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Abstract

Invasive species are organisms that have been introduced (intentionally or
accidentally) into an area where they are not originally present, and can have
a negative impact on environment, economy or health by spreading quickly and
without control. Their identification is important because it allows humans to either
eradicate them if the spreading process has already begun, or to avoid their import
into a new area altogether. To this moment, there is no method to identify what
morphological traits make a species of plants potentially invasive and what makes
it non-invasive based exclusively on image data, relying instead on categorical or
numerical traits that are not always available. In this work we propose a pipeline to
identify, within a family of plants, which species have the potential to be invasive
and which ones have not, using the Lythrum genus as a case study. To do this
we employ BioCLIP 2, a computer vision foundation model specialized in the
biological domain, as a feature extractor to train a classifier to recognize an invasive
species or a non-invasive one. Then, using Integrated Gradients as an explainability
method, we highlight what are the regions of the image that the classifier identifies
as most useful for its prediction. By extracting these regions and clustering them
we are able to analyze what morphological traits are taken into consideration by
the classifier, making them possible candidates as features that allow a species to
be invasive. Additionally, it is possible to understand which traits or features drag
the model into misclassification. With this work we are able to provide a pipeline
to better explore and explain predictions on image data in the biological domain.
For future works that will take on this problem it might be interesting to extend
the reach of the study by taking into consideration other family of plants, and
to integrate the outcome of the pipeline into already existing analysis of species
invasiveness that utilize different features as predictors.
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Chapter 1
Introduction

Invasive species are organisms transported by humans, either intentionally or
unintentionally, beyond their native range, where they establish, spread, and often
cause ecological disruption.

Not all species are invasive: to be invasive a species needs to be ‘alien’ (i.e.
non-native from a specific location), and a subgroup of alien species can be invasive.

Preventing the introduction of invasive species and managing their impacts
is essential to prevent ecosystems from decline. Failure in doing so could create
several issues to economy, food security and human health.

One of the most famous examples of disruption brought by an invasive species
is the case of water hyacinth (Pontederia crassipes). It is a free-floating acquatic
plant originary from South America, where it’s one of the main food sources of
the Amazonian manatee, which helps controlling its diffusion. When introduced
in other ecosystems, however, water hyacinth has a huge impact: it is able to
outcompete native acquatic plants, affecting their photosynthesis and their growth.
By occupying all the available water surface, it inhibits photosynthesis in underwater
plants, causing them to die off. As the dead plant material decomposes, this process
consumes large amount of oxygen in the water, leading to oxygen depletion and
ultimately causing fish kills.

Several health problems for humans can also be traced back to an excessive
presence of water hyacinth. This plant is able to absorb large quantities of heavy
metals and other substances toxic for humans: when it dies it rots and releases
them, causing pollution and disrupting the quality of the water, in some cases even
affecting the residents drinking water.

Very important are also the economical aspects of invasion from Pontederia
crassipes: one of the many reasons for this is that heavy presence of water hyacinth
in water bodies (e.g. rivers or lakes) can reduce or completely inhibit transports
(either for humans or cargo). In the USA it has been given the nickname ‘million
dollars weed’; not because of its value, but because of the significant sum of money
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spent every year by local governments for its (often unsuccessful) removal attempts.

It is therefore important to be able to successfully recognize invasive species,
either to mitigate the effects of the invasion process, or to prevent it from starting
altogether.

There are several studies in the biological domain that investigate the potential
invasiveness of a species, meaning the identification of traits that allow an alien
species to prevail over both other alien species and native species, spreading when
located in a new ecosystem. They demonstrated that predicting invasiveness using
functional traits is possible, but they have important limitations: they are either
limited in scale (either by working on a small set of species or in a tight geographical
location) or they use a set of data which is not always easy to obtain (such as seed
mass, dispersal mode and other similar numerical or categorical data), a type of
information which might not be largely available for every species.

We are currently not aware of any research project that worked on the identifi-
cation of an invasive species working exclusively with image data, and that is what
we propose: we define a pipeline to predict possible invasiveness between species of
the same genus through the exclusive use of visual traits.

We take as case study Lythrum, one of the genera of the Lythraceae family, an
herbaceous (annual or perennial) genus. The Lythrum genus wast chosen since
one of its species (Lythrums salicaria, commonly known as purple loosestrife, an
herbaceous perennial plant native to Europe, Asia, northern Africa, and eastern
Australia) has been inserted by IUCN in the ‘100 of the World’s Worst Invasive
Alien Species list’.

To reach our goal we gather images of the species belonging to the Lythrum
genus from iNaturalist, a platform where a community of users can upload pictures
of living organisms, labeling them and contributing to citizen science research
projects. The good coverage of Lythrum on iNaturalist is one of the reasons for our
choice of this genus: We were able to retrieve images for a total of 30 species, three
of which are invasive (in locations where they are not native): Lythrum hyssopifolia,
Lythrum salicaria and Lythrum virgatum.

One of the core tools for our work is BioCLIP, a state-of-the-art computer vision
foundation model, pre-trained on biological data. It is built on OpenAl’s CLIP
framework, training jointly a vision encoder and a text encoder using contrastive
learning with image-text pairs samples. BioCLIP has proved to be able to extract
fine-grained representation of image data, detecting subtle biological structures and
distinguishing between species with a similar appearence, or scarcely represented
in the training dataset.

We use BioCLIP as a feature extractor to map images in the dataset into
multi-dimensional embeddings, used to train a classifier able to distinguish invasive
species from non-invasive.

Additionally we increase the interpretability of the pipeline by introducing
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explainability: we generate attribution maps for each image using Integrated
Gradients, an algorithm able to identify the regions that drive the model prediction
the most.

We extract these regions and cluster them to detect what morphological structure
they represent: these makes us able to identify what traits, characteristic for each
species, are present in each image, linking them to the model prediction.

Finally we analyze this results to extract patterns and obtain information on the
morphological visual traits that influence the potential of a species to be invasive
or non-invasive.

This thesis is organized with the following structure:

o Chapter 2 reviews related literature, including ecological studies of invasive
traits, applications of deep learning to plant identification, and recent advances
in explainability methods;

o Chapter 3 presents the proposed methodology in detail, describing the classifi-
cation model, the explainability pipeline, and the clustering process;

o Chapter 4 reports the results of experiments on the Lythrum dataset, includ-
ing classification performance, analysis of salient regions, and discovery of
morphological patterns;

o Chapter 5 concludes with a summary of contributions, a discussion of limita-
tions, and suggestions for future directions, such as extending the pipeline to
other taxa and integrating complementary trait data.

Finally, we identify two main contributions of this thesis:

o First, we demonstrated that identification of a species invasiveness from visual
features alone is possible, without relying on tabular or categorical data;

e Second, we provided an interpretable framework to help future biological
works to integrate ecological researches with computer vision, enhancing and
reinforcing their results.



Chapter 2

Related Works

2.1 Biological approach to the identification of
traits related to invasiveness

The study of traits that allow invasive plants species to succeed outside of their
native range has received considerable attention in ecology, in order to advance
towards successful prediction of invasiveness for different species of plants.

van Kleunen et al. (2015) [1] present a schema of questions to be asked regarding
the success of alien species. The answer to one question is conditional on the answer
to the previous ones (to account for the nested nature of the invasion process). The
questions move from larger regions to smaller communities, and each one includes
a series of traits that are likely to be related with the success of an alien species.

Other studies, such as Mathakutha et al. (2019) [2], explore the functional traits
of invasive species, asking two major questions: (a) are invasive species functionally
different or similar to native species? (b) which traits of invasives differ from
traits of non-invasive aliens and thus confer invasibility? They state that most
traits differed between invasive and native species, suggesting a correlation between
functional traits and invasiveness. Additionally, they conclude that specific traits
associated with invasiveness can be plant height, leaf area, frost tolerance and
specific leaf area. A limitation of this work is the relatively small size of the sample
for the study: they measured 13 traits for 26 species belonging to 13 different
families that can be found in the sub-Antarctic region.

Another work that aims to identify determinants of plants invasiveness is the
one by van Kleunen et al. (2010) [3]: they carry out a meta-analysis to study
whether invasiveness is associated with performance-related traits (physiology, leaf-
area allocation, shoot allocation, growth rate, size and fitness). They investigate
pair-wise trait difference of 125 invasive and 196 non-invasive plant species, in the
invasive range of the invasive species. They report that, for all traits, a greater
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difference was shown between invasive and native species compared to invasive and
other alien species. They also state that for comparisons between invasive species
and native species that themselves are invasive elsewhere, no trait differences were
significant. They conclude by suggesting that it might be possible to predict future
plant invasions from species traits.

Li et al. (2024) [4] is another study that investigates the role of invasive-plant
traits, native-plant traits, and their divergences in invasion processes. They suggest
that the combination of invasive and native plants under study influences the results:
for example, native plants such as Artemisia argyi, Artemisia lavandulifolia and
Chenopodium album exhibited competitive superiority when co-occurring with the
three invasive plants. Setaria viridis, Austrocylindropuntia vestita, and Artemisia
annua had competitive superiority when they co-occurred with FElodea canadensis,
Galinsoga quadriradiata, and FErigeron annuus respectively. Additionally they
demonstrate that the competitiveness of invasive plants is mainly affected by height,
diameter and biomass allocation, whereas native plants competitive abilities are
primarily influenced by biomass allocation, diameter and function group differences.

Both [2] and [4] report about two hypothesis expressed by Ordonez et al. (2010)
[5]: ‘phenotypic divergence” and ‘phenotypic convergence’. Phenotypic divergence
proposed that successful invasive species possess traits different from native species,
which allow them to better exploit empty niches. Phenotypic convergence instead
comes from the idea that the environmental pressures limit the characteristics
of species that can exist in an environment, resulting in similar traits between
native and invasive species. Results from both [2] and [4] support the ‘phenotypic
divergence’ hypothesis, suggesting that possessing different functional traits in alien
species contributes to successful invasion.

A different point of view is proposed by Leffler et al. (2014) [6]: starting from
the assumption that differences in trait values between native and alien invasive
species may depend on the context of the comparison, they report and suggest
that using trait values as predictors of future invasion will be a challenge. Instead
they propose a criterion that differences in trait values between a native and exotic
invasive species must be greater than differences between co-occurring natives for
this difference to be ecologically meaningful. It is important to state that this work
has been suggested to be flawed by Dawson et al. (2015) [7]: they state that the
criterion proposed by Leffler et al. [6] cannot distinguish between cases where trait
values may lie between those of native species but are still distinct and cases where
they are very similar to native species.

These and other works provide useful insights to understand the differences
between native species, non-invasive alien species and successfully invasive alien
species, and to predict if a species has the ability to become invasive when introduced
into a new region. However, despite proving that the invasion success of plants
species can be predicted from functional traits, many of these studies suffer from
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challenges and limitations, such as experimental conditions involving a limited
number of plants or limited to a particular region, and are possibly difficult to
propagate to bigger scales and with a greater amount of data. A question raises
about the possibility of enabling this sort of analysis to scale using deep learning.

2.2 Deep learning for plant species identification

The creation of systems capable of recognizing plant species directly from images
represents a significant interdisciplinary challenge that connects the fields of com-
puter vision and biodiversity research. This task is part of fine-grained visual
classification, where algorithms must differentiate among thousands of species by
interpreting subtle morphological cues such as leaf form, venation patterns, or floral
characteristics. The difficulty of this problem is amplified by the wide range of
intraspecific variation caused by growth stage and environmental factors, as well as
by the high degree of visual similarity shared among closely related taxa [8, 9, 10].

Initial methods for automated species recognition depended heavily on hand-
crafted features. For instance, systems like Leafsnap [11] employed classical com-
puter vision strategies, including the extraction of curvature histograms from
leaf outlines, to perform comparisons with reference databases. Although these
approaches demonstrated that automated identification was feasible, they strug-
gled to scale effectively and performed poorly on noisy, real-world images. The
introduction of convolutional neural networks (CNNs) marked a turning point: by
learning discriminative features directly from image pixels, CNNs rapidly surpassed
traditional techniques and became the foundation of modern fine-grained plant
classification. Because many botanical datasets are relatively small, researchers
soon turned to transfer learning with pretrained models [12], which allowed for
robust generalization even with limited training samples.

This advancement has been largely driven by the availability of large-scale,
real-world datasets, among which the iNaturalist collection stands out. Introduced
by Van Horn et al.[13], it includes over 859000 images spanning more than 5000
species contributed by a global network of citizen scientists, effectively capturing the
visual diversity and ecological realism found in natural environments. The initial
benchmark on this dataset achieved only 67% top-1 accuracy, with a significant
drop in performance for rare species, revealing the inherent challenges posed by
long-tailed distributions.

Herbarium specimens represent another valuable data source, offering a stan-
dardized yet taxonomically rich alternative for studying fine-grained classification.
The Herbarium 2019 Challenge [14] showcased this potential by releasing a dataset
of more than 46,000 labeled images from the Melastomataceae family across 683
species. In the associated FGVC6 competition, top-performing models achieved
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89.8% classification accuracy. The subsequent Herbarium 2021 dataset [15] ex-
panded dramatically to include over 2.5 million specimens representing 64,500
taxa. This dataset presented greater complexity due to a severe class imbalance
(imbalance factor > 1650) and the inclusion of multiple major plant divisions. The
corresponding competition evaluated models using the F1 score, and the top sub-
mission achieved 0.757. Carranza-Rojas et al. [16] further analyzed the application
of CNNs to herbarium sheets, providing critical insights into the circumstances
under which transfer learning can be beneficial or detrimental in this context.

The PlantCLEF series has been instrumental in advancing plant recognition
research by posing increasingly demanding challenges. The 2022 edition [17]
required identifying 80,000 species from 4 million images gathered from diverse
data sources. Documentation highlighted the difficulty of developing models capable
of generalizing across varying image qualities and acquisition types. In 2024, the
competition [18] shifted toward identifying multiple species within vegetation plot
images, reframing the problem as a weakly labeled multi-label classification task.
Two pretrained baselines were released for this purpose, both based on the Vision
Transformer (ViT) architecture originally trained with the DinoV2 self-supervised
learning framework [19].

