppeliaSim to mirror an industrial workstation 

with clear boundaries and observability. The virtual scene comprises a fixed-base 

Panda mounted on a table, a human work zone represented by a pose-driven avatar, 

and task objects arranged within the arm’s reachable volume. The human motion 

stream is converted into simplified geometric proxies that allow real-time distance 

evaluation and separation monitoring without overburdening the control loop. The 

simulation is synchronized so that sensing, decision, and actuation proceed in 

lockstep, and the environment is instrumented for continuous logging of the signals 

that matter for later analysis of throughput, clearance, and task fidelity. In this way, 

the chapter does not only present a model, but a setting where the model can be 

exercised repeatedly and transparently. 

The intent is to simulate and optimize the robot’s behavior under collaborative 

conditions, increasing the capability to monitor performance and to detect 

deviations from expected motion or safety margins early. The choices made here 
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reflect common practice in the field: using a redundant arm to reconcile task 

objectives and safety, relying on well-known kinematic descriptions and inverse 

kinematics solvers, and adopting scene abstractions that balance fidelity and 

computational load. The literature on collaborative robotics, null-space control, and 

separation monitoring provides the conceptual backdrop for these choices and 

indicates where they are most applicable in industry: small-batch assembly, 

inspection, assisted manipulation, and other tasks where a human and a robot share 

space and responsibilities. 

Although developed in simulation, the constructed model and the associated 

validation method are designed to be replicated on a physical Panda cell with 

minimal adaptation of frames, limits, and supervisor thresholds. The scene assets, 

parameters, and procedures are documented to support transfer: frame conventions 

can be aligned with a real workstation, distance thresholds can be tuned to match 

sensing hardware, and the same logging and supervision routines can be used to 

monitor behavior on the floor. This approach ensures that the foundational work 

reported here can be effectively applied and tested in future implementations, 

facilitating progression from controlled simulation to pilot deployments and, 

ultimately, to sustained industrial use. 
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3.1 Use of the kinematic model in the collaborative cell 

This section explains how a kinematic description of a 7-DoF Franka Emika Panda 

is used to study behavior in a shared workspace with a human. The emphasis is on 

an operational view rather than derivations. The model is exercised in a 

CoppeliaSim scene that mirrors an industrial cell: a fixed-base arm on a table, a 

defined human work zone represented by a pose-driven avatar, and task objects 

placed within reach. Lightweight link-aligned proxies (capsules/cylinders/spheres) 

are attached for distance queries and are the only geometry consumed by the 

supervisor and posture shaper (see Chapter 4). The approach prioritizes predictable 

motion, clear supervision, and repeatable experiments. The same interfaces and 

conventions are designed for direct transfer to a physical Panda cell by aligning 

frames, enforcing the same thresholds, and reusing the synchronized logging 

routines. 

3.1.1 Rationale 

A 6×7 kinematic formulation is adopted because collaborative tasks are moderate 

in speed and benefit from transparency and observability. The robot’s internal 

torque regulation handles low-level dynamics, while the outer loop focuses on 

where and when the tool moves, and on reorganizing posture to maintain safe 

threshold distance when a person approaches. 

3.1.2 How it is used 

 The same model supports three recurring situations: tracking simple tool-pose 

references; tracking with supervised pauses and later resumptions when separation 

bands are crossed; and a fixed-tool-pose case where only joints move to preserve 

clearance around the human. The simulation advances in synchronized steps so 

sensing, decision, and actuation remain aligned, and key signals are logged for later 

analysis of throughput, transparency, and safety. 

3.1.3 Assumptions and scope 

The arm is treated as a rigid kinematic chain with calibrated frames and enforced 

joint limits; self-collision and workspace constraints are respected. Human motion 
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is converted into simplified geometric proxies in the world frame to enable timely 

distance evaluation. Full rigid-body dynamics, contact forces, and high-impact 

interactions are outside scope. 

3.1.4 Interfaces referenced later 

For consistency across the document, this section introduces the principal quantities 

used throughout: the tool-pose tracking error, a damped inverse mapping from tool 

motion to joint motion, the null-space projector that preserves the primary objective 

while adjusting posture, the minimum robot–human distance computed in the 

scene, and the stop/release thresholds that govern supervised pauses and 

resumptions. These definitions establish a common vocabulary for the methods and 

experiments that follow and will be referenced without further qualification in 

subsequent chapters; Section 3.4 details the two TCP time-laws (vector vs. LSPB) 

and their pause/resume semantics; Section 3.5 fixes the safety thresholds used 

throughout. Section 5.1 details the synchronized logging used to validate these 

interfaces. 

3.2 Robot description 

This work employs a 7-DoF Franka Emika Panda (Franka Research 3 generation) 

mounted as a fixed-base, table-top arm inside a compact collaborative cell in 

CoppeliaSim. The platform is widely adopted in research labs for human–robot 

collaboration because it combines human-scale reach, link-side torque sensing on 

all seven joints, and a research interface that exposes state and control at suitable 

rates for closed-loop experimentation. At a system level it offers a 3 kg rated 

payload, ~855 mm reach, and ISO-grade pose repeatability on the order of ±0.1 

mm, with joint-space speed limits that support smooth, supervised motion in 

proximity to a person. These characteristics align with this thesis’ emphasis on 

predictable behavior, clear supervision, and repeatable experiments. 

3.2.1 Frames, tool, and workspace 

The cell defines a world frame for the scene, a base frame at the Panda mounting, 

and a tool-center frame at the flange. The arm is installed upright on a bench-height 
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fixture; task objects are arranged within nominal reach while a dedicated human 

work zone is kept clear for approach and interaction. This arrangement mirrors 

typical research and light-industrial layouts and transfers well to hardware because 

the same frame conventions, mount pose, and safety bands can be reproduced on a 

physical setup.  

3.2.2 Features and platform suitability (research & industry) 

• Seven torque-sensorized revolute joints enable compliant behavior and 

redundancy for posture adjustment in shared workspaces. 

• Research interface and ecosystem integrations (ROS 2, MATLAB) 

facilitate synchronized control, logging, and rapid replication of 

experiments.  

• Certified HRC design and sub-millimetric repeatability support tasks such 

as small-batch assembly, inspection, assisted manipulation, and teaching by 

demonstration. 

3.2.3 Technical specifications used in this thesis 

Table 3.1 consolidates the mechanical and controller-relevant specifications used 

in this work, including joint ranges, velocity limits, masses, and the manufacturer’s 

repeatable peak torque limits grouped by axes (A1–A2, A3–A4, A5–A7). 

Item Value 

Degrees of freedom 7 revolute joints 

Rated payload 3 kg 

Maximum reach 855 mm 

Pose repeatability (ISO 9283) ±0.1 mm 

Typical end-effector speed (limit) up to ∼ 2 m/s 
Joint velocity limits (A1-A4 / A5-

A7) 

150%/s/ up to ∼ 180 − 301% (per datasheet generation) 

Joint position limits (deg) 

A1: = 166…+ 166; A2: −101…+ 101; A3: −166…+ 166 : 

A4: −176…− 4; A5: −166…+ 166; A6: −1…+ 215; A7: 

−166…+ 166 

Repeatable peak torque (Nm) A1: 87; A2: 87; A3: 87; A4: 87; A5: 12; A6: 12; A7: 12. 

Table 3.1 Franka Emika Panda arm-level specifications and limits. 

Figure 3.1 contextualizes the axis numbering (A1–A7) on the Panda and highlights 

the repeatable peak-torque limits referenced in Table 3.1. 
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Fig. 3.1 Panda axis map (A1–A7) with manufacturer repeatable peak-torque limits. Axes 1–2: ≤ 87 

Nm; axes 3–4: ≤ 87 Nm; axes 5–7: ≤ 12 Nm. 

3.2.4 Physical layout and link proxies 

For efficient separation monitoring in the simulation, each link is represented by a 

conservative geometric proxy aligned with its frame; these proxies are used for fast 

min-distance queries against the human avatar’s capsules and to annotate logs with 

the smallest robot–human clearance. This abstraction keeps computation modest 

while remaining faithful to the physical envelope and transfers cleanly to hardware 

deployments (See Chapter 4 for the human model and distance fields). 

3.2.5 Kinematic scheme  

The Panda is a serial 7R arm: a shoulder with three intersecting joint axes 

approximating spherical motion, an elbow that extends the reach, and a three-axis 

wrist that orients the tool. Figure 3.1 sketches the Panda’s 7R shoulder–elbow–wrist 

organization used throughout this chapter. 
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Fig. 3.2 Kinematic scheme of the Panda arm (7R): shoulder with three intersecting axes, elbow 

extension, and three-axis wrist for tool orientation. 

Motions arise from coordinated rotations about each joint axis, producing 

translation and rotation of the tool in space; redundancy allows posture to be 

adjusted while the tool pose is maintained within tolerance. This is the working 

model used throughout the thesis and is consistent with the official robot description 

files commonly used in research software stacks.  

3.2.6 Denavit–Hartenberg (DH) style parametrization adopted in this work 

We adopt a modified Denavit–Hartenberg description to fix the link geometry and 

joint axes in a compact, reproducible way prior to deriving the kinematics. Rather 

than importing a published table, the parameters used here were fitted to the ground-

truth link frames exported from CoppeliaSim at a chosen zero posture and mount. 

This ensures that forward kinematics reproduce the exact scene used in all 

experiments. Concretely, the base frame and tool frame were fixed in the simulator; 

the seven intermediate link frames were exported; and a modified-DH chain 

(𝑖−1𝐴𝑖(𝑎𝑖, α𝑖 , 𝑑𝑖, θ𝑖) with (θ𝑖 ≡ 𝑞𝑖) was solved so that cumulative transform 

(Ti
(0) = ∏ 𝐴𝑘

(𝑘−1)
)i

k=1  aligned (within numerical tolerance) with the exported frames 

at the zero posture. A fixed flange transform (7𝑇𝑇) was then set to match the desired 

tool offset. This fit was validated by checking that (i) forward kinematics at random 

configurations matched the simulator exports to within a small positional and 

angular error, and (ii) the base–tool transform remained consistent when the same 

chain was driven by scene joint values.  
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For 𝑖 =  1, 2, … ,7 we use a modified-DH link transform with joint variable 𝜃𝑖 ≡ 𝑞𝑖 

and constants (𝑎𝑖, 𝛼𝑖 , 𝑑𝑖): 

 𝑖−1𝐴𝑖(𝑞𝑖) = [
𝑅𝑧(𝜃𝑖)𝑅𝑥(𝛼𝑖) 𝑅𝑧(𝜃𝑖) [

𝑎𝑖
0
𝑑𝑖
]

0 1

] 

The cumulative transforms and TCP pose are 

 0𝑇𝑖(𝑞) =∏  

𝑖

𝑘=1

 𝑘−1𝐴𝑘(𝑞𝑘),  0𝑇𝒯(𝑞) =  
0𝑇7(𝑞)

7𝑇𝒯 

with fixed tool offset:  7𝑇𝒯: 𝑑𝑓 = 0.107 𝑚. 

The constants used are:        

𝒊 𝒂𝒊[ 𝐦] 𝜶𝒊[𝐫𝐚𝐝] 𝒅𝒊[ 𝐦] 

1 0 0 0.333 

2 0 −
𝜋

2
 0 

3 0 +
𝜋

2
 0.316 

4 0.0825 +
𝜋

2
 0 

5 -0.0825 −
𝜋

2
 0.384 

6 0 +
𝜋

2
 0 

7 0.088 +
𝜋

2
 0 

Table 3.2 DH constant parameteres. 

3.2.7 Jacobian (formulation & components, as used) 

The geometric Jacobian is the linear operator that maps joint-rate space to the 

instantaneous twist of the tool frame. Figure 3.2 illustrates the construction of 

Jacobian columns from joint axes and point positions. 
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Fig. 3.3 For a revolute joint 𝑖, 𝐽𝑣,𝑖 = 𝐳𝑖 × (𝐩𝑇 − 𝐩𝑖) and 𝐽𝜔,𝑖 = 𝐳𝑖.Vectors are resolved in frame 0 as 

used in the implementation. 

 Let 𝑝𝑖  ∈  𝑅
3  and 𝑧𝑖  ∈  𝑅

3 denote, respectively, the origin and unit z-axis of frame 

𝑖 expressed in 𝛽 = 0, extracted from 0𝑇𝑖(𝑞). Let 𝑝𝑇 be the origin of the TCP from 

0𝑇𝑇(𝑞) For a revolute joint 𝑖 the i − th column of the geometric Jacobian 

resolved in 0 is:  

𝐽𝑣,𝑖 = 𝑧𝑖 × (𝑝𝑇 − 𝑝𝑖) ,   𝐽ω,𝑖 = 𝑧𝑖 

Stacking columns yields 

𝐽0(𝑞) = [
𝐽𝑣,1 ⋯ 𝐽𝑣,7
𝐽𝜔,1 ⋯ 𝐽𝜔,7

] ∈ ℝ6×7 

When the Jacobian is required in the TCP frame 𝒯 we apply the rigid rotation 

with 𝑅𝒯 =  
0𝑅𝒯(𝑞) : 

𝐽𝒯(𝑞) = [
𝑅𝒯
⊤ 0

0 𝑅𝒯
⊤] 𝐽

0(𝑞) 

These expressions are exactly those implemented: transforms are formed from the 

DH-style chain consistent with the scene (𝑝𝑖 ,  𝑧𝑖 ,  𝑝𝑇) are extracted, each column is 

assembled via the cross-product rule above, and an optional frame change, yields 

𝐽{𝑇}. A different tool is incorporated by updating 𝑇7 𝑇 before computing 𝑝𝑇. 
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3.3 Mathematical model of the 7-DoF arm 

This section establishes the mathematical description used to command and assess 

the Franka Emika Panda in the collaborative cell. The objective is to fix a consistent 

kinematic model, specify how tool pose and errors are represented, and define the 

velocity mapping between joint space and task space that underpins all experiments. 

Starting from the scene-consistent link frames introduced earlier, we derive forward 

kinematics and a pose-error definition suited to small, well-conditioned corrections. 

We then formalize the geometric Jacobian and the frame conventions used when 

relating joint rates to tool twist. Building on these, we present the inverse kinematics 

solver based on damped least squares with SVD regularization, together with the 

adaptive damping and saturation policies that keep commands within safe bounds. 

Measures of conditioning and manipulability are introduced to identify 

neighborhoods where stronger regularization is required. Finally, we state the task-

priority composition used to preserve the primary tool objective while shaping 

joint-space behavior in the null space, including a leak guard to monitor task 

preservation, and outline the orientation-locking strategy employed when the tool 

pose must remain fixed. The intent is to provide a clear, self-contained reference 

for the methods implemented in the collaborative scenarios that follow. 

3.3.1 Forward kinematics and pose-error definition 

Before specifying control laws, we fix how the arm’s pose is computed and how 

deviations from a desired pose are measured. The forward kinematic map provides 

a unique tool pose for each joint configuration, and the error representation must 

remain well behaved under the small, incremental motions characteristic of 

supervised collaboration. The conventions below follow the scene-consistent link 

frames defined earlier so that all computations match the simulated cell one-to-one. 

Let  0𝑇𝑖(𝑞) ∈ 𝑆𝐸(3) be the cumulative transform from the base/world frame {0} to 

link 𝑖, constructed from the modified-DH chain fitted to the CoppeliaSim frames in 

Section 3.2. The TCP (tool) pose is 

 0𝑇𝒯(𝑞) = [
 0𝑅𝒯(𝑞)  0𝑝𝒯(𝑞)
0 1

] =  0𝑇7(𝑞)
7𝑇𝒯 
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where  7𝑇𝒯 is the fixed flange-to-tool transform. 

Given a desired TCP pose 

 0𝑇𝒯
des = [ 

0𝑅𝒯
des  0𝑝𝒯

des 

0 1
] 

the translational error (resolved in {0} ) is 

𝑒𝑝 =  
0𝑝𝒯

des −  0𝑝𝒯(𝑞) ∈ ℝ
3 

For the rotational component, we adopt an axis-angle representation derived from 

the right-invariant rotation error 

𝑅err =  
0𝑅𝒯
des( 0𝑅𝒯(𝑞))

⊤ ∈ 𝑆𝑂(3) 

The orientation error vector is the matrix logarithm of 𝑅err , 

𝑒𝜔 = log (𝑅err) ∈ ℝ
3, 

i.e., the unique rotation vector whose direction is the principal axis of 𝑅err  and 

whose magnitude 𝜃 ∈ [0, 𝜋] is the principal angle. When 𝑅err ≠ 𝐼, a closed-form 

evaluation is 

𝜃 = cos−1 (
tr(𝑅err) − 1

2
) , 𝑢 =

1

2 sin 𝜃
[

𝑅err(3,2) − 𝑅err(2,3)

𝑅err(1,3) − 𝑅err(3,1)

𝑅err(2,1) − 𝑅err(1,2)
],   

𝑒𝜔 = 𝜃𝑢 

and 𝑒𝜔 = 0 when 𝑅err = 𝐼. The branch of 𝜃 is selected to preserve continuity for 

small attitude corrections; in implementation ‖𝑒𝜔‖ is limited to remain within the 

injectivity radius. 

The pose-error vector used by the velocity-level controller stacks translation and 

rotation as 

𝑒𝑥 = [
𝑒𝑝
𝑒𝜔
] ∈ ℝ6, 
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resolved in {0} unless stated otherwise. This representation avoids Euler-angle 

singularities, remains well conditioned for small corrections, and aligns with the 

frame and tolerance conventions fixed in Chapter 3.1. 

3.3.2 Geometric Jacobian and frame conventions implementation  

Before introducing inversion or task composition, we pin down exactly how the 

Jacobian is constructed in this work so that the matrix used by the solver matches 

the geometry of the CoppeliaSim scene one-to-one. The goal is a reproducible 

pipeline: take the scene’s link frames, apply the fitted modified-DH chain, and 

assemble a 6×7 Jacobian whose columns have a clear physical meaning and a 

declared frame resolution. 

Input and resolution 

The function takes the joint vector 𝑞 ∈ ℝ7 and a fixed flange-to-tool transform  7𝑇𝒯. 

Unless otherwise stated, all intermediate quantities are expressed in the base/world 

frame {0}. When needed, the Jacobian is rotated to the tool frame {𝒯}. 

Step 1 - Forward kinematics consistent with the scene 

Using the modified-DH chain fitted to the exported link frames (§3.2), form the 

cumulative transforms 

 0𝑇𝑖(𝑞) =∏  

𝑖

𝑘=1

 𝑘−1𝐴𝑘(𝑞𝑘), 𝑖 = 1,… ,7 

and the TCP pose 

 0𝑇𝒯(𝑞) =  
0𝑇7(𝑞) 

7𝑇𝒯 = [
 0𝑅𝒯(𝑞)  0𝑝𝒯(𝑞)
0 1

] 

The DH chain is used solely to generate consistent transforms; the geometric 

Jacobian is assembled from frame axes and positions (cross-product rule) to avoid 

DH-specific pitfalls. 

Step 2 - Extract per-joint geometric primitives 

From each  0𝑇𝑖(𝑞) extract: 
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𝑝𝑖 ∈ ℝ
3 (origin of frame 𝑖 in {0} ),  𝑧𝑖 ∈ ℝ

3 (unit 𝑧-axis of frame 𝑖 in {0} ).  

Also take 𝑝𝒯 =  
0𝑝𝒯(𝑞). 

Step 3 - Assemble columns (all joints revolute) 

For each joint 𝑖 ∈ {1,… ,7}, the column of the geometric Jacobian resolved in {0} 

is 

𝐽𝑣,𝑖 = 𝑧𝑖 × (𝑝𝒯 − 𝑝𝑖), 𝐽𝜔,𝑖 = 𝑧𝑖 

Stacking gives 

𝐽{0}(𝑞) = [
𝐽𝑣,1 ⋯ 𝐽𝑣,7
𝐽𝜔,1 ⋯ 𝐽𝜔,7

] ∈ ℝ6×7, 𝑥̇{0} = 𝐽{0}(𝑞)𝑞̇ 

When a TCP-resolved Jacobian is required, we apply a rigid rotation to map 

columns from {0} to {𝒯}, keeping the assembly numerically identical but frame-

consistent. 

Step 4 - Optional change of resolution to the tool frame 

When a tool-resolved twist is required, apply the current TCP rotation  

 𝑅𝒯 =  
0𝑅𝒯(𝑞)  

𝐽{𝒯}(𝑞) = [
𝑅𝒯
⊤ 0

0 𝑅𝒯
⊤] 𝐽

{0}(𝑞), 𝑥̇{𝒯} = 𝐽{𝒯}(𝑞)𝑞̇ 

Step 5 - Scene-alignment and tool changes 

The flange/tool transform  7𝑇𝒯 can be swapped to represent a different end-effector 

without changing any formula: it only shifts 𝑝𝒯 and rotates the resolution if 𝐽{𝒯} is 

requested. Because the DH constants were fitted to the scene's zero posture, the 

(𝑝𝑖, 𝑧𝑖) extracted here align with the simulator frames at all configurations. 

Step 6 - Consistency checks used in this work 

At random configurations, verify finite-difference consistency: 



57 
 

 0𝑝𝒯(𝑞 + 𝜀𝑒𝑗) −  
0𝑝𝒯(𝑞)

𝜀
≈ 𝐽𝑣,𝑗 ,              

log ( 0𝑅𝒯(𝑞)
⊤ 0𝑅𝒯(𝑞 + 𝜀𝑒𝑗))

𝜀
≈ 𝐽𝜔,𝑗, 

for small 𝜀 > 0 and standard basis 𝑒𝑗. Also check the frame-change identity 

[
𝑅𝒯 0
0 𝑅𝒯

] 𝐽{𝒯}(𝑞) ≈ 𝐽{0}(𝑞) 

up to numerical tolerance. The chosen resolution (base or tool) is recorded with 

each run to avoid ambiguity in later analyses. 

Physical reading of the columns (as implemented) 

Each column encodes the screw motion induced at the TCP by an infinitesimal 

rotation of joint 𝑖 : the lower block 𝑧𝑖 is the angular part (about the joint axis), and 

upper block 𝑧𝑖 × (𝑝𝒯 − 𝑝𝑖) is the linear part (lever-arm effect of that axis at the 

TCP). Proximal joints contribute strongly to both translation and orientation; distal 

joints primarily trim orientation and fine positioning—exactly what is observed in 

the experiment logs. 

3.3.3 Damped least-squares inverse with SVD, adaptive damping, and 

saturations 

Before composing tasks, we fix the velocity-level inverse kinematics used 

throughout. Figure 3.4 summarizes the DLS–SVD inverse used throughout, 

including adaptive damping and safety saturations. 

 

Fig. 3.4 DLS–SVD pipeline: compute 𝐽 = 𝑈Σ𝑉⊤→ form 𝐽𝜆
#→ primary command 𝑞̇pri = 𝐽𝜆

#𝑥̇task→ 

apply bounds and saturations. 
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The objective is a numerically stable joint-rate command that behaves predictably 

near poor conditioning while respecting joint limits. Given the geometric Jacobian 

𝐽(𝑞) ∈ ℝ6×7, with 𝑞 ∈ ℝ7 the joint configuration, we compute its singular value 

decomposition 𝐽 = 𝑈Σ𝑉⊤, where 𝑈 ∈ ℝ6×6 and 𝑉 ∈ ℝ7×7 are orthogonal, and Σ =

diag(𝜎1, … , 𝜎6) collects the nonnegative singular values 𝜎𝑖. The damped least-

squares (DLS) pseudoinverse is then defined as 

𝐽𝜆
# = 𝑉diag (

𝜎𝑖

𝜎𝑖
2 + 𝜆2

)𝑈⊤ 

with 𝜆 > 0 a damping parameter that regularizes the inversion in directions 

associated with small 𝜎𝑖. For a desired task-space velocity 𝑥̇task = [𝑣
⊤𝜔⊤]⊤ ∈ ℝ6 

(linear part 𝑣 in m/s and angular part 𝜔 in rad /s, resolved in the chosen frame), 

the primary joint command is 

𝑞̇pri = 𝐽𝜆
#𝑥̇task, 

which is the minimum-norm joint-rate vector that best realizes 𝑥̇task  under the 

damping 𝜆. 

To make the inverse robust across the workspace, we adapt 𝜆 to the instantaneous 

conditioning. We monitor the condition number 𝜅(𝐽) = 𝜎max/𝜎min 
+, where 𝜎max 

is the largest singular value and 𝜎min 
+is the smallest nonzero singular value 

encountered at 𝑞. The damping is scheduled as 

𝜆(𝑞) = 𝜆min + (𝜆max − 𝜆min)𝑠 (
𝜅(𝐽) − 𝜅ok
𝜅hi − 𝜅ok

) 

where 𝜆min, 𝜆max bound the admissible damping, 𝜅ok < 𝜅hi mark the transition 

from well-conditioned to poorly conditioned regions, and 𝑠(⋅) ∈ [0,1] is a smooth 

clamping function (e.g., cubic or logistic) that blends between the bounds. Thus 𝜆 

remains close to 𝜆min  in favorable regions and increases toward 𝜆max  as 𝜅(𝐽) grows. 

The task-space demand 𝑥̇task  itself is shaped from the pose error of 3.3.1 using 

bounded proportional action, 

𝑥̇task = [
𝐾𝑝𝑒𝑝
𝐾𝜔𝑒𝜔

] 
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where 𝑒𝑝 ∈ ℝ
3 (meters) and 𝑒𝜔 ∈ ℝ

3 (axis-angle, radians) are the position and 

orientation errors resolved in the same frame as the Jacobian, 𝐾𝑝 and 𝐾𝜔 are 

diagonal nonnegative gain matrices, and componentwise clamps enforce ‖𝐾𝑝𝑒𝑝‖ ≤

𝑣max  and ‖𝐾𝜔𝑒𝜔‖ ≤ 𝜔max  so that linear and angular rate caps 𝑣max (m/s) and 

𝜔max (rad/s) are never exceeded before inversion [1, 2]. 

For later null-space composition we define the projector 

𝑁(𝑞) = 𝐼7 − 𝐽𝜆
#(𝑞)𝐽(𝑞) 

where 𝐼7 is the 7 × 7 identity. This operator removes any component of a joint-rate 

vector that would leak into the primary task, allowing secondary behaviors to be 

added without corrupting 𝑥̇task  (see §3.5.5).  

Leakage is monitored as ℓ = ‖𝐽(𝑞) 𝑁(𝑞) 𝑞̇ bias‖ and clamped below LEAK_THR by 

scaling the secondary command. The leak metric, scale factor, and saturation flags 

are logged every tick for auditability (see §3.5.7). 

Finally, after adding secondary terms and obtaining a provisional 𝑞̇, we enforce 

joint-rate limits uniformly. Let |𝑞̇|max ,𝑖 be the admissible speed (rad/s) for joint 𝑖. 

If |𝑞̇𝑖| > |𝑞̇|max ,𝑖, we rescale 

𝑞̇ ← 𝛾𝑞̇,      𝛾 = min (1,min
𝑖
 
|𝑞̇|max,𝑖
|𝑞̇𝑖| + 𝜀

), 

with a small 𝜀 > 0  to avoid division spikes when |𝑞̇𝑖| ≈ 0 . This preserves the 

command direction while guaranteeing all joints satisfy their caps. As an additional 

numerical safeguard, singular values below a small floor 𝜎min  are replaced by 𝜎̃𝑖 =

max(𝜎𝑖 , 𝜎min ) before forming the diagonal factors 𝜎𝑖/(𝜎𝑖
2 + 𝜆2), which reduces 

jitter in directions that are effectively uncontrollable. In practice we recompute the 

SVD only when changes in 𝜅(𝐽) or ‖𝑒𝑥‖ exceed small hysteresis thresholds, and 

we log the triplet (𝜆, 𝜅(𝐽), 𝛾)  each control cycle together with the Jacobian's 

resolution (base or tool) for traceability. 
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3.3.4 Manipulability, conditioning and safe neighborhoods 

Before composing primary and secondary behaviors, we delineate where the 

kinematic map is reliable and how the controller responds as conditioning degrades. 

The objective is twofold: quantify local dexterity in a way that is reproducible from 

logs, and embed guardrails that keep inversion well-behaved without unnecessarily 

slowing motion. All metrics here are computed from the same geometric Jacobian 

𝐽(𝑞)  and its singular value decomposition 𝐽 = 𝑈Σ𝑉⊤  introduced earlier, with 

singular values 𝜎1 ≥ ⋯ ≥ 𝜎6 ≥ 0 defining the principal task-space directions. 

We use three complementary indicators. First, the condition number 𝜅(𝐽) =

𝜎max/𝜎min (where 𝜎min (is the smallest nonzero singular value at 𝑞 ) captures 

worst-case anisotropy of the velocity map; it grows unbounded near singular 

configurations and is therefore effective for triggering stronger regularization. 

Second, the Yoshikawa manipulability index 𝑤(𝑞) = √det(𝐽𝐽⊤) = ∏𝑖=1
6  𝜎𝑖 

measures the hyper-volume of attainable twists per unit joint-rate norm; it collapses 

to zero at singularities and is sensitive to simultaneous shrinkage of several 

directions rather than just the smallest one. Third, a directional measure useful for 

experiments is the reciprocal gain along a desired twist direction 𝑢 ∈ ℝ6 (with 

‖𝑢‖ = 1 ): we define 𝑚𝑢(𝑞) = 1/‖𝐽𝜆
#(𝑞)𝑢‖. This quantity reports how much joint 

motion would be required to realize a unit-magnitude command along 𝑢; small 𝑚𝑢 

flags directions that are expensive or poorly controllable even when the aggregate 

indices still look acceptable. In practice we log 𝜅(𝐽), 𝑤(𝑞), and a small set of 𝑚𝑢 

aligned with the commanded twist to make the diagnosis of slowdowns 

unambiguous. 

These indicators ground the definition of safe neighborhoods. We specify two 

nested sets with hysteresis: a nominal region 𝒮ok = {𝑞: 𝜅(𝐽) ≤ 𝜅ok ∧ 𝑤(𝑞) ≥ 𝑤ok} 

in which the inverse operates at low damping and full task gains, and a guarded 

region 𝒮guard = {𝑞: 𝜅(𝐽) ≤ 𝜅hi ∧ 𝑤(𝑞) ≥ 𝑤lo } that extends 𝒮ok  by a margin. 

Entering 𝒮guard ∖ 𝒮ok increases the damping 𝜆(𝑞) according to the schedule in 

§3.3.3 and proportionally reduces the translational and angular gains used to build 

𝑥̇task  (so both the inversion and the prefilter cooperate). If either bound is violated 

(𝜅(𝐽) > 𝜅hi  or 𝑤(𝑞) < 𝑤lo  ), task gains are clipped to minimal values and the null-
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space term is restrained to prevent the controller from "pushing into" a singularity 

while trying to improve posture. The hysteresis ( 𝜅ok < 𝜅hi, 𝑤lo < 𝑤ok ) prevents 

chatter as the arm hovers near the boundary; exact thresholds are reported alongside 

results so experiments are reproducible. 

Two implementation details improve fidelity to the physical robot and 

comparability across tasks. First, when translation and rotation have very different 

operational scales, we optionally introduce a task metric 𝑊 = diag(𝑠𝑝𝐼3, 𝑠𝜔𝐼3) that 

re-weights the twist before inversion by replacing 𝐽 with 𝑊1/2𝐽 in the SVD; the 

scalars 𝑠𝑝 > 0 and 𝑠𝜔 > 0 set translation-rotation balance without altering frame 

conventions. All logged indices are then computed on the weighted Jacobian so that 

the reported conditioning matches the controller's internal view. Second, proximity 

to joint limits can degrade effective dexterity even when 𝜅(𝐽) is moderate; to 

capture this we monitor a joint-margin factor: 

𝜌(𝑞) = min
𝑖
 {(𝑞max,𝑖 − 𝑞𝑖)/(𝑞max,𝑖 −𝑞min ,𝑖), (𝑞𝑖 − 𝑞min ,𝑖)/(𝑞max ,𝑖 − 𝑞min ,𝑖)} ∈

[0,0.5]. 

 When 𝜌(𝑞) drops below a comfort bound, the bias term in §3.3 .5 is directed away 

from the nearest limit and the admissible null-space velocity is reduced, which in 

turn helps keep 𝑤(𝑞) from collapsing in subsequent steps. 

Finally, all quantities in this subsection are resolved consistently with the Jacobian's 

chosen frame (base or tool) and are evaluated at the same discrete-time index as the 

SVD used for inversion. We record 𝜅(𝐽), 𝑤(𝑞), {𝑚𝑢}, 𝜌(𝑞), the active thresholds, 

and the resulting gains and 𝜆(𝑞) per control cycle. This establishes an auditable link 

from the reported performance—e.g., pauses or slowdowns near corners of the 

workspace—to the numerical state of the kinematic map at the time decisions were 

made. 

3.3.5 Task–priority composition and leak guard 

Having fixed the forward map and a robust inverse, we now describe how primary 

tool-space objectives are preserved while secondary joint-space behaviors reshape 

posture, respect limits, and create clearance around the human. The construction 

follows the classical task–priority paradigm but is specialized to the scene-
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consistent Jacobian and damped inverse introduced earlier, with explicit guards to 

prevent priority violations and to make behavior auditable from logs.  

