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Abstract

Lattice-based cryptography has emerged as one of the most promising candidates for
post-quantum secure systems, thanks to its solid hardness assumptions and efficiency
compared to other approaches. A central challenge in this field has been the design of
secure and practical digital signature schemes. Lyubashevsky’s attempt to create such a
scheme dates back in 2009 with the publication of his work “Fiat-Shamir with Aborts:
Applications to Lattice and Factoring-Based Signatures”, where he presents a digital
signature scheme obtained through Fiat-Shamir Transform. This signature relies on
collision-resistant hash functions and the idea of aborting steps of the algorithm that
would produce data that would be included in the signature and would leak information
about the secret key. This is crucial to guarantee the security of the signature scheme itself.
Although conceptually innovative, the resulting scheme was not practical for deployment.

The turning point came with Lyubashevsky’s paper “Lattice Signatures Without
Trapdoors" (2012), where he presents a digital signature scheme based on the well-known
Small Integer Solution (SIS) problem, and uses the rejection sampling technique to ensure
that the signatures are statistically independent of the secret key, preventing any leakage.
The abort technique introduced in “Fiat–Shamir with Aborts: Applications to Lattice
and Factoring-Based Signatures” can be viewed as an early form of rejection sampling,
although it was only with “Lattice Signatures Without Trapdoors” that the method was
explicitly formalized and in terms of gaussian rejection sampling.

The influence of this idea has been long-lasting. The lattice-based digital signature
scheme Dilithium, selected in the NIST Post-Quantum Cryptography standardization
process, is explicitly based on Lyubashevsky’s rejection sampling framework. However,
because gaussian sampling is difficult to implement both securely and efficiently, Dilithium
adopts a simplified approach using only uniform distributions. This highlights both the
power and the practical challenges of rejection sampling in lattice-based cryptography.

This thesis investigates Lyubashevsky’s 2012 scheme in depth, with particular emphasis
on the rejection sampling procedure: why it is required, how it guarantees independence
of signatures from the secret key, and what trade-offs it introduces. A detailed analysis of
the parameters is provided, establishing the relationship between those concerning the
security assumptions and those concerning the efficiency of the protocol, in particular the
rejection sampling step and the size of the signature.

Building on this foundation, the thesis also examines the “bimodal gaussian” idea, a
refinement that further improves efficiency by modifying the sampling distribution. The
impact of this approach is studied through parameter analysis and comparison with the
original scheme, with additional consideration of the Ring-SIS assumption.

The results of this work clarify the role of rejection sampling and parameter selection
in lattice-based signature design. By analyzing both the original and refined techniques,
the thesis contributes to a better understanding of how these schemes balance security
and efficiency, and how the ideas pioneered by Lyubashevsky continue to shape practical
post-quantum signatures.
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Chapter 1

Introduction

In recent years, lattice-based cryptography has emerged as one of the most promising fami-
lies of post-quantum cryptographic primitives. The growing consensus is that the currently
deployed cryptographic systems — most notably RSA and elliptic curve cryptography —
will no longer be secure in the presence of large-scale quantum computers, due to Shor’s
algorithm efficiently solving the underlying number-theoretic problems. For this reason,
mathematicians and cryptographers looked for alternatives that rely on mathematical
problems believed to be resistant to quantum attacks. Lattice problems, such as the
Short Integer Solution (SIS) and the Learning with Errors (LWE) problems, are at the
core of many proposals in this area. They combine strong worst-case to average-case
hardness guarantees with efficient algorithms, making them attractive both in theory and
in practice.

A particularly important goal of post-quantum cryptography is the design of digital
signature schemes that are not only secure, but also efficient. Digital signatures are
a pillar of modern security protocols, enabling authentication, integrity, and the base
for non-repudiation. Achieving practical lattice-based signatures has proven challenging:
Vadim Lyubashevsky introduced a novel approach — that sought to bypass trapdoor
mechanisms — in his work “Fiat–Shamir with Aborts” (2009), where he proposed a
digital signature scheme where certain transcripts were discarded — or “aborted” — with
a certain probability designed to hide information about the secret key. This abort
mechanism can be seen as an early form of rejection sampling, although it was not yet
formalized in those terms.

This idea matured in “Lattice Signatures Without Trapdoors” (2012), where Lyuba-
shevsky presented a signature scheme based on Gaussian rejection sampling. The key
point is that rejection sampling can be used to enforce statistical independence between
the signatures and the secret key, thus preventing leakage and ensuring security under
the SIS assumption. This work was a turning point: it provided the theoretical founda-
tion for lattice-based signatures that are compact, secure, and independent of trapdoor
constructions.

The main objective of this thesis is to analyze and better understand the role of
rejection sampling as well as the role of the parameters in lattice-based digital signatures,
with particular attention to the scheme of Lyubashevsky. The work is divided into two
main contributions. The first is a detailed study of Lyubashevsky’s lattice-based signature
scheme, covering its construction, the theoretical principles of rejection sampling, the
security proof of the signature scheme, and an analysis of the parameters involved in
the signature scheme, highlighting the delicate balance between security and efficiency.
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Introduction

Moreover, possible improvements are discussed when considering alternative hardness
assumptions, such as low-density SIS or LWE.

The second contribution is the study of the bimodal Gaussian idea, which was in-
troduced to further improve efficiency. This refinement, used in the BLISS (Bimodal
Lattice Signature Scheme) scheme, modifies the sampling distribution, allowing for shorter
signature sizes, moving in the direction of a more practical scheme. In this context, we
analyze the parameters of the BLISS scheme, paying particular attention to how rejection
sampling interacts with the new distribution and how this affects overall performance.
Finally, we briefly comment on the empirical benchmarks presented in the BLISS paper,
which compare its performance with classical signature schemes such as RSA and ECDSA.
These comparisons provide insight into the practical competitiveness of lattice-based
signatures against well-established standards.

In summary, this thesis provides an in-depth study of the rejection sampling technique
in lattice-based digital signatures, both in its original Gaussian formulation and in its
bimodal enhancement. By analyzing the parameters and efficiency trade-offs, the work
sheds light on the design principles underlying practical post-quantum signatures and
illustrates the lasting influence of Lyubashevsky’s ideas on the development of secure and
efficient cryptographic primitives.

1.1 Thesis structure
• Chapter 2: presents useful preliminaries about zero-knowledge proofs, identification

schemes, and digital signatures. These preliminaries refer to the slides of the course
“Advanced Cryptography” held in the academic year 2024-2025 by professor Carlo
Sanna for the Cybersecurity’s Master degree.

• Chapter 3: presents Lyubashevsky’s digital signatures scheme with Gaussian rejection
sampling, focusing on the rejection sampling technique and the analysis on the
parameters. The chapter concludes with a discussion of how alternative assumptions
such as low-density SIS and LWE can influence the scheme.

• Chapter 4: presents the bimodal Gaussian idea and the BLISS signature scheme,
focusing on a new way of generating the keys and the analysis of the parameters.
The chapter concludes with a brief comparison of the performance of BLISS against
classical digital signature implementations such as RSA and ECDSA.

• Chapter 5: this chapter contains the final considerations about the rejection sampling
technique and the digital signature scheme as well as a suggestion on how the thesis
work could be extended investigating Lyubashevsky’s techniques in lattice-based
zero-knowledge proofs.

• Appendix A: contains some python scripts that were used to generate meaningful
graphs shown in the chapters.

• Appendix B: contains an explanation of the problem for the possible extension of
the thesis work.

• Appendix C: contains useful timestamps of online talks where Lyubashevsky tells
about identification schemes, digital signatures, and zero-knowledge proofs.

2



Chapter 2

Preliminaries

2.1 Zero Knowledge Proofs
2.1.1 Interactive Proof (IP) Systems
Definition 2.1 (Interaction of functions). A k-round interaction of two functions f, g :
{0,1}∗ → {0,1}∗ on input x ∈ {0,1}∗ is a sequence of strings a1, ..., ak ∈ {0,1}∗ defined as

a1 := f(x)
a2 := g(x, a1)

a3 := f(x, a1, a2)
· · ·

a2i+1 := f(x, a1, ..., a2i) for 2i < k

a2i+2 := g(x, a1, ..., a2i+1) for 2i+ 1 < k

The final output is of f is denoted by outV ⟨f, g⟩(x).

Definition 2.2 (IP Class). A language L is said to be in the complexity class IP if there
exist a PPT algorithm V (verifier) that can have a k-round interaction with a function
P : {0,1}∗ → {0,1}∗ (prover) such that the following two properties hold.

• Completeness. If x ∈ L, then there exists P such that Pr[outV ⟨V, P ⟩(x) = 1] ≥ 2/3

• Soundness. If x /∈ L, then for everyP we have that Pr[outV ⟨V, P ⟩(x) = 1] ≤ 1/3

A pair (V, P ) satisfying completeness and soundness is called interactive proof system for
L.

Informally, L ∈ IP if, for every x ∈ L, there exists an interactive proof that, with
overwhelming probability, convinces the verifier that x ∈ L; while, if x /∈ L, such proof is
impossible.

The class IP does not change if its definition is changed by:
• allowing the prover P to be probabilistic

• replacing the probability 2/3 with 1

• replacing the probability 1/3 with any fixed constant c < 1 (this follows by repeating
the interactive proof several times). In this case, c is called soundness error or
cheating probability.

3



Preliminaries

2.1.2 Zero-Knowledge Proofs
Definition 2.3 (Zero-Knowledge Proof). Let L be a language in NP . A pair (P, V ) of
interactive PPT algorithms is a perfect (statistical, computational, resp.) zero-knowledge
proof (ZKP) for L if the following three properties hold.

• Completeness. For every x ∈ L and for every witness w of this fact, we have that
Pr[outV ⟨P (x,w), V (x)⟩ = 1] ≥ 2/3

• Soundness. For every x /∈ L and for every (unbounded) probabilistic algorithm P̃ ,
we have that Pr[outV ⟨P̃ (x), V (x)⟩ = 1] ≤ 1/3

• Zero-Knowledge. For every PPT algorithm V ∗, there exists an expected PPT
algorithm S (simulator) such that for every x ∈ L and for every witness w of this
fact, the random variables outV ∗⟨P (x,w), V ∗(x)⟩ and S(x) are identical (statistically
indistinguishable, computationally indistinguishable, resp.).

The completeness and soundness properties of ZKPs are analogous to that of IP and
the same considerations apply. The zero-knowledge property says that the verifier cannot
learn anything new from the interaction, even if he employs a different strategy V ∗. Indeed,
he could have obtained the same information by directly executing the simulator S on the
publicy known input x.

Sometime the zero-knowledge property might be too hard to handle, since it takes into
account every possible strategy of the verifier. Then, we can relax it to a weaker property,
where the verifier is assumed to behave honestly.

• Honest-Verifier Zero-Knowledge. There exist an expected PPT algorithm S
(simulator) such that for every x ∈ L and for every witness w of this fact, the random
variables outV ⟨P (x,w), V ∗(x)⟩ and S(x) are identical (statistically indistinguishable,
computationally indistinguishable, resp.).

The definition of zero-knowledge that we have seen can prove the existence of a witness
w for a statement x in a NP-language L without revealing the witness w. However proving
the existence of the witness w is much weaker than proving the knowledge of w.

Definition 2.4 (Proof of Knowledge). Let L be a language in NP. A pair (P, V ) of
interactive PPT algortihms is a proof of knowledge for L if the following propery holds:

• Knowledge soundness (or knowledge extractability). There exists a constant
k > 0 (knowledge error) and an expected PPT algorithm E (extractor) such that for
every interactive function P̃ and every x ∈ {0,1}∗ the following condition holds: if
p := Pr[outV ⟨P̃ , V ⟩ = 1] > k then, on input x and access to ˜P (x), the machine E
returns a witness w for x ∈ L within a number of steps bounded by 1/(p− k) times a
fixed polynomial of |x|.

Informally, the definition of Proof of knowledge says that given any algorithm P̃ that
convinces the verifier that x ∈ L, it is possible to build another algorithm E that produces
(extracts) a witness w for the fact that x ∈ L.

It can be proved that knowledge soundness implies soundness. At this point, zero
knowledge proofs of knowledge (ZKPoK) can be defined as zero knowledge proofs which
are also proofs of knowledge. Roughly speaking a honest prover is able to convince a
verifier that he knows a witness w for a fact x ∈ L (proof of knowledge property) and the
verifier does not learn anything about the witness w (zero-knowledge property).

4



2.2 – Σ-protocols and Identification schemes

Definition 2.5 (Zero-Knowledge Proof of Knowledge). Let L be a language in NP . A
pair (P, V ) of interactive PPT algorithms is a perfect (statistical, computational, resp.)
zero-knowledge proof of knowledge (ZKPoK) for L if the following three properties hold.

• Completeness. For every x ∈ L and for every witness w of this fact, we have that
Pr[outV ⟨P (x,w), V (x)⟩ = 1] ≥ 2/3

• Knowledge soundness. There exists a constant k > 0 (knowledge error) and an
expected probabilistic oracle machine E (extractor) such that for every interactive
function P̃ and every x ∈ L the following condition holds: If p := Pr[outV ⟨P̃ , V ⟩ =
1] > k then, on input x and access to ˜P (x), the machine E returns a witness w for
x ∈ L within a number of steps bounded by 1/(p− k) times a fixed polynomial of |x|.

• Zero-Knowledge. For every PPT algorithm V ∗, there exists an expected PPT
algorithm S (simulator) such that for every x ∈ L and for every witness w of this
fact, the random variables outV ∗⟨P (x,w), V ∗(x)⟩ and S(x) are identical (statistically
indistinguishable, computationally indistinguishable, resp.).

Informally,

• an honest prover that knows a valid witness w will convince the verifier with significant
probability

• a cheating prover that is able to convince the verifier with significant probability
and without knowing a valid witness w, can employ the extractor to recover a valid
witness w(i.e. you can’t cheat with significant probability without knowing a valid
witness)

• the verifier learns nothing beyond the fact that the prover knows some witness w.

2.2 Σ-protocols and Identification schemes
2.2.1 Σ-protocols
A Σ-protocol is a particular Honest-Verifier ZKPoK with a 3-pass structure.

Definition 2.6 (Σ-protocol). Let L be a language in NP. A Σ-protocol is a 3-pass
interactive proof between a prover and a verifier having the following structure:

1. The prover’s input is a statement x ∈ L and a witness w of that fact

2. The verifier’s input is x

3. The prover sends to the verifier a commitment

4. The verifier sends to the prover a challenge from a finite set of challenges C

5. The prover computes an appropriate response and sends it to the verifier

6. The verifier checks if the response is correct, in according to the challenge and the
commitment. In such a case the verifier accepts, otherwise the rejects.

5



Preliminaries

The prover consists of two PPT algorithms P1, P2, and the verifier consists of two PPT
algorithms V1, V2. The scheme in figure 2.1 summarize the execution of the protocol of
transcript (x, com, ch, rsp).

Prover(x,w) Verifier(x)

com,P_state ←P1(x,w)
com

ch ←V1(x, com)
ch

rsp ←P2(P_state, ch)
rsp

return V2(x, com, ch, rsp)

Figure 2.1: A generic Σ-protocol between a prover and a verifier.

Moreover, the following properties hold.

• Completeness. If the parties follow the protocol for x ∈ L then the verifier always
accepts.

• Special Soundness. There exists an expected PPT algorithm, called extractor,
that takes as input two transcripts (x, com, ch1, rsp1) and (x, com, ch2, rsp2), with
ch1 /= ch2, of a honest execution of the protocol, and returns as output a witness w’
of x ∈ L. (Here w and w’ may not be equal).

• (Perfect, Statistical, Computational) Honest Verifier Zero-Knowledge
(HVZK). There exists an expected PPT algorithm, called simulator, that takes as
input x and returns as ouput a random transcript (x, com, ch, rsp) having identical
(statistically indistinguishable, computationally indistinguishable, resp.) probability
distribution of transcripts of a honest execution of the protocol on input (x,w).

Informally, the notion of special soundness expresses the idea that if a cheater is able to
answer to more challenges for the same commitment, then he is also able to compute the
witness thanks to the extractor. In other words, cheating is as difficult as computing the
witness. The property of honest verifier zero-knowledge says that a simulator, who does
not know the witness, can still produce transcripts that are indistinguishable from a legit
execution of the protocol. Therefore, the transcripts of a legit execution of the protocol
contain no information (zero-knowledge) on the witness.

As an example of Σ-protocol, we show the Schnorr Σ-protocol in figure 2.2. The prover
constructs a cyclic subgroup G of Z∗

p of prime order q generated by g, generates a random
x

$← Zq and computes h := gx (mod q). The prover wants to convince the verifier that he
knows x ∈ Zq (witness) such that h = gx (mod q) (statement), but without revealing x.
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Prover(h, x) Verifier(h)

r
$← Z∗

q

y = gr (mod p)
y

c
$← Zq

c

z := r + c · x (mod q)
z

gz
?= y · hc (mod p)

Figure 2.2: Schnorr Σ-protocol.

We can easily check that the Schnorr Σ-protocol satisfies the properties of completeness,
special soundness and honest-verifier zero-knowledge.

Completeness. From the verification equation gz
?= y · hc, if the prover and the

verifier behaves honestly, then the verifier always accepts. Indeed, gz = gr+cx = gr · gcx =
y · (gx)c = y · hc since y = gr and h = gx.