More recently, BioCLIP [20] introduced a large-scale foundation model trained on
10 million biological images using hierarchical contrastive learning with taxonomic
supervision, setting a new benchmark in fine-grained biological classification. Its
successor, BioCLIP 2 [21], further scaled this approach to 214 million images,
significantly advancing the capabilities of foundation models in biological image
understanding.

2.3 Deep learning for identification of traits re-
lated to invasiveness

Many studies approached the identification of invasive species through deep learning,
to prevent and mitigate harm they might carry out to the environment.

Baron et al. (2018) [22] combines image processing and machine learning to
identify yellow flag iris (Iris pseudacorus, an invasive species) from images obtained
through a camera transported by a drone.

Similarly, Jensen et al. (2020) [23] employ a set of machine learning classifiers for
detecting Kudzu vine (Pueraria montana, an invasive species) in the south-eastern
area of the United States using spatial data.

Lake et al. (2022), instead, [24] used Worldview-2 and Planetscope satellite
imagery to detect an invasive plant, leafy spurge ( Euphorbia virgata), across complex
landscapes using CNNss.

However, none of this research projects focus on species traits, but rather on
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the identification of a known species in an unknown environment.

Moving towards the identification of traits belonging to invasive species, Keller
et al. (2011) [25] evaluate trait-based risk assessments for invasive species using
six diverse datasets (regional to global in scope), related to different taxa, regions
and invasion stages. In these six datasets, two contain data for birds, two for
fish, one for molluscs and one for pinus. For the latter (PinusG [26]), they took
into consideration several categorical and numerical traits, identifying seed mass,
dispersal mode, serotiny, generation time, reproductive intervals, fire tolerance, and
environmental tolerances as key predictive traits. They compared two statistical
methods and seven machine learning methods, without identifying any significant
different result between the two approaches.

Evolving from this approach with the introduction of deep learning, in the latest
years the concept of imageomics has emerged [27]. Works in this field aim to
extract biological traits from images in different domains by introducing structured
knowledge (from the biological domain) into deep learning algorithms: in particular,
phenomics wants to extract phenotypical traits from image data [28, 29, 30].

In relation to this, Macleod (2017) [31] compares traditional geometric mor-
phometric methods with newer machine-learning approaches for analyzing digital
images of carnivore crania. It evaluates how well each method characterizes group
differences and evaluates their suitability for morphometric analysis.

Liirig et al. (2018) [32] developed a pipeline to facilitate immediate extraction
of high-dimensional phenotypic data from digital images, allowing biologists to
focus on quick and reproducible collection of data.

Similarly, Porto et al. (2020) [33] propose a machine-learning-based pipeline to
collect high-dimensional morphometric data in two-dimensional images of semi-rigid
biological structures.

Previous research has mainly focused on numerical or tabular categorical traits
(e.g. seed mass, dispersal mode), employing statistical or machine learning methods
for the analysis. This approach may not capture morphological features that are
exclusively visual, such as petal color or stem architecture.

At the same time, studies that applied deep learning mostly worked on the
identification of known species instead of individual traits. To the best of our
knowledge, no published study focuses on the identification of visual morphological
traits that are related to the potential invasiveness of plants using deep learning.

2.4 Explainability mentions

The opaque or ‘black box’ nature of deep learning models remains a major obstacle
to their broader use in ecological research, where both predictive accuracy and
interpretability are essential. For these systems to be dependable, their outputs must
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be explainable and grounded in biologically valid features rather than coincidental
visual correlations. In fine-grained classification settings, this requires confirming
that models focus on meaningful morphological traits, such as leaf outlines or
floral structures, instead of unrelated image characteristics like illumination or
background patterns. In important cases such as the detection of invasive species,
interpretability ensures that predictions are based on diagnostic traits, reducing
the probability of misleading conclusions.

Explainability approaches in computer vision can generally be grouped into
three well-established categories:

« Saliency and gradient-based methods. Techniques such as CAM [34] and
Grad-CAM [35] generate heatmaps that highlight image regions contributing
most strongly to a prediction by computing class-specific gradients over the
final convolutional layer. Integrated Gradients [36] takes a different approach
by tracing a continuous path from a baseline image (for instance, a blank
input) to the actual sample and integrating gradients along that trajectory to
determine the relevance of each feature.

e Perturbation-based methods. These methods examine model sensitivity
by directly modifying the input data. RISE [37] estimates the importance
of different pixels by applying random masks and aggregating the model’s
responses. SHAP [38] calculates theoretically grounded importance scores for
each input feature using Shapley values derived from cooperative game theory.
LIME [39] interprets individual predictions by generating local perturbations
around the input sample and fitting an interpretable surrogate model, such as
a simple linear regression, to approximate the model’s local decision boundary.

e Concept-based and prototype-based methods. These techniques aim to
provide human-understandable reasoning that goes beyond feature attribution.
TCAV [40] measures how much user-defined concepts influence model outputs.
ProtoPNet [41], together with its improved variant Deformable ProtoPNet [42],
learns prototypical parts during training, with final predictions determined
by similarity to these learned prototypes. This design allows for explanations
grounded in representative examples.

Such explainability frameworks have already demonstrated utility in ecolog-
ical contexts. For example, in herbarium specimen classification, Grad-CAM
visualizations revealed that networks often emulate the reasoning of taxonomic
experts: they first assess the overall structure of the specimen and then attend
to distinctive diagnostic regions, indicating that the model focuses on biologically
relevant information [43]. More recent work employing concept-based methods in
plant disease detection has uncovered both valid visual indicators and potential
dataset biases [44]. Despite these encouraging developments, the consistent use
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of explainable AI in biodiversity research (and particularly in invasive species
detection and ecological monitoring) remains limited. Existing techniques still face
several difficulties, including instability, a tendency to emphasize visually prominent
yet biologically irrelevant patterns, and the absence of standardized quantitative
metrics for validation. These limitations are even worse in ecological datasets,
which often contain complex natural backgrounds and metadata leakage. In the
present study, explainability is employed as a fundamental validation tool, ensuring
that model decisions depend on genuine biological features and can therefore be
considered trustworthy for scientific applications.

2.5 Research question

In conclusion, although several research project approached the identification of
morphological traits related to plants invasiveness potential, we are not aware
of any of them that relied exclusively on visual traits available from image data.
By focusing on the plant genus Lythrum (Lythraceae) and by deploying deep
learning methods with a systematic approach, we aim to differentiate invasive from
non-invasive species through the recognition of their distinct morphological traits.
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Chapter 3

Methods

3.1 Overview of the pipeline

In this section we present the pipeline for the methodology designed to extract
meaningful information on morphological traits in invasive species.

The pipeline articulates in three main sections, each one containing intermediate
steps:

1. Classification model to predict if an image is representing an invasive or
non-invasive species

« Extraction of image embeddings through a foundation model fine-tuned
on the biological domain (BioCLIP 2);

e Classifier training on the extracted embeddings;
2. Explainability pipeline
e Generation of heatmaps to identify regions that drive the model

predictions using Integrated Gradients as an XAI algorithm;

o Extraction of regions from the heatmaps by selecting one or more
bounding boxes that includes the most influential pixels;

e Clustering phase

— Clustering of the regions after embedding them individually and
reducing them to a two-dimensional mapping with UMAP

— Cluster annotation to determine the biological structure represented
by each region (Leaf, Flower, Stem);

3. Final analysis
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o Pattern analysis and discovery of visual traits that determine the
potential invasiveness of a species;

In the following sections we will go into details for each step of the pipeline,
explaining thoroughly the methodology and the decisions for the full research
process.

3.2 Classification model

Non Invasive
—_——

BioCLIP-2 Classifier Head
-
Image encoder

Figure 3.1: Classification model architecture.

In this section we describe how we built the model to take in input images from
the dataset (4.1) and classify them as either invasive or non-invasive.

First we employed BioCLIP 2 [21] as an embedding extractor, by utilizing the
image encoder of the model to extract a multidimensional embedding for every
image in the dataset, which was then used to train a classifier. This image encoder
was not finetuned on the dataset, meaning we only evaluated its capacity to extract a
meaningful representation from the beginning. In this case any embedding extractor
would have produced suitable embeddings, but BioCLIP is highly specialized in
the biological domain and obtains better performances than a generic extractor,
eliminating the need for further training or fine-tuning.

The classifier (which took as input the dimension of the embeddings and had a
hidden dimension of 256) is comprised of a Linear layer, a ReL.U activation layer
and a final Linear layer with two possible outputs (invasive and non-invasive).

Finally, we trained the classifier to predict if the image (in the form of its
embedding) is representing an invasive or non-invasive species, using cross-entropy
as a loss function.

The complete schema with the architecture of the classification model is reported
in Fig. 3.1.

To address the slight class imbalance in the dataset, class weights were applied in
the cross-entropy loss. These weights were computed as the inverse of the logarithm
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of the class sample counts, which provides a compromise between a better class
balance and avoiding over-weighting less frequent categories.

The formula for cross-entropy loss and the computation of the weight for each
class can be seen in Eq. 3.1.

K
1
L=—) wylog(y.), We = ——F—
(;2:31 be log(fc) log(1+nc>

(3.1)

The different models took into consideration as embedding extractors, the metrics
used to compare them and the hyperparameters for the classifier are reported in
Sec. 3.5.1.

The classification problem in our study is not trivial. Not all invasive species are
invasive in every location or ecosystem: some studies do not consider native species
as ‘invasive’, and choose to compare invasive alien species and native species, in
order to study the traits that increase the chance of a non-native species to prevail
over a native one. Other studies instead compare only non-native species, putting
into contrast invasive aliens versus non-invasive aliens, addressing the question of
what are the features that separate successful invaders and alien species that were
not able to spread as successfully [1, 2, 3].

This study does not focus on correlation between species traits and geograph-
ical information, but only on the relation between a species appearence and its
invasiveness potential. Therefore, we choose to look at this problem from a broader
perspective, considering all species that are invasive somewhere as ‘invasive’ (at
least potentially), and all species that are not invasive anywhere as ‘non-invasive’.
For this reason we ignore the ‘native’/‘non-native’ comparison, focusing exclusively
on the potential of a species to be invasive.

3.2.1 BioCLIP

In this section we describe what is BioCLIP and why we chose it (specifically
BioCLIP 2) as a feature extractor model.

BioCLIP is a domain-specific vision-language foundation model developed to
generalize across the entire tree of life [45]. This means that it is able to provide
coverage across different taxa and to learn fine-grained representation of images
of organisms which are often very similar to each other. It is also able to achieve
strong performances in low data regimes, meaning it is able to produce useful
embeddings even for species that are scarcely represented in the training data, or
that are completely absent.

BioCLIP has been trained on TreeOfLife-10M [20], a large-scale diverse ML-
ready biology image dataset, built integrating together different existing datasets
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suchs as iNat21 [46], BIOSCAN-1M [47] and the Encyclopedia of Life!.

Regarding the architecture, BioCLIP is built on OpenAI’s CLIP framework [48],
which relies on transformer architectures, using the self-attention mechanism to
capture contextual relationships between elements in a sequence. In the vision
domain, as in this case, this principle is applied through Vision Transformers (ViT),
architectures that decompose an image into patches (rather than tokens, as would
happen with a classic transformer), which are then serialized into vectors and
processed by a transformer encoder as normal tokens. In BioCLIP, the vision
encoder is a ViT-B/16, while the text encoder is a 77-token causal autoregressive
transformer. Both map their inputs into a shared embedding space, in order to
be able to measure similarity. The core of CLIP (and consequently BioCLIP) is
the contrastive training objective: given a batch of paired image—text samples, the
model learns to maximize the similarity between the embeddings of true pairs while
minimizing it for mismatched pairs. This can be summarized as

L= —log ;XP(@z‘,tz‘)/T)

i1 exp({vi, t5) /1)

(3.2)

where v; and t; are the normalized embeddings of the i-th image-text pair in
the batch, and 7 is a learned temperature parameter [48].

For BioCLIP, the text encoder receives as input different combinations and
mixtures of common name, scientific name and taxonomic name (Tab. 3.1 reports
an example of these combinations as presented in the original paper by Stevens et
al. [20]). This multi-level textual supervision enriches the contrastive alignment
process: not only does the model learn to associate an organism’s image with a
single label, but it also captures semantic structure across linguistic representations,
increasing flexibility at testing time.

We chose to employ BioCLIP in our work because it is pre-trained (avoid the
need for a long and computationally expensive training) on a vast dataset, which
extensively covers the species we are taking into consideration. We also exploit its
ability to learn fine-grained representation of images (in our case several species
have very similar morphology) and for its ability to produce useful embeddings
even in case of rarely represented species (as in our case, see Fig. 4.1).

In particular we chose the latest released version of BioCLIP, called BioCLIP 2
[21], which employs a more powerful vision transformer and is trained on a dataset

with the same features of TreeOfLife-10M, but that extends to a much larger scale,
called TreeOfLife-200M.

Thttps://eol.org
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Text Type Example

Common black-billed magpie

Scientific Pica hudsonia

Taxonomic Animalia Chordata Aves Passeriformes Corvidae Pica
hudsonia

Scientific + Common Pica hudsonia with common name black-billed magpie
Taxonomic + Common  Animalia Chordata Aves Passeriformes Corvidae Pica
hudsonia with common name black-billed magpie

Table 3.1: Text types considered in the training of BioCLIP, as presented in the
original paper [20].

3.3 Explainability pipeline

We implemented an explainability pipeline aimed at interpreting the decision-
making process of our classification model. The objective was to verify whether the
model’s assessment of plant invasiveness relies on biologically relevant morphological
traits, or whether it is unintentionally influenced by spurious correlations such as
background elements. The procedure was organized into three main stages:

1. Generate heatmaps of model predictions to visualize the regions that most
strongly influence classification outcomes;

2. Extract the image segments corresponding to those highlighted areas;

3. Assign biological labels to each extracted region to identify the structures
being represented.

An overview of this process is presented in Fig. 3.2.