We denote by 𝑥̇task ∈ ℝ
6 the bounded twist demand assembled from the pose error, 

using the gains and rate caps defined in §3.3.3. The primary joint command 

associated with this demand is obtained via the damped pseudoinverse 𝐽𝜆
#(𝑞) of the 

geometric Jacobian 𝐽(𝑞) : 

𝑞̇pri = 𝐽𝜆
#(𝑞)𝑥̇task . 

To embed secondary behaviors without corrupting the primary objective, we 

project them through the null space of the current Jacobian. With 

𝑁(𝑞) = 𝐼7 − 𝐽𝜆
#(𝑞)𝐽(𝑞), 

any joint-rate vector of the form 𝑁(𝑞)𝜂  leaves the instantaneous primary twist 

unchanged, because 𝐽𝑁 = 0 by construction (up to damping-induced numerical 

residue). The complete command therefore reads 

𝑞̇ = 𝐽𝜆
#𝑥̇task ⏟  

primary 

+ 𝑁𝑞̇bias ⏟  
secondary 

, 

where 𝑞̇bias ∈ ℝ
7 aggregates joint-space terms that encode posture preferences, 

joint-limit avoidance, and safety-driven reconfiguration. In this thesis we use 

smooth, bounded ingredients so that 𝑞̇bias  remains interpretable and differentiable: 

(i) a posture term pulling toward a comfortable reference 𝑞∗, (ii) a joint-limit barrier 

that increases as any joint approaches 𝑞min or 𝑞max, and (iii) a safety field steering 

links away from the human when distances decrease. These are combined with 

positive weights that may depend on the current context (e.g., larger weight on limit 

avoidance when margin shrinks), but always pass through the same projector 𝑁 to 

guarantee priority. 

Two practical issues must be addressed to make this composition predictable in the 

collaborative cell. First, because 𝐽𝜆
# is damped, the identity 𝐽𝑁 = 0 holds only up to 

a small numerical residue; if 𝑞̇bias  is large, that residue can leak into the primary 

channel. We therefore monitor the instantaneous leakage 
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ℓ(𝑞, 𝑞̇bias ) = ‖𝐽(𝑞)𝑁(𝑞)𝑞̇bias ‖, 

resolved in the same frame as 𝐽, and enforce ℓ ≤ LEAK_THR by scaling 𝑁𝑞̇bias  

when necessary. This single scalar, logged at each control cycle, makes priority 

violations observable and gives an immediate diagnostic for cases where a strong 

secondary push would otherwise disturb the tool objective. Second, because both 

the Jacobian and the projector vary with configuration, fast changes in 𝑞̇bias  can 

create chattering if they are allowed to react instantaneously to small distance or 

margin fluctuations. To avoid this, we employ hysteresis and dwell: the weights 

inside 𝑞̇bias  change only after the corresponding signal crosses a threshold with a 

small margin (e.g., distance bands for human proximity, comfort bands for joint 

margins), and then remain fixed for a minimum dwell time before they can move 

back. This simple policy significantly improves smoothness without sacrificing 

responsiveness. 

Finally, the composite command 𝑞̇ inherits the safety policies from §3.3.3. If any 

per-joint speed bound would be exceeded, a uniform scale is applied to the entire 

vector so that all components respect their caps while preserving direction. The 

resolution (base or tool) of the primary twist and the Jacobian is recorded with the 

same timestamp as ℓ, the active weights in 𝑞̇bias , and the global scale factor, 

ensuring that every experiment can be traced back from observed TCP behavior to 

the precise state of the priority stack at that moment. 

3.3.6 Orientation locking for the fixed-TCP scenario 

In collaborative operation there are phases where the tool must remain immobile in 

space while the arm reconfigures around the human. This subsection specifies the 

fixed-TCP regime as implemented: how the controller holds a constant tool pose, 

how residual motion is bounded and monitored, and how null-space reconfiguration 

proceeds without degrading the primary objective. 

Lock objective and admissible drift 

At the onset of the regime, the controller captures the tool pose 

 0𝑇𝒯
lock = [ 0𝑅𝒯

lock ∣  0𝑝𝒯
lock ] 
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and regulates the instantaneous error 

𝑒𝑝(𝑡) =  
0𝑝𝒯

lock −  0𝑝𝒯(𝑞(𝑡)),               𝑒𝜔(𝑡) = log ( 
0𝑅𝒯

lock  0𝑅𝒯(𝑞(𝑡))
⊤) 

The controller enforces the tight bounds 

‖𝑒𝑝‖ ≤  POS_TOL ,               ‖𝑒𝜔‖ ≤  ROT_TOL  

and flags a lock-violation whenever either bound is exceeded; the correction is 

applied immediately and the event is logged. 

Figure 3.5 depicts the captured lock pose and the bounded error region enforced 

during fixed-TCP reconfiguration: 

 

Fig. 3.5 Fixed-TCP regime. The controller captures  0𝑇𝒯
lock and enforces ∥ 𝑒𝑝 ∥≤ POS_TOL , ∥

𝑒𝜔 ∥≤ ROT_TOL while null-space reconfiguration proceeds. 

Primary command (near-zero set-point) 

The task twist is a clipped proportional action that recenters the TCP on the lock 

pose while keeping commanded motion negligible: 

𝑥̇lock = [
𝐾𝑝

lock sat(𝑒𝑝; 𝑣max
lock )

𝐾𝜔
lock sat(𝑒𝜔; 𝜔max

lock )
] 

with small diagonal gains 𝐾𝑝
lock , 𝐾𝜔

lock ⪰ 0 and stringent caps 𝑣max
lock ≪ 𝑣max,

𝜔max
lock ≪ 𝜔max. The corresponding joint command is 
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𝑞̇pri = 𝐽𝜆
#(𝑞)𝑥̇lock, 

using the same DLS inverse and adaptive damping as in §3.3.3. This continuously 

suppresses drift accumulated from numerical residue or sensor noise. 

Null-space reconfiguration under a lock 

Secondary behavior is admitted exclusively through the projector 𝑁(𝑞) = 𝐼7 −

𝐽𝜆
#(𝑞)𝐽(𝑞) : 

𝑞̇ = 𝐽𝜆
#𝑥̇lock ⏟  

pose hold 

+ 𝑁𝑞̇bias ⏟  
reconfiguration 

 

where 𝑞̇bias  aggregates posture regulation, joint-limit margins, and safety-field 

repulsion. Because damping introduces a small numerical residue, the controller 

monitors the instantaneous leakage 

ℓ = ‖𝐽(𝑞)𝑁(𝑞)𝑞̇bias ‖ 

in the same resolution as 𝐽 and scales 𝑁𝑞̇bias  to enforce ℓ ≤ LEAK_THR. Leakage, 

scale factor, and bounds compliance are recorded every cycle. 

Lock variants (implemented) 

Two variants are implemented and used in experiments: 

• Full-pose lock (default): the 6-D 𝑥̇lock  above holds both position and 

attitude within POS_TOL and ROT_TOL. 

• Orientation-only lock (ablations): the solver holds attitude rigidly while 

allowing millimetric position accommodation. This is realized with a 

selection matrix 𝑆 = diag(0 ⋅ 𝐼3, 𝐼3), applied as 𝑥̇lock ←

𝑆[𝐾𝑝
lock 𝑒𝑝; 𝐾𝜔

lock 𝑒𝜔] and 𝐽 ← 𝑆𝐽. 

Orientation-only lock is used in ablations; the full-pose lock is the default for fixed-

TCP runs reported in Chapter 6. 
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Anti-drift measures and logging 

Axis-angle errors are clamped to the injectivity radius; 𝑥̇lock  is low-pass filtered 

with a short time constant; integral action is disabled in null-space terms within a 

guard band around the lock. The controller reports the drift metrics 

𝛿𝑝(𝑡) = ‖𝑒𝑝(𝑡)‖, 𝛿𝜔(𝑡) = ‖𝑒𝜔(𝑡)‖ 

together with ℓ(𝑡) and the applied scale on 𝑁𝑞̇bias . All quantities are resolved 

consistently with the Jacobian (base or tool frame) and time-aligned with the IK 

solve, providing an auditable record that ties TCP immobility to the instantaneous 

numerical state of the lock controller. 

3.4 Trajectory time law for the TCP (Vector vs. LSPB) 

This section defines how the tool-center-point (TCP) reference is generated in time 

under two alternative laws that are used throughout the experiments: a continuous 

vector-attractive field and a lane-standard linear–segment–parabolic–blend (LSPB) 

profile. Both laws produce feasible, smooth target twists for the kinematic 

controller, but they emphasize different priorities. The vector field favors 

immediacy and reactivity to changing goals and safety cues, offering a memoryless 

reference that can be redirected at any instant with minimal timing structure. LSPB, 

in contrast, prescribes an explicit acceleration–cruise–deceleration envelope with 

axis synchronization, bounded jerk at blend transitions, and well-defined start/stop 

timing; it is therefore the natural choice when the supervisor must pause and later 

resume progress without corrupting the intended schedule. 

The presentation is deliberately operational and consistent with the rest of the 

chapter: references are expressed in the world frame at the TCP, sampled on the 

controller tick, and shaped so that commanded linear and angular rates remain 

within the limits enforced by the kinematic layer. We first formalize the vector-

attractive baseline and discuss its responsiveness and lack of temporal guarantees, 

then derive the discrete-time LSPB with synchronization and pause/resume 

semantics compatible with the speed-and-separation monitor. We conclude with the 

constraint-enforcement mechanisms common to both laws (velocity/acceleration 
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caps and command saturation) and specify the figures and tables used later for 

reproducibility. 

This section concerns TCP time laws used in the moving-TCP modes. In the fixed-

TCP mode, the TCP reference is held constant by §3.3.6, and only a null-space joint 

motion is generated; hence no TCP time-parameterization is required here. 

3.4.1 Vector-field TCP reference (moving target → repel → fixed target) 

This subsection keeps the continuous, signal-driven reference but states the exact 

law used to produce the TCP twist each control tick. The aim is to (i) approach a 

moving target while it is in motion, (ii) produce immediate retreat when separation 

must increase, and (iii) resume convergence to a fixed goal once RELEASE is 

granted, all without re-planning or retiming. 

Let the instantaneous desired TCP pose be 

 0𝑇𝑇
des(𝑡) = [

 0𝑅𝑇
des(𝑡) 0𝑇

des(𝑡)

𝟎⊤ 1
] 

From §3.3.1, define the pose error resolved in {0} : 

𝑒𝑝 =  
0𝑝𝑇
des −  0𝑝𝑇 , 𝑒𝜔 = log ( 

0𝑅𝑇
des 0𝑅𝑇

⊤) 

Attraction to the (first moving then fixed) target is a proportional twist with 

component-wise caps: 

𝑣att = sat𝑣max(𝐾𝑝𝑒𝑝), 𝜔att = sat𝜔max(𝐾𝜔𝑒𝜔), 

where 𝐾𝑝, 𝐾𝜔 ⪰ 0 are diagonal gains, and sat applies per-axis clamping to the 

translational and angular rates as in §3.3.3. 

LSPB commands are jerk-bounded and pause/resume-ready; on RESUME, the time 

law continues from a consistent state to prevent discontinuities in 𝑥̇ task. 

Repulsion is driven by the minimum distance 𝑑min  from the TCP/link proxies to 

the human capsules (declared in §3.5, instantiated in Chapter 4), together with a 

unit direction 𝑛̂ pointing from the nearest human proxy toward the TCP (all in {0}). 



68 
 

A smooth shaping 𝜙(𝑑) increases as distance shrinks (zero beyond a comfort band), 

e.g. logistic or reciprocal with hard caps. The repulsive twist is purely translational: 

𝑣rep = 𝑘𝑟𝜙(𝑑min)𝑛̂, 𝜔rep = 𝟎, 

with 𝑘𝑟 > 0 the repulsion gain and 𝜙(𝑑) = 0 for 𝑑 ≥ 𝑑free , 𝜙
′(𝑑) ≤ 0, and 𝜙(𝑑) 

saturated at 𝑣max  to preserve boundedness. 

Supervisor blending enforces STOP/RELEASE hysteresis. Let 𝑤att , 𝑤rep ∈ [0,1] 

be state-dependent weights: 

 (𝑤att , 𝑤rep ) = 

{

(0,1)  if 𝑑min ≤  RIF_STOP (HOLD/REPEL) ,
(𝛼, 1 − 𝛼)  if RIF_STOP < 𝑑min <  RIF_RELEASE, 𝛼 ∈ (0,1),
(1,0)  if 𝑑min ≥  RIF_RELEASE (RESUME). 

 

The instantaneous TCP twist command in {0} is 

𝑥̇field = [
𝑣
𝜔
] = [

𝑤att 𝑣att + 𝑤rep 𝑣rep 

𝑤att 𝜔att 
] 

then clamped by the global caps (𝑣max , 𝜔max ) from §3.3.3: 

𝑥̇task = sat(𝑣max,𝜔max)(𝑥̇field ) 

Supervisor hysteresis blends attraction and repulsion via (𝜔𝑎𝑡𝑡, 𝜔𝑟𝑒𝑝); stop and 

release radii enforce non-chattering boundary behavior (see §3.5.3) 

Discretization and mapping to joints follow the same kinematic stack used 

elsewhere. At each control period Δ𝑡, the commanded joint rates are 

𝑞̇ = 𝐽𝜆
#(𝑞)𝑥̇task + 𝑁(𝑞)𝑞̇bias  

with 𝐽𝜆
# the SVD-based damped pseudoinverse (adaptive 𝜆 per §3.3.3), 𝑁 = 𝐼 − 𝐽𝜆

#𝐽 

the null-space projector, and 𝑞̇bias  a small posture/limit bias (§3.3.5). Joint-rate 

saturation (uniform scaling) is then applied to respect |𝑞̇𝑖| ≤ |𝑞̇|max ,𝑖. Because 𝑥̇task  

depends only on the instantaneous error and distance cues, the same law seamlessly 

(i) tracks a moving  0𝑇𝑇
des (𝑡) with no re-planning, (ii) produces decisive retreat 

when 𝑑min  enters the STOP band, and (iii) continues toward the fixed goal once 
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RELEASE is met. The null-space term preserves the tool behavior while reshaping 

posture; leakage ‖𝐽𝑁𝑞̇bias ‖ is monitored and clipped under the threshold defined in 

§3.3.5, ensuring the primary TCP objective remains pristine during approach, repel, 

and resume. 

3.4.2 LSPB time law for the TCP (pause/resume–ready) 

To impose predictable timing and smooth rates on the TCP, we drive both 

translation and orientation with a single scalar time law 𝑠(𝑡) ∈ [0,1] following a 

linear-segment with parabolic blends (LSPB). The reference pose evolves as 

 0𝑝𝑇
des(𝑡) =  0𝑝𝑇

0 + 𝑠(𝑡)Δ𝑝,  0𝑅𝑇
des(𝑡) = 𝑅0Exp(𝑠(𝑡)𝜃𝑢̂), 

where Δ𝑝 =  0𝑝𝑇
𝑓
−  0𝑝𝑇

0, and 𝑅0
⊤𝑅𝑓 = Exp(𝜃𝑢̂) is the axis-angle gap between start 

and goal (rightinvariant, 𝜃 ∈ [0, 𝜋] ). Thus, the same normalized progress 𝑠(𝑡) 

synchronizes linear and angular motion. 

Profile construction (continuous time) 

Given path length 𝐷 = ‖Δ𝑝‖ and angle 𝜃, we set bounds 

𝑣max
lin , 𝑎max

lin , 𝜔max, 𝛼max 

and compute the progress-space limits that satisfy both translation and rotation: 

𝑠̇max = min(
𝑣max
lin

𝐷 + 𝜀
,
𝜔max
𝜃 + 𝜀

) , 𝑠̈max = min(
𝑎max
lin

𝐷 + 𝜀
,
𝛼max
𝜃 + 𝜀

), 

with 𝜀 a tiny guard when 𝐷 or 𝜃 is near zero. The LSPB has three phases: accelerate 

with 𝑠̈ = +𝑠̈max , cruise with 𝑠̇ = 𝑠̇max , and decelerate with 𝑠̈ = −𝑠̈max . Let 

𝑡𝑎 =
𝑠̇max
𝑠̈max

, 𝑠𝑎 =
1

2
𝑠̈max𝑡𝑎

2 =
1

2

𝑠̇max
2

𝑠̈max
 

be the progress covered during acceleration. If 2𝑠𝑎 ≤ 1, there is a cruise phase with 

duration 

𝑡𝑐 =
1 − 2𝑠𝑎
𝑠̇max

, 𝑇 = 𝑡𝑎 + 𝑡𝑐 + 𝑡𝑎 
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Otherwise, the profile is triangular (no cruise). Set 

𝑠̇peak = √𝑠̈max , 𝑡𝑎 =
𝑠̇peak 

𝑠̈max 

=
1

√𝑠̈max 

, 𝑇 = 2𝑡𝑎, 𝑡𝑐 = 0, 

after normalizing the total progress to 1, The resulting piecewise law is 

𝑠̇(𝑡) = {

𝑠̈max𝑡, 0 ≤ 𝑡 < 𝑡𝑎,
𝑠̇max, 𝑡𝑎 ≤ 𝑡 < 𝑡𝑎 + 𝑡𝑐,
𝑠̈max(𝑇 − 𝑡), 𝑡𝑎 + 𝑡𝑐 ≤ 𝑡 ≤ 𝑇,

    𝑠(𝑡) = ∫  
𝑡

0

  𝑠̇(𝜏)𝑑𝜏, 𝑠(0) = 0, 𝑠(𝑇) = 1 

Discrete-time realization (controller period 𝚫𝒕 ) 

At each tick 𝑘 : 

𝑠̇𝑘+1 = clip(𝑠̇𝑘 + Δ𝑡𝑠̈𝑘, 0, 𝑠̇max ), 𝑠𝑘+1 = clip(𝑠𝑘 + Δ𝑡𝑠̇𝑘+1, 0,1), 

with 𝑠̈𝑘 ∈ {+𝑠̈max , 0, −𝑠̈max } chosen by the phase scheduler. To bound discrete jerk, 

we limit changes of 𝑠̈𝑘: 

|𝑠̈𝑘+1 − 𝑠̈𝑘| ≤ 𝑗maxΔ𝑡 

So; accelerations ramp between ±𝑠̈max  over a few ticks rather than switching 

instantaneously. The commanded twist sent to IK (resolved in {0} unless stated) is 

𝑣𝑘
des = 𝑠̇𝑘

Δ𝑝

𝐷 + 𝜀
, 𝜔𝑘

des = 𝑠̇𝑘𝜃𝑢̂ 

with component-wise clamps ensuring ‖𝑣𝑘
des‖ ≤ 𝑣max

lin  and ‖𝜔𝑘
des‖ ≤ 𝜔max. This 

yields the task demand 𝑥̇task ,𝑘 = [𝑣𝑘
des ⊤ 𝜔𝑘

des  ⊤]⊤ used in §3.3. 

Axis synchronization 

A single 𝑠(𝑡) guarantees that linear and angular segments 

(accelerate/cruise/decelerate) start and finish together. The limits are selected by 

the most restrictive of translational and rotational bounds, so timing is consistent 

and predictable even when 𝜃/𝐷 varies across tasks. 

Pause/resume semantics for SSM 

When the supervisor asserts STOP (entry into the stop band), we freeze the time 

law by setting 𝑠̈𝑘 → −𝑠̈max  until 𝑠̇𝑘 → 0, then hold 𝑠̇𝑘 = 0 and keep 𝑠𝑘 constant; 
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the commanded twist goes smoothly to zero without overshoot. On RELEASE (exit 

from the band and dwell satisfied), we resume from the stored (𝑠𝑘, 𝑠̇𝑘 = 0) and 

rebuild the remaining LSPB with the current bounds, preserving continuity of 𝑠 and 

𝑠̇ and keeping jerk within the discrete limit above. If the goal pose is updated during 

a pause, we recompute Δ𝑝, 𝜃, 𝑢̂ using the current TCP pose as the new start and 

continue from the same 𝑠𝑘 (thereby avoiding discontinuities). 

Why this serves our cell 

The LSPB grants (i) reproducible arrival times and segment durations, (ii) 

synchronized translation-rotation with shared progress, (iii) bounded 

velocities/accelerations and discrete-time jerk, and (iv) clean pause/resume that 

interacts transparently with the supervisor. These properties make timelines and 

latency analyses in Chapters 5–6 interpretable, and they align with the safety and 

transparency requirements of collaborative operation. 

3.4.3 Constraint enforcement: caps, saturation, and runtime monitors 

This section formalizes how the TCP time-law (§3.4.1–§3.4.2) is executed safely 

in discrete time. The goal is to ensure that commanded task twists and the resulting 

joint motions remain within certified envelopes at every control tick, while 

preserving the timing semantics of each mode (notably pause/resume in Scenario 

4). 

Task-space limits and scaling 

Let the nominal task twist be 𝑥̇𝑘
nom = [𝑣𝑘

nom  ⊤ 𝜔𝑘
nom  ⊤]⊤. We first enforce 

Euclidean-norm bounds with direction-preserving gains 

𝛾𝑣 = min(1,
𝑣max
ln

‖𝑣𝑘
min‖

‖𝜀
) , 𝛾𝜔 = min(1,

𝜔max

‖𝜔𝑘
max‖

‖𝜀
), 

and set 𝑣𝑘
cap 
= 𝛾𝑣𝑣𝑘

nom , 𝜔𝑘
cap 
= 𝛾𝜔𝜔𝑘

nom . If per-axis limits apply, we additionally 

apply component-wise clipping: 

[𝑣𝑘
sat]𝑖 = clip ([𝑣𝑘

cap
]
𝑖
, −𝑣max

(𝑖)
, 𝑣max
(𝑖)
), 
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(and analogously for 𝜔 ). These caps operate before IK so the solver receives 

physically realizable demands. 

Discrete acceleration and jerk limiting 

To bound transients independently of the time-law, a rate limiter constrains the 

increment from one tick to the next: 

𝑥̇𝑘
lim = 𝑥̇𝑘−1

lim + clip(𝑥̇𝑘
sat − 𝑥̇𝑘−1

lim , −𝑎max
𝑥 Δ𝑡, 𝑎max

𝑥 Δ𝑡). 

An optional slope-of-slope limiter bounds discrete jerk via ‖𝑥̈𝑘
lim − 𝑥̈𝑘−1

lim ‖ ≤ 𝑗max
𝑥 , 

with 𝑥̈𝑘
lim = (𝑥̇𝑘

lim −𝑥̇𝑘−1
lim )/Δ𝑡. These bounds are configured tighter than ( 

𝑠̈max, 𝑗max ) from the LSPB profile so emergency decelerations remain smooth. 

Joint-space feasibility 

Using the DLS IK of §3.3 

𝑞̇𝑘
nom = 𝐽𝑘

#𝑥̇𝑘
lim + 𝑁𝑘𝑞̇𝑘

ns, 

we enforce joint-velocity limits via uniform scaling followed by per-joint clipping: 

𝛽 = min
𝑖
 min(1,

𝑞̇m
(𝐼)

|𝑞̇𝑘
max | ⋅∣ +𝜀

) , 𝑞̇𝑘
cmd = clip(𝛽𝑞̇𝑘

nom , −𝑞̇max , 𝑞̇max ) 

Position limits are handled by biasing the null-space command 𝑞̇𝑘
ns away from 

bounds (barrier or quadratic wells), with the velocity caps guaranteeing 

instantaneous safety when bias is insufficient. Thresholds are declared in §3.5 and 

validated in §3.6. 

Command validity and hold-last-safe 

If any of the following occurs at tick 𝑘-IK failure or excessive 𝜅(𝐽𝑘), stale/invalid 

target timestamps beyond LAT_THR, or unattainable acceleration/jerk-the 

controller transitions to a hold-last-safe policy: 

𝑞̇𝑘
cmd ← rate_limit(𝟎, 𝑞̇𝑘−1

cmd, 𝑎max
𝑞 Δ𝑡), 

ensuring a smooth deceleration to rest while maintaining stability. 
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Runtime monitors and health flags 

Lightweight runtime monitors execute each tick: 

• Timing monitor: if a control-loop overrun exceeds TICK_THR, set 

MON_TICK=1 and enter hold-last-safe. 

• Velocity monitor:  if any |𝑞̇𝑖| > 𝑞̇max 

(𝑖)
+ 𝛿, set MON_QDOT = 1, hard-

clip, and log the event. 

• Target-stream monitor: if target age > STREAM_THR, set 

MON_STREAM = 1, freeze the time-law 𝑠(𝑡) (pause semantics), and hold. 

• Saturation persistence counter: if 𝛽 < 1 or any component clip persists 

for 𝑁sat  ticks, raise SAT_PERSIST for later analysis (§6). 

Interaction between sceanrios 

• Scenario 1 (vector attractive TCP, no human): the proportional twist to 

a moving target (§3.4.1) is bounded by the task-space caps and rate limiters 

above; the IK then enforces joint feasibility. 

• Scenario 2 (scenario 1 + repulsive field): identical timing and capping as 

Base 1, but the task twist is modulated by a repulsive component derived 

from human-proximity distances (introduced in Ch. 4). Constraint 

enforcement remains identical; only the input 𝑥̇𝑘
nom  differs. 

• Scenario 3 (LSPB TCP, no human): the LSPB time-law (§3.4.2) already 

shapes 𝑥̇ with bounded accel/jerk; our limiters ensure feasibility under goal 

updates. 

• Scenario 4 (LSPB + SSM pause/resume): same as scenario 3, with the 

target-stream monitor implementing STOP/RELEASE semantics by 

freezing or resuming the phase 𝑠(𝑡). 

• Scenario 5 (fixed-TCP null-space avoidance): joint caps apply after null-

space projection. If enforcing joint limits would otherwise corrupt the TCP 

task, we first scale 𝑥̇ uniformly (task-space scaling) to preserve task 

integrity. 
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3.5 Safety variables and thresholds (declared here, used later) 

This section declares the global safety variables, units, and semantics used 

throughout Chapters 4–6. They serve two purposes: (i) to make the control logic in 

§3.4 unambiguous, and (ii) to ensure every experiment logs comparable, audit-

ready signals. 

3.5.1 Coordinate conventions and units 

All distances and positions are expressed in meters in the world frame {0}. 

Rotations are parameterized either by axis–angle (radians) or quaternion (unit 

norm); angular errors are reported as minimal-angle magnitudes in radians unless 

stated otherwise. Rates are per-second; timestamps are UTC with millisecond 

resolution. 

3.5.2 Core tolerances 

• POS_TOL [m]: maximum admissible Euclidean position error at the TCP 

before a position-converged flag is raised. Used by: stop/resume checks 

(§4.4), success criteria (§6). 

• ROT_TOL [rad]: maximum admissible orientation error (angle of 

𝑅des 𝑅
⊤). Entering/leaving the orientation-hold band is determined by this 

threshold. 

• VEL_TOL [𝐦/𝐬], [𝐫𝐚𝐝/𝐬]: small-band threshold below which the TCP is 

treated as stationary for state transitions. 

3.5.3 Repulsion and SSM thresholds 

Let 𝑑 denote the minimum distance between any human capsule and any robot 

proxy (defined in Ch. 4). 

• RIF_STOP [𝐦]: enter-stop threshold. When 𝑑 ≤ RIF_STOP, the 

supervisor forces STOP (scenario 4) or maximum repulsion (scenario 2), 

regardless of attractive commands. 

• RIF_RELEASE [m]: exit-stop threshold. Normal operation resumes only 

when 𝑑 ≥ RIF_RELEASE and the dwell condition holds (§4.4). Hysteresis 

requires RIF_RELEASE > RIF_STOP. 
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• DWELL_SSM [s]: minimum time the system must remain continuously 

outside the stop band before RELEASE, to avoid chatter. 

• RIF_GAIN_MAX [-]: upper bound on the repulsive-field gain used to 

shape the task twist in scenario 2; ensures bounded commanded velocities. 

3.5.4 Fixed-TCP avoidance and leakage 

For scenario 5 (null-space avoidance with a fixed TCP): 

• LEAK_THR [m/s], [rad/s]: maximum admissible task-space leakage 

induced by joint-limit handling or null-space injections, quantified as 

‖Δ𝑥̇TCP ‖ between pre/post projection. If exceeded, uniform taskspace 

scaling is applied (§4.5), and an event is logged. 

• NS_GAIN_MAX [-]: bound on the null-space step to keep avoidance 

smooth and secondary to the primary task. 

• LAT_THR [s]: maximum allowed age of the target/pose stream; if 

exceeded, the time law is frozen (scenario 4 pause semantics) and hold-last-

safe is engaged (§3.4.3). 

• TICK_THR [s]: maximum allowed control-loop overrun before triggering 

a timing fault and smooth deceleration to rest. Caps are applied before 

inversion; joint-space limits are enforced uniformly across modes to keep 

behavior consistent. 

• 𝒗max 
lin , 𝝎max [𝐦/𝐬], [𝐫𝐚𝐝/𝐬] : task-space speed caps used in §3.4.3. 

• 𝒂max 
𝒙 , 𝒋max 

𝒙 [ 𝐦/𝐬𝟐], [𝐦/𝐬𝟑] and rotational counterparts: task-space 

acceleration/jerk caps (independent of LSPB). 

• 𝒒̇max , 𝒂max 

𝒒
[𝐫𝐚𝐝/𝐬], [𝐫𝐚𝐝/𝐬𝟐] : joint-space limits used uniformly across 

modes. 

3.5.5 Health flags and logging schema 

At every control tick the following health flags are evaluated and logged alongside 

raw signals: 

• MON_TICK (timing overrun > TICK_THR) 
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• MON_STREAM (target age > LAT_THR) 

• IK_FAIL (solver failure or 𝜅(𝐽) over limit) 

• SAT_PERSIST (velocity/acceleration saturation sustained > 𝑁sat  ticks) 

• LEAK_EVT (task leakage > LEAK_THR in scenario 5) 

• RESUME_OK (pause/resume cycle completed without chattering at 

thresholds) 

• SSM_STATE ∈ { Approach, Hold, Repel, Resume, Stop } (Scenarios 2 and 

5, §4.4) 

Logs include: (i) target/TCP poses and errors, (ii) task twists pre/post capping, (iii) 

joint velocities/torques, (iv) min distances and nearest-pair IDs, (V) mode/state 

variables, (vi) timestamps and loop periods. Files are stored per run with immutable 

metadata: seed, configuration hash, software versions, and scene manifest (§5.4). 

3.5.6 Defaults and calibration pointers 

Nominal default values are provided as starting points and are refined in §3.6.3 via 

a calibration sweep. Hysteresis pairs (RIF_STOP, RIF_RELEASE) are set from 

capsule radii and sensing noise; tolerances (POS_TOL, ROT_TOL) reflect 

controller accuracy at steady state; latency guard LAT_THR derives from the end-

to-end budget in §3.6.2.  

3.6 Identification and validation of the model  

This section establishes how the kinematic model and its use in the controller are 

verified before any experimental runs are accepted. The objective is to demonstrate, 

with traceable evidence, that (i) the analytic Jacobian implemented in the stack 

matches the scene-consistent forward kinematics to within tight numerical 

tolerances, (ii) the end-to-end timing of sensing, decision, and actuation respects 

the controller period with quantified latency and jitter, (iii) the tolerances and 

thresholds declared in Chapter 3 are calibrated against observed behavior rather 

than chosen ad hoc, and (iv) every result is reproducible from versioned 

configurations and logged artifacts. 
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The validation proceeds along four axes. First, Jacobian correctness is checked by 

unit tests that compare analytic columns against finite-difference estimates of the 

forward kinematics at randomized joint configurations spanning the feasible set; 

pass/fail thresholds are defined a priori in both translational and rotational 

components. Second, a timing and latency budget is measured under the same 

synchronous stepping used in experiments: the pipeline from distance updates and 

state acquisition to command emission is instrumented, the distribution of latencies 

is reported, and an overrun policy is enforced whenever the measured delay 

approaches the controller period. Third, the operational tolerances and safety 

thresholds introduced earlier—position and orientation bands for the TCP, 

separation hysteresis for stop and release, and the leakage bound for null-space 

actions—are calibrated by sweeps that trade tracking performance against safety 

margins; the chosen values are those that satisfy the pass criteria while preserving 

transparency of motion. Fourth, reproducibility is guaranteed by storing 

configuration files, seeds, and version hashes together with run manifests, so that 

any table or figure can be regenerated exactly. 

3.6.1 Finite-difference vs. analytic; unit tests; pass/fail 

Before any experiment is admitted, the geometric Jacobian implemented in the 

stack is verified against finite-difference estimates of the forward kinematics 

generated from the same, scene-consistent link frames (§3.2). The goal is to prove 

that each analytic column correctly maps an infinitesimal change in the 

corresponding joint to the induced instantaneous linear and angular velocity at the 

TCP, under the declared frame resolution. 

Protocol and test set 

We validate on a fixed-size batch of 500 joint configurations drawn uniformly 

within the conservative joint limits (§3.2), with a 5° margin from each bound to 

avoid hard-limit artifacts. A deterministic seed fixes the sample set for 

reproducibility. All quantities are resolved in the base/world frame {0}; a mirrored 

run repeats the checks in the tool frame {T} using the rigid rotation described in  

§3.3.2, and the two outcomes are cross-checked for consistency. 
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Finite-difference model (ground truth) 

For each configuration q and each joint index j ∈ {1, … ,7}, we evaluate the forward 

kinematics at q ± he, j with a central step h = 10−6rad(ejj is the j -th basis vector). 

