

POLITECNICO DI TORINO

MASTER of MECHANICAL ENGINEERING

MASTER’s Degree Thesis

Collaborative Robotics and Collision Avoidance

in Human-Robot Shared Workspaces

Candidate:

Kosar Akbari

October 2025

Supervisor:

Prof. Stefano Mauro

(DIMEAS)

Co-Supervisors:

Matteo Melchiorre

Laura Salamina

ii

To my beloved family;

whose unwavering love, support, and encouragement have

been my foundation throughout this journey.

Their confidence in me has been the driving force behind

every step of this work.

iii

Abstract

Collaborative robotics blends the precision of industrial manipulators with human

dexterity in shared workspaces. In practice, safety dictates motion: power-and-force

limiting and, especially, speed-and-separation monitoring (SSM) shape behavior to

maintain provable human–robot clearances. Turning policy into control requires

phrasing separation and interaction limits as bounds on position, velocity, and

effort, then generating commands that remain feasible under sensing noise and

kinematic constraints. For redundant manipulators, task-priority control with null-

space projection achieves the primary end-effector objective while shaping posture,

respecting joint limits, and accommodating collision-avoidance biases derived from

perception. Robustness near kinematic singularities is provided by damped least

squares (DLS) solved via singular-value decomposition (SVD), which attenuates

ill-conditioned directions in real time. References are either a bounded Cartesian

attractive velocity (interactive runs) or linear-segment-with-parabolic-blend

(LSPB) trajectories (time-parameterized runs); both are executed under the same

SVD-regularized DLS inverse kinematics (IK) and supervisory gating, while light

Cartesian damping closes residual errors. Coupled with an explicit state-machine

supervisor that gates approach, stop, hold, repel, and resume, these elements

provide a principled path from safety policy to executable motion.

The thesis develops the modeling, algorithms, and implementation to realize that

framework end-to-end: from velocity-field target acquisition (interactive) and

LSPB tracking (time-parameterized), to a separate fixed tool center point (TCP)

regime where redundancy alone is used to reshape posture, through collaborative

operation that pauses motion inside a risk envelope and resumes only after

persistent clearance, to a fixed-TCP regime where the arm reconfigures purely in

the Jacobian null space to increase separation. Observability and transparency are

emphasized: task-space singular values and condition numbers quantify nearness to

singularity; linear manipulability and joint-saturation flags expose control effort;

and a conflict metric reports alignment between tracking and avoidance. An

acceptance radius and a time-based deadband for decisive stops yield reproducible

gate behavior; a gentle orientation lock avoids wrist flips; and discrete-time

iv

consistency is enforced by tying LSPB sampling to the physics step and performing

projection/smoothing before integration (notably in the fixed-TCP case).

Empirically, the unified LSPB–DLS–SVD framework acquires targets without

overshoot, halts and resumes predictably under SSM-like proximity events, and

when the TCP is fixed, maintains negligible drift while redistributing motion across

the redundant chain to maximize clearance. The result is an implementation-level

account of how trajectory time-parameterization, SVD-regularized DLS IK, and

null-space safety fields can be composed under explicit state-machine supervision

to deliver interpretable, robust collision avoidance for collaborative manipulation

in shared workspaces.

v

Contents

List of Figures ... xii

List of Tables .. xv

1. Introduction ... 1

1.1. Aim and Motivation ... 3

1.2. State of the Art ... 5

1.3. Collaborative Robotics in Shared Workspaces .. 8

1.3.1. Functions and representative uses in everyday settings 10

1.4. Work Description... 11

1.4.1. Experimental platform ... 12

1.4.2. Human motion: Modelling and MATLAB implementation 12

1.4.3. Core software component .. 13

1.4.4. Control architecture ... 13

1.4.5. Staged experiments .. 14

1.4.6. Data flow, logging and evaluation ... 14

1.4.7. Contributions ... 15

1.4.8. Perspectives ... 15

1.5. Thesis organization .. 16

2. Collaborative Work-Cell Architecture and Safety Framework 18

2.1. Shared-workspace scenario and cell layout ... 19

2.2. Robot Model and Link-Proxy Representation ... 21

2.2.1. Ground-truth kinematics .. 21

2.2.2. Kinematic description and numerical health .. 21

2.2.3. Frames and transform registry ... 22

2.2.4. Link-proxy geometry ... 22

2.2.5. Monitored pairs and signals ... 23

2.2.6. Target-aligned approach .. 24

2.3. Human pose acquisition and geometric modelling .. 24

2.3.1. Pose acquisition and normalization ... 24

2.3.2. Mannequin animation in simulation .. 24

2.3.3. Geometric abstraction for clearance .. 25

2.3.4. Distance computation and signal conditioning .. 25

vi

2.3.5. Interfaces and timing ... 26

2.3.6. Reproducibility .. 27

2.4. Proximity metrics and clearance policy ... 27

2.4.1. Distance signals and conditioning ... 27

2.4.2. Clearance bands and invariants .. 27

2.4.3. Mapping distance to postural demand ... 28

2.4.4. Gate logic and timers ... 29

2.4.5. Terminal behaviour at targets .. 29

2.4.6. Consistency and logging .. 29

2.4.7. Scope of the envelope .. 30

2.5. Supervisory gating and operating modes ... 30

2.5.1. Mode set and responsibilities ... 30

2.5.2. Transitions, thresholds and timers ... 31

2.5.3. Actions per mode ... 31

2.5.4. Interaction with references and IK ... 33

2.5.5. Use of approach direction and keep-out margins....................................... 33

2.5.6. Priority, concurrency, and edge cases .. 33

2.5.7. Parameters and tuning guidelines .. 34

2.5.8. Timing and logging .. 34

2.5.9. Guarantees ... 35

2.6. Trajectory timing and discrete-time integration .. 35

2.6.1. Clocks, rates, and tick semantics ... 35

2.6.2. Reference generation and sampling ... 35

2.6.3. Ordering within a tick .. 36

2.6.4. Pause/hold/resume semantics... 36

2.6.5. Discrete-time integration and stability guards ... 37

2.6.6. Consistent logging ... 37

2.6.7. Determinism and replay ... 38

2.7. Datasets, initial conditions, and scenarios ... 38

2.7.1. Human-motion traces ... 38

2.7.2. Initial robot postures .. 38

2.7.3. Targets and task geometry ... 39

2.7.4. Scenario definitions ... 39

2.7.5. Experimental factors and design .. 40

2.7.6. Fixed constants .. 40

2.7.7. Outputs and replay ... 40

2.8. Assumptions, limitations, and safety envelope summary 41

vii

2.8.1. Assumptions... 41

2.8.2. Safety framework (what is guaranteed by design) 42

2.8.3. Transfer and extension (perspectives) ... 42

3. Robotic system kinematic model (Franka Emika Panda) 44

3.1. Use of the kinematic model in the collaborative cell ... 46

3.1.1. Rationale .. 46

3.1.2. How it is used .. 46

3.1.3. Assumptions and scope .. 46

3.1.4. Interfaces referenced later .. 47

3.2. Robot description ... 47

3.2.1. Frames, tool, and workspace .. 47

3.2.2. Features and platform suitability (research & industry) 48

3.2.3. Technical specifications used in this thesis ... 48

3.2.4. Physical layout and link proxies .. 49

3.2.5. Kinematic scheme .. 49

3.2.6. Denavit–Hartenberg (DH) style parametrization adopted in this work 50

3.2.7. Jacobian (formulation & components, as used) ... 51

3.3. Mathematical model of the 7-DoF arm.. 53

3.3.1. Forward kinematics and pose-error definition ... 53

3.3.2. Geometric Jacobian and frame conventions implementation 55

3.3.3. Damped least-squares inverse with SVD ... 57

3.3.4. Manipulability, conditioning and safe neighborhoods 60

3.3.5. Task–priority composition and leak guard .. 61

3.3.6. Orientation locking for the fixed-TCP scenario ... 63

3.4. Trajectory time law for the TCP (Vector vs. LSPB) ... 66

3.4.1. Vector-field TCP reference (moving target → repel → fixed target) 67

3.4.2. LSPB time law for the TCP (pause/resume–ready) 69

3.4.3. Constraint enforcement: caps, saturation, and runtime monitors 71

3.5. Safety variables and thresholds ... 74

3.5.1. Coordinate conventions and units .. 74

3.5.2. Core tolerances .. 74

3.5.3. Repulsion and SSM thresholds .. 74

3.5.4. Fixed-TCP avoidance and leakage ... 75

3.5.5. Health flags and logging schema ... 75

3.5.6. Defaults and calibration pointers ... 76

3.6. Identification and validation of the model ... 76

3.6.1. Finite-difference vs. analytic; unit tests; pass/fail 77

viii

3.6.2. Timing and latency budget (controller tick vs. physics step; end-to-end

latency; overrun policy) ... 79

3.6.3. Tolerance and threshold calibration (POS/ROT tolerances; STOP/RELEASE

bands; leak threshold protocol) .. 82

3.6.4. Reproducibility artifacts (configs, seeds, version hashes, run manifests).. 84

3.7. Conclusions ... 84

4. Human Model, Distances and Safety Behaviors ... 86

4.1. Human pose streams to skeleton-derived capsules .. 87

4.1.1. Input and world alignment ... 87

4.1.2. Local anatomical frames and mannequin actuation 87

4.1.3. Capsule proxy set ... 88

4.1.4. Signed distance to a capsule .. 89

4.1.5. Timing and coherence .. 90

4.2. Clearance distances and minimum-distance query .. 90

4.2.1. Robot points of interest .. 90

4.2.2. Human proxy set .. 90

4.2.3. Effective radii and signed clearance .. 90

4.2.4. Global and groupwise minima ... 91

4.2.5. Smooth minimum .. 91

4.2.6. Nearest-pair witnesses ... 91

4.2.7. Computational budget .. 91

4.2.8. Outputs ... 92

4.3. Repulsive safety fields (logistic and reciprocal shaping) 92

4.3.1. Problem setup .. 92

4.3.2. Shaping laws .. 92

4.3.3. Group weighting and span mapping .. 93

4.3.4. Combination and null-space projection ... 93

4.3.5. Distance-to-velocity direction .. 94

4.3.6. Saturation and smoothness considerations ... 94

4.3.7. Parameters and defaults ... 94

4.3.8. Outputs ... 95

4.4. SSM-style supervisor: STOP/RELEASE hysteresis and dwell 95

4.4.1. Objective .. 95

4.4.2. State set and outputs .. 95

4.4.3. Clearance aggregates and thresholds ... 96

4.4.4. Guards and timers .. 96

4.4.5. Transitions ... 97

ix

4.4.6. Pause/resume semantics by time law ... 98

4.4.7. Arbitration with repulsion .. 99

4.4.8. Chatter avoidance and guarantees .. 99

4.4.9. Logged indicators for evaluation ... 99

4.5. Fixed-TCP avoidance (6×7) and orientation locking .. 99

4.5.1. Objective .. 99

4.5.2. Task definition ... 100

4.5.3. Fixed-TCP avoidance .. 100

4.5.4. Leak clipping ... 100

4.5.5. Orientation locking (soft clamp) .. 101

4.5.6. Null-space shaping and limits .. 101

4.5.7. Computational notes ... 102

4.6. Stability and transparency considerations.. 102

4.6.1. Objectives ... 102

4.6.2. Task preservation under null-space shaping ... 102

4.6.3. DLS conditioning and bounded joint rates ... 103

4.6.4. Repulsion boundedness and saturation ... 103

4.6.5. Leakage control and small-gain rationale ... 103

4.6.6. Hysteresis and dwell for mode transitions .. 104

4.6.7. Transparency to the operator .. 104

4.7. Conclusions ... 105

5. Implementation & Software Architecture (CoppeliaSim) 106

5.1. Scene and synchronization .. 108

5.1.1. Frames and kinematic references .. 108

5.1.2. Data exchange ... 109

5.1.3. Synchronous stepping ... 110

5.1.4. Timing guarantees and overruns ... 110

5.1.5. Validation hooks ... 111

5.2. Dataflow and helper primitives ... 112

5.2.1. Scene I/O (world-aligned signals) .. 112

5.2.2. Geometric lifting (frames, Jacobians, kinematics).................................. 112

5.2.3. Distance queries (robot proxy points vs human capsules) 113

5.2.4. Safety-field shaping (repulsion in world and supervisor state) 113

5.2.5. Task-space tracking (vector and LSPB time laws) 114

5.2.6. Joint-space synthesis (primary task + redundancy behaviors) 114

5.2.7. Post-processing (limits, smoothing, discretization) 115

5.2.8. Mannequin joint extraction (skeleton to joint commands) 115

x

5.2.9. Determinism and test hooks .. 116

5.3. Mode scripts: behavior mapping ... 116

5.3.1. Scenario 1 (S1): vector-field TCP, no human interaction 116

5.3.2. Scenario 2 (S2): vector-field TCP with null-space repulsion 116

5.3.3. Scenario 3 (S3): LSPB TCP, no human interaction 117

5.3.4. Scenario 4 (S4): LSPB TCP with supervisory STOP/RELEASE 117

5.3.5. Scenario 5 (S5): fixed-TCP avoidance via null-space projection 117

5.3.6. Common signals and artifacts (all modes) .. 118

5.3.7. Implementation bindings .. 118

5.4. Logging, reproducibility, and configuration .. 118

5.4.1. Scope and structure of logs ... 119

5.4.2. File formats and directory layout .. 119

5.4.3. Configuration schema ... 120

5.4.4. Reproducibility guarantees ... 120

5.4.5. Latency and overrun accounting ... 121

5.4.6. Post-processing and provenance ... 121

6. Simulations & Results ... 122

6.1. Scenarios S1 – S5 .. 125

6.1.1. Scenario S1 — Attractive-field point-to-point motion with DLS–SVD

tracking .. 126

6.1.2. Scenario S2 — Proximity-Aware Reaching: Supervisory Hold and Null-

Space Repulsion ... 133

6.1.3. Scenario S3 — Free-space reach with LSPB feed-forward and null-space-

contained secondaries .. 141

6.1.4. Scenario S4 — LSPB tracking with strict null-space repulsion 149

6.1.5. Scenario 5 — Fixed-TCP reconfiguration in the null space with SSM

supervision ... 157

6.2. Metrics and evaluation protocol .. 165

6.3. Cross-scenario baselines and comparisons .. 167

6.3.1. Scenario 1 versus Scenario 3 (vector attractive versus LSPB) 168

6.3.2. Scenario 2 versus Scenario 4 (human-aware vector versus human-aware

LSPB) .. 168

6.3.3. Scenario 5 versus posture-only ablation (fixed-TCP null-space safety) . 168

6.3.4. Conclusions ... 170

6.4. Aggregate discussion ... 170

6.4.1. Temporal predictability and throughput — S1 versus S3 171

6.4.2. Human proximity and safety compliance — S2 versus S4 171

xi

6.4.3. Task-priority integrity and leakage containment — S3, S4, and S5 171

6.4.4. Kinematic health under damping .. 171

6.4.5. Feasibility and actuator economy ... 172

6.4.6. When to prefer null-space shaping ... 172

6.5. Threats to validity and limitations ... 173

6.5.1. Simulation-to-real transfer .. 173

6.5.2. Mocap noise and alignment .. 174

6.5.3. Human variability ... 174

6.5.4. Scene-specific tuning .. 174

6.5.5. Unmodeled dynamics ... 174

6.5.6. Safety margins and conservative choices ... 175

6.6. Reproducibility and data/code availability .. 175

7. Discussion in the Context of the Literature ... 177

7.1. Null-space compliance, containment, and tracking integrity........................... 179

7.2. Explicit governors, SSM, and dwell semantics ... 179

7.3. Capsule and distance pipelines versus point-cloud fusion 180

7.4. APF with local attractors, predictability, and strict containment 180

7.5. Comparative positioning .. 181

7.6. Contribution summary ... 181

7.7. Limitations and scope .. 182

7.8. Concluding synthesis and lead-in to Chapter 8 ... 182

8. Contributions & Future Work ... 183

8.1. Contributions ... 183

8.2. Future Work ... 185

References ... 187

xii

List of Figures

1.1 Control architecture .. 3

1.2 Franka Emika Panda/FR3 collaborative arm used as the primary manipulator 12

2.1 World–base–TCP frames and transform checks .. 22

2.2 Posture bias in the null-space from per-pair distances ... 23

2.3 Synchronous pose-to-distance pipeline .. 26

2.4 Supervisor actions per mode .. 32

3.1 Panda axis map (A1–A7) with manufacturer repeatable peak-torque limits 49

3.2 Kinematic scheme of the Panda arm (7R) .. 50

3.3 Construction of Jacobian columns from joint axes and point positions 52

3.4 DLS–SVD pipeline .. 57

3.5 Fixed-TCP regime .. 64

4.1 Command computation by mode ... 96

4.2 Finite-state supervisor with hysteresis radii and dwell timers 98

5.1 CoppeliaSim scene: manipulator with control spheres, human mannequin, and TCP

target .. 108

5.2 Overrun policy and dwell accounting .. 111

5.3 Deterministic per-tick pipeline ... 112

6.1 Initial scene and target placement for S1 (free-space reach) 127

6.2 Terminal pose held inside the 5 cm deadband (2.0 s hold) 130

6.3 TCP trajectory to the fixed target (S1); Deadband radius 0.05 m 130

6.4 Timelines: distance d(t); measured |v_tcp| vs cap v_cap(t); κ(J_lin) and σ_min; per-

joint rates with the 1.0 rad/s limit. State ribbon marks the 2.0 s hold 131

6.5 Per-joint speed usage and cap fractions. No speed-cap hits 131

6.6 TCP smoothness: PDFs of |a_tcp| and |j_tcp| showing tapered tails as the deceleration

envelope engages ... 132

xiii

6.7 Scene setup for S2. Panda on table, human (‘Bill’) inside a vertical ‘safety tunnel’, and

fixed /targetPoint .. 134

6.8 Mid-interaction snapshot .. 134

6.9 State progression and transient limit flags ... 137

6.10 Distances over time from TCP to the human hand and to the table plane 138

6.11 XY error ||𝑒𝑥𝑦|| (top) and vertical error ||𝑒𝑧|| (bottom) with the XY/Z tolerances used

to trigger the vertical drop and terminal stop ... 138

6.12 𝑐𝑜𝑛𝑑(𝐽𝑙𝑖𝑛) during the run, indicating distance from translational singularities; peaks

remain moderate (< 10) .. 139

6.13 Norms of the component velocities: task (linear), repulsion, posture, and final

command .. 139

6.14 Leakage ∥ 𝐽𝑙𝑖𝑛(𝑞̇𝑜𝑟𝑖𝑒𝑛𝑡 + 𝑞̇ 𝑝𝑜𝑠𝑡)∥ before and after null-space projection, with the

relative leakage (normalized by ∥𝑣𝑡𝑎𝑠𝑘∥) ... 140

6.15 Cross-track deviation plot via Matlab visualization tools 142

6.16 TCP path in plan (XY) and elevation (XZ) for S3 ... 144

6.17 LSPB speed profile vs. commanded magnitude ∥𝑣𝑐𝑚𝑑∥ .. 144

6.18 Kinematic health during S3 .. 145

6.19 Joint-space velocity norms ... 145

6.20 Null-space containment .. 146

6.21 State timeline, limit flags, and target distance ... 146

6.22 Scene snapshot with TCP start, target, human skeleton, and link frames 150

6.23 TCP path trajectory from start to target ... 153

6.24 dashed feed-forward speed |𝑣it | and realized command magnitude |𝑣cmal | 154

6.25 Joint-space velocity norms for task, repulsion, posture, and the final command ... 154

6.26 Null-space leakage: task-space magnitude before vs. after projection 155

6.27 State timeline with stop region, saturation flags, and target distance threshold 155

6.28 Jacobian conditioning: 𝑘(𝐽𝑙𝑖𝑛) and 𝜎𝑚𝑖𝑛(𝐽𝑚𝑖𝑛) over time 156

6.29 Simulation snapshots of the supervisory states in Scenario 5 160

xiv

6.30 Minimum distance 𝑑min(𝑡); repulsion magnitude before projection and after strict

null-space projection .. 161

6.31 Equality residual (top) and task leak (bottom) with the 10e-16 reference line 162

6.32 QP exit flags over time ... 162

6.33 Constraint-binding totals per joint for speed, per-tick step, joint-range limits 163

6.34 Multi-metric bar summary for S1 (vector), S3 (LSPB), and S4 (LSPB + human)... 173

xv

List of Tables

2.1 Monitored link–limb pairs and signal usage .. 23

3.1 Franka Emika Panda arm-level specifications and limits .. 48

3.2 DH constant parameters ... 51

4.1 Default values used in experiments .. 89

5.1 World-aligned data streams and commands between simulator and controller 110

6.1 Scenario matrix (S1–S5) .. 126

6.2 Scenario S1 setup and parameters .. 132

6.3 Scenario S1 outcomes and diagnostics .. 133

6.4 Scenario S2 supervisory logic .. 140

6.5 Scenario S2 outcomes and diagnostics .. 141

6.6 Scenario S3 configuration and controller settings (inputs and control parameters used

for LSPB) ... 148

6.7 Scenario S3 outcomes and diagnostics .. 149

6.8 Scenario S4 outcomes and diagnostics .. 156

6.9 Null-space evaluation (pre-/post-projection leakage and reduction ratio) 157

6.10 TCP lock quality in Scenario S5 .. 163

6.11 Per-joint null-space motion .. 164

6.12 Proximity and equality-residual statistics in Scenario S5 164

6.13 Constraint-binding counts per joint and totals in Scenario 5 164

6.14 Metric definitions and units used throughout Chapter 6 .. 166

6.15 Evaluation protocol for Chapter 6 .. 167

6.16 Baseline comparison summary across scenario pairs .. 170

6.17 Reproducibility checklist for Chapter 6 ... 176

7.1 Comparison of representative HRC motion/safety strategies vs. this work 181

1

Chapter 1

Introduction

This chapter establishes the conceptual foundations for collaborative robotics and

collision avoidance in shared workspaces. The objective is to situate the problem

within industrial practice, articulate the safety and control principles that govern

motion in the presence of humans, and frame the sensing and modelling choices

that make separation monitoring implementable at the control rates used in modern

manipulators.

Collaborative robotics replaces rigid spatial segregation with coordinated human–

robot activity within a common workspace. For practical deployment in human-

occupied environments, robot motion must be readily interpretable by nearby

workers, degrade gracefully under perception uncertainty, and remain within well-

defined safety envelopes. Industrial practice distinguishes interaction regimes by

how space and time are shared, ranging from fenced isolation, through coexistence

and sequential collaboration, to cooperation and fully responsive collaboration in

which both agents move concurrently and adapt in real time. As responsiveness

increases, the demands on perception latency and controller update rate tighten, and

the control system must revise motion online without sacrificing task performance

or eroding safety margins.

Safety policy in shared workspaces is commonly structured along two

complementary lines. Power-and-force limiting (PFL) constrains the consequences

of contact by bounding forces, torques, velocities, or momentum. Speed-and-

separation monitoring aims to prevent contact by regulating motion as a person

approaches—slowing, pausing, or stopping to preserve a protective distance [41,

16]. Realizing these policies in motion requires casting clearance and interaction

requirements as state and input constraints on position, velocity, and effort;

coupling those constraints to what the perception system can deliver reliably; and

enforcing them in the low-level loop via calibrated thresholds, hysteresis, and dwell

2

times so that behavior at the boundary of the protective zone is stable, repeatable,

and auditable. We adopt SSM semantics with hysteresis and dwell—distinct

STOP/RELEASE bands and a minimum out-of-risk time—to eliminate chatter and

make boundary behavior auditable.

All experiments use a synchronized MATLAB–CoppeliaSim loop that shares one

clock for sensing, control, and actuation, enabling reproducible STOP/RELEASE

events and null-space actions (see §5.1). Units and frame conventions used

throughout (world frame 𝑊, meters, radians, and per-second rates) are declared

once in §3.5 and reused verbatim in Chapters 4–6.

Redundant manipulators are particularly well suited to this setting because multiple

joint configurations can realize the same end-effector pose. Task-priority control

formalizes the separation between a primary end-effector objective and secondary

objectives confined to the Jacobian’s null space [1, 2]. Within that null space,

posture can be organized, joint limits respected, and collision-avoidance biases

introduced without corrupting the commanded task motion. Because redundancy is

often exploited near singularities and workspace boundaries, the inverse-kinematics

computation must remain numerically well-conditioned; damping the least-squares

solution and filtering ill-conditioned directions with singular-value decomposition

provide predictable responses while preserving reactivity.

Time parameterization shapes both human interpretability and actuator demand.

Trajectories with bounded acceleration and jerk are easier for collaborators to

anticipate and impose less mechanical stress. Linear segments with parabolic

blends offer closed-form profiles with well-understood transients and

straightforward saturation handling, making them practical for real-time tracking

and for pause/resume under supervisory control. Around such references, light

Cartesian damping and carefully chosen velocity caps suppress residual errors and

prevent overshoot when targets are near or when perception updates are

intermittent.

3

1.1 Aim and Motivation

This dissertation introduces methodologies for responsive, collision-aware

collaborative manipulation with a redundant robot operating near a person. The

overarching aim is to translate high-level safety intent into executable motion:

behavior should remain legible to an observer, numerically well-conditioned in the

controller, and consistent at proximity thresholds. The proposed architecture

integrates a robust inverse-kinematics layer, smooth time-parameterized references,

proximity-aware behaviors confined to the robot’s redundant degrees of freedom

and a compact supervisory logic that governs approach, pause, stop, and recovery

in a predictable way. Figure 1.1 summarizes the resulting architecture: bounded-

jerk LSPB references, SVD-regularized DLS IK, strict null-space containment, and

explicit STOP–HOLD–RELEASE supervision.

Fig. 1.1 Control architecture adopted in this work. Top: task-space reference generation: vector-

attractive (interactive) or LSPB (time-parameterized) with acceleration/velocity bounds. Middle:

SVD-regularized DLS IK with posture shaping and joint-limit handling. Bottom: human-aware

supervision—skeleton-to-capsule distances, null-space repulsion, and explicit STOP–HOLD–

RELEASE gating with leak/latency guards.

4

Human pose estimates are converted into arrangements of simple geometric

volumes aligned with major limbs; distances between these volumes and link-level

robot proxies provide the proximity signals that drive both local avoidance

tendencies and supervisory gates.

A key part of the work is the alignment of CoppeliaSim and MATLAB into a single,

faithful representation of the collaborative cell. Kinematic and dynamic parameters,

coordinate frames (including the tool center point), unit conventions, and time-

stepping are synchronized so that what is commanded in MATLAB is exactly what

executes in the simulator, and what is measured in the simulator is what the

controller expects. Communication and logging are organized to preserve timing

(controller tick versus physics step), making the virtual cell a realistic stand-in for

a physical setup and a reliable platform for repeatable experiments and diagnostics.

Across all scenarios, the implementation relies on a small set of core routines and

software modules. A kinematic Jacobian routine provides the geometric Jacobian

and related quantities used to convert task-space references into joint commands

while keeping numerical conditioning under control. A proximity and collision-

avoidance module processes human–robot distances, shapes avoidance tendencies

with smooth onsets and caps, and confines these actions to redundant directions so

the primary objective is not disturbed. Together with posture and joint-limit

management and the supervisory logic, these components form a compact, reusable

toolkit.

This approach is validated through five scenarios of increasing complexity. First, a

foundational tracking case establishes a clean baseline by driving the tool toward a

target with a purely attractive task-space velocity field and no person present,

avoiding time parameterization. Second, an interactive extension introduces a

nearby operator: the robot advances, then on intrusion halts, holds, gently reshapes

posture to increase clearance, and resumes once conditions are comfortable again.

Third, a time-parameterized case adopts linear-segment-with-parabolic-blend

references to demonstrate smooth, bounded-jerk tracking in the absence of

interference. Fourth, a supervised pause–resume variant layers proximity

governance onto those references, pausing within a caution band and resuming from

a consistent state when the band clears to yield predictable behavior at thresholds.

5

Finally, a fixed-pose reconfiguration case holds the tool pose constant and exploits

redundancy to adjust posture and enlarge human–robot clearance without inducing

tool drift, isolating the clearance-management behavior when the primary objective

is immovable.

All scenarios are implemented and exercised in CoppeliaSim with MATLAB-

driven control and logging. Common health criteria are enforced: no contacts, a

minimum clearance margin, and joint-range compliance and performance is

reported through task-error histories, minimum-distance timelines, state-transition

histories in the supervisor, joint-speed usage, and indicators of numerical

conditioning and manipulability. Particular attention is paid to legibility (how the

motion reads to an observer), repeatability (how behaviors trigger with thresholds,

hysteresis, and dwell), and practicality (how the stack behaves when perception

updates are intermittent or when the robot nears kinematic limits).

The contribution to the field is twofold. First, this work offers a unified,

implementation-level control stack that maintains tool-level objectives while

managing human–robot clearance through redundancy, with behaviors that are

transparent to operators and auditors. By combining robust inverse kinematics,

either a linear attractive velocity field or time-parameterized LSPB references, a

proximity-aware posture-reshaping mechanism, and a lightweight supervisor into a

coherent whole, it provides a practical template for responsive collaborative cells.

Second, it contributes a reproducible methodology and testbed: a CoppeliaSim-

based pipeline that links perception to geometric modelling, supervision, and

control, together with diagnostics that expose proximity, effort, and conditioning

over time. This combination supports comparative studies and offers a clear route

to adapting the approach to other redundant manipulators and sensing suites.

1.2 State of the Art

Research on collaborative manipulation in shared workspaces has converged on a

control-centric view in which redundancy and null-space projection are the primary

instruments for maintaining human–robot clearance while pursuing task objectives.

Classical robot control provides the theoretical backbone: task–priority schemes

separate a primary end-effector task from secondary behaviors confined to the

6

Jacobian null space, allowing posture regulation, joint-limit avoidance, and

collision-avoidance postures to coexist with the commanded tool motion [1, 2].

Inverse kinematics is typically regularised through damped least squares with SVD

to ensure numerical stability near singularities and workspace boundaries, a

practice now standard in redundant manipulation [1, 2, 10]. Recent contributions

refine how null-space behaviours are shaped specifically for safe human–robot

collaboration: compliance or avoidance fields are injected in the null space so

clearance improves without corrupting the primary task, with tunable trade-offs

between tracking performance and conservativeness [5, 6, 7, 8].

Within this frame, redundancy is not only a means to avoid singularities but a

resource for safety. Analytical parameterizations of 7-DoF arms clarify the

redundancy manifold of common cobots and how secondary objectives can be

scheduled along it without inducing wrist flips or joint saturation [12, 2]. Surveys

on inverse kinematics and control emphasize the practicalities of task-priority

control under constraints—damping selection, conditioning metrics, saturation

handling, and priority conflicts—which are essential when safety-oriented

behaviors run concurrently with tracking [10, 1]. In parallel, human-robot-

interaction (HRI)-focused texts argue for legible, predictable motion and

transparent supervisory logic, aligning safety behavior with human expectations in

shared spaces [4].

Trajectory time-parameterization and legibility are recurring themes. Simple LSPB

profiles remain widely used because they bound acceleration and jerk, yield

deterministic transients, and pair well with velocity/acceleration caps and

pause/resume logic properties valued in human-robot-collaboration (HRC) where

humans infer intent from motion [3, 2]. When combined with null-space projection,

such profiles allow the end-effector to follow smooth references while the posture

adapts in the background to maintain comfortable spacing.

Safety supervision in collaborative cells is commonly organized around speed-and-

separation monitoring (SSM). Rather than treating avoidance purely as a potential-

field overlay, SSM-oriented designs employ explicit operating modes: approach,

caution, pause, stop, recover; with hysteresis and dwell times to prevent chattering

at thresholds and to make resume behavior reproducible [4, 8, 7]. In this view, the

7

supervisor arbitrates between the primary task and safety-motivated null-space

behaviors: when proximity becomes critical, progression halts cleanly; when

conditions improve, motion resumes from a consistent state.

Perception and proximity modelling underpin these decisions but need not

dominate the architecture. A common practical strategy is to reduce human pose

data to lightweight geometric abstractions; simple volumes aligned with major

limbs, and to approximate robot links with equally simple proxies; these yield fast,

smooth minimum-distance queries suitable for control-rate use without committing

to a specific sensor brand or modality [1, 2]. Vision-based HRC studies demonstrate

that such geometric modelling supports responsive controllers and SSM supervisors

across a variety of sensing stacks; examples range from skeleton-based pipelines to

multi-view fusion and point-cloud integration, primarily as enablers for the control

and supervision layers rather than ends in themselves [11, 16]. Beyond vision,

model-based distance surrogates (e.g., signed-distance networks or composite

signed-distance-fields (SDFs) for articulated robots) have been explored to

accelerate collision queries while preserving controller-friendly gradients, further

decoupling the control design from raw sensing idiosyncrasies [9].

From an implementation standpoint, recent work stresses “system transparency”:

conditioning measures (singular values, condition numbers), manipulability

indices, and saturation flags help diagnose priority conflicts between tracking and

avoidance and make safety behaviour auditable [10, 7]. Simulation-in-the-loop

workflow commonly combining CoppeliaSim for scene dynamics with MATLAB

for control/support rapid iteration and controlled evaluation of state machines, null-

space behaviours, and time-parameterised tracking before hardware trials [16]. This

tooling aligns with the methodological emphasis in the present work: control-first

design, redundancy-aware safety behaviours, explicit supervision, and

observability.

Against this background, current work adopts a task-priority architecture with

SVD-regularised DLS IK, smooth LSPB references for legibility, and safety

behaviours confined to the null space to preserve tool-level objectives [1, 2, 3, 10].

It follows recent HRC trends that modulate posture rather than tool motion

whenever possible [5, 6] and employs a compact SSM-oriented supervisor to ensure

8

predictable approach–pause–resume dynamics [4, 7, 8]. Human pose is mapped to

simple volumetric models to obtain controller-rate distance signals independent of

any single sensing modality [16, 11, 9]. The emphasis throughout is on

implementation-level consistency, conditioning, timing, and repeatability, so that

behaviors are both interpretable to users and defensible to auditors.

1.3 Collaborative Robotics in Shared Workspaces

Human–robot collaboration is increasingly framed as the integration of robots into

human activities so that people, robots, and the workstation environment operate as

a tightly coupled system. Collaboration is not confined to occasional contact; it

involves shared commitments in time and space on the same artefacts and

coordinated behavior that combines robotic precision and repeatability with human

adaptability and judgment. Within industrial settings this has driven a shift away

from physical segregation toward cells designed to remove barriers while retaining

safety. Modern collaborative arms combine passive features such as lightweight

structures and rounded edges with active functions that detect undesired interaction

and stop motion when predefined thresholds are exceeded. The aim is a synergistic

workspace in which the robot’s endurance and accuracy complement human

dexterity and cognition, enabling tasks of greater variability and complexity than

either agent could manage alone.

Collaboration in practice is organized along a spectrum that couples spatial and

temporal sharing:

• Cell: the robot operates behind guards; no co-presence.

• Coexistence: barriers are removed but human and robot do not work on the

same task simultaneously.

• Sequential collaboration: human and robot alternate operations at the same

station.

• Cooperation: both act on the same artefact with limited coupling.

• Responsive collaboration: both are in motion on the same artefact and the

robot adapts online to human actions.

9

Current deployments still cluster around coexistence and sequential collaboration

because they are easier to certify and operate. The mode that most realizes the

potential of HRC, responsive collaboration, demands that the system refresh its

understanding of the scene at a rate compatible with control, adjust motion online,

and communicate intent through legible kinematics.

Safety in shared spaces rests on two complementary layers. Power-and-Force

Limiting bounds the energy exchanged in any incidental contact via risk assessment

and limits on forces, torques, speeds, or momentum. Speed-and-Separation

Monitoring pre-empts contact by regulating motion as a person approaches;

slowing, pausing, or stopping according to clearly defined distance bands. In

everyday operation SSM governs behavior; it is implemented through explicit

operating modes with thresholds, hysteresis, and dwell times so behavior near

boundaries is stable, repeatable, and predictable to non-experts.

Control and kinematics determine how these behaviors are realized. Redundant

manipulators, typical of human-scale cobots, admit families of joint configurations

for the same tool pose. Task-priority formulations exploit this by separating the

tool-center objective from secondary behaviors confined to directions that do not

affect the task (the Jacobian null space). Within those directions the robot regulates

posture, honors joint ranges, and biases itself away from hazards without corrupting

commanded motion. Because collaborative layouts often push arms toward

kinematic boundaries, inverse kinematics is commonly regularized, most often via

damped least squares with SVD, to maintain numerical stability and preserve

predictable responses. At the trajectory level, time-parameterized profiles with

bounded acceleration and jerk support legibility, straightforward saturation

handling, and clean pause/resume semantics.

Sensing and environment modelling close the loop from intention to action. What

the controller needs are timely, numerically well-behaved proximity cues rather

than a specific sensing brand. A practical strategy abstracts the operator’s body with

simple geometric volumes aligned to major limbs and approximates robot links

with lightweight proxies; minimum distances between these shapes are then

evaluated at the controller update rate and provided to both the supervisor and the

10

motion generator. This geometry-first approach keeps the design adaptable to

different sensing suites and workstation layouts.

1.3.1 Functions and representative uses in everyday settings

Collaborative robotics is not a single application but a family of functions that recur

across sectors. Typical functions include:

• Assisted positioning and fixturing: the robot holds or pre-positions a

workpiece while a person aligns, inspects, or fastens. Examples include

door or panel alignment in assembly lines, jigless drilling, and manual

fastening on parts that vary slightly batch-to-batch.

• Co-manipulation and load sharing: human and robot jointly carry, orient,

or insert large or flexible components such as cables, trim, or composite

skins, reducing ergonomic strain while preserving human judgment during

fit-up.

• Tool sharing and process assistance: the robot performs repeatable sub-

tasks; screwdriving, sealing, adhesive dispensing, sanding/polishing, while

a person handles preparation and quality checks; in craft or repair settings,

the robot acts as a third hand for clamping or steadying.

• Kitting, sorting, and small-batch handling: collaborative pick-and-place

for order preparation, packaging, and co-packing where product mixes

change frequently and human oversight resolves ambiguities.

We target shared-workspace tasks where motion must communicate intent and

preserve protective distances. In these settings, PFL and SSM are complementary:

PFL limits contact severity; SSM regulates approach and halts/resumes with

verifiable dwell logic.

• Human-guided automation: operators teach new paths by demonstration,

then the robot repeats them with higher repeatability; this is common in

small and medium enterprises where changeovers are frequent.

• Laboratory and clinical support: sample handling, pipetting, or

instrument positioning next to technicians; bedside assistance that positions

tools or cameras under human supervision.

11

• Service and retail demonstrations: coffee preparation, bar tending, or

interactive kiosks where the robot performs structured motions while people

operate nearby, highlighting legibility and safety cues.

These uses share practical characteristics: the robot contributes precision,

endurance, and repeatability; the human contributes perception, dexterity, and

context awareness. Collaboration succeeds when motion communicates intent

clearly, when pauses and resumptions are predictable, and when the system returns

promptly to productive operation after a cautionary state.

Collaborative workstations are ultimately socio-technical systems. Task allocation

(who grasps, who positions, who inspects), layout (reach envelopes, line of sight,

escape paths), and communication cues (lights, sounds, on-screen prompts, and the

“feel” of the motion) determine whether collaboration is natural and trusted.

Transparent instrumentation, conditioning and manipulability indicators, saturation

flags, proximity timelines, supports tuning and auditing, while simulation that

mirrors the intended physical cell enables safe rehearsal of procedures and

systematic evaluation of edge cases before human involvement.

1.4 Work Description

The work reported in this thesis builds a practical pathway from high-level safety

intent to executable motion for collaborative manipulation with a redundant arm.

The overarching idea is to keep task behavior legible, to use redundancy for

conservative postural adjustments near people, and to make slow/hold/resume

decisions transparent and reproducible. To ground this idea in concrete, verifiable

artefacts, the chapter moves from system context to implementation and evidence:

it first establishes the experimental platform, then explains how human motion is

represented and consumed by the controller, and finally presents the staged

controller configurations and the criteria used to evaluate them.

12

1.4.1 Experimental platform

A 7-DoF Franka Emika Panda operates in CoppeliaSim while kinematics,

supervision, and control execute in MATLAB. Figure 1.2 shows the 7-DoF Franka

platform used in our experiments.

Fig. 1.2 Franka Emika Panda/FR3 collaborative arm used as the primary manipulator in this work.

The simulator runs in synchronous mode: each control tick advances physics by

one fixed step. The controller period is an integer multiple of that step so reference

sampling, Jacobian evaluation, and supervisory transitions share the same clock.

Frames (base, flange, TCP) are matched across tools; the TCP is verified by

forward–inverse round-trip checks; joint ordering and limits are cross-checked

against the simulator model. Lightweight geometric proxies are attached to links

for distance queries. All logs (poses, joint states, distances, modes) carry control-

tick timestamps for lossless alignment

1.4.2 Human motion: Modelling and MATLAB implementation

Human motion is ingested as time-stamped 3D skeletons (major joints). Poses are

normalized by anchoring a torso frame, aligning axes to the simulator convention,

reconciling units, interpolating short gaps, and low-pass filtering to suppress jitter

while preserving natural limb swings. Retargeting maps joint pairs (shoulder–

elbow, elbow–wrist, …) to limb segments; per-sequence segment lengths keep

13

proportions consistent across operators. Each segment becomes a capsule/sphere

with conservative radii; robot links are approximated by aligned proxies. At each

tick we compute minimum distances over configured human–robot pairs, debounce

them, and rate-limit changes to enforce physically plausible approaches.

Conditioned distances feed both the supervisor (mode gating) and the null-space

postural shaper (repulsion that preserves the tool objective).

1.4.3 Core software components

The implementation relies on a small set of named, reusable elements: a kinematic

Jacobian routine returning the geometric Jacobian and conditioning indicators each

tick; a posture-bias routine that converts the de-bounced distance vector into

smooth, bounded postural references when task progression is permitted; a gated-

avoidance routine that strengthens avoidance and suspends task-space commands

when risk bands are exceeded; and human-model utilities that provide pose

ingestion, retargeting, volume instantiation, and animation/replay for repeatable

experiments.

1.4.4 Control architecture

Task execution follows a task-priority formulation with a numerically regularized

inverse-kinematics layer. Section 3.4 details the two TCP time-laws (vector vs.

LSPB) and their pause/resume semantics; Section 3.5 fixes the safety thresholds

used throughout. Tool-center reference, either Cartesian velocities or time-

parameterized trajectories, are mapped to joint commands by a damped least-

squares solver (SVD) so responses remain well conditioned near singularities and

joint limits. Posture regulation, joint-limit avoidance, and proximity-aware biases

act strictly in the Jacobian null space so the commanded tool motion remains intact

whenever redundancy allows. Orientation locking near the target prevents wrist

flips; an acceptance radius and a terminal-speed floor make arrivals reproducible.

When time parameterization is required, trajectories follow linear-segment-with-

parabolic-blend profiles; sampling is tied to the physics step for discrete-time

consistency, and modest Cartesian damping with conservative velocity caps

suppresses residual errors and overshoot. A compact supervisor implements

operating modes—track, caution, pause, stop, recovery—with calibrated

14

thresholds, hysteresis, and dwell times to avoid chattering and to guarantee

predictable resumption.

1.4.5 Staged experiments

Behavior is probed in five configurations of increasing richness. The sequence

begins with clean target acquisition using a purely attractive Cartesian velocity field

in the absence of a person, establishing baseline tracking and conditioning. Next, a

nearby operator is introduced: as proximity tightens the controller halts and holds,

reshapes posture through redundancy to enlarge clearance, and resumes smoothly

once conditions are comfortable again. The third configuration replaces the

attractive field with LSPB trajectories to demonstrate smooth, bounded-jerk

tracking and straightforward saturation handling. The fourth applies proximity

governance to those trajectories so the path pauses deterministically within a

caution band and resumes from a consistent state when the band clears, with null-

space posture shaping active throughout. The final configuration fixes the tool pose

and asks the arm to reconfigure through redundancy alone to increase human–robot

clearance, isolating posture control and checking for negligible tool drift.