3.3.1 Heatmap generation

To obtain a complete understanding of the model’s feature attributions, we employed
two complementary heatmap generation techniques: Integrated Gradients [36]
and Gradient SHAP, a stochastic variant of SHAP [38]. These approaches were
selected to represent two distinct interpretability strategies: Integrated Gradients
offers a deterministic, path-based gradient explanation, whereas Gradient SHAP
incorporates randomness and connects attribution to Shapley value theory, ensuring
equitable feature contribution estimates.

Integrated Gradients is a gradient-based saliency approach that quantifies
pixel importance by integrating the gradients of the model’s output with respect
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Figure 3.2: Explainability pipeline. The figure shows the three-step process:
heatmap generation (top), extraction of relevant image regions (middle), and
labeling of each extracted region (bottom).
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to the input along a linear trajectory from a baseline image to the actual input.
This method satisfies essential theoretical properties, including Sensitivity and
Implementation Invariance, while requiring relatively few gradient computations.
Conceptually, it measures each pixel’s contribution to shifting the prediction away
from the chosen baseline.

Gradient SHAP extends this concept by introducing noise to the baseline,
creating multiple perturbed instances of it, and then averaging the integrated
gradients across these samples. This procedure connects directly to the idea of
Shapley values from cooperative game theory, ensuring a balanced attribution of
influence across all input features.

Both methods were applied to the complete classification architecture, consisting
of the frozen BioCLIP-2 image encoder followed by the classifier head. This stage
corresponds to Step 1 in Fig. 3.2. After comparing their performance based on
clustering outcomes, one technique was selected as the final method for producing
the definitive heatmaps.

3.3.2 Regions extraction

After producing the attribution maps, we implemented a systematic procedure to
extract and store the most salient image regions (Step 2 in Fig. 3.2). The complete
workflow is illustrated in Fig. 3.3, which details each stage of the process:

1. Normalization and preprocessing: the original input tensor is recon-
structed into an RGB image and normalized to the [0, 1] range. The attri-
bution map is resized to the same spatial dimensions as the input image and
normalized using the same scale. In cases where the attribution map contains
multiple channels, it is converted to grayscale to simplify processing;

2. Thresholding: to retain only the most influential areas, we apply a percentile-
based threshold. A binary mask is created by preserving pixels above the 90th
percentile of attribution intensity, isolating the regions that contribute most
strongly to the model’s decision;

3. Morphological processing: to refine the binary mask and ensure clean,
connected regions, we apply a sequence of morphological operations. The
‘closing’ operation fills small internal gaps and holes, while ‘opening’ eliminates
isolated noise pixels that could otherwise interfere with later analysis;

4. Connected components: the refined mask is decomposed into connected
regions, and for each component a bounding box is computed. Components
with dimensions smaller than 10 px in either width or height are discarded as
noise. Fach valid bounding box is then expanded by 20 px in every direction
to include the entire relevant morphological structure;
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5. Region cropping and saving: finally, each selected region is cropped from
the normalized RGB image and saved as an independent image segment. These
cropped areas correspond to candidate biologically meaningful features, which
will subsequently be clustered and annotated.

3.3.3 Clustering phase

After obtaining the heatmaps and extracting the salient image regions, the final
step consisted of assigning a label to each region. The purpose of this stage was
to identify whether a region represented a meaningful biological structure (and, if
so, which specific one) or whether it instead captured irrelevant elements such as
background patterns or human hands. This procedure corresponds to Step 3 in
Fig. 3.2.

Each extracted region was embedded into a semantic feature space using the
image encoder of BioCLIP-2 [21], the same encoder integrated into our classification
model (see Sec. 3.2). Because the resulting embeddings were high-dimensional, we
applied Uniform Manifold Approximation and Projection (UMAP) [49] to
reduce their dimensionality while maintaining local relationships among samples.
UMAP constructs a high-dimensional graph that represents data topology and then
optimizes a corresponding low-dimensional graph to preserve this structure as closely
as possible, using cross-entropy as the similarity measure. This dimensionality
reduction made the embeddings suitable for both visualization and clustering.

To group similar regions, we adopted a centroid-based clustering approach using
the KMeans algorithm. This iterative method assigns each data point to the
nearest cluster centroid, then recalculates centroid positions until convergence.

The outcome of this process was a mapping that linked each extracted image
region to its respective cluster.

Finally, by visually inspecting the regions grouped within each cluster, we
manually assigned descriptive biological or contextual labels: Leaf, Flower, Stem,
Hand, and Background/undefined.

3.4 Final analysis

These initial steps set the foundation for the final phase of the analysis. To uncover
meaningful patterns within the data, we developed the workflow depicted in Fig. 3.4,
which is organized into three main stages:

1. Region Extraction: salient regions are extracted from all dataset images
following the methodology described in Sec. 3.3.3;
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Figure 3.3: Details of the procedure that from an image and its heatmap extracts
salient regions.

2. Region Labeling: the extracted regions are assigned to clusters using the
KMeans model with fixed centroids obtained during training in Sec. 3.3.3. Since
these clusters were manually annotated beforehand, each region automatically
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inherits the label associated with its respective cluster;

3. Pattern Analysis and Discovery: as detailed in Sec. 3.4.1, we examine
the distribution of labeled regions across the dataset to identify recurrent
morphological structures and uncover patterns underlying model predictions.

w0

Regions II
Explainability Trained

Dataset pipeline clustering
model

Labeled II
Regions

Pattern
Analysis &
Discovery

Figure 3.4: Final analysis pipeline. From the dataset, salient regions are extracted,
clustered using the trained model described in Sec. 3.3.3, and labeled accordingly.
After labeling, these regions become the ground for discovering and analyzing
underlying prediction patterns.

For this last stage, we refined the cluster labels to achieve a more detailed bio-
logical interpretation. In addition to the general categories Leaf, Flower, and Stem,
we incorporated characteristic traits that are specific to each species and struc-
ture, as described in Appendix A. The categories Hand and Background/undefined
remained unchanged from their previous definitions.

3.4.1 Pattern Analysis and Discovery

Region-level information was aggregated to the image level to enable higher-level
analysis. For each image, we computed the following variables:

e Ground truth and predicted class: both values were obtained directly
from the classification model’s outputs;

o Prediction correctness: a binary indicator specifying whether the predicted
class matches the ground truth, along with the corresponding error category:
— True Positive (TP): invasive species correctly identified as invasive;

— True Negative (TN): non-invasive species correctly identified as non-
invasive;

— False Positive (FP): non-invasive species incorrectly classified as inva-
sive;
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— False Negative (FN): invasive species incorrectly classified as non-
invasive.

e Region metrics: these include the total number of extracted regions per
image, the proportions of regions labeled as Hand and Background/undefined,
and the coverage fraction, calculated as the ratio between the total area
covered by the extracted regions and the full image area;

o Trait metrics: these capture the diversity and composition of biological
traits within each image. Specifically, we measured the presence and relative
frequency of each characteristic trait (as defined in Appendix A), the number
of distinct traits (trait richness), and the Pielou evenness index, defined as

J = il
log S
where H' = — Y9, p;logp; represents the Shannon diversity of the trait

distribution, p; is the relative frequency of trait ¢ in the image, and S denotes
the number of unique traits (richness). The value of J' ranges from 0, indicating
a highly uneven distribution dominated by few traits, to 1, corresponding to
traits perfectly evenly distributed in the image.

3.5 Experimental settings

3.5.1 Classification Model

For this work, three different models were evaluated as feature extractors for the
images in the dataset:

» ResNet18: this Convolutional Neural Network (CNN) trained on ImageNet
(a large dataset containing images of different objects) was chosen as a baseline,
given its recognized quality in general-purpose image recognition [50].

e« BioCLIP 1: BioCLIP is a contrastive learning vision model trained on
TreeOfLifel-10M, a dataset of biological images of plants, animals and fungi
[20].

e BioCLIP 2: BioCLIP 2 outperforms BioCLIP 1 by adopting a larger vision
transformer and by training on a much larger and diverse dataset of images of
plants, animals and fungi called TreeOfLife-200M [21].

The three models were compared as embedding extractors. Each model was
used to extract a multidimensional embedding for every image in the dataset, which
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was then used to train a classifier. For ResNet18 (imported from torchvision)
the last Fully Connected layer was removed, whereas BioCLIP 1 and BioCLIP 2
where imported from HuggingFace and only the image encoder of the models was
utilized. These embeddings extractors were not finetuned on the dataset, meaning
we only evaluated their capacity to extract a meaningful representation without
further training.

Once the embeddings were extracted and mapped to the original images, we
split the dataset using 80% of the data to train the classifier, and 20% to test it on
unseen data. The size and distribution of each split can be seen in Tab. 3.2

Invasive Non-invasive Total

Training set 19898 16390 36288
Validation set 4935 4138 9073
Total 24733 20528 45361

Table 3.2: Support of the training set and validation set for invasive and non-
invasive species

To evaluate the models, the classifier (Sec. 3.2) was trained for 50 epochs on
the embeddings extracted by each model for the training data. At the end of
every epoch it was evaluated on the unseen embeddings of the validation data.
Early stopping (with no threshold for minimum improvement and a patience of 20
epochs) was implemented to prevent overfitting and to avoid wasting resources if
the validation loss (the metric took into consideration for early stopping) was not
improving.

The parameters used for the training of the classifier are reported in Tab. 3.3

Parameter Value
Optimizer Adam
Learning rate 1x10™*

Loss function Cross-entropy
Number of epochs 50
Batch size 32
Validation split 20%
Early stopping Enabled
Random seed 42

Table 3.3: Training parameters used for the classification model. For the cross-
entropy loss, we used as weights the reverse of the logarithms of the class samples,
to contrast the slight imbalance in the class distribution.

To compare the different model we took into account the accuracy of the classifier
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after the final epoch of training. We report the value for the different models in
Tab. 3.4. As predictable, the best results are given by BioCLIP 2, which despite
not being fine-tuned on our dataset and a arguably short training phase, already
obtains satisfying results, proving to be a suitable model for our task (Fig. 3.5).

Model Final accuracy Final recall Final F1 score Final loss
ResNet18 0.779 0.78 0.78 0.483
BioCLIP 1 0.918 0.92 0.92 0.200

BioCLIP 2 0.959 0.96 0.96 0.114

Table 3.4: Results for the evaluation of the different models took into considera-
tions, tested as feature extractors from the images. The values for the different
metrics report the score for the evaluation after the last epoch of training.

Loss over Epochs Accuracy over Epochs

—e— Train Loss —e— Train Accuracy
—&— Val Loss —e8— Val Accuracy

0.94 1

0.10 7

Figure 3.5: Values for the validation loss and validation accuracy throughout
the training of the classifier using BioCLIP 2 embeddings. It can be seen how
both metrics have not reached a plateau yet, suggesting that improvements on the
results are possible with further training.

3.5.2 Explainability and Clustering phase

For both explainability methods, Integrated Gradients and Gradient SHAP,
we relied on the implementations provided by the Captum library, while UM AP
was applied using its dedicated Python package. In the case of Integrated Gradients,
the path integral was approximated using 100 interpolation steps and an internal
batch size of 5. For both explainability methods, the baseline was defined as a
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completely black image, and the resulting pixel-wise attributions were aggregated
across the RGB channels to produce a single normalized heatmap.

To determine the most suitable explainability method for our workflow, as well
as the optimal hyperparameter configuration for both KMeans and UMAP, we
conducted a systematic exploration of different parameter combinations. The full
range of tested hyperparameters is summarized in Tab. 3.5. Each configuration
was evaluated using the silhouette score computed on the resulting clustering
assignments, as this metric provides a quantitative measure of both intra-cluster
compactness and inter-cluster separation.

Hyperparameter Values

Explainability method Integrated Gradients, Gradient SHAP

K Means n_ clusters (30, 35, ..., 100]
n_ neighbors 5, 10, 15, 20, 30, 50]
UMAP min_ dist [0.01, 0.025, 0.05, 0.075, 0.1]
distance metric euclidean, manhattan

Table 3.5: Hyperparameter configurations explored during the clustering phase.

Combining all the parameter values resulted in a total of 900 distinct configura-
tions for each explainability method, leading to 1800 experiments in total. The
clustering was carried out using the salient regions extracted from a subset of 2000
images: Integrated Gradients produced 7509 regions, whereas Gradient SHAP
yielded 20021 regions.

Our results indicated that smaller values of the UMAP parameter n_ neighbors
(5-10) and lower min__dist settings (0.01-0.025) generally led to higher silhouette
scores. Both explainability methods achieved comparable results, though Integrated
Gradients consistently provided slightly better performance on average. The
configuration with the best silhouette score was selected for subsequent analyses
and is presented in Tab. 3.6, while its detailed results are reported in Tab. 3.7.

Explainability n n min dist
method clusters neighbors dist metric
Integrated 30 5 0.025 manhattan
Gradients

Table 3.6: Selected configuration for the clustering pipeline.
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Cluster size Silhouette
min max mean entropy score
88 441  250.3 0.984 0.428

Table 3.7: Clustering results for the configuration (Tab. 3.6) with the best
silhouette score.

3.5.3 Final Analysis

Predictive Feature Analysis

We employed a Random Forest classifier to investigate which image-level features
were most strongly associated with the correctness of model predictions. The input
feature set included both the presence and frequency of traits, the total number
of extracted regions, the count of distinct traits (richness), the coverage fraction,
the Pielou evenness index, and the proportions of regions labeled as Hand and
Background/undefined. Two complementary analyses were carried out:

1. a global analysis, aimed at ranking the features that distinguish correct from
incorrect classifications;

2. an error-type analysis, performed in a one-vs-all scheme across the four
prediction categories (TP, TN, FP, FN) to identify which features contribute
to specific error patterns.

Feature importance was estimated using two distinct approaches. The first,
impurity-based importance, evaluates the average reduction in node impurity at-
tributed to each feature across all decision trees in the forest. This method provides
a quick estimation of importance but tends to favor features with many possible
values or continuous ranges, and may overemphasize features that create strong but
localized splits. The second approach, permutation-based importance, measures the
drop in model accuracy that occurs when the values of a single feature are randomly
permuted. This metric captures each feature’s actual predictive contribution and
is less affected by biases related to scale or feature cardinality.