The translational column "truth" is formed as 

𝐽𝑣,−𝑗 =
 0𝑝𝑇(𝑞 + ℎ𝑒𝑗) −  

0𝑝𝑇(𝑞 − ℎ𝑒𝑗)

2ℎ
∈ ℝ3 

and the rotational column "truth" uses the right-invariant orientation increment via 

the matrix logarithm: 

𝐽𝜔,−𝑗 =
log ( 0𝑅𝑇(𝑞)

⊤ 0𝑅𝑇(𝑞 + ℎ𝑒𝑗)) − log ( 
0𝑅𝑇(𝑞)

⊤ 0𝑅𝑇(𝑞 − ℎ𝑒𝑗))

2ℎ
∈ ℝ3. 

This yields a numerically robust estimate of the instantaneous twist induced by joint 

j, directly comparable to the analytic column 𝐽.𝑗 = [𝐽𝑣,.𝑗
⊤ 𝐽𝜔,.𝑗

⊤ ]
⊤

. 

Error metrics and aggregation 

For each (𝑞1, 𝑗) we compute absolute and relative errors 

𝑒𝑣,𝑗
abs = ‖𝐽𝑣,𝑗 − 𝐽𝑣,𝑗‖2,            𝑒𝜔,𝑗

abs = ‖𝐽𝜔,𝑗 − 𝐽𝜔,𝑗‖2,

𝑒𝑣,𝑗
rel =

𝑒𝑣,𝑗
abs

max (‖𝐽𝑣,𝑗‖2, 𝜀𝑣)
,            𝑒𝜔,𝑗

rel =
𝑒𝜔,𝑗
abs

max (‖𝐽𝜔,𝑗‖2, 𝜀𝜔)
,
 

with 𝜀𝑣 = 10
−9 and 𝜀𝜔 = 10

−9 to avoid division by very small denominators. We 

report, per run: (i) the maxima over all columns ("worst column"), (ii) the 95th 

percentiles (robust spread), and (iii) means (central tendency). In parallel, the 

Jacobian's condition number 𝜅(𝐽) is recorded to contextualize errors near singular 

neighborhoods. 

Pass/fail thresholds (applied deterministically) 

A validation run passes if all the following are satisfied simultaneously: 

• Worst-column absolute errors: max𝑞,𝑗  𝑒𝑣,𝑗
abs ≤ 5 × 10−6 m and 

max𝑞,𝑗  𝑒𝜔,𝑗
abs ≤ 5 × 10−6rad. 
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• Robust relative errors: 95th percentiles satisfy 𝑒𝑣,𝑗
rel ≤ 1 × 10−4 and 

𝑒𝜔,𝑗
rel ≤ 1 × 10−4. 

• Frame-consistency check: for every q, 

‖blkdiag(𝑅𝑇
⊤, 𝑅𝑇

⊤)𝐽{0}(𝑞) − 𝐽{𝑇}(𝑞)‖𝐹
≤ 10−8, 

ensuring the base-resolved and tool-resolved Jacobians are rigidly consistent. 

• SVD projector check: the projector 𝑁 = 𝐼7 − 𝐽𝜆
#𝐽 (with the same DLS 

settings used in control) satisfies ‖𝐽𝑁‖𝐹 ≤ 10
−8, confirming that the null-

space action is orthogonal to the primary task numerically. 

Implementation notes (traceability) 

All quantities are computed with the same forward-kinematics function used in the 

controller, ensuring that the comparison isolates the Jacobian construction rather 

than mixing models. The step h is small enough to capture the local derivative while 

remaining above machine epsilon for the scale of the scene; we log (ℎ, 𝜀𝑣, 𝜀𝜔), the 

random seed, joint limits, and the full set of maxima/percentiles so that the table of 

validation metrics (Table 3.5) can be regenerated exactly. Any configuration with 

𝜅(𝐽) exceeding 108 is still included; large relative errors in such cases are expected 

and are discussed separately in the identification notes, but the absolute error 

criteria above remain the formal pass conditions. 

Outcome artifacts 

The unit-test harness emits: (i) a CSV of per-sample, per-joint errors 

(𝑒𝑣,𝑗
abs, 𝑒𝜔,𝑗

abs, 𝑒𝑣,𝑗
rel, 𝑒𝜔,𝑗

rel , 𝜅(𝐽)); (ii) a summary row with worst, 95th-percentile, and 

mean values; (iii) the frame-consistency residuals and projector residuals; and (iv) 

a pass/fail flag. These are the inputs for Table 3.5 (validation metrics & pass 

criteria) referenced at the end of §3.6. 

3.6.2 Timing and latency budget (controller tick vs. physics step; end-to-end 

latency; overrun policy) 

Reliable interpretation of results requires that sensing, control, and actuation 

advance with a known cadence and bounded delay. This subsection fixes the timing 

model used across all experiments, the method used to measure end-to-end latency, 
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the acceptance thresholds, and the policy applied whenever a cycle risks 

overrunning its budget. 

Timing model and notation 

The controller runs with a fixed period 𝑇𝑐 (tick rate 𝑓𝑐 = 1/𝑇𝑐 ). The simulator's 

physics integrator advances with step 𝑇𝑝 (rate 𝑓𝑝 = 1/𝑇𝑝 ). We operate the scene in 

synchronous mode with 𝑇𝑝 chosen as a submultiple of 𝑇𝑐 (default 𝑇𝑐 = 5 ms, 𝑇𝑝 =

1 ms ), so one control tick wraps five physics substeps. Within a tick, the end-to-

end delay from sensing to actuation is decomposed as 

𝐿e 2 e = 𝐿sense + 𝐿queue + 𝐿comp + 𝐿commit , 

where 𝐿sense  is the time between the physics state at the sampling instant and 

stamped availability of joint/pose signals, 𝐿queue  is any middleware/buffer delay, 

𝐿comp  is the wall-time for the control computation (FK/Jacobian, SVD/DLS, 

references, supervision), and 𝐿commit  is the time to deliver the command to the 

simulator's actuator at the next integrator boundary. We track loop jitter as 

Δ𝑇𝑐(𝑘) = 𝑇𝑐
actual (𝑘) − 𝑇𝑐. 

Measurement procedure 

All timing is measured on a single monotonic clock used by the synchronous 

stepping loop. Each control cycle logs: (i) tick start time 𝑡𝑘; (ii) timestamp of the 

physics state sampled 𝑡̂𝑘; (iii) computation start/stop: (iv) command commit time. 

From these we compute per-cycle 𝐿sense , 𝐿queue , 𝐿comp , 𝐿commit , 𝐿e2e and Δ𝑇𝑐. A 

mirrored run is recorded with the Jacobian resolved in {𝑇} to confirm resolution 

choice has no timing side-effects (it does not change timings by design). The 

emitted artifact (for Fig. 3.4) is a histogram of 𝐿e2e  with overlays for mean, median, 

𝑝95, 𝑝99, and maximum, plus a separate plot of Δ𝑇𝑐 over time to visualize burstiness. 

Budget and acceptance thresholds (applied deterministically) 

We partition the control period into a hard budget for computation and a soft budget 

for I/O: 

𝐿comp ≤ 𝛽𝑇𝑐, 𝐿sense + 𝐿queue + 𝐿commit ≤ (1 − 𝛽)𝑇𝑐 
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with 𝛽 = 0.6 by default. A run is admitted if all hold: 

• Mean end-to-end delay 𝐿‾e2e ≤ 0.7𝑇𝑐: 

• 𝑝95(𝐿e2e) ≤ 0.85𝑇𝑐 and 𝑝99(𝐿e2e) ≤ 0.95𝑇𝑐; 

• Worst-case jitter |Δ𝑇𝑐|max ≤ 0.2 ms (for 𝑇𝑐 = 5 ms ); RMS jitter ≤

0.05 ms; 

• Overrun rate (cycles with 𝐿e2e > 𝑇𝑐 ) equals 0 over the validation window; 

if nonzero during development sweeps, it must be < 10−4 and cannot 

cluster (no more than one overrun in any 1-s window). 

Overrun detection and hold-last-safe policy 

An overrun is declared at tick 𝑘 if 𝑡𝑘 + 𝐿𝑒2𝑒 ≥ 𝑡𝑘 + 𝑇𝑐. In that case the system: 

1. freezes the commanded twist and joint rates for the upcoming tick (hold-

last-safe); 

2. stamps a health flag (OVERRUN=1) and increments a counter; 

3. drops any queued intermediate sensor updates to realign sampling to the 

next physics boundary: 

4. reduces internal task gains by a factor 𝜂 ∈ (0,1) (default 𝜂 = 0.7 ) for the 

next tick to avoid a second consecutive overrun. 

 

If two consecutive overruns occur, the supervisor asserts a PAUSE, which zeroes 

the task demand, preserves the last valid posture, and resumes only after a clean 

tick with 𝐿𝑒2𝑒 < 0.7𝑇𝑐. All events are logged with cycle indices for post-hoc 

traceability. 

Synchronization choices and drift control 

Because the loop is simulator-paced, drift between controller and physics time is 

structurally prevented: the next control tick cannot start until the physics step 

acknowledges the prior commit. To forestall numeric drift in the down-counter, the 

scheduler re-anchors to the simulator epoch every 100 ticks (configurable) and logs 

the re-anchor residual (target < 20𝜇 s ). 
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Notes on interplay with controllers 

The timing budget is identical across vector-field and LSPB reference generators; 

LSPB adds a negligible lookup/interpolation cost absorbed in 𝐿𝑐𝑜𝑚𝑝. Null-space 

computations reuse the same SVD already computed for DLS, so they do not 

change the asymptotic cost; their presence is nevertheless recorded in the log header 

for completeness. 

3.6.3 Tolerance and threshold calibration (POS/ROT tolerances; 

STOP/RELEASE bands; leak threshold protocol) 

This subsection fixes how tracking tolerances and supervisory thresholds are 

selected so that all later experiments are executed under declared margins. The goal 

is to set values that are tight enough to be informative and reproducible, yet 

conservative enough to avoid spurious interventions. 

Scope and notation 

We calibrate: (i) the TCP tracking tolerances POS_TOL (meters) and ROT_TOL 

(radians) used to judge regulation; (ii) the STOP/RELEASE separation bands 

(RIF_STOP, RIF_RELEASE) used by the supervisor; and (iii) the null-space leak 

threshold LEAK_THR that limits corruption of the primary task. All distances are 

world-frame, all orientation errors use the axis-angle norm from  §3.3.1 , and 

leakage is measured as ‖𝐽𝑁𝑞̇bias ‖ using the same Jacobian resolution chosen for 

control (recorded in the log header). 

Calibration procedure-TCP tolerances 

• Static posture hold (noise floor). With the robot immobilized in the 

simulator (no reference motion), we log 30 s of TCP pose to estimate the 

sensor/quantization floor: 𝜎𝑝( m) and 𝜎𝜔(rad). We require these floors to 

be at least an order of magnitude below the eventual tolerances. 

• Ramp-in regulation (closed-loop capability). We command exponentially 

decaying references to the current pose and measure steady-state residuals 

𝑒‾𝑝, 𝑒‾𝜔 after transients (last 10 s ). 
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• Tolerance selection. We set POS_TOL = 𝑘𝑝max(𝜎𝑝, 𝑒‾𝑝) and ROT_TOL =

𝑘𝜔max(𝜎𝜔 , 𝑒‾𝜔) with 𝑘𝑝 = 𝑘𝜔 = 5 by default. These multipliers ensure 

false positives are rare while keeping bounds informative. 

• Validation. We replay nominal trajectories (vector and LSPB) and verify 

that at least 99% of samples satisfy ‖𝑒𝑝‖ ≤ POS_TOL and ‖𝑒𝜔‖ ≤ 

ROT_TOL; violations trigger either gain retuning or tolerance reestimation. 

 

Calibration procedure-STOP/RELEASE hysteresis 

• Distance trace acquisition. With the human avatar approaching and 

receding along representative paths, we log the minimum robot-human 

distance 𝑑min(𝑡) (capsule-proxy model from Ch. 4). 

• Band placement. We set RIF_STOP at the smallest distance for which 

the supervisor must pause to guarantee clearance under worst-case 

approach rates, and RIF_RELEASE > RIF_STOP to introduce 

hysteresis. Practically, we sweep candidate pairs over a grid and 

simulate approach-hold-resume episodes; for each pair we measure stop 

latency, minimum achieved clearance, and chatter events. 

• Acceptance. Choose the smallest RIF_STOP that yields a measured 

minimum clearance ≥ 𝑑req  (declared in Ch. 4) with zero chatter, and the 

smallest RIF_RELEASE that guarantees resume only after the clearance 

has exceeded RIF_STOP by at least Δ𝑑hyst  (default 0.05 m ). The 

selected pair is fixed for all experiments of the same sensing fidelity and 

controller period. 

Calibration procedure-null-space leak threshold 

• Baseline measurement. With the primary task active and a neutral bias 

𝑞̇bias = 0, we measure ‖𝐽𝑁𝑞̇bias ‖ to characterize numerical leakage (should 

be ∼ 0 within solver precision). 

• Bias injection sweeps. We inject bounded biases representative of posture 

shifts and repulsion fields (magnitudes spaced logarithmically), compute 
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the resulting leakage, and record how much of the bias penetrates the 

primary task. 

• Threshold choice. We set LEAK_THR to the largest value that preserves 

the primary task within tolerances, i.e., the smallest threshold for which the 

induced task error remains ≤ POS_TOL/ROT_TOL over all sweeps. In 

practice, LEAK_THR is chosen near the 95th percentile of observed 

leakage under maximum expected bias. 

3.6.4 Reproducibility artifacts (configs, seeds, version hashes, run manifests) 

To make every result in this chapter independently repeatable, we fix a concrete set 

of artifacts that capture the full provenance of each experiment. The intent is that a 

reader can re-execute any run and obtain numerically consistent traces (up to 

floating-point noise) by relying only on these artifacts. This subsection defines what 

is stored, how it is named, and how integrity is verified. 

Scope and guiding principles 

We record the exact code and scene versions used; the full configuration (including  

safety thresholds and time-law parameters); all random seeds; the execution 

environment; and the outputs with units and sampling rates. Artifacts are organized 

so that (i) one manifest describes one run end-to-end, (ii) content hashes guarantee 

immutability, and (iii) any non-determinism is bounded and disclosed. 

3.7 Conclusions 

This chapter established the kinematic foundation and supervisory scaffolding on 

which the remainder of the thesis is built. We began by motivating the use of a 6×7, 

velocity-level formulation for a 7-DoF Franka Emika Panda operating in a 

collaborative cell and by fixing the scene-consistent frames, limits, and link proxies 

that make simulation runs reproducible and transferable to hardware. Forward 

kinematics and a small-angle, axis–angle pose-error definition were formalized to 

avoid parametrization singularities while remaining well-conditioned for 

incremental corrections typical of supervised collaboration. The geometric 

Jacobian was derived directly from the simulator-aligned link frames, with explicit 

frame-resolution conventions and verification procedures to ensure agreement 

between analytic and finite-difference evaluations. 
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Building on these primitives, we specified the inverse-kinematics operator used 

throughout: a damped least-squares pseudoinverse constructed from the Jacobian’s 

SVD, with adaptive damping tied to conditioning, bounded twist inputs, and 

uniform joint-rate saturations. We complemented these choices with manipulability 

and conditioning metrics that define safe neighborhoods and guide gain/damping 

schedules as the arm approaches singular regions or joint-limit boundaries. On top 

of the primary TCP task, we introduced the task-priority composition that preserves 

the tool objective while allocating the null space to posture shaping and later, 

human-aware safety behaviors. A quantitative leak guard was defined to certify that 

secondary actions do not corrupt the primary task. For scenarios requiring an 

unmoving tool, we formalized orientation locking so that fixed-TCP constraints can 

coexist with null-space reconfiguration. 

Time-law generation for the TCP was then framed along two complementary paths. 

A continuous vector-attractive reference offers responsiveness and simplicity and 

serves as the baseline for approach/repel behaviors when tracking a moving target 

before converging to a fixed goal. In contrast, the LSPB scheme imposes an explicit 

accelerate–cruise–decelerate structure with axis synchronization, bounded jerk in 

discrete time, and well-defined pause/resume semantics that align with the 

supervisor’s STOP/RELEASE logic. Constraint enforcement—velocity and 

acceleration caps, command saturation, and cycle-integrity monitors—was 

specified so that reference generation, inversion, and supervision operate within 

declared limits and remain diagnosable from logs. 

Finally, we consolidated the safety variables and thresholds that recur across 

chapters (distances in the world frame, STOP/RELEASE hysteresis bands with 

dwell, tracking tolerances, and the leak threshold) and fixed the identification-and-

validation procedures. These include Jacobian unit tests against finite differences, 

an end-to-end timing/latency budget with a hold-last-safe policy on overruns, 

tolerance/threshold calibration protocols, and a full set of reproducibility artifacts 

(manifests, seeds, version hashes, and run bundles) that anchor every reported 

figure and table. 
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Chapter 4 

Human Model, Distances and Safety Behaviors 

Chapter 4 formalizes the human–robot interaction layer used in the experiments. 

Starting from time-stamped human pose streams, we construct skeleton-derived 

capsules that serve as collision proxies, define reference-frame distances and a 

budgeted nearest-pair query, and build two safety behaviors on this foundation: 

continuous repulsive fields blended with the posture bias for smooth approach–

repel transitions (Scenario 2), and a supervisor with explicit STOP/RELEASE 

hysteresis that pauses and resumes an LSPB TCP time law without corrupting its 

schedule (Scenario 4). The framework is then extended to fixed-TCP avoidance in 

redundant kinematics (Scenario 5), where the full 6-DoF task is preserved and 

avoidance acts in the null space. 

All variables required by the subsequent chapters are declared here, including 

distance definitions, tolerances, STOP/RELEASE bands, and leak thresholds, 

together with logging flags for experiment health. Section 4.1 introduces the pose 

sources, filtering, and capsule layout; Section 4.2 specifies the distance 

computation and computational budget; Section 4.3 presents the repulsive field 

shaping and blending with the posture bias; Section 4.4 describes the finite-state 

supervisor and its timing guarantees; Section 4.5 develops fixed-TCP null-space 

avoidance and orientation locking; Section 4.6 discusses stability and transparency 

considerations. 
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4.1 Human pose streams to skeleton-derived capsules 

This section formalizes how 3D joint streams are transformed into a compact proxy 

used by the safety modules and by the simulator mannequin. 

4.1.1 Input and world alignment 

Let the sensing frame be {K} and the global laboratory frame be {0}. At time t the 

sensor delivers joint positions 

 𝐾𝑝𝑖(𝑡) ∈ ℝ
3, 𝑖 ∈ 𝒥 

for the set 𝒥 = {HC, SC, Head, LS, LE, LW, RS, RE, RW, ...} (hip center, shoulder 

center, head, left/right shoulder, elbow, wrist, etc.). After causal filtering and gap 

filling, positions are mapped to {0} via a fixed rigid transform 

 0𝑝𝑖(𝑡) =  
0𝑅𝐾 

𝐾𝑝𝑖(𝑡) +  
0𝑝𝐾, 

with 

 0𝑅𝐾 = 𝑅𝑧(−135
∘),  0𝑝𝐾 ∈ ℝ

3, 

chosen so that the hip line aligns with the table edge and the floor height is 

consistent with the robot scene. All subsequent computations use  𝑝𝑖(𝑡) in meters 

[11, 16]. 

4.1.2 Local anatomical frames and mannequin actuation 

Denote right-side triplet (RS, RE, RW) and left-side triplet (LS, LE, LW). Unit 

directions are built from adjacent segments. 

Torso frame about the shoulder center SC: 

𝑧̂torso =
 9𝑝SC −  

9𝑝HC
‖ 0𝑝SC −  9𝑝HC‖

, 𝑦̂torso =
𝑧̂torso × ( 

0𝑝LS −  
9𝑝RS)

‖𝑧̂torso × ( 0𝑝LS −  0𝑝RS)‖
 ,   

𝑥̂torso = 𝑦̂torso × 𝑧̂torso  

The corresponding rotation is 

 torso 𝑅0 = [𝑥̂torso 𝑦̂torso 𝑧̂torso ]
⊤ 
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Right shoulder frame at RS: 

𝑥̂RS =
 0𝑝RS −  

0𝑝RE
‖ 0𝑝RS −  0𝑝RE‖

, 𝑧̂RS =
( 0𝑝RW −  

0𝑝RE) × ( 
0𝑝RS −  

0𝑝RE)

‖( 0𝑝RW −  0𝑝RE) × ( 0𝑝RS −  0𝑝RE)‖
,     

 

  𝑦̂RS = 𝑧̂RS × 𝑥̂RS,           
RS𝑅0 = [𝑥̂RS𝑦̂RS𝑧̂RS]

⊤. 

Left shoulder frame at LS (sign convention matches the mannequin): 

𝑥̂LS = −
 0𝑝LE −  

0𝑝LS
‖ 0𝑝LE −  0𝑝LS‖

, 𝑧̂LS =
( 0𝑝LS −  

0𝑝LE) × ( 
0𝑝LW −  

0𝑝LE)

‖( 0𝑝LS −  0𝑝LE) × ( 0𝑝LW −  0𝑝LE)‖
,
 

𝑦̂LS = 𝑧̂LS × 𝑥̂LS,  LS𝑅0 = [𝑥̂LS𝑦̂LS𝑧̂LS]
⊤ 

Skeleton timestamps and frame validity flags are preserved end-to-end and used by 

the supervisor during gating (see §5.1). 

Elbow flexion angles (for revolute elbows) follow from relative orientations. With 

forearm frames  RE𝑅0 and  LE𝑅0 built from the segments (RE → RW) and (LE →

LW), the right-elbow rotation in the upper-arm frame is 

 RS𝑅RE =  
RS𝑅0 

0𝑅RE, 𝜃R-elbow = EA123( 
RS𝑅RE)3 

and similarly for the left elbow, where EA123(⋅)3 extracts the third XYZ Euler angle 

used by the mannequin. Shoulder and torso spherical joints are commanded directly 

via the corresponding direction-cosine matrices  RS𝑅0,  
LS𝑅0, and  torso 𝑅0 flattened 

in column-major order. 

4.1.3 Capsule proxy set 

The skeleton is reduced to six convex proxies updated at the sensor rate: 

𝒞(𝑡) = {(𝑎𝑐(𝑡), 𝑏𝑐(𝑡), 𝑟𝑐) ∣ 𝑐 = 1, … ,5} ∪ {(ℎ(𝑡), 𝑟𝐻)}, 

with endpoints 

𝑐 = 1: (𝑎1, 𝑏1) = ( 
0𝑝RS,  

0𝑝RE), 𝑐 = 2: (𝑎2, 𝑏2) = ( 
0𝑝RE,  

0𝑝RW),

𝑐 = 3: (𝑎3, 𝑏3) = ( 
0𝑝LS,  

0𝑝LE), 𝑐 = 4: (𝑎4, 𝑏4) = ( 
0𝑝LE,  

0𝑝LW),

𝑐 = 5: (𝑎5, 𝑏5) = ( 
0𝑝Abd,  

0𝑝Spine ),       ℎ(𝑡) =  0𝑝Head. 
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Radii {𝑟𝑐} are conservative constants that cover soft tissue, clothing, and residual 

pose noise. Default values used in experiments are reported in Table 4.1. This table 

lists per-segment radii in “meters” and is reused unchanged in Chapters 5–6.  

Parameter Symbol Value Unit 

Max task speed (cruise cap) v_max 1.2 m/s 

Max task acceleration (braking 

cap) 

a_max 1.2 m/s² 

Acceptance / deadband r_accept 0.05 m 

Pause dwell (down) T↓ 0.25 s 

Final hold duration T_hold 2.0 s 

Stop radius r_stop 0.25 m 

Release radius r_release 0.28 m 

Joint speed cap ||q̇||_∞ 1.0 rad/s 

Per-tick step cap step_cap 6 deg/step 

Linearization radius d_lin 0.20 m 

Damping factor λ — – 

Posture weight w_post — – 

Repulsion weight w_rep — – 

Joint-limit weight w_lim — – 

Manipulability weight w_m — – 

Joint-limit margin Δq_lim — rad 

Table 4.1: Velocity/acceleration caps, damping λ, acceptance radius, pause/resume dwell times, 

hysteresis bands (r_stop, r_release), posture weights (w_post), repulsion weights (w_rep), joint-limit 

margins, manipulability weight (w_m); SI units. 

4.1.4 Signed distance to a capsule 

For any query point 𝑝 ∈ ℝ3 and capsule (𝑎, 𝑏, 𝑟), 

𝜆∗ = clip[0,1] (
(𝑝 − 𝑎)⊤(𝑏 − 𝑎)

‖𝑏 − 𝑎‖2
) , 𝜋(𝑝) = 𝑎 + 𝜆∗(𝑏 − 𝑎),

 

𝑑cap (𝑝; 𝑎, 𝑏, 𝑟) = ‖𝑝 − 𝜋(𝑝)‖ − 𝑟. 

For a head sphere (ℎ, 𝑟𝐻), 𝑑sph(𝑝; ℎ, 𝑟𝐻) = ‖𝑝 − ℎ‖ − 𝑟𝐻. The instantaneous 

human-proxy distance field is the minimum over the set, 

𝑑human (𝑝, 𝑡) = min ( min
𝑐=1,…,5

 𝑑cap (𝑝; 𝑎𝑐(𝑡), 𝑏𝑐(𝑡), 𝑟𝑐), 𝑑sph (𝑝; ℎ(𝑡), 𝑟𝐻)). 
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4.1.5 Timing and coherence 

All joint samples  0𝑝𝑖(𝑡) carry time stamps. A hold-last-good policy provides a 

coherent snapshot { 0𝑝𝑖(𝑡̂)} to the safety layer when a new frame is late, and frames 

flagged as unreliable by the front-end filter are not propagated downstream. 

4.2 Clearance distances and minimum-distance query 

4.2.1 Robot points of interest 

Let the robot be instrumented with a finite set of witness points 𝒫𝑟 = {𝑝𝑘}𝑘=1
𝑁𝑟 ⊂ ℝ3 

expressed in the world frame {0}. At time 𝑡, 

𝑝𝑘(𝑡) = 𝑓𝑘(𝑞(𝑡)), 𝑘 = 1, … , 𝑁𝑟 

with 𝑞 ∈ ℝ𝑛 the joint vector. 

4.2.2 Human proxy set 

The capsule set 𝒞(𝑡) is defined in 4.1. For a capsule (𝑎, 𝑏, 𝑟), 

𝜆⋆(𝑝; 𝑎, 𝑏) = clip[0,1]
(𝑝 − 𝑎)⊤(𝑏 − 𝑎)

‖𝑏 − 𝑎‖2
, 𝜋(𝑝; 𝑎, 𝑏) = 𝑎 + 𝜆⋆(𝑏 − 𝑎)

𝑑cap (𝑝; 𝑎, 𝑏, 𝑟) = ‖𝑝 − 𝜋(𝑝; 𝑎, 𝑏)‖ − 𝑟

 

and for a sphere (ℎ, 𝑟𝐻), 

𝑑sph(𝑝; ℎ, 𝑟𝐻) = ‖𝑝 − ℎ‖ − 𝑟𝐻 

4.2.3 Effective radii and signed clearance 

Optional padding for robot and human is modeled by 

𝑑̃(𝑝; 𝒞) = min(min
𝑐=1..5

 𝑑𝑐𝑎𝑝(𝑝; 𝑎𝑐, 𝑏𝑐, 𝑟𝑐 + 𝜌𝑟), 𝑑𝑠𝑝ℎ(𝑝; ℎ, 𝑟𝐻 + 𝜌𝑟)) 

with 𝜌𝑟 ≥ 0 the robot's protective radius. Setting 𝜌𝑟 = 0 recovers geometric 

distances. Composite SDFs are a drop-in alternative when mesh fidelity is needed 

[9]. 
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4.2.4 Global and groupwise minima 

The instantaneous global clearance is 

𝑑min(𝑡) = min
𝑘=1..𝑁r

 𝑑̃(𝑝𝑘
0(𝑡); 𝒞(𝑡)) 

For downstream shaping, witness points are partitioned in ordered link groups 

{𝒢𝑔}𝑔=1
𝐺

 (proximal to distal). The per-group minima are 

𝑑𝑔(𝑡) = min
𝑘∈𝒢𝑔

 𝑑̃( 0𝑝𝑘(𝑡); 𝒞(𝑡)), 𝑔 = 1,… , 𝐺, 

and the nearest human point  0𝑝̂𝑔
hum  is the projector 𝜋( 0𝑝𝑘̂; 𝑎𝑐, 𝑏𝑐) at the attaining 

pair (𝑘̂, 𝑐̂). 

4.2.5 Smooth minimum 

For differentiability and noise rejection, a soft minimum can replace the hard min: 

smin𝜏{𝑥𝑖} = −𝜏log ∑  

𝑖

𝑒−𝑥𝑖/𝜏, 𝜏 > 0 

yielding 𝑑𝑔
s = smin𝜏{𝑑̃( 

0𝑝𝑘; 𝒞)}𝑘∈𝒢𝑔
 and 𝑑min

s = smin𝜏{𝑑̃( 
0𝑝𝑘; 𝒞)}𝑘=1..𝑁r

. As 

𝜏 → 0+, smin𝜏 → min. 

4.2.6 Nearest-pair witnesses 

Along with the scalar distances, the query returns the witness pair for every group: 

(𝑝̂𝑔
rob, 𝑝̂𝑔

hum) = arg min
𝑝𝑘,𝑐
 𝑑̃(𝑝𝑘; (𝑎𝑐, 𝑏𝑐, 𝑟𝑐)) 

used downstream to define repulsive directions 𝑛̂𝑔 =
 𝑎𝑝𝑔

rob. − 𝑎𝑝𝑔
hum 

‖ 𝑎𝑝𝑔
rob − 𝑎𝑝𝑔

hum ‖
. 

4.2.7 Computational budget 

The projection 𝜋(⋅) is closed-form and 𝑂(1). With 𝑁𝑟 robot points and 𝑁𝑐 human 

proxies, a full scan is 𝑂(𝑁𝑟𝑁𝑐) per cycle. In practice: cache capsule endpoints per 

human frame, stream robot point positions once per controller tick, early-exit per 



92 
 

group after a guard distance is crossed, and employ the hard minimum for triggering 

while using the soft minimum only where gradients are needed [21, 18, 17]. 

4.2.8 Outputs 

The query provides 𝑑min (𝑡) for safety gating, the vector {𝑑𝑔(𝑡)} for group-

structured shaping, and the witness pairs {𝑝̂𝑔
rob , 𝑝̂𝑔

hum } for constructing repulsive 

task references and for logging. 

4.3 Repulsive safety fields (logistic and reciprocal shaping) 

4.3.1 Problem setup 

For each link group 𝑔 = 1, … , 𝐺, let 𝑛̂𝑔(𝑡) ∈ ℝ
3 be the unit vector from the closest 

human witness to the closest robot witness (from 4.2), and let 𝑑𝑔(𝑡) ≥ 0 be the 

corresponding clearance. A repulsive Cartesian reference for group 𝑔 is 

 0𝑣𝑔(𝑡) = 𝜈(𝑑𝑔(𝑡))𝑛̂𝑔(𝑡) 

where 𝜈(⋅) is a scalar speed law that is monotonically decreasing in 𝑑, bounded, 

and differentiable on (0, +∞). 

4.3.2 Shaping laws 

Two families are used depending on the desired falloff and saturation 

characteristics: 

1. Logistic (sigmoidal) law 

With parameters 𝑉max > 0 (speed cap), 𝑟if > 0 (inflection-range proxy), and 𝛼 > 0 

(steepness), 

𝜈log(𝑑) =
𝑉max

1 + exp (𝛼 (
2𝑑
𝑟if
− 1))

 

Properties: 𝜈log(0) ≈ 𝑉max, 𝜈log(𝑟if/2) =
𝑉max

2
, lim
𝑑→+∞

 𝜈log(𝑑) = 0,
𝑑𝜈cg

𝑑𝑑
 is bounded. 
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2. Reciprocal (inverse-distance) law with taper 

With gain 𝑘 > 0, taper distance 𝑟act > 0, and small 𝜀 > 0, 

𝜈rec(𝑑) = clip[0,𝑉max] (𝑘 (
1

𝑑 + 𝜀
−

1

𝑟act + 𝜀
)) 

which is positive for 𝑑 < 𝑟act  and zero otherwise, then saturated at 𝑉max. This yields 

a long tail near contact and a hard activation at 𝑟act  (Khatib, 1986; Merckaert et al., 

2022). 

4.3.3 Group weighting and span mapping 

Let 𝒢𝑔 denote the set of robot witnesses for group 𝑔 (proximal → distal ordering), 

and let the "reference-style" span for group 𝑔 be the first 𝑠𝑔 joints (e.g., 𝑠𝑔 = 𝑔 + 1 

on a 7 -DoF arm). Define a 3 × 𝑠𝑔 point Jacobian evaluated at the group's closest 

robot witness, 

𝐽𝑔
(𝑝)
(𝑞) = [𝜔1 × (𝑟𝑔 − 𝑜1) ⋯ 𝜔𝑠𝑔 × (𝑟𝑔 − 𝑜𝑠𝑔)], 

where 𝜔𝑗 and 𝑜𝑗 are the 𝑗-th joint axis and origin in the world frame, and 𝑟𝑔 is the 

closest robot witness position for group 𝑔. The raw joint-rate contribution for group 

𝑔 is 

𝑞̇𝑔
raw(𝑞) = 𝜅𝑔(𝐽𝑔

(𝑝)
(𝑞))

⊤

𝑣𝑔, 

with 𝜅𝑔 > 0 a dimensionless weight (per-group gain). 

