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Abstract

eBPF has become a key technology for system observability and security, enabling
efficient in-kernel execution of user-defined programs. However, its growing adoption
has also introduced new attack surfaces, with several vulnerabilities leading to
severe consequences such as privilege escalation, kernel panics, and attacks on
eBPF maps. This thesis, developed in collaboration with Rakuten and a colleague,
was divided into four use cases overall, with two presented here. The first part
of the work focused on studying the fundamentals of eBPF, analyzing known
security issues, exploring its integration with LSM, and reviewing market products
that employ eBPF for security monitoring. This provided the foundation for the
subsequent experimental phase, which investigated specific vulnerabilities and
potential hardening strategies. The adopted methodology consisted of analyzing
high-severity CVEs and attack vectors, examining and replicating existing proofs
of concept, and proposing defensive mechanisms designed to be general enough
to withstand variations of known exploits. Two case studies are discussed. The
first addresses the protection of eBPF maps, which are central to both benign
applications and security monitoring tools, making them an attractive target for
attacks. The second focuses on privilege escalation exploits, with a detailed analysis
of CVE-2021-3490 and the development of countermeasures. The results show that
kernel-level protection mechanisms such as BPF-LSM, as well as higher-level security
tools like Tetragon or the use of kernel modules, can be effectively leveraged to
mitigate these threats, each with its own trade-offs in terms of granularity, coverage,
and ease of deployment. Overall, this thesis contributes to a better understanding
of eBPF-related attack surfaces and provides practical insights into designing
hardening solutions for real-world environments.
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Chapter 1

Introduction

1.1 Background and Motivations

eBPF is a modern technology originally developed within the Linux kernel that
enables safe and efficient extension of kernel functionality without modifying kernel
source code or loading additional kernel modules[1]. Historically, the operating
system has always been an ideal place to implement observability, security, and
networking functionality due to the kernel’s privileged ability to oversee and control
the entire system. However, evolving an operating system kernel is notoriously
challenging because of its central role and strict stability and security requirements.
eBPF fundamentally changes this paradigm. It introduces the ability to execute
sandboxed programs inside the operating system kernel, allowing developers to
dynamically add functionality at runtime. This innovation has led to a wide range
of use cases: high-performance networking and load balancing in modern data
centers and cloud-native environments, fine-grained security observability at low
overhead, advanced application tracing and performance troubleshooting, as well
as proactive runtime security enforcement for containers and applications.

Despite its numerous advantages, the adoption of eBPF introduces significant
security challenges. The ability to execute code within the kernel environment
increases the attack surface, making any bug or flaw in an eBPF component po-
tentially exploitable and capable of compromising system integrity. Several CVEs
and documented vulnerabilities highlight these risks, emphasizing the need for
robust mitigation strategies. For this reason, systematically studying known vul-
nerabilities and designing effective hardening solutions is essential when integrating
eBPF-based components into production systems.
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Introduction

1.2 Research Objectives
This research was conducted in collaboration with Rakuten, which provided the
context and technical guidance for the study. The primary objective of this thesis
is to investigate the security implications of adopting eBPF technology, with a
focus on known vulnerabilities and their mitigation. Specifically, this research aims
to:

• Analyze documented vulnerabilities and CVEs related to eBPF to identify
common attack vectors, root causes, and exploitation techniques.

• Examine available exploits to understand how attacks are implemented and
to identify areas where hardening measures can be applied to block them.

• Propose and validate hardening strategies that strengthen the security posture
of systems leveraging eBPF, based on insights from vulnerability and exploit
analysis.

• Provide actionable recommendations and best practices to help system archi-
tects and developers securely deploy eBPF-based solutions.

By addressing these objectives, this thesis aims to deliver a clear overview of
existing threats and practical mitigation strategies, supporting the safer adoption
of eBPF in modern computing environments.

1.3 Overview of the document
This thesis is organized as follows:

• Chapter 1 - Introduction presents the motivation, research objectives, and
structure of the thesis

• Chapter 2 – eBPF Architecture: introduces the eBPF architecture and its
main components, providing the technical background for the vulnerabilities
explored in later chapters.

• Chapter 3 - Security Risks and Challenges: details the risks and chal-
lenges introduced by the use of eBPF technology, and provides an overview of
the possible attacks on the different eBPF components.

• Chapter 4 – Linux Security Architecture: explains the Linux security ar-
chitecture, covering concepts such as DAC and MAC, Linux process credentials,
Linux Security Modules (LSMs) and BPF LSM, and kernel modules.
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• Chapter 5 – eBPF-based products: presents a popular security monitoring
tool based on eBPF, discussing its functionality and relevance.

• Chapter 6 – Analysis, Exploitation and Hardening of eBPF Vulner-
abilities: the main chapter, presenting two use cases that illustrate different
types of vulnerabilities. It details the exploits, proposes hardening solutions,
and evaluates their effectiveness, including potential future improvements.

• Chapter 7 – Conclusions and Future Works: summarizes the work,
highlighting key findings, providing recommendations for best practices, and
outlining possible directions for future research and development.
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Chapter 2

eBPF Architecture

2.1 Key Features
2.1.1 Instruction set and hook points
eBPF (extended Berkeley Packet Filter) uses a general-purpose 64-bit instruction
set [2], originally designed to allow programs written in a subset of C to be compiled
into BPF instructions via a compiler back end. These instructions are executed
inside an eBPF virtual machine implemented within the Linux kernel, which
is a sandboxed environment that executes eBPF instructions safely, providing
registers, a stack, and a controlled execution model. The kernel can optionally use
a Just-In-Time (JIT) [1] compiler to translate eBPF bytecode into native machine
instructions, achieving optimal execution performance.

The eBPF virtual machine provides 10 general-purpose 64-bit registers[2] and
one read-only frame pointer register (R10) used to access the stack. The eBPF
calling convention is defined as follows:

• R0: return value from function calls and exit value for eBPF programs

• R1–R5: function call arguments

• R6–R9: callee-saved registers preserved across function calls

• R10: read-only frame pointer

Registers R0–R5 are scratch registers, meaning that eBPF programs must spill and
fill them if their values need to be preserved across function calls.

eBPF programs are event-driven [1], running whenever the kernel or an appli-
cation triggers a specific hook. Predefined hooks include system calls, function
entry and exit points, kernel tracepoints, network events, and others. If a predefined
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hook does not exist for a particular need, it is possible to create a kernel probe
(kprobe) or a user probe (uprobe) to attach eBPF programs almost anywhere
in the kernel or user-space applications. These probes must be added explicitly to
the system to serve as custom hook points.

When an eBPF program is loaded into the Linux kernel via the bpf system call,
it passes through two important steps before attachment to the requested hook:

• Verification – ensures the program is safe to execute. The verifier checks that
the process loading the program has the required privileges, that the program
does not crash or otherwise harm the system, and that it always terminates
(i.e., does not loop indefinitely).

• JIT compilation (unless disabled) – translates the generic eBPF bytecode into
the machine-specific instruction set to maximize execution efficiency. This
allows eBPF programs to run as efficiently as natively compiled kernel code
or code loaded as a kernel module.

Figure 2.1: eBPF Architecture and execution flow of a C-based eBPF Program

2.1.2 eBPF Verifier
The eBPF verifier [3] is a core kernel component whose primary responsibility is
to ensure that an eBPF program is safe to execute in kernel context by statically
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checking it against a rich set of safety rules, and then annotating or transforming the
bytecode as needed before JIT compilation or execution. The verifier exists because
eBPF programs are translated to native machine code and run in kernel mode, so any
unchecked program could corrupt memory, leak sensitive data, hang the kernel, or
otherwise compromise system security and stability. The verifier, therefore enforces
a trade-off: it favors high runtime performance (avoiding expensive dynamic checks)
by performing intensive static analysis up front. A non-exhaustive list [3, 4] of
restrictions enforced by the verifier includes:

• Programs must always terminate within a reasonable amount of time, so
infinite loops or infinite recursion are disallowed.

• Pointer comparisons are not permitted; only scalar values can be added to
or subtracted from a pointer. A scalar value in this context is any value not
derived from a pointer. The verifier tracks which registers contain pointers
and which contain scalars.

• Pointer arithmetic cannot exceed the “safe” bounds of a map. In other words,
a program cannot access memory outside the predefined map region. To
enforce this, the verifier keeps track of the upper and lower bounds of each
register.

• No pointers may be stored in maps or returned as function values, in order to
avoid leaking kernel addresses to user space.

• Programs must not deadlock. Any acquired spinlocks must be released, and
only one lock may be held at a time to avoid deadlocks across multiple
programs.

• Programs cannot read uninitialized memory, since this could leak sensitive
data.

Concretely, verification proceeds in two main phases. First, control-flow analysis
(CFG/DAG checks) disallows back edges, rejects loops, and detects unreachable
instructions so that programs are acyclic. Second, the verifier simulates execution
along every feasible path of the program, tracking the state of all registers and stack
slots and validating each instruction against that state (e.g., bounds, alignment,
and type rules). In particular, the verifier stores the following bound values [4] for
every register in each possible execution path, in order to prevent out-of-bounds
memory accesses:

• umin_value, umax_value: minimum and maximum values of the register
when interpreted as an unsigned 64-bit integer.
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• smin_value, smax_value: minimum and maximum values of the register
when interpreted as a signed 64-bit integer.

• u32_min_value, u32_max_value: minimum and maximum values of the reg-
ister when interpreted as an unsigned 32-bit integer.

• s32_min_value, s32_max_value: minimum and maximum values of the reg-
ister when interpreted as a signed 32-bit integer.

• var_off: information about which bits of the register are known. It is
represented using a structure called tnum, containing two 64-bit fields: mask
and value. Bits set in mask are unknown, while unset bits are known and their
values are stored in value. For example, var_off = {mask = 0x0, value =
0x1} means the register is known to equal 1. Conversely, var_off = {mask
= 0xFFFFFFFF00000000, value = 0x3} indicates that the lower 32 bits are
known to be 0x3, while the upper 32 bits are unknown.

These bounds are continuously updated and refined. For instance, if var_off
reveals that a register holds a known constant, the min/max bounds are tightened
to reflect that value. This range-tracking for registers and stack slots is implemented
through struct bpf_reg_state [5], defined in include/linux/bpf_verifier.h, which
unifies scalar and pointer state tracking. Each register state has a type: NOT_INIT
(unused), SCALAR_VALUE (non-pointer), or a specific pointer type.

During instruction traversal, every time the verifier encounters a branching
instruction, it forks the current state [3], queues one branch for later investigation,
and updates the states accordingly. For example, if register R3 is known to hold
a value between 10 and 30, and the verifier sees an instruction if R3 > 20, one
fork will constrain R3 to [10,20], and the other to [21,30]. This mechanism also
propagates across linked registers: if R2 = R3 before the branch, the verifier ensures
R2’s range is updated consistently. Until kernel v5.2 there was a hard 4k instruction
limit and a 128k complexity limit; afterwards, both were raised to one million. To
balance verifier complexity with useful language features, several optimizations
exist: tail calls allow large programs to be split into independently verified units,
dead-code elimination removes instructions that can never execute, bounded loops
(introduced in v5.3) are permitted when the verifier can prove termination (by
unrolling loop paths), and function-by-function verification ensures global functions
are checked once in isolation rather than at every call site.

The verifier does not actually explore all possible paths exhaustively [5]. For
each new branch, it compares the current state against previously visited states
at the same instruction. If the new state is a subset of an earlier one, the branch
is pruned: the fact that the previous state was accepted implies the current one
will be as well. For example, if in a prior state R1 held a packet pointer with
strict bounds and alignment, then any current state where R1 has at least the
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same safety guarantees is automatically accepted. Similar reasoning applies to
registers in NOT_INIT state. This pruning mechanism, implemented in regsafe()
and states_equal(), also considers stack state and spilled registers.

Finally, because purely static checks can miss subtle runtime behaviors (e.g.,
pointer arithmetic tricks), the verifier may insert runtime ALU sanitization patches
[4]. The idea is to prevent out-of-bounds memory accesses if register values deviate
from their expected ranges at runtime. For every arithmetic operation involving
a pointer and a scalar, an alu_limit is computed, representing the maximum
allowed offset. Before the operation, the verifier patches the bytecode with checks
enforcing the alu_limit, ensuring the resulting pointer remains in safe bounds.
This mechanism was introduced to mitigate verifier vulnerabilities and speculative
attacks, and the computation of alu_limit has been progressively tightened across
kernel versions.

2.1.3 JIT Compiler
The Just-in-Time (JIT) compilation step [6] translates the generic bytecode of
the program into the machine-specific instruction set to optimize the execution
speed of the program. JIT compilers speed up execution of the BPF program
significantly since they reduce the per-instruction cost compared to the interpreter.
Often instructions can be mapped 1:1 with native instructions of the underlying
architecture. This also reduces the resulting executable image size and is therefore
more instruction cache-friendly to the CPU. In particular, in case of CISC instruc-
tion sets such as x86, the JITs are optimized for emitting the shortest possible
opcodes for a given instruction to shrink the total necessary size for the program
translation.

2.1.4 eBPF maps
eBPF maps [7] provide a generic storage mechanism that allows programs to share
data between kernel space and user space. Maps are mainly defined by their type,
the maximum number of elements, the key size in bytes, and the value size in bytes.
They serve as the primary communication channel for eBPF programs.

Maps can be accessed from user space via the bpf system call, and from eBPF
programs through helper functions defined in tools/lib/bpf/bpf_helpers.h. The
exact helper functions available depend on the map type.

There are different types of maps, each optimized for specific use cases. Among
them, the main ones are:

• BPF_MAP_TYPE_HASH: stores entries using key-value pairs associated
with a hash function.
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• BPF_MAP_TYPE_ARRAY: indexed map providing direct access to elements
via an index.

• BPF_MAP_TYPE_PROG_ARRAY: stores references to eBPF programs
and allows tail-calling between programs.

In the Linux kernel, eBPF maps are internally represented by the struct bpf_map,
which contains several fields describing the map’s properties and behavior. An
important field within this structure is const struct bpf_map_ops *ops;. The
bpf_map_ops structure defines the set of operations that can be performed on a
map, such as creation, lookup, update, and deletion of elements. These operations
are later invoked by the eBPF helper functions (e.g., bpf_map_update_elem,
bpf_map_lookup_elem), which serve as the public interface for programs, while
the actual implementation is carried out through the corresponding functions
defined in the ops table. For specific map types, different bpf_map_ops structures
are defined, ensuring that each type of map has the appropriate implementation of
these operations.

2.1.5 Helper functions
Helper functions are functions defined by the kernel which can be invoked from
eBPF programs. These helper functions allow eBPF programs to interact with
the kernel as if calling a function. The kernel places restrictions on the usage of
these helper functions to prevent misuse. The potential misuse of helper functions
is discussed in more detail in Section 3.1.

2.2 Privileges and capabilities
In traditional UNIX systems [8], processes are categorized as privileged (effective
UID 0, referred to as superuser or root) and unprivileged (effective UID nonzero).
Privileged processes bypass all kernel permission checks, while unprivileged processes
are subject to full permission verification based on their credentials, typically
including the effective UID, effective GID, and supplementary group list.

Starting with Linux 2.2, the privileges traditionally associated with the superuser
have been divided into distinct units known as capabilities. Each capability can
be independently enabled or disabled and is a per-thread attribute, providing
permission to perform specific privileged operations.

Access to eBPF can therefore be controlled through capabilities. Only privileged
users or processes with the required capabilities are allowed to load and execute
eBPF programs. Some important capabilities relevant for eBPF access are listed
in Table 2.1.
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Additionally, since Linux kernel version 4.4, the parameter
kernel.unprivileged_bpf_disabled can be used to further restrict eBPF access:

• 0: Unprivileged users are allowed to load and run eBPF programs, but
their capabilities are limited. They can only use programs of the type
BPF_PROG_TYPE_SOCKET_FILTER and interact with associated maps
[9].

• 1: Access to eBPF is restricted to privileged users only, and changing this
setting requires a system reboot.

• 2: Access to eBPF is limited to privileged users as well, but this setting can
be modified without rebooting the machine.

10
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Capability Allowed Features

No capabilities
• load and attach operations for

BPF_PROG_TYPE_SOCKET_FILTER.

• Map usage restricted to the ones relative to
BPF_PROG_TYPE_SOCKET_FILTER.

CAP_BPF

• Employ privileged BPF operations

• Introduced in Linux 5.8 to isolate BPF-related
privileges from the overly broad
CAP_SYS_ADMIN capability.

