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Abstract

This work presents GETALP-Mistral7B, a clinical large language model designed to
automatically generate discharge documentation. Leveraging patients’ Electronic
Health Records (EHRs), the model generates two central sections of a discharge
summary: the hospital course and the discharge instructions.

EHRs are usually stored in structured formats that differ across hospitals [1, 2,
3, 4, 5, 6, 7]. To ensure interoperability across heterogeneous systems, EHRs were
transformed into two task-specific textual documents: the diary for generating the
hospital course, the patient summary for producing the discharge instructions.

GETALP-Mistral7B is fine-tuned from Asclepius-Mistral7B [8] using encounters
from the Beth Israel Deaconess Medical Center (MIMIC-IV [9]). Quantized low
rank adaptation (QLoRA) [10] is used to fine-tune the model separately for each
section, yielding two specialized lightweight adapters while keeping the base model
weights frozen.

GETALP-Mistral7B is benchmarked against models from the first shared task
on clinical text generation: Discharge-Me! [11, 12]. Evaluation is conducted using
the challenge’s framework, which consists of a held-out set of 250 examples and
eight NLP metrics assessing lexical similarity, semantic adequacy, and factual
correctness. GETALP-Mistral7B achieves an overall score of 0.393, establishing it
as the state-of-the-art for generating discharge documentation.
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Glossary

Asclepius

A publicly shareable clinical language model developed to overcome the pri-
vacy constraints of real clinical notes. Trained on a large corpus of syn-
thetic discharge-style notes derived from anonymized case reports, Asclepius
demonstrates strong performance across diverse clinical tasks and supports
task-specific adaptation. In this study, it is referred to as base model or
(clinical) foundation model because it serves as the starting point for fine-
tuning GETALP models. Specifically, Asclepius-Llama3-8B was fine-tuned
to produce GETALP-Llama3-8B, and Asclepius-Mistral7B was fine-tuned to
produce GETALP-Mistral7B.

Beth Israel Deaconess Medical Center

A major teaching hospital of Harvard Medical School in Boston, Massachusetts.
It is the primary source of the clinical data found in the MIMIC-IV database.

care provider

A care provider (CP) is a physician, nurse practitioner, physician assistant, or
other licensed healthcare professional responsible for managing and delivering
patient care. In this study, we categorize CPs into two groups based on the
patient’s care setting: ICPs, who provide care during hospital stays, and
OCPs, who provide care when patients are not hospitalized (outpatient).

diary

A document deployed in this study, used as input to generate the hospital
course for a given patient. It presents clinical events in chronological order,
grouped by date. An example is provided in Appendix A.2.

discharge instructions

A section of the discharge summary intended to communicate to the patient
(and their caregivers) critical information regarding post-hospital care. It
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includes instructions on medication use, follow-up appointments, lifestyle
changes, symptom monitoring, and when to seek emergency care. The goal of
discharge instructions is to ensure that patients understand their care plan
and adhere to post-discharge recommendations in order to reduce readmissions
and promote recovery. It’s one of the two target section of this study.
Synonyms: post-care instructions

discharge summary

A narrative clinical document summarizing the key events, diagnoses, and
care plan from an inpatient stay, intended to support seamless transitions to
outpatient or post-acute care. The discharge summary plays a critical role
in facilitating continuity of care and ensuring that important information is
communicated between healthcare providers. It is divided into many sections.
Two of them are the focus of this study: hospital course and discharge
instructions

Discharge-Me!

The Discharge-Me! challenge is a shared task designed to reduce the time
and effort clinicians spend on writing discharge summaries. Participants are
asked to develop clinical AI-assistants to generate the brief hospital course
and discharge instructions sections of BIDMC’s discharge summaries. This
work is inspired by this challenge.

electronic health record

Digital version of a patient’s medical chart, containing comprehensive health
information accessible to authorized healthcare providers. It’s a real-time,
patient-centered repository that facilitates seamless information sharing and
decision-making. EHRs are designed to be used by multiple care providers
and healthcare organizations

GETALP-Mistral7B

The state-of-the-art model developed in this study, which excels in comparison
to models from the Discharge-Me! challenge. It is fine-tuned to generate hospi-
tal course and discharge instructions from specialized input documents (diary
and patient summary, respectively). The model is based on the Asclepius-
Mistral7B, and was adapted using QLoRA-based instruction fine-tuning. The
architecture includes two lightweight adapters, each dedicated to one of the
two generation tasks. The name originates from the name for the research
group which created it, GETALP, and the 7 billion parameter version of the
Mistral.
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GETALP-Llama3-8B

A model developed in this study, which performs better than GETALP-
Mistral7B in predicting hospital course and does not suffer from text de-
generation. Despite obtaining lower overall automatic scores compared to
GETALP-Mistral7B, it still outperforms all other models from the Discharge-
Me! challenge. Like its sibling, it is fine-tuned to generate hospital course and
discharge instructions from specialized input documents (diary and patient
summary, respectively). The model is based on the Asclepius-Llama3-8B foun-
dation model, and was adapted using QLoRA-based instruction fine-tuning.
The architecture includes two lightweight adapters, each dedicated to one of
the two generation tasks. The name originates from the name for the research
group which created it, GETALP, and the 8 billion parameter version of
Llama3.

GitHub

A hosting service for version control and collaborative software development.
The code of with this work is stored at github.com/pantaleo18/discharge-me.
Access to the repository may be temporarily restricted, as the process of
removing information protected by the PhysioNet DUA from the development
Jupyter notebooks may still be ongoing at the time of reading.

hospital course

A part of the discharge summary that summarizes key events from admission
to discharge, detailing all the events that characterized a patient’s inpatient
stay. This includes significant diagnoses, treatments, complications, and any
changes in the patient’s condition. HC is one of the two target section of this
study.

Health Insurance Portability and Accountability Act

A United States law enacted in 1996 that provides data privacy and security
provisions for safeguarding medical information. In this work, HIPAA compli-
ance is critical for ensuring patient data remains secure and confidential when
using automated systems.

Hugging Face

A collaborative platform for sharing AI models and datasets. Models and
databases related to this work are stored on HF, but are not publicly available
due to the PhysioNet DUA protecting MIMIC-IV. Website: huggingface.co
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inpatient care provider

Inpatient Care Providers (ICPs) are CPs who oversee patient care during
hospitalizations. ICPs are typically hospitalists, specialists, or residents. They
are primarily responsible for preparing DSs that summarize the care delivered
during the hospital stay.

MIMIC-IV

The Medical Information Mart for Intensive Care, fourth (IV) edition, is a
large, publicly available database containing deidentified health-related data.
The data originates from patients admitted to the intensive care units of the
Beth Israel Deaconess Medical Center.

MIMIC-IV-ED

The ED module contains data from the Emergency Department. It captures
patient triage, diagnoses, medications, vital signs, and emergency department
stays. Each stay is identified by a unique stay_id. Tables (with italic
indicating those used in this study): edstays, medrecon, triage, diagnosis, pyxis,
vitalsigns.

MIMIC-IV-HOSP

The HOSP module contains data collected from the hospital-wide electronic
health record (EHR). Tables (with italic indicating those used in this study):
admissions, patients, transfers, labevents, microbiologyevents, prescriptions,
pharmacy, procedures_icd, poe, drgcodes, diagnoses_icd, services, hcpcsevents,
omr, emar, provider, poe_detail.

MIMIC-IV-NOTE

The NOTE module stores unstructured clinical notes, mainly discharge sum-
maries and radiology reports. Discharge summaries contain detailed accounts
of hospitalizations, while radiology reports provide formal interpretations of
imaging tests. Both are linked to hospital admissions via hadm_id. Tables
(with italic indicating those used in this study): discharge, radiology.

outpatient care provider

Outpatient Care Providers (OCPs) are CPs who provide care when patients are
not hospitalized (outpatient). OCPs are the main recipients of DSes prepared
by ICPs to coordinate follow-up care. This group includes primary care
physicians (PCPs) and other specialists managing patients in non-hospitalized
settings.
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primary care physician

Primary Care Physiscians (PCPs) are a subset of OCPs, typically general
practitioners or internists, who provide ongoing care for patients when they
are not hospitalized. PCPs manage preventive care, chronic illnesses, and act
as the main coordinators of patient care. They are often the principal readers
of DSes and play a key role in guiding post-discharge care.

patient summary

A document defined in this study, used as input to generate the discharge
instructions. It includes information on allergies, medical history, hospital
course, discharge medications, and conditions. An example is provided in
Appendix A.2.

PhysioNet

A public repository of clinical and physiological datasets, widely used in medical
research. Access to MIMIC-IV and other sensitive resources is regulated by
a Data Use Agreement (DUA), which requires individual registration and
completion of an ethics training. The DUA explicitly forbids publishing models,
weights, or solutions trained on MIMIC-IV outside PhysioNet, and prohibits
transferring MIMIC-IV data to external AI services or online platforms.

source document

A document used as input to GETALP models to generate a specific target
section of a discharge summary. The type of source document depends on
the target section: when generating hospital courses, the source document
is a diary; when generating discharge instructions, the source document is a
patient summary.
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Chapter 1

Introduction

Discharge Summary

Hospital Course
Mr. John Smith presented to the Emergency Department
on July 12, 2025 via transfer from St. Mary's Urgent Care.
On July 13, 2025 he was taken to the operating room and
underwent an ORIF of his right ankle. He tolerated the
procedure well, was extubated, transferred to the
recovery room [...].

Discharge Instructions
Dear Mr. Smith,

Continue your Lovenox injections for a total of 4 weeks
after surgery.
If you notice any increased drainage, swelling, or if you
have any pain not relieved by rest or pain medication, or if
you have a temperature greater than 101.5°F, please call
the office or come to the emergency department.
- Activity: Activity as tolerated;
- Important: Do NOT put anything down your splint
- [...]

Signature
Dr. Patel

John Smith
Outpatient

John Smith
Patient

Dr. McDonald 
Outpatient

Care Provider

John Smith
Inpatient

Dr. Patel 
Inpatient 

Care Provider

St. Peter's Hospital

Figure 1.1: A discharge summary is the clinical document in object of this study.
It serves as a comprehensive record of a patient’s hospitalization and is composed
of multiple sections that each play a specific role in ensuring safe and effective care
transitions.
In this figure, only two of its sections are shown: the Hospital Course and
the Discharge Instructions, as these are the focus of the large language model
developed in this work. Although being part of the same document, the two sections
are intended for different audiences: an hospital course is primarily written for
other clinicians, summarizing the diagnostic and therapeutic decisions taken during
the hospital stay, while discharge instructions are directed toward a patients and
their families, to support post-discharge self-care.
All names and identifiers shown in the figure are fictional. Appendix A shows an
example of discharge summary.
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Introduction

1.1 Context and Motivation

The discharge summary (DS) is one of the most critical documents produced
during the course of a patient’s hospitalization. It represents the primary commu-
nication tool between inpatient care provider (ICPs), responsible for the patient’s
care during the hospital stay, and the outpatient care provider (OCPs), who will
continue the patient’s care after discharge [13]. When well-prepared, the DS en-
sures continuity of care, enhances patient safety, and facilitates efficient transitions
between settings.

In essence, a DS provides a comprehensive yet concise narrative of the hos-
pitalization, including the reason for admission, the patient’s hospital course
(HC), final diagnoses, procedures performed, medications prescribed at discharge,
follow-up plans, and specific discharge instructions (DI) for the patient and
family [14]. Among its various sections, hospital course and discharge instructions
present specific challenges for automatic generation: HC requires summarizing
complex clinical events in a coherent narrative for professional readers, while DI
must convey clear and actionable information for patients and families. This study
focuses on using AI methods to generate two key sections of discharge
summaries: HC and DI.

A detailed examination of the regulatory standards governing the style of
discharge summaries is next provided, followed by an analysis of their timeliness
and impact on patient outcomes. Subsequently, considerations related to length,
usability, and the needs of outpatient providers are addressed, and the section
concludes by examining the differing perspectives between inpatient and outpatient
providers.

1.1.1 Regulatory requirements

The Joint Commission (formerly JCAHO) establishes specific regulatory
standards regarding the content and completion of discharge summaries [15]. These
standards mandate that a DS include at least six key sections:

1. reason for hospitalization,

2. significant findings and diagnoses,

3. procedures and treatment provided (i.e. the hospital course),

4. the patient’s condition at discharge,

5. patient and family instructions (i.e. the discharge instructions),

6. and the attending physician’s signature.
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Introduction

In addition to content requirements, JCAHO mandates that the discharge
summary must be completed and placed in the patient’s medical record within 30
days of discharge or transfer, and preferably as soon as possible after the event,
so that outpatient providers can act on the information [15]. Among these sections,
several have been consistently identified by clinicians as the most important for
ensuring safe care transitions: hospital course, discharge diagnoses, medication
reconciliation, and discharge instructions [16]. These sections are prioritized
because they summarize the key clinical reasoning behind the hospitalization
and provide actionable next steps for outpatient care. Despite these standards,
compliance remains uneven due to systemic challenges.

1.1.2 Timeliness and impact on patient outcomes

Although critically important, discharge summaries are often delayed. Completing
a DS at the time of discharge can take between 30 minutes and two hours,
depending on the complexity of the case [14]. Given competing clinical demands,
many physicians postpone or delegate the writing of DS, which often results in the
documents being finalized only several days or even weeks after discharge. Such
delays have been consistently associated with adverse patient outcomes.

Li et al. demonstrated that the absence of a DS at discharge was associated with
a 79% increase in the likelihood of readmission within 7 days [17]. Moreover,
the same work reported that if a DS was not completed within 7 days after discharge,
the risk of readmission within 7–28 days was comparable to that observed when no
summary was written at all. In other words, failure to complete a DS within
7 days after discharge is essentially equivalent to not writing one at all,
in terms of readmission risk.

Similarly, Hoyer et al. reported that each additional 3-day delay in DS completion
was associated with a 1% increase in the probability of readmission [18].
Taken together, these findings highlight the critical importance of timely DS delivery
for ensuring continuity of care and preventing unnecessary hospital readmissions.

1.1.3 Length, usability, and outpatient provider needs

Length and readability of discharge summaries heavily impact their utility. Pri-
mary care physicians (PCPs) often report having insufficient time to read lengthy
documents; most review a DS for only 1–5 minutes before a follow-up visit [16].
Therefore, they rely heavily on well-structured summaries and expect the most crit-
ical elements—hospital course, discharge diagnoses, medication reconciliation, and
follow-up instructions—to be easy to locate and concise [16]. When these sections
are incomplete, ambiguous, or buried within extraneous details, information can
be missed, potentially resulting in lapses in care continuity.
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1.1.4 Physician workload and administrative burden

The preparation of DSes further increases the already substantial burden on
clinicians. Studies have shown that physicians spend roughly twice as much time
on indirect patient care tasks as on direct bedside care [19, 20]. Indirect tasks
include documentation and activities related to electronic health records (EHRs).

This imbalance contributes to job dissatisfaction and burnout, which are further
exacerbated by frequent interruptions and the pressure to manage high patient
volumes [21, 22]. In a mature EHR environment, the time-motion study by
Momenipur and Pennathur revealed that clinicians often struggle to balance the
need for thorough documentation with providing real-time patient care [22]. The
requirement to complete DSes promptly can therefore feel burdensome, particularly
when clinical workloads are high.

1.1.5 Divergent Views on Discharge Summaries

Divergent perspectives between the authors and the readers of the DS—namely,
the ICPs and the OCPs—further complicate its preparation. A common perception
among ICPs is that their outpatient colleagues do not fully value the
document they produce. Conversely, OCPs frequently report frustration with
the quality and timeliness of the discharge summaries they receive.

A large-scale survey conducted in the United States by Sorita et al. quantified
these contrasting viewpoints [13]. The study compared the opinions of hospitalists,
who are the predominant type of ICP and the primary authors of the DS, with
those of PCPs, who are often the primary recipients of DSes. The data revealed a
significant misalignment in perceptions:

• 44% percent of hospitalists believed they were “too busy to prepare a high-
quality discharge summary,” a view shared by only 23% of the PCPs.

• 60% of hospitalists were of the opinion that “PCPs have insufficient time to
read an entire discharge summary,” whereas only 38% of PCPs agreed with
this statement.

These misaligned expectations between the authors and the audience of the
DS are a critical barrier and likely contribute to the persistence of suboptimal
documentation practices, even though both groups fundamentally agree on the
importance of the document for a safe patient transition.

While these challenges are deeply rooted and multifaceted, advances in natural
language processing (NLP) and large language models (LLMs) offer a promising
path toward scalable solutions—provided key technical and clinical barriers can
be addressed. The upcoming section introduces the challenges encountered while
automating clinical documentation.
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1.2 Challenges

Intrinsic

Ethical

Technical
Data LeakageModel Evaluation

Timeliness

Data Quality

Privacy

Clinical
Documentation

Burdensome

Social Acceptance

Complex

Data Sharing

Figure 1.2: Challenges. This picture summarizes the challenges one may encounter
while automatizing clinical documentation. While some challenge is intrinsic in
clinical documentation (e.g burdensome, complexity, timeiliness), other challenges
are either social (acceptance, privacy) or technical concerns (data quality, evaluta-
tion).

Automating the generation of discharge summaries could significantly reduce
clinician workload and ensure that summaries are available in a timely manner.
However, developing a robust automated system is a non-trivial endeavor. Several
challenges must be addressed before such solutions can be safely adopted in clinical
practice.

1.2.1 Task Complexity

One of the main challenges lies in the complexity of the content that must be
captured:

• Hospital Course: this section provides a chronological summary of the
patient’s hospital stay, condensing a long and complex sequence of clinical
events into a coherent narrative. It involves selecting and integrating informa-
tion from heterogeneous EHRs sources—such as progress notes, laboratory
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results, radiology reports, and procedure logs—while filtering out incidental
or non-contributory findings. The main challenge lies in exercising clinical

reasoning to distinguish which events are truly relevant for understanding the
patient’s trajectory, a task complicated by the frequent presence of abnormal
values or minor findings whose significance is often uncertain [23, 24].

• Discharge Instructions: this section translates complex clinical information
into clear, patient-friendly instructions. It must communicate critical guid-
ance on medication adherence, activity restrictions, symptom monitoring, and
follow-up care in layman’s terms, without sacrificing medical accuracy. Poorly
written or ambiguous discharge instructions can lead to misunderstanding,
non-adherence, and readmissions [25].

It may be worth to point out that some sections of the discharge summary
cannot be AI-generated. For example, diagnoses and medication plan are
doctor’s direct decisions. An intelligent system can’t guess what the physician has
determined for the patient.

1.2.2 Timeliness and Workflow Integration

Another challenge is ensuring that automated solutions support, rather than disrupt,
clinical workflows. DSes must be available at the time of discharge, but clinicians
typically prioritize acute patient care over documentation, particularly in high-
volume hospital settings. If an automated system requires additional steps or
interrupts existing processes, its adoption is likely to be poor [22, 21].

Effective solutions must therefore integrate seamlessly into the clinical envi-
ronment, ideally reducing the effort required to generate a DS while preserving
its accuracy and completeness. Specifically, an AI-assistant for discharge docu-
mentation should leverage raw clinical data directly, thereby relieving clinicians
from concerns about note style or formatting, and minimizing the time wasted
navigating poorly designed EHR interfaces.

1.2.3 Data Quality and Ground Truth Limitations

Automated DS generation is heavily dependent on the quality of the input data
and training sets. Unfortunately, real-world EHRs are often noisy, repetitive,
and inconsistent across providers and institutions [26, 27]. Clinical notes can
be incomplete, copied forward with minimal updates, or formatted in ways that
obscure key information. Extracting accurate and meaningful content from these
sources is a significant challenge.

In particular, DSes also suffer from quality issues. Studies have shown that
these documents often contain errors, omissions, or stylistic inconsistencies that,
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when used to train AI clinical assistants, can propagate into automated outputs if
models simply learn to replicate them [23, 24]. For instance, diagnoses in DSes were
found to be inaccurate in up to 55% of summaries in one cohort study [23], and
medication lists frequently omit critical details such as indications and reasons for
medication changes [25]. These limitations complicate the development of reliable
models.

1.2.4 Privacy and Security Concerns

Criminals actively target medical records because they contain demographic data,
social security numbers, insurance details, and clinical histories that can be misused
for identity theft, fraud, unauthorized medical care, prescription abuse, tax
scams, and blackmail—thus offering far greater value than financial records, which
are easier to block once compromised [28, 29]. Recent large-scale breaches—such
as Kaiser (13.4 million affected), Cencora, and Harvard Pilgrim—underscore the
systemic risks facing healthcare systems [30]. The Vastaamo psychotherapy scandal
in Finland (3̃3000 patients) revealed the devastating human toll when therapy
notes were ex-filtrated and used for extortion. The attacker demanded 370K
euros from the provider, then €200–500 per patient, contributing to at least one
suicide and prompting new data-protection legislation [31, 32, 33].

Most state-of-the-art LLMs (e.g., ChatGPT, Gemini) are hosted on remote cloud
servers and can be accessed only online through web-based applications or via APIs.
Thus, employing these models entails transmitting EHRs outside hospital
firewalls, thereby exposing patient data to the risks and consequences outlined
above, including major privacy concerns and a concrete risk of non-compliance
with HIPAA [34], GDPR [35], and the newborn EU AI-ACT [36, 20].

Consequently, automated DS generation systems must be designed for fully
offline, secure deployment within hospital infrastructures, ensuring that
no identifiable patient information leaves the premises. This requirement has
important implications for model selection, optimization, and hardware constraints.

1.2.5 Evaluation

Automatic evaluation of AI-generated clinical reports is inherently difficult.
Clinical text is semantically dense, highly specialized, and often allows for multiple
equally valid formulations. Metrics based solely on lexical overlap, such as
BLEU [37], ROUGE [38], or METEOR [39], fail to capture factual correctness
or clinical appropriateness. More advanced metrics, such as BERTScore [40],
AlignScore [41], and MEDCON [42], can better capture semantic similarity and
concept alignment, but they cannot fully replace human judgment in assessing
clinical correctness and relevance.
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For these reasons, evaluation by clinical experts remains the gold standard,
as only domain specialists can reliably assess factual accuracy, completeness, and
whether the generated text truly reflects the patient’s hosital stay.

1.2.6 Acceptance and Trust

In addition to technical and workflow issues, a crucial barrier to adopting AI for
clinical documentation is societal and professional acceptance.

Patients and the general public generally recognize the potential benefits of
AI in healthcare but also express strong reservations. Gundlack et al. conducted
qualitative interviews in Germany and found that while participants appreciated
AI’s efficiency and potential to reduce clinician burden, they feared loss of
the “human touch” in patient care and worried about errors and data privacy
breaches [43]. Similarly, Young et al. reported that although many patients acknowl-
edged improvements in diagnostic accuracy and system efficiency, a substantial
proportion voiced concerns about safety, transparency, and accountability
when AI was used in clinical decision-making [44].

Healthcare professionals demonstrate similar ambivalence. Hamedani et al.
surveyed physicians and nurses in Iran and reported that 65% of respondents
supported AI adoption and 84% believed it could bring positive change, yet 78%
admitted they did not fully trust AI outcomes, and 39% expressed fears of
professional deskilling [45]. Negash et al., through in-depth interviews with
German physicians, found that clinicians were receptive to AI as a support tool but
insisted on maintaining final authority over clinical decisions and documentation [46].
Likewise, Rony et al. showed that healthcare workers in a large cross-sectional study
expressed interest in AI but highlighted a lack of clear regulatory frameworks
and uncertainty about liability in case of AI errors [47].