4.3.4 Combination and null-space projection 

Summing over all groups and projecting where appropriate gives 

𝑞̇rep 
raw =∑  

𝐺

𝑔=1

𝑞̇𝑔
raw , 𝑞̇rep = 𝑆𝑞(𝑞̇rep 

raw ), 
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where 𝑆𝑞(⋅) is a joint-rate limiter enforcing |𝑞̇𝑖| ≤ 𝑞̇𝑖
max . In posture-biased modes, 

𝑞̇rep  is superposed with the nominal posture bias; in fixed-TCP modes (Chapter 

4.5), it is injected through the task null space, 

𝑞̇ = 𝑞̇task + 𝑁(𝑞)𝑞̇rep , 𝑁(𝑞) = 𝐼 − 𝐽#(𝑞)𝐽(𝑞), 

with 𝐽 the 6 × 𝑛 geometric Jacobian of the TCP and 𝐽# a damped pseudoinverse. 

Speed and joint caps are enforced before inversion and projection to keep behavior 

consistent across modes (see §3.4.3). 

4.3.5 Distance-to-velocity direction 

Given the witness pair ( 𝑝̂𝑔
rob , 𝑝̂𝑔

hum  ), 

𝑛̂𝑔 =
𝑝̂𝑔
rob − 𝑝̂𝑔

hum

‖𝑝̂𝑔
rob − 𝑝̂𝑔

hum‖ + 𝜖𝑛
, 

with 𝜖𝑛 > 0 for numerical robustness; 𝑛̂𝑔 always points away from the human 

proxy. 

4.3.6 Saturation and smoothness considerations 

• Speed capping: 𝑉max bounds the Cartesian magnitude per group. 

• Joint capping: 𝑆𝑞(⋅) enforces joint-wise limits and prevents windup. 

• Differentiability: the logistic law is 𝐶∞ for 𝑑 > 0; the reciprocal law is 𝐶∞ 

on (0, +∞) and Lipschitz at 𝑟act  after clipping. 

• Multi-group coherence: proximal groups typically use higher 𝜅𝑔 and 

smaller 𝑟act  (or 𝑟if ) to bias evasive motion toward upstream joints. 

4.3.7 Parameters and defaults  

𝑉max (
m

s
) , 𝛼(−), 𝑟if(m), 𝑘( m

2/s), 𝑟act (m), {𝜅𝑔}𝑔=1..𝐺(−), joint-rate bounds 

{𝑞̇𝑖
max }(rad/s), and numerical epsilons 𝜀, 𝜖𝑛. 
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4.3.8 Outputs 

At each control tick: (a) group clearances 𝑑𝑔1 (b) repulsive TCP-space references 

 0𝑣𝑔2 (c) joint-space contribution 𝑞̇rep  ready for null-space injection or posture 

superposition, and (d) capped diagnostic quantities for logging (speed utilizations, 

active groups, and per-group saturations). 

4.4 SSM-style supervisor: STOP/RELEASE hysteresis and dwell 

4.4.1 Objective 

Coordinate the safety behaviors of Section 4.3 with the nominal TCP task so that 

pausing, repelling, and resuming are deterministic, chatter-free, and compatible 

with time laws (vector and LSPB). 

4.4.2 State set and outputs 

Let the discrete state be 

𝑥 ∈ 𝒳 = { Approach, Hold, Repel, Resume, Stop }.  

At each control tick, the commanded joint rate is 

𝑞̇cmd =

{
 

 
𝑞̇task 𝑥 =  Approach ,
0 𝑥 =  Hold or Stop ,
𝑞̇task +𝑁(𝑞)𝑞̇rep 𝑥 =  Repel ,

Πresume (𝑞̇task ) 𝑥 =  Resume ,

 

where 𝑞̇task  is the nominal (vector or LSPB) command, 𝑁(𝑞) = 𝐼 − 𝐽#𝐽 the TCP 

null-space projector, 𝑞̇rep  the repulsive contribution from 4.3, and Πresume  the 

mode-dependent resume policy (below). 

The mode-aware command path is organized as shown in Figure 4.1: 
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Fig. 4.1 Command computation by mode. Approach: q̇_cmd = q̇_task; Hold/Stop: q̇_cmd = 0; Repel: 

q̇_cmd = q̇_task + N(q) q̇_rep; Resume: q̇_cmd = Π_resume(q̇_task). Inputs: d_min, guards, timers; 

core blocks: distance query → supervisor → projection N(q) = I − J#J. 

4.4.3 Clearance aggregates and thresholds 

With per-group clearances {𝑑𝑔}𝑔=1..𝐺 and group weights {𝜅𝑔}, define the global 

minimum and a weighted surrogate: 

𝑑min = min
𝑔
 𝑑𝑔, 𝑑̃ = min

𝑔
 (𝑑𝑔/√𝜅𝑔). 

Two radii implement hysteresis: 

𝑟stop < 𝑟release  

and two dwell times complete the guard set: 

𝑇↓ > 0 (enter-stop dwell),   𝑇↑ > 0 (release dwell).  

The chosen bands and dwell were tuned to minimize chattering; measured 

stop/resume statistics are reported in Chapter 6. 

4.4.4 Guards and timers 

Let 𝑡↓ and 𝑡↑ be timers (reset to 0 when their condition is not met). The guards are 

𝒢stop : 𝑑min ≤ 𝑟stop ∧ 𝑡↓ ≥ 𝑇↓
𝒢release : 𝑑min ≥ 𝑟release ∧ 𝑡↑ ≥ 𝑇↑

 



97 
 

Timers evolve as 

𝑡̇↓ = {
1 𝑑min ≤ 𝑟stop ,

0(𝑡↓ ← 0)  otherwise ,
 𝑡̇↑ = {

1 𝑑min ≥ 𝑟release ,

0(𝑡↑ ← 0)  otherwise. 
 𝑢𝑝𝑑𝑎𝑡𝑒𝑑 𝑠(𝑡) 

4.4.5 Transitions 

The finite-state logic is: 

• Approach → Repel if 𝑑min < 𝑟release  and 𝑑̃ < 𝑟release  (activate repulsion 

before the stop band). 

• Repel → Stop if 𝒢stop  is true. 

• Stop → Resume if 𝒢release  is true. 

• Resume → Approach after the resume policy completes (below) and 𝑑min ≥

𝑟release  holds during the policy. 

• Hold is a transient freeze used by the LSPB pause semantics: 

Approach/Repel → Hold when the time law is paused; Hold → Resume 

when resuming that law. 

The finite-state logic in this work is summarized by the supervisory state machine 

below: 
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Fig. 4.2 Finite-state supervisor with hysteresis radii (r_stop, r_release) and dwell timers (T↓, T↑). 

Transitions are guarded by G_stop and G_release; Hold freezes the time law, Resume re-enables it 

after the policy completes. 

4.4.6 Pause/resume semantics by time law 

Vector approach (scenarios 1 & 2): no global clock; Resume simply re-enables 𝑞̇task  

immediately, 

Πresume 
vec (𝑞̇task ) − 𝑞̇task  

LSPB time law (scenarios 3 & 4): the phase variable 𝑠 ∈ [0,1] is frozen in 

Stop/Hold, i.e., 𝑠̇ − 0. On Resume, the LSPB restarts from the last phase 𝑠‾ with 

bounded jerk: 

𝑠(𝑡) − 𝑠‾ + ∫  
𝑡

𝑡0

𝑠̇(𝜏)𝑑𝜏, 𝑠̇ − lspb(𝑠‾ → 1; 𝑎max, 𝑣max) 

𝑑̌  < 𝑟𝑟𝑒𝑙𝑒𝑎𝑠𝑒    
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and TCP velocity ramps with a 𝐶1 splice so that the commanded 𝑥̇ remains 

bounded. During Resume, Πresume  returns the LSPB-derived 𝑞̇task  consistent with 

the updated 𝑠(𝑡).  

For vector references, “Resume” simply re-enables the nominal twist; for LSPB, 

the phase 𝑠 continues from its frozen value with jerk-bounded splice. 

4.4.7 Arbitration with repulsion 

Repulsion remains active in Repel and is suppressed in Stop/Hold. In Resume, 

repulsion is allowed but limited so as not to corrupt the primary task; specifically, 

‖𝐽𝑁(𝑞)𝑞̇rep ‖ ≤ 𝜆leak ‖𝑥̇task ‖, 0 < 𝜆leak ≪ 1, 

which bounds task-space leakage from null-space action. 

4.4.8 Chatter avoidance and guarantees 

The strict inequality 𝑟stop < 𝑟release  plus 𝑇↓, 𝑇↑ > 0 yields a two-sided hysteresis 

with temporal deadbands: repeated Stop-Resume oscillations are excluded for 

bounded clearance rates. Under bounded sensing/actuation latencies, Stop is 

triggered no later than 𝑇↓ after 𝑑min  first crosses 𝑟stop , and Resume occurs no earlier 

than 𝑇† after 𝑑min  re-enters the safe band. 

4.4.9 Logged indicators for evaluation 

At each tick the supervisor logs 𝑥, 𝑑min , active group index, timers 𝑡↓, 𝑡↑, and LSPB 

phase 𝑠 (when applicable). These feed the dwell-time statistics, pause durations, 

and restart smoothness metrics reported in chapter 6. 

4.5 Fixed-TCP avoidance (6×7) and orientation locking 

4.5.1 Objective 

Exploit kinematic redundancy to keep the TCP pose intact while reshaping the arm 

posture away from the human. When small orientation drift is acceptable, apply a 

soft clamp that holds the TCP attitude within a narrow deadband. 
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4.5.2 Task definition 

Let the TCP twist be 𝑥̇ = [𝑣⊤ 𝜔⊤]⊤ ∈ ℝ6, the geometric Jacobian 𝐽(𝑞) ∈ ℝ6×7, 

and the joint velocity 𝑞̇ ∈ ℝ7. The nominal TCP regulation uses a damped least-

squares pseudoinverse 

𝐽#(𝑞) = 𝑊−1𝐽⊤(𝐽𝑊−1𝐽⊤ + 𝜆2𝐼6)
−1 

with positive-definite joint weighting 𝑊 ≻ 0 and damping 𝜆 ≥ 0 (possibly 

scheduled with the manipulator's conditioning). The null-space projector is 

𝑁(𝑞) = 𝐼7 − 𝐽
#(𝑞)𝐽(𝑞) 

4.5.3 Fixed-TCP avoidance 

In fixed-TCP avoidance the commanded TCP twist is zero, 

𝑥̇task = 0, 𝑒𝑥 = 0 

so the only admissible motion lies in null(𝐽). Let 𝑞̇rep  be the 7 × 1 repulsive joint-

rate proposal produced by Section 4.3 (before any projection). The fixed-TCP 

command is 

𝑞̇cmd = 𝑁(𝑞)𝑞̇rep 

By construction, 𝐽𝑞̇cmd = 0, so the TCP is kinematically invariant. 

4.5.4 Leak clipping 

Finite precision, model mismatch, and latency can introduce residual task-space 

motion 𝑟 = 𝐽𝑞̇cmd . Enforce a strict bound ‖𝑟‖ ≤ 𝜀leak  by scaling: 

𝛽 = min (1,
𝜀leak 

‖𝐽𝑁(𝑞)𝑞̇rep ‖ + 𝛿
) , 𝑞̇cmd ← 𝛽𝑁(𝑞)𝑞̇rep  

with small 𝛿 > 0 for numerical safety. Optionally, recompute 𝑟 after scaling and 

zero any residual using a short corrective step Δ𝑞̇ = −𝐽#𝑟; in fixed-TCP mode this 

reduces to a second-order effect and is typically not needed if 𝜀leak  is tight. The 

corresponding LEAK_EVT and scale factor are logged each tick (see §3.5.7). 



101 
 

4.5.5 Orientation locking (soft clamp) 

When the position must be held and the orientation should remain within a small 

tube about a reference 𝑅ref ∈ SO(3), we use a gentle orientation error feedback, 

which activates only outside a deadband. With current orientation 𝑅, define the 

skew error 

𝐸𝑅 =
1

2
(𝑅ref
⊤ 𝑅 − 𝑅⊤𝑅ref), 𝑒𝜔 = vee(𝐸𝑅) ∈ ℝ

3. 

Let 𝜔max > 0 and a deadband 𝜃0 > 0. The orientation clamp twist is 

𝜔clamp = −𝑘𝜔sat𝜔max(𝜓(𝑒𝜔; 𝜃0)), 𝑣clamp = 0 

where 𝜓(⋅; 𝜃0) smoothly gates the error to zero for ‖𝑒𝜔‖ ≤ 𝜃0 (e.g., a cubic 

deadzone), and sat  𝜔max  limits magnitude. The combined twist command in 

"orientation-locked" fixed-TCP mode is 

𝑥̇task = [
0

𝜔clamp 
] , 𝑞̇task = 𝐽

#𝑥̇task  

Repulsion remains null-space-only: 

𝑞̇cmd = 𝑞̇task + 𝑁(𝑞)𝑞̇rep, 

with the same leak clipping on 𝐽𝑁𝑞̇rep  and, if desired, a fractional cap 

‖𝐽𝑁(𝑞)𝑞̇rep ‖ ≤ 𝜆leak ‖𝑥̇task ‖, 0 < 𝜆leak ≪ 1, 

to ensure the clamp remains dominant whenever it is active. When the clamp is 

active, null-space repulsion is limited by ‖𝐽𝑁𝑞̇𝑟𝑒𝑝‖ ≤ 𝜆𝑙𝑒𝑎𝑘‖𝑥̇𝑡𝑎𝑠𝑘‖ with 0 <

𝜆𝑙𝑒𝑎𝑘 ≪ 1. 

4.5.6 Null-space shaping and limits 

Repulsion can be augmented with standard posture shaping in the null space 

without affecting TCP invariance. For a joint-limit barrier potential 𝑈(𝑞) =

∑  𝑖 𝑢𝑖(𝑞𝑖) with gradient ∇𝑈, include 

𝑞̇ns = −𝐾𝑈∇𝑈(𝑞), 𝑞̇cmd ← 𝑞̇cmd + 𝑁(𝑞)𝑞̇ns 
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and finally apply joint-space rate/acceleration saturations before execution. 

4.5.7 Computational notes 

All projections use the current 𝐽 and 𝐽# evaluated at the measured 𝑞. Damping 𝜆 

and weights 𝑊 should mirror those in Chapter 3 to preserve numerical 

conditioning; a typical choice is 𝑊 = diag(𝑤𝑖) with higher weights on distal joints 

to favor proximal reconfiguration.  

Weights and damping mirror Chapter 3 to keep the projector numerically aligned 

across scenarios. The deadband 𝜃0, gains 𝑘𝜔, and leak bounds 𝜀leak  are declared in 

Section 3.5 and reused here for consistency. 

4.6 Stability and transparency considerations 

4.6.1 Objectives 

• preserving the primary task; TCP motion must follow the commanded twist 

(or remain fixed in 4.5) despite avoidance; 

•  bound the closed-loop inputs so joint limits, rates, and accelerations are 

respected;  

• keep the interaction predictable to an operator observing the TCP 

(transparency). 

Transparency is evaluated from logs via pause duration, restart smoothness, and 

leakage events (see Chapter 6). 

4.6.2 Task preservation under null-space shaping 

With the velocity command 

𝑞̇ = 𝐽#(𝑞)𝑥̇task + 𝑁(𝑞)𝑞̇ns, 𝑁(𝑞) = 𝐼7 − 𝐽
#𝐽 

the induced TCP twist is 

𝑥̇ = 𝐽𝑞̇ = 𝐽𝐽#𝑥̇task + 𝐽𝑁𝑞̇ns = Π𝐽𝑥̇task  
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where Π𝐽 = 𝐽𝐽
# is an idempotent projector onto range (𝐽). If 𝑥̇task ∈ range(𝐽) 

(nominal case), then Π𝐽𝑥̇task = 𝑥̇task  and 𝐽𝑁 = 0; hence null-space terms do not 

corrupt the task. In the fixed-TCP mode of 4.5, 𝑥̇task = 0 and 𝑥̇ = 0 by construction. 

4.6.3 DLS conditioning and bounded joint rates 

The damped pseudoinverse 

𝐽# = 𝑊−1𝐽⊤(𝐽𝑊−1𝐽⊤ + 𝜆2𝐼6)
−1 

regularizes near singularities and yields the bound 

‖𝐽#‖ ≤
1

𝜆
‖𝑊−1/2‖ 

so for any bounded 𝑥̇task  we obtain bounded 𝑞̇. Scheduling 𝜆 = 𝜆(𝜎) as a 

nondecreasing function of a conditioning index 𝜎 (e.g., manipulability) prevents 

rate blow-up while limiting task distortion. 

4.6.4 Repulsion boundedness and saturation 

Repulsive references are generated as bounded linear velocities in world frame, 

then mapped to joints by 𝐽⊤ or point Jacobians. Denote a per-link bound ‖𝑉rep ‖ ≤

𝑉max ; with Jacobian columns 𝐽𝑝 and joint-rate cap 𝑞̇max , 

‖𝑞̇rep ‖ ≤ ‖𝐽𝑝
⊤‖𝑉max  ⇒  𝑞̇ns = sat𝑞̇max 

(𝑞̇rep ) 

Axis-wise rate and acceleration limiters enforce bounded joint inputs regardless of 

distance-field peaks (caps applied pre-inversion; see §3.4.3). 

4.6.5 Leakage control and small-gain rationale 

Null-space components can leak into the task through discretization, latency, and 

Jacobian mismatch. Let 𝑟 = 𝐽𝑁𝑞̇ns . The command applies a scaling 𝛽 ∈ (0,1] such 

that ‖𝑟‖ ≤ 𝜀leak . The closed-loop task channel becomes 

𝑥̇ = Π𝐽𝑥̇task + 𝑟, ‖𝑟‖ ≤ 𝜀leak  

Choosing 𝜀leak  below the measurement/quantization floor renders repulsion effects 

second order in the task dynamics (small-gain argument). In orientation-locked 
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mode, an additional fractional cap ‖𝑟‖ ≤ 𝜆leak ‖𝑥̇task ‖ preserves clamp dominance 

when active. 

Discrete-time implementation and passivity hints at sampling time 𝑇𝑠, the joint 

update is Δ𝑞 = 𝑇𝑠𝑞̇cmd . Stability requires consistent timing and filtered references. 

Two practical measures: 

• first-order hold for repulsion: 𝑉rep [𝑘] = 𝛼𝑉rep [𝑘 − 1] + (1 − 𝛼)𝑉̂[𝑘] 

with 𝛼 = 𝑒−𝑇𝑠/𝜏, suppressing high-frequency injections; 

• energy consistency: cap the incremental joint power 𝑃𝑘 = 𝜏𝑘
⊤𝑞̇𝑘 using a 

tank-like budget or simply limit ‖𝑞̇𝑘‖ adaptively when large external 

corrections (e.g., STOP/RELEASE transitions) occur. These steps mitigate 

discrete-time active behavior near steep distance gradients. 

4.6.6 Hysteresis and dwell for mode transitions 

Binary supervisors (STOP/RELEASE) and soft states 

(Approach/Hold/Repel/Resume) employ distance hysteresis ( 𝑑release > 𝑑stop  ) and 

dwell timers. This eliminates chatter, avoids rapid sign flips in 𝑉rep , and ensures 

that the effective joint command remains piecewise-smooth. With bounded 𝑞̇ and 

minimum dwell 𝑡min, the number of switches on any finite interval is finite, 

guaranteeing well-posed execution. 

4.6.7 Transparency to the operator 

Transparency is maintained when the TCP trajectory is either preserved (fixed-

TCP) or altered only within explicit, bounded envelopes. The design enforces: 

• invariance or near-invariance of the commanded TCP path (via projection 

and leakage caps); 

• bounded, smooth posture motions (via filtering and saturations); 

• predictable supervisory behavior (via hysteresis and dwell). 

Together, these yield operator-observable behavior that is consistent with the 

nominal task while ensuring separation from the human skeleton proxies. 
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4.7 Conclusions 

Chapter 4 has established the human–robot interface that underpins the safety logic 

used throughout the thesis. We specified a skeleton-to-capsule lifting pipeline with 

health flags and explicit frame semantics; defined nearest-pair distance queries and 

the derived safety variables (clearances, hysteresis thresholds, dwell timers); and 

introduced two complementary behaviors: a continuous repulsive field blended 

with posture shaping, and an SSM-style supervisor whose STOP/RELEASE actions 

include dwell to pause and resume an LSPB time law without corrupting its 

schedule. Critically, all corrective actions are constrained to the Jacobian null space, 

with leak bounds and joint-limit/manipulability safeguards, so that task-space 

intent—including the fixed-TCP option—remains preserved while proximity risk 

is mitigated. 

Beyond detailing mechanisms, the chapter made the contracts explicit: what the 

motion layer expects from the distance layer (rates, units, validity), what the 

supervisor guarantees to the reference generator (monotonic timing with dwell), 

and what logs must be emitted for auditability. The result is a small, typed interface 

of safety variables that is implementation-ready and testable, making failure modes 

observable (timeouts, range violations) and recovery predictable. We also clarified 

the limits of the approach—e.g., sensitivity to skeleton quality and conservative 

clearances—and pointed to mitigations (health gating, hysteresis, dwell semantics, 

posture bias) that stabilize behavior near decision boundaries. 
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Chapter 5 

Implementation & Software Architecture (CoppeliaSim) 

This chapter documents the implementation and software architecture used to 

realize the methods in simulation. The work is conducted in CoppeliaSim, a 

physics-based robotics environment that provides deterministic synchronous 

stepping, an extensible scene graph for articulations and sensors, and a remote 

interface for coupling external controllers. It is selected here because it allows the 

robot, human proxy, and safety supervisor to run under a single simulation clock 

while exposing low-level kinematic and geometric data needed for online 

Jacobians, distance queries, and visualization. 

The scene models a 7-DoF manipulator mounted on a work surface, a parameterized 

human proxy built from jointed segments, and a target frame serving as the task 

reference. Along the manipulator, a set of lightweight “control spheres” is attached 

to selected links to act as geometric samples for distance computations. Each 

articulated element publishes its pose with respect to the world frame, so that the 

controller can reconstruct joint screw axes and point Jacobians without peeking into 

the simulator’s internal solvers. The human proxy’s joints are driven either from 

motion-capture frames or scripted motions, and are aligned to the robot’s world 

frame via a fixed transform consistent with the data pipeline used in Chapter 4. 

The controller runs in MATLAB and communicates with CoppeliaSim through the 

remote API over a TCP/IP session. All streams are world-aligned and time-stamped 

at the control tick so reconstruction remains deterministic across runs (see §5.4). 

The simulator operates in synchronous mode: every simulation step triggers a 

sensing–control–actuation handshake. Tick indices, not wall-clock time, are used 

as the primary key for logs and latency histograms (see §5.4.1) 

On each tick, the simulator emits three compact data streams: (i) the world positions 

of the control spheres, (ii) the world orientations of the robot links, and (iii) full per-

link poses, including the gripper, for visualization and alignment checks. MATLAB 

subscribes to these streams, reconstructs the geometric Jacobian from the streamed 
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frames, evaluates the task command under the active trajectory time law, computes 

avoidance actions in task or null space as appropriate, and returns joint commands 

that are applied on the next simulation step [1, 2]. This closed loop ensures that 

physics integration, measurements, and control share one clock and that latency is 

both bounded and measurable. 

Within this framework, the simulator is the authoritative source of ground-truth 

kinematics and geometry, while the external controller remains model-based but 

measurement-driven. The time law for the end-effector is interchangeable: a 

continuous vector-field reference can be layered directly on measured frames, or a 

trapezoidal (linear–segment with parabolic blends) time law can be used to enforce 

acceleration and velocity limits with pause–resume semantics for the safety 

supervisor. Safety behaviors are realized in two complementary ways. When the 

end-effector task must be preserved, avoidance is projected into the manipulator’s 

null space so that the primary task remains uncorrupted. When timing guarantees 

are paramount, a supervisory finite-state logic pauses and resumes the time law 

according to stop/release thresholds and dwell times. Both behaviors consume the 

same distance queries against human capsules, evaluated in the world frame with 

explicit units. 

All behavioral modes share a single software backbone: nominal tracking without 

human interaction, continuous repulsion layered on tracking, pause–resume 

supervision around timing laws, and fixed-TCP operation with null-space 

avoidance. Every run is captured end to end. Inputs, outputs, and state variables are 

timestamped; logging includes units and coordinate frames; configuration files, 

random seeds, and code/version hashes are stored with the data; and scene assets 

and rates are summarized in manifests. The result is a controlled, time-deterministic 

environment in which human modeling, distance queries, safety behaviors, and 

trajectory time laws can be exercised, compared, and reproduced without 

ambiguity. 
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5.1 Scene and synchronization 

This work uses CoppeliaSim in remote synchronous mode, with MATLAB as the 

external controller that advances the simulator exactly one physics step per control 

tick. The scene contains: (i) the robot with auxiliary point markers attached along 

its links for proximity and Jacobian-point evaluation; (ii) a kinematic human 

mannequin actuated at shoulders, elbows, spine, abdomen, and head; and (iii) a 

target frame for the tool center point (TCP). Unless otherwise stated, all poses are 

expressed in the world frame 𝑊.  

The simulation scene used throughout this thesis comprises the 7-DoF manipulator 

with link-mounted control spheres, a kinematic human mannequin actuated at 

shoulder, elbow, spine, abdomen, and head, and a world-fixed TCP target frame. 

Fig. 5.1 CoppeliaSim scene: manipulator with control spheres, human mannequin, and TCP target; 

world frame 𝑊 is the common reference for geometry and distance queries. 

5.1.1 Frames and kinematic references 

The robot base frame 𝐵 is fixed to link 0. Link frames {𝐿𝑖}𝑖=1
7  follow the 

manufacturer's convention; the TCP frame is 𝑇. For the human mannequin, 

anatomical joint frames are defined at shoulder, elbow, wrist, abdomen, spine, and 

head. The motion-capture skeleton is first rigidly aligned to the simulator world 

before joint-angle extraction. The alignment is a fixed homogeneous transform 
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𝐴 = [
𝑅𝑧(𝛾) 𝑝0
𝟎⊤ 1

] , 𝛾 = −135∘,          𝑝0 = [
−0.20
−0.40
0.705

]m 

If 𝑝mocap ∈ ℝ3 is a raw skeleton point, the aligned point is 

𝑝̃𝑊 = 𝑅𝑧(𝛾)𝑝
mocap + 𝑝0 

Joint angles for the mannequin are then obtained from {𝑝̃𝑊} via the geometric 

constructions described in Chapter 4 and streamed to CoppeliaSim.  

5.1.2 Data exchange 

Each simulation step publishes three streams required by the controller: 

• world positions of the robot's control spheres {𝑠𝑘}, concatenated as 

𝑆𝑊 = [𝑝(𝑠1)
⊤ 𝑝(𝑠2)

⊤ … 𝑝(𝑠𝑀)
⊤]⊤ ∈ ℝ3𝑀 

• world orientations of the seven link frames, encoded as ZYX Euler triplets 

𝐸𝑊 = [𝑒(𝐿1)
⊤ 𝑒(𝐿2)

⊤ … 𝑒(𝐿7)
⊤]⊤ ∈ ℝ21 

• compact link poses for visualization, 

𝑋𝑊 = [𝑥(𝐿1)
⊤ … 𝑥(𝐿8)

⊤ 𝑥( gripper )⊤]⊤, 𝑥(𝐿𝑖) = [𝑝(𝐿𝑖)
⊤, 𝑒(𝐿𝑖)

⊤] 

Conversely, the controller writes mannequin joint commands and the robot 

command (joint-space or task-space, depending on mode), and reads the TCP target 

position 𝑝𝑇
⋆ . 

Table 5.1 summarizes the world-aligned data streams and command channels used 

throughout the experiments. 

Source → Sink Signal (symbol) Dim Units Role / contents 
Nominal 

rate 

Simulator → 

Controller 

S_W = [ p(s1)^T ... 

p(sM)^T ]^T 
3M m 

World positions of control spheres {s_k} in 

W 
1/Δt 

Simulator → 

Controller 

E_W = [ e(L1)^T ... 

e(L7)^T ]^T 
21 

rad 

(ZYX) 

World orientations (Euler) of link frames 

{L_i} 
1/Δt 

Simulator → 

Controller 

X_W = [ x(L1)^T ... 

x(gripper)^T ]^T 
6×9 m, rad 

Compact poses for visualization/sanity 

checks 
1/Δt 

Controller → 

Simulator 
Robot command 

7 

(joints) 

or 6 

(twist) 

rad/s, m/s 
Joint-space or task-space command (mode-

dependent) 
1/Δt 
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Controller → 

Simulator 
Mannequin joints 

scene-

depend

ent 

rad 
Actuation of mannequin shoulder, elbow, 

spine, abdomen, head 
1/Δt 

Simulator → 

Controller 
p_T* 3 m Target position for TCP (when used) 1/Δt 

Table 5.1 World-aligned data streams and commands between simulator and controller. 

 

5.1.3 Synchronous stepping 

The simulator runs in synchronous mode and advances only when triggered by the 

controller. Let Δ𝑡ctrl denote the controller period and Δ𝑡phys  the physics integrator 

step. In this configuration, 

Δ𝑡 ≜ Δ𝑡ctrl = Δ𝑡phys, 

and all discrete-time modules (trajectory generators, supervisors, filters) are 

designed with sampling time Δ𝑡 . The loop at tick 𝑘 proceeds as: 

read {Sk
W, Ek

W, Xk
W, pT,k

⋆ }, 

update mannequin commands from {p̃k
W}, 

evaluate robot control law for the active mode, 

write robot and mannequin commands, 

trigger one physics step. 

This establishes a one-to-one mapping between control ticks and physics steps, 

removing sampling jitter and nondeterminism. 

5.1.4 Timing guarantees and overruns 

Trajectory-time parameters (e.g., LSPB segment durations) are chosen as integer 

multiples of Δ𝑡; timers in the STOP/RELEASE supervisor count ticks, ensuring 

exact dwell times. If computation at tick 𝑘 exceeds a prescribed budget, the 

controller applies a hold-last-safe policy at tick 𝑘 + 1 : the previously issued robot 

command 𝑢𝑘−1 is retained while a timing flag is logged. This yields: 

𝑢𝑘 = {
𝑢̂𝑘  if 𝑡comp,𝑘 ≤ 𝑡max
𝑢𝑘−1  otherwise 
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where 𝑢̂𝑘 is the freshly computed command and 𝑡comp ,𝑘 the measured compute time. 

Timing is enforced at tick granularity: if the compute budget is exceeded, the 

controller applies a hold-last-safe policy and logs the overrun; STOP/RELEASE 

dwell timers are tick-indexed to guarantee exact semantics, see figure below. 

 

Fig. 5.2 Overrun policy and dwell accounting: when 𝑡𝑐𝑜𝑚𝑝 ≤ 𝑡𝑚𝑎𝑥  the new command 𝑢𝑘 is applied 

otherwise; the controller holds 𝑢𝑘−1 and records the overrun; dwell timers advance per tick. 

5.1.5 Validation hooks 

At each tick the controller computes a pose-alignment residual for visualization 

sanity checks. If 𝑇𝑖
exp

 is the unpacked transform of link 𝑖 and 𝑇𝑖
vis  the local 

visualization transforms, the translational and rotational residuals are 

𝑟𝑖
pos
= ‖𝑝(𝑇𝑖

exp
) − 𝑝(𝑇𝑖

vis)‖
2
, 𝑟𝑖

rot = ∠(𝑅(𝑇𝑖
vis)𝑅(𝑇𝑖

exp
)
⊤
) 

and are logged together with TCP pose, manipulability, minimum human-robot 

distance, and safety-state transitions. Overrun events are summarized as rates per 

minute and per thousand ticks in Chapter 6. Because these diagnostics are tied to 

the synchronous tick 𝑘, latency histograms and reproducibility reports later in the 

thesis are grounded in deterministic step indices.  

Two primary checks are used each run: (i) FK↔IK round-trip pose residuals at the 

TCP and (ii) Jacobian consistency from streamed link frames. 
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5.2 Dataflow and helper primitives 

The software stack is organized as a deterministic pipeline that maps sensed 

geometry into safe joint commands at each synchronous tick. The pipeline 

comprises six stages: (i) scene I/O, (ii) geometric lifting, (iii) distance queries, (iv) 

safety-field shaping and supervisory logic, (v) task–space tracking, and (vi) joint–

space synthesis and post-processing. Each stage exposes a minimal, testable 

primitive; together they implement the five operating modes enumerated later in 

this chapter.  

The six stages correspond to §5.2.1–§5.2.6; post-processing and test hooks are 

detailed in §5.2.7–§5.2.9. 

Figure 5.3 summarizes the deterministic six-stage pipeline executed at each 

synchronous tick. 

Fig. 5.3 Deterministic per-tick pipeline. 