Special soundness. Given two valid transcripts of the same commitment (y, c1, z1)
and (y, c2, z2) with c1 /= c2, we are able to extract a witness, that is, an integer x′ such
that h = gx

′ . Informally this means that if the prover is able to answer two different
challenges for the same commitment, then he is also able to compute secret witness, that
is, cheating is as difficult as computing the secret. Indeed, since the verifier accepts the
transcripts, we have that gz1 = yhc1 and gz2 = yhc2 . Dividing the first identity by the
second one, we get gz1−z2 = hc1−c2 . Note that c1 /= c2 implies that c1 − c2 is invertible in
Zq. Therefore, if (c1 − c2)−1 denotes the multiplicative inverse of c1 − c2 in Zq, then we
get that g(z1−z2)(c1−c2)−1 = h, and x′ = (z1 − z2)(c1 − c2)−1.

Honest verifier zero-knowledge. The interaction between prover and verifier does
not leak any information about the secret to the verifier. Let us construct a Simulator
S(h), which has access only to the public information h, that produces transcripts with
the same distribution of legit transcripts. Note that in a legit execution of the protocol
the transcript is (y, c, z), where y is a random element of a cyclic subgroup G of Z∗

p of
prime order q; c is a random element of Zq; z ∈ Zq satisfies gz = y · hc. Equivalently, z
is a random element of Zq; c is a random element of Zq; and y ∈ G satisfies gz = y · hc.
Therefore, the simulator S(h) can be build as follows:

1. generate random z
$← Zq and c

$← Zq

2. compute y ← gz · h−c

3. return the transcript (y, c, z)

The transcripts generated in this way are legit (a posteriori, since they are constructed
knowing the challenge from the beginning) and have the same probability distributions as
the transcripts in a legit execution of the protocol.

7
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2.2.2 Identification schemes
An identification scheme is an interactive method that allows a prover to prove its identity
to a verifier. A very common way to construct an identification scheme is to use a
Σ-protocol where the witness is a secret key and the statement is the public key associated
with that secret key. The prover has the public key, which is publicly known, and the
secret key, which he keeps for himself.
Definition 2.7 (Canonical Identification Scheme). A (3-pass) identification scheme
consists of PPT algorithms Gen, P1, P2, V such that:

• The key-generation algorithm takes as input 1λ, where λ is the security parameter,
and returns as output the public key pk and the secret key of the prover

• The prover and the verifier runs P1, P2, V as in figure 2.3 and, if everybody behaves
honestly, the verifier returns 1 (accept).

Prover(pk, sk) Verifier(pk)

com,P_state ←P1(pk, sk)
com

ch $← C
ch

rsp ←P2(P_state, ch)
rsp

return V (pk, ch, rsp) = com

Figure 2.3: A generic identification scheme between a prover and a verifier.

The Schnorr Σ-protocol in Figure 2.2 can be regarded as an identification scheme as
long as x is the secret key and h is the public key associated to it.

2.2.3 Secure identification schemes
Let Π = (Gen, P1, P2, V ) be an identification scheme. For every adversary A, we define
the experiment in figure 2.4.
Definition 2.8 (Secure Identification Scheme). An identification scheme Π is secure
(against passive attacks) if for every PPT adversary A there exists a negligible function
negl such that Pr[IdentA,Π(λ) = 1] ≤ negl(λ).

As we mentioned above, a standard way to design canonical identification schemes is
via Σ−protocol. The reason is that the properties of Σ−protocols guarantee that the
derived identification scheme is secure against passive attacks, assuming that the language
underlying the sigma protocol is hard (i.e. given a random statement x ∈ L it is hard to
find a witness w for that statement).

This can be proven by designing a reduction R that can break the hardness of the
language as follows.
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1. The prover keys are generated (pk,sk) ← Gen(1λ).

2. The adversary A is given as inputs 1λ, where λ is the security parameter,
and pk and access to an oracle Transsk that when called runs an honest
execution of Π and returns the transcript (com, ch, rsp).

3. The adversary A outputs a commitment com.

4. A random challenge ch ← C is generated and given to A.

5. The adversary A outputs a response rsp.

6. The output of the experiment is 1 (success) if V(pk, ch, rsp) = 1, and 0
(failure) otherwise.

Figure 2.4: IdentA,Π(λ) experiment

Reduction overview. We assume there exist an adversary A for the experiment in
Figure 2.4 that wins with non-negligible probability, then we show that our reduction R
can use A to break the hardness of the language.

The reduction receives a random statement x in the language, and sets pk = x and
sends pk to A. Then, A can send to the transcript oracles queries. These queries will be
answered by R who can simulate transcripts of the identification scheme since the sigma
protocol is HVZK so there exists a simulator that produces transcripts indistinguishable
from real executions of the Σ protocol and therefore of the identification scheme.

Eventually A sends to R a commitment com, and R sends back a random challenge
c, and A with non-negligible probability produce a valid response z for that challenge.
Then, the reduction R rewinds the adversary to the moment it has sent the commitment
com and sends another challenge c′. According to the Forking lemma, if the challenge
space is super-polynomial in size, A will produce a valid response z′ with non-negligible
probability.

At this point the reduction R knows 2 transcripts of the sigma protocol (com, c, z) and
(com, c′, z′) for the same commitment, then thanks to the special soundness of the sigma
protocol it can compute a valid witness w′ for the statement x.

2.3 Digital Signatures
Digital signatures provide a secure method for verifying the authenticity and integrity of
digital documents. They are required to satisfy three fundamental properties:

• Authenticity, which ensures that the message have been signed by the claimed
source.

• Integrity, which gauarantees that the message has not been altered or tampered
during transmission. Any modification to the data after signing will invalidate the
signature.

• Non-repudiation, which ensures that, once a message has been signed, the signer
cannot later claim that he did not sign it.

9
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Definition 2.9 (Digital Signature). A digital signature is a triple(Gen, Sign, Verify) of
PPT algorithms such that:

• The key-generation algorithm Gen takes as input 1λ, where λ is the security parameter,
and outputs a pair of keys (pk,sk), where pk is the public key and sk is the secret key.

• The signing algorithm Sign takes as input a secret key sk and a message m (in the
message space), and outputs a signature σ (in the signature space). Denote this
operation as σ ← Signsk(m).

• The verification algorithm Verify, which is deterministic, takes as input a public key
pk, a message σ and outputs a bit b. Denote this operation as b← V erifypk(m,σ).

2.3.1 Secure digital signature
Let Π = (Gen, Sign, V erify) be a digital signature. For every adversary A, we define the
signature forging experiment Sig-ForgA,Π(λ) in figure 2.5.

1. A pair of keys is generated (pk,sk) ← Gen(1λ).

2. The adversary A is given as inputs pk and access to an oracle Signsk(·).

3. The adversary A outputs a message-signature pair (m,σ).

4. The output of the experiment is 1 (success) if V erifypk(m,σ) = 1 and A
never queried m to the oracle Signsk(·), and 0 (failure) otherwise.

Figure 2.5: Sig-ForgA,Π(λ) experiment

Definition 2.10 (Secure Digital Signature). A digital signature Π is existentially un-
forgeable under an adaptive chosen-message attack, or secure, if for every PPT adversary
A there exists a negligible function negl such that Pr[Sig − ForgA,Π(λ) = 1] ≤ negl(λ)

Hash-and-Sign paradigm

For efficiency reasons, in practice it is more convenient to sign a hash H(m) of the message
m instead of the message itself. When using the hash-and-sign paradigm, to achieve a
secure signature scheme, the hash function H must be a collision-resistant hash function.

2.3.2 Fiat-Shamir Transform
Let Π = (Gen, P1, P2, V ) be an identification scheme, and let H be a hash function whose
outputs are challenges of Π. The Fiat-Shamir transform of Π is a signature scheme
(Gen, Sign, V erify) defined as follows.

• Signsk(m)

1. compute the commitment (com, state)← P1(pk, sk)
2. compute the challenge ch← H(com,m)
3. compute the response rsp← P2(state, ch)

10
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4. return σ := (ch, rsp)

• V erifypk(m,σ)

1. compute the commitment com← V (pk, ch, rsp)
2. return 1 if H(com,m) = ch, and 0 otherwise.

The Schnorr digital signature in Figure 2.6 is obtained by applying the Fiat-Shamir
transform to the Schnorr identification scheme. The secret key is x ∈ Zp and the public
key is h := gx (mod q).

• Signsk(m)

1. generate a random s ∈ Zp and compute the commitment k ← gs

2. compute the challenge c← H(k,m) ∈ Zp
3. compute the response z ← s+ c · x
4. return the signature σ := (c, z)

• V erifypk(m,σ)

1. compute the commitment k ← grh−c

2. return 1 if H(k,m) = c, and 0 otherwise.

Figure 2.6: Schnorr’s digital signature obtained via Fiat-Shamir

For the notion of “Security of the Fiat-Shamir Transform” as in Thereom 2.15, we need
to first define what Random Oracles are.

Definition 2.11 (Random Oracle). A random oracle is an oracle that takes as input
an arbitrary string x ∈ {0,1}∗ and returns as outputs a fixed-length string y ∈ {0,1}l
according to the following rules.

• if x has not been queried before to the oracle, then the output y is taken at random
from {0,1}l with uniform distribution, independently of any previous query, and (x,y)
is recorded.

• if x has been queried before to the oracle, then the output y is the same as the previous
queries with input x

Lemma 2.12. If a hash function H : {0,1}∗ → {0,1}λ is modeled as a random oracle,
then H is one-way.

Lemma 2.13. If a hash function H : {0,1}∗ → {0,1}λ is modeled as a random oracle,
then H is collision-resistant.

Lemma 2.14. Let H : {0,1}∗ → {0,1}λ be modeled as a random oracle, and let x ∈ {0,1}∗.
An adversary A can learn H(x) with a non-negligible probability only if A queries x to the
random oracle H (or A interacts with an entity querying x to the random oracle H).

Theorem 2.15 (Security of the Fiat-Shamir Transform). Let Π be an identification
scheme and let Π′ be the digital signature obtained by applying the Fiat-Shamir Transform
to Π with the hash function H. If Π is secure and H is modeled as a random oracle, then
Π′ is secure.
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2.4 Statistical distance
The following definitions are taken from [1, Section 3.11].

Definition 2.16 (Statistical distance). Suppose P0 and P1 are probability distributions
on a finite set R. Then their statistical distance is defined as

∆[P0, P1] := 1
2
Ø
r∈R
|P0(r)− P1(r)|.

Definition 2.17 (Statistical indistinguishability ). Let P0 and P1 be probability distri-
butions on a finite set R. We say that P0 and P1 are statistically indistinguishable (or
statistically close) if the statistical distance ∆[P0, P1] is negligible.
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Chapter 3

Lattice-based digital signature

In this chapter we will analyze the lattice-based digital signature developed by Lyuba-
shevsky in “Lattice Signatures Without Trapdoor” [2]. The main goal of Lyubashevsky
was to create an efficient digital signature scheme obtained through Fiat-Shamir Transform
rather than by means of lattice trapdoors, like in the hash and sign pagadigm as in the
GPV digital signature scheme [3], that was quite inefficient.

Lyubashevsky uses as starting point for the digital signature scheme the results of its
work “Fiat Shamir With Aborts” [4] in which he develops a identification scheme and the
relative digital signature obtained through Fiat Shamir Transform based on the hardness
of lattice problems. The negative aspect of that signature scheme is that the signature
lengths are on the order of 50.000 - 60.000 bits, therefore the scheme was quite far from
being practical.

The digital signature scheme in [2] has been also discussed by Lyubashevsky in some
talks -for which it’s possible to view the video recording-, in particular the talks from 2013
[5] and 2016 [6] helped us to understand the digital signature scheme, and for this reason
useful (hopefully) timestamps about the video will be presented in the Appendix C.

This chapter is structured as follows. Section 1 present the signature scheme and the
security assumptions on which it relies on; section 2 and 3 explain what is the rejection
sampling techniques, how it works and why it works; section 4 describes the gaussian
rejection sampling used in the signature scheme, along with the proof of security that
is strictly related to the rejection sampling; section 5 is dedicated to the analysis of the
parameters involved in the signature scheme; section 6 present a variant of the signature
scheme based on another security assumption.

3.1 The signature scheme
Before presenting the signature scheme let us provide some definitions about the Normal
distribution.

Definition 3.1. The continuous Normal distribution over Rm centered at v with standard
deviation σ is defined by the function ρmv,σ(x) =

A
1√

2πσ2

Bm
e

−||x−v||2

2σ2 .

When v = 0 we write ρmσ (x). The discrete Normal distribution over Zm is defined as
follows:

Definition 3.2. The discrete Normal distribution over Rm centered at some v ∈ Zm with
standard deviation σ is defined as Dm

v,σ(x) = ρmv,σ(x)/ρmσ (Zm).
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The quantity ρmσ (Zm) =
Ø

z∈Zm

ρmσ (z) is a scaling quantity needed to make the function

into a probability distribution.
The signature scheme from [2] is reported in Figure 3.1. The signer holds as secret key

a matrix S ∈ Zm×k of random integers with maximum absolute value d and the public
key consists of a uniformly random matrix A ∈ Zn×m

q and another matrix T ∈ Zn×k
q .

Note that the elements in Zq are represented by integers in the range
5
−q − 1

2 ,
q − 1

2

6
.

The matrix A can be shared among all users, but the matrix T is individual because
it depends on the specific secret S different for each individual. The hash function H
outputs a vector of k short coefficients, but with the limitation that only κ of them are
non-zero elements. The security level of H is represented by k.

Signing Key: S $← {−d, . . . , 0, . . . , d}m×k

Verification Key: A $← Zn×m
q , T← AS (mod q) ∈ Zn×k

q

Random Oracle: H : {0,1}∗ → {v ∈ {−1,0,1}k : ∥v∥1 ≤ κ }

Sign(µ, A, S)
1: y $← Dm

σ

2: c← H(Ay, µ)
3: z← Sc + y
4: output (z, c) with probability

min
A

Dm
σ (z)

M ·Dm
Sc,σ(z) , 1

B

Verify(µ, z, c, A, T)
1: Accept iff
∥z∥ ≤ ησ

√
m and c = H(Az−Tc, µ)

Figure 3.1: Signature Scheme

To sign a message µ the signer randomly picks an m-dimensional vector y from the
distributionDm

σ , for some standard deviation σ, then computes the challenge c = H(Ay, µ),
and finally computes the response z = Sc + y.

The output will be the signature pair (z, c), but it’s important that the distribution of
(z, c) should be independent of the secret key S, therefore rejection sampling is employed
in step (4) of the signing algorithm to decide whether a signature pair should be given in
output or rejected. The main goal of using the rejection sampling technique is to make
z = Sc + y ∼ Dm

Sc,σ distributed according to Dm
σ , independently of the secret key S. This

is crucial to prove the security of the signature scheme.
The general idea of the rejection sampling technique will be explained in Section 3.2,

while more details about the rejection sampling with discrete Normal distribution - the
technique used in the digital signature scheme - will be discussed in Section 3.4.

For the verification algorithm, we check that ||z|| < ησ
√
m, and since Ay = Az−Tc,

the signature will be accepted.

3.1.1 The SIS problem and its variants
The security assumptions upon which the signature scheme is based fall into the category
of Small Integer Solution (SIS) problems defined in [2, Section 3].

Definition 3.3 (ℓ2-SISq,n,m,β problem). Given a random matrix A $← Zn×m
q find a vector

v ∈ Zm\{0} such that Av = 0 and ||v|| ≤ β.
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To guarantee that a solution to the ℓ2-SISq,n,m,β problem exists, we require that
β ≥
√
mqn/m .

In Section 3.6 we will base the security of the signature scheme on the variants of the
SIS problem defined below, which in turn will allow us to obtain shorter signatures.

Definition 3.4 (SISq,n,m,d distribution). Choose a random matrix A $← Zn×m
q and a

vector s $← {−d, ...,0, ..., d}m and output (A,As).

Definition 3.5 (SISq,n,m,d search problem). Given a pair (A, t) from the SISq,n,m,d
distribution, find a s ∈ {−d, ...,0, ...d}m such that As = t.

Definition 3.6 (SISq,n,m,d decision problem). Given a pair (A, t) decide, with non-
negligible advantage, whether it came from the the SISq,n,m,d distribution or whether it was
generated uniformly at random from Zn×m

q × Znq .

The SISq,n,m,d search (and decision) problems look different depending on the relation-
ship between its parameters. If d≪ qn/m, then there is a high probability that there exist
only one vector s whose coefficients have maximum absolute value d such that As = t,
and such instances of the SISq,n,m,d problems are called low-density instances. On the
contrary if d≫ qn/m, then there are many possible vectors s such that As = t because
the SISq,n,m,d distribution is statistically close to uniform over Zn×m

q × Znq (by the leftover
hash lemma). In this case the instances of the SISq,n,m,d problem are called high-density
instances.

3.2 Rejection Sampling
Rejection sampling is a basic technique that comes from numerical analysis and computa-
tional statistics also knows as “reject-accept” method1. In this section we will explain the
general concepts [8][9] and a simple application of this technique.

3.2.1 What is rejection sampling?
Assume we wish to generate samples from a target distribution f(x), but only have access
to a proposal distribution g(x). The idea of rejection sampling is to use samples from
g and filter them so that the accepted ones statistically follow f, as if they were drawn
directly from f.