Altoghether, these findings suggest that both clinicians and patients emphasize
that AI should serve as an aid, not a replacement, and that safeguards such as
explainability must be prioritized while developing AI models for medicine.

1.3 Objectives

The objective of this study is to develop an AI assistant to automate clinical
documentation. More specifically, attention is focused on two critical and time-
consuming sections of a discharge summary: the Hospital Course and the Discharge
Instructions.

To this end, the following goals are pursued:

1. Development of a full-text representation of EHRs that remains consistent
and interoperable across hospitals, health data management systems, and
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diverse data formats.

2. Development of a lightweight, modular, instruction-tuned LLM for
discharge summary section-specific generation.

Also, framing the generative tasks in terms of Abstractive Text Summariza-
tion and Controlled Generation provides a clear methodological perspective
and situates this work within the broader landscape of NLP research.

1.3.1 Textual Representation of EHRs

One of the key obstacles while dealing with the clinical domain is the heterogeneous
nature of electronic health records. Public hospitals, private clinics, academic
research centers, and nationalized healthcare systems all differ in how patient data
is managed and structured. For example:

• In the United States, many hospitals rely on commercial EHR vendors
(e.g., Epic, Oracle Health) that store clinical data in highly structured, often
proprietary, relational databases [1, 2, 3];

• In Europe, there is an attempt to create a common European Health Data
Space [48]. In countries such as Italy and France, healthcare systems are
largely nationalized, with patient data managed through Fascicolo Sanitario

Elettronico [4, 5, 6] and Mon Espace Santé [7], respectively. Despite these initia-
tives, heterogeneity persists due to differences in regional policies, procurement
decisions, and levels of digitalization.

In practice, hospitals adopting different EHR systems operate on distinct data
models. For example, Stanford Medicine maintains two Epic Clarity data models
that are “similar but not identical”, each comprising more than 10,000 tables and
supporting a wide range of data types, from encounters and laboratory results
to various clinical notes [49, 50]. In the United Kingdom, Cambridge University
Hospitals run Epic as their core electronic patient record system, while Milton
Keynes University Hospital uses Oracle Cerner Millennium, originally deployed
through the National Programme for IT [51, 52]. In the United States, the
Department of Veterans Affairs is rolling out Oracle Cerner across its facilities [53],
whereas other hospitals such as Medical City Dallas and Princeton Community
Hospital rely on MEDITECH, with the latter reporting performance improvements
after adopting MEDITECH Expanse [54, 55, 56]. These systems differ not only
in vendor but also in the size, structure, and organization of their underlying
schemas, as well as the balance between structured fields and textual data captured
in the record.
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The inherent diversity of raw clinical data makes the design of a one-size-fits-all

EHR pre-processing system impractical. Therefore, a core objective of this study
is to restructure EHRs into task-specific textual documents, since LLMs
are generally designed to process textual data. This modular approach is effective
in eliminating the tight coupling between the model and the database’s original
format, which provides a significant advantage: it makes the model’s input
agnostic with respect to the EHRs’ original format. This provides key
benefits in terms of portability, as the same assistant can work across institutions
regardless of their internal EHR formats; maintainability, since only the document
generation step must be adapted when data formats change; and extensibility,
which allows for future support for additional data types (e.g., images) to be added
without retraining the model by transforming those data into textual document
(e.g., through captioning).

1.3.2 Lightweight, Modular, and Instruction-Tuned LLM

The pipeline shall implement a lightweight, modular, and instruction-tuned
LLM capable of generating documentation for specific sections of a discharge
summary. A model with the aforementioned features allows for the meeting of
the practical demands of real-world clinical environments:

• Ensuring Timeliness: The system’s compact size and efficient nature must
guarantee low latency, allowing documentation to be generated promptly and
integrated seamlessly into clinical workflows.

• Adhering to Privacy Regulations: The model must be small enough to
deploy on-premise within a hospital’s firewall, ensuring that sensitive patient
data remains compliant with regulations.

• Respecting Resource Constraints: By minimizing the model’s size and
computational requirements, the system should reduce the need for signifi-
cant hardware upgrades, making it more financially viable and accessible for
hospitals.

1.3.3 Abstractive Text Summarization and Controlled Gen-
eration

To address the clinical documentation challenges, the work is framed within the NLP
field. The generation of a hospital course is approached as a task of abstractive
summarization, whereas the creation of discharge instructions as a task of
controlled generation. This methodological choice provides a clear framework for
the solutions, enabling the leveraging of established techniques and contextualizing
the contribution within a broader research landscape.
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Abstractive Summarization for Hospital Courses

Figure 1.3: Extractive vs Abstractive summarization [57]. An extractive
summary can use only those sentences that already exist in the original text.
An abstractive summary, instead, generates new text by paraphrasing and
condensing the original input. Abstractive summarization is used by the system
to create a narrative description of a patient’s hospital stay (i.e., the hospital
course) from a time-ordered list of clinical events.

Generating a hospital course requires abstractive summarization. This
process goes beyond simply extracting sentences from the source material; it involves
synthesizing information from various clinical events and structured medical records
to create a new, coherent narrative. The goal is to produce a detailed yet concise
summary that accurately reflects the patient’s hospitalization, written in the style
of a clinical professional. This task requires the model to perform clinical reasoning
to distinguish relevant information from noise and to structure it chronologically.

Controlled Generation for Discharge Instructions

Creating discharge instructions involve controlled generation. This task
focuses on generating new text that adheres to specific constraints. The primary
controls are the output’s clarity, style, and content. The generated instructions
must be medically accurate while ensuring that they are clear, actionable, and
easily accessible for a non-specialist audience, such as patients and caregivers.
This requires the model to simplify complex medical terminology and structure
the information in a patient-friendly format, ensuring all critical guidance on
medications, follow-up, and self-care is communicated effectively.
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Controlled Generation

OUTPUT
Dear Mr. Smith,

It was a pleasure to take care of you
at the St. Peter's Hospital.

Please avoid to drive for at least one
week. In case of headache, please
contact us immediately. No new
medications were provided. All
previous medications confirmed. 

Thank you,
St. Peter's Hospital AI 

INPUT
You are an intelligent clinical model
[...]

### Context: {context }

### Instructions:

Write in a patient-friendly style;
Please adhere to the clinical
context you where provided with;
In case you are not sure about
something, avoid to write it;
Pay attention to do not leave out
any relevant advice.

Figure 1.4: Controlled Generation. The model receives clear instructions that
guide both its content and style. These instructions are also designed to prevent
hallucinations, fictional outputs, and harmful content.

1.4 Contributions

This work proposes a pipeline for automating the generation of discharge
summary sections, focusing on the hospital course and discharge instructions (Fig-
ure 1.5). The contributions, detailed below, fulfill the objectives set in Section 1.3.

1.4.1 Electronic Health Record Processing

As discussed in 1.3.1, hospitals differ widely in how patient data is stored and
managed, making it impractical to design a clinical AI-assistant that interfaces
directly with heterogeneous EHR databases. A modular approach solves this by
introducing a standardized representation of the clinical context: once the relevant
data has been reorganized into this format, the model can operate without regard
to the original database schema or storage method. This representation is broadly
referred to as the Source Document, a task-specific textual document in which
clinical data–originally stored across multiple tables, formats, and modalities–is
processed and merged into a single text file. Two distinct types of source documents
are defined, each tailored to its own task:
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hadm_id:

Task (HC/DI):

H123

HC
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EHR <<
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Fine-Tuned Model
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ankle fracture...

<

Electronic
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Figure 1.5: The System. Given a hospital admission identifier (hadm_id) and the
target section to be generated—either hospital course or discharge instructions—the
system first retrieves the patient’s EHRs from the hospital database. These EHRs
are then processed and structured into a textual document, referred to as the
source document, that provides all the facts necessary to accomplish the requested
task. In this example, EHRs are converted into a diary—a chronological log-like file
tailored for HC production. The source document is combined with task-specific
instructions and passed to the AI assistant, GETALP-Mistral7B, which is trained
on top of Asclepius-Mistral7B—a clinical LLM derived from the general-purpose
Mistral7B. To support section-specific generation, two lightweight QLoRA adapter
modules were trained: one for generating hospital courses and another for discharge
instructions. The system outputs the requested section of the DS; in this case, the
hospital course. Examples of such documents can be found in Appendix A.

• Diary: a chronological log of clinical events, grouped by date. It is used as
clinical context for the generation of hospital courses;

• Patient Summary: a document grouping relevant information into specific
sections (e.g., allergies, medical history, hospital course, discharge medications,
and conditions). It is used as clinical context for the generation of discharge
instructions.

While the building of a patient summary only requires to stitch together some
stay’s info, including the hospital course itself, a longer data processing is required
to craft the diary. Examples of both documents are provided in Appendix A.2.

It may be worth to further stress that this approach allows the same model to
work across hospitals without modification: only the Source Document Generator
needs to be adapted to convert local health records into diary/patient summary
formats—no model retraining or any further system changes are required.

1.4.2 GETALP-Mistral7B

GETALP-Mistral7B is a clinical LLM specialized to write hospital courses and
discharge instructions. GETALP-Mistral7B is created by fine-tuning the first
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publicly sharaeble clinical LLM Asclepius-Mistral7B-v0.3 [8] over MIMIC-IV,
which is a publicly available, de-identified EHRs database containing a vast amount
of data from patients who were admitted to the emergency department or intensive
care units at Beth Israel Deaconess Medical Center (BIDMC) [9].

Given the limited computational resources typically available in hospital set-
tings [58, 59], Quantized Low-Rank Adaptation (QLoRA) is employed for quan-
tization aware fine-tuning. This approach generates two specialized lightweight
adapters, one for HCs and another for DI. These compact adapters can be in-
jected into the base model as needed, maintaining a small memory footprint
while avoiding catastrophic forgetting of its original medical knowledge. The
resulting GETALP-Mistral7B model can be loaded in 4-bit format during inference,
allowing its operation on modest hardware and making it suitable for deployment
in hospital environments.

The model is named after the research group, GETALP, the foundation model,
Mistral, and its size in number of parameters, seven billions (7B).

References to GETALP models in this work refer to both GETALP-Mistral7B
and GETALP-Llama3-8B, an additional variant based on Asclepius-Llama3-8B.

1.5 Reminder

This reminder serves as a roadmap for the reader, emphasizing the logical progres-
sion from context and motivation, through methods and experiments, to results,
conclusions, and technical appendices.

Chapter 1 introduced the context, motivation, and objectives of the study. It
highlighted regulatory requirements, the impact of timely and high-quality discharge
summaries on patient outcomes, and the challenges posed by length, usability,
and physician workload. Divergent perspectives between hospitalists and PCPs
were also discussed, illustrating how differing expectations could influence DS
preparation. The chapter concluded by outlining the objectives and contributions
of the study, including the textual representation of EHRs, the development of
lightweight, modular, instruction-tuned LLMs, and the design of specialized source
documents (diary and patient summary).

Chapter 2 reviews the state of the art, providing an overview of LLMs in
medicine, distinguishing between biomedical and clinical text, and discussing the
role of natural language understanding versus generation in clinical models. It
further explores online and open-source models, with a focus on the Asclepius
clinical foundation models, and presents the Discharge-Me! BioNLP ACL’24 shared
task and its results, which serve as a reference for evaluating this work.

Chapter 3 describes the methods employed in this study. It details the design
of source documents and their generation, the assembly of model prompts, and
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the processing of the MIMIC-IV dataset, including its various modules, diary
and patient summary construction, and data splits. The chapter also presents
the training of GETALP models using supervised fine-tuning (SFT) and QLoRA-
based instruction tuning, along with the evaluation framework, metrics, and the
experiments conducted to assess model performance.

Chapter 4 presents the results of the study, including comparisons between
GETALP models and their Asclepius baseline, ablation studies on source document
content, the use of AI-generated hospital courses in patient summaries, qualitative
analysis of model outputs, and the outcomes of the recollection test.

Chapter 5 concludes the thesis with an in-depth discussion on feasibility, source
document design, the Mistral7B degeneration problem, the evaluation framework,
privacy and recollection concerns, and the relative importance of source document
sections.

Finally, Chapter 6 extends this discussion toward future directions, outlining
a pathway for the development of an end-to-end DS automation pipeline. It
explores the automation of additional DS sections, the use of speech recognition and
specialized adapters for clinician–patient interviews, the integration of centralized
EHRs, and the processing of non-textual clinical data such as medical images and
physiological signals.

The appendices provide further details, including: examples of prompts and
source documents (A); MIMIC-IV statistics and considerations regarding the length
of source documents (B); technical details on the models, training, and inference,
along with an analysis of the carbon footprint (C); and mathematical details
underlying the evaluation metrics (D).
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Chapter 2

State of the Art

This chapter discusses LLMs and their applications in medicine. In particular,
a focus is placed on generative clinical models, as clinical text differs from the
polished medical text commonly used for educational purposes. Non-open source
solutions such as OpenAI’s GPT models are then examined, which cannot be
deployed due to privacy and regulatory concerns. After a review of alternative
open-source solutions, One section is dedicated to the clinical base model used as
the starting point in this work, Asclepius, which serves as the foundation for the
development and fine-tuning of our system. Subsequently, a section introduces the
“Discharge-Me!” challenge, from which this study originates. Finally, the limitations
of the challenge are outlined, and the work is positioned as an alternative approach
that aims to overcome such limitations.

2.1 Overview of LLMs in Medicine

LLMs in the medical domain cover both biomedical and clinical texts. While related,
these domains differ substantially in style, structure, and data characteristics. The
following subsections highlight these differences and discuss the focus of existing
clinical models on understanding versus generation tasks.

2.1.1 Biomedical vs Clinical Text

LLMs developed for the biomedical domain cannot be directly applied to clinical
text, because the two domains exhibit substantially different characteristics [60].
Biomedical corpora, such as scientific articles, structured databases, and PubMed
publications, are typically well-edited, fluent, polished, and free of personal data.
Clinical text, instead, originates from EHRs and doctors’ notes, often containing
errors, undefined abbreviations, sensitive personal data, and a noisier
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structure. Table 2.1 summarizes these differences.

Table 2.1: Differences between Clinical and Biomedical Text

Characteristic Clinical Biomedical

Errors yes no
Personal Data yes no
Undefined Abbreviations yes no
Edited no yes
Fluent no yes
Polished no yes
Cost High Low
Length Long Short

As a consequence, biomedical LLMs such as BioGPT [61], BioBART [62],
BioMedGPT [63], BioMistral [64], and BioMedLM 2.7B [65] are not suitable
starting points for clinical text generation, since they are fine-tuned on a domain
that differs fundamentally from the target clinical domain [60].

2.1.2 Natural Language: Understanding vs Generation in
Clinical Models

In the field of NLP, tasks can be broadly divided into:

• Natural Language Understanding (NLU): tasks that require comprehension of
text, such as name entity recognition (NER) and natural language inference
(NLI).

• Natural Language Generation (NLG): tasks that involve producing coherent
and contextually appropriate text, such as summarization, report generation,
or question answering.

Most clinical LLMs have been developed primarily for NLU tasks. For example,
ClinicalBERT [66] and GatorTron [67] are pre-trained on EHRs and discharge
summaries to improve representation learning and achieve strong performance on
NLU benchmarks. Even models with generative potential, such as ClinicalT5 [68],
are reported and evaluated almost exclusively on NLU tasks.

The open-source Asclepius family of models [8], which serves as the foundation
for the system developed in this study, is involved in this trend too: Asclepius is
trained on eight distinct tasks, five of which are NLU-oriented (e.g., NLI, NER).
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2.2 Online LLMs

Several studies highlight the competitiveness of online LLMs in clinical contexts [69,
70, 71, 72, 73]. OpenAI’s GPT-4 [74] achieves strong performance on multiple
NLU in the medical domain, ranking as the leading model on medical language
understanding tasks such as MMLU [75], PubMedQA [76], MedMCQA [77] [72]. It
has also been evaluated for its ability to generate realistic clinical scenarios:
thematic analysis of expert reviews confirmed that the cases it produced were
clinically accurate, logically consistent, and aligned with established guidelines
and nursing competencies [71]. Beyond applications in de-identification [69], GPT-
4 achieves high accuracy when analyzing multilingual clinical notes, with
physicians agreeing with its interpretations in the majority of cases—88% for
Spanish, 84% for Italian, and 77% for English [70]. Evidence from Korea further
shows that GPT-based systems can generate patient-friendly discharge summaries,
with few- and one-shot prompting while maintaining factual accuracy [73]. GPT-
3.5-turbo was used to generate the Asclepius database [8], producing
synthetic clinical notes starting from the PMC-Patient collection of anonymized
case reports [78], which serve as the basis for the Asclepius-Mistral7B-v0.3 model.

Med-Gemini demonstrates impressive capabilities in clinical text generation.
Saab et al. report that Med-Gemini “surpasses human experts on tasks such as
medical text summarization and referral letter generation”, establishing state-of-
the-art performance on 14 medical benchmarks spanning text, multimodal, and
long-context applications where it reaches 91.1% accuracy, slightly above GPT-4’s
90.2% [79]. Yang et al. further show that Med-Gemini can generate clinically
acceptable reports from 2D and 3D medical images, with AI reports evaluated
as “equivalent or better than the original radiologists’ reports” in a substantial
fraction of cases [80].

Despite their strong performance, solutions based on online LLMs are constrained
by significant limitations that make them unsuitable for the system. As detailed
in 1.2.4, regulatory compliance necessitates an on-premise model. Employing
these online models would require transmitting data to an external party and
depending on a third-party organization to process patient information; in a
clinical environment, the risks of data leakage and potential service disruptions
are unacceptable. Moreover, the use of MIMIC-IV is bound by the PhysioNet
Credentialed Data Use Agreement [81], which specifically forbids sharing data with
third parties or using online platforms such as GPT-4 or Med-Gemini. A final key
concern is evaluation fairness: since the training data composition for these models
is not disclosed, the possibility that the model has already encountered the test
cases cannot be eliminated.
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2.3 Open Source Models

This section reviews open-source generative clinical LLMs.
ClinicalGPT [82] is an open-source Chinese LLM. Despite strong results across

several medical tasks, the absence of details on training and fine-tuning hinders
reproducibility. Its exclusive availability in Chinese further limits applicability in
international settings.

SoftTiger [83] is a generative model trained on both general corpora and
the MIMIC-IV dataset, primarily aimed at clinical data structuring. While not
originally designed for note generation, it has proven highly effective in this task,
surpassing ChatGPT-3.5 and performing close to GPT-4. The model is accessible
via Hugging Face (HF) in two versions, with 13B and 70B parameters, yet its release
raises major concerns. PhysioNet’s policy prohibits distributing models trained on
MIMIC-IV to unlicensed users [84], and the lack of clarity on the specific subsets
used introduces a risk of data contamination. This may result in a parrot effect,
where outputs replicate memorized data rather than producing valid inferences,
compromising reliability. Given these issues, along with the possibility of removal
from public repositories, SoftTiger was excluded from this study.

Clinical Camel [85] builds on LLaMA-2 [86] with QLoRA fine-tuning [10].
It has been extensively evaluated on NLU benchmarks while NLG capabilities
are supported only by limited qualitative examples, such as the synthesis of
plausible clinical notes. The model also carries the risk of generating misleading
or inappropriate content, and a significant performance gap remains compared to
frontier models such as GPT-4 and Med-PaLM 2 [87]. Furthermore, Kewon et
al.[8] show that Asclepius, even in its 7B version, outperforms Clinical Camel at
13B, despite both use LLaMA-2 as foundation model.

2.3.1 Asclepius

Asclepius is a publicly shareable clinical language model [8], developed to overcome
the privacy limitations associated with models trained on real clinical notes.

To this end, a large-scale database of 158k high-quality synthetic clinical
notes was created from case reports extracted from biomedical literature (PMC
Patients [78]). Case reports are detailed, fully anonymized descriptions of individual
patients, prepared for academic or educational purposes. These reports were then
transformed into DS-style notes using GPT-3.5-turbo, producing a corpus suitable
for training a clinical LLM.

Kweon et al. benchmarked Asclepius against multiple models, including general-
purpose LLMs (Vicuna [88], Alpaca [89], ChatGPT-3.5-turbo), specialized open-
source models (Clinical Camel, Med-Alpaca [90]), and other non-open source
solutions (ChatDoctor [91]). Evaluation covered eight task types, of which three
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are generative: question answering, summarization, and paraphrasing. Scores
were assigned by GPT-4 on a discrete five-point scale. Asclepius matches GPT-3.5
in performance and achieves the highest average scores among all other evaluated
models. A version trained on real MIMIC-III notes slightly outperforms GPT-3.5-
turbo despite being ten times smaller (13B–7B vs 175B).

Because of the combination of strong performance across diverse clinical tasks and
an open-source design that enables task-specific adaptation, Asclepius represents
an ideal base model for this study. In particular, Asclepius-Llama3-8B and
Asclepius-Mistral7B were used.

2.4 Discharge-Me! BioNLP ACL’24 Shared Task
on Streamlining Discharge Documentation

This work has been inspired by the Discharge-Me! BioNLP ACL’24 Shared Task

on Streamlining Discharge Documentation [11, 92].
Launched by Stanford University in February 2024, Discharge-Me! is a

challenge focused on streamlining clinical documentation. Its primary objective was
to reduce the time and effort clinicians spend on writing detailed notes. Specifically,
the task consisted of generating the hospital course and the discharge instructions.
The official dataset of the competition integrates data from MIMIC-IV-ED [93]
and MIMIC-IV-NOTE [94]. Precisely, participants were provided with 109,168
visits to the emergency department (ED). Each visit included chief complaints
and diagnosis codes documented by the ED, at least one radiology report, and a
discharge summary.

The evaluation framework relies on a hidden subset of 250 samples and employs
eight complementary metrics, selected to collectively cover three indispensable
dimensions of evaluation: lexical overlap, semantic similarity, and medical factual
consistency:

• lexical overlap: BLEU-4 [37], ROUGE-1, ROUGE-2, and ROUGE-L [38],
as well as METEOR [39], assess the degree of lexical similarity between the
generated text and the reference. BLEU-4 captures precision over 4-grams,
while the ROUGE family emphasizes recall over unigrams, bigrams, and
longest common subsequences. METEOR refines overlap-based evaluation
by incorporating stemming, synonym matching, and word-order penalties,
thereby providing a more linguistically informed measure.

• semantic similarity: BERTScore [40] and AlignScore [41] evaluate whether
the generated and reference texts convey the same meaning beyond exact word-
ing. BERTScore leverages contextual embeddings from pre-trained language
models to align semantically similar tokens, whereas AlignScore introduces
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a dedicated alignment model shown to better capture fine-grained semantic
fidelity.

• factual consistency: MEDCON [42] is a metric introduced within the ACI-
BENCH framework to evaluate factual correctness in clinical note generation.
It extracts medical concepts from both generated and reference notes using
QuickUMLS [95], and computes an F1-score over the resulting clinical concept
sets (Anatomy, Drugs, Disorders, Procedures, and others).

For each metric, HC and DI were first evaluated independently—although task-wise
scores have not been disclosed. Given a metric, the mean score between HC and
DI is then computed. Finally, the overall score of each submission was obtained by
averaging over the eight metrics. That score was used to elect the best solution.
Furthemrore, the top six submissions were evaluated in terms of completeness,
correctness, readability, and overall alignment by a panel of clinicians.

2.4.1 Discharge-Me! Results

This section presents the most relevant solutions submitted to the Discharge-Me!

challenge, ordered by overall score (Table 2.2).