CAP_NET_ADMIN

• Interface configuration.

• Modification of routing tables.

• Attaching of networking programs, such as XDP
and TC.

• Stopping network traffic.

CAP_SYS_PTRACE

• Trace arbitrary processes using ptrace

• Apply get_robust_list to arbitrary processes

• Transfer data to or from the memory of arbitrary
processes using process_vm_readv and
process_vm_writev

• Inspect processes using kcmp

CAP_SYS_ADMIN

• Perform core system administration tasks (mount,
swap, hostname, etc.)

• Manage and configure namespaces and IPC objects

• Access or override system-wide resource limits

• Execute privileged I/O, filesystem, and device
operations

• Use various powerful capabilities (BPF, perf,
seccomp, etc.)

Table 2.1: Capabilities and allowed features [8]
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Chapter 3

Security Risks and
Challenges

As eBPF continues to gain traction in modern computing environments, under-
standing its security landscape is crucial. While eBPF enhances performance and
flexibility, it also introduces potential vulnerabilities that could be exploited if not
properly managed.

This section presents the findings of research conducted for this thesis, which
examines the primary security risks and weaknesses associated with key compo-
nents of the eBPF architecture, as well as notable attack techniques that have been
used to exploit eBPF. The analysis is based on a comprehensive review of multiple
sources, ranging from official threat modeling reports by the Linux Foundation to
documented CVEs and attacks discussed in the scientific literature. The discussion
begins with the risks related to architectural components of eBPF, such as helper
functions, maps, and the verifier, and continues with an overview of common pitfalls
and known attack vectors.

3.1 Helper Functions
If a threat actor can load and run eBPF code, the following helper functions have
particular security relevance [10]:

• bpf_probe_read_user

• bpf_probe_write_user

• bpf_send_signal

• bpf_override_return
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• bpf_map_get_fd_by_id

3.1.1 bpf_probe_read
This helper lets an eBPF program inspect memory belonging to either user processes
or the kernel, without disrupting those processes. Because it can extract needed
data non-invasively, it’s often used to collect runtime information such as process
state or memory contents, and to walk kernel data structures. At the same time,
it can reveal sensitive information, for example, when placed in a kprobe on an
authentication routine it could read a temporary buffer holding a user’s password, or
disclose kernel addresses that aid further exploitation. In practice bpf_probe_read
has largely been replaced by the more targeted helpers [11] (bpf_probe_read_user
for user memory and bpf_probe_read_kernel for kernel memory) which restrict
the scope of reads.

3.1.2 bpf_probe_write_user
This helper tries, in a safe manner, to copy len bytes from a source buffer (src) to a
destination address (dst) in memory. It only operates when the thread is running
in user context, and dst must point to a valid user-space location. By allowing
the kernel to modify user-space memory directly, it makes certain interventions,
like applying immediate fixes to running processes,much simpler than alternative
approaches. That capability is valuable in time-sensitive environments where
changing a value on the fly is preferable to restarting a process. However, if used
without strict controls it can be dangerous: unintended writes can corrupt data
or open serious security vulnerabilities, and misuse may even crash the system or
applications. Because of these risks, this helper is intended for experimental use;
when an eBPF program employing it is attached, the kernel emits a log warning
that includes the process ID and name. [11].

3.1.3 bpf_send_signal
This helper gives an eBPF program the ability to trigger signals toward user-space
processes directly from within the kernel. Such functionality is valuable when
immediate communication is needed, as it removes the overhead of polling the
kernel for updates. Instead of constantly checking for changes, processes can
react as soon as a signal is received. This mechanism is particularly useful in
environments focused on security, where it can alert to suspicious activity, or in
performance-sensitive systems that must respond quickly to critical events. By
enabling fast notifications, it helps the system take corrective actions right away
without unnecessary resource consumption. However, if abused, this capability
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could seriously impact system stability, since it allows the emission of signals like
SIGTERM and SIGKILL, which can terminate processes and thus be leveraged
maliciously.

3.1.4 bpf_override_return
This helper enables an eBPF program to override a kernel function’s return value
while the system is running, directly changing how that function or system call
behaves. Developers commonly use it for debugging, forcing particular outcomes
lets them observe how the system responds to specific return values. It’s also
handy for short-term control of execution, for example to enforce security checks
by blocking or altering operations that would violate policy. At the same time,
modifying return values carries major hazards: forcing unexpected results can
produce erratic behavior or destabilize the system. Because of these security
implications, the helper is only available when the kernel is built with CON-
FIG_BPF_KPROBE_OVERRIDE and may be used only on functions explicitly
marked with ALLOW_ERROR_INJECTION [11]. [11].

Helper Function Purpose Required Minimum Capabil-
ities

bpf_probe_write_user Write to any process’s user space
memory

CAP_SYS_ADMIN (& kernel
lockdown4)

bpf_probe_read_user Read any process’s user space
memory

CAP_BPF & CAP_PERFMON

bpf_override_return Alter return code of a kernel
function

CAP_SYS_ADMIN

bpf_send_signal Send a signal to kill any process CAP_SYS_ADMIN

Table 3.1: Critical Helper functions[10]

3.2 Maps
The shared nature of the maps introduces major security risks since eBPF maps
lack any isolation mechanism between programs, potentially allowing one program
to interfere with one or more others.

A possible attack that exploits this attack vector is the so-called eBPF Map
Tamper Attack[12] : The eBPF maps created by one program can be globally
accessed by other programs via the bpf map_get_fd_by_id helper. Attackers can
manipulate eBPF programs by altering their maps since eBPF programs depend
on maps for receiving control configurations and exchanging data with user-space
programs. Large eBPF programs like Tetragon and Datadog , which rely heavily
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on eBPF tail call maps to dispatch jumps to other eBPF functions, can be fully
paralyzed by deleting the map items. To exploit this type of attack a program
requires CAP_SYS_ADMIN capability.

Another possible attack involves maps that are marked as read-only, meaning
that neither user space nor eBPF programs should be able to modify their contents
after initialization. However, a vulnerability in the verifier was discovered that
allowed eBPF programs to bypass these restrictions and modify read-only maps
under certain conditions. This vulnerability is tracked as CVE-2024-49861. Other
potential vulnerabilities related to eBPF maps are analyzed more in depth in
Section 6.1

3.2.1 CVE-2024-49861
The vulnerability [13] originated from how the BPF verifier handled arguments
passed to certain BPF helpers. Some helpers accepted pointers to integers
(ARG_PTR_TO_INT) or longs (ARG_PTR_TO_LONG), and the function
responsible for checking these arguments (check_func_arg()) failed to mark them
correctly as writable. As a result, when the verifier later checked memory access, it
incorrectly treated write operations as reads, allowing unintended modifications to
memory that was supposed to be read-only.

In case of registers of type PTR_TO_MAP_VALUE, the verifier treated all
accesses to map values as reads. This oversight allowed certain helper functions
to write to read-only maps without triggering an error, violating the expected
behavior.

3.3 Verifier
There are numerous CVEs involving errors in the BPF verifier that yield high
CVSS scores and can lead to severe vulnerabilities, exposing the system to attacks
such as:

• Privilege escalation (e.g., CVE-2021-3490, CVE-2022-23222)

• Kernel panics (e.g. CVE-2024-56614, CVE-2024-56615)

• Information leaks (e.g. CVE-2021-4135) [14]

• Container escapes (e.g. CVE-2021-3490) [15]

Local privilege escalation due to CVE-2021-3490 will be discussed in detail in
Section 6.2.
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3.4 Pitfalls of relying on eBPF for security mon-
itoring

eBPF (extended Berkeley Packet Filter) has emerged as the de facto Linux standard
for security monitoring and endpoint observability. It is used by technologies such as
BPFTrace, Cilium, Pixie, Sysdig, and Falco due to its low overhead and versatility.
However, several documented challenges and pitfalls associated with eBPF have
been identified in the literature [16] and are discussed below to ensure its safe,
efficient, and informed deployment.

3.4.1 eBPF probes are not invoked
In theory, the kernel should consistently trigger eBPF probes without failure.
However, in practice, there are rare instances where eBPF probes do not fire as
expected when invoked by user code. This behavior is neither explicitly documented
nor officially acknowledged, though indications of it can be found in bug reports
related to eBPF tooling. [17]

The analysis of such bug reports provides valuable insights. First, these occur-
rences are infrequent and challenging to debug. Second, while the kernel may be
technically correct in its execution, the observed behavior on the user side may
still involve missing events, even if the immediate cause appears unrelated (e.g.,
an excess of probes rather than missing ones). Discussions within these reports
suggest two potential explanations for missing events:

• The kernel imposes a limit on the number of active kRetProbes at any given
time. As of Linux kernel version 6.4.5, this limit is set to 4,096. Any attempt
to create additional kRetProbes beyond this threshold will fail, leading to
missed events.

• The callback logic for kProbes and kRetProbes differs slightly, which may, in
some cases, prevent a kProbe from detecting its corresponding kRetProbe,
resulting in lost events.

Additional issues of this nature are likely present in the kernel, either as docu-
mented edge cases or as unintended side effects of unrelated design decisions. Since
eBPF is not inherently designed as a security monitoring mechanism, there is no
guarantee that probes will always trigger as expected.

Workarounds: None. The callback logic and value for the maximum num-
ber of kRetProbes are hard-coded into the kernel. While one can manually edit and
rebuild the kernel source, doing so is not advisable or feasible for most scenarios.
Any tools relying on eBPF must be prepared for an occasional missing callback.
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3.4.2 Time-of-check to time-of-use issues
An eBPF program can and will run concurrently on different CPU cores. This
is true even for kernel code. Since there is no way to call kernel synchronization
functions or to reliably acquire locks from eBPF, data races and time-of-check to
time-of-use issues are a serious concern.

The TOCTOU vulnerability arises when there is a discrepancy between the data
checked by a tracing program and the data used by the kernel. Specifically [18],
when an eBPF program is triggered at the entry point of a system call, it can
inspect the arguments passed from user space. If any of these arguments are
pointers, the kernel must copy the data they reference into its own memory before
using it. As shown in Figure 3.1, an attacker may exploit the interval between the
eBPF program’s inspection and the kernel’s data copying, thereby modifying the
data. Consequently, the data acted upon by the kernel might differ from what the
eBPF program observed.

Figure 3.1: TOCTOU vulnerability in the openat syscall

This figure provides a more detailed overview of how a system call (such as
openat, mkdirat, or mknodat) flows from user space into the Linux kernel. At the
top, the static tracepoint trace sys enter(regs, regs->orig ax) captures the initial
arguments passed by user space. The system call table (shown on the left) maps
the call numbers (e.g., 257 for openat, 258 for mkdirat, 259 for mknodat) to their
corresponding kernel handlers.
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Inside the red box labeled TOC: Tracing Programs, the tracing tool (e.g., an
eBPF program) can intercept and inspect the arguments before the kernel processes
them. The kernel then invokes do sys open(...) (or a similar function for other calls),
which copies the user-space data, like the filename pointer, into kernel memory.
This kernel-side processing is highlighted in the green box labeled TOU by Linux
Kernel. Here, the kernel actually uses the parameters, which may differ from those
inspected by the tracing program if an attacker modifies them during the window
of opportunity (real-world examples can be found in [19] or [20]). Finally, the
tracepoint trace sys exit(regs, regs->ax) is called at the end of the system call,
capturing the return value.

In essence, the data observed by the tracing program at syscall entry may not
be the same data that the kernel ultimately operates on if it is altered after the
tracing program’s inspection but before the kernel copies it into its own memory.
This discrepancy underscores why hooking only at the system call entry point may
be insufficient for robust security applications.

Although intercepting system calls at their entry point is convenient for observ-
ability, it is not sufficient for robust security monitoring. To ensure that the eBPF
program examines the same data that the kernel ultimately uses, the program
should be attached to an event occurring after the parameters have been safely
copied into kernel memory. Unfortunately, there is no universal interception point
for all system calls because each handles data differently. However, the Linux
Security Module (LSM) API offers a well-defined interface where eBPF programs
can be safely attached. Unlike system call entry probes, LSM hooks are triggered
after the kernel has already copied user-space data into kernel memory. This timing
ensures that any subsequent checks by an eBPF program (or a similar security
mechanism) will inspect the same data that the kernel will actually use. By doing
so, the gap between the Time of Check and Time of Use phases is significantly
reduced.

Moreover, modern security tools (such as Falco) leverage LSM hooks to detect
potentially dangerous system calls or operations, for example:

• security_bprm_check for intercepting execve, ensuring that the executable
being loaded is validated post-copy.

• security_file_open for monitoring file open operations (including open and
openat), thereby validating pathnames already copied into kernel space

• security_inode_unlink for intercepting unlink calls, detecting file deletions
or modifications after the kernel has performed the necessary path resolution

Because these hooks operate on data that the kernel is about to use (or has just
finished preparing), they close the TOCTOU window inherent in system call entry
probes. Consequently, relying on LSM hooks is an effective strategy for building
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robust security tools that need to inspect system call parameters with minimal risk
of data being modified in the interim.

3.4.3 Event overload
Since eBPF lacks concurrency primitives and an eBPF probe cannot block the
event producer, an attach point can be easily overwhelmed with events [16]. This
can lead to the following issues:

• Missed events, as the kernel stops calling the probe

• Data loss due to the lack of storage space for new data

• Data loss due to the complete overwriting of older but not yet consumed data
by newer information

• Data corruption from partial overwrites or complex data formats, disrupting
normal program operation

These data loss and corruption scenarios depend on the number of probes and
events that are adding items into the event stream and on the extent of system
activity. For instance, a docker container startup sequence or a deployment script
can trigger a surprisingly large number of events.

Workarounds: The user-mode helper should treat all data coming from eBPF
probes as untrusted. This includes data from your own eBPF probes, which is also
susceptible to accidental corruption. There should also be some application-level
mechanism to detect missing or corrupted data.

3.4.4 Page faults
Memory that has not been accessed recently may be paged out to disk, whether
to a swap file, a backing file, or another location. Typically, when this memory is
required, the kernel issues a page fault, loads the relevant content, and resumes
execution. However, for various reasons, eBPF operates with page faults disabled
[16]. If memory has been paged out, it cannot be accessed. This limitation presents
a significant challenge for security monitoring tools.

Workarounds: The only workaround is to hook right after a buffer is used
and hope it does not get paged out before the probe reads it. This cannot be
strictly guaranteed since there are no concurrency primitives, but the way the hook
is implemented can increase the likelihood of success.
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3.5 BPF Door

eBPF programs are widely recognized for their powerful capabilities in monitoring
and enhancing the performance of modern systems. However, as with many ad-
vanced technologies, eBPF can also be leveraged for malicious operations. One such
example of the malicious use of eBPF is BPFDoor, a backdoor payload specifically
crafted for Linux. Its purpose is long-term persistence in order to gain re-entry
into a previously or actively compromised target environment. It notably utilizes
BPF along with a number of other techniques to achieve this goal, taking great
care to be as efficient and stealthy as possible. A deep analysis is conducted by the
Elastic Security Team [21].

BPFDoor uses a raw socket (as opposed to ”cooked” ones that handle IP/TCP/UDP
headers transparently) to observe every packet arriving at the machine, including
Ethernet frame headers. While this might sound like a stealthy way to intercept
traffic, it actually is not: on any machine with a significant amount of network
traffic, the CPU usage will be consistently high.

That is where BPF comes in, an extremely efficient kernel-level packet filter
is the perfect tool to allow the implant to ignore 99% of network traffic and only
become activated when a special pattern is encountered. This implant looks for
a so-called magic packet in every TCP, UDP, and ICMP packet received on the
system.

Once activated, a typical reverse shell, which this backdoor also supports, cre-
ates an outbound connection to a listener set up by the attacker. This has the
advantage of bypassing firewalls watching inbound traffic only. However, this
method is well understood by defenders. The sneakiest way to get a shell con-
nected would be to reuse an existing packet flow, redirecting it to a separate process.

This attack is illustrated in Figure 3.2. Reading the figure from top to bot-
tom, the initial TCP handshake is done between the attacker and a completely
legitimate process,for example nginx or sshd. These handshake packets also happen
to be delivered to the backdoor (like every packet on the system) but are filtered
out by BPF. Once the connection is established, however, BPFDoor sends a magic
packet to the legitimate service. The implant receives it, makes a note of the
originating IP and port the attacker is using, and opens a new listening socket on
an inconspicuous port (42391–43391).