Metric-specific correlation with accuracy

To deepen the interpretation of the Random Forest results, we examined how
specific image-level metrics correlate with prediction correctness. Each metric was
discretized into bins, defined either by quantile ranges (for continuous variables) or
by fixed-width intervals (for count-based metrics). For each bin, we computed the
average prediction accuracy.
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We also assessed the species composition within each bin by calculating the

taxonomic distribution and comparing it to the overall dataset using the Kullback-
Leibler (KL) divergence, defined as:

KL(P || @) = ¥ Pl0)log,

where P(7) and Q(i) represent the proportions of species i within the bin and in
the overall dataset, respectively. This comparison enabled us to evaluate whether
bins exhibiting distinct accuracy patterns shared a similar species composition. In
cases where a bin’s accuracy deviated substantially but its species distribution was
highly unbalanced, the difference could be attributed to composition effects rather
than the examined metric itself.

To statistically test for differences in accuracy among bins, we applied a one-way
ANOVA. This method evaluates whether the mean prediction accuracy varies
significantly across multiple groups (bins). In this context, it determines whether
observed differences in correctness are genuinely linked to the binned metric, after
accounting for within-bin variability.

Overall, this analysis provided a complementary perspective to the Random
Forest feature importance results, allowing us to quantify the relationship between
image-derived metrics and model performance while controlling for confounding
effects of species composition.
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Pairwise Trait Importance and Masked Image Analysis

Characteristic Pair
traits of each combinations

specie: of traits
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least one trait of
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Dataset

Figure 3.6: Creation of masked images: first the top 5 most important pairs of
traits are identified. Then, images with both traits are selected (repeating the
process for each pair of traits). For these images, we mask the regions containing
at least one of the traits in the pair.

To explore how combinations of traits jointly influenced the model’s predictions,
we conducted a pairwise predictive feature analysis at the image level. The
full procedure is illustrated in Fig. 3.6.

We first generated all possible pairs of characteristic traits, defined by species
and plant structure (see Appendix A). These pairs were then categorized according
to their taxonomic specificity into three groups: Common (traits shared by both
invasive and non-invasive species), Non-invasive only, and Invasive only.

Using these pairwise features as predictors, we trained Random Forest classifiers
to determine whether the model’s original classification was correct. As in previous
analyses, feature importance was computed both globally and separately for each
prediction outcome (True Positive, True Negative, False Positive, False Negative).
This approach made it possible to identify which trait combinations most strongly
contributed to correct predictions or recurring errors. The five most important
pairs were retained for further examination.

For each of the selected pairs, all images containing both traits were identified.
The corresponding regions (those labeled with at least one of the two traits) were
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then located within the original images and masked out by replacing them with
transparent areas. These modified, or ‘masked’, images were reintroduced into the
classification model to assess how accuracy and confidence changed when key trait
information was removed.

By comparing model performance between pairs classified as Common and those
marked as Non-invasive only (no Invasive only pairs were present in the dataset),
we evaluated whether the classifier’s decisions were driven primarily by general
morphological cues shared among taxa or by features distinctive of non-invasive
species.
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Chapter 4

Results

4.1 Dataset construction

To build the dataset of species from the same genus, we first identified a particular
species of interest. The selection fell on purple loosestrife (Lythrum salicaria), a
species considered to be among the 100 world’s worst invasive species [51], belonging
to the family of Lythraceae.

We then retrieved all the species belonging to the Lythrum genus [52] (40 in
total) and identified the ones that were invasive (3 in total: Lythrum salicaria [53,
54], Lythrum hyssopifolia [55, 56] and Lythrum virgatum [57, 58]).

To retrieve image data related to each species we used the iNaturalist.org
website, an online social network where users can upload pictures of different living
organisms from everywhere around the world.

iNaturalist provides different sets of APIs: first we made a sequence of calls
to retrieve the iNaturalist ID for each manually retrieved taxon (e.g. Lythrum
virgatum). We discarded the species for which we did not find a correspondence
between taxon and id, meaning the species was not present on iNaturalist. Some
species were present in the iNaturalist database, but had no available images: we
discarded those from our dataset too. Then we used the taxon id to download
every image present on iNaturalist (at download time, June 20th 2025) for the
remaining 30 species [59]. The complete list of species used in our project and the
correspondent number of images available for downloading can be seen in Fig.4.1.

Examples images taken from the dataset can be observed in Fig. 4.2.
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Figure 4.1: The distribution of the total number of images retrieved for each

species. The invasive species are reported with a red column whereas the non-
invasive species are reported in blue.
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(c) Lythrum ovalifolium (Non-invasive) (d) Lythrum album (Non-invasive)

Figure 4.2: Examples of images representing different species inside the dataset,
obtained from iNaturalist.
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4.2 Classification model

4.2.1 Classification Model Cross Validation

To validate the accuracy and the quality of the prediction of the model (trained as
described in Sec. 3.2) we decided to perform Leave One Species Out (LOSO) Cross
Validation (Fig. 4.3). It consists in training 30 different models, one for every
different species in the dataset, using as training data every image in the dataset
except for the ones corresponding to a single species. The remaining elements
of the dataset (all and only the images of that species) are used as a test set to
evaluate the accuracy of the model.

Species 1 Species 2 Species 3 Sp. K
{ TEST } { TRAIN ] { TRAIN } { TRAIN ] { TRAIN ] { TRAIN J { TRAIN J {TRAIN} — ﬁ
Species 1 Species 2 Species 3 Sp. K

(v () (e ) (] (o) (o) (o) o) — g

Species 1 Species 2 Species 3 Sp. K

[ ) ) (o) (oo ) (o ) [ ) (1) — D

Figure 4.3: Leave One Species Out Cross Validation schema. Each iteration
produces a model tested on a certain species, and is trained on all the dataset
except for that species. Differently from K-Fold Cross Validation, each fold here
represents a species, therefore they are not equivalent in samples size (see Tab.
4.1).

This allows us to explore the behavior of the model when encountering a species it
has never seen before in the training phase, relying exclusively on the morphological
traits of other species in the same genus for the predictions.

The results for the Leave One Species Out (LOSO) Cross Validation can be
observed in Tab. 4.1.

There is a discrepancy between these results and the results for the accuracy of
the classifier trained using all the species in a 80-20 split (Tab. 3.4). The average
of the accuracies is lower than the overall accuracy of the model trained on all
the species together, and the standard deviation shows instability in the results.
Several species have mediocre accuracy (L. salicaria, L. junceum, L. virgatum, L.
tribracteatum), few have very low accuracy (L. thymifolia and L. wilsonii, although
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the sample size for L. wilsonii makes the result possibly not significant). For
two species (L. hyssopifolia, L. intermedium) the model is completely or almost
completely unable to classify it correctly. This suggests that the model, when
seeing all the species at training time, might be learning to recognize the taxon
and its classification instead of the traits and features that make a species invasive
or not. In fact, when performing LOSO Cross Validation the model is forced to
rely on morphological features for the prediction of invasiveness, and often obtains
low or unsatisfying results with a taxon it has never seen in the training.

4.2.2 Mapping of the embeddings in a 2D space

To better study the difference in representation between the images of the different
species, we applied Uniform Manifold Approximation and Projection (UMAP)
to the multidimensional embeddings of the image data extracted with BioCLIP 2,
reducing and mapping them to a 2-dimensional space (Fig. 4.4). The parameters
used in this phase for UMAP can be found in Tab. 4.2

Additionally we calculated the average distance between each species (as the
average distance between their points in the 2D space), to better understand which
species were more visually similar and which species were more different. From
this analysis we removed all species with less than 15 samples in the dataset, in
order to have more meaningful comparisons. We report the average of all distances
between species to be 6.584 + 3.073.

First we analyze the results for Lythrum salicaria (the most represented species
in our dataset, invasive) in Tab. 4.3: we can observe how Lythrum intermedium, a
non-invasive species, is the closest to L. salicaria. Instead, the second closest is
Lythrum virgatum, another invasive species, suggesting a visual similarity within
species of the same class.

It is interesting to note how Lythrum hyssopifolia, one of the three invasive
species and third most represented species in the dataset (Fig. 4.1), is the fourth-
most distant species in the 2D representation, contrarily to what we would expect
from our hypothesis. Its distance from other species (closest 5 and furthest 5) is
reported in Tab. 4.4: the 5 closest species are all non-invasive despite L. hyssopifolia
being invasive, whereas the other two invasive species are the second and third
furthest species in this representation (the furthest being Lythrum intermedium).

Finally, we analyze Lythrum intermedium (Tab. 4.5), observing how L. salicaria
and L. virgatum (both invasive) are the two closest species, whereas all the species
in the bottom 5 for distance are non-invasive, with the exception for L. hyssopifolia.
The average distance from Lythrum intermedium to other species is 11.332 4 2.934.

It is important to indicate how some resources, such as the World Flora Online
database [60] indicate Lythrum intermedium as a subspecies of Lythrum salicaria.
This would explain the low distance between the two species, and therefore the
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Species Accuracy Samples
Lythrum salicaria (I) 0.5138 13105
Lythrum alatum 0.8123 10491
Lythrum hyssopifolia (I) 0.0057 9583
Lythrum junceum 0.3173 3290
Lythrum portula 0.8250 2417
Lythrum californicum 0.8599 2149
Lythrum virgatum (I) 0.5888 2145
Lythrum lineare 0.9753 445
Lythrum tribracteatum 0.3343 362
Lythrum flagellare 0.8902 337
Lythrum maritimum 0.7743 226
Lythrum ovalifolium 0.7875 160
Lythrum thymifolia 0.1370 146
Lythrum gracile 0.8443 122
Lythrum borysthenicum 0.7816 87
Lythrum volgense 0.7037 81
Lythrum flexuosum 0.9630 54
Lythrum intermedium 0.0000 33
Lythrum acutangulum 0.8333 24
Lythrum vulneraria 1.0000 22
Lythrum album 1.0000 18
Lythrum curtissii 0.8667 15
Lythrum bryantii 1.0000 14
Lythrum rotundifolium 1.0000 14
Lythrum paradoxum 0.8750 8
Lythrum wilsonii 0.2500 4
Lythrum baeticum 1.0000 3
Lythrum netofa 1.0000 3
Lythrum silenoides 1.0000 2
Lythrum thesioides 1.0000 1
Mean £ Std 0.7313 £+ 0.3088 -

Table 4.1: Model accuracy and sample sizes for Lythrum genus in the Leave One
Species Out Cross Validation. Species indicated with (I) are invasive.

inability of the classifier to classify any sample of L. intermedium as non-invasive
(see Sec. 4.2.1).
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Parameter Value
n_neighbors 15
min_dist 0.01
metric euclidean

random_state 42

Table 4.2: Parameters used to map the embeddings in two dimensions with
UMAP.
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Figure 4.4: Two-dimensional UMAP projection of image embeddings. The
invasive species are represented as follows: Lythrum salicaria (blue) occupies the
region between UMAP1: —5 to 5 and UMAP2: 3 to 6.5. Lythrum virgatum (red)
spans UMAP1: —5 to 6 and UMAP2: 4 to 8. Lythrum hyssopifolia (green) is
located between UMAP1: 7-12 and UMAP2: 5 to 11.

35



Results

Species 1 Species 2 Distance
lythrum salicaria (I) lythrum intermedium 2.867
lythrum salicaria (I) lythrum virgatum (I) 4.203
lythrum salicaria (I) lythrum lineare 8.431
lythrum salicaria (I) lythrum curtissii 8.885
lythrum salicaria (I) lythrum alatum 8.891
lythrum salicaria (I) lythrum junceum 11.512
lythrum salicaria (I) lythrum hyssopifolia (I) 11.608
lythrum salicaria (I) lythrum acutangulum 11.744
lythrum salicaria (I) lythrum tribracteatum  11.801
lythrum salicaria (I) lythrum flexuosum 12.386

Table 4.3: Top 5 closest and bottom 5 most distant Lythrum species pairs for
salicaria (not including species with less than 15 total samples). Invasive species
are indicated with (I).

Species 1 Species 2 Distance
Lythrum hyssopifolia (I) Lythrum thymifolia 2.480
Lythrum hyssopifolia (I) Lythrum tribracteatum 2.569
Lythrum hyssopifolia (I) Lythrum junceum 3.921
Lythrum hyssopifolia (I) Lythrum acutangulum  3.923
Lythrum hyssopifolia (I) Lythrum flexuosum 4.045
Lythrum hyssopifolia (I) Lythrum lineare 7.093
Lythrum hyssopifolia (I) Lythrum album 7.197
Lythrum hyssopifolia (I) Lythrum virgatum (I)  10.825
Lythrum hyssopifolia (I) Lythrum salicaria (I) 11.608
Lythrum hyssopifolia (I) Lythrum intermedium  13.321

Table 4.4: Top 5 closest and bottom 5 most distant species pairs for hyssopifolia
(not including species with less than 15 total samples). Invasive species are indicated
with (I).

4.2.3 Lythrum hyssopifolia exclusion

The results reported in Tab. 4.1, together with the distances reported in Tabs. 4.3
and 4.4 prompted us to reflect on the role of Lythrum hyssopifolia in the dataset.

L. hyssopifolia had an accuracy close to 0 in the Cross Validation experiments,
possibly due to the far distance from other invasive species and the close distance to
non-invasive species (Tab. 4.4). Similarly, Lythrum salicaria and Lythrum virgatum
had mediocre accuracy, possibly due to the negative effect of them being far away
from the third invasive species (which is also well represented in the dataset (Fig.
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Species 1 Species 2 Distance
Lythrum intermedium Lythrum salicaria (I) 2.867
Lythrum intermedium Lythrum virgatum (I) 3.878
Lythrum intermedium Lythrum lineare 9.413
Lythrum intermedium Lythrum alatum 10.006
Lythrum intermedium Lythrum curtissii 10.167
Lythrum intermedium Lythrum volgense 13.155
Lythrum intermedium Lythrum acutangulum 13.246

Lythrum intermedium Lythrum hyssopifolia (I) 13.321
Lythrum intermedium Lythrum tribracteatum  13.524
Lythrum intermedium Lythrum flexuosum 13.870

Table 4.5: Top 5 closest and bottom 5 most distant species pairs for intermedium

(not including species with less than 15 total samples). Invasive species are indicated
with (I).