Team Overall BLEU R-1 R-2 R-L BERT METEOR Align MEDCON

WisPerMed 0.332 0.124 0.453 0.201 0.308 0.438 0.403 0.315 0.411
Yale 0.300 0.106 0.423 0.180 0.284 0.412 0.381 0.265 0.353
aehrc 0.297 0.097 0.414 0.192 0.284 0.383 0.398 0.274 0.332
UF-HOBI 0.286 0.102 0.401 0.174 0.275 0.396 0.289 0.296 0.355

Table 2.2: Results of the Discharge-Me! challenge. Best scores in bold, second-
best scores underlined, R = ROUGE

WisPerMed

The winning team, WisPerMed [96], begun by splitting each discharge summary
into its constituent sections using the MIMIC SID algorithm [97, 98]. They then
computed the BERTScore of each DS-section against both target sections, in the
attempt to rank sections by relevance. On the basis of BERTScores, the discharge
summary was re-ordered placing on top the most similar sections, according to
the task. Such sorting step ensures that, even after a truncation to 2,000 tokens,
important clinical notes are yet at a model disposal.

WisPerMed fine-tuned multiple models, training a separate model for each task
(HC and DI). Fine-tuning employed the LoRA [99] technique, which specializes
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small adapter modules while keeping the base model frozen. Several LLMs were fine-
tuned and prompted, and a dynamic expert selection (DES) strategy was applied to
select the most suitable output. DES first ranks models according to their overall
score, then, for each discharge summary, it chooses the generated section whose
word count fell within a target range of 100–180 words, with fallbacks down to 70
words if necessary. Considering the models’ performances individually—without
DES—Asclepius-Mistral7B achieved the highest overall score.

HarmonAI Lab at Yale

Socrates et al. [100] first extracted all relevant structured information for each
patient, including demographics, ED diagnoses, procedures, inpatient medications,
and lab results. Using these extracted sections, individual SOAP notes were
generated by GPT-3.5 Turbo in a zero-shot setting.

As WisPerMed, Yale fine-tuned one model per task. Two families of models
were employed: BioBART-Large [62] and Clinical-T5-Large [68], while also leverag-
ing Azure OpenAI GPT-3.5 Turbo in a zero-shot setting with human-based abuse
monitoring switched off, in compliance with the MIMIC-IV DUA [81]. The team
additionally employed constrained generation, injecting external knowledge about
the preferred style of the HC to account for formatting variations across physicians
and discharge wards, as observed through manual analysis of clinical notes.

aehrc

Liu et al. [101] developed their best model using PRIMERA [102], an encoder-
decoder language model capable of handling extended input contexts and generating
longer outputs. The authors observed that including radiology reports could
lead to hallucinations while providing negligible performance improvements.

UF-HOBI

The UF-HOBI team [103] proposed a method that combines medical concepts
detected via NER with selected discharge summary sections. Discharge summaries
were first segmented into sections (e.g., History of Present Illness (HPI), Discharge
Conditions, Physical Exams) using a rule-based algorithm. Sections were then
divided into two groups: those strictly relevant to the output, and those useful but
non-essential. Concepts from the latter group were extracted with GatorTron [67]
via NER and then provided to the generative model, GatorTronGPT [104].
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2.4.2 Limitation of the Discharge-Me! Solutions

Several top-performing solutions highlight the mismatch between competition-
oriented optimization and real-world applicability. WisPerMed, for example, trains
multiple models and selects the final output based on length criteria. While this
improves leaderboard metrics, running a dozen models in parallel is impractical for
hospitals with limited resources and does not reflect a deployable workflow.
Similarly, Yale’s constrained generation approach enforces stylistic tokens in the
output based on metadata, as the department or the author of the ground truth
summary are. This encourages the model to replicate the style of discharge reports
from the Beth Israel Deaconess Medical Center, which boosts BLEU, ROUGE, and
METEOR scores within the challenge, but limits flexibility and broader applicability.
A real-world system should instead adapt to the style indicated by physicians.

While the Discharge-Me! challenge represents an important step toward evaluat-
ing models for clinical documentation, it falls short of its stated goal of streamlining
the discharge process. The competition relies on discharge summaries as the primary
input to the model, which means that physicians still need to manually compose
detailed clinical notes before any automation can take place. This contradicts the
intended objective: a system that truly reduces the time and effort required to
prepare discharge documentation should rely on more direct and raw data sources,
such as auto-filled medication records at the time of administration or lightweight
structured forms that can be completed in seconds.

By relying solely on discharge summaries as the only source of in-
formation, current approaches fail to address the underlying goal of
reducing physicians’ administrative workload.

2.4.3 Deploying to Overcome Limitations

In this work, a different usage of data is adopted, in order to better reflect real-
world practice while retaining Discharge-Me! objectives and evaluation framework.
Specifically, more modules from MIMIC-IV are employed, while thrid DSes-sections
are only used to fill-in information gaps. For example, details such as conditions
at discharge or physical examination are only available in MIMIC-IV’s discharge
summaries and therefore they must be retrieved from there. Other elements can
be directly sourced from the corresponding tables (e.g. microbiology results from
microbiologyevents.csv).

Since the hidden competition test samples have not been made public,
a similar set is constructed by randomly sampling 250 admissions while carefully
avoiding data contamination. This ensures a consistent evaluation protocol and
allows to benchmarking GETALP models against Discharge-Me! solutions.
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Methods

This chapter provides a comprehensive overview of the technical procedures and
experimental setup employed in this study, to allow reproducibility of the results.
It begins by introducing the source documents (SDs), task-specific textual
representations of clinical data designed to standardize and consolidate information
from heterogeneous EHRs. Two types are defined: the diary, tailored for HCs,
and the patient summary (PS), aimed at DI generation.

Subsequently, the chapter details the SD generation pipeline, made of two
components: the LogBuilder and the DiaryMaker. Finally, the Prompt Assem-
bler, which organizes the textualized data into model-ready input prompts, is
explained.

The dataset utilized for model training and evaluation, MIMIC-IV, is described
with a focus on relevant modules (HOSP, NOTE, ED) and the construction of the
source documents from it. Data splits, source document lengths, and preprocessing
steps are also covered, with detailed statistics provided in Appendix B.

Next, the training procedures are outlined, including both supervised fine
tuning (SFT) and QLoRA for efficient, quantization aware model adaptation.
Training hyperparameters, memory usage, and learning curves are reported in
Appendix C.

The evaluation framework section introduces the metrics used to assess model
performance, detailing per-task evaluation methods and the overall scoring system.
The mathematical formulation of all metrics is provided in Appendix D.

Finally, the chapter presents the conducted experiments, covering model
evaluation, ablation studies on the diary content, the integration of GETALP-
generated hospital courses into patient summaries, qualitative analysis of outputs,
and recollection test.
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3.1 Source Documents

LLMs are pre-trained on vast corpora of free text. EHRs, however, store much
of their content in structured—often tabular—formats, which cannot be directly
consumed by an LLM. To bridge this gap, EHRs are transformed into textual
documents, referred to as source documents since they constitute the source of
information for GETALP models. It is worth noting that SDs are not conventional
medical documents: they are not intended for human use. Rather, they are
engineered for LLMs, with efficiency in both content and space as the primary
goals.

Two distinct SDs are introduced. The first, called the diary, is designed to
capture the complete sequence of events during a hospitalization, thereby supporting
the generation of a coherent hospital course. The second, named the patient
summary, condenses and organizes only the key elements necessary to produce
safe and informative discharge instructions.

The need for two separate documents arises from the nature of their respective
objectives. Writing a hospital course requires the model to track the chronological
order of all procedures and treatments, while producing discharge instructions de-
mands a concise overview of diagnoses, conditions, and follow-up care. Accordingly,
the diary emphasizes sequentiality and completeness, whereas the patient summary
focuses on conciseness and relevance to post-discharge care.

Although the database used in this study is MIMIC-IV, the procedure is not
tied to it: any EHR system can be reorganized into diaries and patient summaries,
provided that its underlying data schema is known and programmatic access
is available. The approach, along with the SD layouts themselves, is therefore
generalizable beyond MIMIC-IV.

In the following subsections, the design of the diary (3.1.1) and the patient
summary (3.1.2) is detailed, explaining how each layout is constructed from EHRs
and the rationale behind the design choices.

3.1.1 Diary

A hospital course is a concise summary of a patient’s hospitalization, narrating the
sequence of events from admission to discharge. Producing an accurate summary
requires a clinician to have a complete understanding of what occurred throughout
the hospital stay. In the same way, an AI assistant generating a hospital course must
be provided with the same information in the order it happened, as the summary
inherently reflects the temporal progression of the hospitalization; without this
structured input, the model cannot generate a coherent and clinically meaningful
account.

The diary is the input document specifically designed to facilitate the generation
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of high quality hospital courses using a large language model. It is constructed to
reflect two essential properties: sequentiality and completeness. Sequentiality
ensures that the history of a hospitalization is presented in chronological order,
while completeness guarantees that all events relevant to the clinical case are
captured.

A type of document known to exhibit these properties is a log file. A log file is a
computer-generated record that lists events and operations chronologically within
a system, providing a detailed, time-stamped (YYYY-MM-DD-hh:mm:ss) account of
what has occurred. The diary is designed to mirror the structure of log
files.

Hospital stays are characterized by a large number of clinical events, which
in turn can lead to lengthy patient diaries. For instance, in MIMIC-IV a typical
patient admission is associated with an average of 80 events, with substantial
variability. Each hospital stay also includes an average of four radiology notes,
with approximately 170 words each, and other notes such as the history of present
illness (around 300 words). This can easily result in a diary whose length exceeds
the token limits of clinical AI models, requiring a careful design of the document
layout that balances completeness and compactness.

Although the length of a diary varies with the number of extractable clinical
events in an EHR system, its typical word and event counts can be estimated from
the MIMIC-IV database, as shown in Appendix B.

Diary Layout

As anticipated, the diary is inspired by log files, which typically record events as long
timestamp–event pairs (e.g., 2025-09-08-13:10:00 Prescription Omeprazole

40mg Injection IV DAILY). However, to avoid excessive verbosity and reduce
token usage, information is reorganized into a more compact structure based on
pages and logs.

Each page groups all events that occurred on a given day. A page begins with
a header line of the form –- YYYY-MM-DD –- and ends when the header of the
following page is encountered. Pages are created only for days on which at least
one event occurs, so there are no empty pages. Starting from the admission date,
consecutive pages are stacked in chronological order, producing a longitudinal
record that spans the entire hospitalization until discharge.

Within each page, events are recorded as logs (also called entries or lines). A
log follows the triplet format [time–action] message, where the time indicates
the hour and minute of occurrence (hh:mm), the action specifies the category of
activity (e.g., Consults, Prescriptions), and the message conveys the details.

When multiple messages correspond to the same time–action pair, they are
aggregated under a single log. As a result, each time–action pair within a page is
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B)

[time - action] messageA)

--- 2025-09-04---
[07:32 - Respiratory] Oxygen Therapy 
[12:03 - Prescription] Ondansetron 4mg/2mL
[16:32 - transfer] Surgical Intensive Care Unit

[06:00 - Consults] Physical Therapy

C)

A.e)

B.e)

C.e) --- 2025-09-02---
[17:34 - admit] Surgery/Trauma
[21:03 - Patient Records] White M Single 34 y.o.
--- 2025-09-04---
[07:32 - Respiratory] Oxygen Therapy 
[08:10 - Procedure] ORIF tibia and fibula

--- 2025-09-07---
[16:00-Discharge Conditions] Stable
[16:00-Discharge Diagnosis] Right ankle fracture

--- YYYY-MM-DDAD---
[time1 - action] message
[time2 - action] message
[...]
--- YYYY-MM-DDDS---
[time1 - action] message
[time2 - action] message

--- YYYY-MM-DD---
[time1 - action] message
[time2 - action] message
...
[timeE - action] message

Figure 3.1: Diary. The diagram shows the diary (C), which is composed of daily
pages (B), each containing individual logs (A). Examples of log entries (.e) are
taken from MIMIC-IV.

unique. For example, if both Omeprazole and Enoxaparin are prescribed at 13:10

on a given day (e.g. 2025-09-08), only a single log is created, with the message
listing both prescriptions:

--- 2025-09-08 ---

[13:10 - Prescriptions]

- Omeprazole 40mg Injection IV DAILY

- Enoxaparin 40mg Subcutaneous DAILY

This organization preserves sequentiality while significantly reducing redundancy.
By replacing long timestamps with compact daily headers, grouping events that
share the same time–action, and omitting empty days, a diary reports the complete
trajectory of care in a concise form. The result is a coherent, chronological timeline
of patient care that remains suitable for large language model input without
exceeding context length.

A MIMIC-IV’s diary can be found in Appendix A.2.
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Clinical Notes

History of
Present
Illness

Hospital
Course

Social
BackgroundFamily

History

Allergies

Discharge
NotesMedication

List

Follow-
ups

--- John Smith's SUMMARY ---
Allergies: Ciprofloxacin, Paxil
Medication List:
- Metoprolol 25 mg PO BID
- Lisinopril 10 mg PO daily

History of Present Illness: 2-day
bloody bowel movements [...].

Hospital Course: 56 y.o gentleman
DM2, CAD s/p CABG, ischemic
cardiomyopathy with [...]

Social Background:Former smoker
but quit 10 years ago.

Family History: 
- Father: History of coronary
artery disease and hypertension.
- Mother: History of type 2
diabetes.

Discharge Notes:
Disposition: Extended Care
Status: conscious
Diagnosis:Diverticular bleeding of
the sigmoid colon, resolving.
Medications:
1. Acetaminophen 650 mg PO Q4H:PRN
pain 
2. [...]

Follow-ups:
- Gastroenterology: [...]
- Cardiology: [...]

Patient
Summary
Assembler

Figure 3.2: Patient Summary. The patient summary is generated from clinical
notes and serves as input for an AI assistant tasked with generating discharge
instructions for a given patient. The document names shown are illustrative and
do not correspond to any specific EHR system.

3.1.2 Patient Summary

Discharge instructions present a concise summary of the hospitalization in lay
language, covering the reasons for admission, major procedures performed, instruc-
tions regarding dos and don’ts, any changes to the patient’s usual medications, and
follow-up recommendations. The document is designed to be accessible and easily
understood by patients, supporting comprehension rather than clinical decision-
making.

The patient summary is the source document designed to prompt GETALP
models to generate discharge instructions. It consists of clinical notes that sum-
marize the key aspects of a patient’s hospital stay, highlighting the most relevant
information for post-discharge care. A patient summary includes patient personal
information, the history of present illness (HPI), the hospital course, diagnoses,
conditions at discharge, and follow-up medications.

Amoing the patient’s personal information, family history and social context
provide essential background for contextualizing the discharge plan. Family medical
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history may indicate hereditary risks or conditions that could influence post-
discharge care, such as cardiovascular diseases or diabetes. Similarly, the social
context offers insight into the patient’s living conditions, support network, and
potential barriers to adherence (e.g., limited mobility, social isolation, or economic
constraints). By exposing these details to the system, the generated discharge
instructions can better reflect the patient’s real-world circumstances.

The HPI is equally crucial, as it encapsulates the clinical reasoning behind the
hospitalization. It outlines the evolution of symptoms, relevant prior treatments,
and the events that led to the current admission. Including the HPI in the patient
summary enables the model to understand the causal chain connecting the patient’s
initial presentation to their hospital course and subsequent recovery. This temporal
and etiological context helps the model to write discharge instructions consistent
with the underlying pathology and the therapeutic interventions applied during
hospitalization.

Patient Summary Layout

The patient summary organizes clinical notes in a structured order to support
discharge instructions generation. Notes follow this sequence:

• Patient Personal Information: allergies, medication reconciliation, family
medical history, social context;

• History of Present Illness;

• Hospital Course;

• Discharge Disposition, Diagnoses, Conditions, Medications.

In case an information is missing, it is simply ignored.
This layout ensures all relevant information is captured, giving GETALP models

the clinical context for accurate and reliable discharge instructions generation.
A MIMIC-IV’s patient summary can be found in Appendix A.2.

3.2 Source Document Generator

This part of the report illustrates the procedure to convert structured tables into
source documents.

Creating a patient summary simply involves assembling the relevant clinical
notes into a textual document. In contrast, creating a diary requires integrating
multiple types of tables and notes, necessitating a careful engineering process to
ensure completeness and sequentiality.
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medrecon

stay_id name charttime

radiology

hadm_id text charttime

patients

subject_id gender age dod

LogBuilder

medrecod-log

hadm_id action timestamp message subject_id

DiaryMaker
H123's
Diary

FILTER BY
ADMISSION

hadm_id
(e.g. H123)

radiology-log

hadm_id action timestamp message subject_id

patients-log

hadm_id action timestamp message subject_id

[...] [...]

Figure 3.3: Diary generation pipeline. Each table is processed by the
LogBuilder, which standardizes its schema into a fixed format containing subject
and admission identifiers, timestamp, action, and message. Given an hadm_id, the
relevant entries are selected from the log tables and assembled by the DiaryMaker
in chronological order to generate the diary. All tables shown are derived from
MIMIC-IV

For this reason, the Source Document Generator for the patient summary
is limited to assembling clinical notes in a pre-defined sequence, determined
by the note types available in the EHR system in object. Given the simplicity of
this process, its technical implementation is not discussed further. The specific
methodology for constructing the patient summary in MIMIC-IV is detailed in
Section 3.4.6.

The creation of a diary from EHRs is a three-stage process. The first stage
involves a manual analysis of the database to identify relevant clinical data, its
temporal features, and the necessary joins and transformations. This analysis is
exclusively used to design the LogBuilder, an EHR system-specific component
that converts raw, heterogeneous tables into tables with a unified schema. The
final stage is handled by the DiaryMaker, an algorithm that assembles this
standardized log tables into a diary. A schematic representation of this process is
provided in Figure 3.3.

3.2.1 LogBuilder

The LogBuilder is the algorithm that converts EHR tables into a unified log format.
It is the only component of the system depicted in Figure 1.5 that must be re-
engineered if the underlying health database changes. Its design is based on a
preliminary database analysis that involves three key steps:

• identifying the temporal feature to track the order of events;

• joining complementary tables together;

• selecting relevant features.
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Based on the insights gained from this manual analysis, a LogBuilder is then
designed and tailored to the specific EHR system. Its goal is to reshape the
data into a standardized format containing only five key fields: hadm_id,
subject_id, timestamp, action, and message. This standardized structure al-
lows the DiaryMaker to operate agnostically with respect to the original
schema.

Defining the content of the action and message fields is the core of the EHR-
to-Diary transformation. The action may represent the name of the source table
itself or a specific pattern within a subset of data, while the message is generated
by reorganizing the table’s values into a human-readable string. Notably, every
field is assigned to one of these two categories to compress the conveyed information
as much as possible. This entire data mapping strategy stems directly from the
initial manual analysis and represents the core logic of the LogBuilder.

The LogBuilder is composed of several submodules, each designed to process a
specific part of the EHR content. The design of the LogBuilder for MIMIC-IV is
reported in Section 3.4.5.

From this point onward, all processing steps remain identical regardless of the

underlying EHR system.

3.2.2 DiaryMaker

The DiaryMaker is the algorithm responsible for creating the diary from
the standardized log tables produced by the LogBuilder.

Given a hospitalization identifier (hadm_id), the DiaryMaker collects all entries
related to that admission from the log tables. Once the events are gathered, the
algorithm splits the timestamp field into two parts: the date (YYYY-MM-DD) and
the time (hh:mm:ss). Events are then grouped by date, creating one page for each
hospital day.

Within each day, multiple records may share the same time–action pair. In
such cases, all messages associated with that pair are aggregated into a single list, as
described in Section 3.1.1. This condensation step ensures that each time–action

pair uniquely identifies an event. An event is therefore defined by the triplet:

[time–action] message

Each page is filled with its corresponding events, represented as such triplets.
Pages are then ordered chronologically, from admission to discharge, and concate-
nated to form the diary.
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3.3 Prompt Assembler

The source document provides the clinical context required for each task but, on
its own, it is insufficient for the model to produce accurate outputs. To guide the
model, the SD is combined with additional task-specific information that helps the
model interpret its objective, forming the prompt.

Although there is no universally accepted nomenclature for the parts of a prompt,
in this framework it is divided into three main components, each serving a distinct
purpose: the system message, the clinical context, and the instructions.

The first component, the system message, provides the model with information
about the task and the context document that will serve as its main reference. It
also defines the model’s role and establishes general guidance on how the generation
should be approached.

The second component, the context, constitutes the core informational content
and varies for each individual case. While the system message and instructions
remain fixed for a given task type, the context is specific to the individual case
under analysis, depending on the user’s request and the available clinical data.

The third component, the instructions, specifies in detail what the model is
expected to produce and how. They define the structure, content, and style of the
output, guiding the model to generate information that is accurate, coherent, and
suitable for the intended audience.

In this work, the system message provides a high-level description of the task
and its associated context; the context is represented by the source document,
and the instructions specify the required output format, the organization of the
information, and the desired writing style, ensuring that the result is appropriate
for clinical use.

In summary, the prompt integrates the clinical context with precise task guidance,
enabling instruction-tuned models to produce high-quality, task-specific outputs.
The Prompt Assembler is the algorithm responsible for constructing these
prompts, combining the system message, context, and instructions for each task.
Examples of prompts used to feed GETALP models are provided in Appendix A.1.

3.4 MIMIC-IV

This section introduces the EHRs database used in this study: the Medical
Information Mart for Intensive Care in its fourth edition (MIMIC-IV) [9].
MIMIC is a large, freely available database containing de-identified health-related
data from patients admitted to the critical care units of the Beth Israel Deaconess
Medical Center (BIDMC). Although anonymized, the datasets include detailed
information about patient care. Researchers wishing to use the database must
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become credentialed users on PhysioNet [84] and sign the Data Use Agreement
(DUA) [81].

The database is organized into six modules: HOSP, ED, NOTE, ICU, CXR,
and ECG, each capturing data from different stages of care. Most data are stored as
comma-separated values (.csv) files, while some modules, such as CXR and ECG,
also contain images and waveform data. Each module contains multiple tables, and
Figure 3.4 shows only the tables utilized by the system, with the corresponding
modules represented by an open folder icon.

The content, organization, usage, and data pre-processing of each module are
described in the initial sections. This is followed by two sections detailing the source
documents, namely the MIMIC-IV diary and the MIMIC-IV patient summary, and
concludes with the subdivision of the dataset into training and testing splits.

3.4.1 ED Module

Data from the emergency department are recorded in six tables: edstays, medrecon,

triage, diagnosis, pyxis, vitalsigns. Each ED stay is identified by a unique numerical
code, stay_id. Multiple stay_ids can correspond to a single hadm_id, since
a patient may visit the ED several times before being admitted. Occasionally,
patients may leave the ED without being admitted or may be unable to afford
hospitalization.

The edstays table plays a central role in this study, as it contains all primary
keys: subject_id, hadm_id, and stay_id. During data pre-processing, when
merging different tables, some keys may be missing; in such cases, edstays is used
to retrieve them.

Medication Reconciliation—the process of comparing a patient’s current
medication orders with those they had been taking—is captured in medrecon.

For training GETALP models, only two tables of this module were used: edstays

and medrecon.