This means that once we get a sample from g(x) we need to have a criteria to ensure
the previously described property. Let’s continue the discussion with an example.

Suppose that our target f(x) is the Beta(α,β)-distribution on the interval [0,1]. The
Beta(α,β)-distribution PDF is

f(x) = xα−1(1− x)β−1

B(α, β) , 0 ≤ x ≤ 1,

where
B(α, β) = Γ(α)Γ(β)

Γ(α + β) .
2

1John von Neumann was already talking about the reject-accept methods in 1947. [7]
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The mode of a Beta(α,β)-distribution, that is the point where the PDF reaches its

maximum, is given by the formula
A

α− 1
α + β − 2

B
for α > 1, β > 1.

Thus, for the distribution Beta(2, 4) in Figure 3.2 we have that f(x) = 20x(1− x)3 for
0 ≤ x ≤ 1, and the mode is 0.25.

Figure 3.2: PDF of the Beta(2,4)-distribution

Now, as per the proposal distribution g(x), we choose the uniform distribution on [0,1]
-to match the domain of of our Beta(2, 4) distribution- in Figure 3.3. In general, we can
use as proposal distribution any distribution we have access to.

At this point, a very important step to perform rejection sampling is to scale the
proposal distribution g(x) so that it encapsulates the target distribution f(x). For this

reason, we introduce a scaling constant M such that M ≥ f(x)
g(x) , ∀x ∈ [0,1].

The scaling constant ensures that the 0 < f(x)/(Mg(x)) ≤ 1, but we don’t want M to
be too high because, as we will see, it determines the expected number of iterations of
the rejection sampling algorithm. That’s why usually M is chosen as the upper limit of
f(x)/g(x).

In our example it’s easy to see that we just have to scale the Uniform(0,1) distribution
just right above the maximum value of the Beta(2,4) distribution in correspondence of its
mode.

In particular we need

M ≥ f(x)
g(x) = 20x(1− x)3

1 ,∀x ∈ [0,1].

Thus, M = 2.2 ≥ max(f(x)) ≈ 2.1093 will do. In Figure 3.4 we can see the plot of
both the Beta(2,4) distribution and the scaled Uniform(0,1) distribution.

2For a positive integer n, Γ(n) = (n− 1)!
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Figure 3.3: PDF of the Uniform(0,1)-distribution

Figure 3.4: PDFs of the Beta(2,4) and scaled Uniform(0,1) distributions

3.2.2 How does rejection sampling work?
The steps of rejection sampling are typically presented in the following way:

1. sample x from the distribution g(x)

2. sample u from the distribution Uniform(0,Mg(x))

3. accept x if u ≤ f(x)

In this way, the accepted sample will look like coming from the target distribution
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f(x), even if we didn’t directly sample from it. Now we will explain these steps and in
the section 3.2.3 we will give formal proofs of the correctness of the approach.

Let’s have a look at the plot in Figure 3.5 where we sampled x0 = 0.5. Should we
accept this sample or not? We know that g(x0) tells us how likely is that our samples
land near x0. Intuitively, we are more likely to accept x0 if f(x0) ≈Mg(x0) because the
likelihood of drawing a sample from the distribution f(x) would be approximately the
same, otherwise we are more likely to reject x0 the more Mg(x0) differs from f(x0).

Figure 3.5: The sample x0 and the evaluation line

The mathematical criteria to decide whether to accept or reject a sample involves
randomness. Consider the green evaluation line that cross the points f(x0) and Mg(x0):
if we are able to get a number on the evaluation line and it falls below f(x0) we will
accept it, otherwise reject it. The idea is that the portions of the evaluation line below
and above f(x0) are not equal and reflect the chances of occurrence of the sample in the
distribution f(x). To get this number we will draw from Uniform(0,Mg(x)). Thus, for
a sample x0, the mathematical criteria is to draw u from Uniform(0,Mg(x0)) and accept
x0 if u ≤ f(x0).

This is equivalent to:

1. sample x0 from the distribution g(x)

2. draw u from the distribution Uniform(0,1)

3. accept x0 if u ≤ f(x0)
Mg(x0)

We could also see it as a simulation of a Bernoulli trial B(p) with parameter p = f(x)
Mg(x) :

we accept the sample x0 if B(p) = 1. This is the reason why, in the signature algorithm of

Figure 3.1, the output (z, c) is given with probability min
A

Dm
σ (z)

M ·Dm
Sc,σ(z) , 1

B
.

In our example, to visualize the output of the rejection sampling procedure we can
do an experiment and sample 1000 times x1, ..., x1000 and see that the pairs (xi, ui) are
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uniformly distributed over the area below the Mg(x) and since we reject samples in the
area above f(x), our accepted samples are uniformly distributed over the area under f(x).
The results of this experiment are depicted in Figure 3.6.

Figure 3.6: Rejection sampling visualization

We can see that many samples have been rejected, so it’s natural to think how can
we increase the efficiency of the rejection sampling algorithm. There are basically two
ways to increase efficiency: we can choose a “better” proposal distribution g(x) so that
the rejection region is considerably smaller than the acceptance region or we can keep the
same proposal distribution, but reduce the value of M.

Indeed, the quantity 1
M

is the expected acceptance rate of the rejection sampling
algorithm, meaning that the rejection sampling algorithm is expected to output an
accepted sample within M iterations of the algorithm. In the example in Figure 3.6 the
expected acceptance rate is 1

M
= 1

2.2 = 0.455, while the acceptance rate of the experiment
is ≈ 0.473.

3.2.3 Why does rejection sampling work?
Following the standard proof in [10], we now verify that rejection sampling does return
samples that follow the target distribution f(x).

Let x, z be random variables with PDFs f(x), g(z) and assume that we can sample
from g(z), and let b be a new binary random variable that represents the event that
a sample is accepted (1) or rejected (0) such that P (b = 1 | z) = f(z)

Mg(z) . This is a
Bernoulli trial with success parameter f(z)

Mg(z) . Our goal is to show that for any event S,
P (z ∈ S | b = 1) = P (x ∈ S), that is if we keep the accepted samples, their distribution
matches f(x)

Using Bayes’ theorem we can write:
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P (z ∈ S | b = 1) = P (b = 1 | z ∈ S) · P (z ∈ S)
P (b = 1)

Now,

• the numerator term P (z ∈ S) =
Ú
S
g(z)dz because z ∼ g(z)

• P (b = 1 | z) = f(z)
Mg(z) because it’s a Bernoulli

• the numerator term P (b = 1 | z ∈ S) is not constant over S, so we integrateÚ
S
P (b = 1 | z)g(z)dz =

Ú
S

f(z)
Mg(z)g(z)dz = 1

M

Ú
S
f(z)dz = 1

M
P (x ∈ S) becauseÚ

S
f(z)dz is the probability under the target distribution

• the denominator P (b = 1), marginalizing over z, equals
Ú
Z
P (b = 1 | z)g(z)dz =Ú

Z

f(z)
Mg(z)g(z)dz = 1

M

Ú
Z
f(z)dz = 1

M

Putting everything together we obtain

P (z ∈ S | b = 1) =
1
M
P (x ∈ S)

1
M

= P (x ∈ S)

This proves that the accepted samples have exactly the target distribution f(x).

3.2.4 Rejection sampling in lattice-based cryptography
As explained in “Lattice Signatures and Bimodal Gaussian” [11], rejection sampling was
introduced into lattice-based constructions by Lyubashevsky in the context of identification
schemes [12]. In an identification scheme the commitment message y in the first round of
the protocol is used to hide the secret key s when computing the response z in the third
round of the protocol. In classical cryptography identification schemes -like the Schnorr
identification scheme- all operations take place in a finite ring, thus y being uniformly
random hides s.

In a lattice-based scenario the secret key is a short vector s, then we need to choose
y from a narrow distribution for the sake of correctness of the lattice-based primitives.
However, since responses take the form of z = y + cs, their distribution g(x) is correlated
with the secret key s, which could potentially leak information about s.

Thanks to the rejection sampling algorithm, the distribution of the accepted responses
would follow a fixed distribution f(x) that doesn’t depend on s. In this case we can
say that the distribution of the accepted responses is statistically independent of the
distribution of the secret key.

3.3 Rejection sampling as a matter of independence
Let S ∼ Unif{−1,0,1} and Y ∼ Unif{−10,−9, ...,9, 10} be discrete uniform random
variables.

Consider the following simple protocol:
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3.3 – Rejection sampling as a matter of independence

1. pick s ← S

2. pick y ← Y

3. compute z = y + s

We can make some observations:

• P (z = 0 | s = −1) = 1
21

• P (z = 0 | s = 0) = 1
21

• P (z = 0 | s = 1) = 1
21

• P (z = 9 | s = −1) = 1
21

• P (z = 9 | s = 0) = 1
21

• P (z = 9 | s = 1) = 1
21

• P (z = 10 | s = −1) = 0

• P (z = 10 | s = 0) = 1
21

• P (z = 10 | s = 1) = 1
21

• P (z = 11 | s = −1) = 0

• P (z = 11 | s = 0) = 0

• P (z = 11 | s = 1) = 1
21

We could go over and over with all the possibilities, but the point is that we observe
that if z = 10 we are sure that s /= −1, and if we see z = 11 we are sure that s = 1. Thus,
there are some responses that leak information about the value of the secret s.

The PMF of Z in figure 3.7 is the discrete trapezoid:

P(Z = z) =



1
63 , z ∈ {−11, 11},
2
63 , z ∈ {−10, 10},
3
63 , z ∈ {−9,−8, . . . ,8,9},

0, otherwise.

Figure 3.7: PMF of Z = Y + S

Now we do an experiment where we use rejection sampling to obtain responses z
that don’t leak anything about s. Our proposal distribution g(x) is the discrete trape-
zoid, while as target distribution f(x) we can choose the discrete uniform distribution
Uniform{−9,−8, ....8,9} because we know that if −9 ≤ z ≤ 9 then no information about
s is leaked and we know that it does not depend on the secret s.
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The PMF of a discrete uniform is f(x) = 1/n, where n is the number of possible values
in the distribution. The constraint on the value of M is M ≥ f(x)

g(x) = 1/19
1/21 = 1.105, ∀x ∈

{−9,−8, ...,8,9}, so we choose M = 1.11.
The results of the experiment -using 2000 samples- are depicted in Figure 3.8. Please

note that although the proposal and the target distributions are discrete by definition, we
connected the probability mass points with lines for the sake of visualization.

Figure 3.8: Rejection sampling with discrete Uniform as target distribution

The plot is not surprising: the accepted samples z fall in the acceptance region [−9, ...,9],
while the rejected samples fall outside of it, then the distribution of the output of our
simple algorithm will follow a target distribution that doesn’t depend on the secret s,
achieving independence from the distribution of the secret s.

3.3.1 A simple indistinguishability experiment
The concept of independence can also be expressed in terms of indistinguishability.

Suppose that there are three different algorithms A1, A2, A3 whose output may depend
on some secret and:

• A1 outputs are distributed according to a distribution g1, that is the Uniform(−8,8)
distribution

• A2 outputs are distributed according to a distribution g2, that is the truncated
Normal distribution N(0, σ2 = 4.52) over [-8,8]

• A3 outputs are distributed according to a distribution g3, that is the Triangular(−8,8,0)
distribution.

.
The normalized PDFs of g1, g2, g3 over [−8,8] are reported below.

g1(x) =


1
16 , −8 ≤ x ≤ 8,

0, otherwise.
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3.3 – Rejection sampling as a matter of independence

g2(x) =


1

0.924 ·
1

4.5·
√

2πe
− x2

2·4.52 , −8 ≤ x ≤ 8,

0, otherwise.

g3(x) =


x+8
64 , −8 ≤ x ≤ 0,

8−x
64 , 0 ≤ x ≤ 8,

0, otherwise.
In the first part of the experiment we suppose to collect 2000 output samples from

each distribution gi and plot their distributions as shown in Figure 3.9. As one would
expect, the empirical distribution of the output samples drawn from gi aligns closely to
the theoretical PDF of gi, possibly leaking information on the secret.

Figure 3.9: Distributions of the output samples for the proposal distributions.

In the second part of the experiment we suppose that the algorithms A1, A2, A3 now
implement the (classical) rejection sampling technique in the following way:

1. sample x from the distribution gi(x)

2. sample u from the distribution Uniform(0,Mgi(x))

3. accept x if u ≤ f(x)

So the proposal distributions for each algorithm are respectively g1, g2, g3, while the
target distribution f is chosen to be the raised cosine distribution with parameters
µ = 0, s = 8, scaled by 5, that is f(x) = 5 + 5 · cos (xπ−0

8 ) over [-8,8]. The normalized PDF
of f is reported below.

f(x) =


1
16 · (1 + cos (xπ8 )), −8 ≤ x ≤ 8,

0, otherwise.
We can see in Figure 3.10 the scaled three proposal distributions for M1 = 2.05,M2 =

1.35,M3 = 1.2 respectively, while in Figure 3.11 are depicted the distributions of the
output-samples of the algorithms when applying the rejection sampling technique.

By applying the rejection sampling technique, the distributions of the output sam-
ples follow the target distribution, thus deciding which algorithm has produced which
distribution as well as trying to recover information about a potential secret becomes
a very difficult task. That’s why rejection sampling is used in cryptography to achieve
independence between distributions.
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Figure 3.10: PDFs of the scaled proposal and target distributions of the experiment.

Figure 3.11: Distributions of the output samples for the proposal distributions when
rejection sampling technique is adopted.

3.4 Rejection sampling with m-dimensional discrete
Normal distribution

In this section we will see more in details the signature scheme of Figure 3.1 and the
rejection sampling technique with discrete Normal distribution employed in such scheme.

The goal of the signature was to «come up with a distribution f and a distribution D
such that for all x two properties are satisfied» [2, Section 1.2]:

• there is a small constant M such that f(x) ≤Mg(x), where g is the distribution of
z = y + Sc for some random c, where y←D

• the expected value of vectors distributed according to f is as small as possible, that
is E(z) ≈ 0

To satisfy those requirements Lyubashevsky chooses f,D to be the discrete m-
dimensional Normal distribution Dm

σ with std σ = Θ̃(T ) = Θ̃(
√
m) where T = max||Sc||,

already defined in Definition 3.2, and require that f(x) ≤Mg(x) for some small constant
M , for the x that are not too big.
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The main idea behind the structure of the signing algorithm is to make the distribution
of z independent of the secret key S. The target distribution is f(x) = Dm

σ , while
the proposal distribution g is the shifted discrete m-dimensional Normal distribution
g(x) = Dm

Sc,σ, because the z are obtained by shifting y by a small quantity Sc.
In particular, there are many possible discrete m-dimensional Normal distributions

g(x) = Dm
Sc,σ depending on the value of Sc. A priori we know that the largest shift is

given when ||Sc|| = T = max(||Sc||), and for this reason Lyubashevsky consider this
“worst-case” scenario when stating the main technical rejection sampling Theorem 3.10.
We can easily visualize this situation in Figure 3.12 with the 1-dimensional Normal
distribution considering |v| = max|Sc|.

Figure 3.12: Shifted 1-dimensional Normal distributions

Intuitively, the greater the shift and the greater the value of M we will need to make
sure that Mg(x) envelops the target distribution f(x). The advantage of working with
Normal distributions is that if σ ≫ T then f(x) and g(x) are close distributions and it
should not be too hard to find a small value M . We will see that the rejection sampling
Theorem 3.10 shows that for appropriate values of M and σ, the signature algorithm will
output a signature with probability approximately 1

M
and the output’s distribution is

statistically close to the target distribution f .
This means that the expected length of the signature E(z) ≈ σ

√
m = Õ(m) = Õ(n).

Thus, the length of the signatures is mainly affected by m, and lowering m will results in
shorter signatures. Beware that we can’t afford to just lower m while leaving everything
else the same, because the SISq,n,m,d search problem becomes easier (recovering S given
(A,AS (mod q)) becomes easier). We will see in section 3.6 how we can lower the value
of m basing the security of our scheme on the other security assumptions defined in 3.1.1.

3.4.1 Facts about the discrete Normal distribution
Now we recall some facts from [2, Section 4] about the discrete m-dimensional Normal
distribution and the main rejection sampling theorem.

Lemma 3.7 tells us that the inner product between an element z ∼ Dm
σ and an element

v ∈ Rm is bounded.
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Lemma 3.7. For any vector v ∈ Rm and any σ, r > 0,

Pr[ |⟨z,v⟩| > r; z $←Dm
σ ] ≤ 2e− r2

2||v||2σ2

Lemma 3.8.

1. For any k > 0, P r[ |z| > kσ; z $← D1
σ] ≤ 2e− k2

2

2. For any z ∈ Zm and σ ≥ 3/
√

2π ,Dm
σ (z) ≤ 2−m

3. For any k > 1, P r[ ||z|| > kσ
√
m ; z $← Dm

σ ] < kme
m
2 (1−k2)

Lemma 3.9 will be used to bound the success probability of the rejection sampling
algorithm.

Lemma 3.9. For any v ∈ Zm, if σ = ω(||v||
√

logm), then

Pr[Dm
σ (z)/Dm

v,σ(z) = O(1); z $← Dm
σ ] = 1− 2−ω(logn),

and more specifically, for any v ∈ Zm, if σ = α||v|| for any positive α, then

Pr[Dm
σ (z)/Dm

v,σ(z) < e
12
α

+ 1
2α2 ; z $← Dm

σ ] > 1− 2−100.