4.1). This effect is mitigated by the two species being close to each other (Tab. 4.3),
a result which also seems to confirm our hypothesis that species with invasiveness
potential share visual similarities.

Due to these results, we try to repeat the same LOSO Cross Validation but
removing Lythrum hyssopifolia from the dataset, using only 29 folds in the validation
experiment.

We can observe from Tab. 4.6 that removing Lythrum hyssopifolia from the
dataset significantly improves the average accuracy between folds, reducing insta-
bility.

Looking into individual species, Lythrum salicaria increases its accuracy by
13.8%, whereas L. virgatum remains consistent with the previous accuracy. The
results for these two species remain mediocre (although still better than the random
choice threshold, for a two-classes problem), but this is partly explainable by the
dataset slight imbalance: removing L. hyssopifolia, the dataset is comprised of
15150 samples labeled as ‘invasive’ and 20528 labeled as ‘non-invasive’. For the
LOSO Cross Validation, the fold that uses L. salicaria as a test set only includes
samples for Lythrum virgatum for the ‘invasive’ class in the training set (2145 total),
compared to 20528 samples for the ‘non-invasive’ class, making it very unbalanced.
A similar analysis can be carried out for Lythrum virgatum, whose fold has 13105
samples labeled as ‘invasive’ (belonging to one species only), versus 20528 samples
for the ‘non-invasive’ class.

This is a possible fault in the dataset, and must be taken into consideration
when looking at the final results.

The biggest increase in accuracy can be seen in L.junceum, L. tribracteatum
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Species Accuracy 1 Accuracy 2 Difference Samples
Lythrum salicaria (I) 0.5138 0.6520 +0.1382 13105
Lythrum alatum 0.8123 0.8485 +0.0362 10491
Lythrum hyssopifolia (I) 0.0057 - - 9583
Lythrum junceum 0.3173 0.9675 +0.6502 3290
Lythrum portula 0.8250 0.9818 +0.1568 2489
Lythrum californicum 0.8599 0.9595 +0.0996 2149
Lythrum virgatum (I) 0.5888 0.5706 -0.0182 2145
Lythrum lineare 0.9753 0.9663 -0.0090 445
Lythrum tribracteatum 0.3343 0.9641 +0.6298 362
Lythrum flagellare 0.8902 1.0000 +0.1098 337
Lythrum maritimum 0.7743 0.9690 +0.1947 226
Lythrum ovalifolium 0.7875 0.9875 +0.2000 160
Lythrum thymifolia 0.1370 1.0000 +0.8630 159
Lythrum gracile 0.8443 0.9754 +0.1311 122
Lythrum borysthenicum 0.7816 0.9885 +0.2069 87
Lythrum volgense 0.7037 0.9630 +0.2593 81
Lythrum flexuosum 0.9630 0.9630 +0.0000 54
Lythrum intermedium 0.0000 0.0000 +0.0000 33
Lythrum acutangulum 0.8333 1.0000 +0.1667 30
Lythrum vulneraria 1.0000 1.0000 +0.0000 22
Lythrum album 1.0000 1.0000 +0.0000 18
Lythrum curtissii 0.8667 0.8667 +0.0000 15
Lythrum bryantii 1.0000 1.0000 +0.0000 14
Lythrum rotundifolium 1.0000 1.0000 +0.0000 14
Lythrum paradoxum 0.8750 1.0000 +0.1250 8
Lythrum wilsonii 0.2500 1.0000 +0.7500 4
Lythrum baeticum 1.0000 1.0000 +0.0000 3
Lythrum netofa 1.0000 1.0000 +0.0000 3
Lythrum silenoides 1.0000 1.0000 +0.0000 2
Lythrum thesioides 1.0000 1.0000 +0.0000 1
Mean + Std 0.731 £ 0.31 0.929+ 0.12 40.198 + 0.24 -

Table 4.6: Comparison of classification accuracy results for the LOSO Cross
Validation of the model, when each fold includes Lythrum hyssopifolia in the
training set (Accuracy 1) or not (Accuracy 2).

and L. thymifolia (L. wilsonii low sample size makes it difficult to carry out a
significant analysis), the three species closest to Lythrum hyssopifolia: all of them
are non-invasive.

This overall positive results validate the use of BioCLIP 2 as an embedding
extractor, and our methodological approach for the training of the classifier. We
then choose to identify Lythrum hyssopifolia as a possible anomaly or outlier in
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the dataset, and we therefore remove this species from it.

Additionally, we choose to keep the 29 models (trained by excluding a single
species every time from the training set) separated for the following analysis and
experiments: this will allow us to obtain completely unbiased results, by working
on every species with a model that has never seen it during the training phase.

4.3 Explainability pipeline

The explainability pipeline was described in Sec. 3.3 (see Fig. 3.2), whereas in this
section we describe the results of the process.

4.3.1 Heatmap generation

To demonstrate the results produced by the explainability methods (Step 1 in
Fig. 3.2), Fig. 4.5 shows representative samples, each consisting of the original
image, the generated heatmap, and the resulting overlay that highlights the most
influential regions according to the model.

As seen in several examples, the attribution maps often align closely with
biologically relevant structures, such as distinct plant organs or characteristic
morphological features (Figs. 4.5a to 4.5d). In other instances, however, the
highlighted areas do not correspond to meaningful biological traits. For example,
in Fig. 4.5e, the method focuses on a human hand visible in the image, while in
Fig. 4.5f, the heatmap is diffuse and fails to emphasize any clearly defined structure.

4.3.2 Regions extraction

For the first two examples displayed in Fig. 4.5, the results of the region extraction
process (Step 2 in Fig. 3.2) are shown in Figs. 4.6 and 4.7. A visual comparison
reveals that Gradient SHAP (Figs. 4.6a and 4.7a) consistently produces a greater
number of extracted patches than Integrated Gradients (Figs. 4.6b and 4.7b).
This observation aligns with the quantitative results reported in Sec. 3.5.2, where
Gradient SHAP generated 20021 regions from a sample of 2000 randomly selected
images, while Integrated Gradients produced only 7509. For both techniques the
extracted regions exhibit natural variation in size (and therefore in resolution) as
expected from the extraction procedure.

A visual assessment alone does not provide a clear indication of which explain-
ability method performs more effectively within the proposed pipeline. Therefore,
the final choice was based on the results of the clustering hyperparameter opti-
mization (see Sec. 3.5.2). As reported in Tab. 3.6, Integrated Gradients was
ultimately selected as the preferred explainability approach.
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Figure 4.5: Examples of generated heatmaps. For each sample, the original image,
the generated heatmap, and the overlay between the two are shown from left to
right. Both Integrated Gradients (top row) and Gradient SHAP (bottom row)
results are presented for each example. In most cases (a—d), the highlighted regions
correspond to biologically meaningful structures, while in others (e—f) they do not

align with the expected features.
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(b)

Figure 4.6: Extracted regions for Fig. 4.5a by Gradient SHAP (a) and by
Integrated Gradients (b).

4.3.3 Clustering phase

Sec. 3.3.3 described the implementation of the clustering phase (Step 3 in Fig. 3.2);
in this section, we analyze its results. The parameters used for this step are
summarized in Tab. 3.6.

The clustering was first applied to a representative subset of 2000 images from
the dataset. This preliminary stage allowed for manual inspection of the resulting
clusters and for assigning descriptive labels based on visual examination. After
labeling, the same cluster model (with fixed centroids) was applied to the full dataset
during the final analysis (see Sec. 3.4). When using Integrated Gradients as the
explainability method, a total of 7509 regions were extracted and divided into 30
clusters, as reported in Tab. 3.6.

We adopted MiniBatchKMeans, a scalable variant of KMeans that updates the
centroids using small random batches of data rather than the entire dataset. This
approach greatly reduces computational cost while maintaining similar clustering
quality.

To interpret the clustering results, several complementary visualizations were
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Figure 4.7: Extracted regions for Fig. 4.5b by Gradient SHAP (a) and by
Integrated Gradients (b).

produced. The UMAP scatter plot in Fig. 4.8 shows the spatial distribution of
embeddings together with their final cluster assignments. The bar chart in Fig. 4.9
presents the distribution of cluster sizes, highlighting the overall uniformity of
the partition and supporting the cluster size entropy values reported in Tab. 3.7.
Finally, Fig. 4.10 displays the average displacement of centroids across batches,
showing that the movements gradually decrease and stabilize after a few iterations.

Cluster labeling

In this phase, clusters were manually annotated through visual inspection of the
regions assigned to them. Each cluster received one or more labels describing
the dominant visual content. For clarity, we organized the labels into two main
categories:

e Plant structures:

— Leaf: clusters primarly showing leaves;

— Flower: clusters characterized by the presence of flowers;
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Final clustering with 30 clusters
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Figure 4.8: UMAP projection of the embeddings with final cluster assignments.
Colors denote clusters and black markers indicate the final centroid positions.
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Figure 4.9: Distribution of cluster sizes for the final configuration. Colors match
the corresponding clusters in Fig. 4.8.

— Stem: clusters clearly depicting stems.
o Spurious or non-informative features:

— Hand: clusters containing primarly parts of human hands or skin;

— Background/undefined: clusters dominated by background fragments
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Average centroid movement across batches
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Figure 4.10: Average centroid displacement across minibatch updates. The line

shows the mean movement across all centroids, the area represents the standard
deviation.

or visually ambiguous regions.

Labels within the same category are not mutually exclusive (e.g., a cluster may
simultaneously be labeled Leaf and Flower), whereas labels from different categories
are mutually exclusive. For instance, a cluster cannot be labeled both Leaf and
Hand. This design reflects the aim of our analysis: to discriminate between
clusters that captures biologically meaningful traits of the plants and clusters that
corresponds to irrelevant or spurious visual cues.

Visualizations of labels distribution resulting from this phase are shown in
Fig. 4.11. As expected, most extracted regions correspond to plant structure, with
Leaf being the most frequent. Non-biological features are still a relevant number,
expecially those labeled Background/undefined.

Examples of regions assigned to different clusters, with the correspondent
labeling, can be observed in Fig.4.12, 4.13, 4.14, 4.15.

Clustering validation

To assess the reliability of both the KMeans clustering results and the corresponding
manual annotations, we performed an additional validation using the density-
based clustering algorithm HDBSCAN. Using the same set of extracted regions,
we re-clustered the data and examined how HDBSCAN grouped the samples,
focusing on the consistency of its partitions with the manually assigned labels. The
procedure followed the same workflow previously used for KMeans (see Sec. 4.3.3):
extracted regions were first embedded using the BioCLIP-2 image encoder, then
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Global label distribution by regions
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Figure 4.11: Results of manual cluster labeling: global distribution by number of
regions (a) and labelset assigned to each cluster (b) are shown.

reduced in dimensionality with UMAP, and finally clustered. For consistency,
the regions produced with Integrated Gradients were employed, and the same

UMAP parameters reported in Tab. 3.6 were used. In HDBSCAN, the main
hyperparameter is the minimum cluster size, which we varied across the range

min_ cluster _size = [5,6,...,71].

To ensure a fair comparison with KMeans, we excluded configurations that
produced fewer than 10 clusters or more than 100. As a result, out of the 66 tested
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(a) Lythrum alatum (c) Lythrum alatum

(b) Lythrum californicum

Figure 4.12: Three of the regions present in cluster with id=0, which was assigned
the label Hand. Each region reports the species represented in the original image.

(a) Lythrum junceum (b) Lythrum alatum (c) Lythrum salicaria

Figure 4.13: Three of the regions present in cluster with id=16, which was assigned
the label Leaf, Flower, Stem. Each region reports the species represented in the
original image.

configurations, only 9 satisfied this condition. This finding is expected given that
HDBSCAN operates under a fundamentally different clustering principle: whereas
KMeans partitions the data into a fixed number of clusters, HDBSCAN identifies
clusters of varying density and assigns low-density points to a noise category.
Despite the smaller number of valid configurations, this subset was sufficient for
our purpose. The objective here was not to fine-tune HDBSCAN but to evaluate
the robustness of the KMeans-based clustering and the coherence of our manual
labeling. Even a limited number of well-defined, data-driven configurations can
provide a solid validation basis.

Fig. 4.16 summarizes the validation results. For each valid HDBSCAN configu-
ration, we calculated the cluster label consistency ratio, defined as the proportion
of samples in each cluster that belong to its dominant label set. This measure
quantifies cluster purity with respect to the manually assigned labels. Across
all retained configurations, the mean consistency ratio was 0.75, with the best-
performing configuration (min_ cluster size = 16) achieving a value of 0.92 (see
Fig. 4.16b). As shown in Fig. 4.16a, most clusters in the tested configurations
reached a consistency ratio of 1.0, indicating strong alignment with the labeling
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(a) Lythrum californicum (c) Lythrum lineare

Figure 4.14: Three of the regions present in cluster with id=23, which was
assigned the label Flower. Each region reports the species represented in the
original image.

i E

(a) Lythrum californicum

(b) Lythrum salicaria (¢) Lythrum portula

Figure 4.15: Three of the regions present in cluster with id=27, which was
assigned the label Background/undefined. Each region reports the species
represented in the original image.

produced by our pipeline. A more detailed discussion of this validation analysis is
presented in Appendix B.

Overall, these results demonstrate that our manually assigned labels reflect the
internal structure of the data and are consistent with a density-based clustering
approach.

4.4 Final analysis

Fig. 3.4 presents the workflow of the final analysis, as introduced in Sec. 3.4. In
this section, we report and discuss the corresponding results.