3.4.2 HOSP Module

The HOSP module contains most of data captured by the BIDMC electronic health
records system. These measurements are primarily recorded during hospital
stays, though some tables also include information from outside the hospital
(e.g., outpatient laboratory tests in labevents). The available information includes
patient and admission details (patients, admissions, transfers), laboratory measure-
ments (labevents), microbiology cultures (microbiologyevents), provider orders (poe,

poe_detail), medication administration (emar), prescriptions (prescriptions, phar-

macy), billing information (diagnoses_icd, procedures_icd, hcpcsevents, drgcodes),
and hospital service information (services).
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MIMIC-IV transfers.csv

procedures_icd.csv

poe.csv

microbiologyevents.csv

labevents.csv

prescriptions.csv

drgcodes.csv

admissions.csv

patients.csv

discharge.csv

radiology.csv

ECG

CXR

ICU

NOTE

HOSP

ED

MODULES

TABLES

medrecon.csv

edstays.csv

pharmacy.csv

Figure 3.4: MIMIC-IV structure. Comprehensive documentation is available at
mimic.mit.edu.
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Each hospitalization is identified by a unique hadm_id, a numerical code assigned
to an admitted patient. The hadm_id serves as the primary key for this module and
should not be confused with the subject_id, which identifies patients at BIDMC.
A single patient (subject_id) may have multiple admissions, each with a distinct
hadm_id. Each record has a temporal attribute which can be used to reconstruct
the chronological order of events during a hospital stay.

Not all HOSP’s tables were used to train and validate GETALP models. Some
contain redundant information, such as emar, which adds negligible details beyond
pharmacy and prescriptions. Some other tables contain secondary or ancillary
information, such as billing or miscellaneous records, which could introduce noise
into the model. For instance, the diagnoses table includes secondary diagnoses
and chronic conditions, whereas drgcodes focuses on the primary reason for care.
Therefore, drgcodes were used, as it was considered that less critical illnesses and
chronic conditions can still be captured indirectly through other data, such as med-
ications and procedures. The excluded tables are: omr, emr, hcpcsevents,
diagnoses, and provider . Table 3.1 summarizes the HOSP tables included in
this study.

3.4.3 NOTE Module

MIMIC-IV-NOTE [94] contains radiology reports and discharge summaries. The
primary key for both tables is the hadm_id.

Discharge Summaries

Discharge summaries are essential clinical documents that provide a comprehensive
account of a patient’s hospitalization. They serve as handover tools, ensuring
continuity of care from the hospital to subsequent healthcare providers, including
primary care physicians, specialists, or long-term care facilities. At the BIDMC,
they are generally organized in a near standardized format, with distinct sections
documenting various aspects of the patient’s clinical course and care. MIMIC-IV
discharge summary sections are reported in Table 3.2.

To develop GETALP models, each discharge summaries is divided into its
component sections through a structure-based algorithm designed in this study,
called DSChunker. This allows retrieving the target sections (HC, DI) and
extracting other clinically valuable information that cannot be obtained from
structured HOSP or ED data. In MIMIC-IV, the section corresponding to the
patient’s hospital course is officially named Brief Hospital Course (BHC).

Some sections, such as History of Present Illness, Allergies, Discharge Condition,
and Discharge Medications, are embedded in the discharge summaries, therefore
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Table Features Exceptions
transfers care unit; event type entries with unknown

care unit
procedures_icd procedure description none
poe (Provider Order
Entry)

order type; order subtype;
field name; field value

duplicates (e.g.,
ADT, medications,
labevents); routine
and non-informative
orders (e.g., nutrition,
blood bank, nursing,
telemetry, IV access)

microbiologyevents specimen type; organism
name; comments

samples with no
growth; missing organ-
ism names replaced by
comments

labevents test name; result value; unit;
comments

none

prescriptions, phar-
macy

drug name; product
strength; administration
route; frequency; dispensing
schedule; sliding scale

prescriptions labeled
as BASE

drgcodes diagnosis none
admissions admission type, time and

location; insurance; hospi-
tal expiration flag; discharge
time and location; death
time

none

patients race; gender, marital status;
age; language

none

Table 3.1: Overview of HOSP tables. Features lists the key fields extracted from
each table. Exceptions specifies the criteria used to remove records from the original
datasets, such as missing values, duplicates, or entries considered non-informative.

they cannot be retrieved from elsewhere in MIMIC-IV. Other sections, like So-
cial History and Family History, cannot be reconstructed because MIMIC-IV’s
de-identification process breaks any link with patient relatives or social back-
ground. Additionally, sections such as Past Medical History could in principle be
partially derived by aggregating previous hospitalizations through the subject_id,
but the result would be incomplete: these sections often include details collected
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Section Content Included
Demographics Name, language, race, gender No
Service First ward responsible for the pa-

tient
No

Allergies Drug, food, or environmental al-
lergies (reaction/severity)

Yes

Attending Primary physician overseeing care No
Chief Complaint Reason for admission Yes
Major Surgical or Inva-
sive Procedures

Operations or significant interven-
tions during hospitalization

Yes

History of Present Ill-
ness

Detailed narrative of symptom on-
set, progression, and severity

Yes

Past Medical History Prior diagnoses, chronic condi-
tions, previous hospitalizations

Yes

Social History Lifestyle factors, habits, occupa-
tion

Yes

Family History Familial health patterns Yes
Physical Exams Clinical findings at admission and

at discharge
Yes

Pertinent Results Key laboratory, imaging, and di-
agnostic findings

No

Medications on Admis-
sion

Drugs taken prior to hospitaliza-
tion

No

Discharge Medications Prescribed drugs at discharge, in-
cluding dosing

Yes

Discharge Disposition Post-hospital care setting No
Discharge Diagnosis Primary and secondary diagnoses

at discharge
Yes

Discharge Condition Clinical status at discharge Yes

Table 3.2: Overview of discharge summary sections in MIMIC-IV-NOTE, including
content and usage. The last column (Included) indicates whether the section was
included in the diary or not.

during triage or at hospital admission, sometimes under dictation by patients
or relatives, and may refer to events outside the BIDMC.

For these reasons, all sections that cannot be reliably deduced from
structured data are sourced from the discharge summaries. This choice
aims to design a system that can be realistically applied in clinical practice. If
clinicians were required to manually recompile information already present in the
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EHR database, the purpose of automating discharge documentation would be
undermined. Instead, clinical staff should only fill in the necessary fields through
the EHR system and manually complete sections when truly unavoidable—precisely
in cases where the information is only known to the patient, such as the history of
symptom onset or the description of a trauma.

The DSChunker algorithm processes each discharge summary line by line and
searches for section headlines, which correspond to the section names reported in
Table 3.2. Headlines are detected using regular expressions, which ensure robustness
to small formatting variations such as punctuation, capitalization, or extra spaces.
Once a headline is found, all subsequent text is assigned to that section until the
next headline is encountered. The algorithm is resilient: if a section is missing or if
sections appear in an unusual order, extraction proceeds without issue. Sections
require no post-processing, except for Physical Exam, which is further divided into
admission and discharge subparts by detecting wake words such as “Admission”
or “Discharge.” If no wake word is found, the content is assumed to belong to the
admission phase.

The DSChunker organizes the extracted information into two tables. The
first, ds_chunk, collects all sections of each discharge summary, with one row
per summary referenced by hadm_id and one column per section, as shown in
Figure 3.5. Admission and discharge times are retrieved from the admissions table
of MIMIC-IV-HOSP. The second table, ground_truths, stores the target sections
(HC and DI) separately for the training phase.

Table 3.2 reports all sections of MIMIC-IV discharge summaries, indicating
whether they are included in this study and whether they are labeled as admission- or
discharge-related. Sections such as Medications or Pertinent Results are excluded
because their content can be obtained directly from prescriptions, pharmacy,
laboratory, or microbiology data. By contrast, sections that cannot be reconstructed
from structured sources are retained, together with the target sections HC and DI.

Radiology

Radiology reports are a formal, written interpretation by a radiologist of findings
from a medical imaging test, such as an X-ray, MRI, CT scan. The style of a
radiology note may vary according to different factors, such as the type of exam.
Most of documents are split in five different sections: Examination, Indication,
Technique, Comparison, Impression. However, style and content of such notes is
less standard if compared with discharge summaries. Hence, the radiology note
is not split in subsections when included in the patient’s diary. Unlike discharge
summary, radiology notes come with a precise temporal indication, which allows
these notes to be positioned at the correct point in the patient’s history. According
to MIMIC-IV official documentation, such variable reports the time at which the
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        --- MIMIC-IV DS ---
Name: ___ Unit No: __ 
Admission Date:___  Discharge Date: ___,
Date of Birth: ___, Sex: M

Service: MEDICINE

Allergies: Ciprofloxacin, Paxil

Attending: ___

Chief Complaint: Hematochezia

Major Surgical or Invasive Procedure:  [...]

History of Present Illness: 2-day bloody
bowel movements...

Past Medical History: CAD, ischemic
cardiomyopathy,...

Social History: former smoker.

Family History: Father- prostate CA.

Physical Exam: Admission Exam:  
Vitals- afebrile, 81, [...].

Pertinent Results: [...]

Brief Hospital Course: 56 y.o gentleman DM2,
CAD s/p CABG, ischemic cardiomyopathy
with...

Medications on Admission:
- Atenolol 25 mg PO DAILY, [...]

Discharge Medications:
1. Acetaminophen 650 mg PO Q4H:PRN pain,
[...]

Discharge Disposition:
Extended Care

Discharge Condition: Mental Status: clear
and coherent, Activity Status...

Discharge Instructions: you were
hospitalized for gi bleeding from
ischemic colitis [...].

Followup Instructions: ___

DS
Chunker

ds_chunks

hadm_id Service Allergies [...] HPI

H6 MEDICINE Ciprofloxacin,... ... 2-day bloody...

ground_truth

hadm_id Brief Hospital Course Discharge
Instructions

H6 56 y.o. gentleman DM2, CAD,
s/p [...] you where hospitalized [...]

Figure 3.5: MIMIC-IV discharge summary chunking process. A MIMIC-
IV DS is shown with its most common layout, showing the order and names of
sections. Section names are in bold. Sections underlined are used for training
and testing the GETALP models. The two target sections, the Brief Hospital
Course and the Discharge Instructions, are written in light blue. The DSChunker
algorithm behaves as detailed in Section 3.4.3.

note was charted, that is usually the most relevant time for interpreting the content
of the note.
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3.4.4 Other Modules: ICU, CXR, ECG

The ICU, CXR, and ECG modules correspond to data from the Intensive Care
Unit, Chest X-Ray, and Electrocardiogram, respectively. While the ICU module
organizes information in tables, CXR and ECG also include images and waveform
data. None of these modules were used in the present study.

3.4.5 MIMIC-IV Diary

PRESCRIPTIONS & PHARMACY

hadm_id drug strength route freq schedSLIDING
scale starttime

H123 Ondans... 4mg/2mL
Injection IV - - PRN 2025-09-04

12:03

H123 Morphine
Sulfate

50mg/50mL
Syringe IVPCA - ASDI - 2025-09-04

12:03

H123 CefazoLIN 10g
Bulk Vial IV Q8H

6,
14,
22

- 2025-09-04
18:40

[12:03 - Prescriptions]
Bisacodyl 10mg Suppository PR DAILY PRN 

PRESCRIPTIONS & PHARMACY

hadm_id drug strength route freq sched SLIDING
scale starttime

H123 Bisacody 10mg
Suppository PR DAILY - PRN 2025-09-03

12:03

Prescriptions LogBuilder
Time: starttime, Action: Prescription
Message: 
{drug} {strength} {route} {freq} {sched} {sliding_scale}

A)

B)

ICD_PROCEDURE

hadm_id long_title code chartdate

H123 Femoral central venous 05HM33Z 2025-09-06

TRANSFERS

hadm_id care unit event type intime

H123 Post-Anesthesia Care Unit admit 2025-09-04
06:00

H123 Surgical Intensive Care
Unit transfer 2025-09-04

16:32

--- 2025-09-04---
[06:00 - Admit] Post-Anesthesia Care Unit

[12:03 - Prescriptions]
- Ondansetron 4mg/2mL Injection IV PRN
- Morphine Sulfate 50mg/50mL Syringe IVPCA ASDIR

[16:32 - transfer] Surgical Intensive Care Unit

[18:40 - Prescriptions] 
CefazoLIN 10g Bulk vial IV Q8H 6, 14, 22

--- 2025-09-06 ---
[00:00 - Procedure] 
Femoral central venous catheter insertion

H123's LOGs

action timestamp message

admit 2025-09-04
06:00

Post-Anesthesia
Care Unit

Prescriptions 2025-09-04
12:03

    -Ondasetron ....
   - Morphine ...

transfer 2025-09-04
16:32

Surgical Intensive
Care Unit

Prescriptions 2025-09-04
18:40 CefazoLIN ... 

Procedure 2025-09-06
00:00

Femoral central
venous

Prescriptions
LogBuilder

Transfers
LogBuilder

Procedures
LogBuilder

H123 Prescriptions LOGs

action timestamp message

Prescriptions 2025-09-03
12:03

Bisacodyl 
10mg ...

Figure 3.6: MIMIC-IV-to-Diary transformation process exemplified using
three tables. Part A shows how a row from prescriptions & pharmacy tables
is converted by the corresponding LogBuilder-submodule into a log entry. The
Prescription LogBuilder extracts starttime as the temporal field, fixes the action
to the word “Prescription”, and encodes the remaining attributes (drug, strength,
route, frequency, schedule, sliding scale) into a concise textual message.
Some submodules also adjust temporal information: as shown in B, the Procedures
LogBuilder places events at midnight ensuring they appear before other same-day
events, since icd_procedures records only the date of a procedure (chartdate).
Part B shows how the DiaryMaker consumes the collection of log tables, merging
rows with identical timestamp-action pairs into a single entry (e.g., combining
ondansetron and morphine sulfate), ordering entries by timestamp, and grouping
them into daily pages (e.g., 2025-09-04, 2025-09-06), which are concatenated
sequentially to form the complete diary (red rectangle).

This part illustrates how MIMIC-IV tables are converted into log-tables through

40



Methods

the LogBuilder, and how these logs are subsequently assembled into a diary. Once
the LogBuilder has standardized the data into a unified log format, the construction
of the diary proceeds identically for any EHR system. In other words, nothing
specific to MIMIC-IV is required beyond the general SD generation
process outlined in Section 3.2. Figure 3.6 shows an example of the MIMIC-IV-to-
Diary transformation process detailed in this section of the report.

MIMIC-IV LogBuilder

The LogBuilder converts MIMIC-IV structured tables into log-tables suitable for
constructing the diary. Besides patient and encounter identifiers (subject_id,
hadm_id), each log entry contains the following fields:

• timestamp: date (YYYY-MM-DD) and time (hh:mm:ss) associated with the
event

• action: a label representing the macro-type of event

• message: a human-readable string summarizing the event

The algorithm begins by loading each relevant MIMIC-IV table, retaining only
entries with valid subject_id and hadm_id.

Next, the action and message fields are generated. In the default case, the
action is derived from the table name or event type, while the message is con-
structed as a human-readable string from the relevant table fields. Some tables
require more complex handling.

For labevents, lab results are grouped by patient, admission, fluid, and test
label. Only changes in status produce log entries: abnormal results generate an
entry labeled “LAB-Abnormal”, and recovery to normal generates an entry labeled
“LAB-Resolved”. The message summarizes the test name, result, unit, and any
comments.

For microbiologyevents, the set of detected organisms is tracked for each
patient, admission, and specimen type. Log entries are created only when the set of
organisms changes. The message lists the specimen and the identified organisms,
while the action is set to the word “MICROBIOLOGY”.

For the admissions table, logs are split into two entries per hospitalization:
admit and disch. During admission, the hospital_expire_flag is converted to
“YES”/“NO”; if the patient died during the hospitalization, “YES” is recorded
along with the deathtime, otherwise only “NO” is recorded in the message. The
action is set to “Admission” for admission events, whereas “Discharge” is used for
discharge events.

Timestamps are assigned from the most relevant datetime column in each table
(e.g., charttime, starttime, admittime, dischtime). When only the date is
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available, as in the case of ICD procedures (icd_procedures), the timestamp
is set to midnight of that date. This ensures that the event is placed at the
beginning of the day, preserving cause-effect relationships with other events that
have more precise timestamps.

Finally, entries with empty message fields are removed, producing the final
log-table. This log-table is then ready for downstream processing in the diary
generation pipeline.

Tables 3.3 and 3.4 summarize, for each table, how timestamp, action, and
message are constructed.

Table Timestamp Action

medrecon charttime Medrecon
transfers intime eventtype

procedures_icd chartdate Procedure
poe ordertime order_type

microbiologyevents charttime Microbiology
labevents charttime LAB-Abnormal / LAB-Resolved
prescriptions starttime Prescription
drgcodes dischtime DRG Code
admission (admit) admittime Admission
admission (disch) dischtime Discharge
patient_records admittime Patient Records
radiology charttime Radiology
ds_chunks admittime or dischtime section_name

Table 3.3: MIMIC-IV log-tables: timestamp and action for each table. One log
entry for each section within ds_chunks is created.

MIMIC-IV DiaryMaker

The MIMIC-IV DiaryMaker operates as for any other EHR system.
For each hospitalization (hadm_id), events with the same timestamp and action

are merged into a single entry, with messages listed as a dash-separated list. Events
are then grouped by calendar date (YYYY-MM-DD), one page is created for each date,
and the page is filled with entries in the format [time-action] message, where
the message may consist of multiple items.

3.4.6 MIMIC-IV Patient Summary

In the MIMIC-IV dataset, as of 2025, only two types of clinical notes are available:
the discharge summaries and radiology notes. To create the patient summary,
clinical notes are simulated by splitting the discharge summary into its
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Table Message

medrecon name

transfers careunit

procedures_icd long_title

poe order_subtype field_name field_value

microbiologyevents spec_type_desc findings: current_orgs

labevents label value valueuom comments

prescriptions drug prod_strength route freq sched sliding_scale

drgcodes description

admission (admit) type, from loc, insurance: ins. Died in Hospital?: exp? dtime

admission (disch) discharge_location

patient_records race gender marital_status anchor_age y.o. language speaker.
radiology text

ds_chunks section_content

Table 3.4: MIMIC-IV log-tables: message content for each table. Fields are
shown in typewriter, while static text (e.g., “findings”) is in normal font. For
visualization purposes, some variable names have been shortened: freq = frequency,
sched = disp_sched, type = admission_type, loc = admission_location, ins =
insurance, exp? = hospital_expire_flag, dtime = deathtime.

individual sections and selecting those deemed relevant for the task of generating
discharge instructions.

The process of dividing the discharge summary into its component sections
is described in Section 3.4.3. As outlined there, this procedure produces the
ds_chunks table, which is the sole source used to construct the patient summary.

The ds_chunks table contains one column for each section of the discharge
summary. In the patient summary, the selected sections are included in the
following order: Allergies, History of Present Illness, Social History, Family History,
Brief Hospital Course, Discharge Medications, Discharge Disposition, Discharge
Diagnosis, and Discharge Conditions. Each section is inserted with its name as a
header, followed by its content. Sections that are empty in the original discharge
summary are omitted.

In the context of MIMIC-IV, the patient summary thus consists essentially of a
re-assembled discharge summary, with certain sections removed according to task
relevance rationale.

3.4.7 Data Split: Train, Test, DB, Recollection

This section describes how MIMIC-IV admissions are split into four subsets:
train, test, db, and recollection test. The split process is explicitly designed
to prevent overfitting and data leakage, ensuring both fairness in evaluation and
the privacy of BIDMC patients.
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In developing machine learning models, two significant challenges that can lead
to misleading performance are overfitting and data leakage. Overfitting happens
when a model becomes too specialized to its training data, memorizing specific
examples rather than grasping the underlying, generalizable patterns. This makes
it perform poorly on new, unseen data. Data leakage, on the other hand, is a
more subtle issue where information from outside the training dataset improperly
influences the model’s learning. This can occur when there’s an unintentional
overlap or correlation between the training and test sets, leading to an overly
optimistic evaluation of the model’s true performance.

In the context of health records, these problems are amplified by subject
contamination. If the same subject appears in both training and testing, it
becomes unclear whether the model is generalizing to a new clinical case or simply
recalling information from training. Even though MIMIC-IV is pseudonymized,
pseudonymization alone does not eliminate the risk of subject contamination.

Consider the following scenario. A patient with type 2 diabetes is admitted for a
leg fracture, during which their treatment includes insulin therapy and metformin.
Later, the same patient is admitted for an ischemic stroke. In the clinical diary
of the stroke admission, the ongoing use of insulin is not explicitly mentioned.
However, because the model has already seen the patient during the fracture
admission, it may recall that the patient is diabetic and infer the insulin therapy,
even though this information is absent from the new record. The link can be
made through stable features—such as the patient’s age, ethnicity, or past medical
history—that are repeated across admissions. As a result, the model’s predictions
may be influenced by recalled knowledge of the patient rather than by the actual
content of the input record.

The model can learn about the patient if it sees them many times during training.
Therefore, it is essential to include at most one admission per subject in
the training set. For evaluation, it is preferable to rely on patients not seen
during training, for the same reason. Secondary hospitalizations of training subjects
can instead be used to check for this recollection effect. If performance on the
recollection test set is inflated compared to the standard test, this may be a sign of
overfitting due to data leakage.

The data split process of this work, depicted in Figure 3.7, is based on the
admissions table from the MIMIC-IV-HOSP module. This table contains 331,793
admissions (hadm_id) corresponding to 145,793 unique patients (subject_id).
Since each patient was admitted on average more than twice, without a careful
strategy the same subject could easily appear in both the train and test sets. To
address this problem, the data split process unfolds in two separate steps.

First, the admissions table is grouped by subject_id, and exactly one admis-
sion (hadm_id) is sampled from each group. This results in 145,914 admissions,
one per subject, which will later be divided into train and test. All the remaining
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admissions

subject hadm
S0 H0
S0 H1
S0 H2
S1 H3
S1 H4
S2 H5

SPLIT
1

admissions
subject hadm

S0 H1
S0 H2
S1 H4

admissions
subject hadm

S0 H0
S1 H3
S2 H5

TRAIN
116,731

SUBJ.
FILTER

Retain only 
one admission 

per subject

Total Subjects: 145,914
Total Admissions: 331,793

N1

DB
185,879

admissions
subject hadm

S0 H1
S0 H2

29,183

admissions
subject hadm

S0 H0
S2 H5

MIMIC-IV
331,793

admissions
subject hadm

S1 H3

80%

SPLIT
2

SAMPLE 25020%

RECOLLECTION TEST
FULL-SPLIT

SAMPLE 250

37,176

TEST
Discharge-Me!-sized

RECOLLECTION 
TEST

Discharge-Me!-sized

N1

11

TEST 
FULL-SPLIT

Figure 3.7: Representation of the data split process with a toy example. The
example shows three subjects (S0, S1, S2) with different numbers of admissions. In
the first step, one admission per subject is retained, while the remaining admissions
are moved to the db set. The retained admissions are then divided into train (80%)
and test (20%). Additional admissions from training subjects are later used to
form the recollection set. Finally, the test set is downsampled to 250 examples to
follow the Discharge-Me! framework.

admissions (185,879) are set aside in a separate partition called db.
Second, the set of one-admission-per-subject is split into train and test

according to the standard 80/20 rule. The training set contains 116,731 admissions,
while the test set contains 29,183. Following the Discharge-me! framework, only
250 randomly chosen test examples are used to rank GETALP models.

An additional evaluation set, called recollection, is built to check whether the
model is overfitting on BIDMC patients. To construct it, the subjects included in
the training set are identified, and their other admissions are retrieved from db. In
this way, the recollection set contains new admissions belonging to patients the
model has already seen during training. If performance on this set is skewed higher
compared to the standard test set, it means the model is recalling patient-specific
information instead of generalizing properly.