The implant then reconfigures the firewall to temporarily redirect all traffic
from the attacker’s IP/port combination to the new listening socket. The attacker
initiates a second TCP handshake on the same legitimate port as before, only
now iptables forwards those packets to the listening socket owned by the implant.
This establishes the communication channel between the attacker and the implant

20



Security Risks and Challenges

that will be used for command and control. The implant then covers its tracks by
removing the iptables firewall rules that redirected the traffic.

Despite the firewall rule being removed, traffic on the legitimate port will con-
tinue to be forwarded to the implant due to how Linux statefully tracks connections.
No visible traffic will be addressed to the implant port (although it will be delivered
there)

Figure 3.2: BPFDoor
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Linux Security Architecture

4.1 Introduction
The Linux security architecture establishes a comprehensive framework to regulate
user and process access to system resources, ensuring isolation, accountability, and
controlled access. Central to this architecture are two primary models: Discretionary
Access Control (DAC) and Mandatory Access Control (MAC):

• Discretionary Access Control (DAC): DAC [22, 23] is an identity-based
access control model that gives users some control over their data. It is
considered discretionary because data owners (document creators or any users
authorized to control data) can define access permissions for specific users or
groups of users. In other words, whom to give access to and what privileges
to grant are decided at the resource owner’s discretion. DAC relies on subject
identification to grant access to objects. Users must supply authentication
information that identifies their status before the system allows access. The
access control system then decides whether the subject has the rights re-
quired to access a specific object. The basic principles of DAC are: Object
characteristics (size, name, directory path) are invisible to users that aren’t
authorized; several failed access attempts trigger additional authentication
(MFA) requirements or deny access; users can transfer object ownership to
other users. The owner also determines the access type of other users. Based
on these access privileges, the operating system decides whether to grant
access to a file.

• Mandatory Access Control (MAC): MAC [24] is a security strategy that
restricts the ability individual resource owners have to grant or deny access
to resource objects in a file system. MAC criteria are defined by the system
administrator, strictly enforced by the operating system (OS) or security
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kernel, and cannot be altered by end users. The restriction of the access to a
resource (also known as an object) is based on two key factors: the sensitivity
of the information contained in that resource and the authorization level of
the user trying to access that resource and its information. Security teams or
admins define whether a resource is sensitive or not by applying a security
level, such as "Restricted," "Confidential," "Secret," or "Top Secret," to it and
assigning the resource to a security category, such as "Department M" or
"Project X." Together, the security level and security category constitute the
security label. Admins also assign a security clearance level to each authorized
user to determine which resource they can access. Once the label is applied
and the MAC policy is finalized, users can only access those resources (or the
information within resources) that they are entitled to access. For example,
User A may be entitled to access the information within a resource labeled
"Department M Restricted," but User B may not have the same authority.
Similarly, User B may be entitled to access the resource labeled "Project X
Confidential," but User A may not be authorized to do so. In Linux, MAC
settings and policy management are often implemented through Linux Security
Modules (LSMs) such as SELinux or AppArmor.
For instance, SELinux[25] enforces access control decisions based on secu-
rity labels assigned to both system objects (such as files, directories, and
sockets) and subjects (processes). Each label, also known as a security
context, is typically composed of four fields: user:role:type:level. For
example, a file might have the label system_u:object_r:passwd_file_t:s0,
where system_u identifies the SELinux user, object_r represents the role,
passwd_file_t specifies the type (the most relevant field for access control
decisions), and s0 denotes the security level.
The security level defines the sensitivity of the information associated with a
resource, typically ranging across categories such as “Restricted”, “Confiden-
tial”, “Secret”, or “Top Secret” in multilevel security (MLS) configurations.
Each process is also associated with an authorization level or clearance, which
determines the sensitivity levels it is allowed to access.
Access control decisions are governed by SELinux policies, which define which
combinations of subjects and objects (based on their types and levels) are
permitted to interact. These policies are centrally defined and enforced by the
operating system’s security kernel, and cannot be modified by unprivileged
users. Consequently, even if traditional Unix permissions allow access to a file,
the MAC policy can still deny it if the security labels or clearance levels do
not match the rules defined by the administrator.

In addition to access control models, process identity plays a central role in Linux
security. Each process is represented internally by a data structure known as the
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task_struct, which contains essential information about the process’s identifiers
and credentials. These identifiers include process IDs, parent process IDs, group
and session IDs, as well as various user and group IDs that determine ownership
and access permissions. [26]

4.1.1 Process Identifiers
Each process has a unique nonnegative integer identifier, assigned when it is created
using fork, called Process ID (PID). A process can obtain its PID using getpid.
PIDs are preserved across execve calls and are used in various system calls, including
kill, ptrace, setpriority, setpgid, setsid, sigqueue, and waitpid.

Each process has also a Parent Process ID (PPID) identifying the process that
created it. The PPID can be obtained with getppid and is preserved across execve.

Finally, processes are organized into groups and sessions to support shell job
control. A process group is a collection of processes sharing the same Process
Group ID (PGID), often corresponding to a single job or pipeline. A session is a
collection of process groups sharing the same Session ID (SID). Children created
by fork inherit their parent’s PGID and SID, which are preserved across execve.
New sessions can be created using setsid, with the calling process becoming the
session leader. Sessions and process groups determine which process can access the
controlling terminal and manage foreground and background jobs.

4.1.2 Process Credentials
Linux processes have several associated user IDs (UIDs) and group IDs (GIDs),
represented as integers using the types uid_t and gid_t and stored in the cred
structure (Listing 4.1. The main types of UIDs and GIDs are:

• Real UID and GID: Identify the owner of the process, accessible via getuid
and getgid.

• Effective UID and GID: Used by the kernel to determine the process’s permis-
sions when accessing shared resources such as message queues, semaphores, or
files. Access to files is determined by filesystem IDs. They can be obtained
via geteuid and getegid.

• Saved set-UID and set-GID: Used by set-user-ID and set-group-ID programs to
save the effective IDs at execution time, enabling temporary privilege changes
using seteuid, setreuid, setresuid, or their GID equivalents. These saved IDs
can be queried via getresuid and getresgid.

• Filesystem UID and GID: Linux-specific IDs used for file permission checks,
normally aligned with effective IDs, but modifiable via setfsuid and setfsgid.
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1 struct cred {
2 ...
3 kuid_t uid; /* real UID of the task */
4 kgid_t gid; /* real GID of the task */
5 kuid_t suid; /* saved UID of the task */
6 kgid_t sgid; /* saved GID of the task */
7 kuid_t euid; /* effective UID of the task */
8 kgid_t egid; /* effective GID of the task */
9 kuid_t fsuid; /* UID for VFS ops */

10 kgid_t fsgid; /* GID for VFS ops */
11
12 ...
13 }

Listing 4.1: cred structure from include/linux/cred.h

4.2 LSM Framework
The Linux Security Module (LSM) [27] framework provides a flexible hook-based
infrastructure that allows various security models to be implemented as part of
the Linux kernel. Despite its name, LSMs are not loadable kernel modules; they
are integrated at build-time, selected via the CONFIG_DEFAULT_SECURITY
configuration, and can be overridden at boot-time using the security=... boot
parameter if multiple LSMs are built into the kernel.

LSMs insert security hook functions into various kernel subsystems [28], enabling
access control checks that go beyond traditional Discretionary Access Control (DAC).
Importantly, LSM does not enforce security policies itself; it merely supplies the
necessary infrastructure. In the absence of a more specific module, the default
LSM is the capabilities system, which offers basic access control mechanisms

The primary users of the LSM framework are Mandatory Access Control (MAC)
extensions that enforce comprehensive security policies, such as SELinux, AppAr-
mor, Smack, TOMOYO, and Yama.
These modules typically build upon the capabilities infrastructure, adding targeted
enforcement and policy controls.

4.3 BPF LSM
Before BPF, administrators had two main ways to implement custom security
policies: configuring an existing Linux Security Module (LSM) such as AppArmor
or SELinux, or writing a custom kernel module. Since Linux 5.7, the LSM BPF
framework [29] has introduced a more flexible alternative. It allows security policies
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to be implemented as eBPF programs attached to LSM hooks, enabling fine-grained,
runtime-modifiable rules without the need to develop kernel modules, which are
harder to maintain and can destabilize the system.

BPF-LSM programs are verified by the kernel at load time, ensuring safety, and
can attach to individual LSM hooks to make precise, context-aware decisions for
specific events (e.g., checks on particular processes or files), enabling security policies
with a level of detail that traditional approaches rarely achieve. Unlike conventional
LSMs such as SELinux or AppArmor, which are fixed at compile time and often
not stackable (i.e., mutually exclusive) [30], BPF-LSM offers dynamic loading,
runtime updates, and stackability. This flexibility, combined with its granular
control, makes BPF-LSM particularly well-suited for prototyping advanced security
mechanisms and for environments where policies must evolve quickly.

4.3.1 Challenges and Limitations

Despite its advantages in flexibility and fine-grained control, BPF-LSM also presents
some potential drawbacks. First, BPF-LSM inherently presents a larger attack sur-
face. Writing a BPF-LSM program requires implementing full code logic, whereas
traditional LSM typically only requires specifying policy rules, without complex
kernel-level code. Furthermore, BPF programs pass through the verifier and, option-
ally, the JIT compiler, both of which can contain vulnerabilities. Historically, there
have been several verifier bypasses, illustrating that the additional complexity of
BPF programs can introduce potential security risks. Second, kernel compatibility
can be an issue: while traditional LSM have been integrated into Linux for a long
time and support a wide range of kernel versions, BPF-LSM relies on newer kernel
features and may not be available or fully functional on older systems. Finally,
the performance overhead of BPF-LSM should be considered; although it provides
granular control and runtime flexibility, the complexity of BPF programs and
verification can potentially introduce additional computational cost.

Despite these challenges, BPF-LSM was chosen as the main hardening solution
in this work due to its power and fine-grained control. Traditional LSM were not
well-suited to protect against vulnerabilities within eBPF itself, since they cannot
fully integrate with eBPF programs or attach to eBPF hooks (sometimes being
unable to access them at all, and in other cases providing only coarse-grained
control). Nonetheless, alternative hardening strategies were also considered and
proposed to complement BPF-LSM and provide a more comprehensive security
posture.
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4.4 Kernel Modules
While a monolithic kernel is generally faster than a microkernel, it traditionally
suffers from limited modularity and extensibility. Modern monolithic kernels
address this limitation through loadable kernel modules [31, 32, 33], which can be
dynamically inserted into or removed from the kernel as needed. These modules,
compiled as object files, allow new functionality to be added at runtime and can
be unloaded when no longer required. Common uses include adding support for
new hardware (device drivers), filesystems, or system calls. In Linux, for instance,
modules can be managed using commands such as insmod, rmmod, and modprobe.
This approach can also help reduce the size of the kernel core and improve boot
time, since some drivers are only loaded when the corresponding hardware is in
use.

However, the use of kernel modules also introduces some disadvantages. The
main ones are:

• Loss of stability: poorly written or incompatible modules can cause system
crashes or instability.

• Security risks: modules run with kernel privileges, so a malicious or vulner-
able module can compromise the entire system.

• Compatibility issues: modules must be compatible with the specific kernel
version and configuration, which can lead to maintenance challenges.

In Section 6.2, we will examine a kernel module that can be used for security
monitoring and hardening, exploring both its advantages and disadvantages.
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eBPF-based products

eBPF has been widely adopted by companies to develop security monitoring tools.
One notable example is Tetragon, which has been evaluated in this work as a
potential hardening solution against specific eBPF-related vulnerabilities.

5.1 Tetragon
Tetragon [34] is an open-source runtime security observability and enforcement tool
built on eBPF, developed by Isovalent as part of the Cilium ecosystem. It provides
deep real-time visibility into system behavior, including process execution, system
call activity, file access, network connections, and I/O operations, without requiring
additional kernel modules. By leveraging eBPF hooks, as well as certain BPF-
LSM hooks, Tetragon can monitor and react to security-relevant events efficiently
within the kernel, avoiding the overhead and potential inaccuracies associated with
user-space tracing.

Tetragon allows fine-grained filtering and policy enforcement, enabling users
to specify which events are relevant based on function arguments, return values,
and process metadata such as executable names and capabilities. However, this
granularity has some limitations: for instance, syscall arguments that are complex
structures cannot always be fully analyzed. Events can be intercepted at kernel
hooks (kprobes and tracepoints) and user-space hooks (uprobes), and Tetragon
supports inline enforcement by overriding function return values or sending signals
to processes, providing immediate mitigation of suspicious activity.

The tool exposes captured events via gRPC or JSON logs, offering rich ob-
servability while minimizing performance impact by applying filtering and policy
enforcement directly in the kernel. Its flexibility allows users to create highly specific
tracing and enforcement policies, addressing a wide range of security and monitoring
use cases, including intrusion detection, compliance, and runtime protection against
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potential vulnerabilities.

5.1.1 Policies
At the core of Tetragon’s functionality are its policies, which define how the tool
observes and reacts to system events. These policies allow users to configure
Tetragon’s behavior by specifying which activities to monitor and what enforcement
actions to take in response to particular conditions.

Tracing Policies can be loaded or unloaded at runtime, or defined at startup
using configuration flags. The key elements that define a policy include the hook
point (Tetragon supports kprobes, tracepoints, uprobes, and some BPF-LSM hooks),
selectors, and actions. Users can configure hook points in the corresponding
sections of the TracingPolicy. These hook points may expose arguments and
return values, which can be specified using the args and returnArg fields.

Selectors enable per-hook, in-kernel BPF filtering and action execution. Each
selector defines a set of filters and, optionally, a set of actions to be performed when
those filters match. A single hook can include up to five selectors; if no selectors
are defined, the default action (Post, i.e., log an event) is applied.

Selectors are composed of classes of filters. For example, matchArgs filters based
on argument values, matchData filters based on data fields, matchReturnArgs
filters on return values, and matchPIDs filters on process IDs. Actions are specified
using either matchActions, which applies actions when a selector matches, or
matchReturnActions, which applies actions upon return selector matching.

To illustrate a simple example of a Tetragon policy, consider Listing 5.1.
1 apiVersion : cilium .io/ v1alpha1
2 kind: TracingPolicy
3 metadata :
4 name: "lsm -file -open"
5 spec:
6 lsmhooks :
7 - hook: " file_open "
8 args:
9 - index: 0

10 type: "file"
11 selectors :
12 - matchBinaries :
13 - operator : "In"
14 values :
15 - "/usr/bin/cat"
16 matchArgs :
17 - index: 0
18 operator : "Equal"
19 values :
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20 - "/etc/ passwd "
21 - "/etc/ shadow "

Listing 5.1: Example of a Tetragon policy monitoring file access

In this example, the policy uses the file_open LSM hook to monitor file access
events. The first selector, matchBinaries, ensures that the policy triggers only
when the /usr/bin/cat binary attempts to open a file. The second selector
matches the argument specified in the hook section, verifying that the file being
accessed by cat is either /etc/passwd or /etc/shadow. Since no explicit action is
defined, the default Post action (i.e., event logging) is applied.
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Analysis, Exploitation and
Hardening of eBPF
Vulnerabilities

For this thesis work, the methodology consisted of analyzing several known eBPF
vulnerabilities with the goal of identifying and evaluating potential hardening
strategies against different categories of attacks, including privilege escalation,
kernel panics, and map-related attacks. The workflow followed a structured process:
first, a high-severity CVE or a potential attack vector was selected; then, existing
proofs of concept (PoCs) were studied and reproduced; finally, mitigation strategies
were designed, implemented, tested and evaluated. The proposed solutions were
developed with the intention of being as general as possible, so as to remain effective
even in the presence of slight variations of known exploits.

This thesis was carried out in collaboration with a colleague, and the overall work
was divided into four use cases. As practical demonstrations, two representative use
cases are discussed in this thesis: the first focuses on the protection of eBPF maps
against different types of attacks, while the second addresses privilege escalation
exploits, with particular attention to CVE-2021-3490. The remaining two are
covered in the companion thesis.

6.1 Use Case 1: Maps Protection
eBPF maps, as introduced in Section 2.1.4, serve as the primary communication
mechanism for eBPF programs and are widely used to store critical data. Security
monitoring tools built on eBPF often leverage maps to hold configuration parameters
and global state for feature control, which makes them a particularly attractive
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target for attackers for the reasons discussed in Section 3.2.