The complete dataset includes 35678 images. Using the proposed extraction
pipeline (Sec. 3.3.2), we obtained a total of 132128 regions. The results of the
following clustering stage are summarized in Fig. 4.17. As illustrated in Fig. 4.17a,
each extracted region inherits the label set of the cluster to which it has been
assigned. The overall distributions of labels and label sets for all extracted regions
are shown in Figs. 4.17b and 4.17c, respectively.
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Distribution of cluster consistency ratios across config
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Figure 4.16: Clustering and labeling validation using HDBSCAN. For considered
configurations, the distribution of cluster consistency ratio (a) and the average

cluster consistency per configuration (b) is shown.

4.4.1 Predictive Feature Analysis

As outlined in Sec. 3.5.3, we conducted a predictive feature analysis using Ran-
dom Forests to evaluate the importance of various features, including both the
characteristic traits described in Appendix A and the additional metrics computed
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Cluster Sizes Colored by Labelset Distribution
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Figure 4.17: Results of the clustering and labeling of regions extracted from the
entire dataset. In particular, cluster sizes distribution colored by the corresponding
labelset of each cluster (a), labels distribution across all clusters (b) and labelset
distribution across all clusters (c) are shown.

as detailed in Sec. 3.4.1. The results of this analysis are presented in Tabs. 4.7
to 4.9, corresponding respectively to the global analysis, the True Positive and
True Negative analyses, and the False Positive and False Negative analyses.

Tab. 4.7 presents the results of the global feature importance analysis for correct
predictions across the entire dataset. The fraction of the image covered by extracted
regions (coverage_frac) emerges as the most influential predictor (impurity im-
portance = 0.6198; permutation importance = 0.2224), suggesting that images with
higher region coverage are considerably more likely to be classified correctly. Sec-
ondary predictors include pielou_evenness, background frac, and hand frac,
which contribute moderately to the overall accuracy. While permutation impor-
tance values are generally lower than impurity-based scores, they confirm the same
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Feature Impurity Permutation
Importance Importance Std

coverage frac 0.6198 0.2224 0.0017
pielou_evenness 0.4101 0.0557 0.0007
background_ frac 0.0329 0.0729 0.0009
hand_ frac 0.0314 0.0571 0.0009
trait erect freq 0.0287 0.0545 0.0005
trait_ rounded at the base freq 0.0216 0.0387 0.0009
richness 0.0021 0.0486 0.0008
trait rounded at the base present 0.0152 - -
n_regions 0.0149 0.0564 0.0008
trait_ sessile freq 0.0125 0.0304 0.0007

Table 4.7: Global feature importance analysis from Random Forest classification.
The table reports both impurity based importance and permutation importance
(accompanied by the standard deviation across 20 repetitions) for each feature. A
dash (-) indicates that the value was not computed or not meaningful for that
feature, typically due to low prevalence or insufficient variation in the subset.

ranking among the top predictors. Notably, richness and n_regions show rela-
tively low impurity importance but moderate permutation importance, implying
that these features may interact with others to influence model performance.

In summary, the global analysis highlights the most impactful individual predic-
tors, though it may conceal more nuanced feature-specific effects that differ across
prediction categories.

Error-Type Analysis

To better capture specific relationships between features and prediction outcomes,
we conducted separate analyses for True Positive (TP), True Negative (TN), False
Positive (FP), and False Negative (FN) cases (Tabs. 4.8 and 4.9). This approach
allowed us to identify which features contribute to different types of correct and
incorrect predictions, providing a more detailed understanding than the global
analysis alone.

For TP and TN outcomes, coverage_frac remains the most influential pre-
dictor (TP: 0.4099 impurity, 0.1642 permutation; TN: 0.1650 impurity, 0.0881
permutation), confirming its strong role in determining correct classifications.
Traits associated with leaf base morphology (rounded_at_the_base) and flower
morphology (flowers_in_whorled_clusters) also display higher importance, sug-
gesting that these features contribute to differentiating between true positive and
true negative predictions. The general consistency between impurity-based and
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Impurity Permutation
Feature Importance Importance Std
TP TN TP TN TP TN
coverage frac 0.4099 0.1650 0.1642 0.0881 0.0013 0.0011
trait_rounded _at 0.0652 0.1015 0.0300 - 0.0006 -
the base freq
trait_rounded_at 0.0613 0.0981 0.0219 - 0.0006 -

the base present

trait flowers in

whorled_ clusters_ freq

trait flowers in

_ whorled _ clusters present

0.0331 0.05642 - - - .

0.0278 0.0426 - - - -

pielou_evenness 0.0272 0.0327 0.0294 0.0327 0.0006 0.0004
tralt_attenuate_at_ 0.0219 0.0320 - 0.0205 - 0.0003
_the base freq

background frac 0.0218 - 0.0508 0.0446 0.0006 0.0006
trait erect freq 0.0209 - 0.0325 0.0220 0.0005 0.0005
hand frac 0.0193 - 0.0433 0.0276 0.0007 0.0005
richness 0.0185 0.0186 0.0273 0.0345 0.0005 0.0005
n_ regions - - 0.0413 0.0352 0.0006 0.0008
trait sessile freq - - 0.0214 0.0222 0.0006 0.0006
trait_ opposite_ freq - - - 0.0148 - 0.0003
trait floral tube i ] i 0.0147 - 0.0004

cylindrical_ freq

Table 4.8: Feature importance analysis from Random Forest for True Positive
(TP) and True Negative (TN) classifications. The table reports both impurity
based importance and permutation importance (accompanied by the standard
deviation across 20 repetitions) for each feature. A dash (-) indicates that the
value was not computed or not meaningful for that feature, typically due to low
prevalence or insufficient variation in the subset.

permutation-based rankings supports the robustness of these findings. Although
both TP and TN analyses reveal similar patterns, TP cases depend more heavily
on coverage_frac, while TN cases show slightly greater influence from specific
morphological traits. This indicates subtle differences in the features that drive
accurate positive versus accurate negative predictions.

For FP and FN outcomes, coverage frac again emerges as the dominant
factor (FP: 0.6493 impurity, 0.0684 permutation; FN: 0.5372 impurity, 0.1558 per-
mutation). Additional contributors include pielou_evenness, background_frac,
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Impurity Permutation
Feature Importance Importance Std
FP FN FP FN FP FN
coverage_frac 0.6493 0.5372 0.0684 0.1558 0.0008 0.0014
pielou_evenness 0.0470 0.0344 0.0287 0.0301 0.0004 0.0007
background_ frac 0.0357 0.0279 0.0263 0.0482 0.0004 0.0005
hand_frac 0.0344 0.0266 0.0177 0.0400 0.0005 0.0006
trait_ erect_ freq 0.0274 0.0262 0.0217 0.0313 0.0004 0.0005
trait_attenuate_at 4555 00128 0.0305 0.0074 0.0005 0.0001
the base freq
richness 0.0218 0.0198 0.0249 0.0294 0.0005 0.0005
n_regions 0.0172 0.0124 0.0195 0.0393 0.0004 0.0008
trait,_rounded _at 0.0403 - 00333 - 0.0007
the base freq
brait_rounded_at i 0.0341 - 0.0202 - 0.0005
the base present
trait_ sessile freq 0.0102 0.0120 0.0176 0.0166 0.0004 0.0007
trait_ opposite_freq 0.0106 - 0.0171 - 0.0004 -
trait_ opposite,
becoming alternate 0.0116 - 0.0215 0.0122 0.0005 0.0006
distally freq
trait stamens 6 freq 0.0125 - 0.0198 - 0.0003 -
trait_floral_tube - 07 00134 - 0.0003 -

cylindrical freq
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Table 4.9: Feature importance analysis from Random Forest for False Positive
(FP) and False Negative (FN) classifications. The table reports both impurity
based importance and permutation importance (accompanied by the standard
deviation across 20 repetitions) for each feature. A dash (-) indicates that the
value was not computed or not meaningful for that feature, typically due to low
prevalence or insufficient variation in the subset.

and hand_frac. The permutation importance analysis also reveals moderate con-
tributions from variables such as n_regions and attenuate_at_the_base_freq,
suggesting that complex feature interactions and nonlinear relationships play a role
in error formation. Overall, FP and FN patterns are broadly comparable, reflecting
similar underlying feature dynamics.
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4.4.2 Metric-specific correlation with accuracy
Region Coverage

As indicated by the Random Forest analysis, the fraction of the image occupied by
extracted regions (coverage_frac) was identified as the most influential predictor
of model correctness. To explore this relationship in greater detail, we examined how
prediction accuracy changes across different levels of region coverage. The images
were divided into eleven coverage categories, and for each bin we calculated the
mean accuracy, the number of samples, and the corresponding species distribution
divergence using the KL divergence metric (Tab. 4.10, Fig. 4.18).

Sample KL
Category Accuracy size P Divergence
0-1% 0.759 220 0.009
1-2% 0.778 2977 0.007
2-3% 0.776 2134 0.008
3-4% 0.770 3891 0.005
4-5% 0.781 3419 0.003
5-6% 0.783 3754 0.032
6-7.5% 0.783 5086 0.002
7.5-10% 0.787 6035 0.003
10-25% 0.769 6807 0.007
25-50% 0.862 65 0.201
50-100% 1.000 1 1.22

Table 4.10: Results of Region coverage correlation with accuracy analysis. For
each region coverage category, mean accuracy for the category, sample size and KL
divergence from the dataset distribution is shown.

ANOVA: F = 1.221, p = 0.2712; the highest mean accuracy is observed in the 50-100% coverage
category (1.000) and the lowest in the 0-1% category (0.759). No strong statistical evidence of
differences across categories.

Overall, the results show that classification accuracy remains largely consistent
across most coverage ranges, varying between 0.76 and 0.79 up to 25% coverage
(Fig. 4.18a). Only the lowest (< 1%) and highest (> 25%) coverage bins display
noticeable deviations, although these categories contain very few samples (220
and 65 images, respectively), which limits the reliability of their estimates. The
exceptionally high accuracy observed in the final bin (100%) is based on a single
image and is therefore not meaningful. The species distribution divergence (KL)
remains low across all main bins (< 0.01), confirming that the accuracy trends are
not the result of taxonomic composition differences (Fig. 4.18b).
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Figure 4.18: For the Region coverage analysis, accuracy for each category (a)
and distribution of species for each category (b) is shown.

These findings indicate that, despite the high importance assigned by the Ran-
dom Forest model, region coverage alone does not strongly determine classification
accuracy. The Random Forest may have interpreted the separation between low
and high-coverage samples as a discriminative signal, even though the underlying
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relationship is weak or non-causal. This interpretation aligns with how impurity-
based feature importance functions: features that allow a clear division of the
dataset, even for a limited subset of samples, can receive disproportionately high
importance values. In this case, a small number of images with very high coverage
also exhibit higher accuracy and are easily distinguishable from the rest. As a
result, the model identifies coverage as an effective split criterion, even though its
predictive relevance across the dataset is limited.

It is also worth noting that the vast majority of images in the dataset display
very low coverage, while high-coverage samples are comparatively rare and show
larger KL divergence values with respect to the overall species distribution. This
suggests that such images are not representative of the dataset as a whole and may
bias the Random Forest’s assessment of feature importance. Consequently, within
the available data, there is no clear evidence of a consistent relationship
between coverage and prediction accuracy, although a potential link cannot
be completely excluded due to the strong imbalance in coverage distribution.

Beyond region coverage, the same analysis was extended to other metrics iden-
tified as potentially relevant by the Random Forest model, including the Pielou
evenness index, the number of distinct traits (richness), hand and background
fractions, and image complexity. The detailed results of these analyses are provided
in Appendix C. In general, no other metric demonstrated a clear or consistent
association with prediction accuracy, aside from weak or dataset-dependent ef-
fects. While some metrics displayed statistically significant trends, these were
often accompanied by large differences in species composition across bins (high
KL divergence), suggesting that the observed patterns are more likely driven by
taxonomic imbalance than by intrinsic effects of the metrics themselves.

4.4.3 Pairwise Trait Importance and Masked Image Analy-
sis

In Sec. 3.5.3, we introduced a modified Random Forest analysis that differs from the
previous one by using combinations of trait pairs as input features. In this section,
we present the corresponding results. The analysis produced feature importance
scores for each trait pair, calculated both globally and separately for each prediction
category (TP, TN, FP, FN). Tab. 4.11 reports the top 15 pairs and their respective
importance values across these categories. The results were stable across multiple
Random Forest runs, showing only small variations in the precise ranking of pairs.
Based on the results, we selected five pairs of traits for detailed examination
(Tab. 4.12). These pairs were not chosen solely according to their global importance
but rather for their relevance within the True Positive and True Negative categories.
This criterion ensured that the selected combinations were most informative for
correctly identifying both invasive and non-invasive species. The chosen pairs
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Importance

Feature A Feature B Global TP TN P N

erect sessile 0.3112  0.3051 0.3005 0.3055 0.3091
opposite sessile 0.1811  0.1755 0.1823 0.1326 0.1908
alternate subsessile 0.1777  0.1945 0.1860 0.1026 0.1846
erect opposite 0.1675  0.1508 0.1668 0.2016 0.1522
linear opposite 0.0574  0.0733 0.0610 0.0218 0.0672
erect linear 0.0521  0.0532 0.0554 0.0185 0.0518
opposite petiolated  0.0267  0.0217 0.0235 0.0716 0.0202
opposite subsessile 0.0065  0.0065 0.0064 0.0095 0.0063
opposite prostrate 0.0041  0.0044 0.0041 0.0040 0.0038
obovate sessile 0.0027  0.0026 0.0026 0.0038 0.0023
prostrate subsessile 0.0025  0.0024 0.0025 0.0034 0.0025
alternate sessile 0.0024  0.0024 0.0017 0.0769 0.0022
alternate erect 0.0019  0.0016 0.0017 0.0144 0.0014
erect obovate 0.0018  0.0031 0.0020 0.0026 0.0029
alternate creeping 0.0017  0.0009 0.0012 0.0126 0.0009

Table 4.11: Feature pair importances across global and per error-type outcomes
(TP, TN, FP, FN) for top 15 pairs.

belong either to the Common category, shared by invasive and non-invasive taxa,
or to the Non-Invasive only category, which includes traits specific to non-invasive
species. No pairs from the Invasive only category were present in the dataset.