Each of the three splits—training, test, and recollection test—is filtered according
to the availability of the required ground truth. Ground truth entries are considered
valid as long as they are not empty; cases consisting solely of whitespace characters
are excluded. For the dataset used to train on HC, an additional filtering step is
applied using the log tables: entries with an empty message field are removed, and
admissions with no remaining events are discarded, since they would otherwise yield

45



Methods

an empty diary. Likewise, the dataset for DI is filtered by excluding admissions
without any clinical notes suitable for building a patient summary. For this reason,
train, test, and recollection splits are not of an equal size across tasks,
as reported in Table 3.5.

Split Hospital Course Discharge Instructions
Train 104,528 114,775
Test 26,102 28,664
Recollection 32,088 36,709

Table 3.5: Split size per task.

It is important to note that no DS quality-based data cleaning is performed,
to ensure a fair comparison with the Discharge-Me! models.

3.4.8 MIMIC-IV Source Document Length

As anticipated in 3.1, for the design of source documents to be effective, the vast
majority of documents should remain within the context window. The context
window (also referred to as sequence length or model capacity) is the maximum
number of tokens the model can process. Although models can technically process
inputs beyond this limit without interruption, performance is not guaranteed
beyond that threshold.

On average, a MIMIC-IV-Diary is 4,505 tokens long, which corresponds to about
half of Mistral7B’s training context size (8k). The probability that a MIMIC-IV-
Diary prompt exceeds the GETALP-Mistral7B sequence length (15k) is less than
2.9 × 10−2, demonstrating that the diary design effectively compresses the
patient’s clinical history.

By design, the patient summary is significantly shorter than the diary. Indeed,
the MIMIC-IV-Patient Summary has an average sequence length of 1,531 tokens
in the test split, with the maximum prompt length never exceeding 10k tokens in
any split.

Finally, the length of the training prompt is analyzed; it consists of the concate-
nation of the input prompt and the ground truth. For HC, the training prompt is
about 5,312 tokens on average, exceeding the GETALP-Mistral7B context window
in 3.5% of cases (approximately 3,657 hospitalizations). Models are not trained
on examples exceeding their capacity, since the ground truth would be trun-
cated, potentially degrading performance. Discharge instructions training prompts
never exceed the GETALP models’ context window.

Appendix B.2 reports tables and figures at the component level (source document,
ground truth (HC, DI), training prompt).
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3.5 Training GETALP Models

With the input design (Sections 3.1 and 3.2) and the datasets (Section 3.4) already
defined, the next step consists in training domain-adapted language models. The
Asclepius family was selected as the clinical foundation model, as it
provides a high-performing and publicly available clinical model trained on synthetic
discharge-style notes. Thanks to its open-source nature and clinically oriented
pretraining, Asclepius enables domain-specific fine-tuning while avoiding the privacy
limitations associated with real medical data. Starting from Asclepius-Mistral7B,
we derive GETALP-Mistral7B, whereas Asclepius-Llama3-8B serves as the
base for GETALP-Llama3-8B. Both models are fine-tuned using the QLoRA
technique under equivalent configurations, with training performed in a supervised,
completion-only fashion, as outlined in the following two subsections.

3.5.1 Supervised Fine-Tuning

As introduced above, SFT is performed in a completion-only fashion, meaning
that model weights are updated solely based on the target outputs rather than the
full content of the source documents. This preserves the model’s flexibility to
adapt to different EHR structures while specializing in generating specific sections.

For each GETALP model, two task-specific sets of weights are trained:

• HC: trained on MIMIC-IV diaries (Section 3.4.5);

• DI: trained on MIMIC-IV patient summaries (Section 3.4.6).

Only the appropriate set of trained weights is loaded for inference, depending on
the task.

The SFT loss for each task is formally expressed as:

LSFT = −
1

N

N∑

i=1

Ti∑

t=1

log Pθ(y
(i)
t | y

(i)
<t, x(i)),

where x(i) is the input prompt, y
(i)
t is the t-th token of the target sequence, Ti is

the number of tokens of x(i) length, and N is the number of training examples.

3.5.2 QLoRA Fine-Tuning

Quantized low rank adaptation is employed to fine-tune both Mistral7B and Llama3
efficiently. QLoRA consists of two main components:

• Low-Rank Adaptation (LoRA): adds lightweight trainable adapters to
projection and MLP layers, keeping the base model frozen. This drastically

47



Methods

reduces the number of parameters to train and avoids catastrophic forgetting.
GETALP-Mistral7B adds only 41.9M trainable parameters (0̃.60% of the base
model), while Llama3 adds 41.9M (0̃.52%).

• Quantization-aware training (4-bit): the frozen weights are stored in
4-bit precision during training, minimizing VRAM usage and speeding up
computation. Training is therefore feasible on smaller hardware without
compromising the base model knowledge.

In summary, QLoRA provides several key advantages. It keeps the total model
size low, preserves the original weights intact—thereby preventing catastrophic
forgetting and reducing the risk of overfitting—and improves training
efficiency in terms of both time and GPU memory usage. Training parameters,
memory usage and learning curves are shown in Appendix C.2.

3.6 Evaluation Framework

This section details the evaluation framework used to benchmark GETALP models.
The framework is taken from Discharge Me: BioNLP ACL’24 Shared Task on

Streamlining Discharge Documentation [12].
It consists of eight metrics, namely BLEU, ROUGE-1, ROUGE-2, ROUGE-

L, METEOR, BERTScore, AlignScore, and MEDCON [37, 38, 39, 40, 41,
42].

The evaluation is first conducted task-wise. Then, an overall score is com-
puted by averaging the performance of the model across all metrics on both HC
and DI sections.

As in Discharge-Me! , the model is evaluated on a set of 250 encounters
randomly sampled from the test split. As detailed in 3.4.7, an equal number
of hospitalizations of subjects seen during the training phase is drawn from the
recollection set, to test GETALP-Mistral7B against patient memorization.

The math behind metrics is available in the Appendix of this document (D).

3.6.1 Metrics

Metrics are defined in terms of a candidate and a reference text. In this report,
the candidate is the target section generated by the AI assistant, while the
reference—also called ground truth—is the corresponding section written by a
human.

Although metrics can be generalized to multiple references per candidate, each
hospitalization in our dataset includes only one version of target sections (one HC,
one DI). Therefore, the description of the metrics is limited to the single-reference
case. All metric scores range from 0 (worst) to 1 (best).
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BLEU

BLEU (Bilingual Evaluation Understudy) is an algorithm originally introduced for
evaluating the quality of machine translation [37]. BLEU is based on the concept
of n-grams, which are sequences of n consecutive words. For example, the
bi-grams of the sentence “He loves to read” are three:

He loves, loves to, to read.

The central idea behind BLEU is straightforward: count how many n-grams of
the candidate sentence belong to the reference. However, this idea requires some
refinements for stabilization:

• clipping: if an n-gram appears at most m times in the reference, it can be
counted no more than m times. This step produces the so-called modified
n-gram precision.

• brevity penalty: if the candidate is shorter than the reference, a brevity
penalty BP is applied.

• geometric mean: BLEU-4 is obtained by taking the geometric mean of the
modified precisions of uni-grams, bi-grams, tri-grams, and tetra-grams.

BLEU-4 shows the highest alignment with human judgment [37].

ROUGE

ROUGE (Recall-Oriented Understudy for Gisting Evaluation) is a family of metrics
designed to evaluate the overlap between a candidate text and a reference text
[38].

The variants of ROUGE used in this report are:

• ROUGE-1 (R-1): based on uni-grams. It measures how many single words
from the reference are correctly reflected by the candidate.

• ROUGE-2 (R-2): based on bi-grams. It evaluates how many consecutive
word pairs from the reference appear in the candidate.

• ROUGE-L (R-L): based on the longest common subsequence (LCS), which
captures the longest sequence of words appearing in both texts while preserving
order, even if the words are not strictly consecutive.
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METEOR

METEOR (Metric for Evaluation of Translation with Explicit ORdering) is a
metric originally proposed for machine translation evaluation, as an improvement
of BLEU [39]. Unlike BLEU, which is precision-oriented, METEOR was designed
to balance both precision and recall, while also accounting for linguistic phenomena
that go beyond exact word matching.

The key innovations of METEOR are:

• Flexible matching: words are matched not only by exact form, but also
through stemming (“running” → “run”), synonyms (“doctor” ↔ “physi-
cian”), and paraphrases when available.

• Precision-recall balance: the final score is based on a harmonic mean that
gives more weight to recall, reflecting the intuition that missing important
information is worse than adding redundant words.

• Fragmentation penalty: if matches are scattered across the candidate and
reference in a disordered way, the score is penalized. This captures fluency
and word ordering better than n-gram overlap alone.

This properties make METEOR particularly suitable in our clinical context, where
it is preferable for discharge documentation to be somewhat redundant rather than
omitting critical medical information, and where many acronyms and synonyms
may be encountered.

BERTScore

BERTScore is a semantic similarity measure that leverages contextual embed-
dings from pretrained language models to compare candidate and reference texts [40].
Unlike BLEU or ROUGE, it captures meaning rather than exact word overlap,
making it particularly suitable for clinical text, where synonymous expressions may
convey identical medical information.

In this project, we used the distilbert-base-uncased model, computing
embeddings from the fourth layer out of six available. As discussed by Peters
et al. and Tenney et al., the inner layers of BERT tend to focus more on syntactic
information, while the higher layers capture semantic information. Although the
motivations behind the specific choice of the fourth layer by the authors of the
Discharge-Me! challenge are not publicly disclosed, this choice is convincing: it
positions BERTScore as a middle ground between metrics more focused on lexical
overlap, such as BLEU and ROUGE, and metrics more semantically oriented, such
as AlignScore and MEDCON, the latter being specifically designed for medical
text.
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The measure calculates token-level cosine similarities between candidate and
reference embeddings that are then aggregated into precision, recall, and finally
F1-score, as shown in Figure 3.8.

In Chapter 4, tables report “BERT” as an abbreviation of BERTScore.

Figure 3.8: Example of BERTScore computation from Zhang et al.[40].
Each sentence is first encoded through a BERT model BERT model
(distilbert-base-uncased, 4th layer in this case) then the cosine similarity
matrix is computed. In red, values used to compute the recall. The BERTScore is
calculated as the F1-Score: the harmonic mean of precision and recall.

AlignScore

AlignScore is a semantic evaluation score designed to measure the factual consis-
tency of generated text with respect to a reference [41]. It is particularly suitable
for clinical text, where preserving factual information is critical.

The candidate text is split into sentences and the reference text into chunks of
roughly 350 tokens. Each candidate sentence is compared with all reference chunks
using a pretrained NLI model. Here, the alignment function corresponds to the
entailment probability between the candidate sentence and a reference chunk.

For each candidate sentence, the maximum entailment probability across all
reference chunks is selected. The AlignScore is then computed as the mean of these
maximum probabilities across all candidate sentences (see Figure 3.9).

AlignScore cannot be considered a metric in the strict mathematical sense,
as it fails to satisfy two essential properties: symmetry and identity. For the sake
of simplicity, it will still be called a metric.

In Chapter 4, tables report “Align” as an abbreviation of AlignScore.
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Figure 3.9: Example of AlignScore computation from Zha et al.[41]. The context
(reference) is split into roughly 350-token chunks. Then, each sentence in the claim
(candidate) is evaluated against the context chunks using the alignment function.
The highest alignment score of each claim sentence is selected and then averaged
to derive the factual consistency score.

MEDCON

MEDCON is a medical concept-based evaluation metric designed to assess the
accuracy and consistency of clinical concepts by comparing the presence of
key medical concepts in the candidate text against those in the reference [42].

To ensure clinical relevance, the evaluation is restricted to specific UMLS
semantic groups, including Anatomy, Chemicals & Drugs, Devices, Disorders,
Genes & Molecular Sequences, Phenomena, and Physiology.

The metric then computes the F1-score between the sets of extracted concepts,
providing a measure of how well the candidate captures the reference’s clinical
content.
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3.6.2 Per-Task Evaluation

For each metric β, the score is computed separately on the HC and DI sections.
Let Sβ,HC be the score of metric β on the HC section, and Sβ,DI the score on the
DI section.

The task-wise evaluation produces two aggregated values:

AVGHC =
1

N

N∑

i=1

Sβi,HC AVGDI =
1

N

N∑

i=1

Sβi,DI (3.1)

where N = 8 is the number of metrics (i.e., BLEU, ROUGE-1,-2,-L, METEOR,
BERTScore, AlignScore, MEDCON).

Thus, AVGHC represents the average performance of the model on the HC
section across all metrics, while AVGDI represents the corresponding average for
the DI section. These two averages allows to identify strengths and weaknesses
of the model in each task before computing the overall score.

In Chapter 4, tables report this score in the column “AVG”.

3.6.3 Overall Scoring System

To obtain a comprehensive score, results are aggregated across tasks and metrics.
For each metric β, the mean of HC and DI scores is first computed:

β =
Sβ,HC + Sβ,DI

2
(3.2)

Then, the overall score is calculated as the mean of all metric scores:

Overall =
1

N

N∑

i=1

βi (3.3)

The overall score is used to elect the best stystem, in this study as in
Discharge-Me! .

3.7 Experiments

This section presents the set of five experiments conducted in this study. Each
experiment is described in detail in the following subsections, with the aim of ensur-
ing methodological clarity and interpretative consistency. The experiments
cover different aspects of model evaluation, from internal comparisons of fine-tuned
models to ablation studies and qualitative assessments of the reference data.

All experiments are evaluated using the framework described in Section 3.6,
ensuring systematic and reproducible results. A single test dataset of 250 hospi-
talizations, created according to the data splitting pipeline described in 3.4.7, is
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consistently used across all experiments. Both HC and DI generation tasks are
evaluated on the identical set of hospitalizations. In the recollection test, this
standard test set is still employed, while an additional recollection set is used to
investigate o specifically determine whether the model memorizes patient-specific
information.

3.7.1 Evaluation of GETALP Models

The experiments are designed to evaluate the models developed in this work,
GETALP, in a systematic and comparable manner. Three main analyses are
performed within this experimental setup:

1. GETALP vs. Asclepius baselines. Each fine-tuned GETALP model is
compared against its corresponding base model, Asclepius, to assess whether
the fine-tuning procedure introduces measurable improvements over the clinical
foundation models.

2. Comparison between GETALP-Mistral7B and GETALP-Llama3-8B.
A head-to-head evaluation of the two fine-tuned models developed in this
study is conducted to identify the best-performing solution among the models
produced in this work.

3. Benchmarking against external solutions. The two fine-tuned GETALP
models are compared with the systems presented in the Discharge-Me! chal-
lenge, allowing a direct assessment of performance against other state-of-the-art
clinical AI-assistants.

This experimental design enables a systematic evaluation of the models, address-
ing both improvements due to fine-tuning and the relative performance against
external competitive solutions.

Results are available in Section 4.1.

3.7.2 Ablation Study on the Diary Content

The ablation study systematically evaluates the contribution of different input
components to a model’s predictions by selectively removing or modifying them.
In this work, the ablation study focuses on the content of the MIMIC-IV-Diary,
assessing how the removal of specific sources of information affects the quality of
the hospital course generated by the model.

The diary content is described in Section 3.4.5, and, as previously intro-
duced, it is structured as a sequence of log entries, each consisting of a triplet
[timestamp–action] message. Ablation is performed by selectively removing
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specific actions, creating different versions that allow systematic assessment of
how the presence or absence of particular types of information impacts the quality
and completeness of the hospital course generated by the model.

GETALP-Mistral7B is used as the reference model, as it outperformed Llama3-
8B in terms of overall score (see Section 4.1.3). Importantly, all ablation experiments
are performed using GETALP-Mistral7B trained on the complete MIMIC-IV-Diary:
no variant-wise training is performed.

Information in the diary can be split into two categories according to their
source:

• structured data: automatically collected records or entries compiled with
minimal effort by clinicians, precisely those of MIMIC-IV-HOSP and MIMIC-
IV-ED described in Table 3.1 and in Section 3.4.1. These records are concise,
standardized, and represent fundamental elements of the hospital stay.

• clinical notes: narrative documents written directly by clinicians, who must
sit down, reflect on the patient’s case, organize the information, and express it
in a coherent style. Sourced from MIMIC-IV-NOTE, these consist of radiology
reports (see Section 3.4.3) and the narrative sections extracted from DSes,
detailed in Table 3.2.

The key distinction lies in the degree of human effort required: structured
data are generated with minimal manual input, whereas clinical notes require
clinicians to interpret, organize, and communicate the information.

Based on these considerations, the following configurations are defined:

• Complete: baseline, all information available. The diary is made of logs as
described in Tables 3.3 and 3.4 within Section 3.4.5.

• No Radiology (-R): the classic MIMIC-IV-Diary excluding radiology notes.
As noted by Liu et al., radiology reports occasionally introduce spurious
details that may lead to hallucinations, and their removal is expected to
slightly improve performance [101].

• Clinical Notes Only (-HOSP,-ED): retains only narrative clinical notes,
excluding radiology. In practice, this corresponds to retaining only the DSes.
In terms of content, this configuration is similar to the input proposed by
Damm et al., Discharge-Me! winners. It is important to note that a diary
composed solely of clinical notes would render any effort to automate HC
generation largely ineffective. Again, to effectively relieve clinicians from the
discharge documentation burden, the system must rely as little as possible on
human-written content.
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• Clinician-Free Baseline (-DS / -DS,+DS): configurations designed to
minimize direct clinician involvement in generating the hospital course. These
settings include only structured data and potentially automatable notes. The
-DS configuration removes all content extracted from discharge summaries
using the DSChunker algorithm (see Section 3.4.3), while -DS,+DS rein-
troduces solely the history of present illness. This choice reflects the high
informational value of the HPI, which conveys the core clinical context of
the hospitalization, and aligns with future perspectives of ASR automation
pipelines described in the final chapter of this work (6). Radiology notes are
also consistently preserved, in line with ongoing research on automatic report
generation (RRG24 [11]).

Each configuration is labeled according to the components removed: the “-” symbol
precedes the name of any section that has been excluded, while the “+” symbol
indicates a section that has been selectively reintroduced.

Results are available in Section 4.2.

3.7.3 Using AI-Generated Hospital Courses for Discharge
Instruction Generation

In this experiment, discharge instructions are generated using the hospital
course produced by GETALP-Mistral7B itself (ĤC). In other words, unlike
other experiments where the model relies on the human-written HC, here GETALP-
Mistral7B generates DI based on its own prior output.

The motivation stems from how a clinical AI assistant would be deployed in real
hospital wards. To produce discharge instructions, the model relies on the patient
summary, which includes, among other sections, the patient’s hospital course. Since
GETALP-Mistral7B can also generate HC, a realistic workflow would involve first
generating ĤC from the patient’s diary and then using it to generate DI.

From a technical standpoint, patient summaries in the test set are modified by
replacing the clinician-written HC with the model-generated ĤC. The model
then generates DI from these modified summaries. We denote this configuration as
DI(ĤC), in contrast to the baseline DI(HC), which uses the original physician-
authored HC.

This cascading setup serves two purposes. First, it evaluates the feasibility
of a fully automated generation pipeline under realistic conditions. Second, it
provides an indirect quality assessment of GETALP-Mistral7B’s hospital courses,
by examining how its content affects downstream DI performance.

Results for this experiment are presented in Section 4.3.
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3.7.4 Qualitative Analysis of Model Outputs

A complementary qualitative analysis is conducted to systematically examine
the outputs generated by the models. This assessment is performed manually,
reviewing the texts produced by the GETALP models.

The purpose of this analysis is to identify potential issues in the generative
process, such as inconsistencies, omissions, or clinically implausible statements,
and to explore possible directions for improvement. By examining individual
outputs in detail, it is possible to highlight recurring patterns of errors, evaluate the
strengths and weaknesses of the model, and gain insights that cannot be captured
by automatic metrics alone.

Such an approach complements quantitative evaluation and provides a more
comprehensive understanding of the model’s behavior in practical clinical scenarios.

Results are available in Section 4.4.

3.7.5 Recollection Test

The recollection test is designed to evaluate whether GETALP-Mistral7B memo-
rizes patient-specific information from the training data.

For this experiment, the model is evaluated on a subset of 250 hospitalizations
corresponding to patients from the BIDMC who were included in the training
set.

If the model demonstrates substantially higher performance on this subset
compared to a test set consisting of previously unseen patients, this would indicate
memorization of patient-level information. Such a result would imply the presence
of overfitting, with direct implications for privacy and data leakage, entailing the
need for adjustments in the training pipeline. The detailed procedure used to
construct the recollection test set is described in Section 3.4.7.

Results are available in Section 4.5.
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Results

Models are evaluated using the Discharge-Me! framework introduced in Section 3.6.
Results from the Discharge-Me! competition are taken from the official leaderboard,
accessible at stanford-aimi.github.io/discharge-me. At the time of writing,
the leaderboard was last updated on May 12, 2024. These results are also reported
and discussed in Xu and PhysioNet [12, 11].

The organization of this chapter follows the same logical flow as the experimental
design in Section 3.7. Each major section here corresponds to one of the experi-
mental subsections from the Methods chapter, maintaining the same sequence. To
facilitate cross-referencing, each results section begins by recalling the correspond-
ing experimental setup, creating a direct mapping between methodological choices
and their outcomes.

4.1 Evaluation of GETALP Models

The description of the experiment is available at Section 3.7.1.

4.1.1 GETALP vs Asclepius

The fine-tuning process leads to substantial improvements for both architec-
tures, as evidenced by the overall scores presented in Table 4.1, which compares
the Mistral7B and Llama3-8B models before (Asclepius) and after fine-tuning
(GETALP).

For Mistral7B, the baseline model, i.e. Asclepius-Mistral7B, achieves an overall
score of 0.138, while the fine-tuned version, GETALP-Mistral7B, reaches 0.393,
resulting in a gain of 0.255. Similarly, for Llama3-8B, Asclepius-Llama3-8B starts
from 0.148, and GETALP-Llama3-8B rises to 0.370, with an improvement of 0.222.

The improvements are also observed at the level of individual tasks, as shown in
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Rank Team Overall BLEU R-1 R-2 R-L BERT METEOR Align MEDCON

1 GETALP-M7B 0.393 0.203 0.482 0.287 0.367 0.487 0.402 0.447 0.471
2 GETALP-L8B 0.370 0.169 0.490 0.254 0.333 0.464 0.393 0.415 0.444
3 Asclepius-L8B 0.148 0.005 0.236 0.047 0.130 0.205 0.135 0.238 0.189
4 Asclepius-M7B 0.138 0.004 0.214 0.037 0.121 0.175 0.117 0.270 0.164

Table 4.1: Overall Scoring System - GETALP vs Asclepius. Best scores in bold,
second-best scores underlined. Acronyms: M7B = Mistral7B, L8B = Llama3-8B.

Table 4.2. Considering the average metric score AVG, Mistral7B increases by 0.165
on HC and 0.346 on DI, while Llama3-8B improves by 0.151 on HC and 0.293 on
DI.