1.4.6 Data flow, logging and evaluation

Each control tick reads joint state and tool pose, ingests the de-bounced distance

vector, and queries for the Jacobian and conditioning indicators. A task-space

command (velocity or LSPB sample) is formed; the output of the posture-bias or

gated-avoidance routine is projected into the null space; task and redundancy

components are summed, capped, and sent to the simulator. Projection and

smoothing precede integration to preserve discrete-time correctness. The logger

records joint states, tool poses, distances, supervisor mode and transition causes,

singular values, manipulability, saturation flags, bias magnitudes, and command

histories. Performance is assessed on safety/feasibility (no contacts; minimum

clearance margin; joint limits respected), tracking quality (rms/peak tool error;

acceptance-radius and terminal-speed behavior; no overshoot in time-

parameterized runs; residual drift while holding), proximity management

(minimum-distance timelines; time in each mode; pause/resume counts and

durations; clearance growth while fixed), numerical health (smallest singular value,

15

condition number, manipulability; time in saturation; velocity/acceleration usage;

alignment between tracking and avoidance), and legibility/repeatability (smooth

transients; consistent thresholds/hysteresis; reproducible mode transitions under

replayed human motion). Experiments are repeated from varied initial postures and

re-playable human traces; ablations disable specific elements (e.g., null-space bias,

damping, hysteresis) to isolate their effects.

1.4.7 Contributions

The thesis contributes: (i) a unified control stack that preserves tool-level objectives

while managing human–robot clearance strictly through redundancy; (ii) a discrete-

time implementation method in which reference sampling is tied to the physics step

and projection/smoothing precede integration so resume after pauses is

deterministic; (iii) a geometry-first proximity pipeline that converts pose streams to

controller-rate distance cues via simple limb-aligned volumes and link proxies,

remaining agnostic to sensing brands; (iv) an SSM-oriented supervisor with

calibrated thresholds, hysteresis, and dwell integrated with time-parameterized

tracking and redundancy-aware posture shaping; (v) a synchronized MATLAB–

CoppeliaSim environment and logging scheme that mirror a physical cell; and (vi)

a staged evaluation suite with common metrics intended as a template for

comparative studies.

1.4.8 Perspectives

The artefacts assembled here are designed to transfer cleanly to hardware-in-the-

loop and on-robot trials: the synchronous timing model, controller-rate distance

signals, and explicit supervision map directly to real-time middleware. Near-term

extensions include substituting live pose sources for recorded streams,

incorporating certified reference-governor layers to formalize pause/resume

envelopes, and enriching the proximity model to include tools and workpieces.

Longer-term, the same architecture can support learned postural priors filtered for

safety, multi-arm cells coordinating null-space behaviors, and digital-twin

deployments that tie logged indicators (conditioning, manipulability, proximity

timelines) to line-level metrics such as cycle time and ergonomic load.

16

1.5 Thesis organization

This dissertation is structured to move from system-level motivation and style to

kinematic methods, human–robot safety mechanisms, implementation, and staged

experimental evidence, before closing with a literature-grounded discussion and the

concluding outlook.

Chapter 1 – Introduction: The opening chapter states the aim and motivation for

safe, legible human–robot collaboration with a 7-DoF Franka Emika Panda in a

shared bench-top cell, surveys the state of the art, frames collaborative operation in

shared workspaces, and delineates the work description that anchors the remainder

of the thesis (Sections 1.1–1.4). These parts set the problem, scope, and

contributions that subsequent chapters elaborate.

Chapter 2 – Collaborative Work-Cell Architecture and Safety Framework:

This chapter describes the overall system architecture of the collaborative cell,

including sensing, supervision, interface contracts, and safety instrumentation. It

introduces the components, their dataflow, and the invariants required for

deterministic operation; it also outlines transfer/extension perspectives that are

revisited after the experiments.

Chapter 3 – Kinematic Model, Time-Law References, and Safety Variables:

Here the thesis adopts an operational 6×7 kinematic formulation for the Panda in

CoppeliaSim, explains how it is exercised in a synchronized human–robot scene,

and fixes the interfaces used throughout (e.g., translational DLS–SVD IK, null-

space projector, and supervisor thresholds). The chapter then develops the two TCP

reference generators—vector-attractive versus LSPB with pause/resume

semantics—and consolidates the global safety variables and thresholds (distance

hysteresis, dwell, tracking tolerances, leak bounds) that standardize logging and

diagnosis for the experiments.

Chapter 4 – Human Model, Distances, and Safety Behaviors: The HRI layer is

formalized: skeleton-derived capsule proxies, clearance distances and nearest-pair

queries, and two safety behaviors—continuous repulsive fields blended with the

posture bias, and an SSM-style supervisor with explicit STOP/RELEASE

17

hysteresis and dwell that pauses/resumes an LSPB time law without corrupting its

schedule. The chapter then extends to fixed-TCP avoidance in redundancy with

leak-bounded null-space action and provides the variables, thresholds, and health

flags reused later.

Chapter 5 – Implementation & Software Architecture (CoppeliaSim): This

chapter documents the deterministic six-stage per-tick pipeline—from scene

input/output (I/O) and geometric lifting, through distance queries and supervisory

logic, to task-space tracking and joint-space synthesis—together with post-

processing, determinism/test hooks, and the mode scripts that instantiate operating

behaviors (5 scenarios). It also details runtime monitors and reproducibility

provisions (seeds, artifacts, log bundles).

Chapter 6 – Experimental Evaluation (Scenarios S1–S5): Using the unified

MATLAB↔CoppeliaSim stack, five scenarios progressively introduce

supervision, human proximity, LSPB timing, and fixed-TCP null-space avoidance.

A uniform metric dictionary and logging protocol underpin the figures/tables and

the reproducibility checklist. Representative results (e.g., LSPB ramp–cruise–ramp

tracking with dwell compliance, low conditioning numbers, strict null-space

containment) are reported alongside scenario-specific settings and outcomes.

Chapter 7 – Discussion in the Context of the Literature: The evidence from

Chapter 6 is positioned against core HRC themes: strict null-space containment to

preserve tool-level objectives, explicit SSM hysteresis/dwell semantics for

predictable pause/release, and controller-rate, sensor-agnostic proximity signals

(skeleton-to-capsule distances, link proxies). The discussion is organized around

the staged scenarios and the synchronized loop that makes timing/conditioning

comparable to prior work.

Chapter 8 – Conclusions & Future Work: The thesis closes by distilling

contributions and outlining future extensions; these are framed in terms of method

generalization, formal safety supervision, richer distance fields, and hardware

transferability (as previewed by the architecture and metrics fixed earlier).

18

Chapter 2

Collaborative Work-Cell Architecture and Safety

Framework

This chapter formalizes the collaborative work-cell and safety framework that the

rest of the thesis depends on, specifying both the physical stack (7-DoF Franka

Emika Panda, sensing suite, calibration artifacts, and fixtures) and the synchronized

MATLAB↔CoppeliaSim software loop that drives experiments under

deterministic timing. We define global and tool frames, hand–eye and scene

calibrations, and the transform registry that guarantees a single source of truth for

kinematics and distances; we then make explicit the tick-level contracts—clock

source, cycle time, jitter and latency budgets, message ordering, and failure

semantics—that bound all controller and supervisor reactions. The cell is organized

as a three-layer pipeline: (i) scene I/O and geometric lifting, which ingests raw

streams (robot state, human skeleton) and emits rigid-body poses plus capsule

proxies with health flags; (ii) proximity and safety signaling, which computes

nearest-pair distances, applies hysteresis and dwell timers, and exposes a small,

typed interface of safety variables; and (iii) motion generation and supervision,

where LSPB time-law references and damped least-squares (SVD) tracking are

guarded by an SSM-style supervisor that can STOP and RELEASE without

corrupting the LSPB schedule. Throughout, we enforce strict null-space

containment for avoidance and posture shaping so that corrective actions do not

leak into task-space objectives; we also codify bounds on joint limits,

velocity/acceleration, and manipulability to prevent pathological configurations.

Finally, we specify logging schemas (signals, units, sampling), determinism hooks

(seeds, mode scripts), and integrity checks (range assertions, timeout escalations,

safe fallback states), so that Chapters 3–6 can build on a reproducible, auditable,

and implementation-ready foundation.

19

2.1 Shared-workspace scenario and cell layout

This section fixes the geometry and conventions of the collaborative workcell used

in all experiments. The setting is a bench-top scene in CoppeliaSim where a 7-DoF

Franka Emika Panda and a virtual human share a rectangular table. MATLAB runs

the kinematics, supervision, and control; CoppeliaSim provides geometry and

physics in synchronous stepping so every control tick advances the scene by one

fixed step [16]. The intent is to keep frame definitions and regions explicit so that

proximity, gating, and tracking later in the chapter have a precise spatial meaning

and can be reproduced.

A single human stands along one long edge of the table and manipulates parts on

the surface. The Panda is mounted approximately at the midline of the opposite

long edge so the tool center point (TCP) covers the central task zone without

pushing joints toward their limits. The nominal task zone is centered on the tabletop,

positioned so the TCP works in the robot’s dexterous region, well inside joint limits

and away from singular postures, with comfortable clearance to the table edges.

Targets used in later scenarios lie within this zone and are chosen to avoid posture

flips during approach and to keep the tool on the robot half of the bench.

A simple frame hierarchy is used consistently in the simulator, controller, and logs:

• World frame: fixed to the table; x runs along the long edge, y points from

the human side toward the robot side, and z is vertical.

• Robot base frame: rigidly attached to the Panda model; its world→base

transform is measured once at scene setup and treated as constant.

• TCP frame: attached to the flange; its z-axis is aligned with the nominal

approach direction used in the scenarios (downward toward the table). Units

and frame conventions used throughout (world frame 𝑊; meters, radians,

and per-second rates) are declared once in §3.5 and reused verbatim in

Chapters 4–6.

For analysis and visualization a torso-anchored human frame is maintained, and

limb-aligned segment frames (introduced in §2.3) are used internally when

constructing the simple geometric volumes employed for proximity queries. The

20

human region itself is modelled as a rectangular prism along the far edge of the

table; it captures typical bench-top actions such as leaning in to place or remove a

part, and brief withdrawals to the edge of the region. Its width spans the fixture area

plus a small lateral buffer; its depth allows a natural stance; and its height extends

from floor to chest so hands and forearms are represented when the operator leans

over the surface. This region is not a guard; it is the reference volume used to

position the human surrogate and to define the link–limb distances monitored at

control rate.

Clearance reasoning uses lightweight geometry on both sides. Each robot link is

paired with a simple proxy volume aligned to its local frame; the tool (when

present) has its own proxy. On the human side, limbs are represented by simple

volumes aligned to segment axes (§2.3). A fixed set of links–limb pairs is monitored

continuously (for example, upper-arm↔upper-arm, forearm↔forearm,

hands↔tool) so that minimum-distance queries focus on the interactions that occur

at a table rather than wasting computation on irrelevant combinations. A nominal

approach vector (the TCP 𝑧-axis) is recorded per target so the supervisor can prefer

deceleration aligned with the final approach. Keep-out margins at the table’s human

edge prevent the TCP from overhanging the operator side during automated

approaches; these margins are the same ones later used to define “stop” bands in

the SSM-inspired policy.

The first implementation step was a mapping layer that guarantees MATLAB and

CoppeliaSim represent the same geometry. Homogeneous transforms for

world→base and base→TCP are stored in a registry and used identically by the

simulator and the controller. The mapping was validated by round-trip checks (pose

→ inverse kinematics → forward kinematics) and by placing calibration points on

the table: points transformed in MATLAB coincide with the same locations in

CoppeliaSim within numerical tolerance. This alignment is what allows logs,

figures, and controller decisions to have an unambiguous spatial meaning

throughout the projects.

For reproducibility, each run logs the world→base and base→TCP transforms, the

operator-region dimensions, the list of monitored links–limb pairs, and all target

poses with their tolerances. With these metadata, any later plot of minimum

21

distance, state transitions, or tracking error can be traced to an exact cell geometry

and frame convention.

2.2 Robot Model and Link-Proxy Representation

This section formalizes the robot side of the workcell: the kinematics, the controller

reasons about, the frame conventions anchoring all geometric quantities and the

surrogate link geometry used for real-time clearance evaluation. The Franka Emika

Panda model embedded in CoppeliaSim is treated as the single source of truth;

MATLAB mirrors its joint ordering and link frames so quantities computed in

MATLAB and rendered in CoppeliaSim refer to the same configuration at every

control tick.

2.2.1 Ground-truth kinematics

Forward kinematics and the geometric Jacobian are evaluated against the

simulator’s exact frame definitions. SVD-regularized DLS inverse kinematics,

manipulability indices, and link-proxy placement are therefore referenced to the

same geometry that drives rendering and collision. With synchronous stepping,

forward kinematics/jacobian (FK/J) evaluation, projection, and integration share

the simulator’s clock, eliminating frame/sign drift and timing skew; edits to tool

offsets or base placement are made once in the scene and propagate automatically,

improving fidelity and reproducibility [1, 2].

2.2.2 Kinematic description and numerical health

The Panda is a seven-revolute-joint arm with redundancy advantageous for posture

shaping. At each tick, the TCP pose is obtained by composing the simulator’s

transforms; the spatial Jacobian is factorised via SVD to log the smallest singular

value, condition number, and a manipulability index. These indicators are later used

to interpret slow/hold/resume events as proximity-driven or authority-limited.

Orientation uses rotation matrices internally and quaternions in logs to avoid

parameterization artefacts.

22

2.2.3 Frames and transform registry

The world frame is fixed to the tabletop (𝑥 along the long edge, 𝑦 toward the human

side, 𝑧 vertical). Figure 2.1 sketches the world, base, and TCP frames and the

transforms used in this work.

Fig. 2.1 World–base–TCP frames and transform checks. The world frame is fixed to the tabletop;

the base frame is attached to the Panda base; the TCP frame is attached to the flange and updated by

FK. Transforms are round-trip checked (pose → IK → FK) to verify consistency between MATLAB

and CoppeliaSim.

The base frame is rigidly attached to the Panda; its world→base transform is

measured once and stored. The TCP frame is attached to the flange and updated by

FK. A shared transform registry and round-trip checks (pose → IK → FK) verify

concordance between MATLAB and CoppeliaSim within numerical tolerance.

2.2.4 Link-proxy geometry

Exact mesh distances are replaced by conservative primitives (capsules/cylinders

for elongated links, spheres for compact ones) rigidly attached to link frames.

Parameters are chosen to bound meshes with a small inflation margin. This yields

closed-form sphere–sphere/sphere–capsule/capsule–capsule distances that are

smooth in time and inexpensive to evaluate; properties essential for high-rate

supervision without chatter [17, 18, 21].

23

2.2.5 Monitored pairs and signals

Only plausible interactions for the bench-top layout are tracked (e.g., proximal links

vs. upper arms, mid–distal links vs. forearms, terminal link/tool vs. hands). Table

2.1 enumerates the link–limb pairs monitored at each controller tick and how their

signals are consumed.

Link (robot) Limb (human) Rationale
Signal used (global/per-

pair)

Link 1–2 (proximal) Upper arm
Likely closest

during approach
global + per-pair

Link 3–5 (mid–

distal)
Forearm Mid-reach per-pair

Link 7 / Tool Hand Near manipulation global + per-pair

Table 2.1 Monitored link–limb pairs and signal usage. For each pair, 𝑑𝑚𝑖𝑛 is logged every tick; the

supervisor consumes the global minimum for mode gating, while the per-pair vector biases null-

space posture to increase spacing from currently critical limb.

 Per-pair minimum separations are computed each tick; the supervisor consumes

the global minimum for mode gating, while the full vector biases null-space posture

to increase spacing from currently critical limbs. Figure 2.2 illustrates how per-pair

distance signals generate a posture bias confined to the Jacobian null-space.

Distances are debounced and rate-limited before use.

Fig. 2.2 Posture bias in the null-space from per-pair distances. The redundancy policy steers joints

away from the currently critical human limb without altering the primary task.

24

2.2.6 Target-aligned approach

Each target carries a nominal approach direction (TCP 𝑧 at the goal) used to shape

terminal deceleration and holding behaviour and to diagnose conflicts between

tracking and avoidance.

Diagnostics and logging. Every tick records world→base and base→TCP

transforms, joint states, per-pair and global distances, Jacobian singular values and

condition number, manipulability, and joint saturation flags, providing the evidence

base for later analyses of proximity management, dexterity, and control effort (see

§5.1 for synchronized logging and replay).

2.3 Human pose acquisition and geometric modelling

This section describes how human motion enters the control loop and how it is

represented for clearance evaluation. The pipeline has two complementary roles: (i)

animate a human mannequin in CoppeliaSim so the scene reflects realistic operator

motion; and (ii) produce smooth, control-rate distance signals between the person

and the robot’s link proxies that the supervisor and redundancy-aware control can

consume.

2.3.1 Pose acquisition and normalization

Human motion is provided as a time-stamped skeletal pose stream containing 3D

joint key-points for the major limbs. The stream is normalized before use: a torso-

anchored reference frame is established, axes are aligned with the workcell’s world

frame, units are reconciled, short gaps are bridged by interpolation, and jitter is

attenuated with a low-pass filter chosen to preserve natural limb swing. A simple

retargeting step maps joint key-points to limb segments (e.g., shoulder–elbow,

elbow–wrist), with segment lengths estimated per sequence so proportions remain

coherent across operators [11, 16].

2.3.2 Mannequin animation in simulation

The normalized pose stream drives a full-body mannequin in CoppeliaSim at the

controller update rate, so the virtual operator moves like the recorded one. Each

25

tick, the mannequin’s torso and limb segment frames are updated from the pose

stream, yielding a visually faithful representation that also anchors the geometric

abstractions used for clearance. This decouples visualization from control: the

mannequin conveys what the operator is doing, while separate, lightweight volumes

provide the numerically well-behaved distances needed by the controller.

2.3.3 Geometric abstraction for clearance

Clearance reasoning uses elementary volumes aligned to human limbs and robot

links. On the human side, each limb segment is instantiated as a simple geometric

volume aligned to its segment axis (cylindrical or capsule-like where appropriate;

spherical for compact parts such as hands). On the robot side, link-aligned proxies

are defined as in §2.2. Minimum distances are then evaluated between a fixed set

of limbs–link pairs (e.g., upper arm vs. proximal links, forearm vs. mid–distal links,

hands vs. terminal link/tool), chosen to reflect plausible interactions at a bench-top

station.

In addition to limb volumes, a torso-centred keep-out cylinder (diameter ≈ 0.40 m)

defines a conservative personal space around the operator. While primarily a visual

and supervisory aid, it yields a single, intuitive scalar; the tool-to-torso-zone

distance that complements the per-pair limb distances and provides a coarse

warning band for approach/hold decisions.

These abstractions admit closed-form distance queries (sphere–sphere, sphere–

cylinder/capsule), which are smooth under motion and inexpensive to compute,

ensuring that proximity can be evaluated every control tick without numerical

artefacts [9, 17, 18, 21].

2.3.4 Distance computation and signal conditioning

For each monitored limb–link pair, the minimum separation is computed at the

controller tick. Two signals are produced: (i) the global minimum across all pairs,

used by the supervisor to escalate modes (track → caution → pause/stop →

recovery), and (ii) the full vector of per-pair distances, used by the redundancy

policy to bias posture away from whichever limb currently dominates proximity.

26

Before entering the control stack, distances pass through a short-horizon de-

bouncer and a rate limiter so that isolated spikes or unrealistically fast changes do

not provoke chattering or oscillatory mode switching.

2.3.5 Interfaces and timing

The entire pose-to-distance pipeline is clocked by the same synchronous stepping

used for robot control: one controller tick updates the mannequin, regenerates limb

volumes, evaluates all limb–link distances, conditions the signals, and publishes the

global minimum and per-pair vector to both the supervisor and the posture-shaping

process. Figure 2.3 outlines the synchronous pose-to-distance pipeline executed

each controller tick.

Fig. 2.3 Synchronous pose-to-distance pipeline. Each tick: mannequin update → limb-volume

generation → limb–link distance evaluation → debouncing and rate limiting → publication of global

minimum and per-pair vector to the supervisor and the null-space posture shaper.

This ensures that animation, proximity, and control share a common time base and

frame convention, eliminating hidden latencies between what is seen in the scene

and what the controller reacts to.

27

2.3.6 Reproducibility

Each run stores the pose-stream identifier and sampling rate, the limb-volume

parameters (segment radii and lengths), the list of monitored limbs–link pairs, and

the keep-out cylinder dimensions, alongside the logged distance timelines. With

these metadata, distance plots and state-transition histories elsewhere in the thesis

can be traced back to an exact human-model configuration and timing.

2.4 Proximity metrics and clearance policy

This section specifies how proximity is quantified and how those quantities govern

motion. The objective is a policy that is numerically well-behaved at control rate,

transparent to audit, and predictable to an observer: slow early, hold decisively, and

resume smoothly once comfortable spacing is re-established.

2.4.1 Distance signals and conditioning

At each control tick the workcell computes minimum separations between a fixed

set of limb-aligned human volumes and link-aligned robot proxies (defined in §2.2–

§2.3). Two signals are produced:

• A global minimum distance, used to gate operating modes;

• A vector of per-pair distances, used to bias posture in redundant directions.

Before entering the supervisor and the posture shaper, distances pass through a short

debouncing filter and a rate limiter. Debouncing removes isolated spikes (e.g.,

transient pose jitter); rate limiting enforces physically plausible approach speeds so

that supervisory logic is not driven by artefacts. Conditioning is strictly causal and

bounded so that latency is predictable and small relative to the control period.

2.4.2 Clearance bands and invariants

Clearance is organized into three concentric bands around the robot–human

separation:

• safe band: normal tracking is permitted;

28

• caution band: tracking is allowed but conservative behaviour is

encouraged (reduced speeds, stronger postural bias away from the nearest

limb);

• stop band: motion toward the goal is suspended; only posture reshaping in

redundancy (and any necessary damping) remains active to increase

spacing.

Band limits are chosen with respect to the bench-top layout (table depth, reach

envelopes) and are expressed in the world frame so they are invariant to the robot’s

posture. Two invariants govern behaviour:

• Monotonic escalation: once a more conservative mode is entered (safe →

caution → stop), the system cannot jump directly to a less conservative

mode without first satisfying the exit conditions of the current one;

• Non-chattering transitions: all band boundaries are paired with hysteresis

margins and minimum dwell times so that brief fluctuations do not cause

oscillatory mode switching.

The caution band is typically paired with a gentle reduction of commanded tool

speed and an increase in postural bias; the stop band enforces a hold at the current

task progress while redundancy is used to expand clearance.

2.4.3 Mapping distance to postural demand

The per-pair distance vector is converted to a “clearance demand” that shapes

posture inside the Jacobian null space. The mapping obeys three principles:

• smooth onset: demand rises continuously as a limb approaches the caution

band, avoiding discontinuities in joint commands;

• saturation: demand caps at a finite level to prevent excessive joint

velocities even when a limb is very close;

• locality: only the pairs currently near their limits contribute materially, so

posture changes are relevant to the active interaction.

This demand does not interfere with the primary task directions; it is confined to

redundant directions so that tool motion proceeds unchanged whenever redundancy

29

permits. When redundancy is exhausted (e.g., near singularities or joint limits), the

supervisor, not the postural shaper, resolves the conflict by reducing or suspending

task progression.

2.4.4 Gate logic and timers

Mode transitions are driven by the global minimum distance, subject to hysteresis

and dwell:

• enter caution when the global minimum falls below the caution threshold;

exit when it rises above the caution threshold plus hysteresis for at least the

dwell time;

• enter stop when the global minimum falls below the stop threshold; exit

when it rises above the stop threshold plus hysteresis and remains there for

the dwell time.

While stopped, the controller maintains a stable hold: task references are frozen;

posture reshaping continues; damping and velocity caps remain active. Resumption

re-enables tracking from the frozen reference (or, for time-parameterised runs, from

a consistent resume point) so that motion continues without discontinuities.

2.4.5 Terminal behaviour at targets

To make arrivals legible and repeatable, target definitions (see §2.1) include an

acceptance radius, an orientation tolerance, and a nominal approach direction (TCP

𝑧 at the goal). Near the goal the supervisor enforces a terminal-speed floor and an

orientation lock to avoid wrist flips. If a proximity event occurs inside the

acceptance radius, the hold is performed with respect to the recorded approach

direction; resumption continues along that direction to the same terminal pose.

2.4.6 Consistency and logging

All policy decisions are tied to the control clock used for animation and kinematics.

Every tick records the global minimum distance, the per-pair vector, the current

mode, any transition event (with reasons and timestamps), and the instantaneous

values of the thresholds, hysteresis margins, and dwell timers. This record allows

30

later chapters to trace slow/hold/resume decisions to measurable proximity

conditions and to verify that the invariants (monotonic escalation, non-chattering

transitions) were respected.

2.4.7 Scope of the envelope

The clearance policy guarantees: (i) no commanded progression toward the goal

while within the stop band; (ii) conservative tracking within the caution band with

redundancy-confined posture reshaping; and (iii) deterministic resume from a well-

defined state once clearance persists beyond the release thresholds. It does not, by

itself, certify contact forces; rather, it provides the proactive separation

management on which the rest of the control architecture builds.

2.5 Supervisory gating and operating modes

This section formalizes the state machine that governs approach, slowdown, holds,

and resumptions in the shared workspace. The supervisor sits between proximity

signals (§2.4) and motion generation (§2.2–§2.3), producing at each control tick a

small set of directives: whether task progression is permitted, the current speed

scale for tool motion, and the gain schedule for redundancy-confined postural

reshaping. Its design targets three properties: monotonic escalation (once behaviour

becomes more conservative it cannot immediately become less so), non-chattering

transitions (thresholds are paired with hysteresis and dwell times), and deterministic

resume (motion continues from a well-defined, reproducible state).

2.5.1 Mode set and responsibilities

The supervisor operates over a finite set of modes:

• init: one-time alignment and health checks after start/reset.

• track: normal task execution; tool motion follows the reference; postural

reshaping is present but minimal.

• caution: task execution continues with a conservative speed scale; postural

reshaping gains increase to bias the arm away from the nearest limb(s).

31

• hold: commanded progression toward the goal is suspended; only damping

and redundancy-confined postural reshaping remain active to enlarge

spacing.

• recovery: a short, deterministic ramp that re-enables task motion after a

cleared hold; speed and postural gains return smoothly to track values.

• fault (latent): entered on stale/invalid proximity data or internal

consistency violations; the system behaves like a hold until data integrity is

restored, then proceeds through recovery.

Each mode emits a tuple (task_enabled, speed_scale, posture_gain) and a small set

of flags (orientation-lock, terminal-speed floor). The orientation lock prevents wrist

flips near the goal; the terminal-speed floor ensures legible arrivals.

2.5.2 Transitions, thresholds, and timers

Mode transitions are driven by the conditioned global minimum distance 𝑑𝑚𝑖𝑛(from

§2.4), with distinct entry and release thresholds to realise hysteresis:

• track → caution when 𝑑𝑚𝑖𝑛 <  𝑑𝑐𝑎𝑢𝑔ℎ𝑡. Release to track when 𝑑𝑚𝑖𝑛 >

𝑑𝑐𝑎𝑢𝑔ℎ𝑡 + ℎ𝑐𝑎𝑢𝑔ℎ𝑡 for at least 𝑇𝑐𝑎𝑢𝑔ℎ𝑡 .

• caution → hold when 𝑑𝑚𝑖𝑛 < 𝑑𝑠𝑡𝑜𝑝. Release to recovery when 𝑑𝑚𝑖𝑛 >

𝑑𝑠𝑡𝑜𝑝 + ℎ𝑠𝑡𝑜𝑝 for at least 𝑇𝑠𝑡𝑜𝑝 .

• recovery → track after a fixed ramp time 𝑇𝑟𝑒𝑐 or once the commanded speed

scale reaches 1 with bounded jerk.

Thresholds satisfy 𝑑𝑠𝑡𝑜𝑝 <  𝑑𝑐𝑎𝑢𝑔ℎ𝑡 and margins ℎ𝑠𝑡𝑜𝑝, ℎ𝑐𝑎𝑢𝑔ℎ𝑡  > 0. Dwell times

𝑇𝑠𝑡𝑜𝑝 and 𝑇𝑐𝑎𝑢𝑔ℎ𝑡 are chosen as small integers of the control period to keep timing

discrete and auditable. The fault mode preempts all others: it is entered if proximity

data are stale beyond 𝑇𝑠𝑡𝑎𝑙𝑒 if distances become non-finite, or if internal consistency

checks (e.g., contradictory timers) fail.

2.5.3 Actions per mode

Figure 2.4 summarizes the supervisor’s actions in each mode:

32

Fig. 2.4 Supervisor actions per mode. Distances gate transitions; within each mode the supervisor

sets (task_enabled, speed_scale, posture_gain) and applies orientation lock or terminal-speed floor

near targets. Recovery uses a jerk-limited ramp; fault mirrors hold and requires restored data

integrity before recovery.

• track: task progression enabled; speed_scale = 1; posture_gain at baseline;

velocity caps and light Cartesian damping active.

• caution: task progression enabled; speed_scale reduced via a smooth,

distance-dependent map; posture_gain increased with smooth onset;

velocity caps tightened.

• hold: task progression disabled; the last valid tool reference is frozen

(Cartesian-velocity case) or the time-parameterised reference index is held

(trajectory case). Damping remains; posture reshaping continues in the

Jacobian null space to enlarge clearance; the commanded tool velocity along

the recorded approach direction is zero.

• recovery: task progression re-enabled with a jerk-limited ramp of

speed_scale from 0→1; posture_gain decays to baseline; if a time-

parameterised trajectory is used, resumption occurs from the frozen index

(or a re-timed, nearby sample) to avoid discontinuities; otherwise the

Cartesian-velocity generator is warm-started from the held pose.

33

• fault: identical to hold with an additional requirement that data integrity be

restored for 𝑇𝑠𝑡𝑎𝑙𝑒 before entering recovery.

2.5.4 Interaction with references and IK

The supervisor never edits the reference’s geometry; it gates access to it. In

Cartesian-velocity operation, gating sets the commanded tool twist to zero while

preserving the integrator state; in time-parameterised operation (e.g., LSPB), gating

freezes the reference sample index and resumes without skipping, so the same

geometric path is followed with inserted dwell. In all modes, redundancy-confined

postural reshaping is computed before projection/integration on the same tick (the

“compute → project → smooth → integrate” ordering), ensuring discrete-time

correctness and preventing null-space actions from leaking into primary task

motion.

The inverse-kinematics layer (SVD-regularised DLS) runs at every tick regardless

of mode, but its input is modulated: in hold/fault, only the null-space component

and damping remain; in caution, both task and null-space components are present

but scaled. Near the goal, the orientation lock fixes the tool’s rotational setpoint to

avoid wrist inversions; simultaneously, a terminal-speed floor prevents the

commanded speed from asymptotically vanishing, yielding decisive “arrive and

stop” behaviour.

2.5.5 Use of approach direction and keep-out margins

Each target carries a nominal approach direction (TCP 𝑧 at the goal) and keep-out

margins at the table’s human edge (§2.1). In caution/hold, deceleration and holding

are resolved with respect to this direction: vertical slow-downs near the surface and

holds that do not creep laterally across the table edge. Keep-out margins align the

stop threshold with workspace geometry, ensuring that automated approaches do

not overhang the operator side.

2.5.6 Priority, concurrency, and edge cases

• Priority: fault > hold > caution > track. Recovery only follows a cleared

hold/fault.

34

• Concurrency: if dexterity degrades (e.g., smallest singular value below a

limit) while in caution, the supervisor may tighten speed caps or escalate to

hold even if 𝑑𝑚𝑖𝑛 has not crossed the stop threshold, preventing large joint

excursions during near-singular operation.

• Goal inside a hold: if the target is reached (within acceptance radius and

orientation tolerance) while held, the system records completion but

remains in hold until release conditions are met; on recovery it transitions

directly to track-idle (no further motion).

• Lost target: if target validity is withdrawn (e.g., upstream task reset), the

supervisor enters fault, freezes motion, and awaits a consistent target before

recovery.

• Stale distances during recovery: if proximity becomes stale during the

ramp, recovery is aborted and the system returns to fault/hold.

2.5.7 Parameters and tuning guidelines

Thresholds 𝑑𝑐𝑎𝑢𝑔ℎ𝑡,  𝑑𝑠𝑡𝑜𝑝 are set relative to the monitored limb–link pairs most

likely to dominate around the table (hands vs. terminal link/tool typically define

𝑑𝑠𝑡𝑜𝑝). Hysteresis margins are at least one to two ticks’ worth of the maximum

plausible distance change (from the rate limiter), ensuring non-overlap. Dwell times

are chosen to exceed the longest filter horizon in the proximity pipeline,

guaranteeing that transitions are driven by sustained conditions rather than filter

transients. Speed-scale maps are monotone with bounded slope to keep commanded

accelerations within actuator limits during recovery.

2.5.8 Timing and logging

All decisions are tied to the synchronous control clock; timers advance by whole

ticks, and transition guards evaluate the condition plus elapsed dwell at the tick

boundary. Every event (entry/exit with reason, thresholds in effect, dwell counters)

is logged alongside 𝑑𝑚𝑖𝑛 ,the per-pair distance vector, mode, speed_scale,

posture_gain, and IK conditioning statistics. This record enables audit of each

slow/hold/resume and supports replication of runs with identical outcomes.

35

2.5.9 Guarantees

Given valid proximity signals and the configured thresholds, the supervisor

guarantees that (i) no commanded motion toward the goal is produced while 𝑑𝑚𝑖𝑛

lies within the stop band; (ii) any resumption is jerk-limited and begins from the

same geometric state at which the hold occurred; and (iii) transitions respect

hysteresis and dwell, eliminating chatter. These guarantees make the higher-level

behaviour legible to an observer and the low-level decisions defensible in analysis.

2.6 Trajectory timing and discrete-time integration

This section specifies how motion references and control are tied to the simulator

clock so that approach/hold/resume behaviour is deterministic and auditable. All

computations are organised around a single, synchronous timeline shared by

MATLAB and CoppeliaSim.

2.6.1 Clocks, rates, and tick semantics

The simulator advances by a fixed physics step 𝑇𝑝. The controller runs with period

𝑇𝑐 = n𝑇𝑝 for some small integer n. One control tick k consists of:

• reading the joint state and tool pose from the simulator at time 𝑡𝑘 ,

• evaluating forward kinematics and the geometric Jacobian,

• updating proximity, supervision, and reference sampling,

• composing the joint-velocity command,

• advancing the simulator by n physics steps to 𝑡𝑘+1.

All timestamps, logs, thresholds, and timers are expressed on this tick grid; events

occur only at tick boundaries. This eliminates hidden latency between what the

scene displays and what the controller computes.

2.6.2 Reference generation and sampling

Two reference types are used:

36

• Cartesian velocity fields (non-time-parameterized): a bounded attractive

field generates a TCP twist 𝑣𝑡𝑎𝑠𝑘(𝑘) that drives the tool toward the goal.

Near the goal, a terminal-speed floor prevents asymptotic creep and

produces decisive “arrive and stop” behaviour. Velocity caps enforce

actuator-compatible magnitudes.

• Linear-segment-with-parabolic-blend (LSPB) trajectories (time-

parameterized): position and velocity references 𝑥𝑟𝑒𝑓(𝑡),  𝑥̇𝑟𝑒𝑓(𝑡)  are

defined by an acceleration–cruise–deceleration profile with bounds on

||𝑥̇||and ||𝑥̈|| for multi-axis motion, segment times are synchronised so all

Cartesian components share a common duration. Sampling is performed

strictly on the controller grid: at tick k, the phase 𝑠𝑘 (0→1) indexes the

LSPB law and produces 𝑥𝑟𝑒𝑓(𝑘),  𝑥̇𝑟𝑒𝑓(𝑘). The phase is advanced by a fixed

increment per tick unless gated by the supervisor.

To avoid drift, reference phase is accumulated in integer tick units (no fractional

time carried across ticks), and quaternion references are re-normalised after

interpolation.

2.6.3 Ordering within a tick

Each tick follows a fixed computation order that preserves task priority and

numerical correctness:

read  →  FK/J  →  proximity update  →  supervisor gate  →  reference sample  →

 compose task twist  →  form postural bias  →  project into null space  →

 saturate & damp  →  integrate

“Project then integrate” ensures redundancy-confined actions do not leak into the

primary task due to discretisation. Damping and velocity caps are applied after

composition but before integration, yielding bounded joint increments per tick.

2.6.4 Pause/hold/resume semantics

The supervisor (Section 2.5) gates access to references without altering their

geometry:

37

• Velocity-field operation: in hold, the commanded TCP twist is set to zero

while the internal integrator state is preserved; on resume, integration

restarts from the held pose with a jerk-limited ramp on the speed scale.

• LSPB operation: in hold, the reference phase index 𝑠𝑘 is frozen; on resume,

the remaining segment is executed from the same phase. If the hold straddles

a blend boundary, the remainder is re-timed to the tick grid so acceleration

and jerk limits are still respected. This produces identical path geometry

with inserted dwell and no time-skips.

All ramping (recovery) is quantised to the tick grid and bounded in slope so

commanded accelerations remain within limits.

2.6.5 Discrete-time integration and stability guards

Joint-space commands are integrated with a first-order, zero-order-hold scheme

over 𝑇𝑐. Three guards keep the integration well behaved:

• Bounded increments: joint velocities are capped so that |∆𝑞𝑖| ≤ 𝑞̇𝑖,𝑚𝑎𝑥𝑇𝑐.

, preventing aliasing of saturation into oscillation.

• Orientation lock near the goal: when within an acceptance radius, tool

orientation is held to avoid wrist inversions as position errors vanish.

• Conflict limiter: when the avoidance bias aligns strongly against the

tracking direction and the smallest singular value falls below a threshold,

task speed is reduced before integration to avoid large joint excursions in

near-singular postures.

2.6.6 Consistent logging

For each tick the logger records: 𝑘, 𝑡𝑘. ; the sampled reference 𝑥𝑟𝑒𝑓(𝑘),  𝑥̇𝑟𝑒𝑓(𝑘).

(or 𝑣𝑡𝑎𝑠𝑘(𝑘) in velocity-field runs); the supervisor mode and gate outputs (speed

scale, hold flag); the applied joint command; and FK/J diagnostics (singular values,

manipulability). By construction, these records are on the same clock as animation

and proximity, enabling one-to-one reconstruction of any pause/hold/resume

episode.

38

2.6.7 Determinism and replay

Because all timing derives from 𝑇𝐶 and all transitions are tick-synchronised with

explicit hysteresis and dwell, repeated runs with the same initial conditions and the

same human pose stream produce identical mode sequences and trajectories

(modulo floating-point tolerance). This determinism is the basis for the comparative

evaluations reported in later chapters.

2.7 Datasets, initial conditions, and scenarios

This section records what varies and what is held fixed across experiments, so that

every trajectory, pause/hold/resume episode, and proximity timeline can be

reproduced from first principles.

2.7.1 Human-motion traces

Operator motion is provided as time-stamped skeletal pose streams comprising 3D

key-points for the major joints. Each trace is (i) trimmed to remove idle pre/post

segments, (ii) normalised to the world frame defined in §2.1, and (iii) filtered to

suppress jitter while preserving natural limb swing. For experiments, traces are used

in two ways:

• direct replay: the mannequin in CoppeliaSim is animated frame-by-frame

by the normalised skeleton;

• phase-shifted replay: the same trace is started at different offsets relative

to the robot’s approach so that identical motions produce intrusions at

distinct points along the task, exercising pause and resume at multiple

phases.

The identity of the trace and its phase offset are treated as experimental factors and

logged per run.

2.7.2 Initial robot postures

Runs start from a finite set of joint configurations that all realise the same nominal

tool pose but differ in elbow/wrist posture. Configurations are generated by solving

39

the kinematic task with distinct null-space seeds and retaining only those that (i)

respect joint limits with margin, (ii) exceed a manipulability threshold, and (iii)

satisfy minimum link-to-table clearance. One configuration is designated “neutral”

(high manipulability, low joint excursion to the first target); others probe elbow-

up/elbow-down and wrist-rotated variants. Selection is either fixed (to compare

scenarios like-for-like) or pseudorandom with a recorded seed (to probe

sensitivity); in both cases the exact joint vector is logged.

2.7.3 Targets and task geometry

Targets lie inside the tabletop zone introduced in §2.1. Each target is defined by a

pose, an acceptance radius, an orientation tolerance, and a nominal approach

direction (TCP 𝑧 at the goal). Keep-out margins at the human edge of the table

bound automated approaches. When two targets are used (e.g., move-out/move-

back), their poses are chosen so that inter-target motion remains in a dexterous

region without posture flips. Target indices and their tolerances are recorded in the

run metadata.

2.7.4 Scenario definitions

Five controller configurations exercise the same workcell under progressively

richer conditions. For brevity, they are referred to here by their functional roles:

• Scenario 1: Target acquisition with a bounded attractive Cartesian velocity

field in the absence of an operator;

• Scenario 2: Proximity-aware acquisition that halts and holds on intrusion,

reshaping posture through redundancy, then resumes when spacing is

comfortable;

• Scenario 3: Time-parameterised tracking using linear segments with

parabolic blends (LSPB) without an operator;

• Scenario 4: Supervised pause–resume over an LSPB reference in the

presence of proximity events, with deterministic freeze/resume of the

trajectory phase;

• Scenario 5: Fixed-pose reconfiguration in which the TCP is held while

redundancy alone enlarges spacing.

40

Each scenario inherits the same timing model (§2.6), supervisor (§2.5), and

proximity pipeline (§2.3–§2.4). What changes is the reference type (velocity field

vs. LSPB), whether proximity events are present, and whether TCP motion is

permitted.

2.7.5 Experimental factors and design

Across scenarios, experiments vary along four axes:

• human trace identity and phase (direct vs. phase-shifted replay);

• initial robot posture (neutral vs. alternative null-space realizations);

• target index (single-target approach vs. inter-target motion where

applicable);

• proximity thresholds (baseline vs. a slightly tighter set used only for

robustness checks).

A small factorial design combines these factors to cover representative operating

conditions while keeping the total run count tractable. For sensitivity studies, one

factor is swept while others are held fixed at their baseline; ablations toggle

individual elements (e.g., hysteresis, orientation lock) to isolate their effect. All

random choices are driven by recorded seeds.

2.7.6 Fixed constants

The following items remain invariant within an experimental batch: world→base

transform, table geometry and operator-region dimensions, control period and

physics step, filter horizons for distance debouncing/rate limits, and the mapping

from distance bands to supervisor thresholds/hysteresis/dwell. These constants are

declared in a run header and repeated across logs for audit.

2.7.7 Outputs and replay

Every run yields a time-aligned record at the control tick: joint states; TCP pose;

sampled references (or task-space twists); global and per-pair distances; supervisor

mode and transition events (with reasons and dwell counters); Jacobian singular

values, condition number, and manipulability; and joint-saturation flags. Metadata

41

enumerate the factors above (trace ID/phase, initial posture, target index, scenario

role) plus a parameter hash. Replaying a run with the same header, seeds, and assets

reproduces the same mode sequence and motion up to floating-point tolerance.

2.8 Assumptions, limitations, and safety envelope summary

This section closes the chapter by making explicit what the workcell model

guarantees, what it assumes, and where its scope ends. The aim is to separate the

envelope that is enforced by design from the behaviours that are out of scope for

this thesis.

2.8.1 Assumptions

• Environment and agents: A single human operates on one long side of a

bench-top table; a 7-DoF Panda works from the opposite side. The tabletop

is planar and unobstructed; tools and fixtures do not change the gross reach

geometry during a run.

• Timing and models: MATLAB (control/supervision) and CoppeliaSim

(geometry/physics) run in synchronous stepping with a fixed control period.

The simulator’s Panda model is the authoritative source for forward

kinematics and Jacobians; joint sensing is idealised (no encoder noise).

• Human motion signals: Human pose enters as a time-stamped skeleton

stream with bounded jitter. After normalisation and filtering, residual errors

and delays are assumed small relative to the control period. Occlusions

severe enough to corrupt the skeleton are treated as data faults (see §2.5

fault mode).

• Proximity representation: Both agents are approximated for clearance by

simple limb-aligned and link-aligned volumes sized conservatively.

Monitored link–limb pairs are chosen for realistic interactions at a table;

distances to unmonitored pairs are not considered by the supervisor.

• Control authority: Joint limits and velocity caps are enforceable at the

chosen rates; damping and redundancy-confined posture reshaping can be

applied without exciting actuator limits.

42

• Task geometry: Targets lie inside the robot’s dexterous zone; acceptance

radii and orientation tolerances are specified; a nominal approach direction

(TCP 𝑧 at the goal) is defined for each target.

2.8.2 Safety framework (what is guaranteed by design)

• Separation governance: No commanded progression toward the task goal

is issued while the global minimum human–robot distance lies inside the

stop band. Within the caution band, task motion is conservatively scaled and

posture reshaping intensifies; outside, normal tracking proceeds.