Feature A Feature B

Name Plant Structure Name Plant Structure Category

Erect Stem Sessile Leaf Common
Alternate Leaf Subsessile Leaf Non-Invasive only
Opposite Leaf Sessile Leaf Common

Erect Stem Opposite  Leaf Common

Linear Leaf Opposite  Leaf Non-Invasive only

Table 4.12: Selected pairs of traits for the pairwise analysis and their corresponding
category. For each trait is also specified the plant structure which refers to.

For each selected pair of traits, we identified all images containing both traits and
located the corresponding regions within those images that exhibited at least one of
them. The counts for these occurrences are summarized in Tab. 4.13. This subset
of images and regions represents the data targeted for removal in the subsequent
masked-image experiments. Examples of these images, along with the highlighted
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trait regions, are shown in Fig.4.19 and Fig.4.20.

Figure 4.19: One of the images which contained the characteristic traits Linear-
Opposite, representing a Lythrum californicum. Both the original image and the
image with the masked regions were classified as Invasive despite being Non-Invasive.
However, after masking the regions containing the traits into consideration, the
classifier was 17.1% more confident into predicting the image as Invasive (82.1% vs
100%).

Pairs of Traits Number of Number of Avg Region

Images Regions per Image
Erect - Sessile 19844 49674 2.50
Alternate - Subsessile (NI) 2693 6011 2.23
Opposite - Sessile 24083 55310 2.30
Erect - Opposite 21567 53982 2.50
Linear - Opposite (NI) 1857 4311 2.32

Table 4.13: For each selected pair of traits, the table shows the number of images
containing both traits, the total number of regions within those images that include
at least one trait (of the pair) and the average number of considered region per
image. Pairs belonging to the Non-Invasive only category are tagged with (NI),
while the remaining pairs have the Common category.

To evaluate the effect of removing the most predictive trait combinations on
model behavior, we measured both classification performance and prediction con-
fidence using the masked images. Tab. 4.14 summarizes the results in terms of
overall accuracy, the number and proportion of label flips (images whose predicted
label changed after masking), and the variation in True Positive (TP) and True
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Figure 4.20: One of the images which contained the characteristic traits Erect-
Opposite, representing a Lythrum virgatum. The original image was correctly
classified as Invasive with 77.0% confidence in the prediction. After masking the
regions containing one or more traits into consideration, the classifier predicted the
image to be Non-Invasive with 100% confidence in the prediction.

Negative (TN) counts. The corresponding accuracy changes for each analyzed trait
pair are illustrated in Fig. 4.21.

Pairs of Traits Accuracy Flips TP counts TN counts
Old New A Count Rate Old New A Old New A
Erect - Sessile 0.709 0.707 -0.002 3426 17.3% 6836 6756 -80 7239 7281 +42
Alternate - Subsessile (NI) 0.973 0.268 -0.705 1920 71.3% - 2619 721 -1898
Opposite - Sessile 0.733 0.713 -0.020 4242 17.6% 7530 7437 -93 10120 9743 -377
Erect - Opposite 0.729 0.722 -0.007 3593 16.7% 6836 6756 -80 8896 8821  -75
Linear - Opposite (NT) 0.959 0.889 -0.070 187 10.1% - 1781 1652 -129

Table 4.14: Results of the masked images analysis. For each considered pair of
traits is shown: accuracy before (old) and after (new) images were masked (with
relative difference (A computed), the number and the rate of flips of prediction
(i.e., times when the prediction of model changes), True Positive (TP) and True
Negative (TN) counts before (old) and after (new) images were masked (with relative
difference (A computed). Pairs belonging to the Non-Invasive only category are
tagged with (NI), while the remaining pairs have the Common category.

For the pairs belonging to the Common category, the effect of masking was
limited. The overall accuracy dropped by less than 2%, and the rate of label
flips remained close to 17%. Changes in TP and TN counts were also minimal,
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suggesting that these trait combinations, although frequently observed, are not
essential for the classifier to correctly predict plant invasiveness.

In contrast, masking pairs from the Non-Invasive only category produced much
stronger effects. In particular, removing regions corresponding to the pair Alternate-
Subsessile resulted in a substantial decrease in accuracy (from 0.97 to 0.27) and
caused more than 70% of the images to change their predicted class. Similarly,
masking the pair Linear-Opposite, although less dramatic, led to a 7% reduction in
accuracy.

. . True Invasive True Non-Invasive
Pairs of Traits : Moan : Moan
1 lmages AP(Invasive) SD AP | n images AP(Invasive) SD AP

Erect - Sessile 11357 -+0.023 0.387 8487 -0.021 0.286
Alternate - Subsessile (NT) - 2693 +0.694 0.448
Opposite - Sessile 12545 +0.022 0.388 11538 +0.015 0.320
Erect - Opposite 11357 -+0.023 0.387 10210 -0.010 0.288
Linear - Opposite (NI) - 1857 +0.046 0.293

Table 4.15: Changes in predicted probabilities in the masked images analysis. For
each considered pair of traits, images were divided according to their true class
(Invasive or Non-Invasive). For each subset, the table reports the number of images
(n images), the mean change in the predicted probability of the Invasive class
(AP(Invasive)), and its standard deviation. Pairs belonging to the Non-Invasive
only category are tagged with (NT), while the remaining pairs have the Common
category.

For the pairs belonging to the Common category (Erect-Sessile, Opposite-Sessile,
and FErect-Opposite), the effect of masking on model confidence was limited, as
shown in Tab. 4.15 and Fig. 4.22. On average, masking these traits resulted
in only minor variations in the predicted probability of the true class (mean
AP(true class) ~ +0.02), confirming that these trait combinations were not
decisive factors in the model’s final predictions.

Across all three pairs, the distributions of AP(true class) were centered near
zero for both true invasive and true non-invasive images, indicating a balanced and
overall weak effect. The confidence bin analysis (Fig. 4.22b) shows that for true
invasive samples, masking slightly reduced the predicted probability of the invasive
class at high confidence levels (0.8—1.0 bin), while for low-confidence images (0—0.4
bins) small positive shifts were occasionally observed. A similar trend appeared for
true non-invasive samples, with slight positive shifts at low confidence and mild
negative ones at high confidence, suggesting that the model remained stable after
trait removal.

These findings indicate that Common trait pairs represent broadly informative
morphological patterns shared across taxa, but do not act as decisive cues for
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Classification Accuracy: Original vs Masked Images

1.0 {/mEmm Original -70.5% -7.0%
I After Masking

-1.9%

Accuracy
o
o
|

e
IS
L

e
)
N

o
o
I

Trait Pairs

Figure 4.21: For each pair of traits, accuracy computed with original images (in
blue) and accuracy computed with masked images (in magenta) are shown; on top
of each bar, the difference in accuracy is computed in red.

differentiating invasive from non-invasive plants. Their removal produces only small
redistributions of prediction confidence without substantial effects on accuracy or
classification direction. This modest impact may also reflect that in many images,
not all occurrences of the traits were removed, allowing the model to rely on the
remaining ones to maintain stable predictions.

In contrast, the pairs belonging to the Non-Invasive only category produced a
much stronger and more directional response to masking, as illustrated in Tab. 4.15
and Fig. 4.23. When regions associated with Alternate-Subsessile were removed,
the predicted probability for the non-invasive class decreased markedly (mean
AP (non invasive class) = —0.69), corresponding to a significant drop in accuracy.
As shown in Fig. 4.23b, this effect became more pronounced at higher confidence
levels: for samples originally classified as confidently non-invasive (confidence bins
> 0.6), masking consistently produced large negative shifts in AP, indicating that
the model became less confident or even reversed its prediction after trait removal.
This pattern suggests that Alternate-Subsessile serves as a strong and distinctive
visual cue for non-invasiveness, whose absence leads the classifier to favor invasive
predictions.

The second pair, Linear-Opposite, exhibited a similar trend but with lower
intensity (mean AP(non invasive class) = —0.05). The per-bin analysis shows
small positive shifts at low confidence and slight negative shifts at high confidence,
implying a modest but consistent role in reinforcing non-invasive predictions.
Compared with Alternate-Subsessile, this pair appears less diagnostic but still
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contributes to maintaining model confidence for correctly classified non-invasive
images.

Both Non-Invasive only trait pairs generated unidirectional effects on model
confidence, confirming that the classifier relied on these visual combinations as
characteristic indicators of non-invasive species. Their removal systematically
biased the predictions toward the invasive class, emphasizing their relevance as
discriminative, class-specific features.

In summary, these results demonstrate that masking common trait combinations
has only a minor impact on predictions, likely because they encode redundant
visual information, whereas removing traits distinctive of non-invasive species
substantially affects both classification accuracy and confidence, highlighting their
importance in the decision process.
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Figure 4.22: Effect of masking on model prediction probabilities for each trait pair
belonging to the Common category. (a) Distribution of changes in the predicted
probability of the true class (AP(true class) = Pev ... — P24 ) for true
Invasive and true Non-Invasive images. Positive values indicate a shift toward the
correct class after masking, while negative values indicate a shift toward the wrong
class. Mean AP(Invasive) values for each class are annotated in the top-right
corner of each subplot. (b) Mean change in predicted probability (AP(true class))
across bins of the model’s original confidence, split by true class. Bars represent
mean shifts with error bars denoting standard deviation. For True Invasive images,
dark purple bars indicate shift toward the Invasive class and bright pink bars
indicate shifts toward the Non Invasive class. For True Non Invasive images, dark
orange bars indicate shifts toward the Non Invasive class and light yellow bars
indicate shifts toward the Invasive class.
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Figure 4.23: Effect of masking on model prediction probabilities for each trait
pair belonging to the Non Invasive only category. (a) Distribution of changes in the
predicted probability of the true class (AP(true class) = P ... — P4 )
for true Invasive and true Non-Invasive images. Positive values indicate a shift
toward the correct class after masking, while negative values indicate a shift toward
the wrong class. Mean AP(Invasive) values for each class are annotated in
the top-right corner of each subplot. (b) Mean change in predicted probability
(AP(true class)) across bins of the model’s original confidence, split by true class.
Bars represent mean shifts with error bars denoting standard deviation. For True
Invasive images, dark purple bars indicate shift toward the Invasive class and bright
pink bars indicate shifts toward the Non Invasive class. For True Non Invasive
images, dark orange bars indicate shifts toward the Non Invasive class and light
yellow bars indicate shifts toward the Invasive class.
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Chapter 5
Conclusions

In these thesis we have presented a pipeline to identify morphological traits related
to the potential invasiveness of a species of plants inside its genus, relying on image
data only. We used the Lythrum genus as a case study, aiming to identify which
characteristic traits were important to predict if a certain species was invasive or
non-invasive.

First, we retrieved our image data from iNaturalist.org, a platform where
users can upload pictures of living organisms, making them available for citizen
science projects. Then we employed the state-of-the-art computer vision model
BioCLIP 2 to embed the images in our dataset: BioCLIP 2 proved to be suitable
for the task, differentiating species with minimal morphological differences, and
providing fine-grained representation of the data. A classifier was trained using
these embeddings, with the goal of predicting whether each input image represented
an Invasive or a Non-Invasive species. In particular, one classifier per species was
utilized: it was trained on every image except for the ones representing that species,
so that for subsequent analysis the classifier would have never seen the species
under scrutiny.

We then introduced explainability into the pipeline: we employed Integrated
Gradients, an XAI algorithm able to produce feature attribution maps, to identify
for each image the regions that the model considered most important for the
prediction. We then clustered the regions, manually labeling them with either
one or more structures (Leaf, Flower, Stem) or a non-informative feature (Hand,
Background/undefined) according to what they represented.

Finally, with the extracted regions from each image we are able to mine patterns
and extract information on the characteristic traits of the invasive or non-invasive
plants. We do so by aggregating the regions and the corresponding labels back
into the original images, computing several different metrics for each of them.
We separate the predictions of the original models according to their type (True
Positive, True Negative, False Positive or False Negative) and we apply a Random
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Forest classifier to identify which of the aforementioned metrics or image features
are more related to the prediction correctness. Struggling to obtain meaningful
results when taking into consideration only one feature, we performed a pairwise
trait importance analysis, combining the traits into couples and grouping them
according to their specificity for every class. We take the top 5 pairs for feature
importance from the Random Forest and we look at the prediction for the images
when masking the regions that contain the traits into consideration. We find
out that for the three pairs common to both invasive and non-invasive species
the accuracy doesn’t deviate greatly from the original results. We are satisfied
to report, however, that for the two pairs that are exclusive to the non-invasive
species (Alternate-Subsessile and Linear-Opposite), when masking the regions that
contain them and therefore removing these traits from the image, the accuracy
sees a significant drop, with the classifier changing its prediction for several images.
In particular, when masking the traits relative to the pair Alternate-Subsessile,
the images have a drop in accuracy by 70.5%, with 71.3% of the images changing
their label from the original prediction to the masked prediction. This suggests, in
accordance with the direction of our research, that it is possible to detect visual
traits that predict non-invasiveness. Due to limitations in the dataset we were
not able to detect traits correlated to invasiveness, since there are no pairs of
characteristic traits that are exclusive to invasive species, but the obtained results
are promising nonetheless. It is important to notice that all the top 5 pair of traits
(both the ‘common’ ones and the ‘non-invasive’ ones) taken into consideration
result in a drop in accuracy when masked. This is significant for the validation of
our methodology, indicating that it could be adopted and expanded by researchers
that will select a similar approach.

There are a few considerations to make regarding the developement of this work.

The first is that we had to remove Lythrum hyssopifolia from the analysis
because the model was unable to classify it correctly. Although justified by the
improvement of the results, this choice was dictated by the identification of L.
hyssopifolia as an analitic outlier, not a biological one. There aren’t, to the best
of our knowledge, research works that identify anomalies in the invasiveness of L.
hyssopifolia, or that might explain why the model recognize it so differently from
the other two invasive species present in the dataset. Contrarily to our assumption,
this might indicate that either the model is failing to embed L. hyssopifolia as a
species, or that not all invasive species can be identified according to visual traits
only. We invite future researchers that will pick up on our work to investigate
further this topic.