6.1.1 The Vulnerability
eBPF Rootkits

Rootkits are stealthy tools that attackers use to maintain persistent access to
compromised systems, even after credential changes or vulnerability patches. By
hooking into the syscall table, traditional kernel rootkits gain deep visibility and
control over the operating system, enabling attackers to monitor network traffic,
hide files and processes, and spawn privileged tasks. This approach offers significant
stealth capabilities but introduces severe risks: even minor bugs in kernel rootkits
can crash the kernel, leading to full system failure, and kernel updates frequently
break rootkit functionality due to their reliance on low-level system structures.

eBPF provides a powerful alternative for building rootkits [35] that circumvent
many of the stability issues inherent in kernel modules. Although originally designed
for in-kernel observability and performance optimization, eBPF has been maliciously
repurposed to create stealthy malware. These eBPF-based rootkits are capable of
avoiding the catastrophic failures and compatibility issues tied to kernel updates.
This allows attackers to perform network manipulation, stealth communication,
process hiding, and privilege escalation while remaining largely invisible to standard
security auditing tools.

One application of such rootkits is tampering with eBPF maps used by security
monitoring tools. By modifying these maps, attackers can silently disable or alter
the behavior of monitoring systems without triggering obvious indicators, such
as terminating a security agent’s process. This stealthy approach allows them to
remain concealed while effectively neutralizing defensive mechanisms.

For these reasons, monitoring both the loading of eBPF programs and their access
patterns to eBPF maps is essential as an additional layer of defense, complementing
traditional privilege checks and other security controls.

File Descriptor Hijacking Attack

eBPF maps are inherently associated with file descriptors. They are exposed to
user-space through file descriptors: when a process creates or accesses a map via
the bpf() syscall, the kernel returns a file descriptor used for subsequent operations.
During program loading, eBPF programs also temporarily use these file descriptors
to reference maps, allowing the kernel to resolve them to internal pointers. Once
the program is loaded, it interacts with the maps directly via kernel pointers and
helper functions, without requiring file descriptors for execution.
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Each BPF program accesses maps using the addresses of objects in kernel space
via BPF helper functions, while user-space interacts with maps by issuing BPF
system calls. Alternatively [36], user-space can access maps by retrieving a file
descriptor and memory-mapping it (mmap) into its virtual address space. Once
mapped, the map can be accessed through simple pointers instead of system calls.

Each map has attributes defined in a bpf_attr structure, including map_flags.
Only maps created with the BPF_F_MMAPABLE flag can be memory-mapped. Notably,
libbpf, one of the most widely used libraries for eBPF, implicitly creates a
BPF map for global data and memory-maps it into the current process. This
makes these maps memory-mappable and reduces the need to repeatedly call
bpf_map_lookup,update_elem, improving overall performance.

Since Linux 5.6, a new syscall called pidfd_getfd allows a process (with
CAP_SYS_PTRACE) to obtain a duplicate of a file descriptor from another target
process. Because file descriptors within a process are allocated sequentially and
are limited in number, it is possible to iterate over a process’s file descriptors
(brute force) to inspect them. By checking descriptor attributes, such as the
BPF_F_MMAPABLE flag, an attacker can identify a descriptor of interest, duplicate
it with the pidfd_getfd syscall, and use mmap to access the corresponding kernel
object and tamper with it. Some eBPF-based security solutions store configuration
in global variables, making them memory-mappable and vulnerable to this type
of attack. A real-world example is the security monitoring tool Falco, which was
successfully exploited in this manner in 2025 [36]:

Falco recently introduced a modern BPF probe that uses a dispatcher to
delegate work to BPF programs when a system call is entered. A system call
reaches the BPF programs only if it passes filtering based on interest and sam-
pling logic, using the global table g_64bit_interesting_syscalls_table. This
means that if an attacker gains write access to the memory region containing
g_64bit_interesting_syscalls_table, they could disable event dispatching by
setting all entries to false.

The exploits, as described previously, iterate over possible file descriptors looking
for those marked as BPF_F_MMAPABLE. Once such a descriptor is found, the exploit
clones the descriptor (via pidfd_getfd) to access a map holding global variables.
Finally, by performing a memory write (for example memset) at the offset of the
g_64bit_interesting_syscalls_table, the exploit zeros out all table entries and
disables this security function completely. After that, all system calls that would
normally pass through the dispatcher are silently dropped; for example, executing
cat /etc/shadow no longer generates any alerts. An attacker could later re-enable
the entries after causing damage or modify other settings stored in the program’s
global variables.
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6.1.2 Exploitation
To evaluate the attacks discussed, three programs were developed. The first is a
simple eBPF program called simple_program that accesses the map to be protected
and contains a global variable for testing the file descriptor hijacking attack. The
second program acts as a malicious rootkit, attempting to access the protected
map value to verify whether the protection is effective. The third program is a
user-space application that uses eBPF system calls to ensure that the protection
also applies from user space. Additionally, the exploit proposed by Mouad Kondah
[36] for the file descriptor attack was downloaded, studied, and slightly adapted
to fit this simplified use case. The initial results, without any protections, showed
that, given the appropriate permissions, the map used by simple_program was
fully accessible to the other eBPF programs, and the file descriptor attack was able
to tamper with the global variable, setting it to a value of choice. These attacks
were tested on Ubuntu Server running kernel version 6.8.0-64-generic. Neither
attack has an upstream patch, because they do not exploit a software bug per se
but rather abuse existing kernel features and require certain privileges. An eBPF
rootkit exploits the shared nature of eBPF maps and can potentially affect any
kernel version that supports eBPF, provided an attacker is able to install and load
the rootkit. The file-descriptor-based attack leverages a system call introduced in
Linux 5.6 and therefore affects all kernel versions from 5.6 onward.

6.1.3 Hardening Plan
LSM Protection

The first approach to mitigate these threats was to create an LSM-BPF program.
The program used two hooks: lsm/bpf_map, which is triggered whenever a process
obtains a file descriptor for a map and can therefore monitor both user-space
access and eBPF program loading, and lsm/mmap_file, which is triggered during
memory mapping operations. To identify the map to be protected, the loader of
the simple_program collected information such as the map ID. These data are used
in the program’s checks.

To avoid completely blocking access to the protected map, which would interfere
with normal communication, an allowlist solution was implemented. The allowlist
is based on parameters that identify executable files authorized to access the map.
Since relying solely on the file path can be error-prone, the program uses the
inode number and superblock device to uniquely identify each executable. An
inode number is unique within a single filesystem but may be repeated across
different filesystems. The superblock device identifies the filesystem hosting the
file and is unique per mounted filesystem. By combining the inode number and
superblock device, a file can be uniquely identified across all mounted filesystems.

34



Analysis, Exploitation and Hardening of eBPF Vulnerabilities

This combination is therefore sufficient to uniquely identify an executable or any
file in a system with multiple mounted filesystems.

For simplicity, the allowlist was limited to a single pair of inode number (i_ino)
and superblock device (s_dev), allowing, potentially, only one process to access
the protected map.

The first hook, lsm/bpf_map, when triggered, exposes information about the
bpf_map structure of the map for which the process is attempting to obtain a file
descriptor. The logic within this hook retrieves the inode number (i_ino) and
superblock device (s_dev) of the process and performs a series of checks. First,
it verifies whether the map_id obtained from the bpf_map structure corresponds
to the id of the map being protected. If so, it then checks whether the process
attempting access matches the one allowed in the allowlist. If the last check fails,
access is denied: for a malicious eBPF program, loading is blocked; for a user-space
process, an "operation not permitted" error is returned.

Similarly, the second hook, lsm/mmap_file, exposes the file structure of the
file being memory-mapped. Since this hook does not provide the map ID, we
must rely on a less granular check. First, the i_ino and s_dev of the process that
triggered the hook are extracted. Then, from the file structure, the s_magic value
is retrieved. This is a numeric constant that identifies the type of filesystem (or
pseudo-filesystem) to which the file belongs. In particular, an eBPF map can be
associated with two types of filesystems:

• BPF_FS_MAGIC = 0xCAFE4A11: the magic number of the BPF filesystem, a
pseudo-filesystem used to represent eBPF maps and programs in the kernel.
When an eBPF map is created and pinned to the BPF filesystem, it can be
accessed through a file descriptor pointing to a file in this filesystem.

• ANON_INODE_FS_MAGIC = 0x09041934: the magic number of the anonymous
inode filesystem. Anonymous inodes are special inodes that do not correspond
to any file in a real filesystem. They are typically used for kernel objects that
need to be represented as files but do not have a persistent presence on disk,
such as epoll, signalfd, and eBPF maps.

In our case, the map representing the global variable targeted by the file
descriptor attack resides in the anonymous inode filesystem. The reason why we
do not rely on the inode number and s_dev to identify the map is that, within
the anonymous inode filesystem, inode numbers are not guaranteed to be unique,
making them unsuitable for uniquely identifying a map.

Once this information is extracted, the hook checks whether s_magic corresponds
to one of the two values above. If so, it means that the file being memory-mapped
is potentially an eBPF map. At that point, the process is further verified against
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an allowlist. If the process is not authorized, the memory mapping is blocked and
an "operation not permitted" error is returned. This implies that we must maintain
an allowlist of processes allowed to perform memory mappings on files belonging
to ANON_INODE_FS or BPF_FS.

Together, these hooks ensure that only the explicitly allowed process can ac-
cess the protected map, whether through file descriptor acquisition or memory
mapping, effectively mitigating both user-space and eBPF-based attacks.

To initiate the LSM protection alongside the simple_program and obtain the
necessary information, a simple wrapper script was created. This script first starts
the simple_program, which writes the map information, such as the map ID, to
temporary files. The wrapper then reads this value, optionally sets the param-
eters of the allowed process (if any), and immediately launches the LSM loader
program, passing the collected values as arguments. The implementation of the
LSM protection code is provided in Appendix A.1 .

Why not just eBPF

A natural question when designing kernel-level security mechanisms is: why not rely
solely on standard eBPF instrumentation, such as kprobes, tracepoints, or uprobes,
instead of using BPF-LSM? After all, these mechanisms already allow developers to
dynamically hook into kernel functions and monitor system behavior. The answer
is that BPF-LSM extends the capabilities of traditional eBPF tracing by hooking
directly into the Linux Security Module (LSM) framework, allowing security policies
to be enforced at critical points in the kernel’s security flow (with benefits also seen
in Section 3.4.2), something that generic probes cannot provide. While kprobes,
tracepoints, and uprobes are powerful for observability, they are primarily designed
for passive monitoring and lack a structured enforcement framework. In contrast,
BPF-LSM enables active security decisions and enforcement actions to occur in
real time, making it a more robust solution for hardening.

Traditional probes also suffer from a lack of context: they do not inherently
provide information about user credentials, process lineage, or Mandatory Access
Control (MAC) contexts, which are crucial for nuanced security decisions. The LSM
framework, however, is deeply integrated into the kernel’s access control mechanisms,
enabling BPF-LSM programs to operate with rich metadata and apply fine-grained,
context-aware policies across filesystems, networking, and process management.

For example, restricting access to sensitive files (e.g., within /etc/secret/) to
specific users or processes is a classic MAC use case. Achieving this with traditional
eBPF techniques, such as intercepting open() syscalls, introduces several limitations:
enforcement is limited to a single syscall, leaving other operations like read, write,
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or execute unchecked, requiring developers to monitor and maintain multiple syscall
hooks to achieve equivalent protection. Each kernel subsystem (e.g., networking
vs. filesystem) has its own functions to monitor, increasing complexity. Without a
centralized framework it is difficult to ensure all execution paths are covered: missing
a single syscall or internal function can bypass security checks, and implementing
multi-level security policies across subsystems becomes error-prone. LSM provides
this centralized framework by providing standardized hooks at key kernel points,
such as inode_permission, task_alloc, and socket_connect. Every security-relevant
operation passes through these hooks, regardless of the subsystem, allowing a
policy to be written once at the appropriate hook and reliably enforced across the
entire kernel, as the hooks are integrated into the official security flow. In contrast,
relying solely on kprobes or tracepoints leads to fragmented, manual enforcement.
BPF-LSM hooks, such as inode_permission, offer unified, consistent enforcement,
ensuring comprehensive coverage while reducing the attack surface.

Tetragon

While powerful, as we saw in the previous section, where LSM-BPF allowed
extracting very low-level information and implementing custom logic, this solution
is only available starting from Linux 5.7, leaving many kernel versions unprotected.
Although the FD attack is only possible in kernels from version 5.6 onward, malicious
eBPF programs exist on any kernel that supports eBPF, so additional protections
are desirable. For this reason, a complementary alternative solution based on
Tetragon was considered. As described in Section 5, Tetragon is an eBPF-based
security monitoring tool that can be configured using policies, providing real-time
observability and enforcement capabilities.

In this approach, a policy was written to hook the bpf syscall via a kprobe and
define a list of allowed binaries. Any process not in this allowlist attempting to
execute the bpf syscall is terminated, which simultaneously prevents unauthorized
userspace programs and the loading of malicious eBPF programs. Compared to
the LSM solution, this approach is less granular: it cannot selectively protect
individual maps while leaving others accessible, but instead blocks eBPF usage
for any process not explicitly trusted. This lack of granularity, however, may be
beneficial in contexts where a stricter, simpler-to-manage policy is desired.

For the FD attack, Tetragon can also monitor mmap syscalls, though it lacks
access to the underlying file structure available to LSM, such as inode and su-
perblock identifiers. A complete protection in this scenario would likely require a
supplementary userspace program to analyze Tetragon logs and make decisions, a
possibility left outside the scope of this thesis but noted as a potential theoretical
alternative. The implementation of the Tetragon policy is provided in Appendix A.2
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It is important to note that eBPF programs already loaded in the kernel do
not rely on file descriptors or syscalls for operations (conversely to userspace pro-
grams, which always use the BPF syscall), but instead use helper functions and
internal kernel pointers. As a result, such programs cannot be tracked or blocked
by any LSM hooks once loaded. Consequently, if a malicious eBPF program is
present before the deployment of protections, it can evade this hardening measure.

Various strategies can be employed to mitigate unauthorized or malicious usage
of already loaded programs. One approach is scanning for files that contain eBPF
programs, which is simpler when they are compiled using LLVM and LibBPF,
although other loading methods exist. When using bpftool and LibBPF, the ELF
file often embeds the eBPF bytecode in the loader’s .rodata section. Another
important detection method involves monitoring calls to bpf_probe_write_user,
a function that can be abused for unauthorized memory modification; analysis
can focus on the bytecode representation of this instruction, keeping in mind that
JIT compilation may alter its appearance in the kernel. Finally, the LSM solution
itself generates certain maps during program loading, but these are immediately
protected by the LSM policy, ensuring that new attacks targeting these maps are
prevented.

6.2 Use Case 2: CVE-2021-3490
This vulnerability, along with the analyzed PoC, targets kernels 5.8.0-25.26 through
5.8.0-52.58 and 5.11.0-16.17. It consists of an eBPF verifier bypass caused by
incorrect bounds tracking in bitwise operations (AND, OR, XOR), which results in
registers with invalid bounds. This flaw enables kernel information leaks, arbitrary
kernel read/write, and ultimately local privilege escalation (LPE). A detailed
explanation of CVE-2021-3490 is provided, following the analyses presented in [4]
and [37].

6.2.1 The vulnerability
The eBPF instruction set can operate either on the full 64 bits of a register
or on its lower 32 bits. For this reason, the verifier’s range tracking maintains
separate bounds for the lower 32 bits of each register (as discussed in Section 2.1.2):
{u,s}32_min,max_value.

These bounds are updated after every operation. Each operation has two
tracking functions, one for 64-bit values and one for 32-bit values, denoted as
scalar[32]_min_max_*. For 64-bit operations, both functions are invoked within
the function adjust_scalar_min_max_vals.
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1 static int adjust_scalar_min_max_vals (
2 struct bpf_verifier_env *env ,
3 struct bpf_insn *insn ,
4 struct bpf_reg_state *dst_reg ,
5 struct bpf_reg_state src_reg )
6 {
7 ...
8 case BPF_ADD :
9 scalar32_min_max_add (dst_reg , &src;_reg);

10 scalar_min_max_add (dst_reg , &src;_reg);
11 dst_reg -> var_off = tnum_add (dst_reg ->var_off , src_reg .

var_off );
12 break;
13 ...
14 case BPF_AND :
15 dst_reg -> var_off = tnum_and (dst_reg ->var_off , src_reg .

var_off );
16 scalar32_min_max_and (dst_reg , & src_reg );
17 scalar_min_max_and (dst_reg , & src_reg );
18 break;
19 case BPF_OR :
20 dst_reg -> var_off = tnum_or (dst_reg ->var_off , src_reg .

var_off );
21 scalar32_min_max_or (dst_reg , & src_reg );
22 scalar_min_max_or (dst_reg , & src_reg );
23 break;
24 case BPF_XOR :
25 dst_reg -> var_off = tnum_xor (dst_reg ->var_off , src_reg .

var_off );
26 scalar32_min_max_xor (dst_reg , & src_reg );
27 scalar_min_max_xor (dst_reg , & src_reg );
28 break;
29 ...
30 __update_reg_bounds ( dst_reg );
31 __reg_deduce_bounds ( dst_reg );
32 __reg_bound_offset ( dst_reg );
33 return 0;
34 }

Listing 6.1: Excerpt from kernel source code - adjust_scalar_min_max_vals
function

The bug behind CVE-2021-3490 lies in the 32-bit tracking functions for the
BPF_AND, BPF_OR, and BPF_XOR operations, and occurs in the same way across all
of them.