• Deterministic gating: Transitions between track, caution, hold, recovery

obey monotonic escalation, explicit hysteresis, and minimum dwell times

tied to the control tick; chattering at thresholds is precluded by construction.

• Null-space containment: Clearance-seeking posture changes are confined

to redundant directions; primary task motion is unaffected whenever

redundancy permits. When redundancy is exhausted (e.g., near

limits/singularities), the supervisor, resolves the conflict by slowing or

holding.

• Terminal behaviour: Near a target, an orientation lock and a terminal-

speed floor yield decisive arrivals without wrist inversions. If a hold occurs

inside the acceptance radius, resumption continues along the recorded

approach direction to the same terminal pose.

• Auditability: Every decision is time-aligned to the control clock and logged

with the distances, thresholds, dwell counters, and conditioning metrics in

effect, enabling reconstruction and review of each slow/hold/resume

episode.

2.8.3 Transfer and extension (perspectives)

• Hardware-in-the-loop: The synchronous timing and single-source

kinematics map directly to real-time middleware; substituting live pose

input for recorded streams is the first step toward on-robot trials. See

Chapter 8 for the migration roadmap (ROS 2/real-time executors, certified

reference governors, and composite SDFs).

43

• Governance layers: The clearance policy can be wrapped by certified

reference-governor or safety-programmable logic controllers (PLC) layers

to formalise release/hold envelopes against plant-level constraints.

• Richer models: The human proxy can be refined (anisotropic limb

volumes, tool/workpiece geometry), and multi-sensor fusion can replace

single-stream pose input; multi-arm extensions can coordinate null-space

policies across robots.

Taken together, these assumptions, limits, and guarantees define the operating

envelope for the remainder of the thesis: a reproducible bench-top collaborative cell

with clear separation governance, deterministic gating, and auditable behaviour,

within which trajectory generation, inverse kinematics, and redundancy

management can be evaluated systematically.

44

Chapter 3

Robotic system kinematic model (Franka Emika Panda)

The model of a robotic arm is a topic that has been extensively addressed in the

literature, with well-established formulations for describing geometry, kinematics,

and motion generation for industrial manipulators and collaborative robots.

Building on this foundation, the present chapter introduces the robotic system

adopted in this thesis and the way it is exercised within a shared workspace. The

platform is a 7-DoF Franka Emika Panda, a lightweight, redundant manipulator

commonly used in human–robot collaboration studies for its accuracy, integrated

torque sensing, and ease of integration with simulation and control stacks. Our

interest is not limited to the robot as a mechanism, but extends to the collaborative

setting in which it operates: a human co-worker, a shared task region, and a control

architecture that favors predictable, easily monitored behavior. This aligns with

contemporary treatments of redundancy resolution, safety supervision, and human-

aware motion as established in the robotics community.

The collaborative cell is realized in CoppeliaSim to mirror an industrial workstation

with clear boundaries and observability. The virtual scene comprises a fixed-base

Panda mounted on a table, a human work zone represented by a pose-driven avatar,

and task objects arranged within the arm’s reachable volume. The human motion

stream is converted into simplified geometric proxies that allow real-time distance

evaluation and separation monitoring without overburdening the control loop. The

simulation is synchronized so that sensing, decision, and actuation proceed in

lockstep, and the environment is instrumented for continuous logging of the signals

that matter for later analysis of throughput, clearance, and task fidelity. In this way,

the chapter does not only present a model, but a setting where the model can be

exercised repeatedly and transparently.

The intent is to simulate and optimize the robot’s behavior under collaborative

conditions, increasing the capability to monitor performance and to detect

deviations from expected motion or safety margins early. The choices made here

45

reflect common practice in the field: using a redundant arm to reconcile task

objectives and safety, relying on well-known kinematic descriptions and inverse

kinematics solvers, and adopting scene abstractions that balance fidelity and

computational load. The literature on collaborative robotics, null-space control, and

separation monitoring provides the conceptual backdrop for these choices and

indicates where they are most applicable in industry: small-batch assembly,

inspection, assisted manipulation, and other tasks where a human and a robot share

space and responsibilities.

Although developed in simulation, the constructed model and the associated

validation method are designed to be replicated on a physical Panda cell with

minimal adaptation of frames, limits, and supervisor thresholds. The scene assets,

parameters, and procedures are documented to support transfer: frame conventions

can be aligned with a real workstation, distance thresholds can be tuned to match

sensing hardware, and the same logging and supervision routines can be used to

monitor behavior on the floor. This approach ensures that the foundational work

reported here can be effectively applied and tested in future implementations,

facilitating progression from controlled simulation to pilot deployments and,

ultimately, to sustained industrial use.

46

3.1 Use of the kinematic model in the collaborative cell

This section explains how a kinematic description of a 7-DoF Franka Emika Panda

is used to study behavior in a shared workspace with a human. The emphasis is on

an operational view rather than derivations. The model is exercised in a

CoppeliaSim scene that mirrors an industrial cell: a fixed-base arm on a table, a

defined human work zone represented by a pose-driven avatar, and task objects

placed within reach. Lightweight link-aligned proxies (capsules/cylinders/spheres)

are attached for distance queries and are the only geometry consumed by the

supervisor and posture shaper (see Chapter 4). The approach prioritizes predictable

motion, clear supervision, and repeatable experiments. The same interfaces and

conventions are designed for direct transfer to a physical Panda cell by aligning

frames, enforcing the same thresholds, and reusing the synchronized logging

routines.

3.1.1 Rationale

A 6×7 kinematic formulation is adopted because collaborative tasks are moderate

in speed and benefit from transparency and observability. The robot’s internal

torque regulation handles low-level dynamics, while the outer loop focuses on

where and when the tool moves, and on reorganizing posture to maintain safe

threshold distance when a person approaches.

3.1.2 How it is used

 The same model supports three recurring situations: tracking simple tool-pose

references; tracking with supervised pauses and later resumptions when separation

bands are crossed; and a fixed-tool-pose case where only joints move to preserve

clearance around the human. The simulation advances in synchronized steps so

sensing, decision, and actuation remain aligned, and key signals are logged for later

analysis of throughput, transparency, and safety.

3.1.3 Assumptions and scope

The arm is treated as a rigid kinematic chain with calibrated frames and enforced

joint limits; self-collision and workspace constraints are respected. Human motion

47

is converted into simplified geometric proxies in the world frame to enable timely

distance evaluation. Full rigid-body dynamics, contact forces, and high-impact

interactions are outside scope.

3.1.4 Interfaces referenced later

For consistency across the document, this section introduces the principal quantities

used throughout: the tool-pose tracking error, a damped inverse mapping from tool

motion to joint motion, the null-space projector that preserves the primary objective

while adjusting posture, the minimum robot–human distance computed in the

scene, and the stop/release thresholds that govern supervised pauses and

resumptions. These definitions establish a common vocabulary for the methods and

experiments that follow and will be referenced without further qualification in

subsequent chapters; Section 3.4 details the two TCP time-laws (vector vs. LSPB)

and their pause/resume semantics; Section 3.5 fixes the safety thresholds used

throughout. Section 5.1 details the synchronized logging used to validate these

interfaces.

3.2 Robot description

This work employs a 7-DoF Franka Emika Panda (Franka Research 3 generation)

mounted as a fixed-base, table-top arm inside a compact collaborative cell in

CoppeliaSim. The platform is widely adopted in research labs for human–robot

collaboration because it combines human-scale reach, link-side torque sensing on

all seven joints, and a research interface that exposes state and control at suitable

rates for closed-loop experimentation. At a system level it offers a 3 kg rated

payload, ~855 mm reach, and ISO-grade pose repeatability on the order of ±0.1

mm, with joint-space speed limits that support smooth, supervised motion in

proximity to a person. These characteristics align with this thesis’ emphasis on

predictable behavior, clear supervision, and repeatable experiments.

3.2.1 Frames, tool, and workspace

The cell defines a world frame for the scene, a base frame at the Panda mounting,

and a tool-center frame at the flange. The arm is installed upright on a bench-height

48

fixture; task objects are arranged within nominal reach while a dedicated human

work zone is kept clear for approach and interaction. This arrangement mirrors

typical research and light-industrial layouts and transfers well to hardware because

the same frame conventions, mount pose, and safety bands can be reproduced on a

physical setup.

3.2.2 Features and platform suitability (research & industry)

• Seven torque-sensorized revolute joints enable compliant behavior and

redundancy for posture adjustment in shared workspaces.

• Research interface and ecosystem integrations (ROS 2, MATLAB)

facilitate synchronized control, logging, and rapid replication of

experiments.

• Certified HRC design and sub-millimetric repeatability support tasks such

as small-batch assembly, inspection, assisted manipulation, and teaching by

demonstration.

3.2.3 Technical specifications used in this thesis

Table 3.1 consolidates the mechanical and controller-relevant specifications used

in this work, including joint ranges, velocity limits, masses, and the manufacturer’s

repeatable peak torque limits grouped by axes (A1–A2, A3–A4, A5–A7).

Item Value

Degrees of freedom 7 revolute joints

Rated payload 3 kg

Maximum reach 855 mm

Pose repeatability (ISO 9283) ±0.1 mm

Typical end-effector speed (limit) up to ∼ 2 m/s
Joint velocity limits (A1-A4 / A5-

A7)

150%/s/ up to ∼ 180 − 301% (per datasheet generation)

Joint position limits (deg)

A1: = 166…+ 166; A2: −101…+ 101; A3: −166…+ 166 :

A4: −176…− 4; A5: −166…+ 166; A6: −1…+ 215; A7:

−166…+ 166

Repeatable peak torque (Nm) A1: 87; A2: 87; A3: 87; A4: 87; A5: 12; A6: 12; A7: 12.

Table 3.1 Franka Emika Panda arm-level specifications and limits.

Figure 3.1 contextualizes the axis numbering (A1–A7) on the Panda and highlights

the repeatable peak-torque limits referenced in Table 3.1.

49

Fig. 3.1 Panda axis map (A1–A7) with manufacturer repeatable peak-torque limits. Axes 1–2: ≤ 87

Nm; axes 3–4: ≤ 87 Nm; axes 5–7: ≤ 12 Nm.

3.2.4 Physical layout and link proxies

For efficient separation monitoring in the simulation, each link is represented by a

conservative geometric proxy aligned with its frame; these proxies are used for fast

min-distance queries against the human avatar’s capsules and to annotate logs with

the smallest robot–human clearance. This abstraction keeps computation modest

while remaining faithful to the physical envelope and transfers cleanly to hardware

deployments (See Chapter 4 for the human model and distance fields).

3.2.5 Kinematic scheme

The Panda is a serial 7R arm: a shoulder with three intersecting joint axes

approximating spherical motion, an elbow that extends the reach, and a three-axis

wrist that orients the tool. Figure 3.1 sketches the Panda’s 7R shoulder–elbow–wrist

organization used throughout this chapter.

50

Fig. 3.2 Kinematic scheme of the Panda arm (7R): shoulder with three intersecting axes, elbow

extension, and three-axis wrist for tool orientation.

Motions arise from coordinated rotations about each joint axis, producing

translation and rotation of the tool in space; redundancy allows posture to be

adjusted while the tool pose is maintained within tolerance. This is the working

model used throughout the thesis and is consistent with the official robot description

files commonly used in research software stacks.

3.2.6 Denavit–Hartenberg (DH) style parametrization adopted in this work

We adopt a modified Denavit–Hartenberg description to fix the link geometry and

joint axes in a compact, reproducible way prior to deriving the kinematics. Rather

than importing a published table, the parameters used here were fitted to the ground-

truth link frames exported from CoppeliaSim at a chosen zero posture and mount.

This ensures that forward kinematics reproduce the exact scene used in all

experiments. Concretely, the base frame and tool frame were fixed in the simulator;

the seven intermediate link frames were exported; and a modified-DH chain

(𝑖−1𝐴𝑖(𝑎𝑖, α𝑖 , 𝑑𝑖, θ𝑖) with (θ𝑖 ≡ 𝑞𝑖) was solved so that cumulative transform

(Ti
(0) = ∏ 𝐴𝑘

(𝑘−1)
)i

k=1 aligned (within numerical tolerance) with the exported frames

at the zero posture. A fixed flange transform (7𝑇𝑇) was then set to match the desired

tool offset. This fit was validated by checking that (i) forward kinematics at random

configurations matched the simulator exports to within a small positional and

angular error, and (ii) the base–tool transform remained consistent when the same

chain was driven by scene joint values.

51

For 𝑖 = 1, 2, … ,7 we use a modified-DH link transform with joint variable 𝜃𝑖 ≡ 𝑞𝑖

and constants (𝑎𝑖, 𝛼𝑖 , 𝑑𝑖):

 𝑖−1𝐴𝑖(𝑞𝑖) = [
𝑅𝑧(𝜃𝑖)𝑅𝑥(𝛼𝑖) 𝑅𝑧(𝜃𝑖) [

𝑎𝑖
0
𝑑𝑖
]

0 1

]

The cumulative transforms and TCP pose are

 0𝑇𝑖(𝑞) =∏  

𝑖

𝑘=1

 𝑘−1𝐴𝑘(𝑞𝑘), 0𝑇𝒯(𝑞) =
0𝑇7(𝑞)

7𝑇𝒯

with fixed tool offset: 7𝑇𝒯: 𝑑𝑓 = 0.107 𝑚.

The constants used are:

𝒊 𝒂𝒊[𝐦] 𝜶𝒊[𝐫𝐚𝐝] 𝒅𝒊[𝐦]

1 0 0 0.333

2 0 −
𝜋

2
 0

3 0 +
𝜋

2
 0.316

4 0.0825 +
𝜋

2
 0

5 -0.0825 −
𝜋

2
 0.384

6 0 +
𝜋

2
 0

7 0.088 +
𝜋

2
 0

Table 3.2 DH constant parameteres.

3.2.7 Jacobian (formulation & components, as used)

The geometric Jacobian is the linear operator that maps joint-rate space to the

instantaneous twist of the tool frame. Figure 3.2 illustrates the construction of

Jacobian columns from joint axes and point positions.

52

Fig. 3.3 For a revolute joint 𝑖, 𝐽𝑣,𝑖 = 𝐳𝑖 × (𝐩𝑇 − 𝐩𝑖) and 𝐽𝜔,𝑖 = 𝐳𝑖.Vectors are resolved in frame 0 as

used in the implementation.

 Let 𝑝𝑖  ∈  𝑅
3  and 𝑧𝑖 ∈ 𝑅

3 denote, respectively, the origin and unit z-axis of frame

𝑖 expressed in 𝛽 = 0, extracted from 0𝑇𝑖(𝑞). Let 𝑝𝑇 be the origin of the TCP from

0𝑇𝑇(𝑞) For a revolute joint 𝑖 the i − th column of the geometric Jacobian

resolved in 0 is:

𝐽𝑣,𝑖 = 𝑧𝑖 × (𝑝𝑇 − 𝑝𝑖) , 𝐽ω,𝑖 = 𝑧𝑖

Stacking columns yields

𝐽0(𝑞) = [
𝐽𝑣,1 ⋯ 𝐽𝑣,7
𝐽𝜔,1 ⋯ 𝐽𝜔,7

] ∈ ℝ6×7

When the Jacobian is required in the TCP frame 𝒯 we apply the rigid rotation

with 𝑅𝒯 =
0𝑅𝒯(𝑞) :

𝐽𝒯(𝑞) = [
𝑅𝒯
⊤ 0

0 𝑅𝒯
⊤] 𝐽

0(𝑞)

These expressions are exactly those implemented: transforms are formed from the

DH-style chain consistent with the scene (𝑝𝑖 ,  𝑧𝑖 ,  𝑝𝑇) are extracted, each column is

assembled via the cross-product rule above, and an optional frame change, yields

𝐽{𝑇}. A different tool is incorporated by updating 𝑇7 𝑇 before computing 𝑝𝑇.

53

3.3 Mathematical model of the 7-DoF arm

This section establishes the mathematical description used to command and assess

the Franka Emika Panda in the collaborative cell. The objective is to fix a consistent

kinematic model, specify how tool pose and errors are represented, and define the

velocity mapping between joint space and task space that underpins all experiments.

Starting from the scene-consistent link frames introduced earlier, we derive forward

kinematics and a pose-error definition suited to small, well-conditioned corrections.

We then formalize the geometric Jacobian and the frame conventions used when

relating joint rates to tool twist. Building on these, we present the inverse kinematics

solver based on damped least squares with SVD regularization, together with the

adaptive damping and saturation policies that keep commands within safe bounds.

Measures of conditioning and manipulability are introduced to identify

neighborhoods where stronger regularization is required. Finally, we state the task-

priority composition used to preserve the primary tool objective while shaping

joint-space behavior in the null space, including a leak guard to monitor task

preservation, and outline the orientation-locking strategy employed when the tool

pose must remain fixed. The intent is to provide a clear, self-contained reference

for the methods implemented in the collaborative scenarios that follow.

3.3.1 Forward kinematics and pose-error definition

Before specifying control laws, we fix how the arm’s pose is computed and how

deviations from a desired pose are measured. The forward kinematic map provides

a unique tool pose for each joint configuration, and the error representation must

remain well behaved under the small, incremental motions characteristic of

supervised collaboration. The conventions below follow the scene-consistent link

frames defined earlier so that all computations match the simulated cell one-to-one.

Let 0𝑇𝑖(𝑞) ∈ 𝑆𝐸(3) be the cumulative transform from the base/world frame {0} to

link 𝑖, constructed from the modified-DH chain fitted to the CoppeliaSim frames in

Section 3.2. The TCP (tool) pose is

 0𝑇𝒯(𝑞) = [
 0𝑅𝒯(𝑞) 0𝑝𝒯(𝑞)
0 1

] = 0𝑇7(𝑞)
7𝑇𝒯

54

where 7𝑇𝒯 is the fixed flange-to-tool transform.

Given a desired TCP pose

 0𝑇𝒯
des = [

0𝑅𝒯
des 0𝑝𝒯

des

0 1
]

the translational error (resolved in {0}) is

𝑒𝑝 =
0𝑝𝒯

des − 0𝑝𝒯(𝑞) ∈ ℝ
3

For the rotational component, we adopt an axis-angle representation derived from

the right-invariant rotation error

𝑅err =
0𝑅𝒯
des(0𝑅𝒯(𝑞))

⊤ ∈ 𝑆𝑂(3)

The orientation error vector is the matrix logarithm of 𝑅err ,

𝑒𝜔 = log (𝑅err) ∈ ℝ
3,

i.e., the unique rotation vector whose direction is the principal axis of 𝑅err and

whose magnitude 𝜃 ∈ [0, 𝜋] is the principal angle. When 𝑅err ≠ 𝐼, a closed-form

evaluation is

𝜃 = cos−1 (
tr(𝑅err) − 1

2
) , 𝑢 =

1

2 sin 𝜃
[

𝑅err(3,2) − 𝑅err(2,3)

𝑅err(1,3) − 𝑅err(3,1)

𝑅err(2,1) − 𝑅err(1,2)
],

𝑒𝜔 = 𝜃𝑢

and 𝑒𝜔 = 0 when 𝑅err = 𝐼. The branch of 𝜃 is selected to preserve continuity for

small attitude corrections; in implementation ‖𝑒𝜔‖ is limited to remain within the

injectivity radius.

The pose-error vector used by the velocity-level controller stacks translation and

rotation as

𝑒𝑥 = [
𝑒𝑝
𝑒𝜔
] ∈ ℝ6,

55

resolved in {0} unless stated otherwise. This representation avoids Euler-angle

singularities, remains well conditioned for small corrections, and aligns with the

frame and tolerance conventions fixed in Chapter 3.1.

3.3.2 Geometric Jacobian and frame conventions implementation

Before introducing inversion or task composition, we pin down exactly how the

Jacobian is constructed in this work so that the matrix used by the solver matches

the geometry of the CoppeliaSim scene one-to-one. The goal is a reproducible

pipeline: take the scene’s link frames, apply the fitted modified-DH chain, and

assemble a 6×7 Jacobian whose columns have a clear physical meaning and a

declared frame resolution.

Input and resolution

The function takes the joint vector 𝑞 ∈ ℝ7 and a fixed flange-to-tool transform 7𝑇𝒯.

Unless otherwise stated, all intermediate quantities are expressed in the base/world

frame {0}. When needed, the Jacobian is rotated to the tool frame {𝒯}.

Step 1 - Forward kinematics consistent with the scene

Using the modified-DH chain fitted to the exported link frames (§3.2), form the

cumulative transforms

 0𝑇𝑖(𝑞) =∏  

𝑖

𝑘=1

 𝑘−1𝐴𝑘(𝑞𝑘), 𝑖 = 1,… ,7

and the TCP pose

 0𝑇𝒯(𝑞) =
0𝑇7(𝑞)

7𝑇𝒯 = [
 0𝑅𝒯(𝑞) 0𝑝𝒯(𝑞)
0 1

]

The DH chain is used solely to generate consistent transforms; the geometric

Jacobian is assembled from frame axes and positions (cross-product rule) to avoid

DH-specific pitfalls.

Step 2 - Extract per-joint geometric primitives

From each 0𝑇𝑖(𝑞) extract:

56

𝑝𝑖 ∈ ℝ
3 (origin of frame 𝑖 in {0}), 𝑧𝑖 ∈ ℝ

3 (unit 𝑧-axis of frame 𝑖 in {0}).

Also take 𝑝𝒯 =
0𝑝𝒯(𝑞).

Step 3 - Assemble columns (all joints revolute)

For each joint 𝑖 ∈ {1,… ,7}, the column of the geometric Jacobian resolved in {0}

is

𝐽𝑣,𝑖 = 𝑧𝑖 × (𝑝𝒯 − 𝑝𝑖), 𝐽𝜔,𝑖 = 𝑧𝑖

Stacking gives

𝐽{0}(𝑞) = [
𝐽𝑣,1 ⋯ 𝐽𝑣,7
𝐽𝜔,1 ⋯ 𝐽𝜔,7

] ∈ ℝ6×7, 𝑥̇{0} = 𝐽{0}(𝑞)𝑞̇

When a TCP-resolved Jacobian is required, we apply a rigid rotation to map

columns from {0} to {𝒯}, keeping the assembly numerically identical but frame-

consistent.

Step 4 - Optional change of resolution to the tool frame

When a tool-resolved twist is required, apply the current TCP rotation

 𝑅𝒯 =
0𝑅𝒯(𝑞)

𝐽{𝒯}(𝑞) = [
𝑅𝒯
⊤ 0

0 𝑅𝒯
⊤] 𝐽

{0}(𝑞), 𝑥̇{𝒯} = 𝐽{𝒯}(𝑞)𝑞̇

Step 5 - Scene-alignment and tool changes

The flange/tool transform 7𝑇𝒯 can be swapped to represent a different end-effector

without changing any formula: it only shifts 𝑝𝒯 and rotates the resolution if 𝐽{𝒯} is

requested. Because the DH constants were fitted to the scene's zero posture, the

(𝑝𝑖, 𝑧𝑖) extracted here align with the simulator frames at all configurations.

Step 6 - Consistency checks used in this work

At random configurations, verify finite-difference consistency:

57

 0𝑝𝒯(𝑞 + 𝜀𝑒𝑗) −
0𝑝𝒯(𝑞)

𝜀
≈ 𝐽𝑣,𝑗 ,

log (0𝑅𝒯(𝑞)
⊤ 0𝑅𝒯(𝑞 + 𝜀𝑒𝑗))

𝜀
≈ 𝐽𝜔,𝑗,

for small 𝜀 > 0 and standard basis 𝑒𝑗. Also check the frame-change identity

[
𝑅𝒯 0
0 𝑅𝒯

] 𝐽{𝒯}(𝑞) ≈ 𝐽{0}(𝑞)

up to numerical tolerance. The chosen resolution (base or tool) is recorded with

each run to avoid ambiguity in later analyses.

Physical reading of the columns (as implemented)

Each column encodes the screw motion induced at the TCP by an infinitesimal

rotation of joint 𝑖 : the lower block 𝑧𝑖 is the angular part (about the joint axis), and

upper block 𝑧𝑖 × (𝑝𝒯 − 𝑝𝑖) is the linear part (lever-arm effect of that axis at the

TCP). Proximal joints contribute strongly to both translation and orientation; distal

joints primarily trim orientation and fine positioning—exactly what is observed in

the experiment logs.

3.3.3 Damped least-squares inverse with SVD, adaptive damping, and

saturations

Before composing tasks, we fix the velocity-level inverse kinematics used

throughout. Figure 3.4 summarizes the DLS–SVD inverse used throughout,

including adaptive damping and safety saturations.

Fig. 3.4 DLS–SVD pipeline: compute 𝐽 = 𝑈Σ𝑉⊤→ form 𝐽𝜆
#→ primary command 𝑞̇pri = 𝐽𝜆

#𝑥̇task→

apply bounds and saturations.

58

The objective is a numerically stable joint-rate command that behaves predictably

near poor conditioning while respecting joint limits. Given the geometric Jacobian

𝐽(𝑞) ∈ ℝ6×7, with 𝑞 ∈ ℝ7 the joint configuration, we compute its singular value

decomposition 𝐽 = 𝑈Σ𝑉⊤, where 𝑈 ∈ ℝ6×6 and 𝑉 ∈ ℝ7×7 are orthogonal, and Σ =

diag(𝜎1, … , 𝜎6) collects the nonnegative singular values 𝜎𝑖. The damped least-

squares (DLS) pseudoinverse is then defined as

𝐽𝜆
= 𝑉diag (

𝜎𝑖

𝜎𝑖
2 + 𝜆2

)𝑈⊤

with 𝜆 > 0 a damping parameter that regularizes the inversion in directions

associated with small 𝜎𝑖. For a desired task-space velocity 𝑥̇task = [𝑣
⊤𝜔⊤]⊤ ∈ ℝ6

(linear part 𝑣 in m/s and angular part 𝜔 in rad /s, resolved in the chosen frame),

the primary joint command is

𝑞̇pri = 𝐽𝜆
#𝑥̇task,

which is the minimum-norm joint-rate vector that best realizes 𝑥̇task under the

damping 𝜆.

To make the inverse robust across the workspace, we adapt 𝜆 to the instantaneous

conditioning. We monitor the condition number 𝜅(𝐽) = 𝜎max/𝜎min
+, where 𝜎max

is the largest singular value and 𝜎min
+is the smallest nonzero singular value

encountered at 𝑞. The damping is scheduled as

𝜆(𝑞) = 𝜆min + (𝜆max − 𝜆min)𝑠 (
𝜅(𝐽) − 𝜅ok
𝜅hi − 𝜅ok

)

where 𝜆min, 𝜆max bound the admissible damping, 𝜅ok < 𝜅hi mark the transition

from well-conditioned to poorly conditioned regions, and 𝑠(⋅) ∈ [0,1] is a smooth

clamping function (e.g., cubic or logistic) that blends between the bounds. Thus 𝜆

remains close to 𝜆min in favorable regions and increases toward 𝜆max as 𝜅(𝐽) grows.

The task-space demand 𝑥̇task itself is shaped from the pose error of 3.3.1 using

bounded proportional action,

𝑥̇task = [
𝐾𝑝𝑒𝑝
𝐾𝜔𝑒𝜔

]

59

where 𝑒𝑝 ∈ ℝ
3 (meters) and 𝑒𝜔 ∈ ℝ

3 (axis-angle, radians) are the position and

orientation errors resolved in the same frame as the Jacobian, 𝐾𝑝 and 𝐾𝜔 are

diagonal nonnegative gain matrices, and componentwise clamps enforce ‖𝐾𝑝𝑒𝑝‖ ≤

𝑣max and ‖𝐾𝜔𝑒𝜔‖ ≤ 𝜔max so that linear and angular rate caps 𝑣max (m/s) and

𝜔max (rad/s) are never exceeded before inversion [1, 2].

For later null-space composition we define the projector

𝑁(𝑞) = 𝐼7 − 𝐽𝜆
#(𝑞)𝐽(𝑞)

where 𝐼7 is the 7 × 7 identity. This operator removes any component of a joint-rate

vector that would leak into the primary task, allowing secondary behaviors to be

added without corrupting 𝑥̇task (see §3.5.5).

Leakage is monitored as ℓ = ‖𝐽(𝑞) 𝑁(𝑞) 𝑞̇ bias‖ and clamped below LEAK_THR by

scaling the secondary command. The leak metric, scale factor, and saturation flags

are logged every tick for auditability (see §3.5.7).

Finally, after adding secondary terms and obtaining a provisional 𝑞̇, we enforce

joint-rate limits uniformly. Let |𝑞̇|max ,𝑖 be the admissible speed (rad/s) for joint 𝑖.

If |𝑞̇𝑖| > |𝑞̇|max ,𝑖, we rescale

𝑞̇ ← 𝛾𝑞̇, 𝛾 = min (1,min
𝑖
 
|𝑞̇|max,𝑖
|𝑞̇𝑖| + 𝜀

),

with a small 𝜀 > 0 to avoid division spikes when |𝑞̇𝑖| ≈ 0 . This preserves the

command direction while guaranteeing all joints satisfy their caps. As an additional

numerical safeguard, singular values below a small floor 𝜎min are replaced by 𝜎̃𝑖 =

max(𝜎𝑖 , 𝜎min) before forming the diagonal factors 𝜎𝑖/(𝜎𝑖
2 + 𝜆2), which reduces

jitter in directions that are effectively uncontrollable. In practice we recompute the

SVD only when changes in 𝜅(𝐽) or ‖𝑒𝑥‖ exceed small hysteresis thresholds, and

we log the triplet (𝜆, 𝜅(𝐽), 𝛾) each control cycle together with the Jacobian's

resolution (base or tool) for traceability.

60

3.3.4 Manipulability, conditioning and safe neighborhoods

Before composing primary and secondary behaviors, we delineate where the

kinematic map is reliable and how the controller responds as conditioning degrades.

The objective is twofold: quantify local dexterity in a way that is reproducible from

logs, and embed guardrails that keep inversion well-behaved without unnecessarily

slowing motion. All metrics here are computed from the same geometric Jacobian

𝐽(𝑞) and its singular value decomposition 𝐽 = 𝑈Σ𝑉⊤ introduced earlier, with

singular values 𝜎1 ≥ ⋯ ≥ 𝜎6 ≥ 0 defining the principal task-space directions.

We use three complementary indicators. First, the condition number 𝜅(𝐽) =

𝜎max/𝜎min (where 𝜎min (is the smallest nonzero singular value at 𝑞) captures

worst-case anisotropy of the velocity map; it grows unbounded near singular

configurations and is therefore effective for triggering stronger regularization.

Second, the Yoshikawa manipulability index 𝑤(𝑞) = √det(𝐽𝐽⊤) = ∏𝑖=1
6  𝜎𝑖

measures the hyper-volume of attainable twists per unit joint-rate norm; it collapses

to zero at singularities and is sensitive to simultaneous shrinkage of several

directions rather than just the smallest one. Third, a directional measure useful for

experiments is the reciprocal gain along a desired twist direction 𝑢 ∈ ℝ6 (with

‖𝑢‖ = 1): we define 𝑚𝑢(𝑞) = 1/‖𝐽𝜆
#(𝑞)𝑢‖. This quantity reports how much joint

motion would be required to realize a unit-magnitude command along 𝑢; small 𝑚𝑢

flags directions that are expensive or poorly controllable even when the aggregate

indices still look acceptable. In practice we log 𝜅(𝐽), 𝑤(𝑞), and a small set of 𝑚𝑢

aligned with the commanded twist to make the diagnosis of slowdowns

unambiguous.

These indicators ground the definition of safe neighborhoods. We specify two

nested sets with hysteresis: a nominal region 𝒮ok = {𝑞: 𝜅(𝐽) ≤ 𝜅ok ∧ 𝑤(𝑞) ≥ 𝑤ok}

in which the inverse operates at low damping and full task gains, and a guarded

region 𝒮guard = {𝑞: 𝜅(𝐽) ≤ 𝜅hi ∧ 𝑤(𝑞) ≥ 𝑤lo } that extends 𝒮ok by a margin.

Entering 𝒮guard ∖ 𝒮ok increases the damping 𝜆(𝑞) according to the schedule in

§3.3.3 and proportionally reduces the translational and angular gains used to build

𝑥̇task (so both the inversion and the prefilter cooperate). If either bound is violated

(𝜅(𝐽) > 𝜅hi or 𝑤(𝑞) < 𝑤lo), task gains are clipped to minimal values and the null-

61

space term is restrained to prevent the controller from "pushing into" a singularity

while trying to improve posture. The hysteresis (𝜅ok < 𝜅hi, 𝑤lo < 𝑤ok) prevents

chatter as the arm hovers near the boundary; exact thresholds are reported alongside

results so experiments are reproducible.

Two implementation details improve fidelity to the physical robot and

comparability across tasks. First, when translation and rotation have very different

operational scales, we optionally introduce a task metric 𝑊 = diag(𝑠𝑝𝐼3, 𝑠𝜔𝐼3) that

re-weights the twist before inversion by replacing 𝐽 with 𝑊1/2𝐽 in the SVD; the

scalars 𝑠𝑝 > 0 and 𝑠𝜔 > 0 set translation-rotation balance without altering frame

conventions. All logged indices are then computed on the weighted Jacobian so that

the reported conditioning matches the controller's internal view. Second, proximity

to joint limits can degrade effective dexterity even when 𝜅(𝐽) is moderate; to

capture this we monitor a joint-margin factor:

𝜌(𝑞) = min
𝑖
 {(𝑞max,𝑖 − 𝑞𝑖)/(𝑞max,𝑖 −𝑞min ,𝑖), (𝑞𝑖 − 𝑞min ,𝑖)/(𝑞max ,𝑖 − 𝑞min ,𝑖)} ∈

[0,0.5].

 When 𝜌(𝑞) drops below a comfort bound, the bias term in §3.3 .5 is directed away

from the nearest limit and the admissible null-space velocity is reduced, which in

turn helps keep 𝑤(𝑞) from collapsing in subsequent steps.

Finally, all quantities in this subsection are resolved consistently with the Jacobian's

chosen frame (base or tool) and are evaluated at the same discrete-time index as the

SVD used for inversion. We record 𝜅(𝐽), 𝑤(𝑞), {𝑚𝑢}, 𝜌(𝑞), the active thresholds,

and the resulting gains and 𝜆(𝑞) per control cycle. This establishes an auditable link

from the reported performance—e.g., pauses or slowdowns near corners of the

workspace—to the numerical state of the kinematic map at the time decisions were

made.

3.3.5 Task–priority composition and leak guard

Having fixed the forward map and a robust inverse, we now describe how primary

tool-space objectives are preserved while secondary joint-space behaviors reshape

posture, respect limits, and create clearance around the human. The construction

follows the classical task–priority paradigm but is specialized to the scene-

62

consistent Jacobian and damped inverse introduced earlier, with explicit guards to

prevent priority violations and to make behavior auditable from logs.

We denote by 𝑥̇task ∈ ℝ
6 the bounded twist demand assembled from the pose error,

using the gains and rate caps defined in §3.3.3. The primary joint command

associated with this demand is obtained via the damped pseudoinverse 𝐽𝜆
#(𝑞) of the

geometric Jacobian 𝐽(𝑞) :

𝑞̇pri = 𝐽𝜆
#(𝑞)𝑥̇task .

To embed secondary behaviors without corrupting the primary objective, we

project them through the null space of the current Jacobian. With

𝑁(𝑞) = 𝐼7 − 𝐽𝜆
#(𝑞)𝐽(𝑞),

any joint-rate vector of the form 𝑁(𝑞)𝜂 leaves the instantaneous primary twist

unchanged, because 𝐽𝑁 = 0 by construction (up to damping-induced numerical

residue). The complete command therefore reads

𝑞̇ = 𝐽𝜆
#𝑥̇task ⏟

primary

+ 𝑁𝑞̇bias ⏟
secondary

,

where 𝑞̇bias ∈ ℝ
7 aggregates joint-space terms that encode posture preferences,

joint-limit avoidance, and safety-driven reconfiguration. In this thesis we use

smooth, bounded ingredients so that 𝑞̇bias remains interpretable and differentiable:

(i) a posture term pulling toward a comfortable reference 𝑞∗, (ii) a joint-limit barrier

that increases as any joint approaches 𝑞min or 𝑞max, and (iii) a safety field steering

links away from the human when distances decrease. These are combined with

positive weights that may depend on the current context (e.g., larger weight on limit

avoidance when margin shrinks), but always pass through the same projector 𝑁 to

guarantee priority.

Two practical issues must be addressed to make this composition predictable in the

collaborative cell. First, because 𝐽𝜆
is damped, the identity 𝐽𝑁 = 0 holds only up to

a small numerical residue; if 𝑞̇bias is large, that residue can leak into the primary

channel. We therefore monitor the instantaneous leakage

63

ℓ(𝑞, 𝑞̇bias) = ‖𝐽(𝑞)𝑁(𝑞)𝑞̇bias ‖,

resolved in the same frame as 𝐽, and enforce ℓ ≤ LEAK_THR by scaling 𝑁𝑞̇bias

when necessary. This single scalar, logged at each control cycle, makes priority

violations observable and gives an immediate diagnostic for cases where a strong

secondary push would otherwise disturb the tool objective. Second, because both

the Jacobian and the projector vary with configuration, fast changes in 𝑞̇bias can

create chattering if they are allowed to react instantaneously to small distance or

margin fluctuations. To avoid this, we employ hysteresis and dwell: the weights

inside 𝑞̇bias change only after the corresponding signal crosses a threshold with a

small margin (e.g., distance bands for human proximity, comfort bands for joint

margins), and then remain fixed for a minimum dwell time before they can move

back. This simple policy significantly improves smoothness without sacrificing

responsiveness.

Finally, the composite command 𝑞̇ inherits the safety policies from §3.3.3. If any

per-joint speed bound would be exceeded, a uniform scale is applied to the entire

vector so that all components respect their caps while preserving direction. The

resolution (base or tool) of the primary twist and the Jacobian is recorded with the

same timestamp as ℓ, the active weights in 𝑞̇bias , and the global scale factor,

ensuring that every experiment can be traced back from observed TCP behavior to

the precise state of the priority stack at that moment.

3.3.6 Orientation locking for the fixed-TCP scenario

In collaborative operation there are phases where the tool must remain immobile in

space while the arm reconfigures around the human. This subsection specifies the

fixed-TCP regime as implemented: how the controller holds a constant tool pose,

how residual motion is bounded and monitored, and how null-space reconfiguration

proceeds without degrading the primary objective.

Lock objective and admissible drift

At the onset of the regime, the controller captures the tool pose

 0𝑇𝒯
lock = [0𝑅𝒯

lock ∣ 0𝑝𝒯
lock]

64

and regulates the instantaneous error

𝑒𝑝(𝑡) =
0𝑝𝒯

lock − 0𝑝𝒯(𝑞(𝑡)), 𝑒𝜔(𝑡) = log (
0𝑅𝒯

lock 0𝑅𝒯(𝑞(𝑡))
⊤)

The controller enforces the tight bounds

‖𝑒𝑝‖ ≤ POS_TOL , ‖𝑒𝜔‖ ≤ ROT_TOL

and flags a lock-violation whenever either bound is exceeded; the correction is

applied immediately and the event is logged.

Figure 3.5 depicts the captured lock pose and the bounded error region enforced

during fixed-TCP reconfiguration:

Fig. 3.5 Fixed-TCP regime. The controller captures 0𝑇𝒯
lock and enforces ∥ 𝑒𝑝 ∥≤ POS_TOL , ∥

𝑒𝜔 ∥≤ ROT_TOL while null-space reconfiguration proceeds.

Primary command (near-zero set-point)

The task twist is a clipped proportional action that recenters the TCP on the lock

pose while keeping commanded motion negligible:

𝑥̇lock = [
𝐾𝑝

lock sat(𝑒𝑝; 𝑣max
lock)

𝐾𝜔
lock sat(𝑒𝜔; 𝜔max

lock)
]

with small diagonal gains 𝐾𝑝
lock , 𝐾𝜔

lock ⪰ 0 and stringent caps 𝑣max
lock ≪ 𝑣max,

𝜔max
lock ≪ 𝜔max. The corresponding joint command is

65

𝑞̇pri = 𝐽𝜆
#(𝑞)𝑥̇lock,

using the same DLS inverse and adaptive damping as in §3.3.3. This continuously

suppresses drift accumulated from numerical residue or sensor noise.

Null-space reconfiguration under a lock

Secondary behavior is admitted exclusively through the projector 𝑁(𝑞) = 𝐼7 −

𝐽𝜆
#(𝑞)𝐽(𝑞) :

𝑞̇ = 𝐽𝜆
#𝑥̇lock ⏟

pose hold

+ 𝑁𝑞̇bias ⏟
reconfiguration

where 𝑞̇bias aggregates posture regulation, joint-limit margins, and safety-field

repulsion. Because damping introduces a small numerical residue, the controller

monitors the instantaneous leakage

ℓ = ‖𝐽(𝑞)𝑁(𝑞)𝑞̇bias ‖

in the same resolution as 𝐽 and scales 𝑁𝑞̇bias to enforce ℓ ≤ LEAK_THR. Leakage,

scale factor, and bounds compliance are recorded every cycle.

Lock variants (implemented)

Two variants are implemented and used in experiments:

• Full-pose lock (default): the 6-D 𝑥̇lock above holds both position and

attitude within POS_TOL and ROT_TOL.

• Orientation-only lock (ablations): the solver holds attitude rigidly while

allowing millimetric position accommodation. This is realized with a

selection matrix 𝑆 = diag(0 ⋅ 𝐼3, 𝐼3), applied as 𝑥̇lock ←

𝑆[𝐾𝑝
lock 𝑒𝑝; 𝐾𝜔

lock 𝑒𝜔] and 𝐽 ← 𝑆𝐽.

Orientation-only lock is used in ablations; the full-pose lock is the default for fixed-

TCP runs reported in Chapter 6.

66

Anti-drift measures and logging

Axis-angle errors are clamped to the injectivity radius; 𝑥̇lock is low-pass filtered

with a short time constant; integral action is disabled in null-space terms within a

guard band around the lock. The controller reports the drift metrics

𝛿𝑝(𝑡) = ‖𝑒𝑝(𝑡)‖, 𝛿𝜔(𝑡) = ‖𝑒𝜔(𝑡)‖

together with ℓ(𝑡) and the applied scale on 𝑁𝑞̇bias . All quantities are resolved

consistently with the Jacobian (base or tool frame) and time-aligned with the IK

solve, providing an auditable record that ties TCP immobility to the instantaneous

numerical state of the lock controller.

3.4 Trajectory time law for the TCP (Vector vs. LSPB)

This section defines how the tool-center-point (TCP) reference is generated in time

under two alternative laws that are used throughout the experiments: a continuous

vector-attractive field and a lane-standard linear–segment–parabolic–blend (LSPB)

profile. Both laws produce feasible, smooth target twists for the kinematic

controller, but they emphasize different priorities. The vector field favors

immediacy and reactivity to changing goals and safety cues, offering a memoryless

reference that can be redirected at any instant with minimal timing structure. LSPB,

in contrast, prescribes an explicit acceleration–cruise–deceleration envelope with

axis synchronization, bounded jerk at blend transitions, and well-defined start/stop

timing; it is therefore the natural choice when the supervisor must pause and later

resume progress without corrupting the intended schedule.

The presentation is deliberately operational and consistent with the rest of the

chapter: references are expressed in the world frame at the TCP, sampled on the

controller tick, and shaped so that commanded linear and angular rates remain

within the limits enforced by the kinematic layer. We first formalize the vector-

attractive baseline and discuss its responsiveness and lack of temporal guarantees,

then derive the discrete-time LSPB with synchronization and pause/resume

semantics compatible with the speed-and-separation monitor. We conclude with the

constraint-enforcement mechanisms common to both laws (velocity/acceleration

67

caps and command saturation) and specify the figures and tables used later for

reproducibility.

This section concerns TCP time laws used in the moving-TCP modes. In the fixed-

TCP mode, the TCP reference is held constant by §3.3.6, and only a null-space joint

motion is generated; hence no TCP time-parameterization is required here.

3.4.1 Vector-field TCP reference (moving target → repel → fixed target)

This subsection keeps the continuous, signal-driven reference but states the exact

law used to produce the TCP twist each control tick. The aim is to (i) approach a

moving target while it is in motion, (ii) produce immediate retreat when separation

must increase, and (iii) resume convergence to a fixed goal once RELEASE is

granted, all without re-planning or retiming.