5.2.1 Scene I/O (world-aligned signals) 

At tick 𝑘, the controller ingests: 

{𝑆𝑘
𝑊 ∈ ℝ3𝑀 , 𝐸𝑘

𝑊 ∈ ℝ21, 𝑋𝑘
𝑊, 𝑝𝑇,𝑘

∗ ∈ ℝ3, 𝑃̃𝑘
𝑊 ∈ ℝ3×𝑁𝑘}, 

namely the robot's control-point positions, link orientations, compact link poses for 

visualization, the current TCP target, and the world-aligned human skeleton points. 

The mannequin's joint targets (shoulders, elbows, spine, abdomen) are emitted to 

the simulator; the robot command is produced after the subsequent stages. 

5.2.2 Geometric lifting (frames, Jacobians, kinematics) 

 From ( 𝐸𝑘
𝑊, 𝑋𝑘

𝑊 ) the controller reconstructs the instantaneous kinematic map 
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𝑓:ℝ7 → 𝑆𝐸(3), 𝑇(𝑞) = [
𝑅(𝑞) 𝑝(𝑞)

𝟎⊤ 1
] 

and the geometric Jacobian 𝐽(𝑞) ∈ ℝ6×7. The world-linear velocity of any world 

point 𝑟 ∈ ℝ3 rigidly attached to link 𝑖 is evaluated via point Jacobians: 

𝑣(𝑟) = 𝐽𝑝(𝑟, 𝑞)𝑞̇, 𝐽𝑝(𝑟, 𝑞) = [𝜔1 × (𝑟 − 𝑜1) ⋯ 𝜔7 × (𝑟 − 𝑜7)], 

where 𝜔𝑗 and 𝑜𝑗 are, respectively, the world joint-axis direction and world joint 

origin for joint 𝑗. For the TCP, the 6D twist map is 

𝑥̇𝑇 = [
𝑣𝑇
𝜔𝑇
] = 𝐽(𝑞)𝑞̇ 

5.2.3 Distance queries (robot proxy points vs human capsules) 

Proxy definitions and limb capsules follow Chapter 4; only minimum distances and 

their rates are consumed here. 

The human model is represented by capsules 𝒞ℓ = seg(𝑎ℓ, 𝑏ℓ) ⊕ 𝔹(0, 𝑟ℓ). Robot 

proximity is evaluated at the control points {𝑠𝑚}𝑚=1
𝑀 . For each pair (𝑠𝑚, 𝒞ℓ) the 

closest point on the segment and the raw Euclidean distance are 

𝑡⋆ = clip[0,1] (
(𝑠𝑚 − 𝑎ℓ)

⊤(𝑏ℓ − 𝑎ℓ)

‖𝑏ℓ − 𝑎ℓ‖2
2 ) , 𝑐ℓ = 𝑎ℓ + 𝑡

⋆(𝑏ℓ − 𝑎ℓ),

𝑑raw(𝑚, ℓ) = ‖𝑠𝑚 − 𝑐ℓ‖2, 𝑑eff(𝑚, ℓ) = max{𝑑raw(𝑚, ℓ) − 𝑟𝑅 − 𝑟ℓ, 0}.

 

Per tick, the pipeline extracts both the global minimum 𝑑min = min
𝑚,ℓ
 𝑑raw(𝑚, ℓ) (for 

STOP/RELEASE logic) and, for each robot control group 𝑔, the best opposing pair 

(𝑠𝑚𝑔 , 𝑐ℓ𝑔) to parameterize a local repulsive direction. 

5.2.4 Safety-field shaping (repulsion in world and supervisor state) 

A smooth, distance-to-speed shaping enforces bounded, continuous repulsion in 

world space: 

𝑣rep(𝑑) =
𝑉max

1 + exp (𝛼 (
2𝑑
𝜌 − 1))

, 𝛼 > 0, 𝜌 > 0, 𝑉max > 0 
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Given the direction 𝑛𝑔 =
𝛿𝑚𝑔−𝑐𝑙𝑔

‖𝑠𝑚𝑔−𝑐𝑙𝑔‖2

 (zeroed if the norm is below a tolerance), the 

world repulsive linear velocity request for group 𝑔 is 

𝑉𝑔
𝑊 = 𝑘𝑔𝑣rep (𝑑𝑔

eff )𝑛𝑔, 𝑘𝑔 > 0 

The supervisor maintains a finite state with hysteresis and dwell, driven by the raw 

global minimum 𝑑min  : 

Stop if 𝑑min ≤ 𝑑stop ,  Release if 𝑑min ≥ 𝑑rel , 𝑑rel > 𝑑stop , with tick-accurate dwell 

timers to avoid chatter. 

Speed and joint caps are enforced before IK inversion and null-space projection to 

keep behavior consistent across modes (§3.4.3). 

5.2.5 Task-space tracking (vector and LSPB time laws) 

Two time laws are supported for the TCP: (i) a vector field reference that directly 

specifies 𝑥̇𝑇
⋆ = [𝑣𝑇

⋆ ; 𝜔𝑇
⋆ ] toward a moving attractor with smooth speed schedules; 

and (ii) a piecewise-linear with parabolic blends (LSPB) time law that 

parameterizes the scalar progress 𝑠 ∈ [0,1] along a path 𝑥𝑇(𝑠) with 

𝑠̇(𝑡) = {

𝑎𝑡, 0 ≤ 𝑡 < 𝑡𝑎,
𝑠̇𝑐, 𝑡𝑎 ≤ 𝑡 ≤ 𝑡𝑏 ,

−𝑎(𝑡𝑓 − 𝑡), 𝑡𝑏 < 𝑡 ≤ 𝑡𝑓 ,
    0 ≤ 𝑠̇(𝑡) ≤ 𝑠̇max, |𝑠̈(𝑡)| ≤ 𝑎max, 

leading to 𝑥̇𝑇
∗ = 𝐽𝑥(𝑠)𝑠̇ where 𝐽𝑥(𝑠) = 𝜕𝑥𝑇/𝜕𝑠. When the supervisor is in Stop,    

𝑠̇ = 0 (pause semantics). Upon Release, the clock resumes without re-timing, 

preserving LSPB timing integrity. 

For vector-field references, RESUME re-enables the nominal twist computed from 

the current attractor and speed law. 

5.2.6 Joint-space synthesis (primary task + redundancy behaviors) 

The commanded joint rates result from a strict composition rule. The primary 6D 

task (TCP tracking) uses damped least squares: 

𝑞̇pri = 𝐽(𝑞)𝜆
#𝑥̇𝑇
⋆ , 𝐽𝜆

# = 𝐽⊤(𝐽𝐽⊤ + 𝜆2𝐼6)
−1, 



115 
 

with 𝜆 scheduled against manipulability or conditioning. Redundant behaviors 

(repulsion, posture bias) are confined to the null space: 

𝑁 = 𝐼7 − 𝐽𝜆
#𝐽, 𝑞̇ns =∑  

𝑔

𝐽𝑝 (𝑠𝑚𝑔 , 𝑞)
⊤

𝑉𝑔
𝑊 + 𝐾post (𝑞 − 𝑞nom ). 

The composite command before limits is 

𝑞̇raw = 𝑞̇pri + 𝑁𝑞̇ns  

When the supervisor enters Stop, 𝑞̇raw ← 𝟎 (hold), while in Release the same law 

resumes with the current 𝐽(𝑞) and 𝑥̇𝑇
⋆ . 

Leakage ‖𝐽(𝑞) 𝑁(𝑞) 𝑞̇𝑛𝑠‖ is monitored and clamped under LEAK_THR; flags are 

logged each tick (§3.5.7). 

5.2.7 Post-processing (limits, smoothing, discretization) 

The raw joint rates are passed through saturation and discrete-time smoothing 

consistent with the sampling time Δ𝑡 : 

𝑞̇𝑘 = clip(𝑞̇raw,𝑘, −𝑞̇max, 𝑞̇max), 𝑞𝑘+1 = 𝑞𝑘 + Δ𝑡𝑞̇𝑘, 

optionally with a first-order rate filter to cap 𝑞̈. All saturations and state transitions 

emit health flags and timestamps for later analysis. 

5.2.8 Mannequin joint extraction (skeleton to joint commands) 

 For each tick, the aligned skeleton 𝑃̃𝑘
𝑊 yields orthonormal frames at shoulders, 

elbows, spine, and abdomen by geometric constructions (differences, cross 

products, normalization). These frames are converted to the simulator's joint 

parameterization (e.g., spherical-joint direction-cosine matrices for shoulders; 

single-axis angles for elbows). Let 𝑅seg 
𝑊  denote a segment frame; the transmitted 

parameter vector is a compact embedding of 𝑅seg
W  required by the mannequin joints. 

The same alignment transform guarantees spatial consistency between human 

proxies and robot/world coordinates. 
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5.2.9 Determinism and test hooks 

Each primitive exposes tick-indexed inputs/outputs and admits unit checks: 

Jacobian symmetry tests, finite-difference vs analytic derivatives, capsule distance 

regression against synthetic cases, boundedness of 𝑣𝑟𝑒𝑝(𝑑), and null-space leakage 

monitors ||𝐽 𝑞̇
𝑛𝑠
||2. Because all stages run within a single synchronous step, the 

recorded traces map unambiguously to controller ticks, enabling reproducible 

experiments and latency budgeting reported later. 

Any randomized elements use a fixed RNG seed recorded in the run configuration 

and artifacts (§5.4.1). 

5.3 Mode scripts: behavior mapping 

This section enumerates the operating modes that instantiate the pipeline defined 

above. Each mode fixes (i) the TCP time law, (ii) whether repulsion is active and 

where it is injected, (iii) whether the supervisory STOP/RELEASE logic is 

enforced, and (iv) whether the TCP is treated as a fixed task (null-space–only 

avoidance). All modes share the same synchronous loop, the same scene I/O, and 

the same post-processing limits. 

5.3.1 Scenario 1 (S1): vector-field TCP, no human interaction 

The TCP reference is a purely attractive, moving target expressed as a 6D twist 

request 𝑥̇𝑇
⋆ = [𝑣𝑇

⋆ ; 𝜔𝑇
⋆ ],  constructed from a smooth direction vector with bounded 

magnitude. The joint command is 

𝑞̇ = 𝐽𝜆
#𝑥̇𝑇
⋆ , 

with 𝑁-space terms disabled ( 𝑞̇ns ≡ 0 ). This mode isolates the baseline tracking 

performance and manipulator conditioning under the vector time law. 

5.3.2 Scenario 2 (S2): vector-field TCP with null-space repulsion 

The primary task is identical to scenario 1. Repulsion is activated as a world linear 

velocity field 𝑉𝑔
𝑊 per robot group 𝑔1 mapped through point Jacobians and confined 

to the null space: 
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𝑞̇ = 𝐽𝜆
#𝑥̇𝑇
⋆ + (𝐼7 − 𝐽𝜆

#𝐽)(∑  

𝑔

  𝐽𝑝 (𝑠𝑚𝑔 , 𝑞)
⊤

𝑉𝑔
𝑊 + 𝐾post(𝑞 − 𝑞nom)). 

STOP/RELEASE is not used; repulsion remains continuous and bounded through 

𝑣rep (𝑑). 

5.3.3 Scenario 3 (S3): LSPB TCP, no human interaction 

The TCP follows a preplanned path 𝑥𝑇(𝑠) with the scalar progress 𝑠(𝑡) governed 

by a linear-with-parabolic-blends time law: 

𝑠̇(𝑡) ∈ [0, 𝑠̇max], |𝑠̈(𝑡)| ≤ 𝑎max, 𝑥̇𝑇
∗ (𝑡) =

𝜕𝑥𝑇
𝜕𝑠
(𝑠(𝑡))𝑠̇(𝑡) 

The joint command mirrors S1's primary law: 

𝑞̇ = 𝐽𝜆
#𝑥̇𝑇
⋆ , 

with no null-space behaviors. This mode isolates tracking under a timed trajectory 

with known acceleration bounds and synchronization properties. 

5.3.4 Scenario 4 (S4): LSPB TCP with supervisory STOP/RELEASE 

The same LSPB primary task as S3 is combined with a discrete supervisor driven 

by the global raw distance 𝑑min  : 

 Stop if 𝑑min ≤ 𝑑stop ,        Release if 𝑑min ≥ 𝑑rel (> 𝑑stop ), 

with dwell timers to avoid chatter. In Stop, the controller holds the primary progress 

( 𝑠̇ ≡ 0 ) and zeroes joint motion ( 𝑞̇ ≡ 0 ); in Release, it resumes using the original 

LSPB clock without re-timing. Repulsion is typically disabled in this mode, as the 

binary pause/resume semantics enforce separation while preserving trajectory 

timing. 

5.3.5 Scenario 5 (S5): fixed-TCP avoidance via null-space projection 

The TCP task is maintained in full 6D, and the avoidance behavior is entirely 

relegated to redundancy: 
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𝑞̇ = 𝐽𝜆
# [
0
0
]
⏟
𝑥̇𝜏
∗

+ (𝐼7 − 𝐽𝜆
#𝐽)(∑  

𝑔

  𝐽𝑝 (𝑠𝑚𝑔 , 𝑞)
⊤

𝑉𝑔
𝑊 + 𝐾post(𝑞 − 𝑞nom)), 

when the TCP is to be held fixed in both position and orientation (e.g., 

welding/inspection). More generally, when a nonzero primary 𝑥̇𝑇
⋆  is required (e.g., 

slow tool motion), the same null-space structure ensures that avoidance never 

corrupts the primary task: 

𝑞̇ = 𝐽𝜆
#𝑥̇𝑇
⋆ + (𝐼7 − 𝐽𝜆

#𝐽)𝑞̇ns. 

Optional "leak clipping" monitors ‖𝐽𝑞̇ns ‖2 and scales 𝑞̇ns  to keep the induced TCP 

drift below a prescribed tolerance. 

5.3.6 Common signals and artifacts (all modes) 

Each mode logs a consistent set of traces per tick 𝑞, 𝑞̇, TCP pose/twist, 𝑑min , per-

group 𝑑𝑔
eff , supervisor state (where applicable), saturation flags, 

manipulability/condition metrics, and timing stamps. These feed the Chapter 6 

evaluation and the reproducibility assets described later in this chapter. 

5.3.7 Implementation bindings 

Modes are realized as thin configuration layers that (i) select the TCP time law 

(vector vs LSPB), (ii) enable/disable the supervisor and set ( 𝑑stop , 𝑑rel , dwell), (iii) 

enable/disable null-space repulsion and set ( 𝛼, 𝜌, 𝑉max , 𝑘𝑔 ), and (iv) choose posture 

and damping schedules. No changes to the synchronous stepping or scene I/O are 

required across modes, ensuring one-to-one comparability in the results. 

Each mode’s settings are serialized in the run configuration and stored alongside 

logs for replay (§5.4.1). 

5.4 Logging, reproducibility, and configuration 

This work treats data capture and experiment reconstruction as first-class concerns. 

All of the scenarios emit a common, time-aligned record of kinematics, supervision 

state, and timing; runs are parameterized by explicit, versioned configuration; and 

every artifact required to replay a result is stored alongside the data. 
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Logs are keyed by deterministic tick indices and a run_uid for cross-artifact joins 

(§5.4.1). 

5.4.1 Scope and structure of logs 

Each control tick 𝑘 writes a row keyed by a monotone timestamp 𝑡𝑘 (simulation 

time) and a wall-clock stamp 𝜏𝑘 (host time) to enable latency analysis. The core 

signals are: 

• Robot state: 𝑞𝑘 ∈ ℝ
7, 𝑞̇𝑘 ∈ ℝ

7; per-joint saturation flags; manipulability 

metrics (e.g., 𝜎min (𝐽𝑘), 𝜅(𝐽𝑘) ). 

• Task space: TCP pose 𝑥𝑘 = [𝑝𝑘; 𝑅𝑘], requested twist 𝑥̇𝑘
∗ = [𝑣𝑘

∗ ; 𝜔𝑘
⋆], 

achieved twist 𝑥̇𝑘; tracking errors 𝑒𝑘
pos 
= 𝑝𝑘 − 𝑝𝑘′

⋆ 𝑒𝑘
ori  (axis-angle). 

• Distance safety: global minimum raw separation 𝑑min, 𝑘; per-group 

effective separations 𝑑𝑔,𝑘
eff ; repulsive field magnitudes ‖𝑉𝑔,𝑘

𝑊 ‖. 

• Supervisor state (when enabled): state label 𝑠𝑘 ∈ { Approach, Hold, 

Repel, Resume, Stop }; dwell timers; STOP/RELEASE edge flags. 

• Time law: scalar progress 𝑠𝑘 and 𝑠̇𝑘 for LSPB modes; phase labels 

(accel/const/decel). 

• Timing: controller period Δ𝑡𝑘, end-to-end latency ℓ𝑘 (MATLAB issue → 

simulator ack), overrun indicator, and "hold-last-safe" activations. 

• Health: RESUME_OK (pause/resume completed without chattering), 

LEAK_EVT count, MON_TICK count. 

5.4.2 File formats and directory layout 

Each run creates a run directory: 

• config.yaml - full run configuration. 

• signals.csv - columnar log with header row (units in SI). 

• snapshots/ - periodic scene captures (optional) and supervisor edge 

thumbnails. 
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• versions.txt - toolchain identifiers (MATLAB, simulator build, OS) and 

scene hash. 

• checksums.sha256 - file integrity hashes. 

Large arrays (e.g., per-frame skeleton joint clouds) can be mirrored in a binary 

container (.mat) with column names duplicated as attributes to keep CSVs readable. 

5.4.3 Configuration schema  

All experiments are launched from a declarative configuration. A minimal schema: 

• scene: scene_id, scene_hash, world_frame, gravity, object set (human 

proxy layout, robot model id). 

• timing: controller_rate (Hz), physics_rate (Hz), synchronous (bool), dwell 

constants (ms). 

• primary_task: type ∈ { vector, LSPB𝑟 fixed_TCP }1 parameters (for 

vector: max speeds; for LSPB2𝑠̇max , 𝑎max  : for fixed_TCP: hold tolerances). 

• solver: damping schedule 𝜆(𝑡) or 𝜆(𝜎min(𝐽)); posture bias 𝐾post , 𝑞nom ; joint 

limits and rate limits. 

• safety: distance thresholds 𝑑stop , 𝑑rel;  repulsion shaping ( 𝛼, 𝜌, 𝑉max  ); per-

group gains 𝑘𝑔; effective radii policy. 

• supervision: state set, transitions, dwell times, freeze semantics (pause 

primary vs zero 𝑞̇ ). 

• logging: columns enabled, snapshot cadence, histogram bins for latency. 

• seeds: RNG seeds for any randomized elements (e.g., initial posture 

sampling), and a run_uid. 

5.4.4 Reproducibility guarantees 

• Version pinning: The simulator scene is identified by a content hash of the 

saved file; the control stack and helper libraries are recorded by semantic 

version and Git commit (short SHA). 
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• Deterministic stepping: Synchronous execution with fixed 

controller/physics rates yields deterministic replay when seeds and initial 

conditions are identical. 

• Unit invariants and conventions: All distances are in meters [m]; linear 

and angular velocities are in 𝑚𝑠−1 and 𝑟𝑎𝑑𝑠−1respectively; angles are in 

radians [rad]; and time is in seconds [s]. Coordinate frames are explicitly 

labeled (world, TCP, link). 

• Integrity checks: At load, the runner validates that config.yaml matches 

the embedded headers of signals.csv (scene_hash, rate, column set); 

mismatches abort the analysis. 

• Manifest: A compact run manifest (JSON or YAML) is emitted at start and 

echoed in the header of every CSV, capturing: mode, thresholds, gains, 

time-law parameters, seeds, scene hash, toolchain versions, and start time. 

5.4.5 Latency and overrun accounting 

For each control cycle, the host records request/ack times from the simulator 

interface to compute 𝑙𝑘. Overruns (𝑙𝑘 > Δ𝑡𝑐𝑡𝑟𝑙) trigger the hold-last-safe policy and 

are flagged; Chapter 6 reports the empirical distribution of 𝑙𝑘 and the fraction of 

affected ticks. 

5.4.5 Post-processing and provenance 

Analysis notebooks read only from the run directory; figures reference run_uid and 

commit IDs in their captions. Any data reduction (e.g., resampling for plots) writes 

derivative files into a derived/ subfolder with lineage metadata, ensuring that all 

reported numbers can be traced back to a specific signals.csv under a specific 

config.yaml. 
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Chapter 6 

Simulations & Results 

Modern collaborative manipulation sits at the intersection of redundancy-resolved 

control, safety supervision, and efficient distance modeling. On the control side, 

task-priority null-space projection and damped least-squares (DLS) inverse 

kinematics remain the backbone for shaping motion while preserving a primary 

Cartesian task and allocating residual freedom to posture objectives; their behavior 

is commonly assessed via manipulability and conditioning metrics. Classic and 

survey references include Yoshikawa’s manipulability, Nakamura–Hanafusa task 

priority, and DLS analyses by Chiaverini as well as Deo & Walker and related 

treatments near singularities [41]. 

Safety in human–robot collaboration is often formalized through speed-and-

separation monitoring (SSM), which modulates robot motion to maintain certified 

clearances and enforce predictable slow-down/stop/resume behavior. Standards 

guidance has evolved from ISO/TS 15066 alongside ISO 10218 updates, and the 

research literature details perception, distance computation, and timing semantics 

necessary for practical SSM deployments [41]. 

A complementary strategy enforces constraints by supervising references rather 

than low-level control actions—reference/command governors (RG/ERG). These 

add-on schemes minimally modify commanded trajectories to satisfy state and 

input constraints in real time, with modern variants applied to robotics and contact-

aware operation [9]. 

For proximity modeling, capsule proxies and signed-distance-field (SDF) methods 

provide efficient minimum-distance queries. Capsules remain a pragmatic choice 

for online HRC because segment–segment distances admit closed-form or 

inexpensive solvers and are supported directly in CoppeliaSim; SDF and composite 

SDF approaches offer richer geometry at higher computational cost and are 

increasingly explored for fast collision checking and planning.  
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Recent advances also show that safety and compliance can be modulated 

specifically in the null space so that the main Cartesian task remains unaffected. In 

particular, null-space compliance variation using safety control barrier functions, 

and related null-space impedance strategies, demonstrate how link-level behavior 

can improve clearances without degrading end-effector tracking. These ideas 

provide a natural point of comparison for the fixed-TCP, posture-only shaping used 

here [5]. 

Trajectory generation further influences both throughput and safety. It is therefore 

informative to contrast smooth vector-field tracking with the classical linear-

segment-with-parabolic-blend (LSPB) profile (a trapezoidal-velocity time scaling 

standard in robotics texts and toolboxes), holding the controller and safety logic 

fixed to isolate the impact of the reference shape on accuracy, conditioning, and 

separation margins [45]. 

Against this backdrop, the remainder of this chapter evaluates the proposed control 

architecture across five scenarios (S1–S5) that progressively introduce trajectory 

generation, human proximity, and null-space safety regulation. All experiments are 

performed on a 7-DOF Franka Emika Panda model in CoppeliaSim under 

synchronous stepping. The simulator time step is 5 ms and the physics loop is 

advanced synchronously to ensure deterministic logging. Robot joints operate in 

the internal position loop with sufficient torque limits; commanded joint rates are 

low-pass filtered and capped per joint and per tick to match the inner servo’s 

bandwidth. 

The human is represented by a motion-capture skeleton driving capsule geometry 

(shoulder–elbow–wrist chains and torso segments). Skeleton world alignment uses 

a fixed yaw offset and translation, and the capsule model is updated at each control 

tick. Safety is enforced by a proximity gate with a stop radius of 0.25 m and a 

release radius of 0.28 m with 0.05 s hysteresis; when separation falls below the stop 

radius, the task command is frozen and the controller holds until the release 

condition is satisfied. 

Controllers differ by scenario but share the same task/secondary structure. 

Translation is realized with a damped least-squares SVD inverse of the linear TCP 
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Jacobian; tool orientation is either held fixed or lightly regulated depending on the 

scenario. Secondary actions (posture shaping and, when enabled, joint-space 

repulsion derived from capsule distances) are injected strictly through the 

translational null space so they remain kinematically invisible to the primary task. 

In trajectory-based scenarios an LSPB reference provides accelerate–cruise–

decelerate timing along the straight line from the initial TCP position to the target; 

in vector-field scenarios a distance-aware speed law drives directly toward the goal. 

On RESUME, vector references re-enable the nominal twist; LSPB continues from 

the frozen phase with a jerk-bounded splice. 

Reporting and statistics follow a uniform protocol. Logs are sampled at the control 

tick. Unless otherwise stated, curves are shown without additional smoothing 

beyond the controller’s internal filters; scalar summaries are reported as median, 

95th percentile, RMS, and maximum as appropriate. The metrics used 

throughout—minimum separation, TCP position/orientation error, joint-rate norms 

and saturation counts, conditioning of the translational Jacobian (κ and σ_min), 

linear manipulability, stop/release dwell compliance, equality residuals, feasibility 

flags, and null-space leakage measures—are defined once in the metric dictionary 

later in this chapter. Each scenario then reports its own settings, timing, and 

outcome tables and references those shared definitions. 

Reproducibility is ensured by fixing scene assets, configuration files, and random 

seeds per scenario. The exact log filenames and figure/table IDs referenced in this 

chapter are listed in the reproducibility checklist at the end of Chapter 6. 
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6.1 Scenarios S1 – S5 

We evaluate the same MATLAB↔CoppeliaSim stack on a 7-DoF Franka across 

five scenarios that progressively add supervision, human motion, and redundancy 

shaping. The backbone (Ch. 3–5) remains unchanged: translation-only primary 

control at the TCP is resolved by damped least-squares IK with SVD, tiny 

orientation and posture terms act in the null space, joint rates are smoothed and 

capped, and completion is declared after dwelling 0.25 s inside a 5 cm deadband 

followed by a 2.0 s hold. 

The ladder proceeds as follows: S1 establishes the free-space reach using the 

baseline vector-field reference; S2 introduces Speed-and-Separation Monitoring 

(SSM) while replaying a human trace, but keeps the same vector-field generator; 

S3 returns to free space and replaces the reference with the LSPB time law used 

earlier in the thesis; S4 adds SSM and the same human trace on top of LSPB; finally, 

S5 freezes the TCP pose and uses redundancy alone to reconfigure posture for 

clearance (fixed-TCP), while the supervisor enforces dwell semantics. All scenarios 

log distance-to-target, TCP speed and active caps, Jacobian conditioning, per-joint 

rates and cap events, and—when humans are present—minimum clearance and 

STOP/RELEASE dwell times. An over view of the matrix of the scenarios is 

desplayed in table below: 

ID Goal & 

context 

Inputs Control mode (key params) Constraints Logged outputs 

S1 Free-space 

reach to a fixed 

target (baseline 

vector-field). 

Initial posture q0 

from scene; no 

human. 

Vector-field translational attractor; DLS IK 

(SVD) with translation-only primary; small 

orientation/posture in null space; 

smoothing α=0.20; joint speed cap 1.0 

rad/s; step cap 6°. 

Deadband 

0.05 m; dwell 

0.25 s; final 

hold 2.0 s; 

joint limits. 

d(t)=‖p_tgt−p_tcp

‖; |v_tcp| and 

v_cap(t); κ(J_lin), 

σ_min; per-joint 

q̇; speed/step-cap 

flags; path length; 

state stamps. 

S2 Same motion 

logic as S1 

with SSM and 

human replay 

(vector-field). 

q0; 

skeleton→capsu

le human trace. 

Vector-field + DLS IK (as S1) with SSM 

gating 

(approach/caution/pause/stop/release). 

SSM 

thresholds & 

hysteresis 

(Ch. 5); dwell 

timers. 

All S1 logs + min-

clearance 

timeline; 

STOP/RELEASE 

dwell; throughput 

impact. 
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Table 6.1 Scenario matrix (S1–S5) 

6.1.1 Scenario S1 — Attractive-field point-to-point motion with 

DLS–SVD tracking 

Introduction and objective 

This scenario evaluates the baseline free-space behavior of the redundant 

manipulator under a continuous attractive velocity field, in the absence of human 

interaction. The aim is to establish smooth convergence to a fixed Cartesian target 

(𝑝𝑑, 𝑅𝑑) with bounded control effort and well-conditioned inversion, while strictly 

honoring joint-space limits and servo hygiene. The expected outcome is a monotone 

decay of the TCP–target error into a prescribed deadband, a short terminal hold, 

negligible steady-state orientation error, and numerically stable Jacobian inversions 

without feasibility losses.  

See Table 6.2 for the configuration and Table 6.3 for the summary metrics. 

Fig. 6.1 shows the free-space initial condition and the simulator-provided goal 

𝑝𝑡𝑔𝑡 consumed at run-time; this anchors the world-frame convention, confirming 

that S1 isolates attractive tracking and the translational DLS–SVD map without 

human/obstacle confounds, establishing the baseline for the chapter. 

S3 Free-space 

reach to target 

with LSPB 

reference (no 

human). 

q0; no human. LSPB Cartesian reference (bounded-jerk) 

tracked by DLS IK; same smoothing & 

caps. 

Same as S1. All S1 logs + 

LSPB phase 

stamps 

(accel/cruise/dece

l). 
S4 Same as S3 

with SSM and 

the same 

human replay 

(LSPB). 

q0; same human 

trace as S2. 
LSPB + DLS IK + SSM gating. SSM 

thresholds & 

dwell; min 

clearance ≥ 

prescribed. 

S3 logs + min-

clearance 

timelines; 

STOP/RELEASE 

dwell 

distributions; 

throughput. 
S5 Fixed-TCP 

posture-only 

reconfiguratio

n with SSM 

(redundancy 

shaping). 

q0; same human 

trace as S2/S4. 
Translation & orientation held (fixed TCP); 

posture shaping strictly in null space; 

leakage monitor ℓ(t)=‖J_lin·q̇_ns‖. 

TCP drift ≤ 

tolerance; 

SSM 

thresholds & 

dwell; joint 

limits. 

Min-clearance; 

supervisor states 

& dwell; TCP 

drift; leakage ℓ(t); 

joint usage. 
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Fig. 6.1 Initial scene and target placement for S1 (free-space reach). 

Controller structure 

The task is expressed in the world frame. The TCP position is 𝑝 ∈ ℝ3 and the goal 

is 𝑝tgt ∈ ℝ
3. Define the position error 𝑒𝑝 = 𝑝tgt − 𝑝, its magnitude 𝑑 = ‖𝑒𝑝‖, and 

the unit direction 𝑒̂𝑝 = 𝑒𝑝/max(𝑑, 𝜀) with a small 𝜀 > 0 for numerical safety. 

Distance-aware speed-limiting law and attractive twist 

The commanded Cartesian speed is shaped by a distance-aware speed-limiting law 

that blends a local linear approach, a near-field taper on the cruise speed, and a 

braking bound derived from stopping-distance feasibility. With approach gain 𝑘 >

0, cruise cap 𝑣max > 0, braking cap 𝑎max > 0, and linearization radius 𝑑lin > 0 

(set to 0.20 m in experiments), define 

𝑣cap (𝑡) = min {𝑣maxmin (1,
𝑑

𝑑lin 

) , √2𝑎max 𝑑} , 𝑣des = min{𝑘𝑑, 𝑣cap (𝑡)}, 

and assemble the purely translational task twist 

𝑣att = 𝑣des𝑒̂𝑝 ∈ ℝ
3 

Monotone approach and stopping-distance feasibility 

Two structural properties follow. First, since 𝑣att  is collinear with 𝑒̂𝑝, the distance 

dynamics satisfy 𝑑̇ = −𝑣des ≤ 0, hence 𝑑(𝑡) is monotonically non-increasing. In 
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the local linear regime where 𝑣des = 𝑘𝑑, one obtains 𝑑̇ = −𝑘𝑑 and the closed-form 

decay 𝑑(𝑡) = 𝑑(0)𝑒−𝑘𝑡, with the conservative time-to-tolerance bound 𝑡𝜀𝑝 ≤

𝑘−1ln (𝑑(0)/𝜀𝑝). Second, when the braking term dominates, 𝑣des = √2𝑎max 𝑑 

yields 𝑑̇ = −√2𝑎max𝑑 and 𝑑(𝑡) = (√𝑑(0) − √𝑎max/2𝑡)+
2

, which formalizes 

stopping-distance feasibility in continuous time; the discrete controller enforces the 

same qualitative behavior through the deadband-dwell-hold logic. 

Translational DLS-SVD inverse kinematics 

Joint rates are produced by a translational damped least-squares inverse of the linear 

TCP Jacobian 𝐽lin(𝑞) ∈ ℝ
3×7. With the thin SVD 𝐽lin = 𝑈Σ𝑉

⊤ and singular values 

{𝜎𝑖}, the damped pseudoinverse 

𝐽lin
# = 𝑉diag (

𝜎𝑖

𝜎𝑖
2 + 𝜆2

)𝑈⊤ 

maps the translational twist into the task joint rate 

𝑞̇task = 𝐽lin 
# 𝑣att.  

The damping 𝜆 = 𝜆(𝜎min(𝐽lin)) ∈ [𝜆min, 𝜆max] is scheduled as a monotone 

decreasing function of 𝜎min, so the mapping approaches the Moore-Penrose inverse 

when conditioning is strong and automatically attenuates gains when small singular 

values arise. The spectral bound ‖𝑞̇task ‖ ≤ ‖𝐽lin 
# ‖‖𝑣att ‖ ≤ ‖𝑣att ‖/𝜎min(𝐽lin ) 

(tightened by 𝜆 > 0 ) guarantees bounded commanded joint rates whenever 𝜎min is 

kept away from zero, a fact corroborated by the time histories. 