Model AVG BLEU R-1 R-2 R-L BERT METEOR Align MEDCON

Hospital Course (HC)

Mistral7B
Asclepius-M7B 0.144 0.003 0.214 0.045 0.124 0.188 0.106 0.289 0.183
GETALP-M7B 0.309 0.127 0.411 0.198 0.281 0.424 0.307 0.351 0.375

Llama3-8B
Asclepius-L8B 0.161 0.006 0.250 0.060 0.142 0.230 0.126 0.260 0.218
GETALP-L8B 0.312 0.116 0.462 0.195 0.274 0.424 0.329 0.322 0.378

Discharge Instructions (DI)

Mistral7B
Asclepius-M7B 0.131 0.004 0.213 0.030 0.118 0.163 0.128 0.250 0.144
GETALP-M7B 0.477 0.279 0.552 0.376 0.453 0.550 0.496 0.543 0.568

Llama3-8B
Asclepius-L8B 0.135 0.004 0.222 0.034 0.119 0.179 0.144 0.216 0.159
GETALP-L8B 0.428 0.222 0.518 0.313 0.391 0.505 0.457 0.508 0.509

Table 4.2: Per-Task Results. Best scores in bold, second-best scores underlined.
Acronyms: M7B = Mistral7B, L8B = Llama3-8B.

Interestingly, the ranking of the two architectures inverts after fine-tuning:
prior to fine-tuning, Llama3-8B outperforms Mistral7B on nearly all metrics re-
gardless of the task considered, whereas post fine-tuning Mistral7B surpasses it,
demonstrating a stronger adaptation to the generation tasks in object (HC and
DI).

4.1.2 GETALP-Mistral7B vs GETALP-Llama3-8B

The head-to-head comparison between the two fine-tuned models highlights com-
plementary strengths, as reported in Tab. 4.2. For the HC section, GETALP-
Llama3-8B wins by an AVG marginal 0.003 points, with the most notable
advantage in ROUGE-1 (+0.049). However, GETALP-Mistral7B achieves higher
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scores in four of the eight metrics, including BLEU, ROUGE-2, ROUGE-L, and
AlignScore. Both models tie on BERTScore, while Llama3-8B has a slight edge
in MEDCON (+0.003), suggesting it is slightly better at capturing the clinical
concepts reported by doctors in their hospital courses.

For DI, GETALP-Mistral7B consistently outperforms GETALP-Llama3-8B
across all metrics, with an AVG margin of 0.049—more than sixteen times the
advantage that Llama3-8B holds over Mistral7B in the HC section.

Looking at the overall score (Tab. 4.1), the balance tilts in favor of GETALP-
Mistral7B, which reaches an overall score of 0.393 compared to GETALP-Llama3-
8B’s 0.370. This indicates that, despite Llama3-8B maintaining a slight advantage
for HC summaries, GETALP-Mistral7B emerges as the most effective
solution developed in this work.

4.1.3 GETALP vs Discharge-Me!

Rank Team Overall BLEU R-1 R-2 R-L BERT METEOR Align MEDCON

1 GETALP-M7B 0.393 0.203 0.482 0.287 0.367 0.487 0.402 0.447 0.471
2 GETALP-L8B 0.370 0.169 0.490 0.254 0.333 0.464 0.393 0.415 0.444
3 WisPerMed 0.332 0.124 0.453 0.201 0.308 0.438 0.403 0.315 0.411
4 HarmonAI 0.300 0.106 0.423 0.180 0.284 0.412 0.381 0.265 0.353
5 aehrc 0.297 0.097 0.414 0.192 0.284 0.383 0.398 0.274 0.332
6 EPFL-MAKE 0.289 0.098 0.444 0.155 0.262 0.399 0.336 0.255 0.360
7 UF-HOBI 0.286 0.102 0.401 0.174 0.275 0.395 0.289 0.296 0.355

Table 4.3: Updated Discharge-Me! leaderboard, including GETALP models. Best
scores in bold, second-best scores underlined. Acronyms: M7B = Mistral7B,
L8B = Llama3-8B.

Table 4.3 shows the overall leaderboard of the Discharge-Me! challenge, in-
cluding both GETALP-Mistral7B and GETALP-Llama3-8B. GETALP models
outperform all other participants across nearly all evaluated metrics, achieving
overall scores of 0.393 and 0.370, respectively.

WisPerMed, ranked third after inserting GETALP solutions in the leaderboard,
was the official winner of the Discharge-Me! challenge, surpassing all other par-
ticipants on all metrics. Despite WisPerMed employing the same base models
(Asclepius), the same fine-tuning approach (QLoRA), and equivalent training pa-
rameters as the GETALP solutions, both GETALP models achieve substantially
higher scores across all metrics except METEOR, where GETALP-Llama3-8B
ranks slightly below WisPerMed. In particular, GETALP-Mistral7B, the best-
performing model, surpasses WisPerMed across all metrics of the evaluation
framework, with a margin 0.061 in overall score.

Given that WisPerMed and GETALP share the same underlying model and
fine-tuning setup, this performance gap is unlikely to result from the base model or
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training procedure alone. It can be hypothesized that the key factor lies in the
careful design of diary and patient summary layouts, each explicitly crafted
to favor the characteristics of HC and DI generation, likely enabled the models
to produce higher-quality outputs. In other words, the difference in performance
highlights the importance of task-specific prompt engineering and source document
design in automating discharge documentation.

Due to the non-disclosure of task-level results from the challenge, a per-task
comparison between GETALP models and other Discharge-Me! participants cannot
be provided. Regardless, the overall results clearly demonstrate that GETALP-
Mistral7B represents the state-of-the-art model for generating discharge
documentation.

4.2 Ablation Study on the Diary

The experimental setup is described in Section 3.7.2
Results of the ablation study are presented in Table 4.4.

Config AVG BLEU R-1 R-2 R-L BERT METEOR Align MEDCON

Complete 0.309 0.127 0.411 0.198 0.281 0.424 0.307 0.351 0.375
-R 0.310 0.128 0.410 0.202 0.284 0.420 0.303 0.358 0.373
-HOSP,-ED 0.308 0.123 0.416 0.203 0.283 0.420 0.298 0.352 0.370
-DS,+HPI 0.291 0.118 0.390 0.188 0.269 0.402 0.284 0.339 0.335
-DS 0.251 0.084 0.355 0.153 0.240 0.360 0.241 0.313 0.265

Table 4.4: Ablation study results on the hospital course generation task. Best
scores in bold, second-best underlined. Model: GETALP-Mistral7B.

Findings seems to confirm those of Liu et al. (aehrc): radiology reports can act
as noise. In facts, excluding them from the diary (-R) yields a slight improvement
(+0.001 AVG). However, the complete configuration is more medical consistent
(-0.002 MEDCON) and more semantically aligned with the ground truth (-0.004
BERTScore), indicating that radiology notes still provide valuable informa-
tion to GETALP-Mistral7B. In light of such results, and considering that radiology
reports are among the longest documents in the model input (Appendix B.2), a
promising approach is not to remove them, but rather to summarize them into
their essential components, such as examination details and findings.

From Table 4.4 it can be observed that retaining only clinical notes (-HOSP,-
ED) outperforms relying solely on structured data (-DS) by 0.057, indicating the
substantial informational value of clinician-authored documentation. When
the HPI is re-introduced alongside structured data (-DS,+HPI), this gap is largely
reduced to 0.017, corresponding to a gain of 0.04 over -DS. These findings highlight
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the HPI as a critical component, emphasizing the potential value of developing
an AI-assisted HPI generation pipeline.

In summary, the best-performing diary configuration is the complete version
without radiology reports (-R), achieving an average score of 0.310. The -DS,+HPI
setting, designed to remove clinician intervention, achieves 0.291, remaining only
0.011 points below the top result.

4.3 Using AI-Generated Hospital Courses for Dis-
charge Instruction Generation

A detailed description of the experimental setup can be found in Section 3.7.3.
Overall, the performance of DI decreases when using AI-generated HCs.

Specifically, the AVG score drops from 0.477 for DI(HC) to 0.419 for DI(ĤC),
and this difference is statistically significant (p = 0.013). This indicates that the
observed decline is unlikely to be due to chance.

To investigate whether this decline is caused by variability in the quality of
generated HCs, the DI(ĤC) samples were divided into two groups based on the
median DI score, resulting in a low-DI and a high-DI group, each containing 125
hospitalizations. The AVG scores of the corresponding ĤC were then compared
between these two groups. The ĤC AVG scores are 0.365 for the high-DI group
and 0.250 for the low-DI group, with a statistically significant difference (p <
10−7). This provides strong evidence that the decrease in DI performance is
primarily driven by a lower quality of the generated hospital courses.

These findings are further illustrated in Figure 4.1. When the original clinician-
authored HC is used as input, the distribution of average DI scores exhibits three
prominent peaks around 0.3, 0.8, and 1. When AI-generated HC is used, the peak
around 0.3 becomes higher and sharper, encompassing more than 25 examples,
while the other peaks around 0.8 and 1 are no longer observed. This pattern
confirms that the quality of the HC directly influences DI validity.

While the results suggest that ĤC are not fully sufficient to support optimal
DI production, it remains informative to evaluate the pipeline using the overall
scoring system. The results are reported in Table 4.5.

When comparing leaderboard performance, the end-to-end GETALP-Mistral7B-
ĤC variant—where DI are generated from model-produced ĤC—achieves an
overall score of 0.364. This is slightly lower than the 0.393 obtained when using the
original clinician-authored HC, but still surpasses the score of WisPerMed (0.332),
the official winner of the Discharge-Me! Challenge [96, 11].

This result demonstrates that the system maintains its advantage—even
under a fully automated pipeline relying exclusively on generated HC and DI, it
outperforms all non-GETALP solutions.
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Rank Team Overall BLEU R-1 R-2 R-L BERT METEOR Align MEDCON

1 GETALP-M7B 0.393 0.203 0.482 0.287 0.367 0.487 0.402 0.447 0.471
2 GETALP-L8B 0.370 0.169 0.490 0.254 0.333 0.464 0.393 0.415 0.444
3 GETALP-M7B-ĤC 0.364 0.176 0.450 0.257 0.337 0.461 0.374 0.416 0.443
4 WisPerMed 0.332 0.124 0.453 0.201 0.308 0.438 0.403 0.315 0.411

Table 4.5: Discharge-Me! leaderboard including end-to-end pipeline.
Acronyms and symbols: M7B = Mistral7B, L8B = Llama3-8B, ĤC = AI-generated
Hospital Course.
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Figure 4.1: Distribution of average scores (AVG) on the DI task, when the input is
the original HC (blue) or the AI-generated one (orange). The distribution changes
significantly, with a peak around 0.3 that becomes higher and sharper, while the
peaks around 0.8 and 1 disappear.

4.4 Qualitative Analysis of Model Outputs

This section presents a qualitative analysis of the outputs generated by GETALP-
Mistral7B. The experimantal setup is detailed in Section 3.7.4.

The model can produce coherent and well-organized hospital courses. In-
formation is structured by clinical systems (e.g., cardiovascular, pulmonary, gas-
trointestinal), creating readable summaries. Key vitals and laboratory results are
usually correctly reported, ensuring the output aligns with the source data. Post-
operative information, when present, is correctly reported in the relevant sections.
Furthermore, the chronological sequence of events is accurately preserved,
demonstrating that the diary effectively guides the model in capturing the
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temporal progression of the patient’s hospitalization. Sentences are complete and
verb tenses are generally correct, contributing to clarity and coherence throughout
the document.

In some cases, the model infers clinically relevant details from context (e.g.,
adding spirometry instructions), even though these are not explicitly stated in the
diary. When these inferences are consistent with the ground truth, it indicates that
the model is able to capture the underlying clinical trajectory. By reconstructing
methodological details from the sequence of events—without requiring them to be
explicitly stated—the model demonstrates a good understanding of the rationale
behind the clinical management.

When it comes to discharge instructions, GETALP-Mistral7B produces texts
that are correctly addressed to patients or, in the case of deceased patients, to
their families. As expected, the language is less technical and more comprehensible,
effectively translating clinical information into patient-friendly terms. Medications
and recommended care measures are reported in accordance with the ground truth,
despite occasionally misdosages.

Notably, GETALP-Mistral7B occasionally produces outputs that are more
detailed than the original clinical notes. It is worth noticing that in such cases,
the inference may be evaluated as a poor quality one, because it does not match
the ground truth, even if it is better in terms of completeness and correctness.

Overall, DI outputs appear to be of higher quality than HC, as captured
by the evaluation framework.

The main weaknesses of GETALP-Mistral7B are hallucinations, degeneration
and redundancy, which are particularly prevalent in the HC task.

4.4.1 Hallucinations

The model occasionally introduces information not present in the diary, such as
unprescribed medications, incorrect dosages, or fictional readmissions and proce-
dures. These hallucinations are more frequent in HC, likely due to the presence of
gaps in MIMIC-IV, which lacks certain clinical information typically available to
clinicians while writing discharge summaries.

4.4.2 Degeneration

Degeneration occurs when the model repeatedly generates the same phrase or
sequence until reaching the maximum token limit (Figure 4.2)

This phenomenon can involve not only single sentences but also entire blocks of
text, alternating in an endless loop. Degeneration often starts after correct and
complete information, producing sequences that are coherent at first but eventually
get stuck in repetitive loops rather than being purely nonsensical. Numbers in

64



Results

90% stenosis of LAD, 90% stenosis of LAD,

90% stenosis of LAD, 90% stenosis of LAD,

90% stenosis of LAD, 90% stenosis

Figure 4.2: Example of degeneration in HC output. The model gets stuck
repeating the same phrase until reaching the token limit, that in this example is
reached after stenosis.

these loops sometimes increment across repetitions (e.g., #POD:1, #POD:2), and
the behavior is particularly frequent while writing the Transitional Issues section
of an hospital course.

Manual inspection of all generated examples shows that degeneration is especially
prevalent in HC, occurring in approximately 29.27% of cases, predominantly among
lower-ranked outputs. By contrast, DI outputs are rarely affected, likely because
they end with a predictable “Follow-up” section, which helps the model terminate
correctly.

It is hypothesized that this degeneration largely influences the difference in
terms of AVG score between tasks, with DI outperforming HC by 0.168 points (0.477
vs 0.309, see Table 4.2). A cumulative distribution of degenerative examples is
provided in Figure 4.3. Hospital courses were first ordered by AVG score from lowest
(rank 1) to highest (rank 250). Degeneration was manually labeled: an example is
considered degenerated if it repeats the same sentence continuously until reaching
the generation token limit, 1000. Results show that half of degenerated examples
fall within the first 56 ranks (66%), while more than the 78% of the 23 lowest-ranked
HC outputs are degenerated—18 examples. Therefore, while degeneration is mostly
concentrated among low-quality HCs, a non-negligible number of degenerated
examples appear even at higher ranks, indicating problematic aspects in the
generation process.

Degeneration Absence in Llama3-8B

Notably, degeneration was not observed in GETALP-Llama3-8B. Despite
undergoing the same fine-tuning process, this model consistently produced outputs
that terminated appropriately. It is therefore unsurprising that the Discharge-Me!

automatic evaluation framework assigned higher scores to the HCs generated by
Llama3. Inference parameters were kept equivalent across models
(temperature = 1, max_new_tokens = 1000), ruling out decoding settings as a
cause.

These findings suggest that degeneration is more likely linked to archi-
tectural aspects of the Mistral7B model rather than the training protocol or
generative setup. Such an observation points either to a stronger competitiveness
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Figure 4.3: Cumulative distribution of degenerated examples in the hospital
course task. The x-axis reports the rank positions of the HCs, ordered from lowest
to highest according to the Discharge-Me! score, while the y-axis indicates the
cumulative number of degenerated outputs observed up to that rank. Vertical
dashed lines mark the 25th, 50th, 75th, and 95th percentiles of the distribution,
and the shaded areas highlight the portions of the ranking that fall below each
percentile. The labels report the score thresholds (< AV GHC) corresponding to
these cutoffs. The figure shows that degeneration is mainly concentrated among
low-quality HCs, yet a non-negligible number of degenerated examples appear even
at higher ranks, indicating that degeneration is not exclusively associated with
poor scoring outputs.

of Llama3 for text generation tasks, or to advantages conferred by its pre-training
strategy at the foundation model stage.

Mitigation Strategies

The approach used to reduce degeneration is the application of n-gram penalties,
which discourage the model from repeating sequences of n tokens. Figure 4.4 shows
that setting n_grams_penalty = 2 reduces the frequency of very low-scoring HC.
However, applying such penalties can have unintended consequences by altering
the model’s output behavior.

In particular, introducing an n-gram penalty increases the model’s creativity,
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Figure 4.4: N-gram penalty: histogram of average score (AVG) on the HC task.
Bi-gram penalty reduces the frequency of very low scores < 0.1. It is worth noticing
that the Discharge-Me! framework has no metric that explicitly punishes for
hallucinations.

n-gram Overall BLEU R-1 R-2 R-L BERT METEOR Align MEDCON

0 0.309 0.127 0.411 0.198 0.281 0.424 0.307 0.351 0.375
2 0.325 0.127 0.457 0.213 0.301 0.439 0.318 0.354 0.387
3 0.265 0.069 0.411 0.151 0.239 0.387 0.261 0.307 0.295
4 0.297 0.099 0.437 0.189 0.278 0.420 0.284 0.343 0.329
6 0.320 0.122 0.453 0.208 0.297 0.435 0.313 0.352 0.380

Table 4.6: Hospital Course – n-gram penalties. Best scores in bold, second-best
scores underlined.

often leading to hallucinations. For example, in one clinical case involving a
pregnant woman, the model without a penalty generated a complete and largely
accurate hospital course, with minor, mostly harmless errors, such as reporting a
discharge followed by a readmission within a few hours. When a bi-gram penalty
was applied, the model began producing additional fictional details, including the
infant’s sex and weight. Although the bi-gram penalized output received a higher
automatic score (+0.02), it was less accurate in reality.
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This highlights a limitation of the Discharge-Me! evaluation frame-
work: outputs containing hallucinations can be favored over fully accurate, non-
degenerated text with minor redundancy.

Regardless, from a research perspective, this behavior provides valuable insight:
it demonstrates that GETALP-Mistral7B is capable of incorporating addi-
tional clinical details when such information is available. This suggests that,
given complete and accurate input data, the model has the potential to produce
more precise and informative outputs.

4.4.3 Redundancy

GETALP-Mistral7B sometimes repeats similar phrases across multiple sentences
in the HC, even when adding new and correct information. Although factually
accurate, these outputs reveal that the model struggles to present information
concisely and organize clinical narratives efficiently. Because new details are
added, these repetitions are not classified as degeneration. An example is shown in
Figure 4.5.

She was continued on her home dose of potassium.

She was continued on her home dose of metformin.

She was continued on her home dose of synthroid.

She was continued on her home dose of omeprazole.

Figure 4.5: Example of repetition in HC. Instead of summarizing medications in
a single sentence or list, the model repeats the same phrase for each drug (i.e. She

was continued on her home dose of ).

4.5 Recollection Test

The results of the recollection test are reported in Tables 4.7 and 4.8. For clarity,
throughout this section the test set is referred to as unseen, while the set overlapping
with the training population is referred to as recollection. For a detailed description
of this experiment, please refer to Section 3.7.5.

To assess statistical significance of potential differences, a Student’s t-test was
conducted for each task. Across both tasks, performance on the recollection

set is consistently lower than on the unseen set. For the HC task, the AVG
score decreases from 0.309 to 0.278 (p = 0.030). For the DI task, AVGs are 0.477
and 0.439, respectively (p = 0.074). Thus, in HC the difference is statistically
significant, while in DI the evidence of a difference is weaker. Importantly, in
neither task does the model perform better on recollection: average scores are in
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Task Dataset AVG BLEU R-1 R-2 R-L BERT METEOR Align MEDCON

HC
unseen 0.309 0.127 0.411 0.198 0.281 0.424 0.307 0.351 0.375
recollection 0.278 0.097 0.378 0.157 0.239 0.398 0.268 0.315 0.374

DI
unseen 0.477 0.279 0.552 0.376 0.453 0.550 0.496 0.543 0.568
recollection 0.439 0.228 0.525 0.319 0.410 0.523 0.447 0.510 0.552

Table 4.7: Per-task evaluation on unseen vs. recollection datasets. Best scores in
bold.

Rank Dataset Overall BLEU R-1 R-2 R-L BERT METEOR Align MEDCON

1 unseen 0.393 0.203 0.482 0.287 0.367 0.487 0.402 0.447 0.471
2 recollection 0.359 0.162 0.452 0.238 0.324 0.460 0.358 0.412 0.463

Table 4.8: Overall scoring system results for the recollection test. Best scores in
bold.

fact lower, contrary to the initial hypothesis that exposure to the same patients
during training would confer an advantage.

One possible explanation could be a greater concentration of degenerated ex-
amples in the recollection set (91 vs. 73). However, when degenerated outputs
are removed from the evaluation, the difference in average scores persists: 0.347
vs. 0.312 (p = 0.069). Although the gap is reduced and the significance weakened,
performance remains lower on recollection, suggesting that degeneration alone
does not account for the observed effect.

To further investigate, five non-degenerated subject_ids from the recollection

set were sampled and the corresponding training hospitalizations examined to
identify potential overlaps between the generated HC and the training diaries.
Upon manual inspection by non-medical experts, no clear similarities were
observed. This suggests that the observed lower performance is not clearly
linked to the model explicitly recalling or copying fragments from training
data.

Overall, this test shows no benefits for GETALP-Mistral7B from having seen
the same patients during training. The significant difference in mean scores between
the unseen and recollection sets warrants further investigation, ideally involving
clinical experts to interpret potential underlying causes.
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Chapter 5

Conclusions

This chapter synthesizes the main findings, design choices, and insights emerging
from this study, providing a clear overview of the feasibility and limitations.

Section 5.1 (Feasibility) evaluates the practical viability of using GETALP
models for generating hospital courses and discharge instructions. It discusses
the performance of Mistral7B and Llama3-8B, identifies recurring issues such as
degeneration and hallucinations, and highlights differences between HCs and DI in
terms of stylistic coherence and reliability.

Section 5.2 (Source Document Design and Components) revisits the
methodology for converting EHRs into task-specific textual inputs, emphasizing
the role of the diary and patient summary in enabling high-quality generation. It
also discusses the components of source documents, highlighting the importance of
designing EHR interfaces in a doctor-friendly manner.

Section 5.3 (Investigating Degeneration) analyzes the causes and impacts of
degeneration observed in Mistral7B outputs, including the effect of truncated EOS
tokens, prompt length, and model architecture.

Section 5.4 (Evaluation Framework: A Review) provides a critical assess-
ment of the scoring system, identifying its limitations in penalizing hallucinations
and partially addressing degeneration and redundancy.

Finally, Section 5.5 (Privacy and Recollection) addresses patient privacy
concerns and the challenges revealed by the recollection test, analyzing potential
sources of performance discrepancies and stressing the need for careful evaluation
before any public deployment.

5.1 Feasibility

The quality of the hospital courses and discharge instructions generated by the
GETALP models demonstrates that it is feasible to create a clinical large
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language model for automated discharge documentation from electronic
health records. Based on the MIMIC-IV dataset, which contains the EHRs of
the Beth Israel Deaconess Medical Center, a pipeline for automating discharge
summaries sections has been developed. This pipeline first restructures EHRs
into textual source documents, which are then used to train and subsequently test
GETALP-Mistral7B and GETALP-Llama3-8B. In doing so, the system establishes
a new state-of-the-art solution for generating HCs and DI.

Nonetheless, there remain margins for improvement. The generation of HCs
by GETALP-Mistral7B is affected by issues such as degeneration and redundancy,
which are mainly linked to the model’s pre-training or architecture. In contrast,
the generation of DI is less prone to such problems, largely due to their stylistic
coherence throughout MIMIC-IV. Indeed, DI are almost always structured as a
letter to the patient, with standardized opening and closing clauses, whereas the
ground-truth HCs display greater variability. They differ in length and style, and,
being targeted to a medical audience, contain numerous codes and abbreviations.
Some clinicians tend to prefer extended descriptions, while others opt for highly
succinct summaries. Even though this problem affects only the Mistral7B version
of GETALP, it deserves further analysis, which is provided later in Section 5.3.