More specifically, from Lemma 3.7 we know that for r = 12||v||σ, with probability at
least 1− 2−100, |⟨z,v⟩| ≤ 12||v||σ, and therefore, with probability at least 1− 2−100,

exp

A
−2⟨z,v⟩+ ||v||2

2σ2

B
< exp

A
24||v||σ + ||v||2

2σ2

B
= e

12
α

+ 1
2α2 ,

where the last equality uses σ = α||v||.

3.4.2 Rejection sampling theorem
The following theorem taken from [2, Theorem 4.6] is the formal guarantee that the
rejection sampling trick works.

Theorem 3.10. Let V be a subset of Zm in which all elements have norm less than T,
σ be some element in R such that σ = ω(T

√
logm), and h : V → R be a probability

distribution. Then there exists a constant M = O(1) such that the distribution of the
following algorithm A:

1. v $← h

2. z $← Dm
v,σ

3. output (z,v) with probability min
3

Dm
σ (z)

MDm
v,σ(z) ,1

4

is within statistical distance 2−ω(logm)

M
of the distribution of the following algorithm F :

1. v $← h
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3.4 – Rejection sampling with m-dimensional discrete Normal distribution

2. z $← Dm
σ

3. output (z,v) with probability min 1/M.

Moreover, the probability that A outputs something is at least 1− 2−ω(logm)

M
.

More concretely, if σ = αT for any positive α, then M = e
12
α

+ 1
2α2 , the output of

algorithm A is withing statistical distance 2−100

M
of the output of F ,and the probability that

A outputs something is at least 1−2−100

M
.

Let’s try to understand what this theorem is telling us. First of all the vector v ∈ V ⊂
Zm represents the product Sc, because V is the subset of all possible Sc ∈ Zm where
T = max||Sc||.

Algorithm A is our algorithm that uses rejection sampling to make a sample z from a
shifted discrete m-dimensional Normal distribution (centered at v) look like it came from
the centered discrete m-dimensional Normal distribution (centered at 0).

Algorithm F is the ideal behavior of our algorithm, and it outputs pairs (z,v) where
z ∼ Dm

σ regardless of v. This is only theoretical as we can’t sample z independently of v
in our protocol.

So the theorem is telling us that if we use Algorithm A, then the distribution of its
output (z,v) is statistically close (with negligible distance) to the output of Algorithm F .
That is, rejection sampling “sanitize” the dependency of z from v and z ∼ Dm

σ .

3.4.3 Proof of security of the signature scheme
Before diving into the proof of security [2, Section 5], we underline the fact that we (the
signer) are the one that first generate (randomly) both the secret key S and the matrix
A, and then compute T = AS (mod q). Thus, an Adversary that tries to recover the
secret key S given the public key (A,AS) must solve the SISq,n,m,d search problem. We
thought it was important to underline that because the security of the signature scheme
is not about the hardness of recovering the secret key, but the hardness of forging valid
signatures.

Let’s provide the security reduction (see Figure 3.13) in case we base the security of the
signature scheme on the ℓ2-SISq,n,m,β problem. We show that an Adversary that is able to
forge valid signatures can retrieve a non-trivial solution for the ℓ2-SISq,n,m,β problem for
β ≈ åO(||z||).

The entities in the security reduction are:

• The Adversary: the one who is able to break the signature scheme and can query
the signing oracle and the random oracle H.

• Signing oracle: the oracle that answers to the adversary’s signing requests. Its
behavior his depicted in Figure 3.14.

• Challenger: the ℓ2-SISq,n,m,β instance that provides the matrix A.

We won’t go into the details of the theorems and lemmas that Lyubashevsky describes
to formally prove the security of the signature scheme, but we will just give the high-level
overview of the security reduction.
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Adversary Signing Oracle ChallengerSIS

AApick random S
(A,AS)

µi (zi, ci) = Sign(µi)
(zi, ci)

· · ·
µ, (z, c)

µ, (z′, c′)

solution for SIS

Figure 3.13: Security reduction for the signature scheme.

The idea is that given a matrix A, we can create a secret key S and publish the public
key (A,AS). Then, the Adversary picks messages µi and interacts with the Signing oracle
to obtain the corresponding valid signatures pairs (zi, ci). How can the Signing oracle
produce such signature pairs? Since we use the rejection sampling technique in the signing
algorithm, we have that the signature pair (z, c) is independent of the secret key S. Then,
the Signing oracle can produce such signatures by generating randomly c, z as in Figure
3.14 and programming the random oracle H accordingly. This wouldn’t be possible if we
had not obtained the independence of z from S thanks to rejection sampling.

Sign(µ,A,S)
1: c $← {v : v ∈ {−1,0,1}k, ||v||1 ≤ κ}
2: z $← Dm

σ

3: with probability 1/M,
4: output (z, c)
5: Program H(Az−Tc, µ) = c

Figure 3.14: Signing oracle

So at some point the Adversary will be ready to break the scheme and will output a
valid message-signature pair for a message µ, and for the forking lemma he can output a
second valid message-signature pair for the same message µ. Now we are able to extract a
solution v for the SIS problem: the two signatures forged by the Adversary satisfy the
verification equation and z, z′ are small, thus we can write Az = Tc and Az′ = Tc′. It
follows that A(z− z′ + Sc− Sc′) = 0, but we need that v = (z− z′ + Sc− Sc′) is /= 0.

One important constraint to prove that v /= 0 is that there must be a second (unknown
to us) valid secret key S′ /= S such that AS = AS′ and the Adversary can not know which
secret key we know. To satisfy this constraint, we require a particular relationship between
the parameters q, n and m as in Lemma 3.11, while the indistinguishability of S and S′ is
satisfied because the distribution of the signature is independent of the secret key.

Lemma 3.11. For any A ∈ Zn×m
q where m ≥ 64+n·(log q/ log(2d+1)), for randomly cho-

sen s $←{−d, ...,0, ..., d}m, with probability 1−2−100, there exists another s′ $←{−d, ...,0, ..., d}m
such that As = As′.
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3.5 Analysis of the parameters
Consider the digital signature protocol in Figure 3.1. For the security parameter λ = 100,
we consider distributions to be statistically close if they are ≈ 2−100 apart and we also
require ≈ 100 bits of security from the cryptographic hash function H used in the signature
scheme, because in general when we use Fiat-Shamir to obtain a signature scheme we
only require the random oracle to output λ bits [2, Section 5] .

For the verification algorithm, since z will be distributed according to Dm
σ , for Lemma

3.8 with k = η we know that with probability 1− 2−100 we have ||z|| < ησ
√
m, and since

Az = Az−Tc, the signature will be accepted.
Now we present in Table 3.1 the parameters selected by Lyubashevsky in [2].

Parameter I II III IV V
n 512 512 512 512 512
q 227 225 233 218 226

d 1 1 31 1 31
k 80 512 512 512 512
η 1.1 1.1 1.2 1.3 1.3

m ≈ 64 + n log q
log(2d+ 1)

8786 8139 3253 – –

2891 – –
m = 2n (used in Sec. 3.6) – – – 1024 1024
κ s.t. 2κ ·

1
k
κ

2
≥ 2100 28 14 14 14 14

σ ≈ 12 · d · κ ·
√
m 31495 15157 300926 – –

280024 – –
σ ≈ 6 · d · κ ·

√
m (used in Sec.

3.6) – – – 2688 83328

M ≈ exp
3

12dκ
√
m

σ
+
1
dκ

√
m

2σ

22
4

2.72 2.72 2.72 7.4 7.4

approx. signature size (bits)
≈ m log(12σ) 163000 142300 73000 14500 19500

62677
approx. secret key size (bits)
≈ m · k · log(2d+ 1) 220 222.5 223 219.5 221.5

approx. public key size (bits)
≈ n · k · log q 220 222.5 223 222.1 222.7

Table 3.1: Parameters of the signature scheme

The parameters in columns I, II, III are based on the hardness of the ℓ2-SISq,n,m,β
problem where β = (2ησ + 2dκ)

√
m, while columns IV, V are based on the hardness of

the SISq,n,m,d problem. Moreover, the parameters in column V are also compatible with
the LWE assumption that we will see in section 3.6.2. Please note that we checked the
correctness of all the proposed parameters and we found that the values of m,σ and the
signature size of the signature in column III are not correct. For this reason we computed
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and highlighted in bold the correct values of those parameters.

3.5.1 Parameters that influence the SIS problems
The parameters n and q. These parameters are determined by the underlying SIS
problem instance that we want to work with. The determinant of the full rank lattice is
≈ qn and the larger it is, the harder is finding short vectors in the lattice.

The parameter β. If the underlying security assumption is the hardness of the ℓ2-
SISq,n,m,β problem, then we know from section 3.1.1 that we require β ≥

√
mqn/m. For

the columns I, II, II we assume β = (2ησ+ 2dκ)
√
m 3. The values of β and the respective

lower bound for each column are represented in Table 3.2.

I II III
lower bound =

√
mqn/m 278.96 268.35 2087.78

β = (2ησ + 2dκ)
√
m 6.50× 106 3.01× 106 4.12× 107

Table 3.2: Lower bounds and values of β in I, II, III

The parameter d. The parameter d bounds the absolute value of the coefficients of
the secret key S. For the columns I,II,III we don’t have any constraint on d, but for the
columns IV, V, where the security assumption is the hardness of the SISq,n,m,d problem
we required from section 3.1.1 that d≪ qn/m. The values of d and the respective upper
bound for column IV and V are represented in Table 3.3.

IV V
upper bound = qn/m 512 8192

d 1 31

Table 3.3: Upper bounds and values of d in IV, V

The parameter m. The parameter m is determined by the underlying SIS problem
instance that we want to work with. For columns I, II, III the Lemma 3.11 bounds
m ≥ 64 + n log q

log(2d+1) , while we will set m = 2n when dealing with columns IV, V. Remind
that m is the parameter that mostly impact the signature size as E(z) ≈ σ

√
m, thus the

lower it is the shorter the signatures will be.

3.5.2 Parameters that influence the signature protocol
The parameter η. This parameter is used to bound the norm of z. As z ∼ Dm

σ and we
know that the expected value of Dm

σ is about σ
√
m, Lemma 3.8 with k = η tells us that

||z|| < ησ
√
m with probability 1− 2−100.

3This formula is set by Lyubashevsky in one of the theorem used for the security proof of the signature
scheme in [2].
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The parameters k and κ. The parameter k determines the length (in bits) of the
challenge vector returned by the cryptographic hash function H, while the parameter κ
determines the maximum number of coefficients of the challenge vector that are non-zero.
Now, the number of possible challenges determines the soundness error ϵ = 1

#challenges and
in order to achieve a security level of λ in 1 round of the protocol we need that log(1

ϵ
) ≥ λ,

that is #challenges ≥ 2λ.
The challenge space is Ck,κ = {c ∈ −1,0,1k : ||c||1 ≤ κ}, and the number of vectors in

such space is given by

|Ck,κ| =
κØ
i=0

A
k

i

B
· 2i.

To lower bound this value, Lyubashevsky says

|Ck,κ| ≥ 2κ ·
A
k

κ

B
.

Thus, for the security level λ = 100, we obtain the constraint on the choice of κ (also
shown in Table 3.1):

κ : 2κ ·
A
k

κ

B
≥ 2100

The parameters M and σ. The parameter M is the expected number of iterations of
the rejection sampling algorithm, while σ is the std of the discrete m-dimensional Normal
distribution and it impacts on the signature’s length as well as on the parameter M.

We know that Lemma 3.9 gives an upper bound for

M ≥ f(x)
g(x) = Dm

σ (z)
Dm

v,σ(z)

In particular, considering v = Sc ∈ Zm and σ = α||Sc||, we choose M = e
12
α

+ 1
2α2 .

For columns I, II, III we set α = 12 to obtain M = e ≈ 3 and σ = 12||Sc||. We now
see how σ can be approximated to σ ≈ 12 · κ · d ·

√
m.

We recall that S ∈ {−d, ...,0, ...d}m×k and c ∈ {−1,0,1}k with ||c||1 ≤ κ.
The vector Sc is just a linear combination of some columns of S

Sc =
Ø
i:ci /=0

ciSi,

where each Si is a column of S. Since c has at most κ non-zero entries, the sum involves
at most κ columns. Each column Si is an m-dimensional vector with entries in [−d, d],
then its squared Euclidean norm is bounded by

||Si||2 =
mØ
j=1

Sj,i ≤ m · d2.

Thus, ||Si|| ≤ d
√
m.

Using the triangle inequality:

||Sc|| = ||
Ø
i,ci /=0

ciSi || ≤
Ø
i:ci /=0

||Si|| ≤ κ ·max||Si|| ≤ κ · d ·
√
m

Then, T = max||Sc|| = κ · d ·
√
m, and σ ≈ 12 · T = 12 · κ · d ·

√
m from Theorem 3.10.

For columns IV,V σ ≈ 6 · κ · d ·
√
m and M ≈ 7.4. It’s easy to check that in this case

α = 6.
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3.5.3 Signature size and key size
• The secret key S is a m× k matrix with coefficients of maximum absolute value d.

Then, it can be represented by mk · log(2d+ 1) bits.

• The public key (A,T) can be split in two parts: the matrix A can be shared among
all users, while the matrix T ∈ Zn×k

q is individual and requires nk · log q bits.

• The signature pair (z, c) is dominated by z, and for Lemma 3.8 (1) the length of
each coefficient of z is at most 12σ with probability at least 1− 2−100. Thus, z can
be represented with approximately m · log(12σ).

3.5.4 Lowering the parameter the signature’s size
There are some “base” parameters that we must decide at first, and some “dependent”
parameters that depend on the others. The “base” parameters in this sense are n, q, d, k, α,
while the “dependent” parameters are m,κ, σ,M,.

We can see in Table 3.4 how the “dependent” parameters are influenced by the others.
Then we will see that there some trade-offs when setting the parameters, in particular
between the signatures size and the key sizes.

Parameter Growth ↑ behavior
m linear in n; log q; 1/ log(2d)
κ combinatorial in k
σ linear in d, κ, α;

√
m

M inverse in α
signature z size linear in m; log(12σ)
secret key S size linear in m, k; log(2d)
public key T size linear in n, k; log q

Table 3.4: Dependencies among the parameters

Let’s see in which ways we can decrease the signature size.

Increasing k. Consider the values of the parameters from column I to column II of
Table 3.1.

• The value of k has been increased from kI = 80 to kII = 512, that is 6.4 times the
initial value.

• This allow us to lower the value of κ from κI = 28 to κII = 0.5κI = 14.

• Thus, the value of σ is halved and the we expect a reduction of the signature size.

In particular, σII = 0.5σI and log(12σII) = log(6σI), then log(6σI)
log(12σI)

= 0.946, which

means that the size of the signature in column II will be ≈ 95% of the size of the signature
in column I.

Actually, if we look carefully at column II, we will notice that the values of q and
m have been slightly decreased... then the signature size in column II is ≈ 90% of the
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signature size in column I. The trade-off is that the key sizes in column II would be 6.4
times larger that the key sizes in column I.4

Increase d. A different approach could be to increase the value of d to decrease the
value of m. Of course σ would also increase because it grows linearly with d and only
proportionally to the square root of m, but the signature size grows linearly with m and
only logarithmically with σ, so it should not be a problem.

Consider the columns II and III of Table 3.1.

• The value of d has been increased from dII = 1 to dIII = 31, while q has been
increased from qII = 225 to qIII = 233

• This results in a reduction of the value of m from mII = 8139 to mIII = 2891, that
is a reduction of ≈ 64,5%,

• but σ increases from σII = 15157 up to σIII = 280024, that is an increase of ≈ 1847%

However, the signature size is reduced from 142300 bits to 62677 bits, that is a reduction
of ≈ 66%. On the other hand, the keys size has slightly increased from ≈ 222.5 bits to
≈ 223 bits.

3.6 Basing the scheme on low-density SIS and LWE
Consider the parameters in column III of Table 3.1 and suppose to lower d from 31 down
to 1, without changing m accordingly, that is m ≪ 64 + n · log q/(log 2d + 1). This
modification decreases σ by a factor of d, which causes the signatures vector z to be
smaller. Thus, the problem of forging signature vectors z becomes harder because now
the Adversary must find smaller signatures vector z. Then, we would be able to lower
other parameters such as q and m, further reducing the length of the signature.

This looks great, but there is an issue: since m ≪ 64 + n · log q/(log 2d + 1) in the
first place, the security proof that we used is not valid anymore, because with very
high probability ∀T ∃! S : AS = T. Indeed, we can easily check that if we plug into
d = 1≪ qn/m the values of q, n,m taken from column III, we obtain 1≪ 55.91, that is
we are in low-density SISq,n,m,d region.

Even though the security proof loses this important constraint, Lyubashevsky comes
up with a clever observation to still be able to exploit the security reduction: the Signing
oracle in Figure 3.14 does not use the secret key S and its output is indistinguishable from
the real signature algorithm. Then the idea is, in the security proof, to pick a secret key
S′ with large coefficients -instead of our real secret key S- so that there will exist another
secret key S′′ such that AS′ = AS′′.