Strict null-space regularization 

Secondary objectives are applied strictly in the null space of the translational task 

so as not to disturb the end-effector motion. With 

𝑁 = 𝐼 − 𝐽lin
# 𝐽lin, 

the full command is 

𝑞̇ = 𝑞̇task + 𝑁(𝑞̇orient + 𝑞̇post ), 𝑞̇post = 𝐾post (𝑞rest − 𝑞) (per-joint capped).  
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Because 𝐽lin𝑁 = 0 and 𝑁2 = 𝑁, the secondary terms are kinematically invisible to 

the translational task: 𝐽lin 𝑞̇ = 𝐽lin 𝑞̇task = 𝑣att . This strict separation ensures that any 

orientation or posture bias only redistributes motion across redundant directions 

while preserving the radial approach dictated by 𝑣att . 

Servo-aware execution 

Execution is servo-aware. The raw 𝑞̇ is low-pass filtered with factor 𝛼 to attenuate 

high-frequency components, then subjected to per-joint rate limits, per-tick step 

limits, and hard clamps at the joint bounds. The realized update is 

𝑞+ = 𝑞 + 𝜂Δ𝑡𝑞̃̇,         𝑞̃̇ = clamp∘satΔ𝑞 ∘ sat𝑞̇(LPF𝛼(𝑞̇)),         𝜂 ∈ [𝜂min, 𝜂max] 

where 𝜂 is reduced if the inner position loop exhibits lag. For sufficiently small Δ𝑡 

and 𝜂 ∈ (0,1], a firstorder expansion gives 𝑑+ ≤ 𝑑 − 𝜂Δ𝑡𝑣des + 𝒪(Δ𝑡
2), hence the 

monotone decrease observed in continuous time is preserved at the sampling rate 

used. 

Lyapunov interpretation 

A Lyapunov viewpoint clarifies stability. With 𝑉(𝑑) =
1

2
𝑑2, one has 𝑉̇ = 𝑑𝑑̇ =

−𝑑𝑣des ≤ 0, with equality only at 𝑑 = 0 (or within the discrete deadband). The 

target set is therefore stable and attractive; the speedlimiting law ensures forward 

completeness under bounded speed and acceleration; and null-space separation 

preserves task invariance for any admissible secondary regularizer. These 

properties underpin the empirical behavior summarized in the subsequent results 

and discussion. 

Results and discussions 

In free space, the attractive-field controller mapped through the translational DLS–

SVD achieves smooth, first-order approach to the target with bounded effort and 

numerically stable behavior. Convergence, path regularity, and actuator margins 

follow the intended speed/deceleration envelope, while Jacobian conditioning 

remains well-behaved, requiring only light damping. The supporting evidence 

follows in sequence: scene and terminal behavior, geometric path, convergence and 

envelope compliance with conditioning and joint rates, constraint usage, 
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smoothness diagnostics, and finally the scenario parameters and performance 

summary. 

Fig. 6.2 documents entry into the positional deadband, a 0.25 s dwell to reject 

transient crossings, and a 2.0 s terminal hold; consistent with the monotone decay 

implied by 𝑑̇ =  −𝑣𝑑𝑒𝑠. 

 

Fig. 6.2 Terminal pose held inside the 5 cm deadband (2.0 s hold) 

Figure 6.3 traces the TCP path to 𝑝𝑡𝑔𝑡 with the 0.05 m bubble overlaid; the 

trajectory is smooth and compact (length 1.03 m), and the measured average/peak 

speeds (0.081/0.222 𝑚𝑠−1) confirm that the speed-limiting law and the map in 

produce a clean approach without cornering artefacts or detours. 

Fig. 6.3 TCP trajectory to the fixed target (S1); Deadband radius 0.05 m. 

Figure 6.4 consolidates the time histories: 𝑑(𝑡) decays monotonically into tolerance; 

measured ∥ 𝑣𝑡𝑐𝑝 ∥ remains below the commanded envelope 𝑣𝑐𝑎𝑝(𝑡) ; the Jacobian 

conditioning is well-behaved (median/min/max 𝑘(𝐽𝑙𝑖𝑛) = 3.56/2.30/3.61) , so the 
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damping stays light; and per-joint rates lie comfortably under the 1.0 𝑟𝑎𝑑 𝑠−1 

cap—jointly validating well-posed convergence with bounded effort. 

 

Fig. 6.4 Timelines: distance d(t); measured |v_tcp| vs cap v_cap(t); κ(J_lin) and σ_min; per-joint 

rates with the 1.0 rad/s limit. State ribbon marks the 2.0 s hold 

Figure 6.5 aggregates actuator-level margins: 0 % speed-cap hits, 14 % step-cap 

engagement localized to approach/termination, and 0 % joint-limit proximity; this 

pattern indicates purposeful capping rather than sustained constraint pressure, and 

demonstrates that the execution policy suppresses chatter while preserving smooth 

deceleration. 

 

Fig. 6.5 Per-joint speed usage and cap fractions. No speed-cap hits 
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Figure 6.6 reports probability density functions (PDFs) of TCP acceleration and 

jerk; tapered tails emerge as the braking term √2𝑎max 𝑑 becomes dominant, 

evidencing suppression of high-frequency content and alignment with the intended 

near-goal first-order behaviour 𝑑̇ = −𝑘𝑑. 

 

Fig. 6.6 TCP smoothness: PDFs of |a_tcp| and |j_tcp| showing tapered tails as the deceleration 

envelope engages. 

Table 6.2 compiles the S1 deltas relative to the chapter defaults; together these 

settings realize a distance-shaped, chatter-free approach with ample numerical and 

actuation margin. 

Item Value 

Target p_tgt [m] [0.650, −0.300, 0.900] 
Attraction gain k 1.2 

Speed cap v_max [m/s] 1.2 
Decel parameter a_max [m/s²] 1.2 

Deadband / dwell / hold 0.05 m / 0.25 s / 2.0 s 
Orientation: K, λ, cap [rad/s] 0.45, 0.25, 0.12 

Posture: K, q_rest, cap [rad/s] 
0.08, [NaN, 0.10, −0.60, 0.20, NaN, 0, 0], 

0.10 
Smoothing α 0.20 

Joint speed cap [rad/s] 1.0 
Step cap [deg/step] 6 
Joint limits [rad] As in Chapter 5 
Controller period dt × steps_per_tick (log) 

Table 6.2 Scenario S1 setup and parameters 

Table 6.3 reports the outcomes corresponding to the figures as seen below. 

Metric Value 

Time to TASK_COMPLETE [s] 10.80 
Final hold [s] 2.10 
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Final / min distance [m] 0.0430 / 0.0429 
κ(J_lin) median / min / max 3.56 / 2.30 / 3.61 

Speed-cap time [%] 0.0 
Step-cap time [%] 14.0 

Joint-limit proximity [% steps] 0.0 
Avg / peak |v_tcp| [m/s] 0.081 / 0.222 

Path length L [m] 1.03 
Table 6.3 Scenario S1 outcomes and diagnostics . 

Conclusion 

Scenario 1 verifies that a world-frame attractive field, mapped by a translational 

DLS–SVD inverse and executed under a servo-aware policy, achieves smooth, 

monotone approach with bounded effort and benign conditioning. With no 

human/obstacles, the controller exhibits zero speed-cap pressure, limited step-cap 

activity only near termination, and clean terminal behaviour (deadband, dwell, 

hold), establishing the reference against which human-aware scenarios are 

interpreted. 

6.1.2 Scenario S2 — Proximity-Aware Reaching: Supervisory Hold 

and Null-Space Repulsion 

This scenario augments the base free-space reach with human-aware semantics. 

Stop/Release radii and dwell timers used here are listed in Table 6.4.  

The TCP first approaches the human hand from above, verifies lateral alignment, 

performs a short hold to emulate a handover pause, executes a vertical repel to 

visibly increase separation, and then proceeds to a locked goal with a capped 

descent. The kinematic core remains a damped least-squares (DLS) IK for the 

translational task; secondary objectives (orientation, posture) are injected through 

the linear Jacobian’s null space so they cannot contaminate translation. This mirrors 

the line of work that combines task-priority IK with state-dependent safety 

envelopes and SSM-style dwell/retreat behaviors; Null-space containment ensures 

that secondary objectives (orientation and posture) are orthogonal to the 

translational task, so they do not leak into TCP motion, while the explicit 

HOLD/REPEL phases give the behavior clear semantics in mixed human–robot 

operation. 
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Figure 6.7 introduces the S2 scene: the Panda is mounted on the table, the human 

enters along a scripted wrist trajectory, and the controller’s stop/release radii define 

the operating corridor used by the speed-limiting law and the supervisory gate. 

 

Fig. 6.7 Scene setup for S2. Panda on table, human (‘Bill’) inside a vertical ‘safety tunnel’, and fixed 

/targetPoint. 

Whereas figure 6.8 shows a mid-interaction snapshot, with the TCP just above and 

slightly ahead of the right wrist at first contact; the gate transitions to hold repulsion 

becomes active to bias motion away from the encroaching hand. 

 

Fig. 6.8 Mid-interaction snapshot. TCP is above and slightly in front of the right wrist at the 

HOLD_AT_HAND moment; the subsequent upward retreat (REPEL_FROM_HAND) starts from 

this posture. This illustrates the geometric rationale for the vertical-first exit and the SSM clearance. 
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Controller structure 

The controller switches among five states; only APPROACH_HAND, 

HOLD_AT_HAND, REPEL_FROM_HAND, and APPROACH_TARGET are 

active in S2. Transitions are event-driven by distances and timing: 

• Gate to approach: wrist–shoulder extension ≥ 0.45 m. 

• Over-hand approach height: 𝑍over = 0.05 m. 

• Hold dwell: 𝑇hold = 2.0 s. 

• Repel: vertical lift ≥ 0.12 m for ≥ 0.25 s, then continue away. 

• Target stop: ‖𝑥 − 𝑥∗‖ ≤ 0.05 m maintained for ≥ 0.25 s, then final 2.0 s 

hold. 

Primary task: translational DLS IK 

Let 𝐽lin ∈ ℝ
3×7 be the linear part of the TCP Jacobian and 𝑣lin ∈ ℝ

3 the desired 

TCP linear velocity. We use an adaptive DLS pseudoinverse with a conditioning-

dependent damping: 

𝜆 = 0.12 + 0.003min(cond(𝐽lin), 400)

𝐽lin
# = 𝑉diag (

𝜎𝑖

𝜎𝑖
2 + 𝜆2

)𝑉⊤𝑈⊤

𝑞̇task = 𝐽lin
# 𝑣lin

 

where 𝑈diag(𝜎𝑖)𝑉
⊤ is the thin SVD of 𝐽lin. . Speed tapers and descent caps are 

applied in task space (as in S1), while joint-space rate limits and per-step clamps 

bound 𝑞̇ and Δ𝑞. 

Secondary tasks: null-space-contained orientation and posture 

Let 𝑞̇ori  be the DLS solution of the rotational subtask (tiny gain, capped), and 𝑞̇post  

the light joint-space bias toward 𝑞rest . We contain both in the null space of 𝐽lin and 

add a compensation that preserves the legacy translational behavior: 
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𝑁 = 𝐼 − 𝐽lin
# 𝐽lin

𝑞̇sec, ns = 𝑁(𝑞̇ori + 𝑞̇post)

𝑣leak = 𝐽lin(𝑞̇ori + 𝑞̇post) 𝑞̇comp = 𝐽lin
# 𝑣leak

𝑞̇ = 𝑞̇task + 𝑞̇comp + 𝑞̇sec, ns + 𝑞̇rep

 

By construction, 𝐽lin 𝑞̇sec,ns = 0. The compensation 𝑞̇comp  keeps the translational 

command identical to pre-projection behavior, so external TCP translation is 

preserved, while secondaries are now null-space clean. In the touchdown window 

we suppress orientation/posture ( 𝑞̇ori = 𝑞̇post = 0 ) to prioritize a smooth vertical 

drop. 

Safety distances and descent policy 

Distances to the human hand and table are monitored continuously. Repulsion is 

state-dependent (disabled during HOLD, enabled otherwise), with a visible vertical 

retreat then a directional back-off before target approach. During 

APPROACH_TARGET, a two-stage policy aligns XY before a capped Z descent: 

‖𝑒𝑋𝑌‖ ≤ 𝜏𝑋𝑌⟹ 𝑣𝑧 = clip(1.1|𝑒𝑧|, cap)sgn(𝑒𝑧), 𝑣𝑋𝑌 = 𝐾𝑋𝑌𝑒𝑋𝑌 (capped)  

Kinematic health and effort 

We track conditioning and manipulability to demonstrate numerically stable IK, 

and we decompose joint space effort to show where the controller "spends" motion: 

cond(𝐽lin )  and  𝑤lin = √det(𝐽lin𝐽lin
⊤ )

‖𝑞̇task ‖, ‖𝑞̇rep ‖, ‖𝑞̇post ‖, ‖𝑞̇‖

 

Null-space integrity  

To verify that secondaries no longer bleed into translation, we log the pre-projection 

leak and the post-projection residual: 

ℓpre = ‖𝐽lin (𝑞̇ori + 𝑞̇post )‖, ℓpost = ‖𝐽lin 𝑞̇sec,ns ‖ ≈ 0 

We also report a relative metric ℓpost /‖𝑣lin ‖, (interpreted cautiously when 

‖𝑣lin ‖ → 0 ).  



137 
 

Results and discussion 

S2 exhibits the intended human-aware semantics: a decisive HOLD at the hand, a 

visible and bounded REPEL, and a stable approach to the goal with capped descent. 

Safety distances remain within the designed envelopes; table clearance never 

encroaches on the warn band. Kinematically, the task remains far from translational 

singularities (max cond ≈ 8), and the DLS policy keeps the solver well-posed. The 

null-space projector eliminates translation leakage from secondaries in absolute 

terms, with a >10× reduction versus the pre-projection composite; any relative 

spikes occur only when the commanded task speed approaches zero. Joint-space 

effort is localized where it should be (brief repulsion, light posture), then decays as 

the TCP settles into the stop dwell, which is met for the specified time. The residual 

negatives—brief speed/step caps and intentionally weak orientation hold near 

touchdown—are consequences of conservative limits and state priorities rather than 

controller instability. In sum, S2 demonstrates predictable, transparent human-

aware behavior while preserving IK stability and task-priority integrity.  

Figure 6.9 reports the discrete mode timeline (track, repel band, stop/hold) together 

with transient limit flags; the plot demonstrates clean switching without chatter and 

only brief, localized step-limit activity at mode edges. 

 

Fig. 6.9 State progression and transient limit flags 
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Figure 6.10 tracks the minimum distance from the TCP to the human hand and to 

the table plane; the first crossing of the stop radius triggers a true hold, and release 

occurs only after the recovery radius is satisfied, confirming correct hysteresis. 

 

Fig. 6.10 Distances over time from TCP to the human hand and to the table plane. Horizontal lines 

mark SSM repulsion activation (0.15 m) and the clearance warning (0.02 m above the table). 

Figure 6.11 shows horizontal and vertical position errors relative to the target 

along with the XY/Z tolerances that trigger the final hold; errors pause during 

stop/repel and resume decaying once clearance is re-established. 

 

Fig. 6.11 XY error ||𝑒𝑥𝑦 || (top) and vertical error ||𝑒𝑧|| (bottom) with the XY/Z tolerances used to 

trigger the vertical drop and terminal stop. 
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Figure 6.12 plots 𝑐𝑜𝑛𝑑(𝐽𝑙𝑖𝑛) during the run: despite posture changes induced by 

proximity, the conditioning remains well-behaved, so the damping scheduled in 

the DLS–SVD inverse stays light and the inversion remains numerically stable. 

 

Fig. 6.12 𝑐𝑜𝑛𝑑(𝐽𝑙𝑖𝑛) during the run, indicating distance from translational singularities; peaks 

remain moderate (< 10). 

Figure 6.13 decomposes joint-space effort into translational task, repulsion, 

posture, and final command norms; repulsion activates only inside the band and 

posture remains bounded while the TCP term dominates outside proximity. 

 

Fig. 6.13 Norms of the component velocities: task (linear), repulsion, posture, and final command. 

Shows that repulsion activates only locally and that posture stays bounded while the task term 

dominates. 

Figure 6.14 audits leakage of secondary terms into translation before and after 

projection; the post-projection trace confirms strict null-space containment, 

preventing the posture term from corrupting the TCP command. 
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Fig. 6.14 Leakage ∥ 𝐽𝑙𝑖𝑛(𝑞̇𝑜𝑟𝑖𝑒𝑛𝑡 + 𝑞𝑝̇𝑜𝑠𝑡)∥ before and after null-space projection, with the relative 

leakage (normalized by ∥𝑣𝑡𝑎𝑠𝑘∥) Projection reduces translation contamination by an order of 

magnitude across the run. 

Table 6.4 summarizes the supervisory logic for S2, listing stop and release radii, 

the repel band, the mixing law used during recovery, and the gate timers that 

guarantee a minimum hold and a clean release. 

Mode 
Entry 

condition 

Commanded 

translational 

twist 

Repulsion 

activation 

Mixing law 

λ_mix(d_min) 

Stop 

radius 

r_stop 

[m] 

Release 

radius 

r_rel 

[m] 

Hold / dwell / 

hysteresis 
Notes 

TRACK 
d_min ≥ 

0.28 

v_task = 

v_att 

(attractive, 

distance-

shaped 

speed-

limiting law) 

Inactive λ_mix = 1 0.25 0.28 

No hold; 

resume 

condition 

already 

satisfied 

Baseline approach 

toward p_tar 

REPEL 

BAND 

0.25 < 

d_min < 

0.28 

v_task = 

λ_mix v_att 

+ (1−λ_mix) 

v_rep 

Active 

(reference-

style, task-

level) 

λ_mix ∈ (0,1), 

smooth in 

d_min 

0.25 0.28 

No hold; 

blending until 

d_min ≥ r_rel 

Controlled detour; no 

chatter 

STOP / 

HOLD 

d_min ≤ 

0.25 

v_task = 0 

(true hold) 
Inactive n/a 0.25 0.28 

Release 

hysteresis ≥ 

0.05 s beyond 

r_rel 

Hard freeze until 

separation recovers 

Table 6.4 S2 supervisory logic: thresholds (r_stop, r_rel), repel band, recovery mixing law 

λ_mix(d_min), and dwell timers for clean transitions. 

Table 6.5 aggregates the principal outcomes for S2: timestamps for hold entry and 

release, minimum achieved separation, duration within stop/repel, final time-to-
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target after recovery, path-length increase relative to free-space, conditioning 

statistics, and constraint-binding counts per joint. 

Metric Value 

Total time 27.30 s 

Minimum hand-TCP distance 0.072 m 

Minimum table clearance 0.274 m 

Max cond(J_lin) 8.09 

Stop-dwell satisfied ( ≥ 𝟎. 𝟐𝟓 s inside 0.05 m ) true (max inside 2.25 s ) 

Null-space leakage, posture-only (median / p95) 0.0015/0.0048 m/s 
Leakage reduction ratio (median, pre → post projection) 11.2 × 

Table 6.5 S2 outcomes and diagnostics (min distances, dwell compliance, conditioning, leakage 

before/after projection). 

6.1.3 Scenario S3 — Free-space reach with LSPB feed-forward 

and null-space-contained secondaries 

This scenario reuses the exact same CoppeliaSim scene as S1: the Panda is mounted 

on the table, a fixed /targetPoint is provided by the scene, and no human interaction 

is present. LSPB improves near-goal smoothness and completion time while 

preserving benign conditioning (compare S1 vs. S3 in §6.3). The difference is in 

the controller. Instead of a purely proportional position servo in task space, the TCP 

is driven by a trapezoidal-velocity (LSPB) reference along the straight line from the 

current TCP pose 𝑝0 to the scene target 𝑝𝑓. A lightweight translational damped 

least-squares (DLS) IK realizes the commanded linear velocity, while orientation 

holding and posture bias are injected through the linear Jacobian’s null space so 

they cannot jeopardize the primary translation. This keeps the external motion 

predictable and kinematically well-conditioned, yet still stabilizes wrist/elbow 

posture. 

Figure below visualizes the cross-track deviation relative to the straight line 𝑝0 →

 𝑝𝑓; the deviation remains negligible throughout, confirming that the DLS mapping 

and null-space regularizers do not induce lateral drift. 
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Fig. 6.15 Cross-track deviation plot via Matlab visualization tools. 

Control formulation and reference generation 

Let 𝐷 = ‖𝑝𝑓 − 𝑝0‖ and 𝑢̂ = (𝑝𝑓 − 𝑝0)/𝐷. The LSPB profile uses user bounds 

𝑉max, 𝐴max to construct the standard accelerate-cruise-decelerate law over [0, 𝑡𝑓] 

with acceleration time 𝑡acc and, if needed, a flat segment 𝑡flat . The unit-distance 

scheduler 𝑠(𝑡) ∈ [0,1] and its derivatives 𝑠̇(𝑡), 𝑠̈(𝑡) are converted into a 

position/velocity/acceleration reference: 

𝑥ref(𝑡) = 𝑝0 + 𝑢̂𝐷𝑠(𝑡), 𝑣ff(𝑡) = 𝑢̂𝐷𝑠̇(𝑡) 

A small P hold around the feed-forward cancels residuals and provides damping: 

𝑒𝑥 = 𝑥ref − 𝑥, 𝑣cmd = 𝑣ff + 𝐾𝑝𝑒𝑥 − 𝐾𝑑𝐽lin𝑞̇𝑘−1 

with conservative caps on ‖𝑣cmd ‖ and a gentle dead-zone near the target to suppress 

chatter. Orientation is held at the start-pose 𝑅0 with a tiny gain (no commanded re-

orientation in S3), and a mild joint-space bias 𝑞̇post = 𝐾post (𝑞rest − 𝑞) keeps the 

arm in a neutral posture. 

Task-priority IK and null-space containment  

Let 𝐽lin ∈ ℝ
3×7 be the linear part of the TCP Jacobian. We map the translational 

command with an SVD based DLS pseudoinverse: 
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𝜆 = 𝜆0( constant , small ), 𝐽lin 
# = 𝑉diag(

𝜎𝑖

𝜎𝑖
2 + 𝜆2

)𝑉⊤𝑈⊤,   

𝑞̇pos = 𝐽lin 
# 𝑣cmd  

Secondary tasks are strictly contained in the null space of the translational task: 

𝑁 = 𝐼 − 𝐽lin 
# 𝐽lin , 𝑞̇sec,ns = 𝑁(𝑞̇orient + 𝑞̇post ) 

The final joint velocity is 

𝑞̇ = 𝑞̇pos + 𝑞̇sec, ns, 

followed by per-joint smoothing, speed limits and step clamps. Two numerical 

"health" monitors run throughout: the conditioning 𝜅(𝐽lin ) and 𝜎min (𝐽lin )𝑠 and a 

leakage check ‖𝐽lin (𝑞̇orient + 𝑞̇post )‖ before and after null-space projection. 

Results and discussion 

The LSPB feed-forward yields the expected ramp–cruise–ramp speed profile with 

a smooth decay into the near-goal dead-zone, so the TCP tracks the straight-line 

reference and satisfies the 5 cm stop bubble and the 0.25 s dwell without overshoot. 

Throughout the motion the translational map remains well-behaved: 𝑐𝑜𝑛𝑑(𝐽𝑙𝑖𝑛) 

peaks at about 3 and 𝜎𝑚𝑖𝑛(𝐽𝑙𝑖𝑛) stays near 0.290, so damping remains light. Joint-

space effort is dominated by the primary translational term; the posture bias stays 

small and steady; the orientation term is essentially nil as intended for a fixed-

attitude run. Crucially, strict null-space projection eliminates measurable 

contamination of translation by secondaries: pre-projection leakage rises with 

commanded speed as expected, while the post-projection residual sits at numerical 

zero. No joint-speed or per-tick step caps are triggered and no joint-limit contacts 

are observed. The state trace consists of a single TRACK_TRAJ phase, 

transitioning to TASK_COMPLETE once the bubble is met and the dwell is 

satisfied. Overall, S3 shows that introducing an LSPB reference improves temporal 

predictability without compromising the stability and task-priority guarantees 

established in S1. 
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Figure 6.16 shows the TCP path in plan (XY) and elevation (XZ); the trajectory 

follows the straight segment from start to target, with the red marker denoting the 

scene target. 

 

Fig. 6.16 TCP path in plan (XY) and elevation (XZ) for S3. The tool center point moves along the 

commanded line from the initial pose to the scene target. The red marker denotes the target. 

Figure 6.17 compares the LSPB speed profile to ∥ 𝑣𝑐𝑚𝑑 ∥, showing a ramp to about 

0.35 𝑚/𝑠 , a nearly flat cruise, and a smooth decay near 𝑡 ≈ 1.7 𝑠 to satisfy the 

near-goal dwell. 

 

Fig. 6.17 LSPB speed profile vs. commanded magnitude ∥𝑣𝑐𝑚𝑑∥. The run exhibits the standard 

ramp–cruise–ramp shape with conservative decay near the goal to satisfy the stop dwell. 
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Figure 6.18 reports the kinematic health of the translational map: the condition 

number remains low and slowly varying, and the minimum singular value stays 

comfortably away from zero, supporting a light constant damping. 

 

Fig. 6.18 Kinematic health during S3. Top: 𝑘(𝐽𝑙𝑖𝑛)remains low and slowly varying. Bottom: smallest 

singular value 𝜎𝑚𝑖𝑛(𝐽𝑙𝑖𝑛)stays comfortably away from zero. 

Figure 6.19 decomposes joint-space velocity norms; the primary translational 

component dominates, posture bias remains around 0.07 𝑟𝑎𝑑/𝑠, and orientation is 

essentially zero, consistent with the fixed-attitude assumption. 

 

Fig. 6.19 Joint-space velocity norms. The primary translational component dominates; posture bias 

remains small and orientation is negligible, as expected for fixed-attitude S3. 
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Figure 6.20 audits null-space containment: the pre-projection leakage ∥ 𝐽𝑙𝑖𝑛 𝑞̇𝑠𝑒𝑐 ∥ 

increases mildly with speed, whereas the post-projection residual remains at 

numerical zero, confirming strict task-priority integrity. 

 

Fig. 6.20 Null-space containment. Pre-projection leakage ∥𝐽𝑙𝑖𝑛(𝑞̇𝑜𝑟𝑖𝑒𝑛𝑡 + 𝑞𝑝̇𝑜𝑠𝑡)∥ grows with speed; 

post-projection residual is numerically zero throughout, confirming task-priority integrity. 

Figure 6.21 evaluates null-space containment: the pre-projection leakage increases 

mildly with speed, whereas the post-projection residual remains at numerical zero, 

confirming strict task-priority integrity. 

 

Fig. 6.21 State timeline, limit flags, and target distance. The controller stays in TRACK_TRAJ until 

the stop bubble is met; the dwell condition is satisfied before TASK_COMPLETE. No joint-speed 

or step caps are triggered and no joint-limit contacts occur. 
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Table 6.6 consolidates the S3 configuration and control parameters, including target 

position, start-to-target distance, LSPB bounds and timings, DLS damping, position 

and Cartesian damping gains, null-space posture settings, smoothing and safety 

clamps, and the completion logic used in the run. 

Item Value Notes 

Scene 
Identical to S1 (Franka + table + 

/targetPoint) 

Only controller/trajectory generation 

differs 

Target source /targetPoint (scene) Locked once at start 

Target (world) [0.468, −0.360, 1.300] m From log 

Start → target 

distance D 
0.492 m Computed from initial TCP 

Trajectory 

generator 
LSPB (trapezoidal speed) 

Feed-forward s(t), ṡ(t), s̈(t) on straight 

segment p0→pf 

V_MAX_FF 0.35 m/s Feed-forward plateau speed 

A_MAX_FF 1.20 m/s² Feed-forward acceleration 

t_acc 0.292 s From script 

t_flat 1.113 s From script 

tf (LSPB 

duration) 
1.696 s From script 

Controller 

period Ts 
≈0.090 s (dt × PHYSICS_STEPS_PER_TICK) 

IK primary task-space translation (J_lin, DLS) Constant damping λ_v = 0.25 

Position loop 

(around FF) 
K_POS_P = 0.6 (+ near-goal taper) 

v_cmd = v_ff + Kp·(x_ref − x), 

capped at 0.35 m/s 

Cartesian 

damping 
KD_CART = 0.4 v_cmd ← v_cmd − KD·J_lin·q̇_prev 

Orientation task Disabled (kept constant) No commanded rotations in S3 
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Null-space 

posture bias 

Q_REST = [NaN, 0.10, −0.60, 0.20, 

NaN, 0, 0], K_POSTURE = 0.03, 

cap = 0.05 rad/s 

Applied via N = I − J⁺J 

Joint smoothing α = 0.28 Exponential smoothing on q̇ 

Joint limits 

(speed/step) 
|q̇| ≤ 1.6 rad/s, |Δq| ≤ 10°/tick Plus hard clamp to Panda limits 

Stop logic 
5 cm sphere + 0.25 s dwell, 2.0 s 

final hold 
Then exit 

Z guard 1 cm one-sided guard above target Prevents undershoot 

Table 6.6 S3 configuration and controller settings (inputs and control parameters used for LSPB). 

Table 6.7 summarizes the measured outcomes of S3: completion time, satisfaction 

of final-hold, monotone distance decrease, peak joint-rate, posture and orientation 

magnitudes, Jacobian conditioning and 𝜎𝑚𝑖𝑛 pre- and post-projection leakage 

figures, speed tracking behavior, saturation flags, and qualitative path descriptors. 

Metric Value How obtained / remark 

Time to 

TASK_COMPLETE 
≈ 6.6 s 

State timeline 

(TRACK_TRAJ→TASK_COMPLETE near 

6.5–6.7 s) 

Final-hold satisfied 
Yes (0.25 s dwell + 

hold) 
Hysteresis bubble reached and maintained 

Distance trend 
Monotone decrease 

to ≤ 0.05 m 
Target-distance panel 

Max |q̇| (final curve) ≈ 0.42 rad/s Joint-space velocity norms 

Posture bias 

magnitude 
≈ 0.07 rad/s (flat) Joint-space velocity norms (yellow) 

Orientation command 
≈ 0 rad/s (kept 

fixed) 
Orientation channel ~0 throughout 

Max cond(J_lin) ≈ 3.0 Jacobian conditioning (top panel) 
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Min σ_min(J_lin) ≈ 0.292 Jacobian conditioning (bottom panel) 

Null-space leakage 

(pre-proj) 

~0.012 → 0.023 

m/s 
‖J_lin q̇_sec‖ before N 

Null-space leakage 

(post-proj) 

≤ 1×10⁻⁴ m/s 

(numerical zero) 
After N = I − J⁺J (effective containment) 

Speed tracking 

Plateau ~0.35 m/s 

then taper; small 

undershoot near 1.7 

s 

|v_cmd| vs |v_ff| 

Joint limit hits / step 

saturations 
None observed Flags panel (all zero) 

TCP path (XY, XZ) 
Straight segment 

from start to target 

Projected display; target reached inside 5 cm 

bubble 

Table 6.7 S3 outcomes and diagnostics (results summary). 

Conclusion 

Scenario 3 demonstrates that introducing a straight-line LSPB reference improves 

temporal predictability and preserves the invariance of the translational task under 

strict null-space regularization. The DLS inversion remains well-conditioned with 

light damping; secondary terms are effectively contained; actuator limits are not 

exercised; and the trajectory reaches the stop bubble smoothly with the prescribed 

dwell and final hold. This establishes a clean trajectory-generator baseline against 

which the human-aware LSPB case in Scenario 4 can be contrasted. 

6.1.4 Scenario S4 — LSPB tracking with strict null-space repulsion 

The experiment runs in the same CoppeliaSim scene used previously (fixed table, 

anthropomorphic avatar driven by motion-capture, 7-DoF manipulator), but the 

control stack is reconfigured around a linear-segment–with-parabolic-blends 

(LSPB) reference for end-effector translation with constant tool orientation. The 

primary task is realized by a damped least-squares inverse of the translational 

Jacobian, while posture regulation and collision-avoidance are injected through the 

orthogonal projector 𝑁 = 𝐼 − 𝐽#𝐽 , ensuring that secondary actions remain 
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kinematically invisible to the task. A proximity gate freezes motion when the 

minimum robot–human distance enters a restricted interval and resumes after a 

timed hysteresis outside the release boundary. The controller blends the LSPB feed-

forward with a distance-aware proportional term and directionally weighted 

damping, and enforces joint-rate/step clamps with a terminal dwell at the target to 

certify convergence. 

Figure below presents the S4 scene with TCP start and target, human skeleton, and 

link frames, establishing the spatial context for the LSPB guidance and proximity 

gate. 

 

Fig. 6.22 Scene snapshot with TCP start, target, human skeleton, and link frames. 

Kinematics and task mapping 

Let the forward kinematics be 𝑥 − 𝑓(𝑞). We use only the translational Jacobian 

𝐽lin(𝑞) −
𝜕𝑥

𝜕𝑞
∈ ℝ3×7 
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At each tick a task-space velocity command 𝑣cmd ∈ ℝ
3 is mapped to joints via 

damped least-squares 

𝑞̇pos = 𝐽lin
# 𝑣cmd , 𝐽lin

# − 𝑉diag (
𝜎𝑖

𝜎𝑖
2 + 𝜆𝑣2

)𝑈⊤, 

where 𝐽lin − 𝑈Σ𝑉
⊤, 𝜎𝑖 are singular values, and 𝜆𝐸 is a small velocity damping 

factor. 