Regardless, the models consistently produce coherent outputs, even if not
always accurate. Hallucinations, instances in which the model generates informa-
tion not present in the source EHRs, can have significant negative consequences
in discharge summaries. Mistakes of this kind may lead to delays in follow-ups or
misunderstandings, and in the worst case, they could directly compromise patient
safety or result in inappropriate interventions. For example, as illustrated in Section
4.4, GETALP-Mistral7B inferred the sex of a newborn infant even though this
information was never mentioned in the records.

It can therefore be concluded that creating an automatic pipeline for DS gener-
ation is not utopian, even though research should proceed towards optimizing
source documents and further investigating the technical causes behind Mis-
tral7B’s generative issues.

5.2 Source Document Design and Components

5.2.1 Design

Finding a comprehensive and coherent method to convert EHRs into digestible
model inputs was a crucial aspect of this study. EHRs were divided into two broad
categories: structured data and clinical notes. Structured data, being tabular,
required a textualization process, whereas clinical notes are already in text format,
with the main challenge being what to retain and how to integrate them without
excessively increasing the length of the source document.
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Two types of source documents were designed, tailored to their respective tasks:
the diary for HCs and the patient summary for DI. Their components are
described in detail in Section 3.1, while the generation process is presented in
Section 3.2. The design of these documents was guided by the need for scalability,
as EHRs differ across hospitals and countries. Only essential clinical records, present
in most EHRs systems, were integrated, and raw notes were preferred whenever
possible, with the goal of enabling a fully automated pipeline for DS generation.

Results reported in Chapter 4 show that GETALP models outperform
state-of-the-art solutions regardless of the architecture employed. WisPerMed,
winners of the Discharge-Me! Challenge, provide a useful comparison: they employ
similar technological approaches, including Asclepius models trained with QLoRA,
but structure the input differently. In their approach, the BERT-score similarity
between the target section and other sections is computed, and the original discharge
summary is reorganized from the most important section (e.g., HPI, as also observed
in this work) to the least important. This ensures that, even in cases of truncation,
the most relevant sections appear at the beginning of the input.

This comparison supports the claim that the superior performance of
GETALP models is largely due to the design of the source documents.
Structuring the diary chronologically allows GETALPs to capture the sequence
of events, facilitating the completion of facts not explicitly mentioned. Likewise,
the conciseness of the patient summaries enables the models to focus on “what”
happened, providing patients with clear and accurate instructions for post-discharge
care.

5.2.2 Components

As shown in Section 4.2, certain sections of the source documents, such as the
history of present illness, are crucial for producing high-quality outputs.
Broadly, clinical notes are more essential than raw structured data. This observation
aligns with a logical perspective, as clinical notes are typically more curated and
detailed than raw data, but it also introduces challenges for end-to-end discharge
summary automation.

Looking forward to a fully automated DS pipeline, it is essential to design an
EHR interface that allows clinicians to input critical information in a manner
that is both simple and fast, ideally co-designed with medical professionals to
maximize usability and efficiency. As will be discussed in Section 6, some of this
information could be recorded as audio notes and subsequently post-processed by
AI systems to generate the corresponding textual document.
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5.3 Investigating Degeneration

Although degeneration does not necessarily imply low-quality hospital course, it
remains a serious concern. During result analysis, an imperfection in the training
process was identified: in some cases, the EOS token was truncated. As a
consequence, GETALP-Mistral7B was exposed to examples without a proper
termination signal, preventing it from fully learning when to stop.

Convinced that this was the main cause of degeneration, a new version of
GETALP-Mistral7B was trained after fixing the bug in the training set. After re-
training, AVG slightly improved from 0.309 to 0.320 (+0.011), and the incidence
of degeneration decreased from 29.2% to 26%. However, degeneration still
persisted.

Beyond the lack of clear closing patterns in the HC section (e.g., “Follow-ups”
for DI), prompt length appears to play a role. Table 5.1 reports the Pearson
correlations between prompt length and AVG of the bug-free version of GETALP-
Mistral7B. Degeneration is confirmed to have a negative impact on performance
(-0.339, p-value = 3.7×10−08). More importantly, degeneration correlates positively
with prompt length (0.245, p-value = 9.0 × 10−05), suggesting that excessively
long inputs are more prone to produce degenerated outputs. A potential
mitigation strategy could involve reducing diary length via summarization before
feeding it to the model. To this end, a clinical causal language model might be
applied in a zero-shot setting.

At the same time, the correlation analysis shows that degeneration cannot
be explained by input length alone. Manual inspection revealed that very short
prompts may also degenerate. The absence of degeneration in GETALP-
Llama3-8B, despite it being trained with the same EOS truncation bug, further
underscores that model architecture plays a significant role.

At a first glance, it seems that the EOS bug-free version of GETALP-Mistral7B
surpasses GETALP-Llama3-8B. However, this would not be a fair comparison,
since Llama3-8B would likely benefit as well from the same re-training.

Overall, the degeneration problem remains only partially understood, al-
though the main cause of such phenomena can likely be attributed to the generative
capabilities of foundation models.

5.4 Evaluation Framework: A Review

The Discharge-Me! evaluation framework requires careful reconsideration. As
pointed out in Section 4.4, the framework tends to award higher scores to
hallucinated summaries over incomplete ones. In a clinical context, this behavior
is undesirable: it is preferable that the system refrains from providing information
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Feature degeneration prompt_length AVG

degeneration 1 0.245 -0.339
prompt_length 0.245 1 -0.085
AVG -0.339 -0.085 1

Table 5.1: Pearson correlation coefficients between degeneration flag, prompt
length, and average metric score.

rather than introducing potentially incorrect content. Importantly, none of the
metrics currently employed penalizes hallucinations. One possible solution could
rely on an anti-score based on UMLS clinical concepts, which would reduce the
per-task average score according to the number of hallucinations in the generated
section. Is important to enhance the support for engineering new metrics
specifically designed for clinical text generation.

Regardless, expert review remains essential in any case. Beyond human
judgment, LLMs such as GPT-5 can also be employed for validation, provided that
security standards are strictly respected. This includes the possibility of employing
services such as Azure OpenAI with human review data opted out, which is fully
compliant with the DUA signed with PhysioNet for the use of MIMIC-IV. However,
this service is not freely available, and therefore dedicated funding would be required
to explore this solution.

5.5 Privacy and Recollection

As detailed in Section 1.2, privacy represents a fundamental concern in clinical
environments. Patient health data must be rigorously protected, as it could
otherwise be misused for harmful purposes.

The GETALP-Mistral7B recollection test described in Section 4.5 does not
provide conclusive results. While it can be stated with confidence that the model
does not exploit information from previously seen patients, its performance on
the recollection set is lower compared to the unseen set. This indicates that some
factor is affecting performance on the recollection set.

Given that MIMIC-IV is a pseudonymized dataset, it is unlikely that the issue
arises from memorization of individual patients. Rather, the performance difference
is most likely linked to discrepancies in the distribution of clinical cases between
the unseen and recollection sets. In particular, the recollection set may include
cases that are more susceptible to report quality issues, such as repetition or other
generative artifacts.

In any case, the factors causing GETALP-Mistral7B to underperform on the
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recollection test must be thoroughly understood and addressed before any public
release of the model.
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Chapter 6

Towards an End-to-End
Discharge Summary
Automation

As discussed at the beginning of this report, realizing an end-to-end AI-assisted
system to write discharge summaries could represent a genuine turning point in
clinical workflows.

Beyond the automation of hospital courses and discharge instructions, there are
other DS sections that can be targeted for automation.

Some categories of clinical data lend themselves more naturally to full automa-
tion in both collection and reporting. Medication records, for example, do not
necessarily require manual input from physicians: once a drug is prescribed and
administered, it can be registered automatically through barcode scanning or
electronic dispensing systems. Laboratory results follow a similar pattern. Since
they are typically generated by digital analyzers and stored in structured formats,
they can be transferred directly to the discharge summary without the need for
manual transcription. In these cases, automation is not only feasible but already
widely implemented, with artificial intelligence playing a potential role mainly
in post-processing tasks, such as consolidating duplicate entries, standardizing
nomenclature, or filtering out results that are not clinically relevant for the specific
report.

Other categories of information inevitably require at least some degree of manual
input from healthcare personnel. Data collected during triage, such as findings from
the physical examination (e.g., HEENT, cardiovascular, or abdominal assessments),
can only be recorded by the clinician who performed them. In these cases,
the physician or nurse is not expected to engage in a stylistic effort, but rather
to accurately report what was observed or what the patient declared. Often,
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such entries are standardized through controlled vocabularies or coding systems
(e.g., ICD), which means that documentation frequently reduces to selecting the
appropriate item from a predefined list. Compared to narrative clinical notes, these
records tend to be faster to produce, as their nature lacks a “narrative” dimension
and instead relies on structured reporting of objective or categorical findings.

6.1 History of Present Illness, Social Background,
Family History

HISTORY OF
PRESENT ILLNESS
Mr. ___ is a 54-year-old
male with a history of
hypertension and tobacco
use who presents with
constant substernal chest
pressure since last nightDIHC

BASE MODEL
Asclepius-Mistral7B

QLoRA
ADAPTERS

HPI FHSB

GETALP-Mistral7BInterview
Doctor: Good morning, I’m 
Dr. Smith. What brings you in
today?
Patient: Morning, doctor. I’ve
been having this tight pain in
my chest since last night.
Doctor: Where exactly is the
pain, and does it radiate
anywhere?
Patient: It’s right in the center.

Doctor: Do you smoke or
drink alcohol?
Patient: I’ve smoked about a
pack a day for 20 years. I don’t
really drink.

Doctor: Do you have a family
history of heart attacks?
Patient: Yes, my father had a
heart attack in his fifties

[...]

Consult
Audio Note ASR

Transcription
Family History

Father with heart attack
in his fifties

Social Background
Former tobacco user. 
Quit 20 years ago.

Figure 6.1: Sketch of the automation system for history of present illness (HPI),
social background (SB) and family history (FH).

Certain categories of clinical information can only be provided directly by
the patient, such as the history of present illness (HPI), family history (FH),
and social background (SB). Typically, these sections are generated following a
clinician–patient interview, after which the physician must manually write the
findings into the medical record. A potential automation pipeline envisions
recording the conversation, applying an automatic speech recognition (ASR) system
to transcribe the audio, and then further training three specialized QLoRA adapters
to extract and structure the relevant information.

In a preliminary sketch of such a system (Figure 6.1), Whisper (OpenAI) is
employed to transcribe the interview, and GETALP-Mistral7B applies the three
adapters to generate the HPI, SB, and FH, respectively. Whisper is open source
and can be executed offline without relying on OpenAI’s paid API, making it
suitable for research or internal hospital deployments.

Obtaining sufficient high-quality clinical interviews to train GETALP-Mistral7B
is particularly challenging. While there exist commercial ASR solutions specialized
for healthcare—such as Nuance Dragon Medical One, Amazon Transcribe Medical,
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and Microsoft Azure Speech for Healthcare—these are generally proprietary and
cloud-based. In the open-source domain, no large, publicly available clinical ASR
dataset exists to achieve medical-grade performance.

6.2 Patient Medical History

The automation of the patient medical history (PMH) section depends heavily on
how EHRs are organized and managed at the national level. In countries
with centralized healthcare systems, such as France and Italy, it is generally possible
to retrieve a patient’s full medical history through a single access point. For
instance, the Italian Fascicolo Sanitario Elettronico consolidates medical records
from different providers, making it feasible to automatically populate the PMH
section by directly querying national repositories. In such contexts, AI may
primarily support tasks of structuring, summarizing, or filtering the retrieved data
rather than generating it from scratch.

By contrast, in countries with privatized healthcare systems, such as the United
States, the fragmentation of records across insurance companies, hospitals, and pri-
vate clinics complicates seamless integration. Here, accessing a unified longitudinal
medical history is significantly more challenging due to policies, interoperability
issues, and the proprietary nature of many health records. In such scenarios, the
most practical approach is to handle the PMH similarly to sections like HPI, FH,
and SB: information must be elicited directly from the patient, recorded in an
audio file, and then processed through specialized models.

In conclusion, the strategy for automating this section must be tailored to
the structure of the available EHR infrastructure. Where centralized records
exist, automation can leverage them directly; in fragmented or privatized systems,
patient-provided input remains essential.

6.3 Non-Textual Clinical Documents

Automating clinical documentation also requires addressing non-textual sources
of information, such as medical images and physiological signals. In radiology,
this challenge is already the subject of active research, exemplified by the RRG24
challenge, which runs in parallel to the Discharge-Me! one [11]. The goal of such
initiatives is to transform imaging findings into structured or narrative reports,
ensuring that clinically relevant details are captured accurately and consistently.

More broadly, medical imaging can be integrated into the documentation pipeline
through image captioning systems, which analyze the image and generate a
descriptive summary. While approaches based on deep learning have shown promise
in radiography and computed tomography, some domains remain particularly
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challenging. Histopathological images represent a notable example: their extremely
high resolution and complex visual features demand specialized preprocessing and
domain-specific modeling, making straightforward captioning less feasible.

Other types of non-textual clinical data also play a key role in documentation. For
instance, electrocardiograms (ECGs) are widely used and routinely stored in digital
formats. Unlike narrative notes, ECG already contain structured information
that can be automatically processed. Algorithms for ECG interpretation are
well established and can generate preliminary diagnostic statements (e.g., “sinus
tachycardia,” “left ventricular hypertrophy”), which may then be reviewed or refined
by a physician before inclusion in the discharge summary. Similarly, signals such as
electroencephalograms or spirometry results could be integrated using automated
analysis pipelines that translate raw measurements into concise, human-readable
findings.

In all these cases, the role of AI is not limited to generation but extends
to harmonization: filtering noise, standardizing terminology, and aligning automat-
ically produced outputs with the structure and requirements of the final discharge
summary.
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Appendix A

Examples

The aim of this chapter is to provide concrete examples of the documents referenced
throughout this report. All examples presented here refer to the same clinical case,
corresponding to a single (subject_id, hadm_id) pair within MIMIC-IV. This
consistency allows readers to directly compare the ground truth data with the model
predictions. The selected case involves a relatively small number of significant
events during hospitalization, which makes it more suitable for visualization
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A.1 Prompts

Prompt For Hospital Course Generation

You are an expert clinical assistant.

Your task is to generate a hospital course based on the provided patient diary.

A hospital course refers to the sequence of events that happen to a patient during
their stay in a hospital. It includes the patient’s initial condition, the treatments
they receive, their response to those treatments, and their final condition upon
discharge.

Below is the patient’s diary, which contains a chronological record of clinical events:
### Diary: {diary}

### Instructions:
Write the hospital course of the patient. Ensure it includes the patient’s initial
condition at admission, key treatments and interventions, response to care, and
their conditions upon discharge.
### Response:

Prompt For Discharge Instructions Generation

You are an expert clinical assistant.

Your task is to generate clear and concise discharge instructions that provide
essential guidance for post-hospital care.

Below is a summary of a patient’s hospitalization, including their medical, social,
and personal history, diagnosis, hospital course, and condition at discharge. Ensure
readability for the patient while maintaining medical accuracy.
### Patient Summary: {patient_summary}

### Instructions:
Write detailed and patient-friendly discharge instructions, including medication
guidance, follow-up care, activity restrictions, and warning signs to watch for.

### Response:
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A.2 Source Documents

MIMIC-IV uses ___ as placeholder for anonymized information. For visualization
purposes, some parts have been shortened or omitted.
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Patient Summary

Allergies:
Patient recorded as having No Known Allergies to Drugs

History of Present Illness:
Mr. ___ is a ___ year old man who had a mechanical slip and fall in his
kitchen. He was taken to the ___ and ___ to have a right ankle fracture with
dislocation. His ankle was reduced and he was then transferred to the ___ for
further evaluation.

Hospital Course:
Mr. ___ presented to the ___ on ___ via transfer from ___ ___. He was
evaluated by the orthopaedic surgery department and found to have a right ankle
fracture. He was admitted, consented, and prepped for the operating room. On
___ he was taken to the operating room and underwent an ORIF of his right ankle.
He tolerated the procedure well, was extubated, transferred to the recovery room,
and then to the floor. On the floor he was seen by physical therapy to improve his
strength and mobility. He was cleared by ___ to go home without any need for
acute ___.
The rest of his hospital stay was uneventful with his lab data and vital signs within
normal limits and his pain controlled. He is being discharged today in stable
condition.

Discharge Medications:
1. Oxycodone 5 mg Tablet Sig: ___ Tablets PO Q3H (every 3 hours) as needed for
pain: Do not drink, drive, or operate heavy machinery while taking this medication.
Disp:∗40 Tablet(s)∗Refills:∗0
2. Enoxaparin 40 mg/0.4 mL Syringe Sig: One (1) 40mg syringe Subcutaneous Q
24H (Every 24 Hours) for 4 weeks.
Disp:∗28 40mg syringe∗Refills:∗0
3. Docusate Sodium 100 mg Capsule Sig: One (1) Capsule PO BID (2 times a
day).
Disp:∗60 Capsule(s)∗Refills:∗2
4. Acetaminophen 325 mg Tablet Sig: ___ Tablets PO Q4H (every 4 hours) as
needed.

Discharge Disposition: Home
Discharge Diagnosis: Right ankle dislocation, Right ankle fracture
Discharge Condition: Stable
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Diary

— 2132-01-14 —
[17:46-MEDRECON] denies
[21:06-ADMISSION] EW EMER., from EMERGENCY ROOM, insurance: Private.
Died in Hospital?: NO
[21:06-ALLERGIES] No Known Allergies to Drugs
[21:06-CHIEF COMPLAINT] Right ankle fracture
[21:06-HISTORY OF PRESENT ILLNESS] Mr. ___ is a ___ year old man who
had a mechanical...
[21:06-PATIENT RECORDS] WHITE M SINGLE 34 y.o. English speaker.
[21:06-PHYSICAL EXAM ADMISSION] Alert and oriented,
Cardiac: Regular rate rhythm,
Chest: Lungs clear bilaterally,
Abdomen: Soft non-tender non-distended,
Extremities: RLE, + sensation/movement, skin intact, + pulses
[22:17-ADMIT] Surgery/Trauma

— 2132-01-16 —
[00:00-PROCEDURE] Open reduction of fracture with internal fixation, tibia and
fibula
[08:00-PRESCRIPTION] Enoxaparin Sodium 40mg Syringe SC Q 24H 08
[19:57-CONSULTS] Physical Therapy
[19:57-RESPIRATORY] Oxygen Therapy
[20:00-PRESCRIPTION]: Bisacodyl 10mg Suppository PR DAILY:PRN, Mor-

phine Sulfate 50mg/50mL Syringe IVPCA ASDIR, Ondansetron 2mg/mL-2mL IV
Q8H:PRN
[21:35-RADIOLOGY]
STUDY: Right ankle intraoperative study.
HISTORY: Patient with ankle fracture status post ORIF.
FINDINGS: Four fluoroscopic images from the operating room demonstrate <...>

— 2132-01-18 —
[16:00-DISCHARGE CONDITION] Stable
[16:00-DISCHARGE DIAGNOSIS] Right ankle dislocation, Right ankle fracture
[16:00-DISCHARGE MEDICATIONS] Oxycodone (5 mg Tablet PO Q3H as needed
for pain); Enoxaparin (40mg syringe Subcutaneous Q 24H for 4 weeks); Docusate

Sodium (100 mg Capsule PO BID); Acetaminophen (325 mg Tablet PO Q4H as
needed).
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A.3 Reference and Inference

A.3.1 Hospital Course

Doctor (reference)

Mr. ___ presented to the ___ on ___ via transfer from ___ ___. He was
evaluated by the orthopaedic surgery department and found to have a right ankle
fracture. He was admitted, consented, and prepped for the operating room. On
___ he was taken to the operating room and underwent an ORIF of his right ankle.
He tolerated the procedure well, was extubated, transferred to the recovery room,
and then to the floor. On the floor he was seen by physical therapy to improve his
strength and mobility. He was cleared by ___ to go home without any need for
acute ___.
The rest of his hospital stay was uneventful with his lab data and vital signs within
normal limits and his pain controlled. He is being discharged today in stable
condition.

AI (inference)

Mr. ___ presented to the ___ on ___ via transfer from ___ with a right ankle
dislocation. He was evaluated by the orthopaedic surgery service and found to
have a right ankle fracture. He was admitted, consented, and prepped for surgery.
On ___ he was taken to the operating room and underwent an ORIF of his right
ankle fractures. He tolerated the procedure well, was extubated, transferred to the
recovery room, and then to the floor. On the floor he was seen by physical therapy
to improve his strength and mobility.
The rest of his hospital stay was uneventful with his lab data and vital signs within
normal limits and his pain controlled. He is being discharged today in stable
condition.
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A.3.2 Discharge Instructions

Doctor (reference)

Continue to be touchdown weight bearing on your right leg.
Continue your lovenox injections for a total of 4 weeks after surgery.
If you notice any increased drainage, swelling, or if you have any pain not relieved
by rest of pain medication, or if you have a temperature greater than 101.5 please
call the office or come to the emergency department.

Physical Therapy:
Activity: Activity as tolerated
Right lower extremity: Non weight bearing
Treatments Frequency: Keep splint clean and dry

Do NOT put anything down your splint
Followup Instructions:
___

AI (inference)

Continue to be non-weight bearing on your right leg.
Continue your lovenox injections as instructed.
Please take all your medication as prescribed.
If you have any increased redness, drainage, or swelling, or if you have a temper-
ature greater than 101.5, please call the office or come to the emergency department.

Physical Therapy:
Activity: Activity as tolerated
Right lower extremity: Non weight bearing
Treatments Frequency: Staples/sutures out 14 days after surgery

Dry sterile dressing daily or as needed for drainage or comfort

Followup Instructions:
___
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Appendix B

MIMIC-IV: Statistics

This chapter is intended to provide statistical information about MIMIC-IV, with a
particular focus on the number of encounters and the length of textual documents,
as these are the primary factors contributing to token limit overflow.

B.1 Number of events per admission

The statistics and data reported here refers to EHRs after MIMIC-IV pre-processing,
described in Sections 3.4.2,3.4.3 and 3.4.1, on the training split obtained as explained
in 3.4.7.

Events are defined on MIMIC-IV log tables, created through the LogBuilder
described at 3.2. Given a hospitalization admission identifier hadm_id, an event
is represented by a timestamp-action pair. Therefore, the number of unique
timestamp-action pairs corresponds to the number of events recorded for that
admission.

For each hospitalization, there are on average 79.36 events. The majority of
events come from tables that record prescriptions (prescriptions), laboratory tests
(labevents), and documentation (chunk_ds, poe). Some actions are consistently
present for all admissions, such as general admission (admit) and patient record
(patient_records) entries, each appearing exactly once per admission. Other tables,
such as medrecon and microbiologyevents, are present only in a subset of admissions.