In the security proof in section 3.4.3 the Adversary is not able to distinguish between
the signing algorithm that uses S and the Signing oracle. Now the issue could be that the
Adversary is able to distinguish them because the signing algorithm is using a different
key S′. However, if distribution of (A,AS) is indistinguishable from the distribution of
(A,AS′) (and it is, based on the hardness of the low-density SISq,n,m,d problem from

4Actually ≈ 222.5 = 5.6 times larger because of the slightly reduced values of q and m that affect,
respectively, the public key size and the secret key size.
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definition 3.6), then the adversary A would not notice that he is given an invalid key-
pair. Moreover, as the Signing oracle doesn’t use any secret key when answering to the
Adversary, the Adversary would still behave in the same way and find a solution for the
ℓ2-SISq,n,m,β problem.

Thus, our signature scheme is based on the hardness of two problems: the low density
SISq,n,m,d problem (for the hardness finding the secret key) and the ℓ2-SISq,n,m,β problem
with β = (2nσ+2d′κ)

√
m (for the hardness of forging signatures), where d′ is the maximum

absolute value for the coefficients of the secret key S′ used in the proof.
In his work [2, Section 6] Lyubashevsky also gives some bounds to make sure that

those problems are hard. In particular:

• for the SISq,n,m,β problem we require β < min(q, 22·
√
n·log q·log δ), where δ = 1.007 5

• for the SISq,n,m,d decision problem we require that βψ
q
≥ 2 where ψ =

ñ
d(d+ 1)m/3

3.6.1 The LWE problem

Definition 3.12 (LWEq,n distribution). Choose randomly a vector s $← Znq and a small
error vector e $← Zq. The LWE-distribution is defined as As = {(a, b)} ⊆ Znq × Zq such
that:

• a ∈ Znq is randomly sampled by a uniform distribution

• b = ⟨s, a⟩+ e (mod q)

Definition 3.13 (LWEq,n,m search problem). Find s ∈ Znq given m pairs (a, b) ∈ As.

Definition 3.14 (LWEq,n,m decision problem). Given m pairs (a, b) tell if they belong
to a LWE distribution (with the same fixed s ∈ Znq or if they are randomly sampled from a
uniform distribution in Znq × Zq.

The LWE search problem and the LWE decision problem are computationally equivalent.
It’s possible to define an equivalent version of the LWE problem where the secret key is
not selected from the uniform distribution Znq , but is selected from the Normal distribution
Dn
ψ.

3.6.2 Low density SIS is equivalent to the LWE problem
At this point, Lyubashevsky makes the following observation [2, Section 6.1]: if we consider
a matrix A = [Ā||I] ∈ Zn×2n

q , where Ā $← Zn×n
q , then the problem of distinguishing pairs

(A,As), where s $← D2n
ψ , from uniformly distributed pairs in Zn×2n

q × Z2n
q is as hard as

LWE.
Now, considering a 2n×k matrix S where each of the k columns is distributed according

to D2n
ψ we could say that distinguishing pairs (A,AS) from uniformly distributed pairs in

in Zn×2n
q × Z2n×k

q is as hard as LWE.

5It’s easy to check that the parameters in columns I, II, III respect this bound
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Then, the LWE problem is exactly the low-density SIS1,n,2n,d problem, except for the
distribution of the secret key S, and so we can base the security of the signature scheme
on the hardness of LWE problem rather than the hardness of low density SIS problem.

The thing we need to care about is the norm of each of the columns of S. If the norm
of s $← Dm

ψ is approximately the norm of s′ $← {−d, ...0, ..., d}m, then we don’t really need
to change or modify the security and correctness of the signature scheme that we have

seen so far. In particular, if ψ ≈
ó
d(d+ 1)

3 , then ||s|| ≈ ||s′|| because ||s|| concentrated

around ψ
√
m while ||s′|| is concentrated around

ñ
d(d+ 1)m/3.

Thus, the signature size and key sizes in column V of Table 3.1 are compatible with
the LWE assumption for ψ ≈ 18.

3.6.3 The security advantage of basing the hardness of finding
the secret on LWE or low-density SIS

The motivation behind the choice of basing the hardness of finding the secret key on LWE
(or low-density SIS) rather than on SIS are discussed very well by Lyubashevsky in the
talk at Microsoft in 2016 [6]. In the talk, Lyubashevsky says that lattice problems like
LWE and SIS are just modern versions of the Knapsack problem over vectors, a popular
problem in the ’80s. Very briefly the setting of the Knapsack problem is the following:

• the secret key is a small norm vector s $← Zmq

• the public key is the pair (A, t) where A $← Zn×m
q and t = As (mod q)

• the problem: given (A, t) find s′ such that As′ = t (mod q)

The hardness of the Knapsack problem can be visualized in Figure 3.15. The problem
is easy at the ends of the graph because:

• if ||s|| is very low, then there are only few possible vectors that solves the problem,
in particular the ones with few non-zero components and so we just try them out
until we find a solution

• if ||s|| is very high, then there are many possible vector that solves the problem, and
it’s not hard to find a solution via gaussian elimination

The problem is the hardest at the point P, when the entropy of s is approximately the
same as the entropy of t. In that point, we will have almost exactly one solution.

Thus, we want to build schemes that are based on problems that are hard around that
point P. In particular, Lyubashevsky defines the two regions of SIS problem and LWE
problem, that we could also think as high-density SIS6 and low-density SIS.

We have already seen in section 3.6.2 how basing the scheme on LWE allow us to
obtain a more efficient signature scheme in term of signature size, but there is one more
security-related advantage that we are going to explain now.

Consider the Figure 3.16. When we base the security of the signature scheme on the
ℓ2-SISq,n,m,β problem only, we put a condition on the secret key, that is that there must

6In this region there are many s such that As = t, then for classic ℓ2-SIS problem we have t = 0.
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||s||

hardness

“LWE” “SIS”

Signature based on SIS

More efficient signature based on LWE
P

Figure 3.15: Hardness of Knapsack problem.

exists at least two different S,S′ such that AS = AS′. This situation is represented by
the blue circle (1), located just a little to the right of the point P because we require (at
least) one collision to exist.

On the other hand, in the security proof of section 3.4.3, we have z = Sc + y and the
vector that solves SIS is v = (z− z′ + Sc− Sc′). Then, since ||z|| > ||S||, the vector v
is dependent of z, and the bigger ||z|| is, the easier becomes solving SIS by finding such
vector v.

Thus, the norm of ||z|| is very important for the hardness of the ℓ2-SISq,n,m,β and that’s
why we want to keep ||z|| small. This situation is represented by the blue circle (2) because
the problem here is not to find S, but v, where v depends on ||z|| that is about

√
m||S||7.

||s||

hardness
construction based on SIS
construction based on LWE

1

2

3
4

hardness of finding the secret keyhardness of finding the secret key

hardness of forging signatureshardness of forging signatures
P

a gap of ∼
√
n

a gap of ∼
√
n

Figure 3.16: Hardness of finding the secret key and forging signature under SIS and
LWE assumptions.

We can see how we have moved away from the point P, and the hardness of the

7From the section 3.5 we know that ||z|| ≈ σ
√

m = α · d · κ ·m, while ||Sc|| ≈ κ · d ·
√

m
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problem of finding the secret key and the problem of forging signatures are not at the
same level. Lyubashevsky’s idea is to base the hardness of finding the secret key on the
LWE problem so that the hardness of forging signatures will be at the same level around
P. This situations is represented by the red circles (3) and (4).

Then, instead of requiring that given the public key the secret key must not be unique,
we require, under the LWE assumption, that given the public key it’s computationally
indistinguishable whether the secret key is unique.

3.6.4 Ring variants of the signature scheme.
We just mention that the SIS and LWE problems can be extended to their Ring versions,
resulting in key sizes k times smaller. The size of the signature is not influenced.
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Chapter 4

The Bimodal Lattice Signature
Scheme

In this chapter we will show how Lyubashevsky enhances the lattice-based digital signature
scheme of Figure 3.1 by choosing as proposal distribution for the rejection sampling
algorithm the Bimodal Gaussian distribution. We will see that on one hand the signature’s
size will be smaller, but on the other hand we will need to slightly modify the signing and
the verification algorithms, and adopt a new key generation algorithm.

The signature scheme that exploits the Bimodal Gaussian in the rejection sampling
algorithm has been presented by Lyubashevsky in his work “Lattice Signatures and
Bimodal Gaussians” [11]. In the talks from 2013 [5] and 2016 [6] Lyubashevsky also spend
some time explaining the bimodal optimization idea and the necessary modifications to
the signing algorithm and verification algorithm, and for this reason in Appendix C we
include the timestamps about these topics.

4.1 The trade-off of the shifted Gaussian distribution
Let us first recall that the parameter M represent the expected number of time the
rejection sampling algorithm need to be repeated to produce an accepted sample, so we
want M to be small, otherwise it would slow down the signing algorithm. In order to keep
M small we must choose as proposal distribution g a distribution that quite resembles the
target distribution f . Intuitively, we want to reduce the area between the scaled proposal
distribution M · g and the target distribution f in order to reduce the number of rejected
samples.

In the previous chapter, the proposal distribution g is the shifted Gaussian distribution
while the target distribution f is the Gaussian distribution. The issue, in that choice
for the proposal distribution, is that there is a tradeoff between the speed of rejection
sampling algorithm and the length of the signature.

We can’t really find a small value M such that M ≥ f(x)
g(x) , ∀x, but Lemma 3.9 gives

us a bound for M . Indeed, it tells us that if we set σ = αT (where T = max||Sc||), then
f(x)
g(x) < e

12
α

+ 1
2α2 with probability 1− 2−100. This is the reason why we set M = e

12
α

+ 1
2α2

and σ = αT . This is often addressed by Lyubahshevsky in his talks as the “problem at
the tails”, that is we can find a value for M that works only for all but the negligible

39



The Bimodal Lattice Signature Scheme

values of x1.
Now consider, as example, the situation in Figure 4.1: there are the 1-dimensional

target Gaussian distribution (in red) and the 1-dimensional shifted Gaussian distribution
(in black) centered in −v = −10, and σ = 2 · ||v|| = 20.

Figure 4.1: The proposal shifted Gaussian distribution N(−10,202) and the target
Gaussian distribution N(0,202).

Suppose that we set M = e ≈ 2.72. The appropriate value for σ would be σ = 12·||v|| =
120, but we have set it to σ = 2 · ||v|| = 20. Then, we expect that for some non negligible
value x the scaled proposal shifted Gaussian doesn’t envelope the target Gaussian because
we have not respected the relation between M and σ given by Lemma 3.9. We can have a
look at it in Figure 4.2. In Part 4.2a there is the plot of scaled proposal shifted Gaussian
distribution along with the plot of the target Gaussian distribution, while in Part 4.2b
there is a “zoom-in” on a portion of the graph where the proposal distribution does not
envelope the target one.

In Figure 4.3 we increase σ = 4 · ||v|| = 40, but again when we consider the scaled
proposal shifted Gaussian there will be a portion of the graph where the proposal
distribution does not envelope the target one, as shown In Figure 4.4. Of course, the closer
σ gets to the correct value (σ = 12||v||), the further from the mean x = 0 we will find
some value x0 where the scaled proposal shifted Gaussian distribution does not envelope
the target Gaussian distribution, and for σ = 12||v|| those values will be the negligible
values at the (right) tail of the Gaussian distribution.2.

Then we must set M and σ accordingly to Lemma 3.9 and deal with the trade-off.
Figure 4.5 shows the scaled proposal shifted Gaussian and the target Gaussian where
M = e and σ = 12 · ||v|| = 120 is correctly set.

So, the trade-off given by Lemma 3.9 is that on one hand if α increases, then σ and the

1Negligible in the sense that they occur with a negligible probability of 2−100.
2Since we consider a left shift we should look at the right tail, viceversa if we wanted to consider a

right shift we would look at the left tail.
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4.1 – The trade-off of the shifted Gaussian distribution

(a) The scaled proposal distribution (b) Zoom in

Figure 4.2: The scaled proposal and the target distribution for M = e and σ = 20.

Figure 4.3: The proposal shifted Gaussian distribution N(−10,402) and the target
Gaussian distribution N(0,402).

(a) The scaled proposal distribution (b) Zoom in

Figure 4.4: The scaled proposal and the target distribution for M = e and σ = 40.

signature size increase, but M decreases which means the rejection sampling step is faster.
On the other hand lowering α would slow down the rejection sampling step as M increase,
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Figure 4.5: The scaled proposal shifted Gaussian distribution N(−10,1202) and the
target Gaussian distribution N(0,1202).

but in turn σ and the signature size would be smaller. There is one more observation
that we must point out: the maximum ratio between the scaled proposal shifted Gaussian
and the target Gaussian is at the mean x = 0 and its surroundings. Then, we should
expect that the most likely samples are also the ones most likely to be accepted after M
iterations of the rejection sampling algorithm.3

We will see in the next section that the bimodal approach allow us not only to remove
the “tail-cut” parameter α from the definition of σ, but also to reduce the ratio at the
mean x = 0.

4.2 The bimodal gaussian idea and optimization
Let us recall that in the digital signature scheme of Figure 3.1 the response z is computed
as z = Sc + y, and its distribution is the shifted Gaussian Dm

Sc,σ. Now suppose to compute
the response z as z = b · Sc + y, where b $← {−1,1}. Then, z is distributed according to
the bimodal Gaussian 1

2D
m
Sc,σ + 1

2D
m
−Sc,σ.

So if the target distribution f is the Gaussian distribution Dm
σ , then

f(x)
g(x) = Dm

σ (x)
1
2D

m
Sc,σ(x) + 1

2D
m
−Sc,σ(x) = exp

A
||Sc||2

2σ2

B
/ cosh

A
⟨x,Sc⟩
σ2

B
≤ exp

A
||Sc||2

2σ2

B

So, if we set σ = αT , where T = max(||Sc||) and M = exp
1

||Sc||2
2σ2

2
= exp

1
1

2α2

2
, then

if we want to obtain M = e we just need α = 1/
√

2 rather than α = 12. Thus, σ = T/
√

2,

3It’s common knowledge that for a Gaussian random variable about 68% of the probability mass lies
within 1σ from the mean.
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and comparing it to σ = 12 · T of 3.10, this is a reduction of about 94% of the value of
the std.4

Let us make an example. Consider the situation in Figure 4.6: there are the 1-
dimensional target Gaussian distribution and the 1-dimensional bimodal Gaussian distri-
bution with modes in −v and v, and σ = ||v||

√
2 = 10

√
2 ≈ 7.07.

Figure 4.6: The proposal bimodal Gaussian distribution and the target Gaussian
distribution.

When we scale the proposal bimodal Gaussian distribution by a factor M = e we
obtain the plot of Figure 4.7.

Figure 4.7: The scaled proposal bimodal Gaussian distribution and the target Gaussian
distribution.

We can see that not only the scaled bimodal Gaussian envelopes the target distribution

4For a fixed value of T .
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∀x, but the proposal distribution presents two modes at −v and +v. Then, the biggest
ratio between the scaled proposal distribution and the target distribution is not at x = 0,
but at −v and +v. Indeed, the ratio M · g(x)/f(x) around x = 0 is quite small, meaning
that we should expect the most likely samples to be accepted within a number of iterations
of the rejection sampling algorithm less than M.

4.3 The BLISS digital signature scheme
In this section we will present two versions of the digital signature scheme called BLISS
(Bimodal Lattice Signature Scheme), one based on the hardness of the SIS problem and
one based on the hardness of the Ring-SIS problem. For this reason we provide the
following definition of generalized SIS problem taken from [11, Section 2].

Definition 4.1 (R-SISK
q,n,m,β problem). Let R be some ring and K be some distribution

over Rn×m
q , where Rq is the quotient ring R/(qR). Given a random A ∈ Rn×m

q drawn
according to the distribution K, find a non-zero v ∈ Rm

q , such that Av = 0 and ||v||2 ≤ β.

We will also discuss the parameters involved with both versions of the signatures
schemes, highlighting the differences with the digital signature scheme from Figure 3.1.

4.3.1 Basing BLISS on the classic SIS problem
If we consider R = Z and K to be the uniform distribution, then definition 4.1 is exactly
the definition of the classical SIS problem.

Signature Algorithm
Input: Message µ, public key A ∈ Zn×m

2q , secret key S ∈ Zm×n
2q , std σ ∈ R

Output: A signature (z, c) of the message µ
1: y $← Dm

σ

2: c← H(Ay mod 2q, µ)
3: Choose a random bit b ∈ {0,1}
4: z := (−1)bSc + y
5: Output (z, c) with probability

1
M · exp

1
−∥Sc∥2

2σ2

2
· cosh

1
⟨z,Sc⟩
σ2

2 ,
otherwise restart.

Figure 4.8: Signature Algorithm

By looking at Figure 4.8 we can see that the signature scheme [11, Section 3.1] is quite
different from the one in figure 3.1.

• The public key A is a n×m matrix whose coefficients are uniformly random in Z2q.

• The secret key S is a (short) m× n matrix in Z2q.
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• The response z, as we have already presented, is computed by picking a random bit
b and computing z := (−1)bSc + y.

• Finally, the probability at step 5) is a direct consequence of the rejection sampling
step using as proposal distribution the Bimodal Gaussian discussed in the previous
section.