Let the instantaneous desired TCP pose be

 0𝑇𝑇
des(𝑡) = [

 0𝑅𝑇
des(𝑡) 0𝑇

des(𝑡)

𝟎⊤ 1
]

From §3.3.1, define the pose error resolved in {0} :

𝑒𝑝 =
0𝑝𝑇
des − 0𝑝𝑇 , 𝑒𝜔 = log (

0𝑅𝑇
des 0𝑅𝑇

⊤)

Attraction to the (first moving then fixed) target is a proportional twist with

component-wise caps:

𝑣att = sat𝑣max(𝐾𝑝𝑒𝑝), 𝜔att = sat𝜔max(𝐾𝜔𝑒𝜔),

where 𝐾𝑝, 𝐾𝜔 ⪰ 0 are diagonal gains, and sat applies per-axis clamping to the

translational and angular rates as in §3.3.3.

LSPB commands are jerk-bounded and pause/resume-ready; on RESUME, the time

law continues from a consistent state to prevent discontinuities in 𝑥̇ task.

Repulsion is driven by the minimum distance 𝑑min from the TCP/link proxies to

the human capsules (declared in §3.5, instantiated in Chapter 4), together with a

unit direction 𝑛̂ pointing from the nearest human proxy toward the TCP (all in {0}).

68

A smooth shaping 𝜙(𝑑) increases as distance shrinks (zero beyond a comfort band),

e.g. logistic or reciprocal with hard caps. The repulsive twist is purely translational:

𝑣rep = 𝑘𝑟𝜙(𝑑min)𝑛̂, 𝜔rep = 𝟎,

with 𝑘𝑟 > 0 the repulsion gain and 𝜙(𝑑) = 0 for 𝑑 ≥ 𝑑free , 𝜙
′(𝑑) ≤ 0, and 𝜙(𝑑)

saturated at 𝑣max to preserve boundedness.

Supervisor blending enforces STOP/RELEASE hysteresis. Let 𝑤att , 𝑤rep ∈ [0,1]

be state-dependent weights:

 (𝑤att , 𝑤rep) =

{

(0,1) if 𝑑min ≤ RIF_STOP (HOLD/REPEL) ,
(𝛼, 1 − 𝛼) if RIF_STOP < 𝑑min < RIF_RELEASE, 𝛼 ∈ (0,1),
(1,0) if 𝑑min ≥ RIF_RELEASE (RESUME).

The instantaneous TCP twist command in {0} is

𝑥̇field = [
𝑣
𝜔
] = [

𝑤att 𝑣att + 𝑤rep 𝑣rep

𝑤att 𝜔att
]

then clamped by the global caps (𝑣max , 𝜔max) from §3.3.3:

𝑥̇task = sat(𝑣max,𝜔max)(𝑥̇field)

Supervisor hysteresis blends attraction and repulsion via (𝜔𝑎𝑡𝑡, 𝜔𝑟𝑒𝑝); stop and

release radii enforce non-chattering boundary behavior (see §3.5.3)

Discretization and mapping to joints follow the same kinematic stack used

elsewhere. At each control period Δ𝑡, the commanded joint rates are

𝑞̇ = 𝐽𝜆
#(𝑞)𝑥̇task + 𝑁(𝑞)𝑞̇bias

with 𝐽𝜆
the SVD-based damped pseudoinverse (adaptive 𝜆 per §3.3.3), 𝑁 = 𝐼 − 𝐽𝜆

#𝐽

the null-space projector, and 𝑞̇bias a small posture/limit bias (§3.3.5). Joint-rate

saturation (uniform scaling) is then applied to respect |𝑞̇𝑖| ≤ |𝑞̇|max ,𝑖. Because 𝑥̇task

depends only on the instantaneous error and distance cues, the same law seamlessly

(i) tracks a moving 0𝑇𝑇
des (𝑡) with no re-planning, (ii) produces decisive retreat

when 𝑑min enters the STOP band, and (iii) continues toward the fixed goal once

69

RELEASE is met. The null-space term preserves the tool behavior while reshaping

posture; leakage ‖𝐽𝑁𝑞̇bias ‖ is monitored and clipped under the threshold defined in

§3.3.5, ensuring the primary TCP objective remains pristine during approach, repel,

and resume.

3.4.2 LSPB time law for the TCP (pause/resume–ready)

To impose predictable timing and smooth rates on the TCP, we drive both

translation and orientation with a single scalar time law 𝑠(𝑡) ∈ [0,1] following a

linear-segment with parabolic blends (LSPB). The reference pose evolves as

 0𝑝𝑇
des(𝑡) = 0𝑝𝑇

0 + 𝑠(𝑡)Δ𝑝, 0𝑅𝑇
des(𝑡) = 𝑅0Exp(𝑠(𝑡)𝜃𝑢̂),

where Δ𝑝 = 0𝑝𝑇
𝑓
− 0𝑝𝑇

0, and 𝑅0
⊤𝑅𝑓 = Exp(𝜃𝑢̂) is the axis-angle gap between start

and goal (rightinvariant, 𝜃 ∈ [0, 𝜋]). Thus, the same normalized progress 𝑠(𝑡)

synchronizes linear and angular motion.

Profile construction (continuous time)

Given path length 𝐷 = ‖Δ𝑝‖ and angle 𝜃, we set bounds

𝑣max
lin , 𝑎max

lin , 𝜔max, 𝛼max

and compute the progress-space limits that satisfy both translation and rotation:

𝑠̇max = min(
𝑣max
lin

𝐷 + 𝜀
,
𝜔max
𝜃 + 𝜀

) , 𝑠̈max = min(
𝑎max
lin

𝐷 + 𝜀
,
𝛼max
𝜃 + 𝜀

),

with 𝜀 a tiny guard when 𝐷 or 𝜃 is near zero. The LSPB has three phases: accelerate

with 𝑠̈ = +𝑠̈max , cruise with 𝑠̇ = 𝑠̇max , and decelerate with 𝑠̈ = −𝑠̈max . Let

𝑡𝑎 =
𝑠̇max
𝑠̈max

, 𝑠𝑎 =
1

2
𝑠̈max𝑡𝑎

2 =
1

2

𝑠̇max
2

𝑠̈max

be the progress covered during acceleration. If 2𝑠𝑎 ≤ 1, there is a cruise phase with

duration

𝑡𝑐 =
1 − 2𝑠𝑎
𝑠̇max

, 𝑇 = 𝑡𝑎 + 𝑡𝑐 + 𝑡𝑎

70

Otherwise, the profile is triangular (no cruise). Set

𝑠̇peak = √𝑠̈max , 𝑡𝑎 =
𝑠̇peak

𝑠̈max

=
1

√𝑠̈max

, 𝑇 = 2𝑡𝑎, 𝑡𝑐 = 0,

after normalizing the total progress to 1, The resulting piecewise law is

𝑠̇(𝑡) = {

𝑠̈max𝑡, 0 ≤ 𝑡 < 𝑡𝑎,
𝑠̇max, 𝑡𝑎 ≤ 𝑡 < 𝑡𝑎 + 𝑡𝑐,
𝑠̈max(𝑇 − 𝑡), 𝑡𝑎 + 𝑡𝑐 ≤ 𝑡 ≤ 𝑇,

 𝑠(𝑡) = ∫  
𝑡

0

  𝑠̇(𝜏)𝑑𝜏, 𝑠(0) = 0, 𝑠(𝑇) = 1

Discrete-time realization (controller period 𝚫𝒕)

At each tick 𝑘 :

𝑠̇𝑘+1 = clip(𝑠̇𝑘 + Δ𝑡𝑠̈𝑘, 0, 𝑠̇max), 𝑠𝑘+1 = clip(𝑠𝑘 + Δ𝑡𝑠̇𝑘+1, 0,1),

with 𝑠̈𝑘 ∈ {+𝑠̈max , 0, −𝑠̈max } chosen by the phase scheduler. To bound discrete jerk,

we limit changes of 𝑠̈𝑘:

|𝑠̈𝑘+1 − 𝑠̈𝑘| ≤ 𝑗maxΔ𝑡

So; accelerations ramp between ±𝑠̈max over a few ticks rather than switching

instantaneously. The commanded twist sent to IK (resolved in {0} unless stated) is

𝑣𝑘
des = 𝑠̇𝑘

Δ𝑝

𝐷 + 𝜀
, 𝜔𝑘

des = 𝑠̇𝑘𝜃𝑢̂

with component-wise clamps ensuring ‖𝑣𝑘
des‖ ≤ 𝑣max

lin and ‖𝜔𝑘
des‖ ≤ 𝜔max. This

yields the task demand 𝑥̇task ,𝑘 = [𝑣𝑘
des ⊤ 𝜔𝑘

des ⊤]⊤ used in §3.3.

Axis synchronization

A single 𝑠(𝑡) guarantees that linear and angular segments

(accelerate/cruise/decelerate) start and finish together. The limits are selected by

the most restrictive of translational and rotational bounds, so timing is consistent

and predictable even when 𝜃/𝐷 varies across tasks.

Pause/resume semantics for SSM

When the supervisor asserts STOP (entry into the stop band), we freeze the time

law by setting 𝑠̈𝑘 → −𝑠̈max until 𝑠̇𝑘 → 0, then hold 𝑠̇𝑘 = 0 and keep 𝑠𝑘 constant;

71

the commanded twist goes smoothly to zero without overshoot. On RELEASE (exit

from the band and dwell satisfied), we resume from the stored (𝑠𝑘, 𝑠̇𝑘 = 0) and

rebuild the remaining LSPB with the current bounds, preserving continuity of 𝑠 and

𝑠̇ and keeping jerk within the discrete limit above. If the goal pose is updated during

a pause, we recompute Δ𝑝, 𝜃, 𝑢̂ using the current TCP pose as the new start and

continue from the same 𝑠𝑘 (thereby avoiding discontinuities).

Why this serves our cell

The LSPB grants (i) reproducible arrival times and segment durations, (ii)

synchronized translation-rotation with shared progress, (iii) bounded

velocities/accelerations and discrete-time jerk, and (iv) clean pause/resume that

interacts transparently with the supervisor. These properties make timelines and

latency analyses in Chapters 5–6 interpretable, and they align with the safety and

transparency requirements of collaborative operation.

3.4.3 Constraint enforcement: caps, saturation, and runtime monitors

This section formalizes how the TCP time-law (§3.4.1–§3.4.2) is executed safely

in discrete time. The goal is to ensure that commanded task twists and the resulting

joint motions remain within certified envelopes at every control tick, while

preserving the timing semantics of each mode (notably pause/resume in Scenario

4).

Task-space limits and scaling

Let the nominal task twist be 𝑥̇𝑘
nom = [𝑣𝑘

nom ⊤ 𝜔𝑘
nom ⊤]⊤. We first enforce

Euclidean-norm bounds with direction-preserving gains

𝛾𝑣 = min(1,
𝑣max
ln

‖𝑣𝑘
min‖

‖𝜀
) , 𝛾𝜔 = min(1,

𝜔max

‖𝜔𝑘
max‖

‖𝜀
),

and set 𝑣𝑘
cap
= 𝛾𝑣𝑣𝑘

nom , 𝜔𝑘
cap
= 𝛾𝜔𝜔𝑘

nom . If per-axis limits apply, we additionally

apply component-wise clipping:

[𝑣𝑘
sat]𝑖 = clip ([𝑣𝑘

cap
]
𝑖
, −𝑣max

(𝑖)
, 𝑣max
(𝑖)
),

72

(and analogously for 𝜔). These caps operate before IK so the solver receives

physically realizable demands.

Discrete acceleration and jerk limiting

To bound transients independently of the time-law, a rate limiter constrains the

increment from one tick to the next:

𝑥̇𝑘
lim = 𝑥̇𝑘−1

lim + clip(𝑥̇𝑘
sat − 𝑥̇𝑘−1

lim , −𝑎max
𝑥 Δ𝑡, 𝑎max

𝑥 Δ𝑡).

An optional slope-of-slope limiter bounds discrete jerk via ‖𝑥̈𝑘
lim − 𝑥̈𝑘−1

lim ‖ ≤ 𝑗max
𝑥 ,

with 𝑥̈𝑘
lim = (𝑥̇𝑘

lim −𝑥̇𝑘−1
lim)/Δ𝑡. These bounds are configured tighter than (

𝑠̈max, 𝑗max) from the LSPB profile so emergency decelerations remain smooth.

Joint-space feasibility

Using the DLS IK of §3.3

𝑞̇𝑘
nom = 𝐽𝑘

#𝑥̇𝑘
lim + 𝑁𝑘𝑞̇𝑘

ns,

we enforce joint-velocity limits via uniform scaling followed by per-joint clipping:

𝛽 = min
𝑖
 min(1,

𝑞̇m
(𝐼)

|𝑞̇𝑘
max | ⋅∣ +𝜀

) , 𝑞̇𝑘
cmd = clip(𝛽𝑞̇𝑘

nom , −𝑞̇max , 𝑞̇max)

Position limits are handled by biasing the null-space command 𝑞̇𝑘
ns away from

bounds (barrier or quadratic wells), with the velocity caps guaranteeing

instantaneous safety when bias is insufficient. Thresholds are declared in §3.5 and

validated in §3.6.

Command validity and hold-last-safe

If any of the following occurs at tick 𝑘-IK failure or excessive 𝜅(𝐽𝑘), stale/invalid

target timestamps beyond LAT_THR, or unattainable acceleration/jerk-the

controller transitions to a hold-last-safe policy:

𝑞̇𝑘
cmd ← rate_limit(𝟎, 𝑞̇𝑘−1

cmd, 𝑎max
𝑞 Δ𝑡),

ensuring a smooth deceleration to rest while maintaining stability.

73

Runtime monitors and health flags

Lightweight runtime monitors execute each tick:

• Timing monitor: if a control-loop overrun exceeds TICK_THR, set

MON_TICK=1 and enter hold-last-safe.

• Velocity monitor: if any |𝑞̇𝑖| > 𝑞̇max

(𝑖)
+ 𝛿, set MON_QDOT = 1, hard-

clip, and log the event.

• Target-stream monitor: if target age > STREAM_THR, set

MON_STREAM = 1, freeze the time-law 𝑠(𝑡) (pause semantics), and hold.

• Saturation persistence counter: if 𝛽 < 1 or any component clip persists

for 𝑁sat ticks, raise SAT_PERSIST for later analysis (§6).

Interaction between sceanrios

• Scenario 1 (vector attractive TCP, no human): the proportional twist to

a moving target (§3.4.1) is bounded by the task-space caps and rate limiters

above; the IK then enforces joint feasibility.

• Scenario 2 (scenario 1 + repulsive field): identical timing and capping as

Base 1, but the task twist is modulated by a repulsive component derived

from human-proximity distances (introduced in Ch. 4). Constraint

enforcement remains identical; only the input 𝑥̇𝑘
nom differs.

• Scenario 3 (LSPB TCP, no human): the LSPB time-law (§3.4.2) already

shapes 𝑥̇ with bounded accel/jerk; our limiters ensure feasibility under goal

updates.

• Scenario 4 (LSPB + SSM pause/resume): same as scenario 3, with the

target-stream monitor implementing STOP/RELEASE semantics by

freezing or resuming the phase 𝑠(𝑡).

• Scenario 5 (fixed-TCP null-space avoidance): joint caps apply after null-

space projection. If enforcing joint limits would otherwise corrupt the TCP

task, we first scale 𝑥̇ uniformly (task-space scaling) to preserve task

integrity.

74

3.5 Safety variables and thresholds (declared here, used later)

This section declares the global safety variables, units, and semantics used

throughout Chapters 4–6. They serve two purposes: (i) to make the control logic in

§3.4 unambiguous, and (ii) to ensure every experiment logs comparable, audit-

ready signals.

3.5.1 Coordinate conventions and units

All distances and positions are expressed in meters in the world frame {0}.

Rotations are parameterized either by axis–angle (radians) or quaternion (unit

norm); angular errors are reported as minimal-angle magnitudes in radians unless

stated otherwise. Rates are per-second; timestamps are UTC with millisecond

resolution.

3.5.2 Core tolerances

• POS_TOL [m]: maximum admissible Euclidean position error at the TCP

before a position-converged flag is raised. Used by: stop/resume checks

(§4.4), success criteria (§6).

• ROT_TOL [rad]: maximum admissible orientation error (angle of

𝑅des 𝑅
⊤). Entering/leaving the orientation-hold band is determined by this

threshold.

• VEL_TOL [𝐦/𝐬], [𝐫𝐚𝐝/𝐬]: small-band threshold below which the TCP is

treated as stationary for state transitions.

3.5.3 Repulsion and SSM thresholds

Let 𝑑 denote the minimum distance between any human capsule and any robot

proxy (defined in Ch. 4).

• RIF_STOP [𝐦]: enter-stop threshold. When 𝑑 ≤ RIF_STOP, the

supervisor forces STOP (scenario 4) or maximum repulsion (scenario 2),

regardless of attractive commands.

• RIF_RELEASE [m]: exit-stop threshold. Normal operation resumes only

when 𝑑 ≥ RIF_RELEASE and the dwell condition holds (§4.4). Hysteresis

requires RIF_RELEASE > RIF_STOP.

75

• DWELL_SSM [s]: minimum time the system must remain continuously

outside the stop band before RELEASE, to avoid chatter.

• RIF_GAIN_MAX [-]: upper bound on the repulsive-field gain used to

shape the task twist in scenario 2; ensures bounded commanded velocities.

3.5.4 Fixed-TCP avoidance and leakage

For scenario 5 (null-space avoidance with a fixed TCP):

• LEAK_THR [m/s], [rad/s]: maximum admissible task-space leakage

induced by joint-limit handling or null-space injections, quantified as

‖Δ𝑥̇TCP ‖ between pre/post projection. If exceeded, uniform taskspace

scaling is applied (§4.5), and an event is logged.

• NS_GAIN_MAX [-]: bound on the null-space step to keep avoidance

smooth and secondary to the primary task.

• LAT_THR [s]: maximum allowed age of the target/pose stream; if

exceeded, the time law is frozen (scenario 4 pause semantics) and hold-last-

safe is engaged (§3.4.3).

• TICK_THR [s]: maximum allowed control-loop overrun before triggering

a timing fault and smooth deceleration to rest. Caps are applied before

inversion; joint-space limits are enforced uniformly across modes to keep

behavior consistent.

• 𝒗max
lin , 𝝎max [𝐦/𝐬], [𝐫𝐚𝐝/𝐬] : task-space speed caps used in §3.4.3.

• 𝒂max
𝒙 , 𝒋max

𝒙 [𝐦/𝐬𝟐], [𝐦/𝐬𝟑] and rotational counterparts: task-space

acceleration/jerk caps (independent of LSPB).

• 𝒒̇max , 𝒂max

𝒒
[𝐫𝐚𝐝/𝐬], [𝐫𝐚𝐝/𝐬𝟐] : joint-space limits used uniformly across

modes.

3.5.5 Health flags and logging schema

At every control tick the following health flags are evaluated and logged alongside

raw signals:

• MON_TICK (timing overrun > TICK_THR)

76

• MON_STREAM (target age > LAT_THR)

• IK_FAIL (solver failure or 𝜅(𝐽) over limit)

• SAT_PERSIST (velocity/acceleration saturation sustained > 𝑁sat ticks)

• LEAK_EVT (task leakage > LEAK_THR in scenario 5)

• RESUME_OK (pause/resume cycle completed without chattering at

thresholds)

• SSM_STATE ∈ { Approach, Hold, Repel, Resume, Stop } (Scenarios 2 and

5, §4.4)

Logs include: (i) target/TCP poses and errors, (ii) task twists pre/post capping, (iii)

joint velocities/torques, (iv) min distances and nearest-pair IDs, (V) mode/state

variables, (vi) timestamps and loop periods. Files are stored per run with immutable

metadata: seed, configuration hash, software versions, and scene manifest (§5.4).

3.5.6 Defaults and calibration pointers

Nominal default values are provided as starting points and are refined in §3.6.3 via

a calibration sweep. Hysteresis pairs (RIF_STOP, RIF_RELEASE) are set from

capsule radii and sensing noise; tolerances (POS_TOL, ROT_TOL) reflect

controller accuracy at steady state; latency guard LAT_THR derives from the end-

to-end budget in §3.6.2.

3.6 Identification and validation of the model

This section establishes how the kinematic model and its use in the controller are

verified before any experimental runs are accepted. The objective is to demonstrate,

with traceable evidence, that (i) the analytic Jacobian implemented in the stack

matches the scene-consistent forward kinematics to within tight numerical

tolerances, (ii) the end-to-end timing of sensing, decision, and actuation respects

the controller period with quantified latency and jitter, (iii) the tolerances and

thresholds declared in Chapter 3 are calibrated against observed behavior rather

than chosen ad hoc, and (iv) every result is reproducible from versioned

configurations and logged artifacts.

77

The validation proceeds along four axes. First, Jacobian correctness is checked by

unit tests that compare analytic columns against finite-difference estimates of the

forward kinematics at randomized joint configurations spanning the feasible set;

pass/fail thresholds are defined a priori in both translational and rotational

components. Second, a timing and latency budget is measured under the same

synchronous stepping used in experiments: the pipeline from distance updates and

state acquisition to command emission is instrumented, the distribution of latencies

is reported, and an overrun policy is enforced whenever the measured delay

approaches the controller period. Third, the operational tolerances and safety

thresholds introduced earlier—position and orientation bands for the TCP,

separation hysteresis for stop and release, and the leakage bound for null-space

actions—are calibrated by sweeps that trade tracking performance against safety

margins; the chosen values are those that satisfy the pass criteria while preserving

transparency of motion. Fourth, reproducibility is guaranteed by storing

configuration files, seeds, and version hashes together with run manifests, so that

any table or figure can be regenerated exactly.

3.6.1 Finite-difference vs. analytic; unit tests; pass/fail

Before any experiment is admitted, the geometric Jacobian implemented in the

stack is verified against finite-difference estimates of the forward kinematics

generated from the same, scene-consistent link frames (§3.2). The goal is to prove

that each analytic column correctly maps an infinitesimal change in the

corresponding joint to the induced instantaneous linear and angular velocity at the

TCP, under the declared frame resolution.

Protocol and test set

We validate on a fixed-size batch of 500 joint configurations drawn uniformly

within the conservative joint limits (§3.2), with a 5° margin from each bound to

avoid hard-limit artifacts. A deterministic seed fixes the sample set for

reproducibility. All quantities are resolved in the base/world frame {0}; a mirrored

run repeats the checks in the tool frame {T} using the rigid rotation described in

§3.3.2, and the two outcomes are cross-checked for consistency.

78

Finite-difference model (ground truth)

For each configuration q and each joint index j ∈ {1, … ,7}, we evaluate the forward

kinematics at q ± he, j with a central step h = 10−6rad(ejj is the j -th basis vector).

The translational column "truth" is formed as

𝐽𝑣,−𝑗 =
 0𝑝𝑇(𝑞 + ℎ𝑒𝑗) −

0𝑝𝑇(𝑞 − ℎ𝑒𝑗)

2ℎ
∈ ℝ3

and the rotational column "truth" uses the right-invariant orientation increment via

the matrix logarithm:

𝐽𝜔,−𝑗 =
log (0𝑅𝑇(𝑞)

⊤ 0𝑅𝑇(𝑞 + ℎ𝑒𝑗)) − log (
0𝑅𝑇(𝑞)

⊤ 0𝑅𝑇(𝑞 − ℎ𝑒𝑗))

2ℎ
∈ ℝ3.

This yields a numerically robust estimate of the instantaneous twist induced by joint

j, directly comparable to the analytic column 𝐽.𝑗 = [𝐽𝑣,.𝑗
⊤ 𝐽𝜔,.𝑗

⊤]
⊤

.

Error metrics and aggregation

For each (𝑞1, 𝑗) we compute absolute and relative errors

𝑒𝑣,𝑗
abs = ‖𝐽𝑣,𝑗 − 𝐽𝑣,𝑗‖2, 𝑒𝜔,𝑗

abs = ‖𝐽𝜔,𝑗 − 𝐽𝜔,𝑗‖2,

𝑒𝑣,𝑗
rel =

𝑒𝑣,𝑗
abs

max (‖𝐽𝑣,𝑗‖2, 𝜀𝑣)
, 𝑒𝜔,𝑗

rel =
𝑒𝜔,𝑗
abs

max (‖𝐽𝜔,𝑗‖2, 𝜀𝜔)
,

with 𝜀𝑣 = 10
−9 and 𝜀𝜔 = 10

−9 to avoid division by very small denominators. We

report, per run: (i) the maxima over all columns ("worst column"), (ii) the 95th

percentiles (robust spread), and (iii) means (central tendency). In parallel, the

Jacobian's condition number 𝜅(𝐽) is recorded to contextualize errors near singular

neighborhoods.

Pass/fail thresholds (applied deterministically)

A validation run passes if all the following are satisfied simultaneously:

• Worst-column absolute errors: max𝑞,𝑗  𝑒𝑣,𝑗
abs ≤ 5 × 10−6 m and

max𝑞,𝑗  𝑒𝜔,𝑗
abs ≤ 5 × 10−6rad.

79

• Robust relative errors: 95th percentiles satisfy 𝑒𝑣,𝑗
rel ≤ 1 × 10−4 and

𝑒𝜔,𝑗
rel ≤ 1 × 10−4.

• Frame-consistency check: for every q,

‖blkdiag(𝑅𝑇
⊤, 𝑅𝑇

⊤)𝐽{0}(𝑞) − 𝐽{𝑇}(𝑞)‖𝐹
≤ 10−8,

ensuring the base-resolved and tool-resolved Jacobians are rigidly consistent.

• SVD projector check: the projector 𝑁 = 𝐼7 − 𝐽𝜆
#𝐽 (with the same DLS

settings used in control) satisfies ‖𝐽𝑁‖𝐹 ≤ 10
−8, confirming that the null-

space action is orthogonal to the primary task numerically.

Implementation notes (traceability)

All quantities are computed with the same forward-kinematics function used in the

controller, ensuring that the comparison isolates the Jacobian construction rather

than mixing models. The step h is small enough to capture the local derivative while

remaining above machine epsilon for the scale of the scene; we log (ℎ, 𝜀𝑣, 𝜀𝜔), the

random seed, joint limits, and the full set of maxima/percentiles so that the table of

validation metrics (Table 3.5) can be regenerated exactly. Any configuration with

𝜅(𝐽) exceeding 108 is still included; large relative errors in such cases are expected

and are discussed separately in the identification notes, but the absolute error

criteria above remain the formal pass conditions.

Outcome artifacts

The unit-test harness emits: (i) a CSV of per-sample, per-joint errors

(𝑒𝑣,𝑗
abs, 𝑒𝜔,𝑗

abs, 𝑒𝑣,𝑗
rel, 𝑒𝜔,𝑗

rel , 𝜅(𝐽)); (ii) a summary row with worst, 95th-percentile, and

mean values; (iii) the frame-consistency residuals and projector residuals; and (iv)

a pass/fail flag. These are the inputs for Table 3.5 (validation metrics & pass

criteria) referenced at the end of §3.6.

3.6.2 Timing and latency budget (controller tick vs. physics step; end-to-end

latency; overrun policy)

Reliable interpretation of results requires that sensing, control, and actuation

advance with a known cadence and bounded delay. This subsection fixes the timing

model used across all experiments, the method used to measure end-to-end latency,

80

the acceptance thresholds, and the policy applied whenever a cycle risks

overrunning its budget.

Timing model and notation

The controller runs with a fixed period 𝑇𝑐 (tick rate 𝑓𝑐 = 1/𝑇𝑐). The simulator's

physics integrator advances with step 𝑇𝑝 (rate 𝑓𝑝 = 1/𝑇𝑝). We operate the scene in

synchronous mode with 𝑇𝑝 chosen as a submultiple of 𝑇𝑐 (default 𝑇𝑐 = 5 ms, 𝑇𝑝 =

1 ms), so one control tick wraps five physics substeps. Within a tick, the end-to-

end delay from sensing to actuation is decomposed as

𝐿e 2 e = 𝐿sense + 𝐿queue + 𝐿comp + 𝐿commit ,

where 𝐿sense is the time between the physics state at the sampling instant and

stamped availability of joint/pose signals, 𝐿queue is any middleware/buffer delay,

𝐿comp is the wall-time for the control computation (FK/Jacobian, SVD/DLS,

references, supervision), and 𝐿commit is the time to deliver the command to the

simulator's actuator at the next integrator boundary. We track loop jitter as

Δ𝑇𝑐(𝑘) = 𝑇𝑐
actual (𝑘) − 𝑇𝑐.

Measurement procedure

All timing is measured on a single monotonic clock used by the synchronous

stepping loop. Each control cycle logs: (i) tick start time 𝑡𝑘; (ii) timestamp of the

physics state sampled 𝑡̂𝑘; (iii) computation start/stop: (iv) command commit time.

From these we compute per-cycle 𝐿sense , 𝐿queue , 𝐿comp , 𝐿commit , 𝐿e2e and Δ𝑇𝑐. A

mirrored run is recorded with the Jacobian resolved in {𝑇} to confirm resolution

choice has no timing side-effects (it does not change timings by design). The

emitted artifact (for Fig. 3.4) is a histogram of 𝐿e2e with overlays for mean, median,

𝑝95, 𝑝99, and maximum, plus a separate plot of Δ𝑇𝑐 over time to visualize burstiness.

Budget and acceptance thresholds (applied deterministically)

We partition the control period into a hard budget for computation and a soft budget

for I/O:

𝐿comp ≤ 𝛽𝑇𝑐, 𝐿sense + 𝐿queue + 𝐿commit ≤ (1 − 𝛽)𝑇𝑐

81

with 𝛽 = 0.6 by default. A run is admitted if all hold:

• Mean end-to-end delay 𝐿‾e2e ≤ 0.7𝑇𝑐:

• 𝑝95(𝐿e2e) ≤ 0.85𝑇𝑐 and 𝑝99(𝐿e2e) ≤ 0.95𝑇𝑐;

• Worst-case jitter |Δ𝑇𝑐|max ≤ 0.2 ms (for 𝑇𝑐 = 5 ms); RMS jitter ≤

0.05 ms;

• Overrun rate (cycles with 𝐿e2e > 𝑇𝑐) equals 0 over the validation window;

if nonzero during development sweeps, it must be < 10−4 and cannot

cluster (no more than one overrun in any 1-s window).

Overrun detection and hold-last-safe policy

An overrun is declared at tick 𝑘 if 𝑡𝑘 + 𝐿𝑒2𝑒 ≥ 𝑡𝑘 + 𝑇𝑐. In that case the system:

1. freezes the commanded twist and joint rates for the upcoming tick (hold-

last-safe);

2. stamps a health flag (OVERRUN=1) and increments a counter;

3. drops any queued intermediate sensor updates to realign sampling to the

next physics boundary:

4. reduces internal task gains by a factor 𝜂 ∈ (0,1) (default 𝜂 = 0.7) for the

next tick to avoid a second consecutive overrun.

If two consecutive overruns occur, the supervisor asserts a PAUSE, which zeroes

the task demand, preserves the last valid posture, and resumes only after a clean

tick with 𝐿𝑒2𝑒 < 0.7𝑇𝑐. All events are logged with cycle indices for post-hoc

traceability.

Synchronization choices and drift control

Because the loop is simulator-paced, drift between controller and physics time is

structurally prevented: the next control tick cannot start until the physics step

acknowledges the prior commit. To forestall numeric drift in the down-counter, the

scheduler re-anchors to the simulator epoch every 100 ticks (configurable) and logs

the re-anchor residual (target < 20𝜇 s).

82

Notes on interplay with controllers

The timing budget is identical across vector-field and LSPB reference generators;

LSPB adds a negligible lookup/interpolation cost absorbed in 𝐿𝑐𝑜𝑚𝑝. Null-space

computations reuse the same SVD already computed for DLS, so they do not

change the asymptotic cost; their presence is nevertheless recorded in the log header

for completeness.

3.6.3 Tolerance and threshold calibration (POS/ROT tolerances;

STOP/RELEASE bands; leak threshold protocol)

This subsection fixes how tracking tolerances and supervisory thresholds are

selected so that all later experiments are executed under declared margins. The goal

is to set values that are tight enough to be informative and reproducible, yet

conservative enough to avoid spurious interventions.

Scope and notation

We calibrate: (i) the TCP tracking tolerances POS_TOL (meters) and ROT_TOL

(radians) used to judge regulation; (ii) the STOP/RELEASE separation bands

(RIF_STOP, RIF_RELEASE) used by the supervisor; and (iii) the null-space leak

threshold LEAK_THR that limits corruption of the primary task. All distances are

world-frame, all orientation errors use the axis-angle norm from §3.3.1 , and

leakage is measured as ‖𝐽𝑁𝑞̇bias ‖ using the same Jacobian resolution chosen for

control (recorded in the log header).

Calibration procedure-TCP tolerances

• Static posture hold (noise floor). With the robot immobilized in the

simulator (no reference motion), we log 30 s of TCP pose to estimate the

sensor/quantization floor: 𝜎𝑝(m) and 𝜎𝜔(rad). We require these floors to

be at least an order of magnitude below the eventual tolerances.

• Ramp-in regulation (closed-loop capability). We command exponentially

decaying references to the current pose and measure steady-state residuals

𝑒‾𝑝, 𝑒‾𝜔 after transients (last 10 s).

83

• Tolerance selection. We set POS_TOL = 𝑘𝑝max(𝜎𝑝, 𝑒‾𝑝) and ROT_TOL =

𝑘𝜔max(𝜎𝜔 , 𝑒‾𝜔) with 𝑘𝑝 = 𝑘𝜔 = 5 by default. These multipliers ensure

false positives are rare while keeping bounds informative.

• Validation. We replay nominal trajectories (vector and LSPB) and verify

that at least 99% of samples satisfy ‖𝑒𝑝‖ ≤ POS_TOL and ‖𝑒𝜔‖ ≤

ROT_TOL; violations trigger either gain retuning or tolerance reestimation.

Calibration procedure-STOP/RELEASE hysteresis

• Distance trace acquisition. With the human avatar approaching and

receding along representative paths, we log the minimum robot-human

distance 𝑑min(𝑡) (capsule-proxy model from Ch. 4).

• Band placement. We set RIF_STOP at the smallest distance for which

the supervisor must pause to guarantee clearance under worst-case

approach rates, and RIF_RELEASE > RIF_STOP to introduce

hysteresis. Practically, we sweep candidate pairs over a grid and

simulate approach-hold-resume episodes; for each pair we measure stop

latency, minimum achieved clearance, and chatter events.

• Acceptance. Choose the smallest RIF_STOP that yields a measured

minimum clearance ≥ 𝑑req (declared in Ch. 4) with zero chatter, and the

smallest RIF_RELEASE that guarantees resume only after the clearance

has exceeded RIF_STOP by at least Δ𝑑hyst (default 0.05 m). The

selected pair is fixed for all experiments of the same sensing fidelity and

controller period.

Calibration procedure-null-space leak threshold

• Baseline measurement. With the primary task active and a neutral bias

𝑞̇bias = 0, we measure ‖𝐽𝑁𝑞̇bias ‖ to characterize numerical leakage (should

be ∼ 0 within solver precision).

• Bias injection sweeps. We inject bounded biases representative of posture

shifts and repulsion fields (magnitudes spaced logarithmically), compute

84

the resulting leakage, and record how much of the bias penetrates the

primary task.

• Threshold choice. We set LEAK_THR to the largest value that preserves

the primary task within tolerances, i.e., the smallest threshold for which the

induced task error remains ≤ POS_TOL/ROT_TOL over all sweeps. In

practice, LEAK_THR is chosen near the 95th percentile of observed

leakage under maximum expected bias.

3.6.4 Reproducibility artifacts (configs, seeds, version hashes, run manifests)

To make every result in this chapter independently repeatable, we fix a concrete set

of artifacts that capture the full provenance of each experiment. The intent is that a

reader can re-execute any run and obtain numerically consistent traces (up to

floating-point noise) by relying only on these artifacts. This subsection defines what

is stored, how it is named, and how integrity is verified.

Scope and guiding principles

We record the exact code and scene versions used; the full configuration (including

safety thresholds and time-law parameters); all random seeds; the execution

environment; and the outputs with units and sampling rates. Artifacts are organized

so that (i) one manifest describes one run end-to-end, (ii) content hashes guarantee

immutability, and (iii) any non-determinism is bounded and disclosed.

3.7 Conclusions

This chapter established the kinematic foundation and supervisory scaffolding on

which the remainder of the thesis is built. We began by motivating the use of a 6×7,

velocity-level formulation for a 7-DoF Franka Emika Panda operating in a

collaborative cell and by fixing the scene-consistent frames, limits, and link proxies

that make simulation runs reproducible and transferable to hardware. Forward

kinematics and a small-angle, axis–angle pose-error definition were formalized to

avoid parametrization singularities while remaining well-conditioned for

incremental corrections typical of supervised collaboration. The geometric

Jacobian was derived directly from the simulator-aligned link frames, with explicit

frame-resolution conventions and verification procedures to ensure agreement

between analytic and finite-difference evaluations.

85

Building on these primitives, we specified the inverse-kinematics operator used

throughout: a damped least-squares pseudoinverse constructed from the Jacobian’s

SVD, with adaptive damping tied to conditioning, bounded twist inputs, and

uniform joint-rate saturations. We complemented these choices with manipulability

and conditioning metrics that define safe neighborhoods and guide gain/damping

schedules as the arm approaches singular regions or joint-limit boundaries. On top

of the primary TCP task, we introduced the task-priority composition that preserves

the tool objective while allocating the null space to posture shaping and later,

human-aware safety behaviors. A quantitative leak guard was defined to certify that

secondary actions do not corrupt the primary task. For scenarios requiring an

unmoving tool, we formalized orientation locking so that fixed-TCP constraints can

coexist with null-space reconfiguration.

Time-law generation for the TCP was then framed along two complementary paths.

A continuous vector-attractive reference offers responsiveness and simplicity and

serves as the baseline for approach/repel behaviors when tracking a moving target

before converging to a fixed goal. In contrast, the LSPB scheme imposes an explicit

accelerate–cruise–decelerate structure with axis synchronization, bounded jerk in

discrete time, and well-defined pause/resume semantics that align with the

supervisor’s STOP/RELEASE logic. Constraint enforcement—velocity and

acceleration caps, command saturation, and cycle-integrity monitors—was

specified so that reference generation, inversion, and supervision operate within

declared limits and remain diagnosable from logs.

Finally, we consolidated the safety variables and thresholds that recur across

chapters (distances in the world frame, STOP/RELEASE hysteresis bands with

dwell, tracking tolerances, and the leak threshold) and fixed the identification-and-

validation procedures. These include Jacobian unit tests against finite differences,

an end-to-end timing/latency budget with a hold-last-safe policy on overruns,

tolerance/threshold calibration protocols, and a full set of reproducibility artifacts

(manifests, seeds, version hashes, and run bundles) that anchor every reported

figure and table.

86

Chapter 4

Human Model, Distances and Safety Behaviors

Chapter 4 formalizes the human–robot interaction layer used in the experiments.

Starting from time-stamped human pose streams, we construct skeleton-derived

capsules that serve as collision proxies, define reference-frame distances and a

budgeted nearest-pair query, and build two safety behaviors on this foundation:

continuous repulsive fields blended with the posture bias for smooth approach–

repel transitions (Scenario 2), and a supervisor with explicit STOP/RELEASE

hysteresis that pauses and resumes an LSPB TCP time law without corrupting its

schedule (Scenario 4). The framework is then extended to fixed-TCP avoidance in

redundant kinematics (Scenario 5), where the full 6-DoF task is preserved and

avoidance acts in the null space.

All variables required by the subsequent chapters are declared here, including

distance definitions, tolerances, STOP/RELEASE bands, and leak thresholds,

together with logging flags for experiment health. Section 4.1 introduces the pose

sources, filtering, and capsule layout; Section 4.2 specifies the distance

computation and computational budget; Section 4.3 presents the repulsive field

shaping and blending with the posture bias; Section 4.4 describes the finite-state

supervisor and its timing guarantees; Section 4.5 develops fixed-TCP null-space

avoidance and orientation locking; Section 4.6 discusses stability and transparency

considerations.

87

4.1 Human pose streams to skeleton-derived capsules

This section formalizes how 3D joint streams are transformed into a compact proxy

used by the safety modules and by the simulator mannequin.

4.1.1 Input and world alignment

Let the sensing frame be {K} and the global laboratory frame be {0}. At time t the

sensor delivers joint positions

 𝐾𝑝𝑖(𝑡) ∈ ℝ
3, 𝑖 ∈ 𝒥

for the set 𝒥 = {HC, SC, Head, LS, LE, LW, RS, RE, RW, ...} (hip center, shoulder

center, head, left/right shoulder, elbow, wrist, etc.). After causal filtering and gap

filling, positions are mapped to {0} via a fixed rigid transform

 0𝑝𝑖(𝑡) =
0𝑅𝐾

𝐾𝑝𝑖(𝑡) +
0𝑝𝐾,

with

 0𝑅𝐾 = 𝑅𝑧(−135
∘), 0𝑝𝐾 ∈ ℝ

3,

chosen so that the hip line aligns with the table edge and the floor height is

consistent with the robot scene. All subsequent computations use 𝑝𝑖(𝑡) in meters

[11, 16].

4.1.2 Local anatomical frames and mannequin actuation

Denote right-side triplet (RS, RE, RW) and left-side triplet (LS, LE, LW). Unit

directions are built from adjacent segments.

Torso frame about the shoulder center SC:

𝑧̂torso =
 9𝑝SC −

9𝑝HC
‖ 0𝑝SC − 9𝑝HC‖

, 𝑦̂torso =
𝑧̂torso × (

0𝑝LS −
9𝑝RS)

‖𝑧̂torso × (0𝑝LS − 0𝑝RS)‖
 ,

𝑥̂torso = 𝑦̂torso × 𝑧̂torso

The corresponding rotation is

 torso 𝑅0 = [𝑥̂torso 𝑦̂torso 𝑧̂torso]
⊤

88

Right shoulder frame at RS:

𝑥̂RS =
 0𝑝RS −

0𝑝RE
‖ 0𝑝RS − 0𝑝RE‖

, 𝑧̂RS =
(0𝑝RW −

0𝑝RE) × (
0𝑝RS −

0𝑝RE)

‖(0𝑝RW − 0𝑝RE) × (0𝑝RS − 0𝑝RE)‖
,

 𝑦̂RS = 𝑧̂RS × 𝑥̂RS,
RS𝑅0 = [𝑥̂RS𝑦̂RS𝑧̂RS]

⊤.

Left shoulder frame at LS (sign convention matches the mannequin):

𝑥̂LS = −
 0𝑝LE −

0𝑝LS
‖ 0𝑝LE − 0𝑝LS‖

, 𝑧̂LS =
(0𝑝LS −

0𝑝LE) × (
0𝑝LW −

0𝑝LE)

‖(0𝑝LS − 0𝑝LE) × (0𝑝LW − 0𝑝LE)‖
,

𝑦̂LS = 𝑧̂LS × 𝑥̂LS, LS𝑅0 = [𝑥̂LS𝑦̂LS𝑧̂LS]
⊤

Skeleton timestamps and frame validity flags are preserved end-to-end and used by

the supervisor during gating (see §5.1).

Elbow flexion angles (for revolute elbows) follow from relative orientations. With

forearm frames RE𝑅0 and LE𝑅0 built from the segments (RE → RW) and (LE →

LW), the right-elbow rotation in the upper-arm frame is

 RS𝑅RE =
RS𝑅0

0𝑅RE, 𝜃R-elbow = EA123(
RS𝑅RE)3

and similarly for the left elbow, where EA123(⋅)3 extracts the third XYZ Euler angle

used by the mannequin. Shoulder and torso spherical joints are commanded directly

via the corresponding direction-cosine matrices RS𝑅0,
LS𝑅0, and torso 𝑅0 flattened

in column-major order.

4.1.3 Capsule proxy set

The skeleton is reduced to six convex proxies updated at the sensor rate:

𝒞(𝑡) = {(𝑎𝑐(𝑡), 𝑏𝑐(𝑡), 𝑟𝑐) ∣ 𝑐 = 1, … ,5} ∪ {(ℎ(𝑡), 𝑟𝐻)},

with endpoints

𝑐 = 1: (𝑎1, 𝑏1) = (
0𝑝RS,

0𝑝RE), 𝑐 = 2: (𝑎2, 𝑏2) = (
0𝑝RE,

0𝑝RW),

𝑐 = 3: (𝑎3, 𝑏3) = (
0𝑝LS,

0𝑝LE), 𝑐 = 4: (𝑎4, 𝑏4) = (
0𝑝LE,

0𝑝LW),

𝑐 = 5: (𝑎5, 𝑏5) = (
0𝑝Abd,

0𝑝Spine), ℎ(𝑡) = 0𝑝Head.

89

Radii {𝑟𝑐} are conservative constants that cover soft tissue, clothing, and residual

pose noise. Default values used in experiments are reported in Table 4.1. This table

lists per-segment radii in “meters” and is reused unchanged in Chapters 5–6.