1 static void scalar32_min_max_and ( struct bpf_reg_state *dst_reg ,
2 struct bpf_reg_state * src_reg )
3 {

39



Analysis, Exploitation and Hardening of eBPF Vulnerabilities

4 bool src_known = tnum_subreg_is_const (src_reg -> var_off );
5 bool dst_known = tnum_subreg_is_const (dst_reg -> var_off );
6 struct tnum var32_off = tnum_subreg (dst_reg -> var_off );
7 s32 smin_val = src_reg -> s32_min_value ;
8 u32 umax_val = src_reg -> u32_max_value ;
9 /* Assuming scalar64_min_max_and will be called , so it is

safe
10 * to skip updating the register for the known 32- bit case

.
11 */
12 if ( src_known && dst_known )
13 return ;
14 ...
15 }

Listing 6.2: Excerpt from kernel source code - scalar32_min_max_and function

As shown in Listing 6.2, if both the source and destination registers are known
(i.e., they hold constant values), the function simply returns without updating the
32-bit minimum and maximum values. This behavior relies on the assumption that
the corresponding 64-bit tracking function, scalar_min_max_and, will perform the
necessary updates.

Examining the implementation of scalar_min_max_and, we observe the follow-
ing:

1 static void scalar_min_max_and ( struct bpf_reg_state *dst_reg ,
2 struct bpf_reg_state * src_reg )
3 {
4 bool src_known = tnum_is_const (src_reg -> var_off );
5 bool dst_known = tnum_is_const (dst_reg -> var_off );
6 s64 smin_val = src_reg -> smin_value ;
7 u64 umax_val = src_reg -> umax_value ;
8
9 if ( src_known && dst_known ) {

10 __mark_reg_known (dst_reg , dst_reg -> var_off .value);
11 return ;
12 }
13 ...
14 }

Listing 6.3: Excerpt from kernel source code - scalar_min_max_and function

Here, when both src_known and dst_known are true, the function calls __mark_reg_known.
However, the problem arises because scalar32_min_max_and evaluates registers
using tnum_subreg_is_const, which returns true if only the lower 32 bits of a reg-
ister are constant. In contrast, scalar_min_max_and uses tnum_is_const, which
returns true only if all 64 bits are constant.

This mismatch violates the assumption in the comment of scalar32_min_max_and
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when a register has the lower 32 bits known and the upper 32 bits unknown: the
function may return without updating bounds, relying on the 64-bit counterpart
to do so, but the latter might not trigger an update if only the lower 32 bits are
known while the upper 32 bits are not.

Finally, as shown in Listing 6.1, the last three functions before the return
perform one final update of the register bounds. Each of these functions has 32-bit
and 64-bit counterparts.

__update_reg_bounds sets the minimum bounds either to the current minimum
or to the known value of the register, whichever is larger. Similarly, the maximum
bounds are set either to the current maximum or to the known value of the register,
whichever is smaller. After that, __reg_deduce_bounds combines the information
from the signed and unsigned bounds to update each other. Finally, the unsigned
bounds are used to update var_off in __reg_bound_offset.

Now consider the instruction BPF_ALU64_REG(BPF_AND, R2, R3). This instruc-
tion performs a bitwise AND operation between registers R2 and R3, storing the
result in R2.

Suppose that R2 has var_off = {mask = 0xFFFFFFFF00000000; value = 0x1}
(refer to Section 2.1.2 for the explanation of var_off), which means that the lower
32 bits are known to hold the value 1, while the upper 32 bits are unknown. Since
the lower 32 bits of the register are known, its 32-bit bounds equal that value.

Let R3 have var_off = {mask = 0x0; value = 0x100000002}, meaning that
all 64 bits are known and equal to 0x100000002.

The steps to update the 32-bit bounds of R2 are as follows.
As shown on line 14 of Listing 6.1, the function tnum_and is called. This

performs the AND operation and updates the var_off field of the destination
register R2. Recall that the lower 32 bits in both registers are known, so a normal
AND operation is performed and the result for the lower 32 bits is 0. In R3 the
upper 32 bits are also known: the upper 31 bits are zero (so the AND operation
will give zero independently of the value of the corresponding R2 bits), and the
32nd bit is one (so the result of the AND operation is unknown and depends on
the value of the 32nd bit of R2). Therefore, R2 ends up with var_off = {mask =
0x100000000; value = 0x0}.

On the next line, scalar32_min_max_and is called. We already know that this
function will return immediately without modifying the bounds, since the lower 32
bits of both registers are known. Next, scalar_min_max_and, as noted above, will
not treat the register as unknown for the reason explained previously, and so it
will not mark the lower 32 bits as known, thereby missing the correct update of
the bounds.

Then, __update_reg_bounds is invoked. The 32-bit counterpart of this function
that is responsible for updating the lower 32-bit bounds sets u32_max_value =
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0, because var_off.value = 0 is less than the previous u32_max_value = 1.
Similarly, it sets u32_min_value = 1, since var_off.value = 0 is less than the
previous u32_min_value. The same occurs for the signed bounds.

Finally, the functions __reg_deduce_bounds and __reg_bound_offset do not
modify the bounds further.

In this case, we end up with a register state where {u,s}32_max_value = 0 <
{u,s}32_min_value = 1, i.e., with a maximum bound lower than the minimum
bound. As we will see in the next section, this inconsistency can be exploited to
gain arbitrary kernel memory read and write capabilities and ultimately achieve
privilege escalation.

6.2.2 Exploitation
The PoC for this vulnerability was published in [4] and follows this structure:
First of all, the exploit creates two maps called oob_map and store_map. The
following step is to trigger the vulnerability to leak the addresses of the two maps:
as discussed in Section 2.1.2, the verifier does not allow pointers to be stored into
maps. However, by exploiting the bug in the verifier, it is possible to make it
believe that a pointer is actually a valid integer.

We first prepare the necessary registers as follows. We perform a map_lookup_elem
on both maps and store the pointer to their first element in two registers that
we will call OOB_MAP_REG and STORE_MAP_REG. Then we load the value pointed
to by STORE_MAP_REG into a register that we will call EXPLOIT_REG. Since the
value is loaded from a map it is unknown to the verifier at compile time (it is
set so that at runtime the map will contain the value 0), and thus EXPLOIT_REG
will have a tnum mask of 0xFFFFFFFFFFFFFFF. Next we load the 32-bit value
0xFFFFFFFF into another register, CONST_REG, and shift it left by 32 bits. This sets
CONST_REG to 0xFFFFFFFF00000000. We then perform an AND operation between
CONST_REG and EXPLOIT_REG, storing the result back into EXPLOIT_REG. After this
operation EXPLOIT_REG has a tnum mask of 0xFFFFFFFF00000000, meaning the
register is half-known and half-unknown. Finally, we add 0x1 to EXPLOIT_REG,
obtaining for this register var_off = {mask = 0xFFFFFFFF00000000; value =
0x1}, consistent with the steps analyzed in the previous section.

To build the second register needed for the exploit, we craft a fully known
register with the value 0x100000002 by setting CONST_REG = 1, shifting left by 32
bits, and adding 2. CONST_REG will then have var_off = {mask = 0x0; value
= 0x100000002}. Finally, we perform the AND operation between EXPLOIT_REG
and CONST_REG, storing the result back into EXPLOIT_REG (which will have value 0
at runtime). This triggers the bug in the verifier and sets {u,s}32_max_value =
0 < {u,s}32_min_value = 1 for EXPLOIT_REG.
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Once this is done, to leak the addresses of the maps we must recall that the
verifier tracks which registers contain pointers and which contain scalars, and it
normally disallows storing pointers in maps. Looking at Listing 6.4, we see the
function adjust_ptr_min_max_vals, which is called for arithmetic instructions
involving a pointer. The register off_reg in the listing represents the offset scalar
register being added to a pointer register. Notice that if the offset register has
bounds such that umin_value > umax_value, the function __mark_reg_unknown
is called on the destination (pointer) register. This function marks the register as
an unknown scalar value.

Therefore, if we have EXPLOIT_REG with bounds umin_value > umax_value
and add it to a destination pointer register, the pointer register will be converted
to a scalar. The verifier will no longer treat the register as a pointer and will allow
us to leak its value to user space by storing it in an eBPF map. We use this to
save the OOB_MAP_REG pointer into store_map.

1 static int adjust_ptr_min_max_vals ( struct bpf_verifier_env *env ,
2 struct bpf_insn *insn ,
3 const struct bpf_reg_state *ptr_reg ,
4 const struct bpf_reg_state * off_reg )
5 {
6 ...
7 bool known = tnum_is_const (off_reg -> var_off );
8 s64 smin_val = off_reg ->smin_value , smax_val = off_reg ->

smax_value ,
9 smin_ptr = ptr_reg ->smin_value , smax_ptr = ptr_reg ->

smax_value ;
10 u64 umin_val = off_reg ->umin_value , umax_val = off_reg ->

umax_value ,
11 umin_ptr = ptr_reg ->umin_value , umax_ptr = ptr_reg ->

umax_value ;
12 ...
13
14 if (( known && ( smin_val != smax_val || umin_val != umax_val )) ||
15 smin_val > smax_val || umin_val > umax_val ) {
16 /* Taint dst register if offset had invalid bounds derived

from
17 * e.g. dead branches .
18 */
19 __mark_reg_unknown (env , dst_reg );
20 return 0;
21 }
22 ...
23 }

Listing 6.4: Excerpt from kernel source code - adjust_ptr_min_max_vals
function
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After leaking the address of oob_map, the exploit proceeds to leak the address of
map_ops (Section 2.1.4) for the same map. First, the previous steps are repeated
to obtain EXPLOIT_REG again, with the invalid bounds {u,s}32_max_value = 0
< {u,s}32_min_value = 1 and a runtime value of 0. These bounds are then used
to trick the verifier into believing that the register contains the value 0 while in
reality it contains the value 1.

To achieve this, we first add 1 to EXPLOIT_REG. For immediate instructions, the
immediate value is simply added to all bounds, provided the addition does not
cause an overflow. Thus, after adding 1 to EXPLOIT_REG, we obtain u32_max_value
= 1 and u32_min_value = 2, with var_off = {mask = 0x100000000; value =
0x1}.

Next, we need a register with an initially unknown value. Let us call this register
UNKNOWN_VALUE_REG. We create it as before by loading a value from an eBPF map;
its real runtime value will be 0. We then begin to manipulate the bounds of this
register by adding a conditional jmp instruction:

1 BPF_JMP32_IMM (BPF_JLE , UNKOWN_VALUE_REG , 1, 1)
2 BPF_EXIT_INSN ()

Listing 6.5: Conditional jump to manipulate bounds

The above conditional jmp32 instruction will skip the exit instruction if the value
of the lower 32 bits of the register is less than or equal to 1. Since the actual value
of the register is 0, the exit instruction will be skipped. However, the verifier does
not know the actual value of the register, so the unsigned bounds of the register will
be updated to u32_min_value = 0 and u32_max_value = 1 for the true branch.
Moreover, jmp32 operates only on the lower 32 bits of the register, so the upper
32-bit bounds will remain unchanged and still unknown. Thus, after the jmp32
instruction, UNKNOWN_VALUE_REG has var_off = {mask = 0xFFFFFFFF00000001;
value = 0x0}, with the lower 32-bit mask set this way because the value can be
either 1 or 0 from the verifier’s perspective.

Next, EXPLOIT_REG is added to UNKNOWN_VALUE_REG. If the addition does not
overflow either bound, the bounds of the destination and source registers are
simply added together. This results in EXPLOIT_REG having new 32-bit bounds:
u32_min_value = 2 and u32_max_value = 2. Examining how var_off for EXPLOIT_REG
is updated (in adjust_scalar_min_max_vals), we see that because the upper 32
bits of UNKNOWN_REG are unknown, the upper 32 bits of the result will also be
unknown. The least significant bit of UNKNOWN_REG could be either 0 or 1; since
the least significant bit of EXPLOIT_REG is known to be 1, the sum of the two
least significant bits could be either 1 or 2 (at runtime this addition yields 1).
Therefore, the second least significant bit is also unknown. The remaining bits are
known to be 0 in both operands. This leaves EXPLOIT_REG with var_off = {mask
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= 0xFFFFFFFF00000003; value = 0x0}.

Finally, __update_reg_bounds, __reg_deduce_bounds, and __reg_bound_offset
are called. The first two functions do not change the bounds, but the last one,
since u32_min_value = u32_max_value = 2, computes that the range of possible
values includes only the integer 2. Given the current var_off lower 32-bit mask
0x3, the 32-bit counterpart of __reg_bound_offset treats the lowest two bits as
known and equal to 2.

After these steps, EXPLOIT_REG has bounds {u,s}32_min_value = {u,s}32_max_value
= 2 and var_off = {mask = 0xFFFFFFFF00000000; value = 0x2}. In other
words, the register’s lower 32 bits are known and equal to 2, while at runtime the
register equals 1. All that remains is to zero-extend the lower 32 bits of the register
and perform a simple AND operation:

1 BPF_MOV32_REG ( EXPLOIT_REG , EXPLOIT_REG )
2 BPF_ALU64_IMM (BPF_AND , EXPLOIT_REG , 1)

Listing 6.6: Zero extend and AND operation

The verifier will now believe that EXPLOIT_REG = 0 because 2 & 1 = 0, but at
runtime it will actually be equal to 1 (1 & 1 = 1).

The final step is to bypass ALU sanitization. As mentioned earlier, ALU
sanitization has undergone several changes over the years. This particular bypass
works on kernel versions not patched for CVE-2020-27171 (which affects kernel
versions up to 5.11.8) and, therefore, it can also be applied to almost every kernel
versio vulnerable to CVE-2021-3490) and is described in detail in Manfred Paul’s
blog post [37].

To understand how ALU sanitization works in this kernel version, consider the
following example [37]:

• Register 1 contains a pointer p to the beginning of 4000 bytes of safe memory.
Assume that the type of *p is one byte in size. This means that adding 3999
to p is permissible, but adding 4000 would exceed the bounds.

• Register 2 contains a scalar a, which the static verifier believes to be 1000.

• Now add register 2 to register 1. The static verifier has no problem with this,
since p+1000 is still within the memory region. Because this is arithmetic
involving a pointer, the ALU sanitizer will set an alu_limit. However, even
though the verifier believes that a is at most 1000, the limit is not set to 1000
but rather to 3999, because this is the largest value still considered safe. This
implies that, even if at runtime a is larger than 1000, as long as it is less than
3999 the arithmetic operation will succeed.
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• Add register 2 to register 1 again. This time, the static part of the verifier
believes that p points to position 1000 in the 4000-byte memory block. The
alu_limit will now be set to 2999, because this is the largest legal value that
can still be added. The addition will be successful as long as a < 2999.

Since the alu_limit is set based on the maximum possible value that can be
added to or subtracted from p, independently of the verifier’s believed value of a,
it is possible to perform multiple additions or subtractions until the alu_limit
is reached even if the runtime value of a differs from the value believed by the
verifier. For example, if we used a bug in the static analysis to make the verifier
believe a = 1000 while in reality we set a = 2500, we can add a twice and still pass
both runtime checks: 2500 < 3999 (first alu_limit) and 2500 < 2999 (second
alu_limit after the first addition). However, in total we have added 5000 to the
pointer p, resulting in an address well outside the safe memory range.