We mention that the hash function H is modeled as a random oracle whose output
domain is the set Bnκ of binary vectors of length n and weight κ.5 The details on how
the key-pair is generated will be addressed prior the discussion of the modification of the
verification algorithm reported in Figure 4.9 [11, Section 3.1].

Verification Algorithm
Input: Message µ, public key A ∈ Zn2q, signature (z, c)
Output: Accept or Reject the signature

1: if ∥z∥ > B2 then Reject
2: if ∥z∥∞ ≥ q/4 then Reject
3: Accept iff c = H(Az + qc mod 2q, µ)

Figure 4.9: Verification Algorithm.

The BLISS verification algorithm checks that the norm of the signature ||z|| is lower
than some bound B2 = η ·

√
m · σ, where η is set so that ||z|| ≤ B2 with probability

1 − 2−100 (see Lemma 3.8). The additional check ||z||∞ ≤ q/4 comes from the security
proof described in [11] and it’s usually verified whenever the first one is.

The verification algorithm of the digital signature in Figure 3.1 checks that c =
H(Az − Tc mod q, µ), but in BLISS it doesn’t work anymore because it’s no longer
guaranteed that Ay = Az−Tc mod q. Indeed, Ay = Az−Tc = A(bSc + y) − Tc =
Ay + bTc−Tc, which is true if bTc = Tc mod q for b ∈ {−1,1}. Now, as q is a prime
number, Tc = −Tc mod q it’s impossible unless T = 0. Then, the solution devised by
Lyubashevsky is to work modulo 2q and set T = qI, where I is the n× n identity matrix.

So, the verification procedure is fixed, but since the matrix T is no longer computed as
A · S mod q, the key generation procedure must be reviewed too.

A new key generation algorithm. We now describe how to generate the keys A,S
such that AS = T =qI (mod 2q) [11, Appendix B].

Let’s start by defining m = m′ + n and choosing an uniform matrix A′
q ∈ Zn×m′

q and
a random small matrix S′ ∈ Zm′×n

q with coefficients in (−2α,2α). Consider the matrix
Aq = (A′

q | −A′
qS′) ∈ Zn×m

q . One can show that the statistical distance between the
distribution of Aq and the uniform distribution over Zn×m

q is at most n ·1/2
ñ
qn/2(α+1) ·m′.

Thus, we need to set

m′ ≥ 2(λ− 1 + ⌈log2 n⌉) + n⌈log2 q⌉
α + 1

5κ represent the number of non-zero coefficients.
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in order for this statistical distance to be negligible in the security parameter λ.
The final step is to set the secret key S = (S′, In)T ∈ Zm×n

2q and the public key
A = (2A′

q | qIn − 2A′
qS′) ∈ Zn×m

2q . The one easily checks that AS = qIn.

Analysis of the parameters

We now analyze the parameters of the BLISS digital signature scheme based on the
SIS problem. We must say that the parameters we will discuss are not present in
Lyubashevsky’s paper, but are proposed by us. Our goal is to consider column II of
table 3.1 and modify the parameters as if the bimodal gaussian idea is employed in the
rejection sampling step of the signature scheme in 3.1. As the choice of adopting the
bimodal gaussian mainly impacts the parameters M and α, we just want to show how
those parameters change while the others remain almost unchanged.

Parameter I II
λ 100 100
n 512 512
q 225 225

κ 14 14
α 0.5 1√

2

M ≈ exp( 1
2α2 ) 7.4 2.72

d = ⌊2α⌋ 1 1
m′ ≈ 2(λ−1+⌈log2 n⌉)+n⌈log2 q⌉

α+1 8677 7625
m = m′ + n 9189 8137

σ ≈ α · d · κ ·
√
m 671 893

approx. signature size (bits)
≈ m log(12σ) 119000 108900

approx. secret key size (bits)
≈ m · n · log(2d+ 1) 222.8 222.5

approx. public key T size (bits)
≈ n · n · log q 222.5 222.5

Table 4.1: Parameters of the BLISS scheme based on the SIS problem

The parameters λ, n, q, κ as well as the formulas for computing the sizes of the signature
and the keys6 are left unchanged from column II of table 3.1.

Since we are adopting the bimodal gaussian as proposal distribution for the rejection
sampling step, on one hand the bound on M can be set equal to exp( 1

2α2 ) as we have seen
in section 4.2, while the std σ = αT is approximately α · d · κ ·

√
m as we have seen in

section 3.5. Then, by setting the value of α we can tune M and σ.

6The parameters k has been substituted by n

46



4.3 – The BLISS digital signature scheme

In column I of table 4.1 we set α = 0.5, while in column II we set α ≈ 0.707. We can
see that the small variation of the parameter has a significant effect on M that decrease
from 7.4 to 2.72, and σ, which increases from 671 up to 893.

The comparison between the values in column II of table 4.1 with the ones of column
II of table 3.1 already showcase the power of the bimodal gaussian approach.

• the std σ decreased from 15157 to 893, that is a reduction of about 94%, as we
expected

• the size of the signature decreased from 142300 to 108900 as a consequence of the
reduction of σ

The sizes of the secret and public keys did not change.

4.3.2 Basing BLISS on the Ring-SIS problem
We are now considering R = Z[x]/(xn + 1) so that definition 4.1 is the definition of the
Ring-SIS problem.

Since the keys must live in the ring Rq, Lyubashevsky’s new key generation algorithm
was inspired by the NTRU key generation method [11, Section 4]. We’ll report below the
procedure to generate the secret key S and the public key A such that AS = qIq = T.

Key generation

First of all we need two densities δ1, δ2 ∈ [0,1] and generate two random polynomials f ,g
with exactly d1 = ⌈δ1n⌉ coefficients in {±1} and exactly d2 = ⌈δ2n⌉ coefficients in {±2},
while the other (n−d1−d2) coefficients are set to 0. The generation of f shall be repeated
until it is invertible. Then we can set S = (s1, s2)T = (f , 2g + 1)T .

The public key can be set as A =(2aq, q−2) ∈ R1×2
2q , where aq = s2/s1 = (2g+1)/f ∈ Rq

is defined as a quotient modulo q. Then one can easily check that AS = q mod 2q.

A new bound on the norm of Sc

When computing σ = αT , where T = max(||Sc||), we considered as bound on the norm
of Sc the quantity d ·κ ·

√
m, but we can do better. Lyubashevsky defines a “new measure

of S adapted to the form of c” [11, Section 3] which helps achieving a tighter bound on
||Sc||.

Definition 4.2. For any integer κ, we define Nκ : Rm×n → R as:

Nk(X) = max
I⊂{1,...,n},#I=κ

Ø
i∈I

 max
J⊂{1,...,n},#J=κ

Ø
j∈J

Ti,j

 where T = XT ·X ∈ Rn×n.

Proposition 4.3. Let S ∈ Rm×n be a real matrix. For any c ∈ Bnκ, we have ||Sc||2 ≤
Nκ(S).

The last proposition tells us that
ñ
Nκ(S) is an upper bound for ||Sc||.

The measure Nκ(S) is actually also very important for the key generation step. After
the computation of the secret key S, we discard it if Nκ(S) ≥ C2 · 5 · (d1 + 4d2) · κ for a
fixed constant C.
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We try to explain the motivation behind this rejection step in the key generation
process.

In our previous digital signature schemes the bound for the norm of Sc was given
by the quantity d · κ ·

√
m, which is a worst-case bound valid for all the secret keys

S ∈ {−d, ..., d}m×n when c is a sparse ternary (or binary) vector with exactly κ non-zero
entries. This worst-case bound depends only on d, κ,m and not on the specific value of S.
Thus, the acceptance probability of a signature depends only on this bound, which is the
same for all possible keys.

On the contrary, when we adopt this new bound
ñ
Nκ(S), the quantity Nκ(S) depends

on the actual secret key S, and the acceptance probability would vary with the secret key
too. This means that if two different secret keys S,S′ produce different Nκ(S), Nκ(S′),
the observed acceptance rates for those keys will differ, and possibly an attacker who sees
many signatures (or measure signing latencies) can infer something about the secret key
being used. Thus, if we limit this bound to be a fixed quantity C2 · 5 · (d1 + 4d2) · κ it will
be valid for every accepted secret key. We will call this bound

√
Nκ.

The constant C is chosen so that «only 25% of the keys are accepted, decreasing the
overall security by at most 2 bits» [11, Section 4.1]. Indeed, because the space of accepted
keys is 1

4 of the original one, an attacker’s brute force search space is 4 times smaller.
Then, we lose 2 bits of security against brute force attacks, but that’s not really an issue
if we work with sufficiently high values of the security parameter λ, like 128,160,192.

In figure 4.10 we report the key generation algorithm of the BLISS digital signature
[11, Section 4.8].

BLISS Key Generation Algorithm
Output: Key pair (A,S) such that AS = q mod 2q

1: Choose f ,g as uniform polynomials with exactly d1 entries in {±1} and d2 entries in
{±2}

2: S=(s1, s2)T ← (f , 2g + 1)T
3: if Nκ(S) ≥ C2 · 5 · (⌈δ1n⌉+ 4⌈δ2n⌉) · k then
4: restart
5: end if
6: aq = (2g + 1)/f mod q (restart if f is not invertible)
7: Output (A,S) where A = (a1, q − 2) mod 2q = (2aq, q − 2) mod 2q

Figure 4.10: BLISS Key Generation Algorithm

The signing and verification algorithms

We now present and briefly comment the signing and verification scheme of the BLISS
digital signature [11, Section 4.8].

The main difference with the previous digital signatures schemes is that the public key
consist of two elements in Rq, so we want to produce, in the first step, y = (y1,y2)T ,
where y1,y2 are two polynomials with coefficients distributed according to a centered
discrete Gaussian distribution with std σ. Then, we give Ay mod 2q and µ as input to
the random oracle H just like we did in 4.8 to obtain a challenge c. Finally, we pick a
random bit b, compute z1 = y1 + (−1)bs1c and z2 = y2 + (−1)bs2c and perform rejection
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sampling to accept/reject the pair (z1, z2). If the pair (z1, z2) is accepted we output the
signature pair (z, c) where z = (z1, z2)T follows the Gaussian distribution D2n

σ .
In the BLISS signing algorithm provided in Figure 4.11 Lyubashevsky actually adopts

a signature compression optimization which allows to shrink even more the signature size,
first by dropping the low order bits of z2 and then by employing Huffman encoding [11,
Section 4.7] to compress the highest bits of z1, z2. To carry out this optimization the
signing algorithm present two additional steps.

In the step 2 we compute the first input u = ζ · a1 · y1 + y2 mod 2q of the random
oracle H. The parameter ζ is chosen so that ζA = (ζa1,1), that is ζ · (q − 2) = 1 mod 2q.

In the step 8 we let z†
2 ← (⌊u⌉d − ⌊u− z2⌉d) mod p be the value of z2 with its low-

order bits truncated. The parameter d represent the number of dropped bits, while the
parameter p is defined as p = ⌊2q/2d⌋.

The signature is the triple (z1, z†
2, c). We won’t go into the details of the optimization

procedure.

BLISS Signing Algorithm
Input: Message µ, public key A = (a1, q − 2) ∈ R1×2

2q , secret key S = (s1, s2)T ∈ R2×1
2q

Output: A signature (z1, z†
2, c) of the message µ

1: y1,y2 ← DZn,σ

2: u = ζ · a1 · y1 + y2 mod 2q
3: c← H(⌊u⌉d mod p, µ)
4: Choose a random bit b
5: z1 ← y1 + (−1)bs1c
6: z2 ← y2 + (−1)bs2c
7: Continue with probability

1
MA

M · exp
A
−∥Sc∥2

2σ2

B
· cosh

A
⟨z,Sc⟩
σ2

BB
,

otherwise restart.
8: z†

2 ← (⌊u⌉d − ⌊u− z2⌉d) mod p
9: Output (z1, z†

2, c)

Figure 4.11: BLISS Signing Algorithm

BLISS Verification Algorithm
Input: Message µ, public key A = (a1, q − 2) ∈ R1×2

2q , signature (z1, z†
2, c)

Output: Accept or Reject the signature
1: if ∥z1 | 2d · z†

2∥2 > B2 then Reject
2: if ∥z1 | 2d · z†

2∥∞ > B∞ then Reject
3: Accept iff c = H(⌊ζ · a1 · z1 + ζ · q · c⌉d + z†

2 mod p, µ)

Figure 4.12: BLISS Verification Algorithm
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The verification algorithm in Figure 4.12 is modified accordingly to check that the
l2-norm of z = (z1, z†

2) is lower than some bound B2 and the infinity norm of z = (z1, z†
2) is

lower than some bound B∞. Finally, we check that c = H(⌊ζ ·a1·z1+ζ ·q·c⌉d+z†
2 mod p, µ).

Analysis of the parameters

We report in Table 4.2 the parameters proposed by Lyubashevsky for the BLISS digital
signature scheme [11, Section 5].

Name of the
scheme BLISS-0 BLISS-I BLISS-II BLISS-III BLISS-IV

Security parameter λ ≤ 60 bits 128 bits 128 bits 160 bits 192 bits

Optimized for Fun Speed Size Security Security

n 256 512 512 512 512

q 7681 12289 12289 12289 12289

Secret key densities
δ1, δ2

.55, .15 .3, 0 .3, 0 .42, .03 .45, .06

Gaussian standard
deviation σ = α ·

√
Nκ

100 215 107 250 271

α .5 1 .5 .7 .55

M ≈ exp( 1
2α2 ) 7.4 1.6 7.4 2.8 5.2

κ 12 23 23 30 39

Secret key
Nκ-threshold C

1.5 1.62 1.62 1.75 1.88

Dropped bits d in z2 5 10 10 9 8

Verification thresholds
(B2, B∞) 2492, 530 12872, 2100 11074, 1563 10206, 1760 9901, 1613

Signature size 3.3 kb 5.6 kb 5 kb 6 kb 6.5 kb

Secret key size 1.5 kb 2 kb 2 kb 3 kb 3 kb

Public key size 3.3 kb 7 kb 7 kb 7 kb 7 kb

Table 4.2: Parameters proposal for the BLISS digital signature

The parameters α,M, κ, C and σ. Once we set α, we will directly determine the value
of M because M ≈ exp( 1

2α2 ). The parameters κ and C are chosen by Lyubashevsky so
that only 25% of the secret keys would satisfy the constraint Nκ(S) ≤ C2 · 5 · (d1 + 4d2) ·κ.
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The std σ can be easily computed as the product of α times the bound
√
Nκ, that is

σ = α ·
ñ
C2 · 5 · (d1 + 4d2) · κ.

The keys size. Let’s recall that the secret key is S = (s1, s2)T = (f , 2g + 1)T ∈ R2×1
2q ,

where f ,g ∈ Rq are polynomials with exactly d1 = ⌈δ1n⌉ coefficients in {±1} and exactly
d2 = ⌈δ2n⌉ coefficients in {±2}, while the public key is A = (2aq, q − 2) ∈ R1×2

2q where
aq = s2/s1 = (2g + 1)/f ∈ Rq.

Then, the secret key is composed of two polynomials in which each of the n coefficients
can have a value in {−2,−1, 0,+1,+2}7. For this reason we can determine the secret
key size as 2 · n · ⌈log2 5⌉ (bits). Please note that if δ2 = 0 that’s not true anymore and we
shall determine the secret key size as 2 · n · ⌈log2 3⌉ (bits) because the polynomials f ,g
will be ternary polynomials (with coefficients in {−1, 0,+1}).

In a similar way we can compute the size of the public key. Because we can’t know a
priori the values of the coefficients of aq, we will assume each coefficient takes a value in
Zq. Therefore the public key size is given by approximately8 n · ⌈log2 q⌉ (bits).

The signature size. As previously discussed, Lyubashevsky adopts several techniques
to reduce the signature size through compression. Table 4.2 reports the sizes obtained
with these optimizations. However, we would like to present here the signature sizes
without compression to highlight that they remain relatively short even in the absence of
such optimizations.

To do this, we compute the size of the signature z =(z2, z2) with the usual formula
[n · log2(12σ)] · 2. We obtain the following results:

• BLISS-0: 5.2 kb

• BLISS-I: 11.6 kb

• BLISS-II: 10.5 kb

• BLISS-III: 11.8 kb

• BLISS-IV: 11.9 kb

A performance comparison with RSA and ECDSA digital signatures

Table 4.3 summarizes the performance of the BLISS signature scheme compared with the
very well known classical digital signatures of RSA and ECDSA. The reported values are
from a proof-of-concept implementation on standard 64-bit processor (desktop computer,
Intel Core i7 at 3.4Ghz, 32GB RAM), and BLISS already shows competitive results despite
the absence of heavy optimization. The performance results in table 4.3 are taken from
[11, Section 1], while at [13] there’s the implementation of the BLISS scheme which have
been used for the benchmark.

A first observation is the cost of verification: for all BLISS parameter sets, verification
takes about 0.03 ms, which is remarkably consistent across the different security levels.

7We don’t know a priori the value of each coefficient, so we must represent all the coefficients with the
same number of bits.

8We don’t take into account the second term of the public key (q − 2)

51



The Bimodal Lattice Signature Scheme

This makes BLISS roughly one 10x faster than RSA verification and between 10× and
30× faster than ECDSA verification, depending on the key size.