Parameter Symbol Value Unit

Max task speed (cruise cap) v_max 1.2 m/s

Max task acceleration (braking

cap)

a_max 1.2 m/s²

Acceptance / deadband r_accept 0.05 m

Pause dwell (down) T↓ 0.25 s

Final hold duration T_hold 2.0 s

Stop radius r_stop 0.25 m

Release radius r_release 0.28 m

Joint speed cap ||q̇||_∞ 1.0 rad/s

Per-tick step cap step_cap 6 deg/step

Linearization radius d_lin 0.20 m

Damping factor λ — –

Posture weight w_post — –

Repulsion weight w_rep — –

Joint-limit weight w_lim — –

Manipulability weight w_m — –

Joint-limit margin Δq_lim — rad

Table 4.1: Velocity/acceleration caps, damping λ, acceptance radius, pause/resume dwell times,

hysteresis bands (r_stop, r_release), posture weights (w_post), repulsion weights (w_rep), joint-limit

margins, manipulability weight (w_m); SI units.

4.1.4 Signed distance to a capsule

For any query point 𝑝 ∈ ℝ3 and capsule (𝑎, 𝑏, 𝑟),

𝜆∗ = clip[0,1] (
(𝑝 − 𝑎)⊤(𝑏 − 𝑎)

‖𝑏 − 𝑎‖2
) , 𝜋(𝑝) = 𝑎 + 𝜆∗(𝑏 − 𝑎),

𝑑cap (𝑝; 𝑎, 𝑏, 𝑟) = ‖𝑝 − 𝜋(𝑝)‖ − 𝑟.

For a head sphere (ℎ, 𝑟𝐻), 𝑑sph(𝑝; ℎ, 𝑟𝐻) = ‖𝑝 − ℎ‖ − 𝑟𝐻. The instantaneous

human-proxy distance field is the minimum over the set,

𝑑human (𝑝, 𝑡) = min (min
𝑐=1,…,5

 𝑑cap (𝑝; 𝑎𝑐(𝑡), 𝑏𝑐(𝑡), 𝑟𝑐), 𝑑sph (𝑝; ℎ(𝑡), 𝑟𝐻)).

90

4.1.5 Timing and coherence

All joint samples 0𝑝𝑖(𝑡) carry time stamps. A hold-last-good policy provides a

coherent snapshot { 0𝑝𝑖(𝑡̂)} to the safety layer when a new frame is late, and frames

flagged as unreliable by the front-end filter are not propagated downstream.

4.2 Clearance distances and minimum-distance query

4.2.1 Robot points of interest

Let the robot be instrumented with a finite set of witness points 𝒫𝑟 = {𝑝𝑘}𝑘=1
𝑁𝑟 ⊂ ℝ3

expressed in the world frame {0}. At time 𝑡,

𝑝𝑘(𝑡) = 𝑓𝑘(𝑞(𝑡)), 𝑘 = 1, … , 𝑁𝑟

with 𝑞 ∈ ℝ𝑛 the joint vector.

4.2.2 Human proxy set

The capsule set 𝒞(𝑡) is defined in 4.1. For a capsule (𝑎, 𝑏, 𝑟),

𝜆⋆(𝑝; 𝑎, 𝑏) = clip[0,1]
(𝑝 − 𝑎)⊤(𝑏 − 𝑎)

‖𝑏 − 𝑎‖2
, 𝜋(𝑝; 𝑎, 𝑏) = 𝑎 + 𝜆⋆(𝑏 − 𝑎)

𝑑cap (𝑝; 𝑎, 𝑏, 𝑟) = ‖𝑝 − 𝜋(𝑝; 𝑎, 𝑏)‖ − 𝑟

and for a sphere (ℎ, 𝑟𝐻),

𝑑sph(𝑝; ℎ, 𝑟𝐻) = ‖𝑝 − ℎ‖ − 𝑟𝐻

4.2.3 Effective radii and signed clearance

Optional padding for robot and human is modeled by

𝑑̃(𝑝; 𝒞) = min(min
𝑐=1..5

 𝑑𝑐𝑎𝑝(𝑝; 𝑎𝑐, 𝑏𝑐, 𝑟𝑐 + 𝜌𝑟), 𝑑𝑠𝑝ℎ(𝑝; ℎ, 𝑟𝐻 + 𝜌𝑟))

with 𝜌𝑟 ≥ 0 the robot's protective radius. Setting 𝜌𝑟 = 0 recovers geometric

distances. Composite SDFs are a drop-in alternative when mesh fidelity is needed

[9].

91

4.2.4 Global and groupwise minima

The instantaneous global clearance is

𝑑min(𝑡) = min
𝑘=1..𝑁r

 𝑑̃(𝑝𝑘
0(𝑡); 𝒞(𝑡))

For downstream shaping, witness points are partitioned in ordered link groups

{𝒢𝑔}𝑔=1
𝐺

 (proximal to distal). The per-group minima are

𝑑𝑔(𝑡) = min
𝑘∈𝒢𝑔

 𝑑̃(0𝑝𝑘(𝑡); 𝒞(𝑡)), 𝑔 = 1,… , 𝐺,

and the nearest human point 0𝑝̂𝑔
hum is the projector 𝜋(0𝑝𝑘̂; 𝑎𝑐, 𝑏𝑐) at the attaining

pair (𝑘̂, 𝑐̂).

4.2.5 Smooth minimum

For differentiability and noise rejection, a soft minimum can replace the hard min:

smin𝜏{𝑥𝑖} = −𝜏log ∑  

𝑖

𝑒−𝑥𝑖/𝜏, 𝜏 > 0

yielding 𝑑𝑔
s = smin𝜏{𝑑̃(

0𝑝𝑘; 𝒞)}𝑘∈𝒢𝑔
 and 𝑑min

s = smin𝜏{𝑑̃(
0𝑝𝑘; 𝒞)}𝑘=1..𝑁r

. As

𝜏 → 0+, smin𝜏 → min.

4.2.6 Nearest-pair witnesses

Along with the scalar distances, the query returns the witness pair for every group:

(𝑝̂𝑔
rob, 𝑝̂𝑔

hum) = arg min
𝑝𝑘,𝑐
 𝑑̃(𝑝𝑘; (𝑎𝑐, 𝑏𝑐, 𝑟𝑐))

used downstream to define repulsive directions 𝑛̂𝑔 =
 𝑎𝑝𝑔

rob. − 𝑎𝑝𝑔
hum

‖ 𝑎𝑝𝑔
rob − 𝑎𝑝𝑔

hum ‖
.

4.2.7 Computational budget

The projection 𝜋(⋅) is closed-form and 𝑂(1). With 𝑁𝑟 robot points and 𝑁𝑐 human

proxies, a full scan is 𝑂(𝑁𝑟𝑁𝑐) per cycle. In practice: cache capsule endpoints per

human frame, stream robot point positions once per controller tick, early-exit per

92

group after a guard distance is crossed, and employ the hard minimum for triggering

while using the soft minimum only where gradients are needed [21, 18, 17].

4.2.8 Outputs

The query provides 𝑑min (𝑡) for safety gating, the vector {𝑑𝑔(𝑡)} for group-

structured shaping, and the witness pairs {𝑝̂𝑔
rob , 𝑝̂𝑔

hum } for constructing repulsive

task references and for logging.

4.3 Repulsive safety fields (logistic and reciprocal shaping)

4.3.1 Problem setup

For each link group 𝑔 = 1, … , 𝐺, let 𝑛̂𝑔(𝑡) ∈ ℝ
3 be the unit vector from the closest

human witness to the closest robot witness (from 4.2), and let 𝑑𝑔(𝑡) ≥ 0 be the

corresponding clearance. A repulsive Cartesian reference for group 𝑔 is

 0𝑣𝑔(𝑡) = 𝜈(𝑑𝑔(𝑡))𝑛̂𝑔(𝑡)

where 𝜈(⋅) is a scalar speed law that is monotonically decreasing in 𝑑, bounded,

and differentiable on (0, +∞).

4.3.2 Shaping laws

Two families are used depending on the desired falloff and saturation

characteristics:

1. Logistic (sigmoidal) law

With parameters 𝑉max > 0 (speed cap), 𝑟if > 0 (inflection-range proxy), and 𝛼 > 0

(steepness),

𝜈log(𝑑) =
𝑉max

1 + exp (𝛼 (
2𝑑
𝑟if
− 1))

Properties: 𝜈log(0) ≈ 𝑉max, 𝜈log(𝑟if/2) =
𝑉max

2
, lim
𝑑→+∞

 𝜈log(𝑑) = 0,
𝑑𝜈cg

𝑑𝑑
 is bounded.

93

2. Reciprocal (inverse-distance) law with taper

With gain 𝑘 > 0, taper distance 𝑟act > 0, and small 𝜀 > 0,

𝜈rec(𝑑) = clip[0,𝑉max] (𝑘 (
1

𝑑 + 𝜀
−

1

𝑟act + 𝜀
))

which is positive for 𝑑 < 𝑟act and zero otherwise, then saturated at 𝑉max. This yields

a long tail near contact and a hard activation at 𝑟act (Khatib, 1986; Merckaert et al.,

2022).

4.3.3 Group weighting and span mapping

Let 𝒢𝑔 denote the set of robot witnesses for group 𝑔 (proximal → distal ordering),

and let the "reference-style" span for group 𝑔 be the first 𝑠𝑔 joints (e.g., 𝑠𝑔 = 𝑔 + 1

on a 7 -DoF arm). Define a 3 × 𝑠𝑔 point Jacobian evaluated at the group's closest

robot witness,

𝐽𝑔
(𝑝)
(𝑞) = [𝜔1 × (𝑟𝑔 − 𝑜1) ⋯ 𝜔𝑠𝑔 × (𝑟𝑔 − 𝑜𝑠𝑔)],

where 𝜔𝑗 and 𝑜𝑗 are the 𝑗-th joint axis and origin in the world frame, and 𝑟𝑔 is the

closest robot witness position for group 𝑔. The raw joint-rate contribution for group

𝑔 is

𝑞̇𝑔
raw(𝑞) = 𝜅𝑔(𝐽𝑔

(𝑝)
(𝑞))

⊤

𝑣𝑔,

with 𝜅𝑔 > 0 a dimensionless weight (per-group gain).

4.3.4 Combination and null-space projection

Summing over all groups and projecting where appropriate gives

𝑞̇rep
raw =∑  

𝐺

𝑔=1

𝑞̇𝑔
raw , 𝑞̇rep = 𝑆𝑞(𝑞̇rep

raw),

94

where 𝑆𝑞(⋅) is a joint-rate limiter enforcing |𝑞̇𝑖| ≤ 𝑞̇𝑖
max . In posture-biased modes,

𝑞̇rep is superposed with the nominal posture bias; in fixed-TCP modes (Chapter

4.5), it is injected through the task null space,

𝑞̇ = 𝑞̇task + 𝑁(𝑞)𝑞̇rep , 𝑁(𝑞) = 𝐼 − 𝐽#(𝑞)𝐽(𝑞),

with 𝐽 the 6 × 𝑛 geometric Jacobian of the TCP and 𝐽# a damped pseudoinverse.

Speed and joint caps are enforced before inversion and projection to keep behavior

consistent across modes (see §3.4.3).

4.3.5 Distance-to-velocity direction

Given the witness pair (𝑝̂𝑔
rob , 𝑝̂𝑔

hum),

𝑛̂𝑔 =
𝑝̂𝑔
rob − 𝑝̂𝑔

hum

‖𝑝̂𝑔
rob − 𝑝̂𝑔

hum‖ + 𝜖𝑛
,

with 𝜖𝑛 > 0 for numerical robustness; 𝑛̂𝑔 always points away from the human

proxy.

4.3.6 Saturation and smoothness considerations

• Speed capping: 𝑉max bounds the Cartesian magnitude per group.

• Joint capping: 𝑆𝑞(⋅) enforces joint-wise limits and prevents windup.

• Differentiability: the logistic law is 𝐶∞ for 𝑑 > 0; the reciprocal law is 𝐶∞

on (0, +∞) and Lipschitz at 𝑟act after clipping.

• Multi-group coherence: proximal groups typically use higher 𝜅𝑔 and

smaller 𝑟act (or 𝑟if) to bias evasive motion toward upstream joints.

4.3.7 Parameters and defaults

𝑉max (
m

s
) , 𝛼(−), 𝑟if(m), 𝑘(m

2/s), 𝑟act (m), {𝜅𝑔}𝑔=1..𝐺(−), joint-rate bounds

{𝑞̇𝑖
max }(rad/s), and numerical epsilons 𝜀, 𝜖𝑛.

95

4.3.8 Outputs

At each control tick: (a) group clearances 𝑑𝑔1 (b) repulsive TCP-space references

 0𝑣𝑔2 (c) joint-space contribution 𝑞̇rep ready for null-space injection or posture

superposition, and (d) capped diagnostic quantities for logging (speed utilizations,

active groups, and per-group saturations).

4.4 SSM-style supervisor: STOP/RELEASE hysteresis and dwell

4.4.1 Objective

Coordinate the safety behaviors of Section 4.3 with the nominal TCP task so that

pausing, repelling, and resuming are deterministic, chatter-free, and compatible

with time laws (vector and LSPB).

4.4.2 State set and outputs

Let the discrete state be

𝑥 ∈ 𝒳 = { Approach, Hold, Repel, Resume, Stop }.

At each control tick, the commanded joint rate is

𝑞̇cmd =

{

𝑞̇task 𝑥 = Approach ,
0 𝑥 = Hold or Stop ,
𝑞̇task +𝑁(𝑞)𝑞̇rep 𝑥 = Repel ,

Πresume (𝑞̇task) 𝑥 = Resume ,

where 𝑞̇task is the nominal (vector or LSPB) command, 𝑁(𝑞) = 𝐼 − 𝐽#𝐽 the TCP

null-space projector, 𝑞̇rep the repulsive contribution from 4.3, and Πresume the

mode-dependent resume policy (below).

The mode-aware command path is organized as shown in Figure 4.1:

96

Fig. 4.1 Command computation by mode. Approach: q̇_cmd = q̇_task; Hold/Stop: q̇_cmd = 0; Repel:

q̇_cmd = q̇_task + N(q) q̇_rep; Resume: q̇_cmd = Π_resume(q̇_task). Inputs: d_min, guards, timers;

core blocks: distance query → supervisor → projection N(q) = I − J#J.

4.4.3 Clearance aggregates and thresholds

With per-group clearances {𝑑𝑔}𝑔=1..𝐺 and group weights {𝜅𝑔}, define the global

minimum and a weighted surrogate:

𝑑min = min
𝑔
 𝑑𝑔, 𝑑̃ = min

𝑔
 (𝑑𝑔/√𝜅𝑔).

Two radii implement hysteresis:

𝑟stop < 𝑟release

and two dwell times complete the guard set:

𝑇↓ > 0 (enter-stop dwell), 𝑇↑ > 0 (release dwell).

The chosen bands and dwell were tuned to minimize chattering; measured

stop/resume statistics are reported in Chapter 6.

4.4.4 Guards and timers

Let 𝑡↓ and 𝑡↑ be timers (reset to 0 when their condition is not met). The guards are

𝒢stop : 𝑑min ≤ 𝑟stop ∧ 𝑡↓ ≥ 𝑇↓
𝒢release : 𝑑min ≥ 𝑟release ∧ 𝑡↑ ≥ 𝑇↑

97

Timers evolve as

𝑡̇↓ = {
1 𝑑min ≤ 𝑟stop ,

0(𝑡↓ ← 0) otherwise ,
 𝑡̇↑ = {

1 𝑑min ≥ 𝑟release ,

0(𝑡↑ ← 0) otherwise.
 𝑢𝑝𝑑𝑎𝑡𝑒𝑑 𝑠(𝑡)

4.4.5 Transitions

The finite-state logic is:

• Approach → Repel if 𝑑min < 𝑟release and 𝑑̃ < 𝑟release (activate repulsion

before the stop band).

• Repel → Stop if 𝒢stop is true.

• Stop → Resume if 𝒢release is true.

• Resume → Approach after the resume policy completes (below) and 𝑑min ≥

𝑟release holds during the policy.

• Hold is a transient freeze used by the LSPB pause semantics:

Approach/Repel → Hold when the time law is paused; Hold → Resume

when resuming that law.

The finite-state logic in this work is summarized by the supervisory state machine

below:

98

Fig. 4.2 Finite-state supervisor with hysteresis radii (r_stop, r_release) and dwell timers (T↓, T↑).

Transitions are guarded by G_stop and G_release; Hold freezes the time law, Resume re-enables it

after the policy completes.

4.4.6 Pause/resume semantics by time law

Vector approach (scenarios 1 & 2): no global clock; Resume simply re-enables 𝑞̇task

immediately,

Πresume
vec (𝑞̇task) − 𝑞̇task

LSPB time law (scenarios 3 & 4): the phase variable 𝑠 ∈ [0,1] is frozen in

Stop/Hold, i.e., 𝑠̇ − 0. On Resume, the LSPB restarts from the last phase 𝑠‾ with

bounded jerk:

𝑠(𝑡) − 𝑠‾ + ∫  
𝑡

𝑡0

𝑠̇(𝜏)𝑑𝜏, 𝑠̇ − lspb(𝑠‾ → 1; 𝑎max, 𝑣max)

𝑑̌ < 𝑟𝑟𝑒𝑙𝑒𝑎𝑠𝑒

99

and TCP velocity ramps with a 𝐶1 splice so that the commanded 𝑥̇ remains

bounded. During Resume, Πresume returns the LSPB-derived 𝑞̇task consistent with

the updated 𝑠(𝑡).

For vector references, “Resume” simply re-enables the nominal twist; for LSPB,

the phase 𝑠 continues from its frozen value with jerk-bounded splice.

4.4.7 Arbitration with repulsion

Repulsion remains active in Repel and is suppressed in Stop/Hold. In Resume,

repulsion is allowed but limited so as not to corrupt the primary task; specifically,

‖𝐽𝑁(𝑞)𝑞̇rep ‖ ≤ 𝜆leak ‖𝑥̇task ‖, 0 < 𝜆leak ≪ 1,

which bounds task-space leakage from null-space action.

4.4.8 Chatter avoidance and guarantees

The strict inequality 𝑟stop < 𝑟release plus 𝑇↓, 𝑇↑ > 0 yields a two-sided hysteresis

with temporal deadbands: repeated Stop-Resume oscillations are excluded for

bounded clearance rates. Under bounded sensing/actuation latencies, Stop is

triggered no later than 𝑇↓ after 𝑑min first crosses 𝑟stop , and Resume occurs no earlier

than 𝑇† after 𝑑min re-enters the safe band.

4.4.9 Logged indicators for evaluation

At each tick the supervisor logs 𝑥, 𝑑min , active group index, timers 𝑡↓, 𝑡↑, and LSPB

phase 𝑠 (when applicable). These feed the dwell-time statistics, pause durations,

and restart smoothness metrics reported in chapter 6.

4.5 Fixed-TCP avoidance (6×7) and orientation locking

4.5.1 Objective

Exploit kinematic redundancy to keep the TCP pose intact while reshaping the arm

posture away from the human. When small orientation drift is acceptable, apply a

soft clamp that holds the TCP attitude within a narrow deadband.

100

4.5.2 Task definition

Let the TCP twist be 𝑥̇ = [𝑣⊤ 𝜔⊤]⊤ ∈ ℝ6, the geometric Jacobian 𝐽(𝑞) ∈ ℝ6×7,

and the joint velocity 𝑞̇ ∈ ℝ7. The nominal TCP regulation uses a damped least-

squares pseudoinverse

𝐽#(𝑞) = 𝑊−1𝐽⊤(𝐽𝑊−1𝐽⊤ + 𝜆2𝐼6)
−1

with positive-definite joint weighting 𝑊 ≻ 0 and damping 𝜆 ≥ 0 (possibly

scheduled with the manipulator's conditioning). The null-space projector is

𝑁(𝑞) = 𝐼7 − 𝐽
#(𝑞)𝐽(𝑞)

4.5.3 Fixed-TCP avoidance

In fixed-TCP avoidance the commanded TCP twist is zero,

𝑥̇task = 0, 𝑒𝑥 = 0

so the only admissible motion lies in null(𝐽). Let 𝑞̇rep be the 7 × 1 repulsive joint-

rate proposal produced by Section 4.3 (before any projection). The fixed-TCP

command is

𝑞̇cmd = 𝑁(𝑞)𝑞̇rep

By construction, 𝐽𝑞̇cmd = 0, so the TCP is kinematically invariant.

4.5.4 Leak clipping

Finite precision, model mismatch, and latency can introduce residual task-space

motion 𝑟 = 𝐽𝑞̇cmd . Enforce a strict bound ‖𝑟‖ ≤ 𝜀leak by scaling:

𝛽 = min (1,
𝜀leak

‖𝐽𝑁(𝑞)𝑞̇rep ‖ + 𝛿
) , 𝑞̇cmd ← 𝛽𝑁(𝑞)𝑞̇rep

with small 𝛿 > 0 for numerical safety. Optionally, recompute 𝑟 after scaling and

zero any residual using a short corrective step Δ𝑞̇ = −𝐽#𝑟; in fixed-TCP mode this

reduces to a second-order effect and is typically not needed if 𝜀leak is tight. The

corresponding LEAK_EVT and scale factor are logged each tick (see §3.5.7).

101

4.5.5 Orientation locking (soft clamp)

When the position must be held and the orientation should remain within a small

tube about a reference 𝑅ref ∈ SO(3), we use a gentle orientation error feedback,

which activates only outside a deadband. With current orientation 𝑅, define the

skew error

𝐸𝑅 =
1

2
(𝑅ref
⊤ 𝑅 − 𝑅⊤𝑅ref), 𝑒𝜔 = vee(𝐸𝑅) ∈ ℝ

3.

Let 𝜔max > 0 and a deadband 𝜃0 > 0. The orientation clamp twist is

𝜔clamp = −𝑘𝜔sat𝜔max(𝜓(𝑒𝜔; 𝜃0)), 𝑣clamp = 0

where 𝜓(⋅; 𝜃0) smoothly gates the error to zero for ‖𝑒𝜔‖ ≤ 𝜃0 (e.g., a cubic

deadzone), and sat 𝜔max limits magnitude. The combined twist command in

"orientation-locked" fixed-TCP mode is

𝑥̇task = [
0

𝜔clamp
] , 𝑞̇task = 𝐽

#𝑥̇task

Repulsion remains null-space-only:

𝑞̇cmd = 𝑞̇task + 𝑁(𝑞)𝑞̇rep,

with the same leak clipping on 𝐽𝑁𝑞̇rep and, if desired, a fractional cap

‖𝐽𝑁(𝑞)𝑞̇rep ‖ ≤ 𝜆leak ‖𝑥̇task ‖, 0 < 𝜆leak ≪ 1,

to ensure the clamp remains dominant whenever it is active. When the clamp is

active, null-space repulsion is limited by ‖𝐽𝑁𝑞̇𝑟𝑒𝑝‖ ≤ 𝜆𝑙𝑒𝑎𝑘‖𝑥̇𝑡𝑎𝑠𝑘‖ with 0 <

𝜆𝑙𝑒𝑎𝑘 ≪ 1.

4.5.6 Null-space shaping and limits

Repulsion can be augmented with standard posture shaping in the null space

without affecting TCP invariance. For a joint-limit barrier potential 𝑈(𝑞) =

∑  𝑖 𝑢𝑖(𝑞𝑖) with gradient ∇𝑈, include

𝑞̇ns = −𝐾𝑈∇𝑈(𝑞), 𝑞̇cmd ← 𝑞̇cmd + 𝑁(𝑞)𝑞̇ns

102

and finally apply joint-space rate/acceleration saturations before execution.

4.5.7 Computational notes

All projections use the current 𝐽 and 𝐽# evaluated at the measured 𝑞. Damping 𝜆

and weights 𝑊 should mirror those in Chapter 3 to preserve numerical

conditioning; a typical choice is 𝑊 = diag(𝑤𝑖) with higher weights on distal joints

to favor proximal reconfiguration.

Weights and damping mirror Chapter 3 to keep the projector numerically aligned

across scenarios. The deadband 𝜃0, gains 𝑘𝜔, and leak bounds 𝜀leak are declared in

Section 3.5 and reused here for consistency.

4.6 Stability and transparency considerations

4.6.1 Objectives

• preserving the primary task; TCP motion must follow the commanded twist

(or remain fixed in 4.5) despite avoidance;

• bound the closed-loop inputs so joint limits, rates, and accelerations are

respected;

• keep the interaction predictable to an operator observing the TCP

(transparency).

Transparency is evaluated from logs via pause duration, restart smoothness, and

leakage events (see Chapter 6).

4.6.2 Task preservation under null-space shaping

With the velocity command

𝑞̇ = 𝐽#(𝑞)𝑥̇task + 𝑁(𝑞)𝑞̇ns, 𝑁(𝑞) = 𝐼7 − 𝐽
#𝐽

the induced TCP twist is

𝑥̇ = 𝐽𝑞̇ = 𝐽𝐽#𝑥̇task + 𝐽𝑁𝑞̇ns = Π𝐽𝑥̇task

103

where Π𝐽 = 𝐽𝐽
is an idempotent projector onto range (𝐽). If 𝑥̇task ∈ range(𝐽)

(nominal case), then Π𝐽𝑥̇task = 𝑥̇task and 𝐽𝑁 = 0; hence null-space terms do not

corrupt the task. In the fixed-TCP mode of 4.5, 𝑥̇task = 0 and 𝑥̇ = 0 by construction.

4.6.3 DLS conditioning and bounded joint rates

The damped pseudoinverse

𝐽# = 𝑊−1𝐽⊤(𝐽𝑊−1𝐽⊤ + 𝜆2𝐼6)
−1

regularizes near singularities and yields the bound

‖𝐽#‖ ≤
1

𝜆
‖𝑊−1/2‖

so for any bounded 𝑥̇task we obtain bounded 𝑞̇. Scheduling 𝜆 = 𝜆(𝜎) as a

nondecreasing function of a conditioning index 𝜎 (e.g., manipulability) prevents

rate blow-up while limiting task distortion.

4.6.4 Repulsion boundedness and saturation

Repulsive references are generated as bounded linear velocities in world frame,

then mapped to joints by 𝐽⊤ or point Jacobians. Denote a per-link bound ‖𝑉rep ‖ ≤

𝑉max ; with Jacobian columns 𝐽𝑝 and joint-rate cap 𝑞̇max ,

‖𝑞̇rep ‖ ≤ ‖𝐽𝑝
⊤‖𝑉max ⇒ 𝑞̇ns = sat𝑞̇max

(𝑞̇rep)

Axis-wise rate and acceleration limiters enforce bounded joint inputs regardless of

distance-field peaks (caps applied pre-inversion; see §3.4.3).

4.6.5 Leakage control and small-gain rationale

Null-space components can leak into the task through discretization, latency, and

Jacobian mismatch. Let 𝑟 = 𝐽𝑁𝑞̇ns . The command applies a scaling 𝛽 ∈ (0,1] such

that ‖𝑟‖ ≤ 𝜀leak . The closed-loop task channel becomes

𝑥̇ = Π𝐽𝑥̇task + 𝑟, ‖𝑟‖ ≤ 𝜀leak

Choosing 𝜀leak below the measurement/quantization floor renders repulsion effects

second order in the task dynamics (small-gain argument). In orientation-locked

104

mode, an additional fractional cap ‖𝑟‖ ≤ 𝜆leak ‖𝑥̇task ‖ preserves clamp dominance

when active.

Discrete-time implementation and passivity hints at sampling time 𝑇𝑠, the joint

update is Δ𝑞 = 𝑇𝑠𝑞̇cmd . Stability requires consistent timing and filtered references.

Two practical measures:

• first-order hold for repulsion: 𝑉rep [𝑘] = 𝛼𝑉rep [𝑘 − 1] + (1 − 𝛼)𝑉̂[𝑘]

with 𝛼 = 𝑒−𝑇𝑠/𝜏, suppressing high-frequency injections;

• energy consistency: cap the incremental joint power 𝑃𝑘 = 𝜏𝑘
⊤𝑞̇𝑘 using a

tank-like budget or simply limit ‖𝑞̇𝑘‖ adaptively when large external

corrections (e.g., STOP/RELEASE transitions) occur. These steps mitigate

discrete-time active behavior near steep distance gradients.

4.6.6 Hysteresis and dwell for mode transitions

Binary supervisors (STOP/RELEASE) and soft states

(Approach/Hold/Repel/Resume) employ distance hysteresis (𝑑release > 𝑑stop) and

dwell timers. This eliminates chatter, avoids rapid sign flips in 𝑉rep , and ensures

that the effective joint command remains piecewise-smooth. With bounded 𝑞̇ and

minimum dwell 𝑡min, the number of switches on any finite interval is finite,

guaranteeing well-posed execution.

4.6.7 Transparency to the operator

Transparency is maintained when the TCP trajectory is either preserved (fixed-

TCP) or altered only within explicit, bounded envelopes. The design enforces:

• invariance or near-invariance of the commanded TCP path (via projection

and leakage caps);

• bounded, smooth posture motions (via filtering and saturations);

• predictable supervisory behavior (via hysteresis and dwell).

Together, these yield operator-observable behavior that is consistent with the

nominal task while ensuring separation from the human skeleton proxies.

105

4.7 Conclusions

Chapter 4 has established the human–robot interface that underpins the safety logic

used throughout the thesis. We specified a skeleton-to-capsule lifting pipeline with

health flags and explicit frame semantics; defined nearest-pair distance queries and

the derived safety variables (clearances, hysteresis thresholds, dwell timers); and

introduced two complementary behaviors: a continuous repulsive field blended

with posture shaping, and an SSM-style supervisor whose STOP/RELEASE actions

include dwell to pause and resume an LSPB time law without corrupting its

schedule. Critically, all corrective actions are constrained to the Jacobian null space,

with leak bounds and joint-limit/manipulability safeguards, so that task-space

intent—including the fixed-TCP option—remains preserved while proximity risk

is mitigated.

Beyond detailing mechanisms, the chapter made the contracts explicit: what the

motion layer expects from the distance layer (rates, units, validity), what the

supervisor guarantees to the reference generator (monotonic timing with dwell),

and what logs must be emitted for auditability. The result is a small, typed interface

of safety variables that is implementation-ready and testable, making failure modes

observable (timeouts, range violations) and recovery predictable. We also clarified

the limits of the approach—e.g., sensitivity to skeleton quality and conservative

clearances—and pointed to mitigations (health gating, hysteresis, dwell semantics,

posture bias) that stabilize behavior near decision boundaries.

106

Chapter 5

Implementation & Software Architecture (CoppeliaSim)

This chapter documents the implementation and software architecture used to

realize the methods in simulation. The work is conducted in CoppeliaSim, a

physics-based robotics environment that provides deterministic synchronous

stepping, an extensible scene graph for articulations and sensors, and a remote

interface for coupling external controllers. It is selected here because it allows the

robot, human proxy, and safety supervisor to run under a single simulation clock

while exposing low-level kinematic and geometric data needed for online

Jacobians, distance queries, and visualization.

The scene models a 7-DoF manipulator mounted on a work surface, a parameterized

human proxy built from jointed segments, and a target frame serving as the task

reference. Along the manipulator, a set of lightweight “control spheres” is attached

to selected links to act as geometric samples for distance computations. Each

articulated element publishes its pose with respect to the world frame, so that the

controller can reconstruct joint screw axes and point Jacobians without peeking into

the simulator’s internal solvers. The human proxy’s joints are driven either from

motion-capture frames or scripted motions, and are aligned to the robot’s world

frame via a fixed transform consistent with the data pipeline used in Chapter 4.

The controller runs in MATLAB and communicates with CoppeliaSim through the

remote API over a TCP/IP session. All streams are world-aligned and time-stamped

at the control tick so reconstruction remains deterministic across runs (see §5.4).

The simulator operates in synchronous mode: every simulation step triggers a

sensing–control–actuation handshake. Tick indices, not wall-clock time, are used

as the primary key for logs and latency histograms (see §5.4.1)

On each tick, the simulator emits three compact data streams: (i) the world positions

of the control spheres, (ii) the world orientations of the robot links, and (iii) full per-

link poses, including the gripper, for visualization and alignment checks. MATLAB

subscribes to these streams, reconstructs the geometric Jacobian from the streamed

107

frames, evaluates the task command under the active trajectory time law, computes

avoidance actions in task or null space as appropriate, and returns joint commands

that are applied on the next simulation step [1, 2]. This closed loop ensures that

physics integration, measurements, and control share one clock and that latency is

both bounded and measurable.

Within this framework, the simulator is the authoritative source of ground-truth

kinematics and geometry, while the external controller remains model-based but

measurement-driven. The time law for the end-effector is interchangeable: a

continuous vector-field reference can be layered directly on measured frames, or a

trapezoidal (linear–segment with parabolic blends) time law can be used to enforce

acceleration and velocity limits with pause–resume semantics for the safety

supervisor. Safety behaviors are realized in two complementary ways. When the

end-effector task must be preserved, avoidance is projected into the manipulator’s

null space so that the primary task remains uncorrupted. When timing guarantees

are paramount, a supervisory finite-state logic pauses and resumes the time law

according to stop/release thresholds and dwell times. Both behaviors consume the

same distance queries against human capsules, evaluated in the world frame with

explicit units.

All behavioral modes share a single software backbone: nominal tracking without

human interaction, continuous repulsion layered on tracking, pause–resume

supervision around timing laws, and fixed-TCP operation with null-space

avoidance. Every run is captured end to end. Inputs, outputs, and state variables are

timestamped; logging includes units and coordinate frames; configuration files,

random seeds, and code/version hashes are stored with the data; and scene assets

and rates are summarized in manifests. The result is a controlled, time-deterministic

environment in which human modeling, distance queries, safety behaviors, and

trajectory time laws can be exercised, compared, and reproduced without

ambiguity.

108

5.1 Scene and synchronization

This work uses CoppeliaSim in remote synchronous mode, with MATLAB as the

external controller that advances the simulator exactly one physics step per control

tick. The scene contains: (i) the robot with auxiliary point markers attached along

its links for proximity and Jacobian-point evaluation; (ii) a kinematic human

mannequin actuated at shoulders, elbows, spine, abdomen, and head; and (iii) a

target frame for the tool center point (TCP). Unless otherwise stated, all poses are

expressed in the world frame 𝑊.

The simulation scene used throughout this thesis comprises the 7-DoF manipulator

with link-mounted control spheres, a kinematic human mannequin actuated at

shoulder, elbow, spine, abdomen, and head, and a world-fixed TCP target frame.

Fig. 5.1 CoppeliaSim scene: manipulator with control spheres, human mannequin, and TCP target;

world frame 𝑊 is the common reference for geometry and distance queries.

5.1.1 Frames and kinematic references

The robot base frame 𝐵 is fixed to link 0. Link frames {𝐿𝑖}𝑖=1
7 follow the

manufacturer's convention; the TCP frame is 𝑇. For the human mannequin,

anatomical joint frames are defined at shoulder, elbow, wrist, abdomen, spine, and

head. The motion-capture skeleton is first rigidly aligned to the simulator world

before joint-angle extraction. The alignment is a fixed homogeneous transform

109

𝐴 = [
𝑅𝑧(𝛾) 𝑝0
𝟎⊤ 1

] , 𝛾 = −135∘, 𝑝0 = [
−0.20
−0.40
0.705

]m

If 𝑝mocap ∈ ℝ3 is a raw skeleton point, the aligned point is

𝑝̃𝑊 = 𝑅𝑧(𝛾)𝑝
mocap + 𝑝0

Joint angles for the mannequin are then obtained from {𝑝̃𝑊} via the geometric

constructions described in Chapter 4 and streamed to CoppeliaSim.

5.1.2 Data exchange

Each simulation step publishes three streams required by the controller:

• world positions of the robot's control spheres {𝑠𝑘}, concatenated as

𝑆𝑊 = [𝑝(𝑠1)
⊤ 𝑝(𝑠2)

⊤ … 𝑝(𝑠𝑀)
⊤]⊤ ∈ ℝ3𝑀

• world orientations of the seven link frames, encoded as ZYX Euler triplets

𝐸𝑊 = [𝑒(𝐿1)
⊤ 𝑒(𝐿2)

⊤ … 𝑒(𝐿7)
⊤]⊤ ∈ ℝ21

• compact link poses for visualization,

𝑋𝑊 = [𝑥(𝐿1)
⊤ … 𝑥(𝐿8)

⊤ 𝑥(gripper)⊤]⊤, 𝑥(𝐿𝑖) = [𝑝(𝐿𝑖)
⊤, 𝑒(𝐿𝑖)

⊤]

Conversely, the controller writes mannequin joint commands and the robot

command (joint-space or task-space, depending on mode), and reads the TCP target

position 𝑝𝑇
⋆ .

Table 5.1 summarizes the world-aligned data streams and command channels used

throughout the experiments.

Source → Sink Signal (symbol) Dim Units Role / contents
Nominal

rate

Simulator →

Controller

S_W = [p(s1)^T ...

p(sM)^T]^T
3M m

World positions of control spheres {s_k} in

W
1/Δt

Simulator →

Controller

E_W = [e(L1)^T ...

e(L7)^T]^T
21

rad

(ZYX)

World orientations (Euler) of link frames

{L_i}
1/Δt

Simulator →

Controller

X_W = [x(L1)^T ...

x(gripper)^T]^T
6×9 m, rad

Compact poses for visualization/sanity

checks
1/Δt

Controller →

Simulator
Robot command

7

(joints)

or 6

(twist)

rad/s, m/s
Joint-space or task-space command (mode-

dependent)
1/Δt

110

Controller →

Simulator
Mannequin joints

scene-

depend

ent

rad
Actuation of mannequin shoulder, elbow,

spine, abdomen, head
1/Δt

Simulator →

Controller
p_T* 3 m Target position for TCP (when used) 1/Δt

Table 5.1 World-aligned data streams and commands between simulator and controller.

5.1.3 Synchronous stepping

The simulator runs in synchronous mode and advances only when triggered by the

controller. Let Δ𝑡ctrl denote the controller period and Δ𝑡phys the physics integrator

step. In this configuration,

Δ𝑡 ≜ Δ𝑡ctrl = Δ𝑡phys,

and all discrete-time modules (trajectory generators, supervisors, filters) are

designed with sampling time Δ𝑡 . The loop at tick 𝑘 proceeds as:

read {Sk
W, Ek

W, Xk
W, pT,k

⋆ },

update mannequin commands from {p̃k
W},

evaluate robot control law for the active mode,

write robot and mannequin commands,

trigger one physics step.

This establishes a one-to-one mapping between control ticks and physics steps,

removing sampling jitter and nondeterminism.

5.1.4 Timing guarantees and overruns

Trajectory-time parameters (e.g., LSPB segment durations) are chosen as integer

multiples of Δ𝑡; timers in the STOP/RELEASE supervisor count ticks, ensuring

exact dwell times. If computation at tick 𝑘 exceeds a prescribed budget, the

controller applies a hold-last-safe policy at tick 𝑘 + 1 : the previously issued robot

command 𝑢𝑘−1 is retained while a timing flag is logged. This yields:

𝑢𝑘 = {
𝑢̂𝑘 if 𝑡comp,𝑘 ≤ 𝑡max
𝑢𝑘−1 otherwise

111

where 𝑢̂𝑘 is the freshly computed command and 𝑡comp ,𝑘 the measured compute time.

Timing is enforced at tick granularity: if the compute budget is exceeded, the

controller applies a hold-last-safe policy and logs the overrun; STOP/RELEASE

dwell timers are tick-indexed to guarantee exact semantics, see figure below.

Fig. 5.2 Overrun policy and dwell accounting: when 𝑡𝑐𝑜𝑚𝑝 ≤ 𝑡𝑚𝑎𝑥 the new command 𝑢𝑘 is applied

otherwise; the controller holds 𝑢𝑘−1 and records the overrun; dwell timers advance per tick.

5.1.5 Validation hooks

At each tick the controller computes a pose-alignment residual for visualization

sanity checks. If 𝑇𝑖
exp

 is the unpacked transform of link 𝑖 and 𝑇𝑖
vis the local

visualization transforms, the translational and rotational residuals are

𝑟𝑖
pos
= ‖𝑝(𝑇𝑖

exp
) − 𝑝(𝑇𝑖

vis)‖
2
, 𝑟𝑖

rot = ∠(𝑅(𝑇𝑖
vis)𝑅(𝑇𝑖

exp
)
⊤
)

and are logged together with TCP pose, manipulability, minimum human-robot

distance, and safety-state transitions. Overrun events are summarized as rates per

minute and per thousand ticks in Chapter 6. Because these diagnostics are tied to

the synchronous tick 𝑘, latency histograms and reproducibility reports later in the

thesis are grounded in deterministic step indices.

Two primary checks are used each run: (i) FK↔IK round-trip pose residuals at the

TCP and (ii) Jacobian consistency from streamed link frames.

112

5.2 Dataflow and helper primitives

The software stack is organized as a deterministic pipeline that maps sensed

geometry into safe joint commands at each synchronous tick. The pipeline

comprises six stages: (i) scene I/O, (ii) geometric lifting, (iii) distance queries, (iv)

safety-field shaping and supervisory logic, (v) task–space tracking, and (vi) joint–

space synthesis and post-processing. Each stage exposes a minimal, testable

primitive; together they implement the five operating modes enumerated later in

this chapter.

The six stages correspond to §5.2.1–§5.2.6; post-processing and test hooks are

detailed in §5.2.7–§5.2.9.

Figure 5.3 summarizes the deterministic six-stage pipeline executed at each

synchronous tick.

Fig. 5.3 Deterministic per-tick pipeline.

5.2.1 Scene I/O (world-aligned signals)

At tick 𝑘, the controller ingests:

{𝑆𝑘
𝑊 ∈ ℝ3𝑀 , 𝐸𝑘

𝑊 ∈ ℝ21, 𝑋𝑘
𝑊, 𝑝𝑇,𝑘

∗ ∈ ℝ3, 𝑃̃𝑘
𝑊 ∈ ℝ3×𝑁𝑘},

namely the robot's control-point positions, link orientations, compact link poses for

visualization, the current TCP target, and the world-aligned human skeleton points.

The mannequin's joint targets (shoulders, elbows, spine, abdomen) are emitted to

the simulator; the robot command is produced after the subsequent stages.

5.2.2 Geometric lifting (frames, Jacobians, kinematics)

 From (𝐸𝑘
𝑊, 𝑋𝑘

𝑊) the controller reconstructs the instantaneous kinematic map

113

𝑓:ℝ7 → 𝑆𝐸(3), 𝑇(𝑞) = [
𝑅(𝑞) 𝑝(𝑞)

𝟎⊤ 1
]

and the geometric Jacobian 𝐽(𝑞) ∈ ℝ6×7. The world-linear velocity of any world

point 𝑟 ∈ ℝ3 rigidly attached to link 𝑖 is evaluated via point Jacobians:

𝑣(𝑟) = 𝐽𝑝(𝑟, 𝑞)𝑞̇, 𝐽𝑝(𝑟, 𝑞) = [𝜔1 × (𝑟 − 𝑜1) ⋯ 𝜔7 × (𝑟 − 𝑜7)],

where 𝜔𝑗 and 𝑜𝑗 are, respectively, the world joint-axis direction and world joint

origin for joint 𝑗. For the TCP, the 6D twist map is

𝑥̇𝑇 = [
𝑣𝑇
𝜔𝑇
] = 𝐽(𝑞)𝑞̇

5.2.3 Distance queries (robot proxy points vs human capsules)

Proxy definitions and limb capsules follow Chapter 4; only minimum distances and

their rates are consumed here.

The human model is represented by capsules 𝒞ℓ = seg(𝑎ℓ, 𝑏ℓ) ⊕ 𝔹(0, 𝑟ℓ). Robot

proximity is evaluated at the control points {𝑠𝑚}𝑚=1
𝑀 . For each pair (𝑠𝑚, 𝒞ℓ) the

closest point on the segment and the raw Euclidean distance are

𝑡⋆ = clip[0,1] (
(𝑠𝑚 − 𝑎ℓ)

⊤(𝑏ℓ − 𝑎ℓ)

‖𝑏ℓ − 𝑎ℓ‖2
2) , 𝑐ℓ = 𝑎ℓ + 𝑡

⋆(𝑏ℓ − 𝑎ℓ),

𝑑raw(𝑚, ℓ) = ‖𝑠𝑚 − 𝑐ℓ‖2, 𝑑eff(𝑚, ℓ) = max{𝑑raw(𝑚, ℓ) − 𝑟𝑅 − 𝑟ℓ, 0}.