Returning to our exploit, if we want to move backwards from a pointer to the
first element of a map and access metadata such as map_ops, we cannot do so
directly because the initial alu_limit for subtraction is 0 (we are already at the
beginning of the map). Instead, we add a dummy value to OOB_MAP_REG to alter the
alu_limit:0x1000-1 in our case. We can now subtract up to 0x1000-1 from our
pointer. Then we multiply EXPLOIT_REG by 0x1000-1. Since the verifier believes
that EXPLOIT_REG = 0, it will believe that the result of the multiplication is also
0. However, at runtime EXPLOIT_REG = 1, so the result of the multiplication will
be 0x1000-1. The alu_limit for subtraction becomes 0x1000, so we can subtract
EXPLOIT_REG from OOB_MAP_REG, moving back toward the beginning of the map.
At runtime the subtraction respects the alu_limit and thus passes the sanitization;
the verifier believes we subtracted 0, so the alu_limit for subtraction remains
0x1000. We can then repeat: multiply EXPLOIT_REG by any value up to 0x1000-1
and subtract it from OOB_MAP_REG, bypassing the runtime checks repeatedly. This
allows us, in particular, to subtract BPF_MAP_OPS_OFFSET from the oob_map value
pointer so that it points to bpf_map->ops. The value of map_ops is then read and
stored for later use.

The final step is obtaining arbitrary read and write capabilities. For reading,
we use the field struct btf *btf present in oob_map. It turns out [37] that the
btf pointer can be conveniently accessed through the bpf_map_get_info_by_fd
function, which is called by the BPF_OBJ_GET_INFO_BY_FD command of the bpf
syscall when the file descriptor of the map is provided. This function effectively
performs the following (the full function is located in kernel/bpf/syscall.c):

1 ...
2 if(map ->btf){
3 info -> btf_id = map ->btf ->id;
4 info -> btf_key_type_id = map -> btf_key_type_id ;
5 info -> btf_value_type_id = map -> btf_value_type_id ;
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6 }
7 ...

Listing 6.7: Excerpt from kernel source code - bpf_map_get_info_by_fd function

This means that if we use our bug to set map->btf to someaddr - offsetof(struct
btf, id), then BPF_OBJ_GET_INFO_BY_FD returns *someaddr in info.btf_id.
Since the id field of struct btf is a u32, this primitive can be used to read
four bytes at a time from an arbitrary address.

For write capabilities, by overwriting map_ops using the verifier bug we can
force the kernel to call any function we choose. However, the first argument will
always be the bpf_map structure, which rules out many existing functions. It is
therefore natural to overwrite selected entries of array_map_ops with different
map operation pointers that accept the map pointer as their first argument. The
exploit does exactly this, overwriting map_push_elem with map_get_next_key,
whose implementation is shown in Listing 6.8.

1 /* Called from syscall */
2 static int array_map_get_next_key ( struct bpf_map *map , void *key ,

void * next_key )
3 {
4 struct bpf_array *array = container_of (map , struct bpf_array ,

map);
5 u32 index = key ? *( u32 *) key : U32_MAX ;
6 u32 *next = (u32 *) next_key ;
7
8 if (index >= array ->map. max_entries ) {
9 *next = 0;

10 return 0;
11 }
12
13 if (index == array ->map. max_entries - 1)
14 return -ENOENT ;
15
16 *next = index + 1;
17 return 0;
18 }

Listing 6.8: Excerpt from kernel source code - array_map_get_next_key function

If we control next_key and key, then *next = index + 1 can be used as an arbi-
trary write primitive under the condition that index < array->map.max_entries.
If map->max_entries can be set to 0xffffffff (which can be done using the same
strategy to write out-of-bounds into a map), this check will always pass (except when
index = 0xffffffff, which is actually the value we will use; this is acceptable
because *next will still be set to 0 = index + 1 due to 32-bit wrap-around).
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Note that the signature of map_push_elem, which we have overwritten with
map_get_next_key, is:

1 int (* map_push_elem )( struct bpf_map *map , void *value , u64 flags);

Listing 6.9: map_push_elem signature

However, map_push_elem is invoked by the BPF_MAP_UPDATE_ELEM command only
if the map has type BPF_MAP_TYPE_STACK or BPF_MAP_TYPE_QUEUE; thus the exploit
again uses EXPLOIT_REG to modify the map type. We can then directly control
the flags argument (which will be interpreted as next_key), as well as the value
(which will be interpreted as key) argument. Other fields are also overwritten,
such as the spinlock, to bypass additional checks. The arbitrary 32-bit write can
now be triggered by passing appropriate arguments to BPF_MAP_UPDATE_ELEM (for
example: update_map_element(pCtx->oob_map_fd, 0, val-1, addr)).

Once arbitrary read and write primitives for kernel addresses are obtained, the
exploit locates the task structure and overwrites the credentials, then spawns a
root shell to complete the privilege escalation.

To simulate more flexible behavior, the exploit was modified so it could perform
attacks other than full privilege escalation (root shell spawning), such as privilege
restoration, sending SIGKILL to processes, and reading (and potentially writing)
arbitrary files. The attack type can be selected via command-line arguments.

6.2.3 Hardening Plan
This kind of exploit of the verifier is difficult to block preventively without patching
the kernel itself, since it abuses a bug in the static analysis of the verifier and
the exploit can have many variants. To find a solution as general as possible that
can work for privilege escalation exploits even exploiting other bugs in the verifier
detailed in other CVEs, a reactive approach was adopted, leveraging two different
technologies: LSM and LKRG.

LSM Protection

The first solution was developing from scratch an LSM module using eBPF to
monitor and block processes that performed an escalation of privileges. To do
this, first of all the LSM program declares a map to keep track of processes that
make use of eBPF programs. This is done by hooking the bpf syscall via lsm/bpf
hook. Every time a process calls the bpf syscall to load an eBPF program, first it
is checked that the process is not being already tracked, then its task_struct is
retrieved and its credentials, in particular uid, gid, euid, fsuid, fsgid, suid and sgid,
are stored in the map. There is a limit of processes that can be tracked at once
that is determined by the max entries of the map. This limit is customizable and
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it is necessary to find a good compromise between security and performance. If the
map is full, no new processes that use eBPF will be loaded.

Once the process is being tracked and its credentials are stored, every time
a sensitive operation is performed, such as invoking execve (so spawning a new
process), trying to access a file, trying to send a signal to a process, trying to modify
the credentials (e.g. with setuid), trying to use or create a socket, the process is
checked against the map. If it is present in the map, its stored credentials are
compared with the current ones. If they differ, it means that a privilege escalation
has occurred and the process is immediately killed. If the process is not in the
map, meaning that it does not use eBPF and so it cannot be an exploit of the
verifier, it is allowed to proceed.

In our solution the hooks used to monitor sensitive operations are:

• lsm/inode_permission to monitor file access

• lsm/cred_prepare to monitor credential changes and calls to execve

• lsm/task_kill to monitor signals sent to processes

• lsm/task_alloc to monitor process creation (e.g. fork) and track the child
process if the parent was tracked

Misssing hooks that could be useful are lsm/socket_create and lsm/socket_connect
to monitor socket creation and usage.

Moreover other hooks used are:

• lsm/bpf to track processes that use eBPF programs as discussed before

• lsm/task_free to remove the process from the map when it terminates if it
was being tracked

This solution has been tested against the exploit analyzed in Use Case 2 and
it successfully blocked the privilege escalation and this very same solution was
successfully tested also against an exploit of CVE-2022-23222 to prove that it could
work against general privilege escalation exploits of the verifier.

There are pros to this solution but also limitations: the advantages reside in
the fact that it is a general solution that can work against different exploits and
that it is strongly customizable in terms of type of operations to monitor, number
of processes to track and actions to take when a privilege escalation is detected.
The limitations are that it is a reactive solution, so it can only block the privilege
escalation but not the arbitrary read and write capabilities obtained before the
escalation and also this solution has to include all the necessary hooks to monitor
all the sensitive operations, otherwise it could be bypassed if a hook was missing.
For example, in the current implementation there is no hook to monitor socket
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creation and usage, so if an exploit used sockets after raising its privileges it would
not be blocked. The implementation of the LSM protection code is presented in
Appendix B.1.

LKRG

The second solution adopted was LKRG (Linux Kernel Runtime Guard). LKRG
is a loadable, out-of-tree, kernel module that performs runtime integrity checking
and exploit detection [38]. Unlike preventive security measures that try to stop
attacks before they reach the kernel, LKRG acts as an observer: LKRG does not
primarily aim to block attacks in advance, but instead detects and stops attacks
occurring inside the kernel in real time.

Its operation relies on two main mechanisms. First, it performs runtime integrity
checks, constantly verifying critical kernel data structures. If these structures are
altered in unexpected ways (a common technique used to gain persistence, hide
presence, or escalate privileges), LKRG can detect the change. Second, it provides
exploit detection by identifying behavioral patterns typical of kernel exploits, such
as memory manipulations or unusual control-flow redirections. For example, LKRG
can detect an attempt to gain root privileges by exploiting a kernel flaw and block
the action as it happens.

Because LKRG is a loadable kernel module, it can be added to a running Linux
system without recompiling the kernel or rebooting, which simplifies deployment.
Once loaded, it snapshots the current state of the CPUs, the kernel, and its
most critical data, and then applies a series of integrity checks to detect possible
compromise.

For kernel integrity validation, LKRG monitors:

• critical CPU metadata, such as which cores are online and whether expected
security features (e.g., SMEP and SMAP) remain enabled,

• critical global kernel variables, such as whether SELinux is enabled and
enforcing,

• keyed cryptographic hashes of the kernel image and of modules as they appear
in memory.

When legitimate changes occur through documented means, for instance taking
a CPU core offline, changing SELinux state, or loading/unloading a kernel module
by the root user, LKRG transparently updates its snapshot. When unexpected
changes are detected, its default response is to log the event (optionally to a remote
server) and trigger a kernel panic, since milder reactions are generally ineffective
against such attacks.

50



Analysis, Exploitation and Hardening of eBPF Vulnerabilities

To validate the kernel’s view of running tasks and detect exploits, LKRG keeps
track of:

• process credentials, such as user and group IDs and container namespaces,

• control flow, i.e., kernel function call chains observed in stack frames at critical
locations,

• use of the usermodehelper mechanism, restricting it to only a few approved
programs (for example, modprobe).

When changes occur through legitimate operations, for example a process
changing its user ID via the setuid(2) system call, LKRG transparently updates
its copy of the data. When unexpected modifications to task credentials, anomalies
in control flow, or misuse of usermodehelper are detected, the default response is
to log the event (also to a remote server if configured) and kill the offending task.

LKRG’s behavior, what it validates and how it responds to detected violations,
can be configured through the sysctl interface and module parameters. Optional
remote logging is performed directly from the kernel, with traffic encrypted using
the log server’s public key. The log server daemon and related tools are provided
with LKRG.

LKRG successfully blocks many existing Linux kernel exploits and is likely to
prevent many future ones, including some zero-day attacks, unless an exploit is
specifically designed to bypass it [39]. While bypasses are possible, they typically re-
quire more complex and less reliable techniques. At present, LKRG is experimental,
but it is a useful tool for strengthening kernel resilience against sophisticated attacks.

LKRG was tested against the exploit analyzed in the previous section and success-
fully blocked the resulting privilege escalation. The advantage of this solution is
that it is ready to use, works across many kernel versions (including older ones that
BPF LSM does not support), and is configurable in terms of detection sensitivity
and response actions. By contrast, a solution based on eBPF offers greater flexi-
bility in internal logic and avoids some shortcomings of kernel modules discussed
in Section 4.4, such as the need to update the module for each kernel version to
maintain compatibility and stability.

eBPF programs rely on two key mechanisms that enable portability and stability
across architectures and kernel versions:

• eBPF core instructions, i.e., a set of architecture-independent instructions.
The same eBPF program can run on different kernel versions without mod-
ification because it does not use fixed offsets of kernel objects directly, but
makes use of BTF information [btf],
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• Just-in-time (JIT) compilation: when an eBPF program is loaded into
the kernel, it is compiled just in time into native machine code for the host
architecture, ensuring the program runs efficiently across different systems
without requiring recompilation.

These mechanisms make eBPF programs highly portable and stable across
kernel versions and architectures, reducing the maintenance burden compared to
traditional kernel modules. Moreover, since LKRG is an out-of-tree kernel module,
it may introduce reliability issues, both in terms of potential bugs, as it does not
undergo the same thorough review process as in-tree code, and in maintaining
compatibility with future kernel versions.
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Chapter 7

Conclusions and Future
Work

This thesis has systematically addressed the issue of security in the adoption of
eBPF technology. After analyzing the architectural mechanisms and the main risks
introduced by its use, the work focused on studying documented vulnerabilities
and reproducing real exploits, with the goal of identifying common patterns and
proposing mitigation strategies.

Two case studies were examined in particular: the protection of eBPF maps
and the exploitation of CVE-2021-3490, which demonstrates how verifier errors can
be leveraged to achieve privilege escalation. For each case, hardening approaches
were designed and tested, aiming to provide generalizable solutions resilient even
to variants of known attacks.

The work highlighted both the potential and the limitations of these strategies.
On one hand, the developed approaches show that it is possible to significantly
strengthen the security of an eBPF-based system even without definitive solutions
such as kernel patches or updates, which, although they provide complete protection
and fix vulnerabilities, are often not applicable as they would require downtime or
may introduce compatibility issues due to kernel version changes. Each proposed
solution has its strengths and weaknesses: LSM BPF offers great flexibility and
portability but may have issues with older kernel versions; LKRG provides strong
out-of-the-box protection against attacks compromising kernel integrity and is
effective against various exploits, but being an out-of-tree and still experimental
kernel module, it may not be completely reliable or portable. Tetragon is easy to
configure using YAML-based policies and excellent for observability, but it faces
challenges when implementing more granular controls or analyzing complex data
structures. On the other hand, significant challenges remain open, such as balancing
performance with detection capabilities and further experimental validation in
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real-world scenarios.
Since this research was carried out in collaboration with a colleague, the present

thesis discusses only two of the four analyzed use cases. Nevertheless, several
key principles have emerged from the overall work that can guide secure eBPF
adoption:

• Verify every loaded eBPF program, ensuring it is trusted and does not access
unauthorized maps.

• Monitor eBPF map creation and usage for anomalous behavior, such as
unusually large map sizes or oversized keys.

• Deploy solutions that track credential IDs of processes using eBPF to detect
and prevent privilege escalation attacks, thereby helping to mitigate LPE
attempts across multiple CVEs.

• Stay updated on the latest critical CVEs and attack techniques, considering
not only known vulnerabilities but also potential risks introduced by new
Linux features.

Building on these findings, several directions for future work can be identified.
One promising idea is the development of a verifier extension that leverages eBPF
to implement custom detection logic, proactively identifying exploits targeting
particularly severe known verifier bugs. During this thesis, a preliminary version of
such a solution was developed. The idea is to create an eBPF program that monitors
the loading of other eBPF programs via the bpf syscall. When a program is being
loaded, the eBPF program retrieves its bytecode and analyzes the instructions
to detect patterns that could indicate an attack. For example, in the case of
CVE-2021-3490, the exploit begins by crafting a register that is half known and
half unknown at compile time. This could be detected by tracking the register
content through this verifier extension.

The eBPF program that retrieves the instructions of other programs must be
complemented by a user-space component capable of more complex analysis, which
would be difficult to implement in eBPF due to program size limitations. The
current prototype implements the eBPF part that retrieves and logs the instructions,
as shown in Figure 7.1. This is achieved as follows: first, the program declares a
map to store the instructions of another BPF program during its loading phase.
Then, using the lsm/bpf hook, triggered each time the bpf syscall is invoked, the
program checks that the BPF command is BPF_LOAD. If so, it proceeds to read the
bpf_attr struct, which contains information about the program being loaded, such
as the number of instructions and the pointer to the instruction buffer. To balance
performance, memory usage, and the strictness of security measures, a maximum
number of instructions can be defined, blocking the loading of excessively large
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programs. For simplicity, in this prototype, only the first MAX_INSNS instructions
were analyzed without blocking the eBPF program if it exceeded this limit. After
this check, the program loads the instructions into the map, taking into account
that, unlike the usual data eBPF programs operate on, these data reside in user
space. Finally, the instructions are printed, as shown in Figure 7.1. The code of
this prototype solution can be found in Appendix B.2.

The user-space component is yet to be developed, and the logic for detecting
attack patterns remains to be implemented. This approach represents a proactive
solution capable of blocking potentially dangerous eBPF programs before they
are executed, potentially overcoming the downsides of reactive solutions such as
LKRG or the LSM protections analyzed in Use Case 2. However, this idea is still
in its early stages, and several challenges must be addressed, such as finding a good
balance between security and performance, since analyzing every eBPF program
being loaded could introduce significant overhead. Moreover, it will be necessary to
balance false positives and false negatives: overly strict detection logic may block
legitimate programs, while overly lenient logic may fail to catch real attacks.