In terms of signing, the picture is more balanced. BLISS-I achieves a signing time of
0.124 ms, essentially on par with ECDSA-256 (0.106 ms) that offers the same security level.
The Other BLISS variants incur in a little higher signing costs, though they remain within
the same order of magnitude as ECDSA and are considerably faster than high-security
RSA signatures (e.g., RSA-2048 or RSA-4096). An additional consideration is that,
unlike RSA and ECDSA where the signing cost grows proportionally with the targeted
security level, the signing time in BLISS does not scale proportionally with the bit-security
parameter. Instead, it is mainly influenced by the parameter M used in the rejection
sampling step of the signing algorithm, which governs the number of expected attempts to
produce a valid signature. As a consequence, two BLISS variants with the same security
level (BLISS-I and BLISS-II) show noticeably different signing times: the signing time of
BLISS-II is about 4 times larger than the one of BLISS-I, quite reflecting the ratio among
the values of M (MBLISS−I = 1.6,MBLISS−II = 7.4).

Implementation Security Signature Size SK Size PK Size Sign (ms) Sign/s Verify (ms) Verify/s
BLISS-0 60 bits 3.3 kb 1.5 kb 3.3 kb 0.241 4k 0.017 59k
BLISS-I 128 bits 5.6 kb 2 kb 7 kb 0.124 8k 0.030 33k
BLISS-II 128 bits 5 kb 2 kb 7 kb 0.480 2k 0.030 33k
BLISS-III 160 bits 6 kb 3 kb 7 kb 0.203 5k 0.031 32k
BLISS-IV 192 bits 6.5 kb 3 kb 7 kb 0.375 2.5k 0.032 31k
RSA 1024 72-80 bits 1 kb 1 kb 1 kb 0.167 6k 0.004 91k
RSA 2048 103-112 bits 2 kb 2 kb 2 kb 1.180 0.8k 0.038 27k
RSA 4096 ≥ 128 bits 4 kb 4 kb 4 kb 8.660 0.1k 0.138 7.5k

ECDSA 160 80 bits 0.32 kb 0.16 kb 0.16 kb 0.058 17k 0.205 5k
ECDSA 256 128 bits 0.5 kb 0.25 kb 0.25 kb 0.106 9.5k 0.384 2.5k
ECDSA 384 192 bits 0.75 kb 0.37 kb 0.37 kb 0.195 5k 0.853 1k

Table 4.3: Comparison of BLISS, RSA, and ECDSA performance

Regarding key and signature sizes, BLISS signatures are larger than those of ECDSA
(several kilobits versus less than a kilobits), but remain comparable to RSA at equivalent
security levels. For instance, BLISS-I signatures (≈ 5.6 kb) are roughly the same size as
RSA-4096 signatures (≈ 4 kb), both of which aim at 128-bit security. The private key
sizes in BLISS (2–3 kb) are also not significantly larger than their RSA counterparts.

Overall, the comparison highlights two key takeaways. First, BLISS offers much
faster verification than both RSA and ECDSA, which is a strong advantage in real-world
deployments. Second, its signing performance is better than RSA and it’s competitive
with ECDSA at the same security level. The main trade-off lies in the signature size, which
is larger than in classical schemes, but still within acceptable limits for most applications.
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Conclusion

In conclusion, this thesis work provided a detailed explanation of the rejection sampling
techniques and its use in the context of lattice-based digital signatures, as a tool to
achieve independence of the signature from the secret key. Then, with the analysis of the
parameters used in the digital signature from “Lattice Signatures Without Trapdoors” we
highlighted the trade-off between speed and signature size and how rejection sampling
plays a crucial role in this trade.

We showed how with the SIS-based signature scheme and 100 bits of security we were
able to obtain signatures of size of about 100 kb, while with the low-density SIS or LWE
versions of the signature scheme we achieved signatures of size of 15-20 kb. However, we
must take into account that the latter approach requires to find the right balance (i.e.
achieve the same security level) between the low-density SIS and the SIS problems.

We then presented the BLISS signature scheme, that has a more straightforward way
to obtain smaller signatures, that is the adoption of bimodal Gaussian in the rejection
sampling step, without requiring any extra security assumptions beyond the SIS one. On
the one hand, this change entailed the burden of modifying the key-generation approach,
but on the other hand, it allowed us to obtain signatures of about 5-6 kb for 128 bits (and
more) bits of security.

So, the BLISS signature scheme produces signatures whose sizes are much smaller than
those of the signatures produced by the signature scheme of “Lattice Signatures Without
Trapdoors”. Also, the benchmark results showed that the BLISS scheme is competitive
with the classical RSA and ECDSA signatures schemes, especially on signature verification
speed.

Despite these promising results, the main challenge of using Gaussians in the rejection
sampling step is the secure and efficient implementation of a Gaussian sampler1, especially
in constrained devices with limited memory and power [11].

Future thesis work

A possible continuation of this thesis project is to explore the techniques used by Lyuba-
shevsky to obtain efficient lattice-based zero-knowledge proofs, in particular the ABDLOP
commitment scheme and the Johnson-Lindenstrauss lemma . The underlying problem,
strictly related to the lattice-based identification scheme — the one that is transformed into

1The Gaussian sampler is required to sample y in the first step of the signing algorithm
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the digital signature schemes analyzed in this thesis work — developed by Lyubashevsky
is illustrated in Appendix B.

54



Appendix A

Python Scripts

We will provide only the relevant python scripts used for the experiments whose results
are shown in the chapters.

A.1 Scripts used for Chapter 3

1 import numpy as np
2 import matplotlib . pyplot as plt
3 from scipy.stats import beta , uniform
4
5 # Parameters
6 alpha = 2
7 beta_param = 4
8 a = 0
9 b = 1

10 M = 2.2 # scaling factor
11 x0 = 0.5 # sampled x value
12
13 # Generate 500 x values
14 x = np. linspace (0, 1, 500)
15
16 # PDF values
17 beta_pdf = beta.pdf(x, alpha , beta_param )
18 uniform_pdf = uniform .pdf(x, loc=a, scale=b-a) * M
19
20 # Evaluate at x0
21 f_x0 = beta.pdf(x0 , alpha , beta_param )
22 Mg_x0 = uniform .pdf(x0 , loc=a, scale=b-a) * M
23
24 # Plot Beta (2 ,4) in blue
25 plt. figure ( figsize =(6, 4))
26 plt.plot(x, beta_pdf , color='blue ', lw=2, label=f'Beta ({ alpha },{

beta_param })')
27
28 # Plot scaled Uniform in orange
29 plt.plot(x, uniform_pdf , color='orange ', lw=2, label=f'M* Uniform

({a},{b}) ')
30
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31 # Draw vertical lines for the Uniform boundaries
32 plt. vlines (x=a, ymin =0, ymax=max( uniform_pdf ), colors ='orange ',

linestyles ='--')
33 plt. vlines (x=b, ymin =0, ymax=max( uniform_pdf ), colors ='orange ',

linestyles ='--')
34
35 # Mark the points f(x0) and Mg(x0)
36 plt. scatter (x0 , f_x0 , color='blue ', zorder =5)
37 plt. scatter (x0 , Mg_x0 , color='orange ', zorder =5)
38
39 # Add labels near points
40 plt.text(x0 + 0.02 , f_x0 , r"$f(x_0)$", color='blue ', fontsize =10,

va='center ')
41 plt.text(x0 + 0.02 , Mg_x0 -0.08 , r"$M g(x_0)$", color='orange ',

fontsize =10, va='center ')
42
43 # Add green evaluation line from f(x0) to Mg(x0)
44 plt. vlines (x=x0 , ymin =0, ymax=Mg_x0 , colors ='green ', lw =2)
45
46 # Labels and styling
47 plt.title(f'Rejection Sampling : Beta ({ alpha },{ beta_param }) and M*

Uniform ({a},{b}) ')
48 plt. xlabel ('x')
49 plt. ylabel ('Density ')
50 plt.ylim (0, max( uniform_pdf ) * 1.1)
51 plt.grid(True , linestyle ='--', alpha =0.6)
52 plt. legend ()
53 plt.show ()

Listing A.1: script that generates Figure 3.5

1 import numpy as np
2 import matplotlib . pyplot as plt
3 from scipy.stats import beta , uniform
4
5 # Parameters
6 alpha = 2
7 beta_param = 4
8 a = 0
9 b = 1

10 M = 2.2
11 n_samples = 1000
12
13 # Proposal distribution g(x) = Uniform (a,b)
14 def g_pdf(x):
15 return uniform .pdf(x, loc=a, scale=b-a)
16
17 # Target distribution f(x) = Beta(alpha , beta_param )
18 def f_pdf(x):
19 return beta.pdf(x, alpha , beta_param )
20
21 # --- Rejection sampling ---
22 # sample X ~ g, draw U ~ Unif (0 ,1) , set Y = U * M * g(X)
23 x_proposals = np. random . uniform (a, b, size= n_samples )
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24 u = np. random . uniform (0, 1, size= n_samples )
25 y_props = u * (M * g_pdf( x_proposals ))
26
27 # Accept if Y <= f(X)
28 f_at_x = f_pdf( x_proposals )
29 accept_mask = y_props <= f_at_x
30
31 # Separate accepted and rejected samples for plotting
32 x_accept = x_proposals [ accept_mask ]
33 y_accept = y_props [ accept_mask ]
34 x_reject = x_proposals [~ accept_mask ]
35 y_reject = y_props [~ accept_mask ]
36
37 # Prepare curves for plotting
38 x = np. linspace (0, 1, 500)
39 f_curve = f_pdf(x)
40 Mg_curve = M * g_pdf(x)
41
42 # Plot
43 plt. figure ( figsize =(7, 5))
44 plt.plot(x, f_curve , color='blue ', lw=2, label=f'Beta ({ alpha },{

beta_param })')
45 plt.plot(x, Mg_curve , color='orange ', lw=2, label=f'{M} * Uniform

({a},{b}) ')
46
47 # Draw vertical lines for uniform boundaries
48 plt. vlines (x=a, ymin =0, ymax=max( Mg_curve ), colors ='orange ',

linestyles ='--')
49 plt. vlines (x=b, ymin =0, ymax=max( Mg_curve ), colors ='orange ',

linestyles ='--')
50
51 # Scatter the darts under the envelope in blue ( accepted ) and red

( rejected )
52 plt. scatter (x_accept , y_accept , color='blue ', s=12, alpha =0.7 ,

label='Accepted ')
53 plt. scatter (x_reject , y_reject , color='red ', s=12, alpha =0.7 ,

label='Rejected ')
54
55 # Labels and styling
56 plt.title('Rejection Sampling Visualization ')
57 plt. xlabel ('x')
58 plt. ylabel ('Density ')
59 plt.ylim (0, max( Mg_curve ) * 1.1)
60 plt.grid(True , linestyle ='--', alpha =0.6)
61 plt. legend ()
62 plt.show ()
63
64 # Print empirical acceptance rate
65 print(f" Acceptance rate ≈ { accept_mask .mean () :.3f} ( expected ~ 1/

M = {1/M:.3f})")

Listing A.2: script that generates Figure 3.6

1 import numpy as np
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2 import matplotlib . pyplot as plt
3
4 # Parameters
5 z_values = np. arange (-11, 12) # z in {-11, ..., 11}
6 M = 1.11
7 n_samples = 2000
8
9 # Proposal g(z)

10 g_probs = np. zeros_like (z_values , dtype=float )
11 g_probs [ z_values == -11] = 1/63
12 g_probs [ z_values == 11] = 1/63
13 g_probs [ z_values == -10] = 2/63
14 g_probs [ z_values == 10] = 2/63
15 mask_inner = ( z_values >= -9) & ( z_values <= 9)
16 g_probs [ mask_inner ] = 3/63
17
18 # Target f(z)
19 f_probs = np. zeros_like (z_values , dtype=float )
20 mask_target = ( z_values >= -9) & ( z_values <= 9)
21 f_probs [ mask_target ] = 1/19
22
23 # ----- Discrete rejection sampling -----
24 x_accept , y_accept = [], []
25 x_reject , y_reject = [], []
26
27 for _ in range( n_samples ):
28 z = np. random . choice (z_values , p= g_probs )
29 u = np. random . uniform (0, 1)
30 y = u * M * g_probs [ z_values == z][0]
31 if y <= f_probs [ z_values == z][0]:
32 x_accept . append (z)
33 y_accept . append (y)
34 else:
35 x_reject . append (z)
36 y_reject . append (y)
37
38 # Plot
39 plt. figure ( figsize =(10 ,5))
40
41 # Continuous line for proposal scaled by M
42 plt.plot(z_values , M*g_probs , color='orange ', lw=2, marker ='o',

label=f"M*g(z)")
43
44 # Continuous line for target only within [-9, 9]
45 plt.plot( z_values [ mask_target ], f_probs [ mask_target ], color='blue

', lw=2, marker ='x', label="f(z)")
46
47 # Scatter the darts in green ( accepted ) and red ( rejected )
48 plt. scatter (x_accept , y_accept , color='green ', s=20, alpha =0.7 ,

label='Accepted ')
49 plt. scatter (x_reject , y_reject , color='red ', s=20, alpha =0.5 ,

label='Rejected ')
50
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51 # Labels and styling
52 plt.title(" Rejection Sampling with discrete Uniform target

distribution ")
53 plt. xlabel ("z")
54 plt. ylabel (" Density ")
55 plt.grid(True , linestyle ='--', alpha =0.6)
56 plt. legend ()
57 plt.show ()
58
59 # Print empirical acceptance rate
60 acceptance_rate = len( x_accept )/ n_samples
61 print(f" Acceptance rate ≈ { acceptance_rate :.3f} ( expected ~ 1/M =

{1/M:.3f})")

Listing A.3: script that generates Figure 3.8

1 import numpy as np
2 import matplotlib . pyplot as plt
3 from scipy.stats import uniform , truncnorm , triang
4
5 # Support
6 x = np. linspace (-8, 8, 2000)
7
8 # --- Proposal distributions and their samplers ---
9

10 rng = np. random . default_rng (123) # RNG for sampling output values
11
12 # 1. Uniform (-8, 8)
13 g1 = uniform .pdf(x, loc=-8, scale =16)
14 sampler1 = lambda : rng. uniform (-8, 8)
15
16 # 2. Truncated Gaussian N(0, 4.5^2) in [-8, 8]
17 sigma = 4.5
18 a, b = -8/sigma , 8/ sigma
19 g2 = truncnorm .pdf(x, a, b, loc =0, scale=sigma)
20 sampler2 = lambda : truncnorm .rvs(a, b, loc =0, scale=sigma ,

random_state =rng)
21
22 # 3. Triangular (-8, 8, mode =0)
23 # scipy 's triang takes c = (mode - loc)/scale
24 c = (0 - (-8)) / 16
25 g3 = triang .pdf(x, c=c, loc=-8, scale =16)
26 sampler3 = lambda : rng. triangular (-8, 0, 8)
27
28 # --- Draw samples directly from proposals (no rejection sampling

) ---
29 samples1 = [ sampler1 () for _ in range (2000) ]
30 samples2 = [ sampler2 () for _ in range (2000) ]
31 samples3 = [ sampler3 () for _ in range (2000) ]
32
33 # --- Plot results ---
34 plt. figure ( figsize =(14 , 4))
35
36 # Proposal 1

59



Python Scripts

37 plt. subplot (1, 3, 1)
38 plt.hist(samples1 , bins =30, density =True , alpha =0.6 , color="

orange ", label=" Samples from g1")
39 plt.plot(x, g1 , color="black", lw=2, label="PDF g1")
40 plt.title(" Uniform distribution ")
41 plt. legend ()
42
43 # Proposal 2
44 plt. subplot (1, 3, 2)
45 plt.hist(samples2 , bins =30, density =True , alpha =0.6 , color="green

", label=" Samples from g2")
46 plt.plot(x, g2 , color="black", lw=2, label="PDF g2")
47 plt.title(" Truncated Gaussian distribution ")
48 plt. legend ()
49
50 # Proposal 3
51 plt. subplot (1, 3, 3)
52 plt.hist(samples3 , bins =30, density =True , alpha =0.6 , color="red",

label=" Samples from g3")
53 plt.plot(x, g3 , color="black", lw=2, label="PDF g3")
54 plt.title(" Triangular distribution ")
55 plt. legend ()
56
57 plt. tight_layout ()
58 plt.show ()

Listing A.4: script that generates Figure 3.9

1 import numpy as np
2 import matplotlib . pyplot as plt
3 from scipy.stats import uniform , norm , triang
4
5 # Support
6 x = np. linspace (-8, 8, 2000)
7
8 # --- Proposal distributions ---
9