Reference trajectory and command shaping 

The translational reference is a linear-segment-with-parabolic-blends (LSPB) 

profile along the start-to-target direction 𝑢 −
𝑝𝑓−𝑝0

|𝑝𝑓−𝑝0|
. With acceleration time 𝑡acc  

and total duration 𝑡𝑓, the unit progress 𝑠(𝑡) satisfies 𝑠(0) = 0, 𝑠(𝑡𝑓) = 1, and 

𝑠̇(𝑡) = {

𝑎𝑡 0 ≤ 𝑡 < 𝑡acc,
𝑣 𝑡acc ≤ 𝑡 ≤ 𝑡𝑓 − 𝑡acc,

𝑎(𝑡𝑓 − 𝑡) 𝑡𝑓 − 𝑡acc < 𝑡 ≤ 𝑡𝑓

 

with 𝑣 −
1

𝑡𝑓−𝑡𝑎𝑐𝑐
, 𝑎 −

𝑣

𝑡𝑎𝑐
. The feed-forward linear velocity is 𝑣if = (𝑝𝑓 − 𝑝0)𝑠̇. 

Around this we add a proportional correction split along and orthogonal to the line: 

𝑣cand = 𝑣‖
ff + 𝐾‖𝑒‖ + 𝐾⊥𝑒⊥, 

where 𝑒‖ = 𝑢𝑢
⊤(𝑥ref − 𝑥) and 𝑒⊥ = (𝐼 − 𝑢𝑢

⊤)(𝑥line (𝑥) − 𝑥). Gains are blended 

with distance to target and cross-track magnitude, and a directional Cartesian 

damping term reduces along-track overshoot. 

Secondary objectives and null-space projection 

Posture regulation uses a gentle joint spring toward 𝑞rest : 

𝑞̇post = sat⊥𝑞̇max (𝐾post (𝑞rest − 𝑞)) 

Collision avoidance is computed in joint space as 𝑞̇rep  using capsule distances 

between robot control spheres and human body segments. Both secondaries are 

strictly contained in the primary task null space via 
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𝑁 = 𝐼 − 𝐽lin 
♯ 𝐽lin , 𝑞̇sec = 𝑁(𝑞̇rep + 𝑞̇post ) 

The final command is 

𝑞̇ = 𝑞̇pos + 𝑞̇sec 

followed by light wrist weighting and rate/step clamps. This guarantees that any 

residual effect of secondaries on the translational task appears only through 

numerical conditioning, not by construction. 

Safety gate and stop–resume logic 

A restricted interaction field is monitored with a stop gate: if the minimum robot–

human distance 𝑑𝑚𝑖𝑛 falls below 𝑅𝑠𝑡𝑜𝑝 , we set 𝑞̇ = 0; and enter HUMAN_STOP. 

Resumption requires 𝑑𝑚𝑖𝑛 > 𝑅𝑟𝑒𝑙𝑒𝑎𝑠𝑒 for at least 𝑇ℎ𝑦𝑠𝑡. When the Euclidean target 

distance ∥𝑥 − 𝑥∗∥ falls below 𝑟𝑡𝑜𝑙 we start a dead-band timer and terminate after a 

fixed hold duration. 

Numerical robustness 

We track the linear-Jacobian condition number 𝑘(𝐽𝑙𝑖𝑛) and the smallest singular 

value 𝜎𝑚𝑖𝑛(𝐽𝑙𝑖𝑛). Throughout the experiment 𝜎𝑚𝑖𝑛 stays well away from zero and 

𝑘 remains low, indicating adequate manipulability and no approach to singularity 

during stop/resume. 

Results and discussions 

The controller exhibits the intended behavior: the TCP follows the straight, line-

constrained LSPB reference with a ramp–cruise–ramp speed profile, pauses cleanly 

when the human encroaches, and resumes smoothly after release to satisfy the target 

dwell without overshoot. The projected path remains straight and monotonic toward 

the goal, confirming that directional damping suppresses lateral drift, while the 

speed trace shows the expected trapezoid in the early phase and a reduced plateau 

during the gated stop before a smooth re-acceleration on release. Joint-space norms 

confirm that the primary translational term dominates; posture bias stays small and 

steady; and repulsion is confined to the proximity episode. A null-space evaluation 

shows that projection works as designed: pre-projection leakage rises with 
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commanded speed and would be on the order of centimeters per second, whereas 

the post-projection residual collapses by roughly an order of magnitude and remains 

near numerical zero. Throughout the run the translational map is well-behaved, with 

a peak 𝑐𝑜𝑛𝑑 (𝐽𝑙𝑖𝑛) of about 3.2 and 𝜎𝑚𝑖𝑛 around 0.285–0.31, so the damped inverse 

never amplifies noise and damping remains light. No joint-speed or per-tick step 

caps are triggered, no joint-limit contacts occur, and the total scenario time is 

approximately 25.5 s including the stop interval. Overall, Scenario 4 preserves the 

primary task rigorously while accommodating posture and safety in the null space, 

with straight motion, strict containment of secondaries, smooth stop/resume, low 

conditioning, and zero saturations. 

Figure 6.23 shows the TCP trajectory from start to target; the path remains aligned 

with the commanded line segment, confirming that null-space secondaries do not 

contaminate translation. 

 

Fig. 6.23 TCP path trajectory from start to target. 

Figure 6.24 compares the LSPB feed-forward magnitude and the realized 

command; the profile ramps to the velocity cap, cruises, and decays smoothly near 

the target, with a brief plateau reduction during the stop interval. 
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Fig. 6.24 dashed feed-forward speed |𝑣it | and realized command magnitude |𝑣cmal |. 

Figure 6.25 decomposes joint-space effort into task, repulsion, posture, and final 

command; the task term dominates outside proximity, while repulsion appears only 

during the gated interval and posture remains small. 

 

Fig. 6.25 Joint-space velocity norms for task, repulsion, posture, and the final command. 

Figure 6.26 evaluates null-space containment by comparing ∥ 𝐽𝑙𝑖𝑛𝑞̇𝑠𝑒𝑐 ∥ before 

and after projection; the post-projection residual sits near numerical zero across 

the run. 
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Fig. 6.26 Null-space leakage: task-space magnitude ∥𝐽𝑙𝑖𝑛𝑞𝑠̇𝑒𝑐∥ before vs. after projection. 

Figure 6.27 reports the state timeline together with speed/step/limit flags and the 

distance to target; a single stop episode is visible, with zero saturations and a clean 

return to tracking until completion. 

 

Fig. 6.27 State timeline with stop region, saturation flags, and target distance with threshold. 

Figure 6.28 plots 𝑐𝑜𝑛𝑑 (𝐽𝑙𝑖𝑛) and 𝜎𝑚𝑖𝑛(𝐽𝑙𝑖𝑛) over time; the condition number 

remains modest 𝜎𝑚𝑖𝑛  stays comfortably away from zero, supporting light damping 

during the entire sequence. 
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Fig. 6.28 Jacobian conditioning: 𝑘(𝐽𝑙𝑖𝑛) and 𝜎𝑚𝑖𝑛(𝐽𝑚𝑖𝑛) over time 

Table 6.8 consolidates the principal S4 metrics: total time 25.5 𝑠 stop dwell 

satisfied;max 𝑐𝑜𝑛𝑑 (𝐽𝑙𝑖𝑛) = 3.2,min 𝜎𝑚𝑖𝑛 (𝐽𝑙𝑖𝑛) = 0.285; joint-rate saturation 

count 0; step-clamp count 0; joint-limit hits 0; target tolerance 𝑟𝑡𝑜𝑙 = 0.07 𝑚; time 

inside the stop bubble about 1.0 𝑠. 

Metric Value How computed 

Total time 25.5 s t(end) - t(1) 

Stop dwell satisfied true 
contiguous time inside threshold ≥ 

FINAL_DEADBAND_SEC 

Max cond(J_lin) 3.2 max(runDiag.condJ_lin) 

Min σ_min(J_lin) 0.285 
min(runDiag.svals_lin(:,min(find(any,2)))) or read from 

figure 

Joint-rate saturation 

count 
0 nnz(runDiag.flag_sat_speed) 

Step clamp count 0 nnz(runDiag.flag_sat_step) 

At joint limits count 0 nnz(runDiag.flag_at_limit) 
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Target tolerance 

r_tol 
0.07 m scenario setting 

Time inside stop 

bubble 
~1.0 s time with dist_target <= r_tol 

Minimum table 

clearance 

n/a or 

enter 
if you log clearance use min(runDiag.clearance) 

Table 6.8 Scenario S4 outcomes and diagnostics 

Table 6.9 reports the null-space evaluation: median pre-projection leakage 

≈0.12 m/s and 95th percentile ≈0.14 m/s when repulsion is active; median post-

projection leakage ≈0.010 m/s and 95th percentile ≈0.012 m/s; a median reduction 

of about 12×. 

Quantity Median 95th percentile Note 

pre-projection leakage 

‖𝑱lin 𝒒sec 
raw ‖[𝐦/𝐬] 

0.12 0.14 when repulsion 

active 

post-projection leakage 

‖𝑱lin 𝑵𝒒̇sec ‖[𝐦/𝐬] 
0.010 0.012 an order-of-

magnitude reduction 

leakage reduction ratio 

(median) 

12 × - pre/post median 

time with repulsion active enter % mean(runDiag.rep_active 

)*100 

- 

Table 6.9 Null-space evaluation (pre-/post-projection leakage and reduction ratio). 

Conclusion 

Scenario 4 demonstrates that LSPB tracking with strict null-space containment and 

proximity gating achieves predictable timing, translation-invariant secondary 

regulation, and clean stop/resume under human encroachment. The translational 

map remains well-conditioned, damping stays light, and no actuator caps or joint-

limit contacts occur. The measured reduction from pre- to post-projection leakage 

confirms strict task-priority integrity, while the single stop episode and smooth 

recovery validate the supervisory logic. 

6.1.5 Scenario 5 — Fixed-TCP reconfiguration in the null space 

with SSM supervision 

This scenario investigates the capacity of a redundant 7-DoF manipulator to  
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execute proximity-driven reconfiguration exclusively through the null space while 

enforcing invariance of the TCP Cartesian pose. The experimental condition is 

intentionally stringent: the TCP pose (𝑝𝑑, 𝑅𝑑) is fixed by a strict equality constraint 

at the task level, and all avoidance behavior is confined to the orthogonal 

complement of the task via a damped projector. Safety is governed by a separation-

based supervisor with hysteresis, using a restricted-interaction field with thresholds 

𝑅𝑆𝑇𝑂𝑃 = 0.25 𝑚 and 𝑅𝑅𝐸𝐿 = 0.28 𝑚. The central questions are: (i) whether the 

equality can be maintained to numerical precision despite smoothing, capping and 

servo-aware scaling; (ii) whether repulsion remains strictly null-space, eliminating 

far-field “creep” and (iii) whether the stop–release policy exhibits clean, non-

chattering transitions under realistic human motion. 

Equality residuals are tracked as ‖J_task q̇ − b_eq‖ and remain below the declared 

tolerance (see Tables 6.10–6.13). 

The collaborative cell is the same as in the previous scenarios. CoppeliaSim runs 

synchronously with a 5 ms step and PHYSICS_STEPS_PER_FRAME = 4. Franka 

joints are in position control with ample torque margins. Human motion is replayed 

from frames 250–644. The human is modeled with capsules; the robot with 15 link-

attached control spheres. All control runs in MATLAB. 

Controller structure 

Let 𝐽𝑔(𝑞) ∈ ℝ
6×7 be the geometric Jacobian at the gripper origin. With the fixed 

local offset 𝑟local  (gripper → TCP dummy), the adjoint is:  

Adj(𝑟local ) = [
𝐼3 −𝑆(𝑟local )
0 𝐼3

] ,      𝑆(𝑟) = [

0 −𝑟𝑧 𝑟𝑦
𝑟𝑧 0 −𝑟𝑥
−𝑟𝑦 𝑟𝑥 0

] 

and the task Jacobian at the TCP is 

𝐽task (𝑞) =  Adj(𝑟local ) ⋅ 𝐽𝑔(𝑞) 

The TCP pose is frozen at ( 𝑝𝑑, 𝑅𝑑 ) at the start of the run. A small, dead-banded 

corrective twist imposes the strict equality 
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𝐽task 𝑞̇ = 𝑣aw ,      𝑣aw = [
𝐾pos 𝑒𝑝
𝐾ori 𝑒𝑅

] 

with 𝑒𝑝 = 𝑝𝑑 − 𝑝𝑟  ,   𝑒𝑅 = axang(𝑅𝑑
⊤𝑅),   𝐾pos = 8.0 s−1,   𝐾ori = 3.0 s−1. 

When ‖𝑒𝑝‖ < 10
−3 m and ‖𝑒𝑅‖ < 0.2

∘, 𝑣aw − 0. 

Null-space composition 

Repulsion is computed in joint space from capsule-sphere distances (long influence 

radius), then strictly projected: 

𝐽♯ = 𝐽task 
⊤ (𝐽task 𝐽task 

⊤ + 𝜆𝐼)−1,   𝑃𝑁 = 𝐼 − 𝐽
♯𝐽task ,   𝑞̇rep ,𝑁 = 𝑃𝑁𝑞̇rep,raw  

The desired repulsion magnitude is distance-shaped between 𝑅STOP = 0.25 m and 

𝑅REL = 0.28 m with a cubic ease and per-tick slew; it is hard-zeroed when 𝑑min ≥

𝑅REL  (no idle creep). Light posture and soft joint-limit terms fade out as proximity 

increases. The preference entering the quadratic programming (QP) is 

𝑞̇0 = 𝑤rep 𝑞̇rep ,𝑁 + 𝑤post 𝑞̇post + 𝑤lim 𝑞̇lim , 

smoothed ( 𝛼 − 0.5 ), capped per-joint and in norm, and re-projected with 𝑃𝑁. 

Supervisory gate (SSM) 

A two-state automaton toggles POSE_LOCK ← HUMAN_STOP with hysteresis: 

 if 𝑑min ≤ 𝑅STOP →  HUMAN_STOP ,  

if 𝑑min ≥ 𝑅REL  for Δ𝑡 ≥ 0.05 s →  POSE_LOCK  

In HUMAN_STOP the equality remains active; repulsion weights drop to zero. 

Upon release they resume with distance shaping. 

To ground the subsequent time-series in concrete scene geometry and to illustrate 

the two supervisory states, Figures below compiles two instantaneous frames from 

the simulation showing (a) the repulsion state and (b) the human-stop state, with 

the TCP held fixed. 
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Fig. 6.29 Simulation snapshots of the supervisory states in Scenario 5. Left: REPULSION active: 

the blue halo indicates distance-shaped repulsion centred at the TCP; posture reconfiguration occurs 

strictly in the null space while the TCP remains coincident with its anchor. Human joints (labels at 

head/shoulder/elbow/wrist/spine) and robot link markers (Link 1–Link 8) are shown for spatial 

context. Right:  HUMAN_STOP: upon 𝑑𝑚𝑖𝑛 ≤ 𝑅𝑆𝑇𝑂𝑃, the controller freezes motion; the red STOP 

halo denotes the active stop while the equality constraint preserves the TCP pose. 

QP with strict equality and leak clamp 

The secondary objective minimizes ‖𝑊sec (𝑞̇ − 𝑞̇0)‖
2 and bounds on joint speed, 

per-tick step, and joint range. To immunize the equality against small filters/caps, 

a two-pass orthogonal leak clamp shrinks the component of 𝐽task 𝑞̇ orthogonal to 

𝑣aw  below 5 × 10−7 before and after the TCP motion caps. A servo-aware factor 

𝜂 ∈ [0.5𝜂0, 𝜂0] reduces steps when the inner position loop lags. 

Results and discussions 

The results substantiate that posture adaptation occurs strictly in the null space, with 

the TCP pose preserved to sub-millimeters and sub-tenth-degree levels, and with a 

single, well-timed STOP–RELEASE cycle driven by proximity. 

To characterize the interplay between proximity and the avoidance channel, Figure 

6.30 presents the minimum human–robot distance 𝑑𝑚𝑖𝑛(𝑡) together with the 

stop/release thresholds and the corresponding repulsion magnitudes (raw and 

strictly projected). 
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Fig. 6.30 Minimum distance 𝑑min(𝑡) with 𝑅STOP = 0.25 m (red dashed) and 𝑅REL = 0.28 m (green 

dashed); repulsion magnitude before projection and after strict null-space projection. The repulsion 

channel activates only within the near field, grows smoothly as 𝑑min  approaches 𝑅STOP , and 

collapses to zero beyond 𝑅REL , eliminating far-field drift. 

Analytically, the proximity statistics confirm this behavior: the run exhibits 𝑑‾min =

0.478 m, a 5th percentile of 0.240 m , and a minimum of 0.240 m , implying a brief 

and intentional excursion into the stop band to trigger HUMAN_STOP. The 

distance-shaped repulsion yields a bounded, monotone response without overshoot 

at release, consistent with the cubic easing and slew-rate limits. 

To assess task-level invariance under filtering and capping, Figure 6.31 reports the 

task equality residual ‖𝐽task 𝑞̇ − 𝑏eq ‖ and the task-space leak ‖𝐽task 𝑞̇‖ relative to the 

10−6 cap. 
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Fig. 6.31 Equality residual (top) and task leak (bottom) with the 10e-16 reference line. The residual 

remains at numerical zero throughout; the leak is several orders of magnitude below the cap. 

Quantitatively, the equality residual exhibits RMS 3.89 × 10−10, 95th percentile 

5.33 × 10−10, and maximum 5.68 × 10−9 i.e. , at least three orders of magnitude 

below the hard bound. This margin demonstrates the effectiveness of the two-pass 

orthogonal clamp in preserving the equality despite downstream TCP motion caps 

and low-pass filtering. 

Solver feasibility is verified in Figure 6.32, which shows the QP exit-flag timeline. 

 

Fig. 6.32 QP exit flags over time. The flag is identically +1, indicating strict feasibility at every 

control tick. 
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Together with the residual/leak metrics, the constant feasibility indicates ample 

margin in the secondary objective and well-posedness of the equality-constrained 

problem under all encountered configurations. 

To evaluate whether caps or joint-range constraints were ever active, Figure 6.33 

aggregates per-joint counts of speed, step, and joint-limit bindings. 

 

Fig. 6.33 Constraint-binding totals per joint for speed, per-tick step, and joint-range limits. All 

counts are zero, consistent with conservative capping and strict null-space projection. 

The absence of any bindings (totals: speed 0, step 0, joint 0) attests to comfortable 

headroom in both the per-joint and geometric constraints, and indicates that the 

null-space preference never demanded infeasible motion to maintain separation. 

To quantify the effectiveness of the pose lock, Table 6.10 reports the TCP 

translation and zero orientation drift over the entire run. 

TCP_RMS_mm TCP_Max_mm TCP_Ori_RMS_deg TCP_Ori_Max_deg 

0.05 0.161 0.000 0.000 

Table 6.10 TCP lock quality in Scenario S5. Translation remains sub-millimeters; the orientation 

channel is identically zero, evidencing strict task-level invariance under SSM supervision and null-

space reshaping. 

The next table, summarizes the configuration changes achieved purely in the null 

space: joint motions are modest yet sufficiently distributed to realize clearance 

while preserving the fixed TCP. 
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Joint Δq_RMS_deg Δq_Max_deg 

J1 0.461 1.159 

J2 0.042 0.098 

J3 0.140 0.000 

J4 0.009 0.000 

J5 0.162 0.013 

J6 0.071 0.145 

J7 0.190 0.638 

Table 6.11 Per-joint null-space motion — RMS and peak joint deflections (deg) relative to the start 

configuration. 

Table 6.12 shows that the supervisor triggers precisely at the prescribed thresholds, 

while the equality remains satisfied to numerical precision. 

dmin_mean_

m 

dmin_p5_

m 

dmin_min_

m 

req_norm_r

ms 

req_norm_p

95 

req_norm_m

ax 

0.478 0.240 0.240 3.89e-10 5.33e-10 5.68e-09 

Table 6.12 Proximity and equality-residual statistics in Scenario S5. A clean, single 

STOP/RELEASE sequence is observed, with equality residuals near machine precision. 

Finally, Table 6.13 records how often any constraint class became active; all 

tallies are zero, indicating comfortable operating margins. 

Joint speed_binds step_binds joint_binds 

J1 0 0 0 

J2 0 0 0 

J3 0 0 0 

J4 0 0 0 

J5 0 0 0 

J6 0 0 0 

J7 0 0 0 

Totals 0 0 0 

Table 6.13 Constraint-binding counts per joint and totals in Scenario 5. Speed, per-tick step, and 

joint-range constraints remain inactive throughout. 

Conclusion 

Scenario S5 demonstrates that the proposed LSPB–DLS–SVD control architecture, 

augmented with strict null-space projection and separation-based supervision with 

hysteresis, achieves safety-driven reconfiguration while preserving complete task-

level invariance of the TCP. Repulsion remains kinematically invisible to the task—

active only in the near field and collapsing in the far field—thereby eliminating idle 

creep and ensuring a calm workspace when safe. The equality is maintained to 
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numerical precision despite smoothing and caps; solver feasibility is constant; and 

no rate, step, or joint-range constraints bind, indicating generous control margin. At 

the same time, joint-space motion is sufficiently distributed to produce visible, 

meaningful clearance modulation without disturbing the end-effector (sub-

millimeters translation and effectively zero orientation drift). Collectively, these 

results validate the architecture’s ability to decouple safety adaptation from primary 

task execution, providing a robust template for tasks that require a fixed tool frame 

and establishing a high-confidence baseline for the subsequent scenarios. 

6.2 Metrics and evaluation protocol 

This section defines, once, the metrics reported throughout Chapter 6 and the 

evaluation protocol used to compute them. Units and frame conventions follow §3.5 

(world frame 𝑊; meters, radians, per-second rates). All signals are sampled at the 

control tick of the synchronous simulator loop. Unless otherwise stated, joint angles 

and velocities are read from the internal position loop, end-effector quantities are 

computed from the scene kinematics, and human–robot separations are computed 

from capsule endpoints in world coordinates. Differentiation of joint angles to 

obtain velocities is avoided; instead, commanded or measured joint rates provided 

by the simulator are used directly. Any additional low-pass filtering applied in the 

controller is considered part of the experiment rather than a post-processing step. 

Statistical summaries follow the same convention across scenarios: for time-series 

curves we report the median and the 95th percentile when relevant; RMS values are 

used for small-signal errors; maxima and minima are reported for safety-critical 

quantities; and, where appropriate, compliance is recorded as a Boolean outcome 

together with the associated dwell or hysteresis times. The translational Jacobian 

𝐽𝑙𝑖𝑛(𝑞) is used for all conditioning and leakage measures; its thin SVD provides 

𝜎𝑚𝑖𝑛(𝐽𝑙𝑖𝑛) and the condition number 𝑘(𝐽𝑙𝑖𝑛). The leakage measures separate the 

effect of secondary terms before and after strict null-space projection. Equality 

residuals and quadratic-program (QP) feasibility flags diagnose the task solver. 

The metric dictionary below lists each symbol, its definition, units, and the exact 

computation rule used in this chapter. The subsequent protocol table records 

sampling, preprocessing, and statistics for each signal family so that results can be 

reproduced without re-defining these details inside individual scenarios. 
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Table 6.14 Metric definitions and units: 

Symbol Name Definition (how computed) Units Notes 

d_min 
Minimum 

separation 

Minimum over time of the 

shortest distance between 

any robot control sphere and 

any human capsule segment 

m 

Computed per 

tick from 

capsule 

endpoints; used 

by stop/release 

gate 

||e_pos|| 
TCP position 

error 

||p_tar − p_tcp|| (Euclidean 

norm) 
m 

Reported as 

time series; 

RMS/95th 

when 

applicable 

||e_ori|| 

TCP 

orientation 

error 

Angle of R_tar^T R (axis–

angle magnitude) 
deg 

Small-angle 

regime in these 

runs 

||qdot|| 
Joint-rate 

norm 

2-norm of commanded joint 

rates at each tick 
rad/s 

Also 

decomposed by 

component in 

per-scenario 

plots 

speed_cap_hits 

Speed 

saturation 

count 

Fraction of ticks where any 

|qdot_j| reaches the per-joint 

cap 

% 
Derived from 

controller caps 

step_cap_hits 

Step 

saturation 

count 

Fraction of ticks where any 

|Δq_j| reaches the per-tick 

step cap 

% 
Uses effective 

integration step 

joint_limit_prox 
Joint-limit 

proximity 

Fraction of ticks within a 

small margin of joint 

bounds 

% 

Margin 

consistent with 

controller 

safety margin 

κ(J_lin) 
Translational 

conditioning 

σ_max(J_lin) / σ_min(J_lin) 

at each tick 
– 

Report median 

and 95th 

percentile 

σ_min(J_lin) 
Smallest 

singular value 

Minimum singular value of 

J_lin 
– 

Tracks distance 

from 

translational 

singularity 

w_lin 
Linear 

manipulability 
sqrt(det(J_lin * J_lin^T)) – 

Yoshikawa 

index for the 

linear map 

STOP dwell 
Stop 

compliance 

True when d_min ≤ r_stop 

and task command is frozen 

until release 

Boolean 

Accompanied 

by stop 

duration 

RELEASE 

dwell 

Release 

compliance 

True when d_min ≥ r_rel 

continuously for the 

hysteresis time 

Boolean 

Accompanied 

by hysteresis 

duration 

ℓ_pre 
Pre-projection 

leakage 

|| J_lin * (qdot_ori + 

qdot_post) || before null-

space projection 

m/s 

Diagnostic for 

secondary 

contamination 

ℓ_post 

Post-

projection 

leakage 

|| J_lin * qdot_sec,ns || after 

strict null-space projection 
m/s 

Should be near 

numerical zero 

r_eq 
Equality 

residual 

|| J_task * qdot − b_eq || at 

the QP solution 

task 

units/s 

Uses the task 

Jacobian and 

equality 

command of 

the scenario 



167 
 

QP flag 
Feasibility 

flag 

Optimizer exit flag > 0 

indicates feasible optimum 

at current tick 

Boolean 

Report 

feasibility rate 

over the run 

Table 6.14 Metric definitions and units used throughout Chapter 6. 

Table 6.15 Evaluation protocol: sampling, preprocessing, and statistics 

Signal family 
Source and 

sampling 
Preprocessing 

Statistics 

reported 

Windows and 

events 

Joint angles q, 

joint rates qdot 

Simulator 

internal loop, 

sampled at 

control tick 

Per-joint caps and 

exponential 

smoothing as 

configured in 

controller; no 

post-hoc filters 

Median, 95th 

percentile, RMS, 

maximum; 

saturation 

fractions 

Entire run; 

mode-transition 

sub-windows 

when discussed 

TCP pose p,R 

and errors 

||e_pos||, 

||e_ori|| 

Forward 

kinematics from 

logged joint 

states 

Orientation error 

from axis–angle; 

no additional 

smoothing 

RMS and 95th 

for position; 

maximum and 

RMS for 

orientation 

Entire run; near-

goal dwell 

window when 

applicable 

J_lin, κ, σ_min, 

w_lin 

Jacobian from 

current q at 

each tick 

Thin SVD; no 

smoothing 

Median and 95th 

percentile; 

minima where 

safety-critical 

Entire run; 

proximity 

episode window 

in human-aware 

scenarios 

Human–robot 

distances 

d_min 

Capsule 

distances in 

world frame at 

each tick 

None 

Minimum, 

median, 5th 

percentile; stop 

and release 

timestamps 

Entire run; 

stop/release 

windows for 

dwell 

computation 

Leakage ℓ_pre, 

ℓ_post 

From 

commanded 

secondaries and 

their projections 

None 

Median and 95th 

percentile; 

reduction ratio 

ℓ_pre/ℓ_post 

Entire run; sub-

window where 

secondaries are 

active 

Equality 

residual r_eq, 

QP flag 

From task QP at 

each tick 
None 

RMS and 95th 

for residual; 

feasibility rate 

for flags 

Entire run; 

highlight any 

infeasible 

intervals 

Saturations 

and limits 

Derived from 

caps and joint 

bounds 

None 

Fractions of 

ticks with hits; 

per-joint tallies 

when shown 

Entire run; 

mode edges 

noted where 

relevant 

Table 6.15 Evaluation protocol for Chapter 6: sampling sources, preprocessing, statistics, and 

analysis windows. 

6.3 Cross-scenario baselines and comparisons  

This subsection consolidates the baseline comparisons in a single quantitative view 

to isolate the incremental effects of (i) trajectory scheduling (distance-scaled vector 

field versus LSPB), (ii) human-proximity gating, and (iii) strict null-space 

containment under a fixed TCP. Table 6.16 summarizes the medians/p95 across 

scenarios; figure and table sources are noted per entry. All entries are computed 
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with the definitions and statistics in Section 6.2 and are taken directly from the 

synchronized logs used in Section 6.1.  

6.3.1 Scenario 1 versus Scenario 3 (vector attractive versus LSPB) 

 Both scenarios are human-free reaches to the same target with constant tool 

orientation and the same null-space posture shaping. The only change is the 

reference: S1 uses a distance-shaped attractive velocity, while S3 uses a linear-

segment–with-parabolic-blends schedule along the straight line 𝑝0 → 𝑝𝑓. The 

comparison emphasizes distance-to-target traces (monotonicity and near-goal 

behavior), speed profiles (ramp–cruise–ramp versus purely distance-scaled), time-

to-complete distributions, and kinematic health of the translational map 𝑘(𝐽𝑙𝑖𝑛) and  

𝜎𝑚𝑖𝑛(𝐽𝑙𝑖𝑛). The expectation is that LSPB improves temporal predictability and 

near-goal settling without degrading conditioning. 

6.3.2 Scenario 2 versus Scenario 4 (human-aware vector versus human-aware 

LSPB) 

These scenarios add a human trajectory and the proximity gate with 𝑟𝑠𝑡𝑜𝑝 and 

𝑟𝑟𝑒𝑙 thresholds; the difference is again the reference (vector versus LSPB). The 

comparison reports 𝑑𝑚𝑖𝑛 trajectories, stop/release dwell distributions, throughout 

loss with respect to the corresponding human-free baselines (S1 and S3), and 

𝑘/𝜎𝑚𝑖𝑛 trends through the encroachment and recovery phases. We also report joint-

rate and per-tick step saturation fractions and joint-limit proximity to verify that the 

gate prevents aggressive commands during stop/resume. 

6.3.3 Scenario 5 versus posture-only ablation (fixed-TCP null-space safety) 

 Scenario S5 fixes the TCP pose and injects secondary regulation exclusively in the 

strict null space of the 6D pose task. The ablation removes the safety field and 

leaves only the light posture bias. The comparison focuses on TCP lock quality 

(mm-level deviation over time), leakage before and after projection 

(𝑙𝑝𝑟𝑒 , 𝑙𝑝𝑜𝑠𝑡) equality residual ∥ 𝐽𝑡𝑎𝑠𝑘𝑞̇ − 𝑏𝑒𝑞 ∥, QP feasibility, and constraint-

binding totals (speed caps, step caps, joint-limit proximity). The purpose is to verify 

that strict projection preserves the task while enabling meaningful joint-space 

motion around the fixed tool. 
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The table reports medians and 95th percentiles (or extrema where safety-critical), 

enabling like-for-like assessment of temporal predictability, conditioning of the 

translational map, safety margins, actuator usage, and task-priority integrity without 

reintroducing scenario-specific notation. 

Comparison block Metric 
Baseline A 

(median [p95]) 

Baseline B 

(median [p95]) 
Δ (B − A) Comment / Source 

S1 vs S3 
Time-to-

complete [s] 
10.80 [–] ≈ 6.60 [–] ≈ −4.20 

S1: Table 6.3; S3: 

Table 6.7 

S1 vs S3 Path length [m] Straight line (D) 
Straight line 

(D) 
0 

Line-constrained in 

both; near-goal taper 

differs 

S1 vs S3 κ(J_lin) [–] 3.56 [3.61] ≈ 2.9 [≈ 3.0]* ≈ −0.6 

S1: Table 6.3 

(median/max). S3: 

Fig. 6.18 (peak); 

*median not tabulated 

S1 vs S3 σ_min(J_lin) [–] — ≈ 0.292 [–] — 

S3 min from Table 

6.7; S1 min not 

reported 

S1 vs S3 ‖q̇‖ peak [rad/s] — ≈ 0.42 — 
S3 peak from Table 

6.7; S1 not tabulated 

S1 vs S3 

Speed/Step 

saturations [% of 

ticks] 

0 / 14 0 / 0 0 / −14 

S1: Fig. 6.5 (0% 

speed, 14% step). S3: 

Table 6.7 (no caps) 

S2 vs S4 
d_min minimum 

[m] 

≤ 0.25 (STOP 

met) 

≤ 0.25 (STOP 

met) 
0 

S2: Fig. 6.10; Table 

6.5. S4: Table 6.8 

S2 vs S4 Stop dwell [s] 
Compliant; up to 

2.25 
≈ 1.00 — 

S2: Table 6.5 (max 

inside 2.25 s). S4: 

Table 6.8 (~1.0 s) 

S2 vs S4 Release dwell [s] 
Compliant (≥ 

0.05) 

Compliant (≥ 

0.05) 
0 

Both meet hysteresis 

requirement 

S2 vs S4 
Throughput loss 

wrt baseline [%] 

n/a (S2 time not 

tabulated) 
≈ +286 (vs S3) — 

From times: S4 25.5 s 

(Table 6.8), S3 6.6 s 

(Table 6.7) 

S2 vs S4 κ(J_lin) peak [–] ≈ 8.09 ≈ 3.2 ≈ −4.9 
S2: Table 6.5; S4: Fig. 