Figure 7.1: Log of the verifier extension showing the instructions of a loaded eBPF
program. E.g. second line (code=63, dst_reg=10, src_reg=0, imm=0, off=-4)
corresponds to storing the value of register 0 into the stack at offset -4 from the
frame pointer (register 10).

Another interesting direction for future work would be to conduct a thorough
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performance evaluation of the proposed mitigation strategies. While the focus of
this thesis has been primarily on security effectiveness, it is equally important to
assess the overhead introduced by each solution in realistic workloads. Measuring
metrics such as latency, throughput, and resource consumption would help quantify
the trade-offs between enhanced security and system efficiency.

In conclusion, this thesis has shown that strengthening the security of eBPF
environments is possible through a combination of different strategies. Although
the proposed solutions are still at a prototype stage, they represent a concrete
step toward a more robust and secure adoption of eBPF technology in production
systems.
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Use Case 1

1 # include " vmlinux .h"
2 # include <bpf/ bpf_helpers .h>
3 # include <bpf/ bpf_tracing .h>
4 # include <bpf/ bpf_core_read .h>
5
6 char LICENSE [] SEC(" license ") = "GPL";
7
8 # define EPERM 1
9

10 # define BPF_FS_MAGIC 0 xCAFE4A11
11 # define ANON_INODE_FS_MAGIC 0 x09041934
12
13 const volatile __u32 allowed_ino = 0;
14 const volatile __u32 allowed_sdev = 0;
15 const volatile __u32 expected_map = 0;
16
17 SEC("lsm/ bpf_map ")
18 int BPF_PROG (bpf_map , struct bpf_map *map , fmode_t fmode)
19 {
20 struct dentry * dentry_exe ;
21 long unsigned int i_ino_exe ;
22 dev_t s_dev_exe ;
23
24 struct task_struct *task = ( struct task_struct *)

bpf_get_current_task ();
25
26 __u32 map_id = BPF_CORE_READ (map , id);
27 char map_name [16];
28 __builtin_memcpy (map_name , BPF_CORE_READ (map , name), sizeof (

map_name ));
29
30 if (! task) {
31 bpf_printk ("Error in reading task struct ");
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32 return -EPERM;
33 }
34
35 char task_name [16];
36 __builtin_memcpy (task_name , BPF_CORE_READ (task , comm), sizeof (

task_name ));
37
38
39 dentry_exe = BPF_CORE_READ (task , mm , exe_file , f_path . dentry );
40 if (! dentry_exe ){
41 bpf_printk ("Error in reading dentry_exe ");
42 return -EPERM;
43 }
44 i_ino_exe = BPF_CORE_READ (dentry_exe , d_inode , i_ino);
45 s_dev_exe = BPF_CORE_READ (dentry_exe , d_inode , i_sb , s_dev);
46
47 if ( map_id == expected_map && ( i_ino_exe != allowed_ino ||

s_dev_exe != allowed_sdev )) {
48 bpf_printk (" Denied access to BPF map %s from %s with mode

%d", map_name , task_name , fmode);
49 bpf_printk ("Exe: i_ino: %lu , s_dev: %u\n", i_ino_exe ,

s_dev_exe );
50 return -EPERM;
51 }
52
53 bpf_printk (" Allowed access to BPF map %s from %s with mode %d

", map_name , task_name , fmode);
54 return 0;
55 }
56
57 SEC("lsm/ mmap_file ")
58 int BPF_PROG ( block_mmap_bpf_map , struct file *file , unsigned long

prot , unsigned long flags) {
59
60 struct dentry *dentry , * dentry_exe ;
61 long unsigned int i_ino_exe ;
62 dev_t s_dev_exe ;
63 long unsigned int s_magic ;
64
65
66 dentry = BPF_CORE_READ (file , f_path . dentry );
67 if(! dentry )
68 return 0;
69
70 s_magic = BPF_CORE_READ (dentry , d_inode , i_sb , s_magic );
71
72 pid_t pid = bpf_get_current_pid_tgid () >> 32;
73 struct task_struct *task = ( struct task_struct *)

bpf_get_current_task ();
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74 dentry_exe = BPF_CORE_READ (task , mm , exe_file , f_path . dentry );
75 if (! dentry_exe ){
76 bpf_printk ("Error in reading dentry_exe ");
77 return -EPERM;
78 }
79 i_ino_exe = BPF_CORE_READ (dentry_exe , d_inode , i_ino);
80 s_dev_exe = BPF_CORE_READ (dentry_exe , d_inode , i_sb , s_dev);
81
82 if(( s_magic == ANON_INODE_FS_MAGIC || s_magic == BPF_FS_MAGIC )

&& ( i_ino_exe != allowed_ino || s_dev_exe != allowed_sdev )){
83 bpf_printk ("File with magic: 0x%08x\n", s_magic );
84 bpf_printk ("Exe: i_ino: %lu , s_dev: %u\n", i_ino_exe ,

s_dev_exe );
85 bpf_printk (" Denied access to process with PID %d trying to

mmap file with magic 0x%08x", pid , s_magic );
86 return -EPERM;
87 }
88
89 return 0;
90 }

Listing A.1: LSM BPF protection

1
2 apiVersion : cilium .io/ v2alpha1
3 kind: TracingPolicy
4 metadata :
5 name: "bpf"
6 spec:
7 kprobes :
8 - call: " sys_bpf "
9 syscall : true

10 return : false
11 args:
12 - index: 0
13 type: "int"
14 label: "bpf command "
15 selectors :
16 - matchArgs :
17 - index: 0
18 operator : "Equal"
19 values :
20 - 7
21 - 1
22 - 2
23 - 3
24 matchBinaries :
25 - operator : "NotIn"
26 values :
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27 - "/mnt/ shared / usecase1 / subcase1 / simple / simple_user "
28 - "/mnt/ shared / usecase1 / subcase1 / userProgram /

user_program "
29 matchActions :
30 - action : Sigkill
31

Listing A.2: Tetragon Policy
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Appendix B

Use Case 2

1 # include " vmlinux .h"
2 # include <bpf/ bpf_helpers .h>
3 # include <bpf/ bpf_tracing .h>
4 # include <bpf/ bpf_core_read .h>
5
6 char LICENSE [] SEC(" license ") = "GPL";
7
8 # define EPERM 1
9 # define NULL 0

10 # define MAX_TRACKED_PROCESSES 1024
11
12 struct {
13 __uint (type , BPF_MAP_TYPE_HASH );
14 __uint ( max_entries , MAX_TRACKED_PROCESSES );
15 __type (key , __u32);
16 __type (value , struct tracked_entry );
17 } tracked_processes SEC(".maps");
18
19 struct tracked_entry {
20 __u32 uid;
21 __u32 gid;
22 __u32 euid;
23 __u32 fsuid;
24 __u32 fsgid;
25 __u32 suid;
26 __u32 sgid;
27 };
28
29 /* Hook for BPF syscalls to track processes using BPF */
30 SEC("lsm/bpf")
31 int BPF_PROG ( bpf_syscall , int cmd , union bpf_attr *attr , unsigned

int size)
32 {
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33 pid_t pid = bpf_get_current_pid_tgid () >> 32;
34
35 // Track any process that uses BPF syscalls
36 struct tracked_entry *entry = bpf_map_lookup_elem (&

tracked_processes , &pid);
37 if (entry) {
38 // Already tracking this process
39 return 0;
40 }
41
42 // Get current task credentials
43 struct task_struct *task = ( struct task_struct *)

bpf_get_current_task ();
44 if (! task)
45 return 0; // Don ’t block , just don ’t track
46
47 const struct cred *cred = NULL;
48 bpf_core_read (&cred , sizeof (cred), &task ->cred);
49 if (! cred)
50 return 0; // Don ’t block , just don ’t track
51
52 __u32 uid_val = 0, euid_val = 0, gid_val = 0, fsuid_val = 0,

fsgid_val = 0, suid_val =0, sgid_val =0;
53 bpf_core_read (& uid_val , sizeof ( uid_val ), &cred ->uid.val);
54 bpf_core_read (& euid_val , sizeof ( euid_val ), &cred ->euid.val);
55 bpf_core_read (& gid_val , sizeof ( gid_val ), &cred ->gid.val);
56 bpf_core_read (& fsuid_val , sizeof ( fsuid_val ), &cred ->fsuid.val)

;
57 bpf_core_read (& fsgid_val , sizeof ( fsgid_val ), &cred ->fsgid.val)

;
58 bpf_core_read (& suid_val , sizeof ( suid_val ), &cred ->suid.val);
59 bpf_core_read (& sgid_val , sizeof ( sgid_val ), &cred ->sgid.val);
60
61 struct tracked_entry new_entry = {
62 .uid = uid_val ,
63 .euid = euid_val ,
64 .gid = gid_val ,
65 .fsuid = fsuid_val ,
66 .fsgid = fsgid_val ,
67 .suid = suid_val ,
68 .sgid = sgid_val
69 };
70
71 bpf_printk ("BPF syscall tracking process %d (cmd =%d)\n", pid ,

cmd);
72 bpf_printk (" Initial credentials uid =%d, euid =%d, gid =%d\n",

uid_val , euid_val , gid_val );
73 bpf_printk (" Initial credentials fsuid =%d, fsgid =%d\n",

fsuid_val , fsgid_val );
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74
75 int ret = bpf_map_update_elem (& tracked_processes , &pid , &

new_entry , BPF_ANY );
76 if (ret < 0) {
77 bpf_printk (" Failed to track BPF process %d\n", pid);
78 } else {
79 bpf_printk (" Successfully tracking BPF process %d\n", pid);
80 }
81
82 return 0;
83 }
84
85 SEC("lsm/ task_alloc ")
86 int BPF_PROG (task_alloc , struct task_struct *task , unsigned long

clone_flags )
87 {
88 pid_t parent_pid = bpf_get_current_pid_tgid () >> 32;
89 pid_t child_pid ;
90
91 // Read the child process PID
92 int ret = bpf_probe_read_kernel (& child_pid , sizeof ( child_pid ),

&task ->pid);
93 if (ret < 0) {
94 return 0; // Don ’t block on read failure
95 }
96
97 // Check if parent is tracked
98 struct tracked_entry * parent_entry = bpf_map_lookup_elem (&

tracked_processes , & parent_pid );
99 if ( parent_entry ) {

100 // Inherit tracking from parent
101 struct tracked_entry child_entry = {
102 .uid = parent_entry ->uid ,
103 .euid = parent_entry ->euid ,
104 .gid = parent_entry ->gid ,
105 .fsuid = parent_entry ->fsuid ,
106 .fsgid = parent_entry ->fsgid ,
107 .suid = parent_entry ->suid ,
108 .sgid = parent_entry ->sgid
109 };
110
111 ret = bpf_map_update_elem (& tracked_processes , &child_pid ,

& child_entry , BPF_ANY );
112 if (ret == 0) {
113 bpf_printk (" Inherited tracking : child %d from parent %

d\n", child_pid , parent_pid );
114 }
115 }
116
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117 return 0;
118 }
119
120
121 SEC("lsm/ cred_prepare ")
122 int BPF_PROG ( cred_prepare , struct cred *new , const struct cred *

old , gfp_t gfp)
123 {
124 pid_t pid = bpf_get_current_pid_tgid () >> 32;
125 // Check if this process is tracked (BPF - related )
126 struct tracked_entry *entry = bpf_map_lookup_elem (&

tracked_processes , &pid);
127 if (! entry) {
128 // Not tracked - allow privilege escalation (sudo , etc .)
129 return 0;
130 }
131
132 // Read new credentials
133 __u32 new_uid = 0, new_euid = 0, new_gid = 0, new_fsuid = 0,

new_fsgid = 0, new_sgid =0, new_suid = 0;
134 bpf_core_read (& new_uid , sizeof ( new_uid ), &new ->uid.val);
135 bpf_core_read (& new_euid , sizeof ( new_euid ), &new ->euid.val);
136 bpf_core_read (& new_gid , sizeof ( new_gid ), &new ->gid.val);
137 bpf_core_read (& new_fsuid , sizeof ( new_fsuid ), &new ->fsuid.val);
138 bpf_core_read (& new_fsgid , sizeof ( new_fsgid ), &new ->fsgid.val);
139 bpf_core_read (& new_suid , sizeof ( new_suid ), &new ->suid.val);
140 bpf_core_read (& new_sgid , sizeof ( new_sgid ), &new ->sgid.val);
141
142 bpf_printk ("LSM cred_prepare : tracked BPF pid =%d\n", pid);
143 bpf_printk (" Expected uid =%d, euid =%d, gid =%d\n", entry ->uid ,

entry ->euid , entry ->gid);
144 bpf_printk (" Expected fsuid =%d, fsgid =%d\n", entry ->fsuid ,

entry ->fsgid);
145 bpf_printk ("New cred uid =%d, euid =%d, gid =%d\n", new_uid ,

new_euid , new_gid );
146 bpf_printk ("New cred fsuid =%d, fsgid =%d\n", new_fsuid ,

new_fsgid );
147
148
149 // Only block privilege escalation to root for BPF - related

processes
150 if (( new_uid != entry ->uid ) ||
151 ( new_euid != entry ->euid) ||
152 ( new_gid != entry ->gid) ||
153 ( new_fsuid != entry ->fsuid ) ||
154 ( new_fsgid != entry ->fsgid ) ||
155 ( new_sgid != entry ->sgid ) ||
156 ( new_suid != entry ->suid )
157 ){
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158 bpf_printk ("[! LSM ALERT] BPF process privilege escalation
in cred_prepare !\n");

159 bpf_printk ("[! LSM ALERT] UID: %d->%d\n", entry ->uid ,
new_uid );

160 bpf_printk ("[! LSM ALERT] EUID: %d->%d\n", entry ->euid ,
new_euid );

161 bpf_printk ("[! LSM ALERT] GID: %d->%d\n", entry ->gid ,
new_gid );

162 bpf_printk ("[! LSM ALERT] FSUID: %d->%d\n", entry ->fsuid ,
new_fsuid );

163 bpf_printk ("[! LSM ALERT] FSGID: %d->%d\n", entry ->fsgid ,
new_fsgid );

164 return -EPERM;
165 }
166
167 return 0;
168 }
169
170 SEC("lsm/ inode_permission ")
171 int BPF_PROG ( inode_permission , struct inode *inode , int mask){
172
173 pid_t pid = bpf_get_current_pid_tgid () >> 32;
174 // Check if this process is tracked (BPF - related )
175 struct tracked_entry *entry = bpf_map_lookup_elem (&

tracked_processes , &pid);
176 if (! entry) {
177 // Not tracked - allow legitimate privilege escalation (

sudo , etc .)
178 return 0;
179 }
180
181
182 struct task_struct *task = ( struct task_struct *)

bpf_get_current_task ();
183
184 const struct cred *cred = NULL;
185 bpf_core_read (&cred , sizeof (cred), &task ->cred);
186 if (! cred)
187 return -EPERM;
188
189 __u32 new_uid = 0, new_euid = 0, new_gid = 0, new_fsuid = 0,

new_fsgid = 0, new_suid =0, new_sgid =0;
190 bpf_core_read (& new_uid , sizeof ( new_uid ), &cred ->uid.val);
191 bpf_core_read (& new_euid , sizeof ( new_euid ), &cred ->euid.val);
192 bpf_core_read (& new_gid , sizeof ( new_gid ), &cred ->gid.val);
193 bpf_core_read (& new_fsuid , sizeof ( new_fsuid ), &cred ->fsuid.val)

;
194 bpf_core_read (& new_fsgid , sizeof ( new_fsgid ), &cred ->fsgid.val)