Table B.1 summarizes the statistics for each table considered, including minimum,
median, average, maximum, variance, and total number of admissions with at least
one event.
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Table min median mean max var count
admit 1 1 1.00 1 0.00 116694
chunk_ds 1 11 10.86 12 1.18 116544
disch 1 1 1.00 1 0.00 99467
drgcodes 1 2 1.92 2 0.07 99434
labevents 1 5 11.10 1352 431.76 105721
medrecon 1 7 7.87 67 32.92 41325
microbiologyevents 1 1 2.35 64 6.75 45701
patient_records 1 1 1.00 1 0.00 116694
poe 1 5 9.47 790 221.22 109346
prescriptions 1 22 33.38 1447 1266.33 116383
procedures_icd 1 2 3.08 40 8.21 70137
radiology 1 3 4.29 221 34.25 92641
transfers 1 2 2.86 20 2.26 116693

Table B.1: Summary statistics of events per admission in MIMIC-IV tables
after preprocessing and on the training split. Statistics include minimum, median,
average, maximum, variance, and total number of admissions.

B.2 Text Length

This section reports statistics on the textual length of clinical documents, presented
via histograms, boxplots, and summary tables.

As discussed throughout this report, the length of clinical text can pose significant
challenges when working with LLMs. In particular, the token context of GETALP-
Mistral7B has been extended from the original 8k tokens, on which Mistral7B was
trained, to 15k tokens using the Unsloth framework. While the model can still
operate beyond 15k tokens, its performance is not guaranteed. For this reason,
tables in this appendix include the probability of encountering documents exceeding
both 8k and 15k tokens.

Tables B.2, B.4, and B.3 summarize word counts for different sources of clinical
text: general log messages from MIMIC-IV-HOSP and MIMIC-IV-ED, clinical
notes extracted from MIMIC-IV DS, and POE messages, respectively. All statistics
are computed on the training split, constructed from the MIMIC-IV admission
table as outlined in Section 3.4.7. Word boundaries were defined by blank spaces,
newlines, tabs, and punctuation, using a rule-based approach. Importantly, word
counts are computed before combining messages with the same timestamp-action

into a single event, allowing an assessment of the informational content of individual
communications. Figures B.1 and B.2 illustrate the distributions of these word
counts through histograms and boxplots.
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Although word counts are less precise than token counts, they provide a useful
approximation of text length independent of the tokenizer used later. Token counts
were then computed for source documents, ground truths of target sections, and
the resulting training prompt, which combines system message, source document,
model instruction, and ground truth. Tables B.5-B.6 summarize token counts for
hospital courses and discharge instructions across training, test, and recollection
splits. Figures B.7 and B.8 visualize the distribution of token counts for the
resulting training prompts.

By comparing word count statistics (Figure B.1) with token count statistics
(Tables B.5 and B.6), a rough word:token ratio of 1 : 2 emerges. Therefore, doubling
the word count values in Tables B.2, B.4, and B.3 gives a reasonable estimate of
the token equivalent.

Finally, Table B.7 reports the statistics for the training prompt, combining system
message, source document, model instruction, and ground truth. Figures B.7 and
B.8 show the corresponding histograms and boxplots.
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Figure B.1: Word Count - Histogram of wordcount counts for MIMIC-IV’s
hospital course, discharge instructions and discharge summary.
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Figure B.2: Word Count - Histogram of wordcount counts for MIMIC-IV’s
hospital course, discharge instructions and discharge summary.
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Event min max mean median var count
Admission 10 20 12.5 12 1.46 116,694
Discharge 1 4 1.81 1 0.99 99,467
DRG Code 1 18 6.31 6 8.08 191,063
LAB-abnormal 2 321 15.2 9 311.23 684,014
LAB-resolved 2 88 8.41 6 36.7 489,723
Medrecon 1 20 1.70 1 1.53 325,081
Microbiology 3 206 19.07 11 418 107,368
Patient Records 6 13 8.28 8 0.48 116,694
Prescription 1 38 8.33 8 4.90 3,884,499
Procedure 1 19 6.76 6 9.33 215,828
Transfer-ED 2 2 2 2 0.00 79,725
Transfer-transfer 1 7 1.87 1 2.34 136,986
Transfer-admit 1 7 1.81 1 1.81 116,677
Radiology 1 2,911 168 107 24,742 397,807

Table B.2: Word count of log messages for MIMIC-IV events. The Procedures
table contains only brief specifications on the type of intervention, not detailed
clinical notes, which could lead to a significant increase in diary length in other
EHR systems.

Event min max mean median var count
Cardiology 1 3 1.05 1 0.07 100,207
Consults 1 13 3.25 2 6.60 218,806
Critical Care 2 3 2.14 2 0.12 13,679
General Care 1 12 5.34 6 15.54 476,787
Hemodialysis 1 1 1.00 1 0.00 7,689
IV therapy 2 9 7.50 9 8.14 130
Neurology 1 2 1.00 1 0.00 11,637
OB 1 2 1.65 2 0.23 4,130
Respiratory 1 3 1.97 2 0.13 184,865
TPN 1 3 2.02 2 0.10 17,249

Table B.3: Word count of POE messages in MIMIC-IV. The POE table records
only brief notes on the type of exam or intervention. This explains the short average
message length; EHR systems with more detailed notes could significantly impact
the diary length. Acronyms: OB = Obstetrics, TPN = Total Parenteral Nutrition.
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Note min max mean median var count
Allergies 1 1,182 6 7 29 116,541
Chief Complaint 0 1,128 3 3 136 112,929
Discharge Condition 0 1,188 16 15 352 116,066
Discharge Diagnosis 0 337 11 7 146 112,148
Discharge Medications 0 1,114 132 117 7,450 112,129
Family History 0 1,882 15 8 1,216 109,614
HPI 0 2357 230 206 26,516 114,220
MSIP 0 839 9 4 450 85,418
Past Medical History 0 4,094 41 22 4,973 109,394
Physical Exam Admission 0 1,545 103 88 6,898 1081,94
Physical Exam Discharge 0 1,568 74 70 2,638 56,405
Social History 1 1,721 4.38 1 640 112,836

Table B.4: Word count of clinical notes extracted from DS in MIMIC-IV. The
count was performed before removing empty sections. Acronyms: HPI: History of
Present Illness, MSIP: Major Surgical or Invasive Procedure

min 25% 50% 95% max mean p>8K p>15K

Train

Diary 28 2,331 3,324 11,426 32,768 4,507 0.11 0.03
HC 3 332 520 1632 8,222 665 0 0
Prompt 178 2,481 3,474 11,576 32,768 4,657 0.13 0.03

Test

Diary 28 2,328 3,322 11,317 32,768 4,505 0.11 0.03
HC 2 332 524 1624 6441 667 0 0
Prompt 178 2,478 3,472 11,467 32,768 4,654 0.11 0.03

Test Recollection

Diary 28 2,809 3,815 11,324 32,768 4,859 0.11 0.03
HC 2 398 656 1,763 7,773 774 0 0
Prompt 178 2,959 3,965 11,474 32,768 5,009 0.12 0.03

Table B.5: Hospital Course - Token Count. Acronyms: HC = Hospital Course
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min 25% 50% 95% max mean p>8K p>15K

Train

PS 45 974 1,367 2,982 9,198 1,529 11·10
−5 0

DI 2 164 253 941 8,946 345 0 0
Prompt 166 1,095 1,488 3,103 9,319 1650 11·10

−5 0

Test

PS 83 976 1,364 2,999 9,752 1,531 3.5·10
−5 0

DI 7 163 251 935 5,152 343 0 0
Prompt 204 1,097 1,485 3,120 9,873 1,652 3.5·10

−5 0

Test Recollection

PS 99 1,134 1,598 3,214 9,098 1,736 8.2·10
−5 0

DI 7 161 244 863 8,143 322 0 0
Prompt 123 1,255 1,719 3,335 9,219 1,857 8.2·10

−5 0

Table B.6: Discharge Instructions - Token Count. Acronyms: PS = Patient
Summary, DI = Discharge Instructions.

DI HC

min 173 280
25% 1440 2911
50% 1865 4099
95% 3495 12767.3
max 10447 32768
mean 1994.31 5312.38
p>8000 0.0001 0.0144
p>15000 0 0.0035

Table B.7: Training Prompt - Token Count. Acronyms: DI = Discharge Instruc-
tions, HC = Hospital Course
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Figure B.3: Hospital Course - Histograms of token counts per split.
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Figure B.4: Hospital Course - Boxplot of token counts per split.
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Figure B.5: Discharge Instructions - Histograms of token counts per split.
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Figure B.6: Discharge Instructions - Boxplot of token counts.

95



MIMIC-IV: Statistics
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Figure B.7: Training Prompt - Histogram of token counts for Hospital Course
and Discharge Instructions.
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Figure B.8: Training Prompt - Boxplot of token counts for Hospital Course and
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Appendix C

Technical Details

This appendix provides a detailed overview of the hardware, software, and carbon
footprint associated with the training, evaluation, and inference phases of the
project.

C.1 Model Architectures

MISTRAL7B LLAMA3-8BTRANSFORMER

x32 x32

Figure C.1: Architectures - Transformer vs Mistral7B vs Llama3-8B

Two transformer-based architectures were employed in this project: Llama3-8B

and Mistral7B. Both models belong to the class of decoder-only, causal language
models, featuring multi-head self-attention and feed-forward layers arranged in a
stack of transformer blocks. The Llama3-8B architecture comprises 32 transformer
layers, with 64 attention heads and an embedding size of 8192. The Mistral7B
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model is composed of 32 transformer layers, with 48 attention heads and a hidden
dimension of 4096. Both models apply rotary positional embeddings (RoPE) and
utilize sparsity-inducing optimizations such as grouped-query attention (GQA)
to reduce inference latency. Additionally, Mistral7B employs Sliding Window
Attention, which allows the model to efficiently handle longer contexts by limiting
attention computation to a moving window of tokens.

The Llama3-8B model has approximately 8.0 billion parameters, with a storage
footprint of ∼16 GB in 16-bit precision, and was originally trained with a context
length of 8192 tokens. The Mistral7B model has approximately 7.3 billion param-
eters, with a storage footprint of ∼14 GB in 16-bit precision, and was originally
trained with a context length of 4096 tokens.

To explore further details, we remind to the works whom introduced Llama3-8B
[107] and Mistral7B [108].

C.2 Training Details

C.2.1 Parameters

Parameter Mistral7B Llama3

Rank (r) 16 16
α 16 16
Dropout 0.0 0.0
Bias none none
Target modules q,k,v,o,gate,up,down q,k,v,o,gate,up,down
Trainable params per task 41.9M (0.60%) 41.9M (0.52%)

Table C.1: QLoRA configuration.

The configuration draw inspiration from Damm et al.[96], which trains Asclepius
models through QLoRA as of this work. Both Asclepius-Llama3-8B and Asclepius-
Mistral-7B-v0.3 were fine-tuned under the same setup. LoRA adapters were applied
on projection layers and MLP components, following the configuration reported in
Table C.1. For each architecture, two LoRA adapters were trained, one dedicated
to HC and the other to DI. Each adapter adds 41.9M trainable parameters, yielding
a total of 83.8M trained parameters per model. At inference time, however, only
the adapter corresponding to the task is loaded, so the effective size of the model
is its base plus 41.9M parameters.

Training arguments were kept consistent across tasks and are summarized in
Table C.2. For reproducibility, training was performed with a fixed random seed
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Argument Mistral7B Llama3

Batch Size (BS) 4 8
Gradient Accumulation (GA) 4 2
Effective Batch Size (EBS) 16 16
Learning Rate (LR) 2e-4 2e-4
Warmup steps 5 5
Epochs 1 1
Optimizer AdamW 8-bit AdamW 8-bit
Weight decay 0.01 0.01
Scheduler Linear Linear

Table C.2: Training arguments.

(3407).

C.2.2 Memory Usage and Learning Curves
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Figure C.2: Learning curves for GETALP-Mistral7B. Both tasks reach a plateau
around step 2,000, although a slight downward trend remains visible until the end
of training. The model stabilizes at lower loss values for DI (min = 0.151, moving
average min = 0.558) compared to HC (min = 0.815, moving average min = 1.214).
This indicates better adaptation on the DI task, which is further confirmed by
downstream evaluation, while suggesting margins for improvement remain on HC.
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Training was performed through QLoRA with 4-bit weight loading, while gradi-
ents and optimizer states were stored in bfloat16. Unsloth reserved 4.051 GB of
vRAM during training. Datasets comprised 104,528 examples for HC generation
and 114,775 examples for DI generation, yielding 6,533 and 7,173 training steps
respectively. Both loss curves stabilize after approximately 2,000 steps, with a
residual decreasing trend until completion. DI exhibits lower final loss values,
indicating more efficient adaptation compared to HC.

C.3 Inference Details

Parameter Value

Temperature 1
Maximum new tokens 1000
Maximum sequence length 15,000
Precision 4-bit loading, bfloat16 for computations

Table C.3: Inference parameters.

Inference was performed with a maximum sequence length of 15,000 tokens and
a temperature of 1.0, generating up to 1,000 new tokens per prompt.

Models were loaded in 4-bit precision, meaning that each parameter is stored
using only 4 bits (half a byte). During forward computation, each quantized param-
eter q is expanded to bfloat16 using the scale and zero-point of its quantization
block:

xfloat = scalei · q + zero_pointi, q ∈ {0,1, . . . ,15}

scalei =
max(xi) − min(xi)

15
, zero_pointi = min(xi)

(C.1)

where i indexes the quantization block the parameter belongs to. The quantization
block comprises typically a small group of weights.

Thanks to 4-bit quantization, the model scale is only 1.77 GB, while loading
the same model in bfloat16 would require approximately 5.53 GB.

C.4 Hardware

The training phase was carried out exclusively on a machine equipped with an
AMD EPYC 9354 32-Core Processor (128 logical cores), 1,007.56 GB of system
RAM, and a NVIDIA H100 NVL GPU with 94 GB of vRAM. The computational
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power provided by this setup was essential to perform the intensive gradient and
optimizer calculations required during training. During this phase, the NVIDIA

H100 NVL GPU operated at an average power consumption of 340 W, reflecting
the high demand of the training process.

For inference, tasks were executed on one of two machines, as decided by the
OAR scheduler, depending on resource availability. The first machine, hosting the
NVIDIA H100 NVL GPU, was used when the resources were available. The second
machine, equipped with an Intel(R) Xeon(R) Silver 4210R CPU @ 2.40GHz

and a NVIDIA Quadro RTX 8000 GPU, was used at other times. In both cases, the
GPU operated at a reduced power consumption of 195 W during inference, as the
workload is less demanding, with no gradient or moment calculations involved.

Preprocessing tasks were performed entirely on CPU, utilizing multithreading
as needed.

All machines were located in Pays de la Loire, France.

C.5 Software

All scripts were written in Python (version 3.10.16), and datasets and models
were privately hosted on Hugging Face. Version control was managed through a
private GitHub repository. Training and inference were supported by the Unsloth
framework, which enables memory-efficient model training and provides mechanisms
to extend the context window. Due to the use of the MIMIC-IV dataset, subject to
PhysioNet confidentiality policies, models, datasets, and the source code repository
cannot be made publicly available.

C.6 Environment

The carbon footprint was calculated using CodeCarbon (v. 2.8.3), with updated
carbon intensity values retrieved from the website Electricity Maps to reflect the
specific conditions at the time of training and inference. The total emissions for
each phase were computed by multiplying the emission rate by the total duration of
the phase, expressed in seconds. Training activities were mostly conducted between
March and April 2025.

C.6.1 Training Phase

The training phase was characterized by low carbon emissions due to France’s
energy profile. Training durations and associated emissions are summarized in
Table C.4.
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Model Period Duration CI (g/kWh) ER (mg/s) CF (kg)

M7B-HC Apr. 5-6 38:13:09 22.5 5.05 0.70
M7B-DI Apr. 6-7 12:23:41 22.5 4.69 0.21
L8B-HC Mar. 26-27 29:55:44 37.5 7.96 0.86
L8B-DI Mar. 23-24 10:47:34 39 7.81 0.30

Table C.4: Training carbon emissions per model. Duration is reported in the
format hh:mm:ss. Acronyms: CI: Carbon Intensity, ER: Emission Rate, CF: Carbon
Footprint, M7B: Mistral7B, L8B: LLama3-8B, w/o R: without Radiology reports

The total carbon footprint for the training phase amounts to 2.07 kgCO2eq,
which corresponds approximately to driving 8 km with an average gasoline car
[109].

The GETALP-Mistral7B EOS bug-free training, performed between Sep. 27-28,
was not included in Table C.4 since it occurred after the main experimental phase.
Adding this final training to the previous calculations increases the total carbon
footprint to 2.79 kgCO2eq.

C.6.2 Inference Phase

Inference was performed between April 17 and April 27, 2025. Due to the absence of
gradient calculations, the computational load was reduced, resulting in lower GPU
power consumption. An average carbon intensity peak of 26 gCO2eq/kWh was
recorded during this period. The total inference time across all models, including
ablation studies, amounted to 8 hours, 19 minutes, and 43 seconds, leading to
overall emissions estimated to be under 0.1 kgCO2eq.

C.6.3 Total Emissions

By summing the emissions from both training and inference, the total carbon
footprint of the project amounts to approximately 2.89 kgCO2eq. This notably low
impact is primarily due to France’s energy grid, which relies heavily on nuclear
energy, ensuring one of the lowest carbon intensities in the world.
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Metrics

This chapter presents the mathematical details of the eight metrics employed in
this work: BLEU, ROUGE-1, ROUGE-2, ROUGE-L, METEOR, BERTScore,
AlignScore, and MEDCON [37, 38, 39, 40, 41, 42].

As discussed in Section 3.6, these metrics are typically defined in their generalized
multi-reference formulation. In the present study, however, only a single reference
is available for each encounter, resulting in simplified computations compared to
the general case.

This chapter is not intended to replace the original publications. For compre-
hensive explanations and theoretical background, readers are referred to the cited
sources.

The chapter begins by introducing general definitions that are shared across
multiple metrics, followed by a detailed mathematical formulation of each individual
metric.

D.1 Candidate, Reference, n-grams, counting,
F1-score

Let C and R be the candidate and reference text, respectively. The length of a text
is defined as the number of words within the text, denoted by | · |.

Let g be an n-gram, namely a sequence of n words. Let C and R be the two
sets of n-grams obtained by applying the n-gram split to C and R. The number of
n-grams in a set defines its cardinality, indicated as |C| or |R|.

The counting function Count(g, S) counts how many times g appears in a set of
n-grams S. The match count of g between C and R is defined as

Countmatch(g, C, R) = min
(

Count(g, C), Count(g, R)
)
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The F1-score is the harmonic mean between precision and recall. Given precision
p and recall r, it is calculated as:

F1 =
2 · p · r

p + r

D.2 BLEU

See D.1 for definitions.
The modified n-gram precision pn of a candidate text C with respect to a

reference text R is calculated as follows:

pn =

∑

g∈C Countclip(g, C, R)

|C|

The Brevity Penalty (BP ) penalizes candidate texts that are shorter than the
reference. It is computed as:

BP =







1 if |C| > |R|

e
(1−

|R|
|C|

) if |C| f |R|

Finally, the BLEU-N score is given by the geometric mean of modified n-gram
precisions pn from 1 to N , scaled by the brevity penalty BP :

BLEU -N = BP ·

(

N
∏

n=1

pn

)

1

N

D.3 ROUGE

See D.1 for definitions.

D.3.1 ROUGE-N

ROUGE-N measures the overlap of n-grams between candidate and reference. The
recall r and precision p are defined as:

r =

∑

g∈R Countclip(g, C, R)
∑

g∈R Count(g, R)
, p =

∑

g∈C Countclip(g, C, R)
∑

g∈C Count(g, C)

where n = 1 for ROUGE-1 and n = 2 for ROUGE-2.
Finally, ROUGE-N is given by the harmonic mean of p and r (F1-macro D.1).
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D.3.2 ROUGE-L

ROUGE-L evaluates the overlap between a candidate text C and a reference text
R by considering the Longest Common Subsequence (LCS), which is the
longest sequence of words that appears in both texts in the same order, even if
the words are not consecutive. This allows ROUGE-L to capture sentence-level
structure beyond exact n-gram matches.

Formally, let LCS(C, R) denote the length of the LCS between C and R. Then
the recall r, precision p are defined as:

r =
LCS(C, R)

|R|
, p =

LCS(C, R)

|C|

Example: Consider the reference and candidate sentences:

• Reference: “the cat is on the wooden table”

• Candidate: “the cat sat on the mat”

The LCS between these sentences is “the cat on the”, preserving the word order
while ignoring mismatched words. Its length is 4, while the reference has 7 words
and the candidate has 6 words.

r =
4

7
, p =

4

6
, F1 =

2 · 4
7

· 4
6

4
7

+ 4
6

≈ 0.615

D.4 METEOR

See D.1 for basic definitions.
The METEOR score between a candidate C and a reference R is computed

through the following steps:

1. Alignment. Find the set of unigram matches between C and R, considering
exact matches, stem matches, synonym matches, or paraphrase matches.

2. Precision and recall. Let m be the number of matched unigrams, then:

p =
m

|C|
, r =

m

|R|

3. Harmonic mean with recall weight. The score Fmean is a harmonic mean
of p and r, giving more weight to recall:

Fmean =
10 · p · r

r + 9p
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4. Fragmentation penalty. Let ch be the number of contiguous matched
chunks, then the penalty is:

Penalty = 0.5 ·

(

ch

m

)3

5. Final score.
METEOR = (1 − Penalty) · Fmean

This formulation makes METEOR more sensitive to both adequacy (recall,
synonymy, paraphrasing) and fluency (ordering, chunk fragmentation) than purely
n-gram–based metrics.

D.5 BERTScore

Let C = {c1, . . . , c|C|} and R = {r1, . . . , r|R|} denote the candidate and reference
token sequences, respectively. BERTScore computes contextual embeddings e

c
i and

e
r
j for each token ci ∈ C and rj ∈ R using a pretrained transformer model.

The similarity between tokens is given by the cosine of their embedding vectors:

sij =
e

c
i · e

r
j

∥e
c
i∥∥e

r
j∥

Precision and recall are obtained by selecting, for each token, the maximum
similarity with tokens in the opposite sequence:

Precision =
1

|C|

|C|
∑

i=1

max
j∈R

sij, Recall =
1

|R|

|R|
∑

j=1

max
i∈C

sij,

The final BERTScore is computed as the harmonic mean of precision and recall
(F1-score).

D.6 AlignScore

For the computation of AlignScore, the candidate text C is split into sentences,
and the reference text R is split into chunks (each containing roughly 350 tokens).
Let C = {c1, . . . , cm} be the set of candidate sentences and R = {r1, . . . , rn} be the
set of reference chunks.

For each pair (ci, rj), the NLI model produces logits over three classes: entailed,
contradicted, and neutral:

zij = [zentail(ci, rj), zcontradict(ci, rj), zneutral(ci, rj)]
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The probability that ci is entailed by rj is obtained via the softmax over these
logits:

pentail(ci, rj) =
exp(zentail(ci, rj))

exp(zentail(ci, rj)) + exp(zcontradict(ci, rj)) + exp(zneutral(ci, rj))

This produces an m × n matrix of entailment probabilities. For each candidate
sentence ci, we take the maximum probability across all reference chunks:

si = max
j∈{1,...,n}

pentail(ci, rj)

Finally, the AlignScore is obtained by averaging over all candidate sentences:

AlignScore(C, R) =
1

m

m
∑

i=1

si

D.7 MEDCON

Let C and R be the sets of UMLS concepts extracted respectively from the candidate
and the reference text, restricted to the selected semantic groups.

The precision p and recall r are defined as:

p =
|C ∩ R|

|C|
, r =

|C ∩ R|

|R|

The final MEDCON score is computed as the harmonic mean of precision and
recall (F1-score).
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