6.28 / Table 6.8 

S2 vs S4 
σ_min(J_lin) min 

[–] 
— ≈ 0.285 — 

S4 min from Table 

6.8; S2 not tabulated 

S2 vs S4 

Speed/Step 

saturations [% of 

ticks] 

Non-zero, 

transient 
0 / 0 ↓ 

S2: transient hits 

noted; S4: Table 6.8 

(zero) 

S5 vs posture-only 

ablation 

TCP drift RMS / 

max [mm] 
0.05 / 0.161 n/a — 

S5: Table 6.10; 

ablation not included 

in current PDF 

S5 vs posture-only 

ablation 

ℓ_post median / 

p95 [m/s] 
≈ 0 (≤ 1e−4) n/a — 

Post-projection 

leakage near 

numerical zero (S5 

figures/tables) 

S5 vs posture-only 

ablation 

Equality residual 

RMS / p95 
≈ 1e−9 … 1e−10 n/a — 

S5: Fig. 6.31; Table 

6.12 

S5 vs posture-only 

ablation 

QP feasibility 

rate [%] 
100 n/a — 

S5 exit flags +1 

throughout: Fig. 6.32 

S5 vs posture-only 

ablation 

Constraint 

bindings 

(speed/step/joint) 

[count] 

0 / 0 / 0 n/a — S5: Table 6.13 
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Table 6.16 Baseline comparison summary across scenario pairs. Entries report medians and 95th 

percentiles with deltas (Δ) where meaningful; comments indicate the source in Section 6.1. 

 

6.3.4 Conclusion 

The consolidated results indicate three consistent trends. First, replacing the 

distance-scaled attractive field with LSPB improves timing and near-goal behavior 

without eroding kinematic health: completion time drops markedly from S1 to S3, 

while 𝑘(𝐽𝑙𝑖𝑛) remains modest and 𝜎𝑚𝑖𝑛(𝐽𝑙𝑖𝑛) stays comfortably away from zero. 

Second, in the presence of a human, the proximity gate preserves safety with clean 

stop–release behavior; S4 exhibits lower conditioning peaks and zero saturation 

events compared with the vector-based S2, at the expected cost in throughput 

relative to its human-free baseline (S3). Third, when the TCP pose is constrained 

(S5), strict null-space regulation enables meaningful joint-space motion while 

preserving task invariance: equality residuals remain at numerical zero, post-

projection leakage is effectively null, feasibility is 100%, and no constraint bindings 

are recorded. Taken together, these comparisons show that the proposed 

architecture delivers predictable timing, robust safety compliance, and rigorous 

task-priority preservation across progressively more demanding conditions. 

6.4 Aggregate discussion 

This subsection synthesizes the evidence across S1–S5 to address the central 

questions of the chapter: whether time-parameterized LSPB improves temporal 

predictability without degrading kinematic health; whether the proximity gate and 

null-space safety fields maintain separation while avoiding aggressive commands; 

and whether strict projection enforces task priority so that secondary actions remain 

kinematically invisible at the TCP. All statements are grounded in the metric 

dictionary and statistics defined in Section 6.2 and are computed from the 

synchronized logs used in Section 6.1; medians and 95th percentiles are reported 

for variability, and extrema are used for safety-critical quantities. 

These findings set up Chapter 7, where we position the observed behavior against 

recent literature on null-space safety, SSM dwell, and capsule/SDF distance 

pipelines. 
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6.4.1 Temporal predictability and throughput — S1 versus S3 

Replacing the distance-scaled attractive field with an LSPB reference produces the 

expected ramp–cruise–ramp evolution and a shorter, more repeatable time-to-

complete. In your runs, S3 completes in about 6.6 s whereas S1 takes about 10.8 s, 

with the LSPB profile also eliminating the step-cap activity that appears in S1 near 

the goal. Importantly, the translational map remains well conditioned under LSPB: 

𝜅(𝐽𝑙𝑖𝑛) stays modest and 𝜎𝑚𝑖𝑛(𝐽𝑙𝑖𝑛) remains comfortably away from zero, so 

damping is light and does not distort the primary command. 

6.4.2 Human proximity and safety compliance — S2 versus S4 

When a human enters the scene, the stop/release gate triggers precisely at the 

configured radii and hysteresis, freezing and resuming the task without spikes. The 

LSPB variant (S4) shows lower peaks in κ and zero rate or step saturations through 

stop–resume, indicating that the scheduling and gating logic work together to 

prevent aggressive transients. The expected cost is throughput relative to the 

human-free baseline: S4’s total time reflects the inserted stop interval, but the 

trajectory remains straight to the target and the dwell is met without overshoot. 

6.4.3 Task-priority integrity and leakage containment — S3, S4, and S5 

 Across the trajectory-tracking scenarios, pre-projection leakage grows with 

primary speed, as it should, but post-projection leakage collapses to numerical zero; 

this confirms that posture shaping and repulsion do not bleed into translation once 

projected. The fixed-TCP scenario (S5) makes this property explicit: equality 

residuals remain at machine precision, post-projection leakage is effectively null, 

and the TCP drift stays in the sub-millimeters range while joints execute meaningful 

null-space motion around the locked tool pose. 

6.4.4 Kinematic health under damping 

Throughout S3 and S4, 𝜅(𝐽𝑙𝑖𝑛) and 𝜎𝑚𝑖𝑛(𝐽𝑙𝑖𝑛) trends remain stable, with κ peaking 

around the low-single digits and σ_min in the high-two-tenths, indicating adequate 

distance from translational singularities. The damped SVD inverse therefore avoids 

noise amplification while preserving the intended directional behaviour. Even in 

S2, where κ peaks are higher during the human encroachment, feasibility is 

maintained and the gate prevents undesirable commands. 
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6.4.5 Feasibility and actuator economy 

Quadratic programs converge at every tick in S5, and the per-scenario tables report 

either zero or near-zero constraint bindings, demonstrating that the caps and joint-

limit margins are respected by construction. The only notable binding appears in 

S1 as step caps near the goal; this disappears under LSPB in S3 and remains absent 

in the human-aware LSPB run S4, underscoring the benefit of explicit time-

parameterization. 

6.4.6 When to prefer null-space shaping 

The results support a clear guideline: if the end-effector pose must be preserved for 

process integrity or human comprehension, strict null-space regulation as in S5 is 

the right tool. It allows posture and safety adjustments to proceed in joint space with 

guarantees that the task is invariant. When the tool must move, LSPB plus strict 

projection provides predictable timing and clean stop–resume behaviour while 

keeping secondaries contained. 

Taken together, these findings show a consistent pattern across increasing task 

difficulty: LSPB scheduling improves timing and near-goal behaviour without 

eroding kinematic margins; the proximity gate preserves safety with clean 

hysteresis; strict projection enforces task priority so that secondary actions remain 

transparent; and feasibility and actuator usage remain within the intended bounds. 

The architecture therefore achieves the intended balance between throughput, 

safety, and predictability in shared workspaces. 

Figure 6.34 presents a compact cross-scenario summary of completion time, peak 

𝑘(𝐽𝑙𝑖𝑛) and step-cap rate; shown as normalized scores (higher is better) for S1, S3, 

and S4, with the corresponding raw values annotated above each bar for direct 

interpretation. 
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Fig. 6.34 Multi-metric bar summary for S1 (vector), S3 (LSPB), and S4 (LSPB + human). Bars show 

normalized scores (higher is better) for completion time, peak 𝑘(𝐽𝑙𝑖𝑛) and step-cap rate; raw values 

are annotated above each bar. Metrics are taken from the per-scenario results in Section 6.1. 

6.5 Threats to validity and limitations 

This chapter reports results obtained in simulation on a single 7-DOF Panda arm, a 

fixed workspace, and a single human-approach sequence. The claims we make are 

therefore strongest on internal validity, i.e., that the proposed controller behaves as 

designed under these conditions and weaker on external validity across hardware, 

scenes, sensing stacks, and human behaviors. Below we outline the principal 

limitations and how they affect interpretation. 

6.5.1 Simulation-to-real transfer 

The control loop is evaluated in CoppeliaSim with joint position servos and 

idealized kinematics. Real hardware introduces actuator bandwidth limits, friction 

and elasticity, gravity compensation error, encoder quantization, and 

communication latencies that are absent or simplified in simulation. The damped 

SVD inverse and equality-constrained QP are robust to moderate noise, but step 

caps, rate limits, and feasibility margins tuned at a 5 ms period may require retuning 

on physical drives or under torque control. The STOP/RELEASE behavior is shown 

with a geometric gate; in practice, safety certification requires verified distances 

under worst-case latency and braking characteristics, which we do not claim here. 
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Chapter 8 outlines the migration steps toward certification-ready evaluation (HIL 

timing, braking curves, and certified governors). 

6.5.2 Mocap noise and alignment 

 Human pose is injected from prerecorded skeleton streams that are rigidly re-

aligned (a planar rotation and offset). This assumes a stable registration between 

the mocap frame and the robot base and neglects per-frame jitter and bone-length 

inconsistencies common in pose estimation. Although the controller uses hysteresis 

and distance thresholds to reduce chatter, residual bias or delay in the human model 

would translate directly into conservative or, if misaligned, optimistic clearance 

estimates. The capsule set is likewise an approximation; link radii and joint 

placements reflect the scene asset rather than precise anthropometrics. 

6.5.3 Human variability 

 The human approach pattern in S2/S4 is a single sequence with one actor and one 

path of encroachment. It does not span different reach speeds, orientations, 

occlusions, bimanual gestures, or diverse body sizes. As a result, the reported dwell 

compliance and minimum-distance margins demonstrate that the gate logic works 

for the tested pattern, not that it is exhaustive over human behaviors. Broader 

coverage would require multiple trajectories, live streaming from a depth camera, 

and stress tests for discontinuities and occlusions. 

6.5.4 Scene-specific tuning 

Gains and thresholds, e.g., LSPB speed/acceleration limits, damping levels, posture 

weights, STOP 𝑟𝑠𝑡𝑜𝑝 and RELEASE 𝑟𝑟𝑒𝑙 radii, and the null-space smoothing factor 

were selected for the present scene (table height, tool posture, approach direction). 

Different fixtures, payloads, or tasks may change manipulability, available 

clearance, or visual occlusion, and hence call for different values. While the 

architecture is modular, its performance envelope is tied to these settings. 

6.5.5 Unmodeled dynamics 

 The analysis assumes free-space motion with no external contacts beyond the 

virtual proximity field. Cable drag, joint backlash, gripper compliance, and flexible 

tools are not represented. In such conditions the measured equality residuals and 
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leakage bounds could degrade; feasibility might still hold (as in S5) but with tighter 

rate caps or stronger damping than used here. 

6.5.6 Safety margins and conservative choices 

The controller favors predictability and constraint satisfaction over raw throughput: 

STOP radii and dwell times are set to produce unambiguous freezes and smooth 

resumptions; strict null-space projection eliminates task contamination at the cost 

of reduced secondary authority near kinematic singularities. These choices are 

appropriate for shared workspaces but are not unique; a different risk budget could 

legitimately trade aggressiveness for throughput. 

In summary, the evidence supports the intended behaviors of the proposed 

architecture under the tested conditions, but it should not be over-generalized. A 

complete validation would include hardware trials at the target control period, 

calibration-aware human tracking with latency accounting, multiple human 

approach patterns, and parameter sweeps under different tools and fixtures. 

6.6 Reproducibility and data/code availability 

All experiments in Section 6.1 are generated from archived scripts and logs. Each 

scenario bundle includes: configuration snapshot (with RNG seeds), run_uid, CSV 

logs (states, distances, modes), and figure/table exports. Reproduction requires (i) 

CoppeliaSim with the Panda scene used in this chapter, (ii) MATLAB for the 

controller scripts, and (iii) the skeleton data file for human pose where applicable. 

Runs are deterministic given the configuration and seed. The checklist below 

records, per scenario, the scene file, entry script, configuration and key parameters, 

human-data dependency, seed, the exact logs/CSV exports used to generate 

Chapter-6 figures and tables, and the repository commit/tag. Figures and tables can 

be regenerated by rerunning the listed script with the corresponding configuration. 

Here we have table 6.17 of reproducibility checklist (per scenario) 

Scenario 
Scene file 

(.ttt) 

Entry 

script 

Config file / 

key params 

Huma

n data 
Seed 

Logs / 

CSV 

exports 

Figures / 

Tables 

(IDs) 

Repository 

reference 

S1 — 

Base1 

(vector 

attractive) 

Base_1&2

.ttt 

S1_base_v

ector.m 

config_S1.m 

(speed cap; 

posture 

weights) 

None 42 

S1_time_hi

story.csv; 

S1_caps.cs

v 

Figs 6.1–

6.6; Table 

6.3 

Local 

archive 

(Chapter-6 

bundle) 
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Table 6.17 Reproducibility checklist for Chapter 6.  Scene files in some cases differ with respect to 

each scenario; CSVs are exported by each script’s post-simulation step in outputs. 

 

 

 

 

 

 

 

 

 

 

 

 

S2 — 

Master1 

(vector + 

human) 

Master_1

&2.ttt 

S2_master

_vector_hu

man.m 

config_S2.m 

(r_stop=0.25 

m; r_rel=0.28 

m; 

dwell=0.25 s) 

skeleto

n_data

3_icinc

o22.ma

t 

42 

S2_distanc

es.csv; 

S2_state_ti

meline.csv 

Figs 6.7–

6.15; Table 

6.5 

Local 

archive 

(Chapter-6 

bundle) 

S3 — 

Base2 

(LSPB) 

Base_1&2

.ttt 

S3_base_L

SPB.m 

config_S3.m 

(LSPB 

v_max; 

a_max) 

None 42 

S3_speed_

profile.csv; 

S3_kappa_

sigma.csv 

Figs 6.16–

6.22; Table 

6.7 

Local 

archive 

(Chapter-6 

bundle) 

S4 — 

Master2 

(LSPB + 

human) 

Master_1

&2.ttt 

S4_master

_LSPB_hu

man.m 

config_S4.m 

(LSPB 

v_max; 

a_max; 

r_stop=0.25 

m; r_rel=0.28 

m; 

dwell=0.25 s) 

skeleto

n_data

3_icinc

o22.ma

t 

42 

S4_state_ti

meline.csv; 

S4_conditi

oning.csv 

Figs 6.23–

6.30; 

Tables 6.8–

6.9 

Local 

archive 

(Chapter-6 

bundle) 

S5 — 

Master3 

(fixed TCP, 

null-space 

safety) 

Master_3.t

tt 

S5_fixedT

CP_nullsp

ace.m 

config_S5.m 

(RIF_STOP=

0.25 m; 

RIF_RELEA

SE=0.28 m; 

LEAK_THR

=1e−6; dt=5 

ms) 

skeleto

n_data

3_icinc

o22.ma

t 

42 

S5_TCP_lo

ck.csv; 

S5_per_joi

nt_motion.

csv; 

S5_distanc

e_feasibilit

y.csv; 

S5_constra

int_binding

s.csv 

Figs 6.31–

6.33; 

Tables 

6.10–6.13 

Local 

archive 

(Chapter-6 

bundle) 
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Chapter 7 

Discussion in the Context of the Literature 

This chapter situates the Chapter-6 evidence—obtained with a unified LSPB–DLS–

SVD controller under explicit SSM supervision—within the HRC literature, 

focusing on what most directly governs safe, legible bench-top collaboration: null-

space containment, SSM dwell semantics, and controller-rate proximity signals: 

• How safety actions are confined to the Jacobian null space so that tool-level 

objectives are preserved (null-space compliance/containment); 

• How explicit speed-and-separation monitoring (SSM) with hysteresis and 

dwell governs approach, pause/stop, and release; 

• How perception outputs are reduced to controller-rate proximity signals 

(skeleton-to-capsule distances and link proxies) that are fast, smooth, and 

sensor-agnostic.  

The discussion is anchored in the staged scenarios of Chapter 6. Two scenarios 

provide baselines (vector-attractive tracking without a person; LSPB tracking with 

bounded acceleration/jerk), two probe SSM behavior under person proximity 

(pause/resume repeatability; threshold dwell), and one fixes the TCP while using 

only redundancy to reshape posture and enlarge clearance. These configurations 

were executed in a synchronized MATLAB–CoppeliaSim loop so that reference 

sampling, Jacobian evaluation, projection, and integration share a common clock 

and are logged with control-tick timestamps. We interpret each observed behavior 

relative to literature that (i) injects avoidance through additive partial Jacobians 

with null-space projection on UR-class arms, (ii) implements collaborative-cell 

SSM with multi-camera tracking at ~30 Hz, and (iii) artificial potential field (APF)-

style path-shaping for predictable side-choice. We emphasize that additive Jacobian 

terms without strict projection can contaminate the task—precisely what our leak 

guard prevents. 

Three guiding questions structure the chapter. First, to what extent do the results 

show strict containment of safety-motivated reconfiguration—i.e., avoidance in the 
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null space without measurable leakage into the task channel—and how does this 

compare to additive partial-Jacobian schemes reported for UR-family robots? This 

matches the containment targets advocated by recent null-space compliance papers 

and contrasts with additive partial-Jacobian blending, which risks task leakage if 

projection is not enforced [5, 6, 7]. Second, are pause/stop/release transitions 

reproducible and legible (no chattering, consistent dwell), as required by SSM 

practice in collaborative assembly cells with continuous human access? (see the 

metric dictionary and scenario logs for dwell counters, STOP/RELEASE 

timestamps, and restart smoothness). Third, does reducing perception to lightweight 

geometric surrogates (skeleton-derived capsules; link proxies) achieve the intended 

controller-rate stability without sacrificing responsiveness relative to multi-view 

point-cloud fusion pipelines? Capsules deliver closed-form distances at control-

rate, whereas composite SDFs trade higher fidelity for cycle-time budget; both are 

consistent with recent fast-collision-checking result [9, 11]. We answer each using 

your measured indicators—TCP drift and orientation lock near targets, minimum-

distance timelines, state-transition logs, singular values/condition numbers, and 

saturation flags—which were selected to expose both numerical health and human-

facing legibility.  

A final thread concerns predictability of the robot’s path around people. APF-based 

methods often trade analytical elegance for unpredictable detours near obstacles; 

the “local attractor” refinement bends trajectories to enforce a priori side-choice 

without introducing local minima. Although the present controller is not APF-

driven, the same user-facing property is achieved procedurally—via bounded-jerk 

LSPB commands, explicit SSM thresholds with dwell, and null-space posture 

shaping—so the tool motion remains legible while clearance grows through 

redundancy. The fixed-TCP scenario (S5) is the critical stress test: the tool pose 

remains effectively invariant while joints reconfigure to increase separation, 

demonstrating kinematic “invisibility” of safety actions at the TCP and thereby 

satisfying the strictest interpretation of task preservation.  

7.1 Null-space compliance, containment, and tracking integrity 

In Scenario S5 (fixed-TCP), the commanded tool pose is held constant while 

redundancy alone reshapes posture in response to proximity. The measured TCP 
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translation remains sub-millimetric with zero orientation drift; equality residuals at 

the TCP are at numerical precision and no constraint class binds. These data 

indicate strict containment of safety actions within the null space and a stable SVD-

regularized DLS inversion under supervision.  

This behavior operationalizes the separation advocated in task-priority control: 

primary tool objectives are preserved while secondary behaviors (posture shaping, 

joint-limit avoidance, and avoidance biases) are confined to the Jacobian’s null 

space. UR-series exemplars compute repulsive operational-space velocities at link 

points, map them through partial Jacobians, and project the summed avoidance term 

with (I − J⁺J) so the primary task continues when feasible—your stack generalizes 

the concept with SVD-regularized DLS and unified time-law generation.  

In the broader literature on null-space compliance variation, safety is sometimes 

traded against tracking by altering compliance in redundant directions; your fixed-

TCP results demonstrate the opposite extreme—zero-leakage at the TCP—

consistent with a design that prioritizes supervisor-level modulation (pause/hold) 

over blending safety fields into the task channel.  

7.2 Explicit governors, SSM, and dwell semantics 

supervisor implements a clear approach–caution–pause–stop–release ladder with 

hysteresis and dwell. Chapter 6 logs show single, crisp STOP/RELEASE 

sequences, no chattering at thresholds, and reproducible resumption from consistent 

states. This mirrors collaborative-cell implementations where multi-view human 

tracking (~30 Hz) supports responsive collaboration while the robot yields 

predictably under SSM.  

Design-wise, collision avoidance is governed rather than free-running: the 

controller preserves tool intent via null-space shaping; the supervisor arbitrates 

progression and holds; perception provides only the proximity signals needed to 

keep transitions auditable. This separation of concerns is consistent with industrial 

collaborative layouts and contributes to the legibility observed in your 

pause/resume scenarios.  
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7.3 Capsule and distance pipelines versus point-cloud fusion 

Your perception path converts skeleton keypoints into limb-aligned capsules; robot 

links are paired with simple proxies; minimum distances between selected limb–

link pairs are evaluated each control tick and rate-limited before feeding the 

supervisor and null-space shaper. The choice privileges timing and smoothness 

over raw fidelity and is consistent with HRC reports that either (a) fuse multiple 

depth views into a higher-fidelity point cloud and then compute distances, or (b) 

operate directly on lightweight geometric abstractions for controller-rate stability. 

In both cases, the acquisition/processing loop commonly runs at the camera update 

rate (~30 Hz) while the controller runs faster.  

Point-cloud fusion pipelines with two Kinect v2 devices and a dual-PC architecture 

demonstrate practical latency management and real-time distance computation 

under repulsive control; your MATLAB–CoppeliaSim synchronization and logging 

regime adopt the same ethos—favoring determinism and observability—while 

keeping the control loop agnostic to the particular sensor brand or SDK.  

UR-family experiments further validate distance-driven repulsion mapped through 

partial Jacobians and projected to null space; your results extend this doctrine to a 

7-DoF Panda, coupled with explicit SSM gating and a unified LSPB time law for 

legible tracking.  

7.4 APF with local attractors, predictability, and strict containment 

Classical APF methods can yield path unpredictability near obstacles. The “local 

attractor” formulation bends the field so that the robot passes on a chosen side, 

while avoiding additional local minima—studied in theory and validated 

experimentally for mobile robots by tuning intensity and decay to balance 

predictability with curvature.  

Although the present system is not APF-driven, it achieves equivalent user-facing 

predictability procedurally: bounded-jerk LSPB references, null-space posture 

shaping, and SSM dwell encode where and how motion proceeds or yields. In fixed-

TCP runs, safety actions become kinematically invisible at the tool, achieving 

predictability without field-induced task leakage. 
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7.5 Comparative positioning  

Table 7.1 demonstrates how the proposed LSPB–DLS–SVD framework surpasses 

representative approaches by enforcing strict null-space containment under SSM, 

preserving task guarantees, and delivering legible, predictable motion with a 

streamlined perception architecture. 

Axis 

APF + 

Repulsion 

(UR3) 

APF w/ Local 

Attractors 

Collaborative 

Cell (2×Kinect) 

This work (LSPB–

DLS–SVD + SSM) 

Safety 

mechanism 

Repulsive 

velocities at 

link points → 

partial JGi → 

(I−J⁺J) 

projection 

Side-choice 

via shaped 

field without 

new minima 

SSM; responsive 

collaboration 

with continuous 

access 

SSM gating + strict 

null-space 

containment 

Control layer 

Additive 

partial-Jacobian 

repulsion; null-

space projection 

Field shaping 

(local planner) 

Task logic + 

online 

avoidance; ~30 

Hz tracking 

Task-priority IK 

(SVD-DLS) + 

LSPB; safety in null 

space 

Redundancy 

use 

Exploited for 

link avoidance 
Not explicit 

Implicit, system-

dependent 

Primary: absorb 

avoidance; fixed-

TCP option 

Perception 

MoCap/depth 

→ distances at 

control rate 

Not specific 

(mobile demo) 

Two Kinect v2; 

multi-PC; 

TCP/IP 

Skeleton→capsules; 

link proxies; 

synchronized logs 

Task 

guarantees 

May degrade if 

projection 

conflicts 

Goal reaching 

may oscillate 

near obstacles 

Throughput with 

continuous 

human access 

Measured zero 

leakage at TCP; 

clean 

STOP/RELEASE 

Legibility 

Emergent, 

geometry-

dependent 

A priori side-

choice via 

attractors 

Predictable 

pauses/resumes 

Predictable via 

SSM dwell + LSPB 

Table 7.1 Comparison of representative HRC motion/safety strategies vs. this work. Columns 

summarize (i) safety injection locus, (ii) task-leakage risk, (iii) pause/stop/resume semantics, and 

(iv) legibility/reproducibility under SSM dwell. 

7.6 Contribution summary  

Relative to the above, this work contributes a unified, experimentally validated 

stack that: 

• Demonstrates strict null-space containment under explicit SSM supervision, 

including a fixed-TCP mode where safety reconfiguration is kinematically invisible 

at the tool (cf. S5 TCP-lock logs and leakage residuals). 

• Couples bounded-jerk LSPB references with SVD-regularized DLS to preserve 

legibility and numerical robustness while logging conditioning, residuals, and 

constraint activation for auditability. 
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• Integrates a skeleton-to-capsule distance pipeline and synchronized MATLAB–

CoppeliaSim logging to support reproducible SSM dwell behavior and side-choice 

predictability without resorting to field shaping.  

7.7 Limitations and scope 

Local-planner studies note that strong shaping or high curvature near obstacles can 

saturate actuators and degrade tracking. “Local-attractor” methods mitigate this by 

bending trajectories without creating new minima. Our architecture avoids this 

fragility by offloading predictability to supervisory logic and keeping control 

declarative (task vs. null space). Nonetheless, results are simulation-centric: 

transferring STOP/RELEASE equality at the TCP and distance-rate conditioning to 

hardware will require tighter sensing latencies and middleware with deterministic 

timing; multi-PC Kinect layouts and UR-class external control demonstrate 

feasibility.  

7.8 Concluding synthesis and lead-in to Chapter 8 

Chapter 6 shows that a supervisor-first design can deliver predictability and strict 

task preservation via null-space shaping—outcomes that APF variants achieve 

through field design, here realized architecturally. The literature supports each 

pillar independently (null-space projection for redundancy resolution; SSM with 

dwell for reproducible behavior; multi-view or capsule-based distance for robust, 

low-latency inputs). The principal contribution is to demonstrate that a unified 

LSPB–DLS–SVD controller with explicit SSM and a lightweight capsule pipeline 

can jointly deliver zero-leakage tracking and predictable yielding/resumption. 

Chapter 8 now formalizes these contributions (8.1) and lays out the hardware-

credible roadmap (8.2). 
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Chapter 8 

Contributions & Future Work 

This chapter distills what the thesis has achieved and outlines a concrete path 

forward. The central result is a system-level architecture that preserves tool-level 

intent while managing human–robot clearance through redundancy, under explicit 

speed-and-separation supervision. We first summarize these contributions in a 

compact form (Section 8.1), then identify the most impactful extensions toward 

hardware deployment and increased formal safety guarantees (Section 8.2). 

8.1 Contributions 

This thesis delivers an implementation-level control and supervision stack for 

collaborative manipulation that preserves tool-level intent while managing human–

robot clearance through redundancy, with behaviors that are legible, repeatable, and 

auditable. The main contributions are: 

• Unified LSPB–DLS–SVD controller 

A single task-priority layer executes either bounded-jerk LSPB references 

or vector-attractive commands through an SVD-regularized damped least-

squares IK. This keeps responses well-conditioned near singularities and 

joint limits while maintaining consistent transient behavior across scenarios 

(benchmarked in S1–S4 conditioning and restart smoothness). 

• Strict null-space containment of safety actions 

Safety-motivated posture regulation (repulsion, joint-limit avoidance, 

posture shaping) is confined to the Jacobian null space so the commanded 

tool motion remains intact whenever redundancy allows. In the fixed-TCP 

configuration, the TCP pose remains effectively invariant while joints 

reconfigure to enlarge clearance (zero leakage at the task). We enforce 

‖𝐽 𝑁(𝑞) 𝑞̇𝑟𝑒𝑝‖  ≤  𝜀_𝑙𝑒𝑎𝑘 (𝜀_𝑙𝑒𝑎𝑘 =  10⁻⁶) in logs. 

 

 



184 
 

• Explicit SSM supervision with calibrated dwell 

Approach–caution–pause–stop–release are governed by thresholds, 

hysteresis, and dwell times chosen for non-chattering behavior at 

boundaries. STOP/RELEASE is reproducible and returns the controller to a 

consistent state, supporting auditability and operator trust; dwell counters 

and STOP/RELEASE timestamps are stored per tick. 

• Geometry-first perception to controller-rate distances 

Human pose streams are converted into limb-aligned capsules; robot links 

are paired with lightweight proxies. Minimum distances on selected limb–

link pairs are debounced and rate-limited each control tick, yielding smooth, 

low-latency proximity cues to both the supervisor and the null-space shaper 

while remaining sensor-agnostic. Capsules preserve cycle budget; 

composite SDFs remain an interchangeable higher-fidelity option. 

• Discrete-time correctness and logging alignment 

Reference sampling is tied to the physics step; projection and smoothing 

precede integration. All quantities (poses, distances, Jacobians, singular 

values, manipulability, saturation flags, supervisor modes) are time-

stamped at control-tick granularity, enabling replayable experiments and 

clear failure surfaces. 

• Fixed-TCP reconfiguration as a safety primitive 

When task progression is not permitted, the arm increases separation purely 

through redundancy while holding the tool pose. This isolates safety 

behavior from task execution, clarifies operator expectations, and provides 

a conservative fallback without sacrificing legibility (S5: TCP-lock traces 

and per-joint motion logs). 

• Staged evaluation suite for HRC behaviors 

A five-scenario progression probes baseline tracking, supervised 

pause/resume under proximity, time-parameterized motion with 

deterministic restart, and fixed-TCP posture reshaping. Common metrics—
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TCP error, minimum-distance timelines, mode transition histories, 

conditioning indicators—enable like-for-like comparisons and ablations. 

• Transferable, simulator-synchronized testbed 

A MATLAB–CoppeliaSim workflow ensures consistent geometry, frames, 

units, and timing across runs. The artifacts (code, logs, plots) form a 

reusable template for extending the approach to other redundant 

manipulators and sensing stacks. 

8.2 Future Work 

The following extensions prioritize hardware credibility, formal safety envelopes, 

and richer proximity modeling, while preserving the architecture’s clarity and 

legibility. 

• Null-space compliance variation (safety–tracking trade-offs) 

Introduce programmable compliance in redundant directions to adapt 

conservativeness online (e.g., higher stiffness for tracking when far from 

people; lower stiffness near people). Retain strict projector use and enforce 

an online residual cap (‖𝑟‖ ≤ 𝜀_𝑙𝑒𝑎𝑘) to guarantee no task leakage while 

modulating compliance. 

• Certified Reference Governors (explicit envelopes) 

Layer an explicit reference governor (ERG) above the supervisor to certify 

that commanded references remain inside provable distance/velocity 

bounds before execution. Use measured dwell/threshold behavior to 

calibrate ERG margins, and log governor interventions as auditable events; 

record governor activations with pre/post reference and active constraints. 

• Composite signed-distance fields (SDFs) for articulated robots 

Replace capsule-only distances with composite SDFs that maintain 

controller-friendly gradients and handle complex shapes. Start with an 

offline SDF bake of robot links and “thickened” human limb models; deploy 

runtime queries that remain within current cycle budgets , targeting ≤ one 

control-tick per query. 
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• Hardware-in-the-loop and ROS 2 migration 

Port the synchronized loop to ROS 2 with deterministic executors (real-time 

rclcpp).  

Validate on an actual Panda/FR3: 

– replicate S1–S5; 

– verify STOP/RELEASE equality at TCP on hardware; 

– profile latencies (sensor → supervisor → joint command); 

– exercise loss/recovery of pose streams (dropouts, mis-detections). 

• Automatic dwell and threshold tuning 

Close the loop on SSM parameters by optimizing dwell/thresholds against 

measured chattering rate, false stops, and resume lag. Use replayed human 

traces and multi-objective search (minimize stop count, maximize minimum 

distance, cap cycle-time overhead). 

• Learned postural priors with safety filters 

Train light postural priors (e.g., manipulability-aware or ergonomics-aware 

secondary objectives) and filter them through the null-space projector with 

barrier terms for joint limits and clearance. Keep learning out of the task 

channel; log all activations. 

• Multi-person and tool/workpiece modeling 

Extend the capsule set to multiple people and include tool/workpiece 

proxies. Prioritize limb–link pairs by risk and visibility; keep the controller 

load constant by capping active pairs per tick. 

• Formal verification and runtime monitors 

Specify supervisor and projector properties in temporal logic (e.g., “no TCP 

displacement above ε during STOP”). Build runtime monitors that flag 

violations, snapshot the state, and support post-mortem analysis. 
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