Per tick, the pipeline extracts both the global minimum 𝑑min = min
𝑚,ℓ
 𝑑raw(𝑚, ℓ) (for

STOP/RELEASE logic) and, for each robot control group 𝑔, the best opposing pair

(𝑠𝑚𝑔 , 𝑐ℓ𝑔) to parameterize a local repulsive direction.

5.2.4 Safety-field shaping (repulsion in world and supervisor state)

A smooth, distance-to-speed shaping enforces bounded, continuous repulsion in

world space:

𝑣rep(𝑑) =
𝑉max

1 + exp (𝛼 (
2𝑑
𝜌 − 1))

, 𝛼 > 0, 𝜌 > 0, 𝑉max > 0

114

Given the direction 𝑛𝑔 =
𝛿𝑚𝑔−𝑐𝑙𝑔

‖𝑠𝑚𝑔−𝑐𝑙𝑔‖2

 (zeroed if the norm is below a tolerance), the

world repulsive linear velocity request for group 𝑔 is

𝑉𝑔
𝑊 = 𝑘𝑔𝑣rep (𝑑𝑔

eff)𝑛𝑔, 𝑘𝑔 > 0

The supervisor maintains a finite state with hysteresis and dwell, driven by the raw

global minimum 𝑑min :

Stop if 𝑑min ≤ 𝑑stop , Release if 𝑑min ≥ 𝑑rel , 𝑑rel > 𝑑stop , with tick-accurate dwell

timers to avoid chatter.

Speed and joint caps are enforced before IK inversion and null-space projection to

keep behavior consistent across modes (§3.4.3).

5.2.5 Task-space tracking (vector and LSPB time laws)

Two time laws are supported for the TCP: (i) a vector field reference that directly

specifies 𝑥̇𝑇
⋆ = [𝑣𝑇

⋆ ; 𝜔𝑇
⋆] toward a moving attractor with smooth speed schedules;

and (ii) a piecewise-linear with parabolic blends (LSPB) time law that

parameterizes the scalar progress 𝑠 ∈ [0,1] along a path 𝑥𝑇(𝑠) with

𝑠̇(𝑡) = {

𝑎𝑡, 0 ≤ 𝑡 < 𝑡𝑎,
𝑠̇𝑐, 𝑡𝑎 ≤ 𝑡 ≤ 𝑡𝑏 ,

−𝑎(𝑡𝑓 − 𝑡), 𝑡𝑏 < 𝑡 ≤ 𝑡𝑓 ,
 0 ≤ 𝑠̇(𝑡) ≤ 𝑠̇max, |𝑠̈(𝑡)| ≤ 𝑎max,

leading to 𝑥̇𝑇
∗ = 𝐽𝑥(𝑠)𝑠̇ where 𝐽𝑥(𝑠) = 𝜕𝑥𝑇/𝜕𝑠. When the supervisor is in Stop,

𝑠̇ = 0 (pause semantics). Upon Release, the clock resumes without re-timing,

preserving LSPB timing integrity.

For vector-field references, RESUME re-enables the nominal twist computed from

the current attractor and speed law.

5.2.6 Joint-space synthesis (primary task + redundancy behaviors)

The commanded joint rates result from a strict composition rule. The primary 6D

task (TCP tracking) uses damped least squares:

𝑞̇pri = 𝐽(𝑞)𝜆
#𝑥̇𝑇
⋆ , 𝐽𝜆

= 𝐽⊤(𝐽𝐽⊤ + 𝜆2𝐼6)
−1,

115

with 𝜆 scheduled against manipulability or conditioning. Redundant behaviors

(repulsion, posture bias) are confined to the null space:

𝑁 = 𝐼7 − 𝐽𝜆
#𝐽, 𝑞̇ns =∑  

𝑔

𝐽𝑝 (𝑠𝑚𝑔 , 𝑞)
⊤

𝑉𝑔
𝑊 + 𝐾post (𝑞 − 𝑞nom).

The composite command before limits is

𝑞̇raw = 𝑞̇pri + 𝑁𝑞̇ns

When the supervisor enters Stop, 𝑞̇raw ← 𝟎 (hold), while in Release the same law

resumes with the current 𝐽(𝑞) and 𝑥̇𝑇
⋆ .

Leakage ‖𝐽(𝑞) 𝑁(𝑞) 𝑞̇𝑛𝑠‖ is monitored and clamped under LEAK_THR; flags are

logged each tick (§3.5.7).

5.2.7 Post-processing (limits, smoothing, discretization)

The raw joint rates are passed through saturation and discrete-time smoothing

consistent with the sampling time Δ𝑡 :

𝑞̇𝑘 = clip(𝑞̇raw,𝑘, −𝑞̇max, 𝑞̇max), 𝑞𝑘+1 = 𝑞𝑘 + Δ𝑡𝑞̇𝑘,

optionally with a first-order rate filter to cap 𝑞̈. All saturations and state transitions

emit health flags and timestamps for later analysis.

5.2.8 Mannequin joint extraction (skeleton to joint commands)

 For each tick, the aligned skeleton 𝑃̃𝑘
𝑊 yields orthonormal frames at shoulders,

elbows, spine, and abdomen by geometric constructions (differences, cross

products, normalization). These frames are converted to the simulator's joint

parameterization (e.g., spherical-joint direction-cosine matrices for shoulders;

single-axis angles for elbows). Let 𝑅seg
𝑊 denote a segment frame; the transmitted

parameter vector is a compact embedding of 𝑅seg
W required by the mannequin joints.

The same alignment transform guarantees spatial consistency between human

proxies and robot/world coordinates.

116

5.2.9 Determinism and test hooks

Each primitive exposes tick-indexed inputs/outputs and admits unit checks:

Jacobian symmetry tests, finite-difference vs analytic derivatives, capsule distance

regression against synthetic cases, boundedness of 𝑣𝑟𝑒𝑝(𝑑), and null-space leakage

monitors ||𝐽 𝑞̇
𝑛𝑠
||2. Because all stages run within a single synchronous step, the

recorded traces map unambiguously to controller ticks, enabling reproducible

experiments and latency budgeting reported later.

Any randomized elements use a fixed RNG seed recorded in the run configuration

and artifacts (§5.4.1).

5.3 Mode scripts: behavior mapping

This section enumerates the operating modes that instantiate the pipeline defined

above. Each mode fixes (i) the TCP time law, (ii) whether repulsion is active and

where it is injected, (iii) whether the supervisory STOP/RELEASE logic is

enforced, and (iv) whether the TCP is treated as a fixed task (null-space–only

avoidance). All modes share the same synchronous loop, the same scene I/O, and

the same post-processing limits.

5.3.1 Scenario 1 (S1): vector-field TCP, no human interaction

The TCP reference is a purely attractive, moving target expressed as a 6D twist

request 𝑥̇𝑇
⋆ = [𝑣𝑇

⋆ ; 𝜔𝑇
⋆], constructed from a smooth direction vector with bounded

magnitude. The joint command is

𝑞̇ = 𝐽𝜆
#𝑥̇𝑇
⋆ ,

with 𝑁-space terms disabled (𝑞̇ns ≡ 0). This mode isolates the baseline tracking

performance and manipulator conditioning under the vector time law.

5.3.2 Scenario 2 (S2): vector-field TCP with null-space repulsion

The primary task is identical to scenario 1. Repulsion is activated as a world linear

velocity field 𝑉𝑔
𝑊 per robot group 𝑔1 mapped through point Jacobians and confined

to the null space:

117

𝑞̇ = 𝐽𝜆
#𝑥̇𝑇
⋆ + (𝐼7 − 𝐽𝜆

#𝐽)(∑  

𝑔

  𝐽𝑝 (𝑠𝑚𝑔 , 𝑞)
⊤

𝑉𝑔
𝑊 + 𝐾post(𝑞 − 𝑞nom)).

STOP/RELEASE is not used; repulsion remains continuous and bounded through

𝑣rep (𝑑).

5.3.3 Scenario 3 (S3): LSPB TCP, no human interaction

The TCP follows a preplanned path 𝑥𝑇(𝑠) with the scalar progress 𝑠(𝑡) governed

by a linear-with-parabolic-blends time law:

𝑠̇(𝑡) ∈ [0, 𝑠̇max], |𝑠̈(𝑡)| ≤ 𝑎max, 𝑥̇𝑇
∗ (𝑡) =

𝜕𝑥𝑇
𝜕𝑠
(𝑠(𝑡))𝑠̇(𝑡)

The joint command mirrors S1's primary law:

𝑞̇ = 𝐽𝜆
#𝑥̇𝑇
⋆ ,

with no null-space behaviors. This mode isolates tracking under a timed trajectory

with known acceleration bounds and synchronization properties.

5.3.4 Scenario 4 (S4): LSPB TCP with supervisory STOP/RELEASE

The same LSPB primary task as S3 is combined with a discrete supervisor driven

by the global raw distance 𝑑min :

 Stop if 𝑑min ≤ 𝑑stop , Release if 𝑑min ≥ 𝑑rel (> 𝑑stop),

with dwell timers to avoid chatter. In Stop, the controller holds the primary progress

(𝑠̇ ≡ 0) and zeroes joint motion (𝑞̇ ≡ 0); in Release, it resumes using the original

LSPB clock without re-timing. Repulsion is typically disabled in this mode, as the

binary pause/resume semantics enforce separation while preserving trajectory

timing.

5.3.5 Scenario 5 (S5): fixed-TCP avoidance via null-space projection

The TCP task is maintained in full 6D, and the avoidance behavior is entirely

relegated to redundancy:

118

𝑞̇ = 𝐽𝜆
[
0
0
]
⏟
𝑥̇𝜏
∗

+ (𝐼7 − 𝐽𝜆
#𝐽)(∑  

𝑔

  𝐽𝑝 (𝑠𝑚𝑔 , 𝑞)
⊤

𝑉𝑔
𝑊 + 𝐾post(𝑞 − 𝑞nom)),

when the TCP is to be held fixed in both position and orientation (e.g.,

welding/inspection). More generally, when a nonzero primary 𝑥̇𝑇
⋆ is required (e.g.,

slow tool motion), the same null-space structure ensures that avoidance never

corrupts the primary task:

𝑞̇ = 𝐽𝜆
#𝑥̇𝑇
⋆ + (𝐼7 − 𝐽𝜆

#𝐽)𝑞̇ns.

Optional "leak clipping" monitors ‖𝐽𝑞̇ns ‖2 and scales 𝑞̇ns to keep the induced TCP

drift below a prescribed tolerance.

5.3.6 Common signals and artifacts (all modes)

Each mode logs a consistent set of traces per tick 𝑞, 𝑞̇, TCP pose/twist, 𝑑min , per-

group 𝑑𝑔
eff , supervisor state (where applicable), saturation flags,

manipulability/condition metrics, and timing stamps. These feed the Chapter 6

evaluation and the reproducibility assets described later in this chapter.

5.3.7 Implementation bindings

Modes are realized as thin configuration layers that (i) select the TCP time law

(vector vs LSPB), (ii) enable/disable the supervisor and set (𝑑stop , 𝑑rel , dwell), (iii)

enable/disable null-space repulsion and set (𝛼, 𝜌, 𝑉max , 𝑘𝑔), and (iv) choose posture

and damping schedules. No changes to the synchronous stepping or scene I/O are

required across modes, ensuring one-to-one comparability in the results.

Each mode’s settings are serialized in the run configuration and stored alongside

logs for replay (§5.4.1).

5.4 Logging, reproducibility, and configuration

This work treats data capture and experiment reconstruction as first-class concerns.

All of the scenarios emit a common, time-aligned record of kinematics, supervision

state, and timing; runs are parameterized by explicit, versioned configuration; and

every artifact required to replay a result is stored alongside the data.

119

Logs are keyed by deterministic tick indices and a run_uid for cross-artifact joins

(§5.4.1).

5.4.1 Scope and structure of logs

Each control tick 𝑘 writes a row keyed by a monotone timestamp 𝑡𝑘 (simulation

time) and a wall-clock stamp 𝜏𝑘 (host time) to enable latency analysis. The core

signals are:

• Robot state: 𝑞𝑘 ∈ ℝ
7, 𝑞̇𝑘 ∈ ℝ

7; per-joint saturation flags; manipulability

metrics (e.g., 𝜎min (𝐽𝑘), 𝜅(𝐽𝑘)).

• Task space: TCP pose 𝑥𝑘 = [𝑝𝑘; 𝑅𝑘], requested twist 𝑥̇𝑘
∗ = [𝑣𝑘

∗ ; 𝜔𝑘
⋆],

achieved twist 𝑥̇𝑘; tracking errors 𝑒𝑘
pos
= 𝑝𝑘 − 𝑝𝑘′

⋆ 𝑒𝑘
ori (axis-angle).

• Distance safety: global minimum raw separation 𝑑min, 𝑘; per-group

effective separations 𝑑𝑔,𝑘
eff ; repulsive field magnitudes ‖𝑉𝑔,𝑘

𝑊 ‖.

• Supervisor state (when enabled): state label 𝑠𝑘 ∈ { Approach, Hold,

Repel, Resume, Stop }; dwell timers; STOP/RELEASE edge flags.

• Time law: scalar progress 𝑠𝑘 and 𝑠̇𝑘 for LSPB modes; phase labels

(accel/const/decel).

• Timing: controller period Δ𝑡𝑘, end-to-end latency ℓ𝑘 (MATLAB issue →

simulator ack), overrun indicator, and "hold-last-safe" activations.

• Health: RESUME_OK (pause/resume completed without chattering),

LEAK_EVT count, MON_TICK count.

5.4.2 File formats and directory layout

Each run creates a run directory:

• config.yaml - full run configuration.

• signals.csv - columnar log with header row (units in SI).

• snapshots/ - periodic scene captures (optional) and supervisor edge

thumbnails.

120

• versions.txt - toolchain identifiers (MATLAB, simulator build, OS) and

scene hash.

• checksums.sha256 - file integrity hashes.

Large arrays (e.g., per-frame skeleton joint clouds) can be mirrored in a binary

container (.mat) with column names duplicated as attributes to keep CSVs readable.

5.4.3 Configuration schema

All experiments are launched from a declarative configuration. A minimal schema:

• scene: scene_id, scene_hash, world_frame, gravity, object set (human

proxy layout, robot model id).

• timing: controller_rate (Hz), physics_rate (Hz), synchronous (bool), dwell

constants (ms).

• primary_task: type ∈ { vector, LSPB𝑟 fixed_TCP }1 parameters (for

vector: max speeds; for LSPB2𝑠̇max , 𝑎max : for fixed_TCP: hold tolerances).

• solver: damping schedule 𝜆(𝑡) or 𝜆(𝜎min(𝐽)); posture bias 𝐾post , 𝑞nom ; joint

limits and rate limits.

• safety: distance thresholds 𝑑stop , 𝑑rel; repulsion shaping (𝛼, 𝜌, 𝑉max); per-

group gains 𝑘𝑔; effective radii policy.

• supervision: state set, transitions, dwell times, freeze semantics (pause

primary vs zero 𝑞̇).

• logging: columns enabled, snapshot cadence, histogram bins for latency.

• seeds: RNG seeds for any randomized elements (e.g., initial posture

sampling), and a run_uid.

5.4.4 Reproducibility guarantees

• Version pinning: The simulator scene is identified by a content hash of the

saved file; the control stack and helper libraries are recorded by semantic

version and Git commit (short SHA).

121

• Deterministic stepping: Synchronous execution with fixed

controller/physics rates yields deterministic replay when seeds and initial

conditions are identical.

• Unit invariants and conventions: All distances are in meters [m]; linear

and angular velocities are in 𝑚𝑠−1 and 𝑟𝑎𝑑𝑠−1respectively; angles are in

radians [rad]; and time is in seconds [s]. Coordinate frames are explicitly

labeled (world, TCP, link).

• Integrity checks: At load, the runner validates that config.yaml matches

the embedded headers of signals.csv (scene_hash, rate, column set);

mismatches abort the analysis.

• Manifest: A compact run manifest (JSON or YAML) is emitted at start and

echoed in the header of every CSV, capturing: mode, thresholds, gains,

time-law parameters, seeds, scene hash, toolchain versions, and start time.

5.4.5 Latency and overrun accounting

For each control cycle, the host records request/ack times from the simulator

interface to compute 𝑙𝑘. Overruns (𝑙𝑘 > Δ𝑡𝑐𝑡𝑟𝑙) trigger the hold-last-safe policy and

are flagged; Chapter 6 reports the empirical distribution of 𝑙𝑘 and the fraction of

affected ticks.

5.4.5 Post-processing and provenance

Analysis notebooks read only from the run directory; figures reference run_uid and

commit IDs in their captions. Any data reduction (e.g., resampling for plots) writes

derivative files into a derived/ subfolder with lineage metadata, ensuring that all

reported numbers can be traced back to a specific signals.csv under a specific

config.yaml.

122

Chapter 6

Simulations & Results

Modern collaborative manipulation sits at the intersection of redundancy-resolved

control, safety supervision, and efficient distance modeling. On the control side,

task-priority null-space projection and damped least-squares (DLS) inverse

kinematics remain the backbone for shaping motion while preserving a primary

Cartesian task and allocating residual freedom to posture objectives; their behavior

is commonly assessed via manipulability and conditioning metrics. Classic and

survey references include Yoshikawa’s manipulability, Nakamura–Hanafusa task

priority, and DLS analyses by Chiaverini as well as Deo & Walker and related

treatments near singularities [41].

Safety in human–robot collaboration is often formalized through speed-and-

separation monitoring (SSM), which modulates robot motion to maintain certified

clearances and enforce predictable slow-down/stop/resume behavior. Standards

guidance has evolved from ISO/TS 15066 alongside ISO 10218 updates, and the

research literature details perception, distance computation, and timing semantics

necessary for practical SSM deployments [41].

A complementary strategy enforces constraints by supervising references rather

than low-level control actions—reference/command governors (RG/ERG). These

add-on schemes minimally modify commanded trajectories to satisfy state and

input constraints in real time, with modern variants applied to robotics and contact-

aware operation [9].

For proximity modeling, capsule proxies and signed-distance-field (SDF) methods

provide efficient minimum-distance queries. Capsules remain a pragmatic choice

for online HRC because segment–segment distances admit closed-form or

inexpensive solvers and are supported directly in CoppeliaSim; SDF and composite

SDF approaches offer richer geometry at higher computational cost and are

increasingly explored for fast collision checking and planning.

123

Recent advances also show that safety and compliance can be modulated

specifically in the null space so that the main Cartesian task remains unaffected. In

particular, null-space compliance variation using safety control barrier functions,

and related null-space impedance strategies, demonstrate how link-level behavior

can improve clearances without degrading end-effector tracking. These ideas

provide a natural point of comparison for the fixed-TCP, posture-only shaping used

here [5].

Trajectory generation further influences both throughput and safety. It is therefore

informative to contrast smooth vector-field tracking with the classical linear-

segment-with-parabolic-blend (LSPB) profile (a trapezoidal-velocity time scaling

standard in robotics texts and toolboxes), holding the controller and safety logic

fixed to isolate the impact of the reference shape on accuracy, conditioning, and

separation margins [45].

Against this backdrop, the remainder of this chapter evaluates the proposed control

architecture across five scenarios (S1–S5) that progressively introduce trajectory

generation, human proximity, and null-space safety regulation. All experiments are

performed on a 7-DOF Franka Emika Panda model in CoppeliaSim under

synchronous stepping. The simulator time step is 5 ms and the physics loop is

advanced synchronously to ensure deterministic logging. Robot joints operate in

the internal position loop with sufficient torque limits; commanded joint rates are

low-pass filtered and capped per joint and per tick to match the inner servo’s

bandwidth.

The human is represented by a motion-capture skeleton driving capsule geometry

(shoulder–elbow–wrist chains and torso segments). Skeleton world alignment uses

a fixed yaw offset and translation, and the capsule model is updated at each control

tick. Safety is enforced by a proximity gate with a stop radius of 0.25 m and a

release radius of 0.28 m with 0.05 s hysteresis; when separation falls below the stop

radius, the task command is frozen and the controller holds until the release

condition is satisfied.

Controllers differ by scenario but share the same task/secondary structure.

Translation is realized with a damped least-squares SVD inverse of the linear TCP

124

Jacobian; tool orientation is either held fixed or lightly regulated depending on the

scenario. Secondary actions (posture shaping and, when enabled, joint-space

repulsion derived from capsule distances) are injected strictly through the

translational null space so they remain kinematically invisible to the primary task.

In trajectory-based scenarios an LSPB reference provides accelerate–cruise–

decelerate timing along the straight line from the initial TCP position to the target;

in vector-field scenarios a distance-aware speed law drives directly toward the goal.

On RESUME, vector references re-enable the nominal twist; LSPB continues from

the frozen phase with a jerk-bounded splice.

Reporting and statistics follow a uniform protocol. Logs are sampled at the control

tick. Unless otherwise stated, curves are shown without additional smoothing

beyond the controller’s internal filters; scalar summaries are reported as median,

95th percentile, RMS, and maximum as appropriate. The metrics used

throughout—minimum separation, TCP position/orientation error, joint-rate norms

and saturation counts, conditioning of the translational Jacobian (κ and σ_min),

linear manipulability, stop/release dwell compliance, equality residuals, feasibility

flags, and null-space leakage measures—are defined once in the metric dictionary

later in this chapter. Each scenario then reports its own settings, timing, and

outcome tables and references those shared definitions.

Reproducibility is ensured by fixing scene assets, configuration files, and random

seeds per scenario. The exact log filenames and figure/table IDs referenced in this

chapter are listed in the reproducibility checklist at the end of Chapter 6.

125

6.1 Scenarios S1 – S5

We evaluate the same MATLAB↔CoppeliaSim stack on a 7-DoF Franka across

five scenarios that progressively add supervision, human motion, and redundancy

shaping. The backbone (Ch. 3–5) remains unchanged: translation-only primary

control at the TCP is resolved by damped least-squares IK with SVD, tiny

orientation and posture terms act in the null space, joint rates are smoothed and

capped, and completion is declared after dwelling 0.25 s inside a 5 cm deadband

followed by a 2.0 s hold.

The ladder proceeds as follows: S1 establishes the free-space reach using the

baseline vector-field reference; S2 introduces Speed-and-Separation Monitoring

(SSM) while replaying a human trace, but keeps the same vector-field generator;

S3 returns to free space and replaces the reference with the LSPB time law used

earlier in the thesis; S4 adds SSM and the same human trace on top of LSPB; finally,

S5 freezes the TCP pose and uses redundancy alone to reconfigure posture for

clearance (fixed-TCP), while the supervisor enforces dwell semantics. All scenarios

log distance-to-target, TCP speed and active caps, Jacobian conditioning, per-joint

rates and cap events, and—when humans are present—minimum clearance and

STOP/RELEASE dwell times. An over view of the matrix of the scenarios is

desplayed in table below:

ID Goal &

context

Inputs Control mode (key params) Constraints Logged outputs

S1 Free-space

reach to a fixed

target (baseline

vector-field).

Initial posture q0

from scene; no

human.

Vector-field translational attractor; DLS IK

(SVD) with translation-only primary; small

orientation/posture in null space;

smoothing α=0.20; joint speed cap 1.0

rad/s; step cap 6°.

Deadband

0.05 m; dwell

0.25 s; final

hold 2.0 s;

joint limits.

d(t)=‖p_tgt−p_tcp

‖; |v_tcp| and

v_cap(t); κ(J_lin),

σ_min; per-joint

q̇; speed/step-cap

flags; path length;

state stamps.

S2 Same motion

logic as S1

with SSM and

human replay

(vector-field).

q0;

skeleton→capsu

le human trace.

Vector-field + DLS IK (as S1) with SSM

gating

(approach/caution/pause/stop/release).

SSM

thresholds &

hysteresis

(Ch. 5); dwell

timers.

All S1 logs + min-

clearance

timeline;

STOP/RELEASE

dwell; throughput

impact.

126

Table 6.1 Scenario matrix (S1–S5)

6.1.1 Scenario S1 — Attractive-field point-to-point motion with

DLS–SVD tracking

Introduction and objective

This scenario evaluates the baseline free-space behavior of the redundant

manipulator under a continuous attractive velocity field, in the absence of human

interaction. The aim is to establish smooth convergence to a fixed Cartesian target

(𝑝𝑑, 𝑅𝑑) with bounded control effort and well-conditioned inversion, while strictly

honoring joint-space limits and servo hygiene. The expected outcome is a monotone

decay of the TCP–target error into a prescribed deadband, a short terminal hold,

negligible steady-state orientation error, and numerically stable Jacobian inversions

without feasibility losses.

See Table 6.2 for the configuration and Table 6.3 for the summary metrics.

Fig. 6.1 shows the free-space initial condition and the simulator-provided goal

𝑝𝑡𝑔𝑡 consumed at run-time; this anchors the world-frame convention, confirming

that S1 isolates attractive tracking and the translational DLS–SVD map without

human/obstacle confounds, establishing the baseline for the chapter.

S3 Free-space

reach to target

with LSPB

reference (no

human).

q0; no human. LSPB Cartesian reference (bounded-jerk)

tracked by DLS IK; same smoothing &

caps.

Same as S1. All S1 logs +

LSPB phase

stamps

(accel/cruise/dece

l).
S4 Same as S3

with SSM and

the same

human replay

(LSPB).

q0; same human

trace as S2.
LSPB + DLS IK + SSM gating. SSM

thresholds &

dwell; min

clearance ≥

prescribed.

S3 logs + min-

clearance

timelines;

STOP/RELEASE

dwell

distributions;

throughput.
S5 Fixed-TCP

posture-only

reconfiguratio

n with SSM

(redundancy

shaping).

q0; same human

trace as S2/S4.
Translation & orientation held (fixed TCP);

posture shaping strictly in null space;

leakage monitor ℓ(t)=‖J_lin·q̇_ns‖.

TCP drift ≤

tolerance;

SSM

thresholds &

dwell; joint

limits.

Min-clearance;

supervisor states

& dwell; TCP

drift; leakage ℓ(t);

joint usage.

127

Fig. 6.1 Initial scene and target placement for S1 (free-space reach).

Controller structure

The task is expressed in the world frame. The TCP position is 𝑝 ∈ ℝ3 and the goal

is 𝑝tgt ∈ ℝ
3. Define the position error 𝑒𝑝 = 𝑝tgt − 𝑝, its magnitude 𝑑 = ‖𝑒𝑝‖, and

the unit direction 𝑒̂𝑝 = 𝑒𝑝/max(𝑑, 𝜀) with a small 𝜀 > 0 for numerical safety.

Distance-aware speed-limiting law and attractive twist

The commanded Cartesian speed is shaped by a distance-aware speed-limiting law

that blends a local linear approach, a near-field taper on the cruise speed, and a

braking bound derived from stopping-distance feasibility. With approach gain 𝑘 >

0, cruise cap 𝑣max > 0, braking cap 𝑎max > 0, and linearization radius 𝑑lin > 0

(set to 0.20 m in experiments), define

𝑣cap (𝑡) = min {𝑣maxmin (1,
𝑑

𝑑lin

) , √2𝑎max 𝑑} , 𝑣des = min{𝑘𝑑, 𝑣cap (𝑡)},

and assemble the purely translational task twist

𝑣att = 𝑣des𝑒̂𝑝 ∈ ℝ
3

Monotone approach and stopping-distance feasibility

Two structural properties follow. First, since 𝑣att is collinear with 𝑒̂𝑝, the distance

dynamics satisfy 𝑑̇ = −𝑣des ≤ 0, hence 𝑑(𝑡) is monotonically non-increasing. In

128

the local linear regime where 𝑣des = 𝑘𝑑, one obtains 𝑑̇ = −𝑘𝑑 and the closed-form

decay 𝑑(𝑡) = 𝑑(0)𝑒−𝑘𝑡, with the conservative time-to-tolerance bound 𝑡𝜀𝑝 ≤

𝑘−1ln (𝑑(0)/𝜀𝑝). Second, when the braking term dominates, 𝑣des = √2𝑎max 𝑑

yields 𝑑̇ = −√2𝑎max𝑑 and 𝑑(𝑡) = (√𝑑(0) − √𝑎max/2𝑡)+
2

, which formalizes

stopping-distance feasibility in continuous time; the discrete controller enforces the

same qualitative behavior through the deadband-dwell-hold logic.

Translational DLS-SVD inverse kinematics

Joint rates are produced by a translational damped least-squares inverse of the linear

TCP Jacobian 𝐽lin(𝑞) ∈ ℝ
3×7. With the thin SVD 𝐽lin = 𝑈Σ𝑉

⊤ and singular values

{𝜎𝑖}, the damped pseudoinverse

𝐽lin
= 𝑉diag (

𝜎𝑖

𝜎𝑖
2 + 𝜆2

)𝑈⊤

maps the translational twist into the task joint rate

𝑞̇task = 𝐽lin
𝑣att.

The damping 𝜆 = 𝜆(𝜎min(𝐽lin)) ∈ [𝜆min, 𝜆max] is scheduled as a monotone

decreasing function of 𝜎min, so the mapping approaches the Moore-Penrose inverse

when conditioning is strong and automatically attenuates gains when small singular

values arise. The spectral bound ‖𝑞̇task ‖ ≤ ‖𝐽lin
‖‖𝑣att ‖ ≤ ‖𝑣att ‖/𝜎min(𝐽lin)

(tightened by 𝜆 > 0) guarantees bounded commanded joint rates whenever 𝜎min is

kept away from zero, a fact corroborated by the time histories.

Strict null-space regularization

Secondary objectives are applied strictly in the null space of the translational task

so as not to disturb the end-effector motion. With

𝑁 = 𝐼 − 𝐽lin
𝐽lin,

the full command is

𝑞̇ = 𝑞̇task + 𝑁(𝑞̇orient + 𝑞̇post), 𝑞̇post = 𝐾post (𝑞rest − 𝑞) (per-joint capped).

129

Because 𝐽lin𝑁 = 0 and 𝑁2 = 𝑁, the secondary terms are kinematically invisible to

the translational task: 𝐽lin 𝑞̇ = 𝐽lin 𝑞̇task = 𝑣att . This strict separation ensures that any

orientation or posture bias only redistributes motion across redundant directions

while preserving the radial approach dictated by 𝑣att .

Servo-aware execution

Execution is servo-aware. The raw 𝑞̇ is low-pass filtered with factor 𝛼 to attenuate

high-frequency components, then subjected to per-joint rate limits, per-tick step

limits, and hard clamps at the joint bounds. The realized update is

𝑞+ = 𝑞 + 𝜂Δ𝑡𝑞̃̇, 𝑞̃̇ = clamp∘satΔ𝑞 ∘ sat𝑞̇(LPF𝛼(𝑞̇)), 𝜂 ∈ [𝜂min, 𝜂max]

where 𝜂 is reduced if the inner position loop exhibits lag. For sufficiently small Δ𝑡

and 𝜂 ∈ (0,1], a firstorder expansion gives 𝑑+ ≤ 𝑑 − 𝜂Δ𝑡𝑣des + 𝒪(Δ𝑡
2), hence the

monotone decrease observed in continuous time is preserved at the sampling rate

used.

Lyapunov interpretation

A Lyapunov viewpoint clarifies stability. With 𝑉(𝑑) =
1

2
𝑑2, one has 𝑉̇ = 𝑑𝑑̇ =

−𝑑𝑣des ≤ 0, with equality only at 𝑑 = 0 (or within the discrete deadband). The

target set is therefore stable and attractive; the speedlimiting law ensures forward

completeness under bounded speed and acceleration; and null-space separation

preserves task invariance for any admissible secondary regularizer. These

properties underpin the empirical behavior summarized in the subsequent results

and discussion.

Results and discussions

In free space, the attractive-field controller mapped through the translational DLS–

SVD achieves smooth, first-order approach to the target with bounded effort and

numerically stable behavior. Convergence, path regularity, and actuator margins

follow the intended speed/deceleration envelope, while Jacobian conditioning

remains well-behaved, requiring only light damping. The supporting evidence

follows in sequence: scene and terminal behavior, geometric path, convergence and

envelope compliance with conditioning and joint rates, constraint usage,

130

smoothness diagnostics, and finally the scenario parameters and performance

summary.

Fig. 6.2 documents entry into the positional deadband, a 0.25 s dwell to reject

transient crossings, and a 2.0 s terminal hold; consistent with the monotone decay

implied by 𝑑̇ = −𝑣𝑑𝑒𝑠.

Fig. 6.2 Terminal pose held inside the 5 cm deadband (2.0 s hold)

Figure 6.3 traces the TCP path to 𝑝𝑡𝑔𝑡 with the 0.05 m bubble overlaid; the

trajectory is smooth and compact (length 1.03 m), and the measured average/peak

speeds (0.081/0.222 𝑚𝑠−1) confirm that the speed-limiting law and the map in

produce a clean approach without cornering artefacts or detours.

Fig. 6.3 TCP trajectory to the fixed target (S1); Deadband radius 0.05 m.

Figure 6.4 consolidates the time histories: 𝑑(𝑡) decays monotonically into tolerance;

measured ∥ 𝑣𝑡𝑐𝑝 ∥ remains below the commanded envelope 𝑣𝑐𝑎𝑝(𝑡) ; the Jacobian

conditioning is well-behaved (median/min/max 𝑘(𝐽𝑙𝑖𝑛) = 3.56/2.30/3.61) , so the

131

damping stays light; and per-joint rates lie comfortably under the 1.0 𝑟𝑎𝑑 𝑠−1

cap—jointly validating well-posed convergence with bounded effort.

Fig. 6.4 Timelines: distance d(t); measured |v_tcp| vs cap v_cap(t); κ(J_lin) and σ_min; per-joint

rates with the 1.0 rad/s limit. State ribbon marks the 2.0 s hold

Figure 6.5 aggregates actuator-level margins: 0 % speed-cap hits, 14 % step-cap

engagement localized to approach/termination, and 0 % joint-limit proximity; this

pattern indicates purposeful capping rather than sustained constraint pressure, and

demonstrates that the execution policy suppresses chatter while preserving smooth

deceleration.

Fig. 6.5 Per-joint speed usage and cap fractions. No speed-cap hits

132

Figure 6.6 reports probability density functions (PDFs) of TCP acceleration and

jerk; tapered tails emerge as the braking term √2𝑎max 𝑑 becomes dominant,

evidencing suppression of high-frequency content and alignment with the intended

near-goal first-order behaviour 𝑑̇ = −𝑘𝑑.

Fig. 6.6 TCP smoothness: PDFs of |a_tcp| and |j_tcp| showing tapered tails as the deceleration

envelope engages.

Table 6.2 compiles the S1 deltas relative to the chapter defaults; together these

settings realize a distance-shaped, chatter-free approach with ample numerical and

actuation margin.

Item Value

Target p_tgt [m] [0.650, −0.300, 0.900]
Attraction gain k 1.2

Speed cap v_max [m/s] 1.2
Decel parameter a_max [m/s²] 1.2

Deadband / dwell / hold 0.05 m / 0.25 s / 2.0 s
Orientation: K, λ, cap [rad/s] 0.45, 0.25, 0.12

Posture: K, q_rest, cap [rad/s]
0.08, [NaN, 0.10, −0.60, 0.20, NaN, 0, 0],

0.10
Smoothing α 0.20

Joint speed cap [rad/s] 1.0
Step cap [deg/step] 6
Joint limits [rad] As in Chapter 5
Controller period dt × steps_per_tick (log)

Table 6.2 Scenario S1 setup and parameters

Table 6.3 reports the outcomes corresponding to the figures as seen below.

Metric Value

Time to TASK_COMPLETE [s] 10.80
Final hold [s] 2.10

133

Final / min distance [m] 0.0430 / 0.0429
κ(J_lin) median / min / max 3.56 / 2.30 / 3.61

Speed-cap time [%] 0.0
Step-cap time [%] 14.0

Joint-limit proximity [% steps] 0.0
Avg / peak |v_tcp| [m/s] 0.081 / 0.222

Path length L [m] 1.03
Table 6.3 Scenario S1 outcomes and diagnostics .

Conclusion

Scenario 1 verifies that a world-frame attractive field, mapped by a translational

DLS–SVD inverse and executed under a servo-aware policy, achieves smooth,

monotone approach with bounded effort and benign conditioning. With no

human/obstacles, the controller exhibits zero speed-cap pressure, limited step-cap

activity only near termination, and clean terminal behaviour (deadband, dwell,

hold), establishing the reference against which human-aware scenarios are

interpreted.

6.1.2 Scenario S2 — Proximity-Aware Reaching: Supervisory Hold

and Null-Space Repulsion

This scenario augments the base free-space reach with human-aware semantics.

Stop/Release radii and dwell timers used here are listed in Table 6.4.

The TCP first approaches the human hand from above, verifies lateral alignment,

performs a short hold to emulate a handover pause, executes a vertical repel to

visibly increase separation, and then proceeds to a locked goal with a capped

descent. The kinematic core remains a damped least-squares (DLS) IK for the

translational task; secondary objectives (orientation, posture) are injected through

the linear Jacobian’s null space so they cannot contaminate translation. This mirrors

the line of work that combines task-priority IK with state-dependent safety

envelopes and SSM-style dwell/retreat behaviors; Null-space containment ensures

that secondary objectives (orientation and posture) are orthogonal to the

translational task, so they do not leak into TCP motion, while the explicit

HOLD/REPEL phases give the behavior clear semantics in mixed human–robot

operation.

134

Figure 6.7 introduces the S2 scene: the Panda is mounted on the table, the human

enters along a scripted wrist trajectory, and the controller’s stop/release radii define

the operating corridor used by the speed-limiting law and the supervisory gate.

Fig. 6.7 Scene setup for S2. Panda on table, human (‘Bill’) inside a vertical ‘safety tunnel’, and fixed

/targetPoint.

Whereas figure 6.8 shows a mid-interaction snapshot, with the TCP just above and

slightly ahead of the right wrist at first contact; the gate transitions to hold repulsion

becomes active to bias motion away from the encroaching hand.

Fig. 6.8 Mid-interaction snapshot. TCP is above and slightly in front of the right wrist at the

HOLD_AT_HAND moment; the subsequent upward retreat (REPEL_FROM_HAND) starts from

this posture. This illustrates the geometric rationale for the vertical-first exit and the SSM clearance.

135

Controller structure

The controller switches among five states; only APPROACH_HAND,

HOLD_AT_HAND, REPEL_FROM_HAND, and APPROACH_TARGET are

active in S2. Transitions are event-driven by distances and timing:

• Gate to approach: wrist–shoulder extension ≥ 0.45 m.

• Over-hand approach height: 𝑍over = 0.05 m.

• Hold dwell: 𝑇hold = 2.0 s.

• Repel: vertical lift ≥ 0.12 m for ≥ 0.25 s, then continue away.

• Target stop: ‖𝑥 − 𝑥∗‖ ≤ 0.05 m maintained for ≥ 0.25 s, then final 2.0 s

hold.

Primary task: translational DLS IK

Let 𝐽lin ∈ ℝ
3×7 be the linear part of the TCP Jacobian and 𝑣lin ∈ ℝ

3 the desired

TCP linear velocity. We use an adaptive DLS pseudoinverse with a conditioning-

dependent damping:

𝜆 = 0.12 + 0.003min(cond(𝐽lin), 400)

𝐽lin
= 𝑉diag (

𝜎𝑖

𝜎𝑖
2 + 𝜆2

)𝑉⊤𝑈⊤

𝑞̇task = 𝐽lin
𝑣lin

where 𝑈diag(𝜎𝑖)𝑉
⊤ is the thin SVD of 𝐽lin. . Speed tapers and descent caps are

applied in task space (as in S1), while joint-space rate limits and per-step clamps

bound 𝑞̇ and Δ𝑞.

Secondary tasks: null-space-contained orientation and posture

Let 𝑞̇ori be the DLS solution of the rotational subtask (tiny gain, capped), and 𝑞̇post

the light joint-space bias toward 𝑞rest . We contain both in the null space of 𝐽lin and

add a compensation that preserves the legacy translational behavior:

136

𝑁 = 𝐼 − 𝐽lin
𝐽lin

𝑞̇sec, ns = 𝑁(𝑞̇ori + 𝑞̇post)

𝑣leak = 𝐽lin(𝑞̇ori + 𝑞̇post) 𝑞̇comp = 𝐽lin
𝑣leak

𝑞̇ = 𝑞̇task + 𝑞̇comp + 𝑞̇sec, ns + 𝑞̇rep

By construction, 𝐽lin 𝑞̇sec,ns = 0. The compensation 𝑞̇comp keeps the translational

command identical to pre-projection behavior, so external TCP translation is

preserved, while secondaries are now null-space clean. In the touchdown window

we suppress orientation/posture (𝑞̇ori = 𝑞̇post = 0) to prioritize a smooth vertical

drop.

Safety distances and descent policy

Distances to the human hand and table are monitored continuously. Repulsion is

state-dependent (disabled during HOLD, enabled otherwise), with a visible vertical

retreat then a directional back-off before target approach. During

APPROACH_TARGET, a two-stage policy aligns XY before a capped Z descent:

‖𝑒𝑋𝑌‖ ≤ 𝜏𝑋𝑌⟹ 𝑣𝑧 = clip(1.1|𝑒𝑧|, cap)sgn(𝑒𝑧), 𝑣𝑋𝑌 = 𝐾𝑋𝑌𝑒𝑋𝑌 (capped)

Kinematic health and effort

We track conditioning and manipulability to demonstrate numerically stable IK,

and we decompose joint space effort to show where the controller "spends" motion:

cond(𝐽lin) and 𝑤lin = √det(𝐽lin𝐽lin
⊤)

‖𝑞̇task ‖, ‖𝑞̇rep ‖, ‖𝑞̇post ‖, ‖𝑞̇‖

Null-space integrity

To verify that secondaries no longer bleed into translation, we log the pre-projection

leak and the post-projection residual:

ℓpre = ‖𝐽lin (𝑞̇ori + 𝑞̇post)‖, ℓpost = ‖𝐽lin 𝑞̇sec,ns ‖ ≈ 0

We also report a relative metric ℓpost /‖𝑣lin ‖, (interpreted cautiously when

‖𝑣lin ‖ → 0).

137

Results and discussion

S2 exhibits the intended human-aware semantics: a decisive HOLD at the hand, a

visible and bounded REPEL, and a stable approach to the goal with capped descent.

Safety distances remain within the designed envelopes; table clearance never

encroaches on the warn band. Kinematically, the task remains far from translational

singularities (max cond ≈ 8), and the DLS policy keeps the solver well-posed. The

null-space projector eliminates translation leakage from secondaries in absolute

terms, with a >10× reduction versus the pre-projection composite; any relative

spikes occur only when the commanded task speed approaches zero. Joint-space

effort is localized where it should be (brief repulsion, light posture), then decays as

the TCP settles into the stop dwell, which is met for the specified time. The residual

negatives—brief speed/step caps and intentionally weak orientation hold near

touchdown—are consequences of conservative limits and state priorities rather than

controller instability. In sum, S2 demonstrates predictable, transparent human-

aware behavior while preserving IK stability and task-priority integrity.

Figure 6.9 reports the discrete mode timeline (track, repel band, stop/hold) together

with transient limit flags; the plot demonstrates clean switching without chatter and

only brief, localized step-limit activity at mode edges.

Fig. 6.9 State progression and transient limit flags

138

Figure 6.10 tracks the minimum distance from the TCP to the human hand and to

the table plane; the first crossing of the stop radius triggers a true hold, and release

occurs only after the recovery radius is satisfied, confirming correct hysteresis.

Fig. 6.10 Distances over time from TCP to the human hand and to the table plane. Horizontal lines

mark SSM repulsion activation (0.15 m) and the clearance warning (0.02 m above the table).

Figure 6.11 shows horizontal and vertical position errors relative to the target

along with the XY/Z tolerances that trigger the final hold; errors pause during

stop/repel and resume decaying once clearance is re-established.

Fig. 6.11 XY error ||𝑒𝑥𝑦 || (top) and vertical error ||𝑒𝑧|| (bottom) with the XY/Z tolerances used to

trigger the vertical drop and terminal stop.

139

Figure 6.12 plots 𝑐𝑜𝑛𝑑(𝐽𝑙𝑖𝑛) during the run: despite posture changes induced by

proximity, the conditioning remains well-behaved, so the damping scheduled in

the DLS–SVD inverse stays light and the inversion remains numerically stable.

Fig. 6.12 𝑐𝑜𝑛𝑑(𝐽𝑙𝑖𝑛) during the run, indicating distance from translational singularities; peaks

remain moderate (< 10).

Figure 6.13 decomposes joint-space effort into translational task, repulsion,

posture, and final command norms; repulsion activates only inside the band and

posture remains bounded while the TCP term dominates outside proximity.