;
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195 bpf_core_read (& new_suid , sizeof ( new_suid ), &cred ->suid.val);
196 bpf_core_read (& new_sgid , sizeof ( new_sgid ), &cred ->sgid.val);
197
198 bpf_printk ("LSM inode_permission : tracked BPF pid =%d\n", pid);
199 bpf_printk (" Expected uid =%d, euid =%d, gid =%d\n", entry ->uid ,

entry ->euid , entry ->gid);
200 bpf_printk (" Expected fsuid =%d, fsgid =%d\n", entry ->fsuid ,

entry ->fsgid);
201 bpf_printk ("New cred uid =%d, euid =%d, gid =%d\n", new_uid ,

new_euid , new_gid );
202 bpf_printk ("New cred fsuid =%d, fsgid =%d\n", new_fsuid ,

new_fsgid );
203 // Only block privilege escalation to root for BPF - related

processes
204
205 if (( new_uid != entry ->uid ) ||
206 ( new_euid != entry ->euid) ||
207 ( new_gid != entry ->gid) ||
208 ( new_fsuid != entry ->fsuid ) ||
209 ( new_fsgid != entry ->fsgid ) ||
210 ( new_sgid != entry ->sgid ) ||
211 ( new_suid != entry ->suid )
212 ){
213 bpf_printk ("[! LSM ALERT] BPF process privilege escalation

in inode_permission !\n");
214 bpf_printk ("[! LSM ALERT] UID: %d->%d\n", entry ->uid ,

new_uid );
215 bpf_printk ("[! LSM ALERT] EUID: %d->%d\n", entry ->euid ,

new_euid );
216 bpf_printk ("[! LSM ALERT] GID: %d->%d\n", entry ->gid ,

new_gid );
217 bpf_printk ("[! LSM ALERT] FSUID: %d->%d\n", entry ->fsuid ,

new_fsuid );
218 bpf_printk ("[! LSM ALERT] FSGID: %d->%d\n", entry ->fsgid ,

new_fsgid );
219
220 return -EPERM;
221 }
222
223 return 0;
224 }
225
226 SEC("lsm/ task_kill ")
227 int BPF_PROG (task_kill , struct task_struct *p, struct

kernel_siginfo *info ,
228 int sig , const struct cred *cred)
229 {
230 pid_t pid = bpf_get_current_pid_tgid () >> 32;
231 // Check if this process is tracked (BPF - related )
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232 struct tracked_entry *entry = bpf_map_lookup_elem (&
tracked_processes , &pid);

233 if (! entry) {
234 // Not tracked - allow legitimate privilege escalation (

sudo , etc .)
235 return 0;
236 }
237
238 __u32 new_uid = 0, new_euid = 0, new_gid = 0, new_fsuid = 0,

new_fsgid = 0, new_suid =0, new_sgid =0;
239 bpf_core_read (& new_uid , sizeof ( new_uid ), &cred ->uid.val);
240 bpf_core_read (& new_euid , sizeof ( new_euid ), &cred ->euid.val);
241 bpf_core_read (& new_gid , sizeof ( new_gid ), &cred ->gid.val);
242 bpf_core_read (& new_fsuid , sizeof ( new_fsuid ), &cred ->fsuid.val)

;
243 bpf_core_read (& new_fsgid , sizeof ( new_fsgid ), &cred ->fsgid.val)

;
244 bpf_core_read (& new_suid , sizeof ( new_suid ), &cred ->suid.val);
245 bpf_core_read (& new_sgid , sizeof ( new_sgid ), &cred ->sgid.val);
246
247 bpf_printk ("LSM task_kill : tracked BPF pid =%d\n", pid);
248 bpf_printk (" Expected uid =%d, euid =%d, gid =%d\n", entry ->uid ,

entry ->euid , entry ->gid);
249 bpf_printk ("New cred uid =%d, euid =%d, gid =%d\n", new_uid ,

new_euid , new_gid );
250
251 // Only block privilege escalation to root for BPF - related

processes
252 if (( new_uid != entry ->uid ) ||
253 ( new_euid != entry ->euid) ||
254 ( new_gid != entry ->gid) ||
255 ( new_fsuid != entry ->fsuid ) ||
256 ( new_fsgid != entry ->fsgid ) ||
257 ( new_sgid != entry ->sgid ) ||
258 ( new_suid != entry ->suid )
259 ){
260 bpf_printk ("[! LSM ALERT] BPF process privilege escalation

in task_kill !\n");
261 bpf_printk ("[! LSM ALERT] UID: %d->%d\n", entry ->uid ,

new_uid );
262 bpf_printk ("[! LSM ALERT] EUID: %d->%d\n", entry ->euid ,

new_euid );
263 bpf_printk ("[! LSM ALERT] GID: %d->%d\n", entry ->gid ,

new_gid );
264 bpf_printk ("[! LSM ALERT] FSUID: %d->%d\n", entry ->fsuid ,

new_fsuid );
265 bpf_printk ("[! LSM ALERT] FSGID: %d->%d\n", entry ->fsgid ,

new_fsgid );
266
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267 return -EPERM;
268 }
269
270 return 0;
271 }
272
273 SEC("lsm/ task_free ")
274 int BPF_PROG (task_free , struct task_struct *task)
275 {
276 pid_t pid;
277 int ret = 0;
278 ret = bpf_probe_read_kernel (&pid , sizeof (pid), &task ->pid);
279
280 if(ret <0){
281 bpf_printk ("LSM failed to read pid of dying process \n");
282 return 0; // Don ’t block , just return
283 }
284
285 // Check if this process is actually tracked before trying to

remove it
286 struct tracked_entry *entry = bpf_map_lookup_elem (&

tracked_processes , &pid);
287 if (! entry) {
288 // Process not tracked , nothing to do
289 return 0;
290 }
291
292 // Process is tracked , remove it from the map
293 ret = bpf_map_delete_elem (& tracked_processes , &pid);
294 if (ret == 0) {
295 bpf_printk (" Removed tracked entry for BPF process pid =%d\n

", pid);
296 } else {
297 bpf_printk (" Failed to remove tracked entry for pid =%d, ret

=%d\n", pid , ret);
298 }
299 return 0;
300 }

Listing B.1: LSM BPF protection

1 # include " vmlinux .h"
2 # include <bpf/ bpf_helpers .h>
3 # include <bpf/ bpf_tracing .h>
4 # include <bpf/ bpf_core_read .h>
5
6 char LICENSE [] SEC(" license ") = "GPL";
7
8 # define NULL (( void *)0)
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9 # define __aligned_u64 __u64 __attribute__ (( aligned (8)))
10 # define MAX_INSNS 68
11 # define CHUNK_SIZE 16
12 # define MAX_CHUNKS (( MAX_INSNS + CHUNK_SIZE - 1) / CHUNK_SIZE ) //

5
13 # define EPERM 1
14
15 struct {
16 __uint (type , BPF_MAP_TYPE_ARRAY );
17 __uint ( max_entries , MAX_CHUNKS );
18 __type (key , __u32);
19 __type (value , struct bpf_insn [ CHUNK_SIZE ]);
20 } insn_chunks SEC(".maps");
21
22
23 SEC("lsm/bpf")
24 int BPF_PROG ( bpf_syscall , int cmd , union bpf_attr *attr , unsigned

int size)
25 {
26 if(cmd != BPF_PROG_LOAD )
27 return 0;
28
29 __u32 insn_cnt = 0;
30 __aligned_u64 insn_ptr = 0;
31 __u32 total_read = 0;
32
33 bpf_core_read (& insn_cnt , sizeof ( insn_cnt ), &attr -> insn_cnt );
34 if ( insn_cnt > MAX_INSNS ) // here we could return -EPERM
35 insn_cnt = MAX_INSNS ;
36 bpf_core_read (& insn_ptr , sizeof ( insn_ptr ), &attr ->insns);
37
38 bpf_printk ("BPF syscall cmd =%d, size =%u", cmd , size);
39 bpf_printk (" insn_cnt =%u, insn_ptr =%p\n", insn_cnt , (void *)

insn_ptr );
40
41
42 __u32 chunks = ( insn_cnt + CHUNK_SIZE - 1) / CHUNK_SIZE ;
43 if ( chunks > MAX_CHUNKS )
44 chunks = MAX_CHUNKS ;
45
46 // BEGIN MANUAL LOOP TO READ INSTRUCTIONS
47
48 __u32 chunk_idx = 0;
49 struct bpf_insn buf[ CHUNK_SIZE ] = {};
50 if ( chunk_idx < chunks ){
51 __u32 to_read = CHUNK_SIZE ;
52 if (( chunk_idx + 1) * CHUNK_SIZE > insn_cnt ){
53 total_read += ( unsigned int)( insn_cnt - chunk_idx *

CHUNK_SIZE );
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54 }else{
55 total_read += CHUNK_SIZE ;
56 }
57
58 if( to_read <= CHUNK_SIZE && to_read > 0){
59 void * user_ptr = (void *) insn_ptr + chunk_idx * CHUNK_SIZE *

sizeof ( struct bpf_insn );
60 int ret = bpf_probe_read_user (buf , to_read * sizeof ( struct

bpf_insn ) , user_ptr );
61 if (ret !=0)
62 return ret;
63
64 bpf_map_update_elem (& insn_chunks , &chunk_idx , buf , BPF_ANY );
65 }
66 }
67 chunk_idx ++;
68 __builtin_memset (buf , 0, sizeof (buf));
69 if ( chunk_idx < chunks ){
70 __u32 to_read = CHUNK_SIZE ;
71 if (( chunk_idx + 1) * CHUNK_SIZE > insn_cnt ){
72 total_read += ( unsigned int)( insn_cnt - chunk_idx *

CHUNK_SIZE );
73 }else{
74 total_read += CHUNK_SIZE ;
75 }
76
77 if( to_read <= CHUNK_SIZE && to_read > 0){
78 void * user_ptr = (void *) insn_ptr + chunk_idx * CHUNK_SIZE *

sizeof ( struct bpf_insn );
79 int ret = bpf_probe_read_user (buf , to_read * sizeof ( struct

bpf_insn ) , user_ptr );
80 if (ret !=0)
81 return ret;
82
83 bpf_map_update_elem (& insn_chunks , &chunk_idx , buf , BPF_ANY );
84 }
85 }
86 chunk_idx ++;
87 __builtin_memset (buf , 0, sizeof (buf));
88 if ( chunk_idx < chunks ){
89 __u32 to_read = CHUNK_SIZE ;
90 if (( chunk_idx + 1) * CHUNK_SIZE > insn_cnt ){
91 total_read += ( unsigned int)( insn_cnt - chunk_idx *

CHUNK_SIZE );
92 }else{
93 total_read += CHUNK_SIZE ;
94 }
95
96 if( to_read <= CHUNK_SIZE && to_read > 0){
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97 void * user_ptr = (void *) insn_ptr + chunk_idx * CHUNK_SIZE *
sizeof ( struct bpf_insn );

98 int ret = bpf_probe_read_user (buf , to_read * sizeof ( struct
bpf_insn ) , user_ptr );

99 if (ret !=0)
100 return ret;
101
102 bpf_map_update_elem (& insn_chunks , &chunk_idx , buf , BPF_ANY );
103 }
104 }
105 chunk_idx ++;
106 __builtin_memset (buf , 0, sizeof (buf));
107 if ( chunk_idx < chunks ){
108 __u32 to_read = CHUNK_SIZE ;
109 if (( chunk_idx + 1) * CHUNK_SIZE > insn_cnt ){
110 total_read += ( unsigned int)( insn_cnt - chunk_idx *

CHUNK_SIZE );
111 }else{
112 total_read += CHUNK_SIZE ;
113 }
114
115 if( to_read <= CHUNK_SIZE && to_read > 0){
116 void * user_ptr = (void *) insn_ptr + chunk_idx * CHUNK_SIZE *

sizeof ( struct bpf_insn );
117 int ret = bpf_probe_read_user (buf , to_read * sizeof ( struct

bpf_insn ) , user_ptr );
118 if (ret !=0)
119 return ret;
120
121 bpf_map_update_elem (& insn_chunks , &chunk_idx , buf , BPF_ANY );
122 }
123 }
124 chunk_idx ++;
125 __builtin_memset (buf , 0, sizeof (buf));
126 if ( chunk_idx < chunks ){
127 __u32 to_read = CHUNK_SIZE ;
128 if (( chunk_idx + 1) * CHUNK_SIZE > insn_cnt ){
129 total_read += ( unsigned int)( insn_cnt - chunk_idx *

CHUNK_SIZE );
130 }else{
131 total_read += CHUNK_SIZE ;
132 }
133
134 if( to_read <= CHUNK_SIZE && to_read > 0){
135 void * user_ptr = (void *) insn_ptr + chunk_idx * CHUNK_SIZE *

sizeof ( struct bpf_insn );
136 int ret = bpf_probe_read_user (buf , to_read * sizeof ( struct

bpf_insn ) , user_ptr );
137 if (ret !=0)
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138 return ret;
139
140 bpf_map_update_elem (& insn_chunks , &chunk_idx , buf , BPF_ANY );
141 }
142 }
143
144 bpf_printk ("Total read: %u insns\n", total_read );
145
146 // BEGIN MANUAL LOOP TO PRINT INSTRUCTIONS
147
148 __u32 key = 0;
149 struct bpf_insn *chunk;
150 __u32 chunks_read = total_read / CHUNK_SIZE ;
151 __u32 read_leftover = total_read % CHUNK_SIZE ;
152 __u32 leftover_key = chunks_read + 1;
153
154 bpf_printk (" Chunks read: %u\n", chunks_read );
155
156 if(key < chunks_read ){
157 chunk = bpf_map_lookup_elem (& insn_chunks , &key);
158
159 if (chunk != NULL){
160 for(__u32 i=0; i< CHUNK_SIZE ; i++){
161 bpf_printk ("Insn: code =%x, dst_reg =%d, src_reg =%d ", chunk[i].

code , chunk[i]. dst_reg , chunk[i]. src_reg );
162 bpf_printk ("imm =%d, offset =%d\n", chunk[i].imm , chunk[i]. off);
163 }
164 }else{
165 bpf_printk ("Chunk %u not found\n", key);
166 }
167 }
168 key ++;
169 if(key < chunks_read ){
170 chunk = bpf_map_lookup_elem (& insn_chunks , &key);
171
172 if (chunk != NULL){
173 for(__u32 i=0; i< CHUNK_SIZE ; i++){
174 bpf_printk ("Insn: code =%x, dst_reg =%d, src_reg =%d ", chunk[i].

code , chunk[i]. dst_reg , chunk[i]. src_reg );
175 bpf_printk ("imm =%d, offset =%d\n", chunk[i].imm , chunk[i]. off);
176 }
177 }else{
178 bpf_printk ("Chunk %u not found\n", key);
179 }
180 }
181 key ++;
182 if(key < chunks_read ){
183 chunk = bpf_map_lookup_elem (& insn_chunks , &key);
184
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185 if (chunk != NULL){
186 for(__u32 i=0; i< CHUNK_SIZE ; i++){
187 bpf_printk ("Insn: code =%x, dst_reg =%d, src_reg =%d ", chunk[i].

code , chunk[i]. dst_reg , chunk[i]. src_reg );
188 bpf_printk ("imm =%d, offset =%d\n", chunk[i].imm , chunk[i]. off);
189 }
190 }else{
191 bpf_printk ("Chunk %u not found\n", key);
192 }
193 }
194 key ++;
195 if(key < chunks_read ){
196 chunk = bpf_map_lookup_elem (& insn_chunks , &key);
197
198 if (chunk != NULL){
199 for(__u32 i=0; i< CHUNK_SIZE ; i++){
200 bpf_printk ("Insn: code =%x, dst_reg =%d, src_reg =%d ", chunk[i].

code , chunk[i]. dst_reg , chunk[i]. src_reg );
201 bpf_printk ("imm =%d, offset =%d\n", chunk[i].imm , chunk[i]. off);
202 }
203 }else{
204 bpf_printk ("Chunk %u not found\n", key);
205 }
206 }
207 key ++;
208 if(key < chunks_read ){
209 chunk = bpf_map_lookup_elem (& insn_chunks , &key);
210
211 if (chunk != NULL){
212 for(__u32 i=0; i< CHUNK_SIZE ; i++){
213 bpf_printk ("Insn: code =%x, dst_reg =%d, src_reg =%d ", chunk[i].

code , chunk[i]. dst_reg , chunk[i]. src_reg );
214 bpf_printk ("imm =%d, offset =%d\n", chunk[i].imm , chunk[i]. off);
215 }
216 }else{
217 bpf_printk ("Chunk %u not found\n", key);
218 }
219 }
220
221 if( read_leftover > 0){
222 chunk = bpf_map_lookup_elem (& insn_chunks , & leftover_key );
223 if (chunk != NULL){
224 for(__u32 i=0; i< CHUNK_SIZE ; i++){
225 if (i < read_leftover ){
226 bpf_printk ("Insn: code =%x, dst_reg =%d, src_reg =%d ", chunk

[i].code , chunk[i]. dst_reg , chunk[i]. src_reg );
227 bpf_printk ("imm =%d, offset =%d\n", chunk[i].imm , chunk[i].

off);
228 }
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229 }
230 }else{
231 bpf_printk ("Chunk %u not found\n", leftover_key );
232 }
233 }
234
235 return 0;
236 }

Listing B.2: Verifier Extension prototype
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