10 # 1. Uniform (-8, 8)
11 g1 = uniform .pdf(x, loc=-8, scale =16)
12
13 # 2. Truncated Gaussian N(0, 4.5^2) in [-8, 8]
14 sigma = 4.5
15 g2 = norm.pdf(x, loc =0, scale=sigma)
16 # normalize over [-8,8]
17 Z2 = np. trapezoid (g2 , x)
18 g2 /= Z2
19
20 # 3. Triangular (-8, 8, mode =0)
21 # scipy 's triang takes c = (mode - loc)/scale
22 c = (0 - (-8)) / 16
23 g3 = triang .pdf(x, c=c, loc=-8, scale =16)
24
25 # --- Target distribution : Raised Cosine ---
26 f = (5 + 5 * np.cos(np.pi * x / 8))
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27
28 f /= np. trapezoid (f, x) # normalize to integrate to 1
29
30 # --- Envelopes ( constants chosen manually after empirical

evaluation ) ---
31 M1 , M2 , M3 = 2.05 , 1.35 , 1.2
32 Mg1 , Mg2 , Mg3 = M1 * g1 , M2 * g2 , M3 * g3
33
34 # --- Plot ---
35 plt. figure ( figsize =(8 ,5))
36
37 plt.plot(x, Mg1 , label=" Proposal g1: Uniform (-8,8)", color="

orange ")
38 plt.plot(x, Mg2 , label=" Proposal g2: Truncated Gaussian (0, 4.5)",

color="green")
39 plt.plot(x, Mg3 , label=" Proposal g3: Triangular (-8,8, mode =0)",

color="red")
40 plt.plot(x, f, label=" Target f: Raised Cosine (µ=0, s=8)", color="

blue", lw =2)
41
42 plt.title(" Scaled Proposal Distributions and Target Distribution "

)
43 plt. xlabel ("x")
44 plt. ylabel (" Density ")
45 plt. legend ()
46 plt.grid(alpha =0.3)
47 plt.show ()

Listing A.5: script that generates Figure 3.10

1 import numpy as np
2 import matplotlib . pyplot as plt
3 from scipy.stats import triang , truncnorm
4
5 # Support
6 x = np. linspace (-8, 8, 2000)
7
8 # --- Target distribution : Raised Cosine ---
9 f = 5 + 5 * np.cos(np.pi * x / 8)

10 f /= np. trapezoid (f, x) # normalize to integrate to 1
11
12 # --- Envelopes ( constants chosen manually after empirical

evaluation ) ---
13 M1 , M2 , M3 = 2.05 , 1.35 , 1.2
14
15 # --- Rejection sampling procedure ---
16 rng = np. random . default_rng (123) # RNG for sampling output values
17
18 def rejection_sampling (pdf , sampler , M, f, x_support , n_samples

=2000) :
19 accepted = []
20 while len( accepted ) < n_samples :
21 # sample from proposal
22 z = sampler ()
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23 # evaluate densities
24 g_z = pdf(z)
25 f_z = np. interp (z, x_support , f)
26 # sample from uniform (0, M*g(z))
27 u = rng. uniform (0, M * g_z)
28 if u <= f_z:
29 accepted . append (z)
30 return np.array( accepted )
31
32 # --- Sampler and PDF for each proposal distribution ---
33
34 # 1. Uniform (-8, 8)
35 sampler1 = lambda : rng. uniform (-8, 8)
36 pdf1 = lambda z: 1/16 if -8 <= z <= 8 else 0
37
38 # 2. Truncated Gaussian N(0, 4.5^2) in [-8, 8]
39 sigma = 4.5
40 a, b = -8/sigma , 8/ sigma # standardized bounds
41 sampler2 = lambda : truncnorm .rvs(a, b, loc =0, scale=sigma ,

random_state =rng)
42 pdf2 = lambda z: truncnorm .pdf(z, a, b, loc =0, scale=sigma)
43
44
45 #3. Triangular (-8, 8, mode =0)
46 # scipy 's triang takes c = (mode - loc)/scale
47 c = (0 - (-8)) / 16 # mode at 0
48 sampler3 = lambda : rng. triangular (left =-8, mode =0, right =8)
49 pdf3 = lambda z: triang .pdf(z, c=c, loc=-8, scale =16)
50
51 # --- Perform rejection sampling step ---
52 samples1 = rejection_sampling (pdf1 , sampler1 , M1 , f, x, n_samples

=2000)
53 samples2 = rejection_sampling (pdf2 , sampler2 , M2 , f, x, n_samples

=2000)
54 samples3 = rejection_sampling (pdf3 , sampler3 , M3 , f, x, n_samples

=2000)
55
56 # --- Plot results ---
57 plt. figure ( figsize =(14 , 4))
58
59 # Proposal 1
60 plt. subplot (1, 3, 1)
61 plt.hist(samples1 , bins =30, density =True , alpha =0.6 , color="

orange ", label=" Samples from g1")
62 plt.plot(x, f, color="blue", lw=2, label=" Target f(x)")
63 plt.title(" Rejection Sampling with Proposal g1 ( Uniform )")
64 plt. legend ()
65
66 # Proposal 2
67 plt. subplot (1, 3, 2)
68 plt.hist(samples2 , bins =30, density =True , alpha =0.6 , color="green

", label=" Samples from g2")
69 plt.plot(x, f, color="blue", lw=2, label=" Target f(x)")
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70 plt.title(" Rejection Sampling with Proposal g2 ( Truncated
Gaussian )")

71 plt. legend ()
72
73 # Proposal 3
74 plt. subplot (1, 3, 3)
75 plt.hist(samples3 , bins =30, density =True , alpha =0.6 , color="red",

label=" Samples from g3")
76 plt.plot(x, f, color="blue", lw=2, label=" Target f(x)")
77 plt.title(" Rejection Sampling with Proposal g3 ( Triangular )")
78 plt. legend ()
79
80 plt. tight_layout ()
81 plt.show ()

Listing A.6: script that generates Figure 3.11

A.2 Scripts used for Chapter 4

1 import numpy as np
2 import matplotlib . pyplot as plt
3 from scipy.stats import norm
4 import math
5
6 # Parameters
7 v = 10
8 alpha = 12 #=2 for Figure 4.2 or =4 for Figure 4.4 or =12 for

Figure 4.5
9 sigma = alpha*v

10 M = math.e # scaling factor
11
12 # X range wide enough to capture both distributions
13 x = np. linspace (-5* sigma , 10* sigma , 5000)
14
15 # Compute PDFs
16 pdf_centered = norm.pdf(x, loc =0, scale=sigma)
17 pdf_shifted_scaled = M * norm.pdf(x, loc=-v, scale=sigma)
18
19 # Plot Gaussian centered at 0
20 plt.plot(x, pdf_centered , color="red", lw=2,
21 label=rf" Target $D_ {{0 ,{ sigma }}}$")
22
23 # Plot scaled Gaussian centered at -v
24 plt.plot(x, pdf_shifted_scaled , color="black", lw=2,
25 label=rf" $Scaled \ M \cdot D_{{-{v},{ sigma }}}$")
26
27 # Vertical guide lines at 0 and -v
28 for c in [0, -v]:
29 plt. axvline (c, color="black", lw=1, ls=":")
30
31 # Axis styling
32 plt. xlabel ("x", fontsize =12)
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33 plt. ylabel (" Density ", fontsize =12)
34 plt.title(rf" Gaussian distributions with $v={v},\ \sigma ={ sigma

},\ M=e$", fontsize =13)
35
36 # Show x values and density values
37 plt. xticks ( fontsize =10)
38 plt. yticks ( fontsize =10)
39
40 # Custom label for -v to not overlap with 0
41 ymin , ymax = plt.ylim ()
42
43 #plt.text(-v-10, ymin - 0.05*( ymax -ymin), r"$-v$",
44 # ha=" center ", va=" bottom ", fontsize =11) # uncomment if

using alpha = 2 or 4
45
46 plt.text(-v-40, ymin - 0.05*( ymax -ymin), r"$-v$",
47 ha=" center ", va=" bottom ", fontsize =11) # uncomment if

using alpha = 12
48
49 plt. legend ( fontsize =11, frameon =True)
50 plt.grid(False)
51 plt. tight_layout ()
52 plt.show ()

Listing A.7: script that generates Figure 4.2a, Figure 4.4a and Figure 4.5

1 import numpy as np
2 import matplotlib . pyplot as plt
3 from scipy.stats import norm
4 import math
5
6 # Parameters
7 v = 10
8 alpha = 1/ math.sqrt (2)
9 sigma = alpha * v

10 M = math.e # scaling factor
11
12 # X range wide enough to capture both distributions
13 x = np. linspace (-5 * sigma , 5 * sigma , 5000)
14
15 # Compute PDFs
16 pdf_target = norm.pdf(x, loc =0, scale=sigma)
17 pdf_proposal = 0.5 * norm.pdf(x, loc=-v, scale=sigma) + \
18 0.5 * norm.pdf(x, loc =+v, scale=sigma)
19 pdf_shifted_scaled = M * pdf_proposal
20
21 # Plot Gaussian centered at 0
22 plt.plot(x, pdf_target , color="red", lw=2,
23 label=rf" Target $D_ {{0 ,\ sigma }}$")
24
25 # Plot scaled bimodal with modes in -v and +v
26 plt.plot(x, pdf_shifted_scaled , color="black", lw=2,
27 label=rf" $Scaled \ M \cdot (\ frac {{1}}{{2}} D_{{-v, \

sigma }} + \frac {{1}}{{2}} D_{{v,\ sigma }})$")
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28
29 # Vertical guide lines at 0, -v, +v
30 for c in [0, -v, v]:
31 plt. axvline (c, color="black", lw=1, ls=":")
32
33 # Axis styling
34 plt. xlabel ("x", fontsize =12)
35 plt. ylabel (" Density ", fontsize =12)
36 plt.title(rf"The scaled bimodal Gaussian distribution ($v={v}$, $

\sigma ={ sigma :.3f},\ M=e$)", fontsize =13)
37
38 # Show x values and density values
39 plt. xticks ( fontsize =10)
40 plt. yticks ( fontsize =10)
41
42 # Custom labels for -v and +v
43 ymin , ymax = plt.ylim ()
44 plt.text(-v, ymin + 0.001 , r"$-v$",
45 ha=" center ", va=" bottom ", fontsize =11)
46 plt.text (+v, ymin + 0.001 , r"$+v$",
47 ha=" center ", va=" bottom ", fontsize =11)
48
49 # Legend
50 plt. legend ( fontsize =11, frameon =True)
51 plt.grid(False)
52 plt. tight_layout ()
53 plt.show ()

Listing A.8: script that generates Figure 4.7
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Appendix B

Future thesis work

Our goal in this appendix is to discuss the identification scheme developed by Lyubashevsky,
because even though it can be transformed into a digital signature scheme, the scheme
does not really satisfy all the properties of a Σ-protocol. The identification scheme has
been recently discussed by Lyubashevsky, in the context of zero-knowledge proofs, at the
Simons Institute for Theory of Computing in Berkeley, California (2022) [14] and in a
workshop at the Institute Henri Poincaré in Paris, France (2024) [15].

B.1 Lyubashevsky’s lattice-based identification pro-
tocol

The sketch of the identification scheme is shown in Figure B.1 we consider all the elements
of the scheme over the ring Zq[X]/(Xn + 1). The secret key is an element s such that
As = t mod q and ||s|| is small, where the pair (A, t) is the public key.

Prover((A, t), s) Verifier(A, t)

small y $← D

w = A · y
w

small c $← Rq
c

z := y + cs

rejection sample, and
eventually restart z

Az
?= w + tc mod q

and ||z|| is small

Figure B.1: Lyubashevsky’s lattice-based identification protocol
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B.1.1 The limit of extractability in Lyubashevsky’s identification
scheme

We can see that this identification protocol is quite similar to the Schnorr identification
protocol, in fact Lyubashevsky was inspired by Schnorr’s identification scheme to build
his lattice-based one. Despite the similarity, Lyubashevsky’s identification scheme doesn’t
fully satisfy the properties of a Σ-protocol. Let’s check what is the matter with the
properties of a Σ-protocol.

Completeness. If the prover and verifier behave honestly, the verifier always accepts.
Indeed, Az = Ay +Asc = w+ tc since w = Ay and t = As, and the norm of z = sc+ y is
small because s, c are small and y is a small polynomial drawn according to the distribution
D.

Honest-Verifier Zero-Knowledge. The interaction between the prover and the verifier
does not leak any information about the secret: as we know, thanks to rejection sampling,
the response z is made independent of the secret s

Special Soundness. This is the property that it’s not fully achieved. Let’s see what can
we extract given two valid transcripts (w, c, z) and (w, c′, z′) with c /= c′. Since the verifier
accepts the transcripts we can write Az = w+ tc mod q and Az′ = w+ tc′ mod q, then we
can subtract the first identity from the second identity and obtainA(z′−z) = t(c−c′) mod q.
We can rewrite it as Az = tc mod q.

And that’s where we stop since we can’t really divide z by c, because the result it’s not
guaranteed to be small. Thus, we can only say that we prove the knowledge of a small z
such that Az = tc mod q for some c, but ||z|| ≥ ||s||.

Such proofs of knowledge are good enough for constructing basic protocols like digital
signatures, but they are not sufficient for building more complex protocols for which you
are required to prove the knowledge of some function of the secret itself. Let’s explain
this more in details.

Consider the case of the basic digital signature protocol. Proving knowledge of (z, c)
is enough because the security relies on the unforgeability of a valid signature: we care
that an adversary cannot forge a valid signature without knowledge of a valid witness.
So if an adversary is able to forge a valid signature (z, c) and he can produce another
signature (z′, c′) for the same message then, as we know from the security reduction in
figure 3.13, he can set z = z − z′ and c = c− c′ and obtain a SIS solution as Az + tc = 0.
Thus, by proving knowledge of a valid witness (z, c) such that Az = tc you prove that
you can really create valid signatures, otherwise it would mean that you can solve SIS,
which is impossible.

But for other applications, like verifiable encryption, it’s not enough [16]. Suppose that
As = t is an encryption where t is the ciphertext and s is the message (with randomness),
and we can only prove knowledge of some (z, c) such that Az = tc. In order to decrypt, it
is necessary for t to have a short preimage, so proving knowledge of (z, c) is not enough
to guarantee that the ciphertext t can be decrypted because it is tc that has a short
preimage, not t, and c is not known by the decryptor. A consequence of this is that the
currenlty most efficient verifiable encryption scheme [17] has an expected decryption time
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equal to the one of an adversary who tries to break the scheme because the decryptor
essentially need to guess c to recover s = z/c.

Thus proving knowledge of (z, c) it’s not good enough for actual proofs of knowledge
because eventually you want to prove that you have some function f(s) of s, meaning
that you really need to prove knowledge of s as the short preimage of f(s).

B.1.2 The need for a commitment scheme
To solve that issue we need to rely on a commitment scheme that allow us to prove
properties about the committed values, in particular the short secret s.

Indeed, Lyubashevsky develops a new general commitment scheme called ABDLOP
commitment scheme, which is used along with techniques such as inner products, linear
proofs over Zq, quadratic proofs over Zq, approximate range proofs and the Johnson-
Lindenstrauss lemma, to provide an efficient framework for lattice-based zero-knowledge
proofs.

Then, with the intention of continuing to study Lyubashevsky’s techniques and frame-
works, one could go into detail of the work "Lattice-Based Zero-Knowledge Proofs and
Applications: Shorter, Simpler, and More General" [16].
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Video timestamps

C.1 Talks about digital signatures [5] [6]
C.1.1 Timestamps of the lecture at the UCI Workshop (2013)
Link: https://www.youtube.com/watch?v=D-IQcoj0kdo

• 07:40 - the Ring-SIS problem

• 13:00 - the identification scheme

• 20:40 - the secret and the response must be independent

• 24:00 - proof of security of the identification scheme

• 31:30 - the idea of rejection sampling

• 38:00 - rejection sampling over the coefficients

• 46:30 - rejection sampling with Gaussian distribution

• 54:00 - the bimodal Gaussian idea

C.1.2 Timestamps of the lecture at Microsoft (2016)
Link: https://www.youtube.com/watch?v=F9RQ-SxtkBQ

• 01:00 - lattice hard problems

• 11:00 - the GVP hash and sign signature

• 23:30 - fiat-shamir digital signature and proof of security

• 34:00 - why we want to based our digital signature on both SIS and LWE

• 37:00 - rejection sampling with Gaussian distribution

• 47:00 - rejection sampling with bimodal Gaussian idea

71

https://www.youtube.com/watch?v=D-IQcoj0kdo
https://www.youtube.com/watch?v=F9RQ-SxtkBQ


Video timestamps

C.2 Talks about zero-knowledge proofs [14] [15]
C.2.1 Timestamps of the lecture at Simons Institute (2022)
Link: https://www.youtube.com/watch?v=xEDZ4tyesMY

• 08:00 - recall Schnorr identification scheme

• 15:30 - why we don’t prove exactly to know the short vector s, analysis of soudness
property

• 19:00 - the proof is enough for digital signature schemes, but not for non-basic
schemes like encryption

• 22:55 - the necessity of a commitment scheme

• 33:40 - recall the Ajtai and the BDLOP commitment schemes

• 40:00 - the (new) ABDLOP commitment scheme

• 44:00 - inner products

• 47:00 - proving knowledge of the constant coefficient of a linear function over Rq (is
equivalent to proving linear relations over Zq)

• 54:00 - proving linear functions over Z

• 54:00 - proving quadratic relations

C.2.2 Timestamps of the workshop at Institute Henri Poincaré
(2024)

Link: https://www.carmin.tv/en/video/lattices-and-zero-knowledge

• 08:30 - presentation of the lattice based identification scheme as a zero knowledge
proof of the secret key s such that As = t

• 14:30 - we don’t prove exactly knowledge of s such that As = t

• 15:00 - the Ajtai commitment scheme

• 16:30 proving linear relations over Zp[X]/(Xn + 1)

• 35:00 - proving quadratic relations over Zp[X]/(Xn + 1)

• 41:30 - proving knowledge of s such that As=t and ||s|| = β, for some value β.

• 46:00 - succint proofs
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