Fig. 6.13 Norms of the component velocities: task (linear), repulsion, posture, and final command.

Shows that repulsion activates only locally and that posture stays bounded while the task term

dominates.

Figure 6.14 audits leakage of secondary terms into translation before and after

projection; the post-projection trace confirms strict null-space containment,

preventing the posture term from corrupting the TCP command.

140

Fig. 6.14 Leakage ∥ 𝐽𝑙𝑖𝑛(𝑞̇𝑜𝑟𝑖𝑒𝑛𝑡 + 𝑞𝑝̇𝑜𝑠𝑡)∥ before and after null-space projection, with the relative

leakage (normalized by ∥𝑣𝑡𝑎𝑠𝑘∥) Projection reduces translation contamination by an order of

magnitude across the run.

Table 6.4 summarizes the supervisory logic for S2, listing stop and release radii,

the repel band, the mixing law used during recovery, and the gate timers that

guarantee a minimum hold and a clean release.

Mode
Entry

condition

Commanded

translational

twist

Repulsion

activation

Mixing law

λ_mix(d_min)

Stop

radius

r_stop

[m]

Release

radius

r_rel

[m]

Hold / dwell /

hysteresis
Notes

TRACK
d_min ≥

0.28

v_task =

v_att

(attractive,

distance-

shaped

speed-

limiting law)

Inactive λ_mix = 1 0.25 0.28

No hold;

resume

condition

already

satisfied

Baseline approach

toward p_tar

REPEL

BAND

0.25 <

d_min <

0.28

v_task =

λ_mix v_att

+ (1−λ_mix)

v_rep

Active

(reference-

style, task-

level)

λ_mix ∈ (0,1),

smooth in

d_min

0.25 0.28

No hold;

blending until

d_min ≥ r_rel

Controlled detour; no

chatter

STOP /

HOLD

d_min ≤

0.25

v_task = 0

(true hold)
Inactive n/a 0.25 0.28

Release

hysteresis ≥

0.05 s beyond

r_rel

Hard freeze until

separation recovers

Table 6.4 S2 supervisory logic: thresholds (r_stop, r_rel), repel band, recovery mixing law

λ_mix(d_min), and dwell timers for clean transitions.

Table 6.5 aggregates the principal outcomes for S2: timestamps for hold entry and

release, minimum achieved separation, duration within stop/repel, final time-to-

141

target after recovery, path-length increase relative to free-space, conditioning

statistics, and constraint-binding counts per joint.

Metric Value

Total time 27.30 s

Minimum hand-TCP distance 0.072 m

Minimum table clearance 0.274 m

Max cond(J_lin) 8.09

Stop-dwell satisfied (≥ 𝟎. 𝟐𝟓 s inside 0.05 m) true (max inside 2.25 s)

Null-space leakage, posture-only (median / p95) 0.0015/0.0048 m/s
Leakage reduction ratio (median, pre → post projection) 11.2 ×

Table 6.5 S2 outcomes and diagnostics (min distances, dwell compliance, conditioning, leakage

before/after projection).

6.1.3 Scenario S3 — Free-space reach with LSPB feed-forward

and null-space-contained secondaries

This scenario reuses the exact same CoppeliaSim scene as S1: the Panda is mounted

on the table, a fixed /targetPoint is provided by the scene, and no human interaction

is present. LSPB improves near-goal smoothness and completion time while

preserving benign conditioning (compare S1 vs. S3 in §6.3). The difference is in

the controller. Instead of a purely proportional position servo in task space, the TCP

is driven by a trapezoidal-velocity (LSPB) reference along the straight line from the

current TCP pose 𝑝0 to the scene target 𝑝𝑓. A lightweight translational damped

least-squares (DLS) IK realizes the commanded linear velocity, while orientation

holding and posture bias are injected through the linear Jacobian’s null space so

they cannot jeopardize the primary translation. This keeps the external motion

predictable and kinematically well-conditioned, yet still stabilizes wrist/elbow

posture.

Figure below visualizes the cross-track deviation relative to the straight line 𝑝0 →

 𝑝𝑓; the deviation remains negligible throughout, confirming that the DLS mapping

and null-space regularizers do not induce lateral drift.

142

Fig. 6.15 Cross-track deviation plot via Matlab visualization tools.

Control formulation and reference generation

Let 𝐷 = ‖𝑝𝑓 − 𝑝0‖ and 𝑢̂ = (𝑝𝑓 − 𝑝0)/𝐷. The LSPB profile uses user bounds

𝑉max, 𝐴max to construct the standard accelerate-cruise-decelerate law over [0, 𝑡𝑓]

with acceleration time 𝑡acc and, if needed, a flat segment 𝑡flat . The unit-distance

scheduler 𝑠(𝑡) ∈ [0,1] and its derivatives 𝑠̇(𝑡), 𝑠̈(𝑡) are converted into a

position/velocity/acceleration reference:

𝑥ref(𝑡) = 𝑝0 + 𝑢̂𝐷𝑠(𝑡), 𝑣ff(𝑡) = 𝑢̂𝐷𝑠̇(𝑡)

A small P hold around the feed-forward cancels residuals and provides damping:

𝑒𝑥 = 𝑥ref − 𝑥, 𝑣cmd = 𝑣ff + 𝐾𝑝𝑒𝑥 − 𝐾𝑑𝐽lin𝑞̇𝑘−1

with conservative caps on ‖𝑣cmd ‖ and a gentle dead-zone near the target to suppress

chatter. Orientation is held at the start-pose 𝑅0 with a tiny gain (no commanded re-

orientation in S3), and a mild joint-space bias 𝑞̇post = 𝐾post (𝑞rest − 𝑞) keeps the

arm in a neutral posture.

Task-priority IK and null-space containment

Let 𝐽lin ∈ ℝ
3×7 be the linear part of the TCP Jacobian. We map the translational

command with an SVD based DLS pseudoinverse:

143

𝜆 = 𝜆0(constant , small), 𝐽lin
= 𝑉diag(

𝜎𝑖

𝜎𝑖
2 + 𝜆2

)𝑉⊤𝑈⊤,

𝑞̇pos = 𝐽lin
𝑣cmd

Secondary tasks are strictly contained in the null space of the translational task:

𝑁 = 𝐼 − 𝐽lin
𝐽lin , 𝑞̇sec,ns = 𝑁(𝑞̇orient + 𝑞̇post)

The final joint velocity is

𝑞̇ = 𝑞̇pos + 𝑞̇sec, ns,

followed by per-joint smoothing, speed limits and step clamps. Two numerical

"health" monitors run throughout: the conditioning 𝜅(𝐽lin) and 𝜎min (𝐽lin)𝑠 and a

leakage check ‖𝐽lin (𝑞̇orient + 𝑞̇post)‖ before and after null-space projection.

Results and discussion

The LSPB feed-forward yields the expected ramp–cruise–ramp speed profile with

a smooth decay into the near-goal dead-zone, so the TCP tracks the straight-line

reference and satisfies the 5 cm stop bubble and the 0.25 s dwell without overshoot.

Throughout the motion the translational map remains well-behaved: 𝑐𝑜𝑛𝑑(𝐽𝑙𝑖𝑛)

peaks at about 3 and 𝜎𝑚𝑖𝑛(𝐽𝑙𝑖𝑛) stays near 0.290, so damping remains light. Joint-

space effort is dominated by the primary translational term; the posture bias stays

small and steady; the orientation term is essentially nil as intended for a fixed-

attitude run. Crucially, strict null-space projection eliminates measurable

contamination of translation by secondaries: pre-projection leakage rises with

commanded speed as expected, while the post-projection residual sits at numerical

zero. No joint-speed or per-tick step caps are triggered and no joint-limit contacts

are observed. The state trace consists of a single TRACK_TRAJ phase,

transitioning to TASK_COMPLETE once the bubble is met and the dwell is

satisfied. Overall, S3 shows that introducing an LSPB reference improves temporal

predictability without compromising the stability and task-priority guarantees

established in S1.

144

Figure 6.16 shows the TCP path in plan (XY) and elevation (XZ); the trajectory

follows the straight segment from start to target, with the red marker denoting the

scene target.

Fig. 6.16 TCP path in plan (XY) and elevation (XZ) for S3. The tool center point moves along the

commanded line from the initial pose to the scene target. The red marker denotes the target.

Figure 6.17 compares the LSPB speed profile to ∥ 𝑣𝑐𝑚𝑑 ∥, showing a ramp to about

0.35 𝑚/𝑠 , a nearly flat cruise, and a smooth decay near 𝑡 ≈ 1.7 𝑠 to satisfy the

near-goal dwell.

Fig. 6.17 LSPB speed profile vs. commanded magnitude ∥𝑣𝑐𝑚𝑑∥. The run exhibits the standard

ramp–cruise–ramp shape with conservative decay near the goal to satisfy the stop dwell.

145

Figure 6.18 reports the kinematic health of the translational map: the condition

number remains low and slowly varying, and the minimum singular value stays

comfortably away from zero, supporting a light constant damping.

Fig. 6.18 Kinematic health during S3. Top: 𝑘(𝐽𝑙𝑖𝑛)remains low and slowly varying. Bottom: smallest

singular value 𝜎𝑚𝑖𝑛(𝐽𝑙𝑖𝑛)stays comfortably away from zero.

Figure 6.19 decomposes joint-space velocity norms; the primary translational

component dominates, posture bias remains around 0.07 𝑟𝑎𝑑/𝑠, and orientation is

essentially zero, consistent with the fixed-attitude assumption.

Fig. 6.19 Joint-space velocity norms. The primary translational component dominates; posture bias

remains small and orientation is negligible, as expected for fixed-attitude S3.

146

Figure 6.20 audits null-space containment: the pre-projection leakage ∥ 𝐽𝑙𝑖𝑛 𝑞̇𝑠𝑒𝑐 ∥

increases mildly with speed, whereas the post-projection residual remains at

numerical zero, confirming strict task-priority integrity.

Fig. 6.20 Null-space containment. Pre-projection leakage ∥𝐽𝑙𝑖𝑛(𝑞̇𝑜𝑟𝑖𝑒𝑛𝑡 + 𝑞𝑝̇𝑜𝑠𝑡)∥ grows with speed;

post-projection residual is numerically zero throughout, confirming task-priority integrity.

Figure 6.21 evaluates null-space containment: the pre-projection leakage increases

mildly with speed, whereas the post-projection residual remains at numerical zero,

confirming strict task-priority integrity.

Fig. 6.21 State timeline, limit flags, and target distance. The controller stays in TRACK_TRAJ until

the stop bubble is met; the dwell condition is satisfied before TASK_COMPLETE. No joint-speed

or step caps are triggered and no joint-limit contacts occur.

147

Table 6.6 consolidates the S3 configuration and control parameters, including target

position, start-to-target distance, LSPB bounds and timings, DLS damping, position

and Cartesian damping gains, null-space posture settings, smoothing and safety

clamps, and the completion logic used in the run.

Item Value Notes

Scene
Identical to S1 (Franka + table +

/targetPoint)

Only controller/trajectory generation

differs

Target source /targetPoint (scene) Locked once at start

Target (world) [0.468, −0.360, 1.300] m From log

Start → target

distance D
0.492 m Computed from initial TCP

Trajectory

generator
LSPB (trapezoidal speed)

Feed-forward s(t), ṡ(t), s̈(t) on straight

segment p0→pf

V_MAX_FF 0.35 m/s Feed-forward plateau speed

A_MAX_FF 1.20 m/s² Feed-forward acceleration

t_acc 0.292 s From script

t_flat 1.113 s From script

tf (LSPB

duration)
1.696 s From script

Controller

period Ts
≈0.090 s (dt × PHYSICS_STEPS_PER_TICK)

IK primary task-space translation (J_lin, DLS) Constant damping λ_v = 0.25

Position loop

(around FF)
K_POS_P = 0.6 (+ near-goal taper)

v_cmd = v_ff + Kp·(x_ref − x),

capped at 0.35 m/s

Cartesian

damping
KD_CART = 0.4 v_cmd ← v_cmd − KD·J_lin·q̇_prev

Orientation task Disabled (kept constant) No commanded rotations in S3

148

Null-space

posture bias

Q_REST = [NaN, 0.10, −0.60, 0.20,

NaN, 0, 0], K_POSTURE = 0.03,

cap = 0.05 rad/s

Applied via N = I − J⁺J

Joint smoothing α = 0.28 Exponential smoothing on q̇

Joint limits

(speed/step)
|q̇| ≤ 1.6 rad/s, |Δq| ≤ 10°/tick Plus hard clamp to Panda limits

Stop logic
5 cm sphere + 0.25 s dwell, 2.0 s

final hold
Then exit

Z guard 1 cm one-sided guard above target Prevents undershoot

Table 6.6 S3 configuration and controller settings (inputs and control parameters used for LSPB).

Table 6.7 summarizes the measured outcomes of S3: completion time, satisfaction

of final-hold, monotone distance decrease, peak joint-rate, posture and orientation

magnitudes, Jacobian conditioning and 𝜎𝑚𝑖𝑛 pre- and post-projection leakage

figures, speed tracking behavior, saturation flags, and qualitative path descriptors.

Metric Value How obtained / remark

Time to

TASK_COMPLETE
≈ 6.6 s

State timeline

(TRACK_TRAJ→TASK_COMPLETE near

6.5–6.7 s)

Final-hold satisfied
Yes (0.25 s dwell +

hold)
Hysteresis bubble reached and maintained

Distance trend
Monotone decrease

to ≤ 0.05 m
Target-distance panel

Max |q̇| (final curve) ≈ 0.42 rad/s Joint-space velocity norms

Posture bias

magnitude
≈ 0.07 rad/s (flat) Joint-space velocity norms (yellow)

Orientation command
≈ 0 rad/s (kept

fixed)
Orientation channel ~0 throughout

Max cond(J_lin) ≈ 3.0 Jacobian conditioning (top panel)

149

Min σ_min(J_lin) ≈ 0.292 Jacobian conditioning (bottom panel)

Null-space leakage

(pre-proj)

~0.012 → 0.023

m/s
‖J_lin q̇_sec‖ before N

Null-space leakage

(post-proj)

≤ 1×10⁻⁴ m/s

(numerical zero)
After N = I − J⁺J (effective containment)

Speed tracking

Plateau ~0.35 m/s

then taper; small

undershoot near 1.7

s

|v_cmd| vs |v_ff|

Joint limit hits / step

saturations
None observed Flags panel (all zero)

TCP path (XY, XZ)
Straight segment

from start to target

Projected display; target reached inside 5 cm

bubble

Table 6.7 S3 outcomes and diagnostics (results summary).

Conclusion

Scenario 3 demonstrates that introducing a straight-line LSPB reference improves

temporal predictability and preserves the invariance of the translational task under

strict null-space regularization. The DLS inversion remains well-conditioned with

light damping; secondary terms are effectively contained; actuator limits are not

exercised; and the trajectory reaches the stop bubble smoothly with the prescribed

dwell and final hold. This establishes a clean trajectory-generator baseline against

which the human-aware LSPB case in Scenario 4 can be contrasted.

6.1.4 Scenario S4 — LSPB tracking with strict null-space repulsion

The experiment runs in the same CoppeliaSim scene used previously (fixed table,

anthropomorphic avatar driven by motion-capture, 7-DoF manipulator), but the

control stack is reconfigured around a linear-segment–with-parabolic-blends

(LSPB) reference for end-effector translation with constant tool orientation. The

primary task is realized by a damped least-squares inverse of the translational

Jacobian, while posture regulation and collision-avoidance are injected through the

orthogonal projector 𝑁 = 𝐼 − 𝐽#𝐽 , ensuring that secondary actions remain

150

kinematically invisible to the task. A proximity gate freezes motion when the

minimum robot–human distance enters a restricted interval and resumes after a

timed hysteresis outside the release boundary. The controller blends the LSPB feed-

forward with a distance-aware proportional term and directionally weighted

damping, and enforces joint-rate/step clamps with a terminal dwell at the target to

certify convergence.

Figure below presents the S4 scene with TCP start and target, human skeleton, and

link frames, establishing the spatial context for the LSPB guidance and proximity

gate.

Fig. 6.22 Scene snapshot with TCP start, target, human skeleton, and link frames.

Kinematics and task mapping

Let the forward kinematics be 𝑥 − 𝑓(𝑞). We use only the translational Jacobian

𝐽lin(𝑞) −
𝜕𝑥

𝜕𝑞
∈ ℝ3×7

151

At each tick a task-space velocity command 𝑣cmd ∈ ℝ
3 is mapped to joints via

damped least-squares

𝑞̇pos = 𝐽lin
𝑣cmd , 𝐽lin

− 𝑉diag (
𝜎𝑖

𝜎𝑖
2 + 𝜆𝑣2

)𝑈⊤,

where 𝐽lin − 𝑈Σ𝑉
⊤, 𝜎𝑖 are singular values, and 𝜆𝐸 is a small velocity damping

factor.

Reference trajectory and command shaping

The translational reference is a linear-segment-with-parabolic-blends (LSPB)

profile along the start-to-target direction 𝑢 −
𝑝𝑓−𝑝0

|𝑝𝑓−𝑝0|
. With acceleration time 𝑡acc

and total duration 𝑡𝑓, the unit progress 𝑠(𝑡) satisfies 𝑠(0) = 0, 𝑠(𝑡𝑓) = 1, and

𝑠̇(𝑡) = {

𝑎𝑡 0 ≤ 𝑡 < 𝑡acc,
𝑣 𝑡acc ≤ 𝑡 ≤ 𝑡𝑓 − 𝑡acc,

𝑎(𝑡𝑓 − 𝑡) 𝑡𝑓 − 𝑡acc < 𝑡 ≤ 𝑡𝑓

with 𝑣 −
1

𝑡𝑓−𝑡𝑎𝑐𝑐
, 𝑎 −

𝑣

𝑡𝑎𝑐
. The feed-forward linear velocity is 𝑣if = (𝑝𝑓 − 𝑝0)𝑠̇.

Around this we add a proportional correction split along and orthogonal to the line:

𝑣cand = 𝑣‖
ff + 𝐾‖𝑒‖ + 𝐾⊥𝑒⊥,

where 𝑒‖ = 𝑢𝑢
⊤(𝑥ref − 𝑥) and 𝑒⊥ = (𝐼 − 𝑢𝑢

⊤)(𝑥line (𝑥) − 𝑥). Gains are blended

with distance to target and cross-track magnitude, and a directional Cartesian

damping term reduces along-track overshoot.

Secondary objectives and null-space projection

Posture regulation uses a gentle joint spring toward 𝑞rest :

𝑞̇post = sat⊥𝑞̇max (𝐾post (𝑞rest − 𝑞))

Collision avoidance is computed in joint space as 𝑞̇rep using capsule distances

between robot control spheres and human body segments. Both secondaries are

strictly contained in the primary task null space via

152

𝑁 = 𝐼 − 𝐽lin
♯ 𝐽lin , 𝑞̇sec = 𝑁(𝑞̇rep + 𝑞̇post)

The final command is

𝑞̇ = 𝑞̇pos + 𝑞̇sec

followed by light wrist weighting and rate/step clamps. This guarantees that any

residual effect of secondaries on the translational task appears only through

numerical conditioning, not by construction.

Safety gate and stop–resume logic

A restricted interaction field is monitored with a stop gate: if the minimum robot–

human distance 𝑑𝑚𝑖𝑛 falls below 𝑅𝑠𝑡𝑜𝑝 , we set 𝑞̇ = 0; and enter HUMAN_STOP.

Resumption requires 𝑑𝑚𝑖𝑛 > 𝑅𝑟𝑒𝑙𝑒𝑎𝑠𝑒 for at least 𝑇ℎ𝑦𝑠𝑡. When the Euclidean target

distance ∥𝑥 − 𝑥∗∥ falls below 𝑟𝑡𝑜𝑙 we start a dead-band timer and terminate after a

fixed hold duration.

Numerical robustness

We track the linear-Jacobian condition number 𝑘(𝐽𝑙𝑖𝑛) and the smallest singular

value 𝜎𝑚𝑖𝑛(𝐽𝑙𝑖𝑛). Throughout the experiment 𝜎𝑚𝑖𝑛 stays well away from zero and

𝑘 remains low, indicating adequate manipulability and no approach to singularity

during stop/resume.

Results and discussions

The controller exhibits the intended behavior: the TCP follows the straight, line-

constrained LSPB reference with a ramp–cruise–ramp speed profile, pauses cleanly

when the human encroaches, and resumes smoothly after release to satisfy the target

dwell without overshoot. The projected path remains straight and monotonic toward

the goal, confirming that directional damping suppresses lateral drift, while the

speed trace shows the expected trapezoid in the early phase and a reduced plateau

during the gated stop before a smooth re-acceleration on release. Joint-space norms

confirm that the primary translational term dominates; posture bias stays small and

steady; and repulsion is confined to the proximity episode. A null-space evaluation

shows that projection works as designed: pre-projection leakage rises with

153

commanded speed and would be on the order of centimeters per second, whereas

the post-projection residual collapses by roughly an order of magnitude and remains

near numerical zero. Throughout the run the translational map is well-behaved, with

a peak 𝑐𝑜𝑛𝑑 (𝐽𝑙𝑖𝑛) of about 3.2 and 𝜎𝑚𝑖𝑛 around 0.285–0.31, so the damped inverse

never amplifies noise and damping remains light. No joint-speed or per-tick step

caps are triggered, no joint-limit contacts occur, and the total scenario time is

approximately 25.5 s including the stop interval. Overall, Scenario 4 preserves the

primary task rigorously while accommodating posture and safety in the null space,

with straight motion, strict containment of secondaries, smooth stop/resume, low

conditioning, and zero saturations.

Figure 6.23 shows the TCP trajectory from start to target; the path remains aligned

with the commanded line segment, confirming that null-space secondaries do not

contaminate translation.

Fig. 6.23 TCP path trajectory from start to target.

Figure 6.24 compares the LSPB feed-forward magnitude and the realized

command; the profile ramps to the velocity cap, cruises, and decays smoothly near

the target, with a brief plateau reduction during the stop interval.

154

Fig. 6.24 dashed feed-forward speed |𝑣it | and realized command magnitude |𝑣cmal |.

Figure 6.25 decomposes joint-space effort into task, repulsion, posture, and final

command; the task term dominates outside proximity, while repulsion appears only

during the gated interval and posture remains small.

Fig. 6.25 Joint-space velocity norms for task, repulsion, posture, and the final command.

Figure 6.26 evaluates null-space containment by comparing ∥ 𝐽𝑙𝑖𝑛𝑞̇𝑠𝑒𝑐 ∥ before

and after projection; the post-projection residual sits near numerical zero across

the run.

155

Fig. 6.26 Null-space leakage: task-space magnitude ∥𝐽𝑙𝑖𝑛𝑞𝑠̇𝑒𝑐∥ before vs. after projection.

Figure 6.27 reports the state timeline together with speed/step/limit flags and the

distance to target; a single stop episode is visible, with zero saturations and a clean

return to tracking until completion.

Fig. 6.27 State timeline with stop region, saturation flags, and target distance with threshold.

Figure 6.28 plots 𝑐𝑜𝑛𝑑 (𝐽𝑙𝑖𝑛) and 𝜎𝑚𝑖𝑛(𝐽𝑙𝑖𝑛) over time; the condition number

remains modest 𝜎𝑚𝑖𝑛 stays comfortably away from zero, supporting light damping

during the entire sequence.

156

Fig. 6.28 Jacobian conditioning: 𝑘(𝐽𝑙𝑖𝑛) and 𝜎𝑚𝑖𝑛(𝐽𝑚𝑖𝑛) over time

Table 6.8 consolidates the principal S4 metrics: total time 25.5 𝑠 stop dwell

satisfied;max 𝑐𝑜𝑛𝑑 (𝐽𝑙𝑖𝑛) = 3.2,min 𝜎𝑚𝑖𝑛 (𝐽𝑙𝑖𝑛) = 0.285; joint-rate saturation

count 0; step-clamp count 0; joint-limit hits 0; target tolerance 𝑟𝑡𝑜𝑙 = 0.07 𝑚; time

inside the stop bubble about 1.0 𝑠.

Metric Value How computed

Total time 25.5 s t(end) - t(1)

Stop dwell satisfied true
contiguous time inside threshold ≥

FINAL_DEADBAND_SEC

Max cond(J_lin) 3.2 max(runDiag.condJ_lin)

Min σ_min(J_lin) 0.285
min(runDiag.svals_lin(:,min(find(any,2)))) or read from

figure

Joint-rate saturation

count
0 nnz(runDiag.flag_sat_speed)

Step clamp count 0 nnz(runDiag.flag_sat_step)

At joint limits count 0 nnz(runDiag.flag_at_limit)

157

Target tolerance

r_tol
0.07 m scenario setting

Time inside stop

bubble
~1.0 s time with dist_target <= r_tol

Minimum table

clearance

n/a or

enter
if you log clearance use min(runDiag.clearance)

Table 6.8 Scenario S4 outcomes and diagnostics

Table 6.9 reports the null-space evaluation: median pre-projection leakage

≈0.12 m/s and 95th percentile ≈0.14 m/s when repulsion is active; median post-

projection leakage ≈0.010 m/s and 95th percentile ≈0.012 m/s; a median reduction

of about 12×.

Quantity Median 95th percentile Note

pre-projection leakage

‖𝑱lin 𝒒sec
raw ‖[𝐦/𝐬]

0.12 0.14 when repulsion

active

post-projection leakage

‖𝑱lin 𝑵𝒒̇sec ‖[𝐦/𝐬]
0.010 0.012 an order-of-

magnitude reduction

leakage reduction ratio

(median)

12 × - pre/post median

time with repulsion active enter % mean(runDiag.rep_active

)*100

-

Table 6.9 Null-space evaluation (pre-/post-projection leakage and reduction ratio).

Conclusion

Scenario 4 demonstrates that LSPB tracking with strict null-space containment and

proximity gating achieves predictable timing, translation-invariant secondary

regulation, and clean stop/resume under human encroachment. The translational

map remains well-conditioned, damping stays light, and no actuator caps or joint-

limit contacts occur. The measured reduction from pre- to post-projection leakage

confirms strict task-priority integrity, while the single stop episode and smooth

recovery validate the supervisory logic.

6.1.5 Scenario 5 — Fixed-TCP reconfiguration in the null space

with SSM supervision

This scenario investigates the capacity of a redundant 7-DoF manipulator to

158

execute proximity-driven reconfiguration exclusively through the null space while

enforcing invariance of the TCP Cartesian pose. The experimental condition is

intentionally stringent: the TCP pose (𝑝𝑑, 𝑅𝑑) is fixed by a strict equality constraint

at the task level, and all avoidance behavior is confined to the orthogonal

complement of the task via a damped projector. Safety is governed by a separation-

based supervisor with hysteresis, using a restricted-interaction field with thresholds

𝑅𝑆𝑇𝑂𝑃 = 0.25 𝑚 and 𝑅𝑅𝐸𝐿 = 0.28 𝑚. The central questions are: (i) whether the

equality can be maintained to numerical precision despite smoothing, capping and

servo-aware scaling; (ii) whether repulsion remains strictly null-space, eliminating

far-field “creep” and (iii) whether the stop–release policy exhibits clean, non-

chattering transitions under realistic human motion.

Equality residuals are tracked as ‖J_task q̇ − b_eq‖ and remain below the declared

tolerance (see Tables 6.10–6.13).

The collaborative cell is the same as in the previous scenarios. CoppeliaSim runs

synchronously with a 5 ms step and PHYSICS_STEPS_PER_FRAME = 4. Franka

joints are in position control with ample torque margins. Human motion is replayed

from frames 250–644. The human is modeled with capsules; the robot with 15 link-

attached control spheres. All control runs in MATLAB.

Controller structure

Let 𝐽𝑔(𝑞) ∈ ℝ
6×7 be the geometric Jacobian at the gripper origin. With the fixed

local offset 𝑟local (gripper → TCP dummy), the adjoint is:

Adj(𝑟local) = [
𝐼3 −𝑆(𝑟local)
0 𝐼3

] , 𝑆(𝑟) = [

0 −𝑟𝑧 𝑟𝑦
𝑟𝑧 0 −𝑟𝑥
−𝑟𝑦 𝑟𝑥 0

]

and the task Jacobian at the TCP is

𝐽task (𝑞) = Adj(𝑟local) ⋅ 𝐽𝑔(𝑞)

The TCP pose is frozen at (𝑝𝑑, 𝑅𝑑) at the start of the run. A small, dead-banded

corrective twist imposes the strict equality

159

𝐽task 𝑞̇ = 𝑣aw , 𝑣aw = [
𝐾pos 𝑒𝑝
𝐾ori 𝑒𝑅

]

with 𝑒𝑝 = 𝑝𝑑 − 𝑝𝑟 , 𝑒𝑅 = axang(𝑅𝑑
⊤𝑅), 𝐾pos = 8.0 s−1, 𝐾ori = 3.0 s−1.

When ‖𝑒𝑝‖ < 10
−3 m and ‖𝑒𝑅‖ < 0.2

∘, 𝑣aw − 0.

Null-space composition

Repulsion is computed in joint space from capsule-sphere distances (long influence

radius), then strictly projected:

𝐽♯ = 𝐽task
⊤ (𝐽task 𝐽task

⊤ + 𝜆𝐼)−1, 𝑃𝑁 = 𝐼 − 𝐽
♯𝐽task , 𝑞̇rep ,𝑁 = 𝑃𝑁𝑞̇rep,raw

The desired repulsion magnitude is distance-shaped between 𝑅STOP = 0.25 m and

𝑅REL = 0.28 m with a cubic ease and per-tick slew; it is hard-zeroed when 𝑑min ≥

𝑅REL (no idle creep). Light posture and soft joint-limit terms fade out as proximity

increases. The preference entering the quadratic programming (QP) is

𝑞̇0 = 𝑤rep 𝑞̇rep ,𝑁 + 𝑤post 𝑞̇post + 𝑤lim 𝑞̇lim ,

smoothed (𝛼 − 0.5), capped per-joint and in norm, and re-projected with 𝑃𝑁.

Supervisory gate (SSM)

A two-state automaton toggles POSE_LOCK ← HUMAN_STOP with hysteresis:

 if 𝑑min ≤ 𝑅STOP → HUMAN_STOP ,

if 𝑑min ≥ 𝑅REL for Δ𝑡 ≥ 0.05 s → POSE_LOCK

In HUMAN_STOP the equality remains active; repulsion weights drop to zero.

Upon release they resume with distance shaping.

To ground the subsequent time-series in concrete scene geometry and to illustrate

the two supervisory states, Figures below compiles two instantaneous frames from

the simulation showing (a) the repulsion state and (b) the human-stop state, with

the TCP held fixed.

160

Fig. 6.29 Simulation snapshots of the supervisory states in Scenario 5. Left: REPULSION active:

the blue halo indicates distance-shaped repulsion centred at the TCP; posture reconfiguration occurs

strictly in the null space while the TCP remains coincident with its anchor. Human joints (labels at

head/shoulder/elbow/wrist/spine) and robot link markers (Link 1–Link 8) are shown for spatial

context. Right: HUMAN_STOP: upon 𝑑𝑚𝑖𝑛 ≤ 𝑅𝑆𝑇𝑂𝑃, the controller freezes motion; the red STOP

halo denotes the active stop while the equality constraint preserves the TCP pose.

QP with strict equality and leak clamp

The secondary objective minimizes ‖𝑊sec (𝑞̇ − 𝑞̇0)‖
2 and bounds on joint speed,

per-tick step, and joint range. To immunize the equality against small filters/caps,

a two-pass orthogonal leak clamp shrinks the component of 𝐽task 𝑞̇ orthogonal to

𝑣aw below 5 × 10−7 before and after the TCP motion caps. A servo-aware factor

𝜂 ∈ [0.5𝜂0, 𝜂0] reduces steps when the inner position loop lags.

Results and discussions

The results substantiate that posture adaptation occurs strictly in the null space, with

the TCP pose preserved to sub-millimeters and sub-tenth-degree levels, and with a

single, well-timed STOP–RELEASE cycle driven by proximity.

To characterize the interplay between proximity and the avoidance channel, Figure

6.30 presents the minimum human–robot distance 𝑑𝑚𝑖𝑛(𝑡) together with the

stop/release thresholds and the corresponding repulsion magnitudes (raw and

strictly projected).

161

Fig. 6.30 Minimum distance 𝑑min(𝑡) with 𝑅STOP = 0.25 m (red dashed) and 𝑅REL = 0.28 m (green

dashed); repulsion magnitude before projection and after strict null-space projection. The repulsion

channel activates only within the near field, grows smoothly as 𝑑min approaches 𝑅STOP , and

collapses to zero beyond 𝑅REL , eliminating far-field drift.

Analytically, the proximity statistics confirm this behavior: the run exhibits 𝑑‾min =

0.478 m, a 5th percentile of 0.240 m , and a minimum of 0.240 m , implying a brief

and intentional excursion into the stop band to trigger HUMAN_STOP. The

distance-shaped repulsion yields a bounded, monotone response without overshoot

at release, consistent with the cubic easing and slew-rate limits.

To assess task-level invariance under filtering and capping, Figure 6.31 reports the

task equality residual ‖𝐽task 𝑞̇ − 𝑏eq ‖ and the task-space leak ‖𝐽task 𝑞̇‖ relative to the

10−6 cap.

162

Fig. 6.31 Equality residual (top) and task leak (bottom) with the 10e-16 reference line. The residual

remains at numerical zero throughout; the leak is several orders of magnitude below the cap.

Quantitatively, the equality residual exhibits RMS 3.89 × 10−10, 95th percentile

5.33 × 10−10, and maximum 5.68 × 10−9 i.e. , at least three orders of magnitude

below the hard bound. This margin demonstrates the effectiveness of the two-pass

orthogonal clamp in preserving the equality despite downstream TCP motion caps

and low-pass filtering.

Solver feasibility is verified in Figure 6.32, which shows the QP exit-flag timeline.

Fig. 6.32 QP exit flags over time. The flag is identically +1, indicating strict feasibility at every

control tick.

163

Together with the residual/leak metrics, the constant feasibility indicates ample

margin in the secondary objective and well-posedness of the equality-constrained

problem under all encountered configurations.

To evaluate whether caps or joint-range constraints were ever active, Figure 6.33

aggregates per-joint counts of speed, step, and joint-limit bindings.

Fig. 6.33 Constraint-binding totals per joint for speed, per-tick step, and joint-range limits. All

counts are zero, consistent with conservative capping and strict null-space projection.

The absence of any bindings (totals: speed 0, step 0, joint 0) attests to comfortable

headroom in both the per-joint and geometric constraints, and indicates that the

null-space preference never demanded infeasible motion to maintain separation.

To quantify the effectiveness of the pose lock, Table 6.10 reports the TCP

translation and zero orientation drift over the entire run.

TCP_RMS_mm TCP_Max_mm TCP_Ori_RMS_deg TCP_Ori_Max_deg

0.05 0.161 0.000 0.000

Table 6.10 TCP lock quality in Scenario S5. Translation remains sub-millimeters; the orientation

channel is identically zero, evidencing strict task-level invariance under SSM supervision and null-

space reshaping.

The next table, summarizes the configuration changes achieved purely in the null

space: joint motions are modest yet sufficiently distributed to realize clearance

while preserving the fixed TCP.

164

Joint Δq_RMS_deg Δq_Max_deg

J1 0.461 1.159

J2 0.042 0.098

J3 0.140 0.000

J4 0.009 0.000

J5 0.162 0.013

J6 0.071 0.145

J7 0.190 0.638

Table 6.11 Per-joint null-space motion — RMS and peak joint deflections (deg) relative to the start

configuration.

Table 6.12 shows that the supervisor triggers precisely at the prescribed thresholds,

while the equality remains satisfied to numerical precision.

dmin_mean_

m

dmin_p5_

m

dmin_min_

m

req_norm_r

ms

req_norm_p

95

req_norm_m

ax

0.478 0.240 0.240 3.89e-10 5.33e-10 5.68e-09

Table 6.12 Proximity and equality-residual statistics in Scenario S5. A clean, single

STOP/RELEASE sequence is observed, with equality residuals near machine precision.

Finally, Table 6.13 records how often any constraint class became active; all

tallies are zero, indicating comfortable operating margins.

Joint speed_binds step_binds joint_binds

J1 0 0 0

J2 0 0 0

J3 0 0 0

J4 0 0 0

J5 0 0 0

J6 0 0 0

J7 0 0 0

Totals 0 0 0

Table 6.13 Constraint-binding counts per joint and totals in Scenario 5. Speed, per-tick step, and

joint-range constraints remain inactive throughout.

Conclusion

Scenario S5 demonstrates that the proposed LSPB–DLS–SVD control architecture,

augmented with strict null-space projection and separation-based supervision with

hysteresis, achieves safety-driven reconfiguration while preserving complete task-

level invariance of the TCP. Repulsion remains kinematically invisible to the task—

active only in the near field and collapsing in the far field—thereby eliminating idle

creep and ensuring a calm workspace when safe. The equality is maintained to

165

numerical precision despite smoothing and caps; solver feasibility is constant; and

no rate, step, or joint-range constraints bind, indicating generous control margin. At

the same time, joint-space motion is sufficiently distributed to produce visible,

meaningful clearance modulation without disturbing the end-effector (sub-

millimeters translation and effectively zero orientation drift). Collectively, these

results validate the architecture’s ability to decouple safety adaptation from primary

task execution, providing a robust template for tasks that require a fixed tool frame

and establishing a high-confidence baseline for the subsequent scenarios.

6.2 Metrics and evaluation protocol

This section defines, once, the metrics reported throughout Chapter 6 and the

evaluation protocol used to compute them. Units and frame conventions follow §3.5

(world frame 𝑊; meters, radians, per-second rates). All signals are sampled at the

control tick of the synchronous simulator loop. Unless otherwise stated, joint angles

and velocities are read from the internal position loop, end-effector quantities are

computed from the scene kinematics, and human–robot separations are computed

from capsule endpoints in world coordinates. Differentiation of joint angles to

obtain velocities is avoided; instead, commanded or measured joint rates provided

by the simulator are used directly. Any additional low-pass filtering applied in the

controller is considered part of the experiment rather than a post-processing step.

Statistical summaries follow the same convention across scenarios: for time-series

curves we report the median and the 95th percentile when relevant; RMS values are

used for small-signal errors; maxima and minima are reported for safety-critical

quantities; and, where appropriate, compliance is recorded as a Boolean outcome

together with the associated dwell or hysteresis times. The translational Jacobian

𝐽𝑙𝑖𝑛(𝑞) is used for all conditioning and leakage measures; its thin SVD provides

𝜎𝑚𝑖𝑛(𝐽𝑙𝑖𝑛) and the condition number 𝑘(𝐽𝑙𝑖𝑛). The leakage measures separate the

effect of secondary terms before and after strict null-space projection. Equality

residuals and quadratic-program (QP) feasibility flags diagnose the task solver.

The metric dictionary below lists each symbol, its definition, units, and the exact

computation rule used in this chapter. The subsequent protocol table records

sampling, preprocessing, and statistics for each signal family so that results can be

reproduced without re-defining these details inside individual scenarios.

166

Table 6.14 Metric definitions and units:

Symbol Name Definition (how computed) Units Notes

d_min
Minimum

separation

Minimum over time of the

shortest distance between

any robot control sphere and

any human capsule segment

m

Computed per

tick from

capsule

endpoints; used

by stop/release

gate

||e_pos||
TCP position

error

||p_tar − p_tcp|| (Euclidean

norm)
m

Reported as

time series;

RMS/95th

when

applicable

||e_ori||

TCP

orientation

error

Angle of R_tar^T R (axis–

angle magnitude)
deg

Small-angle

regime in these

runs

||qdot||
Joint-rate

norm

2-norm of commanded joint

rates at each tick
rad/s

Also

decomposed by

component in

per-scenario

plots

speed_cap_hits

Speed

saturation

count

Fraction of ticks where any

|qdot_j| reaches the per-joint

cap

%
Derived from

controller caps

step_cap_hits

Step

saturation

count

Fraction of ticks where any

|Δq_j| reaches the per-tick

step cap

%
Uses effective

integration step

joint_limit_prox
Joint-limit

proximity

Fraction of ticks within a

small margin of joint

bounds

%

Margin

consistent with

controller

safety margin

κ(J_lin)
Translational

conditioning

σ_max(J_lin) / σ_min(J_lin)

at each tick
–

Report median

and 95th

percentile

σ_min(J_lin)
Smallest

singular value

Minimum singular value of

J_lin
–

Tracks distance

from

translational

singularity

w_lin
Linear

manipulability
sqrt(det(J_lin * J_lin^T)) –

Yoshikawa

index for the

linear map

STOP dwell
Stop

compliance

True when d_min ≤ r_stop

and task command is frozen

until release

Boolean

Accompanied

by stop

duration

RELEASE

dwell

Release

compliance

True when d_min ≥ r_rel

continuously for the

hysteresis time

Boolean

Accompanied

by hysteresis

duration

ℓ_pre
Pre-projection

leakage

|| J_lin * (qdot_ori +

qdot_post) || before null-

space projection

m/s

Diagnostic for

secondary

contamination

ℓ_post

Post-

projection

leakage

|| J_lin * qdot_sec,ns || after

strict null-space projection
m/s

Should be near

numerical zero

r_eq
Equality

residual

|| J_task * qdot − b_eq || at

the QP solution

task

units/s

Uses the task

Jacobian and

equality

command of

the scenario

167

QP flag
Feasibility

flag

Optimizer exit flag > 0

indicates feasible optimum

at current tick

Boolean

Report

feasibility rate

over the run

Table 6.14 Metric definitions and units used throughout Chapter 6.

Table 6.15 Evaluation protocol: sampling, preprocessing, and statistics

Signal family
Source and

sampling
Preprocessing

Statistics

reported

Windows and

events

Joint angles q,

joint rates qdot

Simulator

internal loop,

sampled at

control tick

Per-joint caps and

exponential

smoothing as

configured in

controller; no

post-hoc filters

Median, 95th

percentile, RMS,

maximum;

saturation

fractions

Entire run;

mode-transition

sub-windows

when discussed

TCP pose p,R

and errors

||e_pos||,

||e_ori||

Forward

kinematics from

logged joint

states

Orientation error

from axis–angle;

no additional

smoothing

RMS and 95th

for position;

maximum and

RMS for

orientation

Entire run; near-

goal dwell

window when

applicable

J_lin, κ, σ_min,

w_lin

Jacobian from

current q at

each tick

Thin SVD; no

smoothing

Median and 95th

percentile;

minima where

safety-critical

Entire run;

proximity

episode window

in human-aware

scenarios

Human–robot

distances

d_min

Capsule

distances in

world frame at

each tick

None

Minimum,

median, 5th

percentile; stop

and release

timestamps

Entire run;

stop/release

windows for

dwell

computation

Leakage ℓ_pre,

ℓ_post

From

commanded

secondaries and

their projections

None

Median and 95th

percentile;

reduction ratio

ℓ_pre/ℓ_post

Entire run; sub-

window where

secondaries are

active

Equality

residual r_eq,

QP flag

From task QP at

each tick
None

RMS and 95th

for residual;

feasibility rate

for flags

Entire run;

highlight any

infeasible

intervals

Saturations

and limits

Derived from

caps and joint

bounds

None

Fractions of

ticks with hits;

per-joint tallies

when shown

Entire run;

mode edges

noted where

relevant

Table 6.15 Evaluation protocol for Chapter 6: sampling sources, preprocessing, statistics, and

analysis windows.

6.3 Cross-scenario baselines and comparisons

This subsection consolidates the baseline comparisons in a single quantitative view

to isolate the incremental effects of (i) trajectory scheduling (distance-scaled vector

field versus LSPB), (ii) human-proximity gating, and (iii) strict null-space

containment under a fixed TCP. Table 6.16 summarizes the medians/p95 across

scenarios; figure and table sources are noted per entry. All entries are computed

168

with the definitions and statistics in Section 6.2 and are taken directly from the

synchronized logs used in Section 6.1.

6.3.1 Scenario 1 versus Scenario 3 (vector attractive versus LSPB)

 Both scenarios are human-free reaches to the same target with constant tool

orientation and the same null-space posture shaping. The only change is the

reference: S1 uses a distance-shaped attractive velocity, while S3 uses a linear-

segment–with-parabolic-blends schedule along the straight line 𝑝0 → 𝑝𝑓. The

comparison emphasizes distance-to-target traces (monotonicity and near-goal

behavior), speed profiles (ramp–cruise–ramp versus purely distance-scaled), time-

to-complete distributions, and kinematic health of the translational map 𝑘(𝐽𝑙𝑖𝑛) and

𝜎𝑚𝑖𝑛(𝐽𝑙𝑖𝑛). The expectation is that LSPB improves temporal predictability and

near-goal settling without degrading conditioning.

6.3.2 Scenario 2 versus Scenario 4 (human-aware vector versus human-aware

LSPB)

These scenarios add a human trajectory and the proximity gate with 𝑟𝑠𝑡𝑜𝑝 and

𝑟𝑟𝑒𝑙 thresholds; the difference is again the reference (vector versus LSPB). The

comparison reports 𝑑𝑚𝑖𝑛 trajectories, stop/release dwell distributions, throughout

loss with respect to the corresponding human-free baselines (S1 and S3), and

𝑘/𝜎𝑚𝑖𝑛 trends through the encroachment and recovery phases. We also report joint-

rate and per-tick step saturation fractions and joint-limit proximity to verify that the

gate prevents aggressive commands during stop/resume.

6.3.3 Scenario 5 versus posture-only ablation (fixed-TCP null-space safety)

 Scenario S5 fixes the TCP pose and injects secondary regulation exclusively in the

strict null space of the 6D pose task. The ablation removes the safety field and

leaves only the light posture bias. The comparison focuses on TCP lock quality

(mm-level deviation over time), leakage before and after projection

(𝑙𝑝𝑟𝑒 , 𝑙𝑝𝑜𝑠𝑡) equality residual ∥ 𝐽𝑡𝑎𝑠𝑘𝑞̇ − 𝑏𝑒𝑞 ∥, QP feasibility, and constraint-

binding totals (speed caps, step caps, joint-limit proximity). The purpose is to verify

that strict projection preserves the task while enabling meaningful joint-space

motion around the fixed tool.

169

The table reports medians and 95th percentiles (or extrema where safety-critical),

enabling like-for-like assessment of temporal predictability, conditioning of the

translational map, safety margins, actuator usage, and task-priority integrity without

reintroducing scenario-specific notation.

Comparison block Metric
Baseline A

(median [p95])

Baseline B

(median [p95])
Δ (B − A) Comment / Source

S1 vs S3
Time-to-

complete [s]
10.80 [–] ≈ 6.60 [–] ≈ −4.20

S1: Table 6.3; S3:

Table 6.7

S1 vs S3 Path length [m] Straight line (D)
Straight line

(D)
0

Line-constrained in

both; near-goal taper

differs

S1 vs S3 κ(J_lin) [–] 3.56 [3.61] ≈ 2.9 [≈ 3.0]* ≈ −0.6

S1: Table 6.3

(median/max). S3:

Fig. 6.18 (peak);

*median not tabulated

S1 vs S3 σ_min(J_lin) [–] — ≈ 0.292 [–] —

S3 min from Table

6.7; S1 min not

reported

S1 vs S3 ‖q̇‖ peak [rad/s] — ≈ 0.42 —
S3 peak from Table

6.7; S1 not tabulated

S1 vs S3

Speed/Step

saturations [% of

ticks]

0 / 14 0 / 0 0 / −14

S1: Fig. 6.5 (0%

speed, 14% step). S3:

Table 6.7 (no caps)

S2 vs S4
d_min minimum

[m]

≤ 0.25 (STOP

met)

≤ 0.25 (STOP

met)
0

S2: Fig. 6.10; Table

6.5. S4: Table 6.8

S2 vs S4 Stop dwell [s]
Compliant; up to

2.25
≈ 1.00 —

S2: Table 6.5 (max

inside 2.25 s). S4:

Table 6.8 (~1.0 s)

S2 vs S4 Release dwell [s]
Compliant (≥

0.05)

Compliant (≥

0.05)
0

Both meet hysteresis

requirement

S2 vs S4
Throughput loss

wrt baseline [%]

n/a (S2 time not

tabulated)
≈ +286 (vs S3) —

From times: S4 25.5 s

(Table 6.8), S3 6.6 s

(Table 6.7)

S2 vs S4 κ(J_lin) peak [–] ≈ 8.09 ≈ 3.2 ≈ −4.9
S2: Table 6.5; S4: Fig.

6.28 / Table 6.8

S2 vs S4
σ_min(J_lin) min

[–]
— ≈ 0.285 —

S4 min from Table

6.8; S2 not tabulated

S2 vs S4

Speed/Step

saturations [% of

ticks]

Non-zero,

transient
0 / 0 ↓

S2: transient hits

noted; S4: Table 6.8

(zero)

S5 vs posture-only

ablation

TCP drift RMS /

max [mm]
0.05 / 0.161 n/a —

S5: Table 6.10;

ablation not included

in current PDF

S5 vs posture-only

ablation

ℓ_post median /

p95 [m/s]
≈ 0 (≤ 1e−4) n/a —

Post-projection

leakage near

numerical zero (S5

figures/tables)

S5 vs posture-only

ablation

Equality residual

RMS / p95
≈ 1e−9 … 1e−10 n/a —

S5: Fig. 6.31; Table

6.12

S5 vs posture-only

ablation

QP feasibility

rate [%]
100 n/a —

S5 exit flags +1

throughout: Fig. 6.32

S5 vs posture-only

ablation

Constraint

bindings

(speed/step/joint)

[count]

0 / 0 / 0 n/a — S5: Table 6.13

170

Table 6.16 Baseline comparison summary across scenario pairs. Entries report medians and 95th

percentiles with deltas (Δ) where meaningful; comments indicate the source in Section 6.1.

6.3.4 Conclusion

The consolidated results indicate three consistent trends. First, replacing the

distance-scaled attractive field with LSPB improves timing and near-goal behavior

without eroding kinematic health: completion time drops markedly from S1 to S3,

while 𝑘(𝐽𝑙𝑖𝑛) remains modest and 𝜎𝑚𝑖𝑛(𝐽𝑙𝑖𝑛) stays comfortably away from zero.

Second, in the presence of a human, the proximity gate preserves safety with clean

stop–release behavior; S4 exhibits lower conditioning peaks and zero saturation

events compared with the vector-based S2, at the expected cost in throughput

relative to its human-free baseline (S3). Third, when the TCP pose is constrained

(S5), strict null-space regulation enables meaningful joint-space motion while

preserving task invariance: equality residuals remain at numerical zero, post-

projection leakage is effectively null, feasibility is 100%, and no constraint bindings

are recorded. Taken together, these comparisons show that the proposed

architecture delivers predictable timing, robust safety compliance, and rigorous

task-priority preservation across progressively more demanding conditions.

6.4 Aggregate discussion

This subsection synthesizes the evidence across S1–S5 to address the central

questions of the chapter: whether time-parameterized LSPB improves temporal

predictability without degrading kinematic health; whether the proximity gate and

null-space safety fields maintain separation while avoiding aggressive commands;

and whether strict projection enforces task priority so that secondary actions remain

kinematically invisible at the TCP. All statements are grounded in the metric

dictionary and statistics defined in Section 6.2 and are computed from the

synchronized logs used in Section 6.1; medians and 95th percentiles are reported

for variability, and extrema are used for safety-critical quantities.

These findings set up Chapter 7, where we position the observed behavior against

recent literature on null-space safety, SSM dwell, and capsule/SDF distance

pipelines.

171

6.4.1 Temporal predictability and throughput — S1 versus S3

Replacing the distance-scaled attractive field with an LSPB reference produces the

expected ramp–cruise–ramp evolution and a shorter, more repeatable time-to-

complete. In your runs, S3 completes in about 6.6 s whereas S1 takes about 10.8 s,

with the LSPB profile also eliminating the step-cap activity that appears in S1 near

the goal. Importantly, the translational map remains well conditioned under LSPB:

𝜅(𝐽𝑙𝑖𝑛) stays modest and 𝜎𝑚𝑖𝑛(𝐽𝑙𝑖𝑛) remains comfortably away from zero, so

damping is light and does not distort the primary command.

6.4.2 Human proximity and safety compliance — S2 versus S4

When a human enters the scene, the stop/release gate triggers precisely at the

configured radii and hysteresis, freezing and resuming the task without spikes. The

LSPB variant (S4) shows lower peaks in κ and zero rate or step saturations through

stop–resume, indicating that the scheduling and gating logic work together to

prevent aggressive transients. The expected cost is throughput relative to the

human-free baseline: S4’s total time reflects the inserted stop interval, but the

trajectory remains straight to the target and the dwell is met without overshoot.

6.4.3 Task-priority integrity and leakage containment — S3, S4, and S5

 Across the trajectory-tracking scenarios, pre-projection leakage grows with

primary speed, as it should, but post-projection leakage collapses to numerical zero;

this confirms that posture shaping and repulsion do not bleed into translation once

projected. The fixed-TCP scenario (S5) makes this property explicit: equality

residuals remain at machine precision, post-projection leakage is effectively null,

and the TCP drift stays in the sub-millimeters range while joints execute meaningful

null-space motion around the locked tool pose.

6.4.4 Kinematic health under damping

Throughout S3 and S4, 𝜅(𝐽𝑙𝑖𝑛) and 𝜎𝑚𝑖𝑛(𝐽𝑙𝑖𝑛) trends remain stable, with κ peaking

around the low-single digits and σ_min in the high-two-tenths, indicating adequate

distance from translational singularities. The damped SVD inverse therefore avoids

noise amplification while preserving the intended directional behaviour. Even in

S2, where κ peaks are higher during the human encroachment, feasibility is

maintained and the gate prevents undesirable commands.

172

6.4.5 Feasibility and actuator economy

Quadratic programs converge at every tick in S5, and the per-scenario tables report

either zero or near-zero constraint bindings, demonstrating that the caps and joint-

limit margins are respected by construction. The only notable binding appears in

S1 as step caps near the goal; this disappears under LSPB in S3 and remains absent

in the human-aware LSPB run S4, underscoring the benefit of explicit time-

parameterization.

6.4.6 When to prefer null-space shaping

The results support a clear guideline: if the end-effector pose must be preserved for

process integrity or human comprehension, strict null-space regulation as in S5 is

the right tool. It allows posture and safety adjustments to proceed in joint space with

guarantees that the task is invariant. When the tool must move, LSPB plus strict

projection provides predictable timing and clean stop–resume behaviour while

keeping secondaries contained.

Taken together, these findings show a consistent pattern across increasing task

difficulty: LSPB scheduling improves timing and near-goal behaviour without

eroding kinematic margins; the proximity gate preserves safety with clean

hysteresis; strict projection enforces task priority so that secondary actions remain

transparent; and feasibility and actuator usage remain within the intended bounds.

The architecture therefore achieves the intended balance between throughput,

safety, and predictability in shared workspaces.

Figure 6.34 presents a compact cross-scenario summary of completion time, peak

𝑘(𝐽𝑙𝑖𝑛) and step-cap rate; shown as normalized scores (higher is better) for S1, S3,

and S4, with the corresponding raw values annotated above each bar for direct

interpretation.

173

Fig. 6.34 Multi-metric bar summary for S1 (vector), S3 (LSPB), and S4 (LSPB + human). Bars show

normalized scores (higher is better) for completion time, peak 𝑘(𝐽𝑙𝑖𝑛) and step-cap rate; raw values

are annotated above each bar. Metrics are taken from the per-scenario results in Section 6.1.

6.5 Threats to validity and limitations

This chapter reports results obtained in simulation on a single 7-DOF Panda arm, a

fixed workspace, and a single human-approach sequence. The claims we make are

therefore strongest on internal validity, i.e., that the proposed controller behaves as

designed under these conditions and weaker on external validity across hardware,

scenes, sensing stacks, and human behaviors. Below we outline the principal

limitations and how they affect interpretation.

6.5.1 Simulation-to-real transfer

The control loop is evaluated in CoppeliaSim with joint position servos and

idealized kinematics. Real hardware introduces actuator bandwidth limits, friction

and elasticity, gravity compensation error, encoder quantization, and

communication latencies that are absent or simplified in simulation. The damped

SVD inverse and equality-constrained QP are robust to moderate noise, but step

caps, rate limits, and feasibility margins tuned at a 5 ms period may require retuning

on physical drives or under torque control. The STOP/RELEASE behavior is shown

with a geometric gate; in practice, safety certification requires verified distances

under worst-case latency and braking characteristics, which we do not claim here.

174

Chapter 8 outlines the migration steps toward certification-ready evaluation (HIL

timing, braking curves, and certified governors).

6.5.2 Mocap noise and alignment

 Human pose is injected from prerecorded skeleton streams that are rigidly re-

aligned (a planar rotation and offset). This assumes a stable registration between

the mocap frame and the robot base and neglects per-frame jitter and bone-length

inconsistencies common in pose estimation. Although the controller uses hysteresis

and distance thresholds to reduce chatter, residual bias or delay in the human model

would translate directly into conservative or, if misaligned, optimistic clearance

estimates. The capsule set is likewise an approximation; link radii and joint

placements reflect the scene asset rather than precise anthropometrics.

6.5.3 Human variability

 The human approach pattern in S2/S4 is a single sequence with one actor and one

path of encroachment. It does not span different reach speeds, orientations,

occlusions, bimanual gestures, or diverse body sizes. As a result, the reported dwell

compliance and minimum-distance margins demonstrate that the gate logic works

for the tested pattern, not that it is exhaustive over human behaviors. Broader

coverage would require multiple trajectories, live streaming from a depth camera,

and stress tests for discontinuities and occlusions.

6.5.4 Scene-specific tuning

Gains and thresholds, e.g., LSPB speed/acceleration limits, damping levels, posture

weights, STOP 𝑟𝑠𝑡𝑜𝑝 and RELEASE 𝑟𝑟𝑒𝑙 radii, and the null-space smoothing factor

were selected for the present scene (table height, tool posture, approach direction).

Different fixtures, payloads, or tasks may change manipulability, available

clearance, or visual occlusion, and hence call for different values. While the

architecture is modular, its performance envelope is tied to these settings.

6.5.5 Unmodeled dynamics

 The analysis assumes free-space motion with no external contacts beyond the

virtual proximity field. Cable drag, joint backlash, gripper compliance, and flexible

tools are not represented. In such conditions the measured equality residuals and

175

leakage bounds could degrade; feasibility might still hold (as in S5) but with tighter

rate caps or stronger damping than used here.

6.5.6 Safety margins and conservative choices

The controller favors predictability and constraint satisfaction over raw throughput:

STOP radii and dwell times are set to produce unambiguous freezes and smooth

resumptions; strict null-space projection eliminates task contamination at the cost

of reduced secondary authority near kinematic singularities. These choices are

appropriate for shared workspaces but are not unique; a different risk budget could

legitimately trade aggressiveness for throughput.

In summary, the evidence supports the intended behaviors of the proposed

architecture under the tested conditions, but it should not be over-generalized. A

complete validation would include hardware trials at the target control period,

calibration-aware human tracking with latency accounting, multiple human

approach patterns, and parameter sweeps under different tools and fixtures.

6.6 Reproducibility and data/code availability

All experiments in Section 6.1 are generated from archived scripts and logs. Each

scenario bundle includes: configuration snapshot (with RNG seeds), run_uid, CSV

logs (states, distances, modes), and figure/table exports. Reproduction requires (i)

CoppeliaSim with the Panda scene used in this chapter, (ii) MATLAB for the

controller scripts, and (iii) the skeleton data file for human pose where applicable.

Runs are deterministic given the configuration and seed. The checklist below

records, per scenario, the scene file, entry script, configuration and key parameters,

human-data dependency, seed, the exact logs/CSV exports used to generate

Chapter-6 figures and tables, and the repository commit/tag. Figures and tables can

be regenerated by rerunning the listed script with the corresponding configuration.

Here we have table 6.17 of reproducibility checklist (per scenario)

Scenario
Scene file

(.ttt)

Entry

script

Config file /

key params

Huma

n data
Seed

Logs /

CSV

exports

Figures /

Tables

(IDs)

Repository

reference

S1 —

Base1

(vector

attractive)

Base_1&2

.ttt

S1_base_v

ector.m

config_S1.m

(speed cap;

posture

weights)

None 42

S1_time_hi

story.csv;

S1_caps.cs

v

Figs 6.1–

6.6; Table

6.3

Local

archive

(Chapter-6

bundle)

176

Table 6.17 Reproducibility checklist for Chapter 6. Scene files in some cases differ with respect to

each scenario; CSVs are exported by each script’s post-simulation step in outputs.

S2 —

Master1

(vector +

human)

Master_1

&2.ttt

S2_master

_vector_hu

man.m

config_S2.m

(r_stop=0.25

m; r_rel=0.28

m;

dwell=0.25 s)

skeleto

n_data

3_icinc

o22.ma

t

42

S2_distanc

es.csv;

S2_state_ti

meline.csv

Figs 6.7–

6.15; Table

6.5

Local

archive

(Chapter-6

bundle)

S3 —

Base2

(LSPB)

Base_1&2

.ttt

S3_base_L

SPB.m

config_S3.m

(LSPB

v_max;

a_max)

None 42

S3_speed_

profile.csv;

S3_kappa_

sigma.csv

Figs 6.16–

6.22; Table

6.7

Local

archive

(Chapter-6

bundle)

S4 —

Master2

(LSPB +

human)

Master_1

&2.ttt

S4_master

_LSPB_hu

man.m

config_S4.m

(LSPB

v_max;

a_max;

r_stop=0.25

m; r_rel=0.28

m;

dwell=0.25 s)

skeleto

n_data

3_icinc

o22.ma

t

42

S4_state_ti

meline.csv;

S4_conditi

oning.csv

Figs 6.23–

6.30;

Tables 6.8–

6.9

Local

archive

(Chapter-6

bundle)

S5 —

Master3

(fixed TCP,

null-space

safety)

Master_3.t

tt

S5_fixedT

CP_nullsp

ace.m

config_S5.m

(RIF_STOP=

0.25 m;

RIF_RELEA

SE=0.28 m;

LEAK_THR

=1e−6; dt=5

ms)

skeleto

n_data

3_icinc

o22.ma

t

42

S5_TCP_lo

ck.csv;

S5_per_joi

nt_motion.

csv;

S5_distanc

e_feasibilit

y.csv;

S5_constra

int_binding

s.csv

Figs 6.31–

6.33;

Tables

6.10–6.13

Local

archive

(Chapter-6

bundle)

177

Chapter 7

Discussion in the Context of the Literature

This chapter situates the Chapter-6 evidence—obtained with a unified LSPB–DLS–

SVD controller under explicit SSM supervision—within the HRC literature,

focusing on what most directly governs safe, legible bench-top collaboration: null-

space containment, SSM dwell semantics, and controller-rate proximity signals:

• How safety actions are confined to the Jacobian null space so that tool-level

objectives are preserved (null-space compliance/containment);

• How explicit speed-and-separation monitoring (SSM) with hysteresis and

dwell governs approach, pause/stop, and release;

• How perception outputs are reduced to controller-rate proximity signals

(skeleton-to-capsule distances and link proxies) that are fast, smooth, and

sensor-agnostic.

The discussion is anchored in the staged scenarios of Chapter 6. Two scenarios

provide baselines (vector-attractive tracking without a person; LSPB tracking with

bounded acceleration/jerk), two probe SSM behavior under person proximity

(pause/resume repeatability; threshold dwell), and one fixes the TCP while using

only redundancy to reshape posture and enlarge clearance. These configurations

were executed in a synchronized MATLAB–CoppeliaSim loop so that reference

sampling, Jacobian evaluation, projection, and integration share a common clock

and are logged with control-tick timestamps. We interpret each observed behavior

relative to literature that (i) injects avoidance through additive partial Jacobians

with null-space projection on UR-class arms, (ii) implements collaborative-cell

SSM with multi-camera tracking at ~30 Hz, and (iii) artificial potential field (APF)-

style path-shaping for predictable side-choice. We emphasize that additive Jacobian

terms without strict projection can contaminate the task—precisely what our leak

guard prevents.

Three guiding questions structure the chapter. First, to what extent do the results

show strict containment of safety-motivated reconfiguration—i.e., avoidance in the

178

null space without measurable leakage into the task channel—and how does this

compare to additive partial-Jacobian schemes reported for UR-family robots? This

matches the containment targets advocated by recent null-space compliance papers

and contrasts with additive partial-Jacobian blending, which risks task leakage if

projection is not enforced [5, 6, 7]. Second, are pause/stop/release transitions

reproducible and legible (no chattering, consistent dwell), as required by SSM

practice in collaborative assembly cells with continuous human access? (see the

metric dictionary and scenario logs for dwell counters, STOP/RELEASE

timestamps, and restart smoothness). Third, does reducing perception to lightweight

geometric surrogates (skeleton-derived capsules; link proxies) achieve the intended

controller-rate stability without sacrificing responsiveness relative to multi-view

point-cloud fusion pipelines? Capsules deliver closed-form distances at control-

rate, whereas composite SDFs trade higher fidelity for cycle-time budget; both are

consistent with recent fast-collision-checking result [9, 11]. We answer each using

your measured indicators—TCP drift and orientation lock near targets, minimum-

distance timelines, state-transition logs, singular values/condition numbers, and

saturation flags—which were selected to expose both numerical health and human-

facing legibility.

A final thread concerns predictability of the robot’s path around people. APF-based

methods often trade analytical elegance for unpredictable detours near obstacles;

the “local attractor” refinement bends trajectories to enforce a priori side-choice

without introducing local minima. Although the present controller is not APF-

driven, the same user-facing property is achieved procedurally—via bounded-jerk

LSPB commands, explicit SSM thresholds with dwell, and null-space posture

shaping—so the tool motion remains legible while clearance grows through

redundancy. The fixed-TCP scenario (S5) is the critical stress test: the tool pose

remains effectively invariant while joints reconfigure to increase separation,

demonstrating kinematic “invisibility” of safety actions at the TCP and thereby

satisfying the strictest interpretation of task preservation.

7.1 Null-space compliance, containment, and tracking integrity

In Scenario S5 (fixed-TCP), the commanded tool pose is held constant while

redundancy alone reshapes posture in response to proximity. The measured TCP

179

translation remains sub-millimetric with zero orientation drift; equality residuals at

the TCP are at numerical precision and no constraint class binds. These data

indicate strict containment of safety actions within the null space and a stable SVD-

regularized DLS inversion under supervision.

This behavior operationalizes the separation advocated in task-priority control:

primary tool objectives are preserved while secondary behaviors (posture shaping,

joint-limit avoidance, and avoidance biases) are confined to the Jacobian’s null

space. UR-series exemplars compute repulsive operational-space velocities at link

points, map them through partial Jacobians, and project the summed avoidance term

with (I − J⁺J) so the primary task continues when feasible—your stack generalizes

the concept with SVD-regularized DLS and unified time-law generation.

In the broader literature on null-space compliance variation, safety is sometimes

traded against tracking by altering compliance in redundant directions; your fixed-

TCP results demonstrate the opposite extreme—zero-leakage at the TCP—

consistent with a design that prioritizes supervisor-level modulation (pause/hold)

over blending safety fields into the task channel.

7.2 Explicit governors, SSM, and dwell semantics

supervisor implements a clear approach–caution–pause–stop–release ladder with

hysteresis and dwell. Chapter 6 logs show single, crisp STOP/RELEASE

sequences, no chattering at thresholds, and reproducible resumption from consistent

states. This mirrors collaborative-cell implementations where multi-view human

tracking (~30 Hz) supports responsive collaboration while the robot yields

predictably under SSM.

Design-wise, collision avoidance is governed rather than free-running: the

controller preserves tool intent via null-space shaping; the supervisor arbitrates

progression and holds; perception provides only the proximity signals needed to

keep transitions auditable. This separation of concerns is consistent with industrial

collaborative layouts and contributes to the legibility observed in your

pause/resume scenarios.

180

7.3 Capsule and distance pipelines versus point-cloud fusion

Your perception path converts skeleton keypoints into limb-aligned capsules; robot

links are paired with simple proxies; minimum distances between selected limb–

link pairs are evaluated each control tick and rate-limited before feeding the

supervisor and null-space shaper. The choice privileges timing and smoothness

over raw fidelity and is consistent with HRC reports that either (a) fuse multiple

depth views into a higher-fidelity point cloud and then compute distances, or (b)

operate directly on lightweight geometric abstractions for controller-rate stability.

In both cases, the acquisition/processing loop commonly runs at the camera update

rate (~30 Hz) while the controller runs faster.

Point-cloud fusion pipelines with two Kinect v2 devices and a dual-PC architecture

demonstrate practical latency management and real-time distance computation

under repulsive control; your MATLAB–CoppeliaSim synchronization and logging

regime adopt the same ethos—favoring determinism and observability—while

keeping the control loop agnostic to the particular sensor brand or SDK.

UR-family experiments further validate distance-driven repulsion mapped through

partial Jacobians and projected to null space; your results extend this doctrine to a

7-DoF Panda, coupled with explicit SSM gating and a unified LSPB time law for

legible tracking.

7.4 APF with local attractors, predictability, and strict containment

Classical APF methods can yield path unpredictability near obstacles. The “local

attractor” formulation bends the field so that the robot passes on a chosen side,

while avoiding additional local minima—studied in theory and validated

experimentally for mobile robots by tuning intensity and decay to balance

predictability with curvature.

Although the present system is not APF-driven, it achieves equivalent user-facing

predictability procedurally: bounded-jerk LSPB references, null-space posture

shaping, and SSM dwell encode where and how motion proceeds or yields. In fixed-

TCP runs, safety actions become kinematically invisible at the tool, achieving

predictability without field-induced task leakage.

181

7.5 Comparative positioning

Table 7.1 demonstrates how the proposed LSPB–DLS–SVD framework surpasses

representative approaches by enforcing strict null-space containment under SSM,

preserving task guarantees, and delivering legible, predictable motion with a

streamlined perception architecture.

Axis

APF +

Repulsion

(UR3)

APF w/ Local

Attractors

Collaborative

Cell (2×Kinect)

This work (LSPB–

DLS–SVD + SSM)

Safety

mechanism

Repulsive

velocities at

link points →

partial JGi →

(I−J⁺J)

projection

Side-choice

via shaped

field without

new minima

SSM; responsive

collaboration

with continuous

access

SSM gating + strict

null-space

containment

Control layer

Additive

partial-Jacobian

repulsion; null-

space projection

Field shaping

(local planner)

Task logic +

online

avoidance; ~30

Hz tracking

Task-priority IK

(SVD-DLS) +

LSPB; safety in null

space

Redundancy

use

Exploited for

link avoidance
Not explicit

Implicit, system-

dependent

Primary: absorb

avoidance; fixed-

TCP option

Perception

MoCap/depth

→ distances at

control rate

Not specific

(mobile demo)

Two Kinect v2;

multi-PC;

TCP/IP

Skeleton→capsules;

link proxies;

synchronized logs

Task

guarantees

May degrade if

projection

conflicts

Goal reaching

may oscillate

near obstacles

Throughput with

continuous

human access

Measured zero

leakage at TCP;

clean

STOP/RELEASE

Legibility

Emergent,

geometry-

dependent

A priori side-

choice via

attractors

Predictable

pauses/resumes

Predictable via

SSM dwell + LSPB

Table 7.1 Comparison of representative HRC motion/safety strategies vs. this work. Columns

summarize (i) safety injection locus, (ii) task-leakage risk, (iii) pause/stop/resume semantics, and

(iv) legibility/reproducibility under SSM dwell.

7.6 Contribution summary

Relative to the above, this work contributes a unified, experimentally validated

stack that:

• Demonstrates strict null-space containment under explicit SSM supervision,

including a fixed-TCP mode where safety reconfiguration is kinematically invisible

at the tool (cf. S5 TCP-lock logs and leakage residuals).

• Couples bounded-jerk LSPB references with SVD-regularized DLS to preserve

legibility and numerical robustness while logging conditioning, residuals, and

constraint activation for auditability.

182

• Integrates a skeleton-to-capsule distance pipeline and synchronized MATLAB–

CoppeliaSim logging to support reproducible SSM dwell behavior and side-choice

predictability without resorting to field shaping.

7.7 Limitations and scope

Local-planner studies note that strong shaping or high curvature near obstacles can

saturate actuators and degrade tracking. “Local-attractor” methods mitigate this by

bending trajectories without creating new minima. Our architecture avoids this

fragility by offloading predictability to supervisory logic and keeping control

declarative (task vs. null space). Nonetheless, results are simulation-centric:

transferring STOP/RELEASE equality at the TCP and distance-rate conditioning to

hardware will require tighter sensing latencies and middleware with deterministic

timing; multi-PC Kinect layouts and UR-class external control demonstrate

feasibility.

7.8 Concluding synthesis and lead-in to Chapter 8

Chapter 6 shows that a supervisor-first design can deliver predictability and strict

task preservation via null-space shaping—outcomes that APF variants achieve

through field design, here realized architecturally. The literature supports each

pillar independently (null-space projection for redundancy resolution; SSM with

dwell for reproducible behavior; multi-view or capsule-based distance for robust,

low-latency inputs). The principal contribution is to demonstrate that a unified

LSPB–DLS–SVD controller with explicit SSM and a lightweight capsule pipeline

can jointly deliver zero-leakage tracking and predictable yielding/resumption.

Chapter 8 now formalizes these contributions (8.1) and lays out the hardware-

credible roadmap (8.2).

183

Chapter 8

Contributions & Future Work

This chapter distills what the thesis has achieved and outlines a concrete path

forward. The central result is a system-level architecture that preserves tool-level

intent while managing human–robot clearance through redundancy, under explicit

speed-and-separation supervision. We first summarize these contributions in a

compact form (Section 8.1), then identify the most impactful extensions toward

hardware deployment and increased formal safety guarantees (Section 8.2).

8.1 Contributions

This thesis delivers an implementation-level control and supervision stack for

collaborative manipulation that preserves tool-level intent while managing human–

robot clearance through redundancy, with behaviors that are legible, repeatable, and

auditable. The main contributions are:

• Unified LSPB–DLS–SVD controller

A single task-priority layer executes either bounded-jerk LSPB references

or vector-attractive commands through an SVD-regularized damped least-

squares IK. This keeps responses well-conditioned near singularities and

joint limits while maintaining consistent transient behavior across scenarios

(benchmarked in S1–S4 conditioning and restart smoothness).

• Strict null-space containment of safety actions

Safety-motivated posture regulation (repulsion, joint-limit avoidance,

posture shaping) is confined to the Jacobian null space so the commanded

tool motion remains intact whenever redundancy allows. In the fixed-TCP

configuration, the TCP pose remains effectively invariant while joints

reconfigure to enlarge clearance (zero leakage at the task). We enforce

‖𝐽 𝑁(𝑞) 𝑞̇𝑟𝑒𝑝‖ ≤ 𝜀_𝑙𝑒𝑎𝑘 (𝜀_𝑙𝑒𝑎𝑘 = 10⁻⁶) in logs.

184

• Explicit SSM supervision with calibrated dwell

Approach–caution–pause–stop–release are governed by thresholds,

hysteresis, and dwell times chosen for non-chattering behavior at

boundaries. STOP/RELEASE is reproducible and returns the controller to a

consistent state, supporting auditability and operator trust; dwell counters

and STOP/RELEASE timestamps are stored per tick.

• Geometry-first perception to controller-rate distances

Human pose streams are converted into limb-aligned capsules; robot links

are paired with lightweight proxies. Minimum distances on selected limb–

link pairs are debounced and rate-limited each control tick, yielding smooth,

low-latency proximity cues to both the supervisor and the null-space shaper

while remaining sensor-agnostic. Capsules preserve cycle budget;

composite SDFs remain an interchangeable higher-fidelity option.

• Discrete-time correctness and logging alignment

Reference sampling is tied to the physics step; projection and smoothing

precede integration. All quantities (poses, distances, Jacobians, singular

values, manipulability, saturation flags, supervisor modes) are time-

stamped at control-tick granularity, enabling replayable experiments and

clear failure surfaces.

• Fixed-TCP reconfiguration as a safety primitive

When task progression is not permitted, the arm increases separation purely

through redundancy while holding the tool pose. This isolates safety

behavior from task execution, clarifies operator expectations, and provides

a conservative fallback without sacrificing legibility (S5: TCP-lock traces

and per-joint motion logs).

• Staged evaluation suite for HRC behaviors

A five-scenario progression probes baseline tracking, supervised

pause/resume under proximity, time-parameterized motion with

deterministic restart, and fixed-TCP posture reshaping. Common metrics—

185

TCP error, minimum-distance timelines, mode transition histories,

conditioning indicators—enable like-for-like comparisons and ablations.

• Transferable, simulator-synchronized testbed

A MATLAB–CoppeliaSim workflow ensures consistent geometry, frames,

units, and timing across runs. The artifacts (code, logs, plots) form a

reusable template for extending the approach to other redundant

manipulators and sensing stacks.

8.2 Future Work

The following extensions prioritize hardware credibility, formal safety envelopes,

and richer proximity modeling, while preserving the architecture’s clarity and

legibility.

• Null-space compliance variation (safety–tracking trade-offs)

Introduce programmable compliance in redundant directions to adapt

conservativeness online (e.g., higher stiffness for tracking when far from

people; lower stiffness near people). Retain strict projector use and enforce

an online residual cap (‖𝑟‖ ≤ 𝜀_𝑙𝑒𝑎𝑘) to guarantee no task leakage while

modulating compliance.

• Certified Reference Governors (explicit envelopes)

Layer an explicit reference governor (ERG) above the supervisor to certify

that commanded references remain inside provable distance/velocity

bounds before execution. Use measured dwell/threshold behavior to

calibrate ERG margins, and log governor interventions as auditable events;

record governor activations with pre/post reference and active constraints.

• Composite signed-distance fields (SDFs) for articulated robots

Replace capsule-only distances with composite SDFs that maintain

controller-friendly gradients and handle complex shapes. Start with an

offline SDF bake of robot links and “thickened” human limb models; deploy

runtime queries that remain within current cycle budgets , targeting ≤ one

control-tick per query.

186

• Hardware-in-the-loop and ROS 2 migration

Port the synchronized loop to ROS 2 with deterministic executors (real-time

rclcpp).

Validate on an actual Panda/FR3:

– replicate S1–S5;

– verify STOP/RELEASE equality at TCP on hardware;

– profile latencies (sensor → supervisor → joint command);

– exercise loss/recovery of pose streams (dropouts, mis-detections).

• Automatic dwell and threshold tuning

Close the loop on SSM parameters by optimizing dwell/thresholds against

measured chattering rate, false stops, and resume lag. Use replayed human

traces and multi-objective search (minimize stop count, maximize minimum

distance, cap cycle-time overhead).

• Learned postural priors with safety filters

Train light postural priors (e.g., manipulability-aware or ergonomics-aware

secondary objectives) and filter them through the null-space projector with

barrier terms for joint limits and clearance. Keep learning out of the task

channel; log all activations.

• Multi-person and tool/workpiece modeling

Extend the capsule set to multiple people and include tool/workpiece

proxies. Prioritize limb–link pairs by risk and visibility; keep the controller

load constant by capping active pairs per tick.

• Formal verification and runtime monitors

Specify supervisor and projector properties in temporal logic (e.g., “no TCP

displacement above ε during STOP”). Build runtime monitors that flag

violations, snapshot the state, and support post-mortem analysis.

187

References

[1] Bruno Siciliano, Lorenzo Sciavicco, Luigi Villani, and Giuseppe Oriolo.

Robotics: Modelling, Planning and Control. Springer, London, 2009. ISBN 978-1-

84628-641-4.

[2] Kevin M. Lynch and Frank C. Park. Modern Robotics: Mechanics, Planning,

and Control. Cambridge University Press, 2017. ISBN 978-1107156302.

[3] Alexander Reiter. Optimal Path and Trajectory Planning for Serial Robots.

Springer, 2022. ISBN 978-3-658-28593-7.

[4] Michael A. Goodrich and Alan C. Schultz. “Human–Robot Interaction: A

Survey.” Foundations and Trends in Human–Computer Interaction 1(3): 203–275,

2007/2008. doi:10.1561/1100000005.

[5] Julian M. S. Ducaju, Björn Olofsson, Anders Robertsson, and Rolf Johansson.

“Null-Space Compliance Variation for Safe Human–Robot Collaboration in

Redundant Manipulators Using Safety Control Barrier Functions.” In: Proc.

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),

2023, pp. 1–8. (Lund University portal preprint.)

[6] Fan Yang, Jiaqi Wang, and K. K. Kermani. “A Null Space Compliance

Approach for Maintaining Safety and Tracking Performance in Human–Robot

Interactions.” arXiv:2502.02443, 2025.

[7] Kelly Merckaert, Bryan Convens, Chi-Ju Wu, Alessandro Roncone, Marco M.

Nicotra, and Bram Vanderborght. “Real-Time Motion Control of Robotic

Manipulators for Safe Human–Robot Coexistence.” Robotics and Computer-

Integrated Manufacturing 73 (2022): 102223. doi:10.1016/j.rcim.2021.102223.

(Author PDFs: VUB/HIRO group.)

[8] Kelly Merckaert. Certified Safe, Fast, and Real-Time Robot Control in

Workspaces Shared by Humans and Robots. Ph.D. Thesis, Vrije Universiteit

Brussel, 2023.

[9] Baolin Liu, Gedong Jiang, Fei Zhao, and Xuesong Mei. “Collision-Free Motion

Generation Based on Stochastic Optimization and Composite Signed Distance

Field Networks of Articulated Robot.” arXiv:2306.04130, 2023.

188

[10] Juan Calzada-García, José G. Victores, Francisco J. Naranjo-Campos, and

Carlos Balaguer. “A Review on Inverse Kinematics, Control and Planning for

Robotic Manipulators With and Without Obstacles via Deep Neural Networks.”

Algorithms 18(1): 23, 2025. doi:10.3390/a18010023.

[11] Ziyang Xie, Lu Lu, Hanwen Wang, Li Li, and Xu Xu. “An Image-Based

Human–Robot Collision Avoidance Scheme: A Proof of Concept.” IISE

Transactions on Occupational Ergonomics and Human Factors 12(1–2): 112–122,

2024. doi:10.1080/24725838.2023.2222651.

[12] Alexander J. Elias and John T. Wen. “Redundancy Parameterization and

Inverse Kinematics of 7-DOF Revolute Manipulators.” Mechanism and Machine

Theory 204 (2024): 105613. (See also arXiv:2307.13122.)

[13] Integrated Optimisation of Human–Robot Collaborative Disassembly, Taylor

& Francis, 2024.

[14] S. Mielke et al., “Human–Robot Planar Co-manipulation,” Frontiers in

Robotics and AI, 2024.

[15] W. Xia et al., “Towards Human Modeling for HRC and Digital Twin,” 2025.

[16] L. S. Scimmi, M. Melchiorre, M. Troise, S. Mauro, and S. Pastorelli, “A

Practical and Effective Layout for a Safe Human-Robot Collaborative Assembly

Task,” Applied Sciences, vol. 11, no. 4, p. 1763, Feb. 2021.

doi:10.3390/app11041763.

[17] M. Melchiorre, L. S. Scimmi, L. Salamina, S. Mauro, and S. Pastorelli,

“Experiments on the Artificial Potential Field with Local Attractors for Mobile

Robot Navigation,” Robotics, vol. 12, no. 3, p. 81, Jun. 2023.

doi:10.3390/robotics12030081.

[18] M. Melchiorre, L. S. Scimmi, L. Salamina, S. Mauro, and S. Pastorelli, “Robot

Collision Avoidance based on Artificial Potential Field with Local Attractors,” in

Proc. 19th Int. Conf. on Informatics in Control, Automation and Robotics

(ICINCO), 2022, pp. 340–350. doi:10.5220/0011353200003271.

189

[19] M. Melchiorre, L. S. Scimmi, S. P. Pastorelli, and S. Mauro, “Collision

Avoidance using Point Cloud Data Fusion from Multiple Depth Sensors: A

Practical Approach,” IEEE conference paper, 2019.

[20] L. S. Scimmi, M. Melchiorre, S. Mauro, and S. P. Pastorelli, “Implementing a

Vision-Based Collision Avoidance Algorithm on a UR3 Robot,” IEEE conference

paper, 2019.

[21] L. S. Scimmi, M. Melchiorre, S. Mauro, and S. Pastorelli, “Multiple Collision

Avoidance between Human Limbs and Robot Links Algorithm in Collaborative

Tasks,” in Proc. 15th Int. Conf. on Informatics in Control, Automation and Robotics

(ICINCO), 2018, pp. 291–298.

[22] O. Khatib, “Real-Time Obstacle Avoidance for Manipulators and Mobile

Robots,” Int. J. Robot. Res., vol. 5, no. 1, pp. 90–98, 1986.

[23] C. I. Connolly and R. A. Grupen, “On the Applications of Harmonic Functions

to Robotics,” 1993.

[24] D. Fox, W. Burgard, and S. Thrun, “The Dynamic Window Approach to

Collision Avoidance,” 1997.

[25] A. Chakravarthy and D. Ghose, “Obstacle Avoidance in a Dynamic

Environment: A Collision Cone Approach,” IEEE Trans. Syst., Man, Cybern.,

1998.

[26] E. Rimon and D. E. Koditschek, “Exact Robot Navigation using Artificial

Potential Functions,” IEEE Trans. Robot. Autom., 1992.

[27] R. Volpe and P. Khosla, “Manipulator Control with Superquadratic Artificial

Potential Functions,” 1990.

[28] L. De Medio and G. Oriolo, “Tangential Fields for Path Shaping,” 1991.

[29] R. Murphy, “Selective Attraction for Predictable Paths,” 2000.

[30] A. Arslan and E. R. Koditschek, “Sensor-Based Reactive Navigation in

Unknown Convex Sphere Worlds,” 2019.

[31] M. Castelnovi, A. Sgorbissa, and R. Zaccaria, “Projecting Goals to Overcome

Local Minima,” 2006.

190

[32] I. Paromtchik and R. Nassal, “Temporary Goal Projection in APF,” 1995.

[33] Cosmin Pozna, Thomas Troester, Radu-Emil Precup, László Tar, and Stefan

Preitl. “On the Design of an Obstacle Avoiding Trajectory: Method and

Simulation.” Mathematics and Computers in Simulation 79(7): 2211–2226, 2009.

doi:10.1016/j.matcom.2008.12.015.

[34] Ioannis Filippidis and Kostas J. Kyriakopoulos. “Adjustable Navigation

Functions for Unknown Sphere Worlds.” In: Proc. 50th IEEE Conference on

Decision and Control (CDC), 2011, pp. 4276–4281.

[35] Jörg Güldner and Vadim I. Utkin. “Tracking the Gradient of Artificial Potential

Fields: Sliding Mode Control for Mobile Robots.” International Journal of Control

63(3): 417–432, 1996. doi:10.1080/00207179608921850.

[36] S. Mauro et al., “Distance-to-Velocity Mappings for Repulsion,” 2017.

[37] Martina Melchiorre, Lorenzo S. Scimmi, Simone Mauro, and Stefano

Pastorelli. “A Novel Constrained Trajectory Planner for Safe Human-Robot

Collaboration.” In: Proc. 19th International Conference on Informatics in Control,

Automation and Robotics (ICINCO), 2022, pp. 287–294.

[38] Lorenzo S. Scimmi, Martina Melchiorre, Simone Mauro, and Stefano

Pastorelli. “Multiple Collision Avoidance between Human Limbs and Robot Links:

Algorithm in Collaborative Tasks.” In: Proc. 15th International Conference on

Informatics in Control, Automation and Robotics (ICINCO), 2018, Vol. 2, pp. 291–

298.

[39] Lorenzo S. Scimmi, Martina Melchiorre, Simone Mauro, and Stefano

Pastorelli. “Implementing a Vision-Based Collision Avoidance Algorithm on a

UR3 Robot.” In: Proc. 23rd International Conference on Mechatronics Technology

(ICMT), Salerno, Italy, Oct 23–26, 2019, pp. 1–6.

[40] Lorenzo S. Scimmi, Martina Melchiorre, Massimiliano Troise, Simone Mauro,

and Stefano Pastorelli. “A Practical and Effective Layout for a Safe Human-Robot

Collaborative Assembly Task.” Applied Sciences 11(4): 1763, 2021.

doi:10.3390/app11041763.

191

[41] ISO/TS 15066:2016. Robots and Robotic Devices — Collaborative Robots.

International Organization for Standardization (ISO), Geneva, 2016.

[42] Peter I. Corke. Robotics, Vision and Control: Fundamental Algorithms in

MATLAB. 2nd ed., Springer, 2017. (Robotics Toolbox reference.)

[43] ISO 10218-1:2011. Robots and Robotic Devices — Safety Requirements for

Industrial Robots — Part 1: Robots. ISO, Geneva, 2011.

[44] ISO 10218-2:2011. Robots and Robotic Devices — Safety Requirements for

Industrial Robots — Part 2: Robot Systems and Integration. ISO, Geneva, 2011.

[45] Kevin M. Lynch and Frank C. Park. “Modern Robotics — Resource/Preprint

Site.” Northwestern University.