The dataset itself presents other possible limitations: after the removal of
Lythrum hyssopifolia only two invasive species remain, compared to twenty-seven
non-invasive species (despite the sample sizes of the two class remaining only
slightly unbalanced). This removes variability for the model to learn on, forcing
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it to rely only on two species and their images. Future works that will follow
an approach comparable to ours should try to work with a more diverse dataset
that will allow the model to capture more traits and difference between species,
eventually exploring other genera or families altogether.

Another limitation in the approach can be identified in the explainability pipeline:
the original images were not downloaded with the highest possible quality due
to limited storage capacity and API usage bottlenecks. This does not affect the
performance of the model, as demonstrated by our results, but makes it so that
some of the extracted regions have a low resolution, with a possible impact on their
embeddings or their analysis.

The labeling of the different clusters, then, despite being validated by comparing
the results of two different algorithms is an approximation: it comes from a manual
analysis (performed by a small group of thesists) of a subset of regions instead of
the whole dataset. The manual labeling however was necessary, as we are not aware
of any pre-trained segmentation model or classification model able to identify the
traits into consideration from the images.

The traits we used to label the clusters were few and generic, but they had to
be that way since they allowed us to be certain of what was included in the region
(e.g. a flower or stem). In future works it might be interesting to explore ways
to include sub-traits (e.g. flower color or internode), to enrich the analysis and
furthermore increase its relevance.

Finally, we have broadened the scope of our research by labeling every species
that was invasive in any part of the world as ‘Invasive’ (as it is reasonable to expect
interspecific differences to be more pronounced than intraspecific ones, i.e. between
native and invasive population of the same species). This was because, due to the
way the data was gathered, we had access to only a limited subset of geolocalized
images. We made the research choice to have access to a greater amount of data,
discarding the information about the image location. Future works that will take
a similar task are invited to expand the research question, identifying a genus
or a family that allows them to work with both geographical information and a
sufficient amount of data, to investigate the role of potentially invasive species in
locations where they are actually invasive, in locations where they are alien but do
not become invasive, and in locations where they are instead native, to test whether
invasiveness is a property of a species per se, or if it depends on the ecological
context the species finds itself in.

Other than geographical information, it could be interesting to integrate other
metadata (not exclusively morphological, such as phylogeny, temporal information
on the pictures, metereological information on the location...) into the pipeline, to
enrich the type and quantity of available information used for the analysis, and
study if there is a correlation between categorical and numerical traits, and visual
traits (that we took into consideration for this project).
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In conclusion, in this thesis we showed how it’s possible to identify invasive
species using exclusively visual traits obtained from images, and what taxon-specific
traits are important for the prediction. This study adds to a growing body of work
investigating the morphological features that characterize invasive species, helping
with their identification and mitigation of effects.
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Appendix A

Labels enrichment with species
characteristic traits

We enhanced the labels inherited from the cluster assignments (see Sec. 4.3.3) by incorporating
specific traits defined for each species and plant structure. For every region extracted from the
dataset, we first identified the corresponding species. After the clustering phase, each region
was already labeled according to the biological structures it contained (Leaf, Flower, or Stem).
Based on this information, we assigned to each region the characteristic traits associated with
the identified structures for that particular species, as listed in Tab. A.1. For instance, a region
of Lythrum anatolicum labeled as containing both a flower and a stem would be annotated with
the traits Petals purple, Stamens 12 for the flower and Erect for the stem.

Species Leaf Flower Stem
Lythrum - - -
acutangulum

Opposite Inflorescence raceme Erect

Opposite, becoming Petals purple
Lythrum alatum alternate distally

Sessile Floral tube cylindrical

Attenuate at the base Stamens 6
Lythrum album Alternate Petals white Erect
Lythrum Opppsite Petals purple Erect
anatolictum Sessile Stamens 12

Cordate at the base
Lythrum baeticum - - -
Lythrum Opposite, l?ecoming Petals reddish Erect
borysthenicum alter‘nate distally .

Sessile Petals minute Erect or

decumbent

Obovate Stamens 6
Lythrum bryantii - - -
Lythrum Oppos%te ‘ Inflorescence raceme Erect
californicum Opposite, l?ecommg Petals purple

alternate distally

Linear Stamens 5-8

Opposite Inflorescence raceme Erect

Lythrum curtissii

Opposite, becoming
alternate distally

Petals lilac to pink
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Labels enrichment with species characteristic traits

Species

Leaf

Flower

Stem

Sessile or subsessile

Attenuate at the base

Usually with a darker
midrib

Floral tube obconic
Stamens 6

Lythrum flagellare

Opposite
Petiolated

Rounded at the base
A discernible gap

between the stem and
the base of the blade

Inflorescence raceme

Floral tube obconic without
red dots

Petals purple

Stamens 6

Creeping to
weakly erect

Alternate Calyx with alternate long Creeping
Lythrum flexuosum and small teeth
Sessile Flowers solitary
Petals purple
Opposite Petals white to pink Erect

Lythrum gracile

Opposite, becoming
alternate distally
Rounded at the base

Alternate

Inflorescence raceme

Erect to weakly
erect

E}}flgshcfsilfrcl)lia Sessile Floral tube obconic without
red dots
Rounded at the base  Petals pink
Calyx with alternate long
and small teeth
Stamens 4-6
Opposite Inflorescence spikelike Erect
Sessile Flowers in whorled clusters
Lythrum Opposite, becoming Calyx with alternate long
intermedium alternate distally and small teeth

Rounded at the base

Floral tube cylindrical
Petals purple
Stamens 12

Alternate Inflorescence raceme Sprawling or
ascending
Lythrum junceum Subsessile Flowers solitary in leaf axils
Obtuse to truncate at  Floral tube obconic
the base
Floral tube red dotted
Petals purple
Stamens 12
Opposite Inflorescence raceme Erect
Sessile Floral tube cylindrical

Lythrum lineare

Attenuate at the base

Petals pale purple or
whitish

Usually with a darker
midrib
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Labels enrichment with species characteristic traits

Species Leaf Flower Stem
Stamens 6
Lythrum Opposite Petals pink Prostrate
maritimum Subsessile Usually with a darker
midrib
Sessile Flowers solitary Erect
Broader at the base Floral tube campanulate
Lythrum netofa Petals 4
Petals purple with a darker
midrib
Stamens 6-8
Alternate Inflorescence raceme Erect or
Lythrum decumbent
ovalifolium Sessile or subsessile Floral tube obconic without
red dots
Attenuate at the base Petals purple with a darker
midrib
Stamens 6
Lythrum Alternate Petals pink to purple Erect
paradoxum Sessile Stamens 10-12
Opposite Inflorescence spikelike Prostrate and
spreading
Lythrum portula Sessile Floral tube campanulate
Petals white to pink
Stamens 5-8
Petiolated Flowers solitary Prostrate
Lythrum . .
rotundifolinm Petals pll}k Fo purple with a
darker midrib
Stamens 8
Opposite Inflorescence spikelike Erect
Sessile Flowers in whorled clusters
. Opposite, becoming Calyx with alternate long
Lythrum salicaria alternate distally and small teeth
Rounded at the base  Floral tube cylindrical
Petals purple
Stamens 12
Lythrum silenoides - - -
.. Alternate Petals 4 Erect
Lythrum thesioides Petals pink
Needle-like One or few flowers in the Prostrate

Lythrum thymifolia

axil of leaves

Calyx with alternate long
and small teeth

Stamens 2-3

Lythrum
tribracteatum

Opposite
Sessile

Attenuate at the base

Inflorescence spikelike

Floral tube narrowly
cylindrical without red dots
Calyx with teeth of the
same length
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Labels enrichment with species characteristic traits

Species Leaf Flower Stem
Petals lavender
Stamens 4-6
Opposite Inflorescence spikelike to Erect
raceme
Lythrum virgatum  Sessile Flowers in whorled clusters
Narrower at the base  Floral tube cylindrical
Petals pink to purple
Stamens 10-14
Lythrum volgense Needle-like Petals pink Prostrate
Petals minute
Lythrum vulneraria Oppos%te ’ Petals pink Erect
Opposite, becoming
alternate distally
Alternate Petals pink to purple Erect
Lythrum wilsonii Sessile

Rounded at the base

Table A.1: Characteristic traits for each species for each biological structure.
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Appendix B

HDBSCAN clustering
validation details

In addition to the summary presented in the main text (see Sec. 4.3.3), we examined
cluster consistency and label distributions for all valid HDBSCAN configurations
in detail.

Figs. B.1 and B.2 present the per-cluster validation results for the best configura-
tion (min__cluster__size = 16) and the worst configuration (min_ cluster__size =
27), respectively. Cluster —1 corresponds to the noise cluster and is therefore
excluded from the analysis. The distributions of consistency ratios (Figs. B.1la
and B.2a) are consistent with the global distribution shown in Fig. 4.16a, as
expected.

Figs. B.1b and B.2b illustrate the detailed distribution of label sets within each
cluster. In most cases, even when multiple label sets are present within a cluster,
they tend to be closely related. For example, in Fig. B.2b, cluster 2 contains the label
sets ‘flower’, ‘flower, leaf’, and ‘flower, stem’, which all share common biological
features. Occasionally, clusters include a mixture of biological and non-biological
labels: for instance, cluster 30 in Fig. B.1b includes both ‘background/undefined’
and ‘leaf’, but typically one of these label types represents only a small portion of
the cluster’s samples.

As expected, the configuration with min_ cluster size = 27 yields slightly
poorer results. This setting produces only nine clusters (with the addition of the
noise cluster bringing the total just above the threshold). As shown in Fig. B.3,
the number of clusters generated by a configuration has a marked influence on
the overall average consistency ratio. Fewer clusters tend to merge heterogeneous
samples, reducing consistency, while a larger number of clusters enables the model
to capture more homogeneous groupings.
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HDBSCAN clustering validation details

Cluster label consistency (fraction in dominant label set)
for min_cluster size=16
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Figure B.1: Detailed clustering and labeling validation using HDBSCAN for the
best configuration found. Cluster label consistency ration for each cluster (a) and
distribution of labelsets per cluster (b) are shown.
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HDBSCAN clustering validation details

Cluster label consistency (fraction in dominant label set)
for min_cluster size=27
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Figure B.2: Detailed clustering and labeling validation using HDBSCAN for the
worst configuration found. Cluster label consistency ration for each cluster (a) and
distribution of labelsets per cluster (b) are shown.
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HDBSCAN clustering validation details

Consistency ratio vs. Number of clusters
per config

0.90 1

0.85 1

0.80 1

0.751

Average consistency ratio

0.70 1

1'0 1'5 2'0 2'5 3'0 3'5
Number of clusters

Figure B.3: Correlation between the average consistency ratio of each configura-
tion and the number of clusters generated by the configuration.
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Appendix C

Metric-specific correlation
with accuracy

This appendix presents the detailed results of the metric-specific accuracy corre-
lation analysis described in Sec. 3.4.1. For each evaluated metric, images were
grouped into discrete bins, and the mean prediction accuracy, number of samples,
and Kullback-Leibler (KL) divergence from the global species distribution were
calculated. The objective of this analysis was to determine whether certain image-
level characteristics were systematically associated with classification performance,
while also assessing whether the observed effects could instead be explained by
variations in taxonomic composition rather than by the metrics themselves.

C.1 Pielou Evenness

Accuracy varies across the categories of the Pielou evenness index, with a statistically
significant ANOVA result (p < 0.05), as reported in Tab. C.1 and Fig. C.1. Images
with Simple or Low evenness values (that is, those dominated by a small number of
traits) exhibit slightly higher accuracy, reaching up to 0.81, compared to images with
Medium High or Very High evenness, where accuracy decreases to approximately
0.74.

However, the KLi divergence increases noticeably for intermediate categories,
suggesting that part of the observed variation in accuracy may be due to changes
in species composition rather than the evenness index itself.

Overall, the pattern suggests that images with more homogeneous trait distribu-

tions tend to be classified more accurately, although the effect remains relatively
modest.
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Metric-specific correlation with accuracy

Category Accuracy SSizrénple giI\J/ergence
Simple 0.807 5736 0.023
Low 0.790 5729 0.012
Medium 0.798 5734 0.021
Medium High 0.738 5764 0.056
High 0.782 773 0.004
Very High 0.740 3653 0.060

Table C.1: Results of Pielou Evenness index correlation with accuracy analysis.
For each region coverage category we report mean accuracy, sample size and KL
divergence from the dataset distribution.

ANOVA: F = 25.0784, p ~ 0.00; the highest mean accuracy is observed in the ‘Simple’ category
(0.807) and the lowest in the “Medium High’ category (0.738). Accuracy differences are
statistically significant (p < 0.05).

C.2 Distinct Traits (richness)

Sample KL
Category Accuracy size Divergence
Simple 0.790 2574 0.041
Low 0.885 3963 0.620
Medium 0.762 10390 0.072
Medium High 0.854 3954 0.580
High 0.764 11057 0.141
Very High 0.609 2451 0.759

Table C.2: Results of richness (i.e., the number of distinct traits for each image)
correlation with accuracy analysis. For each region coverage category we report
mean accuracy, sample size and KL divergence from the dataset distribution.

ANOVA: F =170.03, p = 0.00; the highest mean accuracy is observed in the ‘Low’ category
(0.885) and the lowest in the ‘Very High’ category (0.609). Accuracy differences are statistically
significant (p < 0.05).

Richness shows a statistically significant relationship with prediction accuracy
(p < 0.05), although the pattern is irregular and clearly affected by species imbalance
(see Tab. C.2 and Fig. C.2). The Low and Medium High richness categories achieve
the highest accuracies (approximately 0.85-0.88), whereas both Simple and Very
High richness values are associated with lower accuracies (ranging from 0.61 to
0.76).
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Metric-specific correlation with accuracy
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Figure C.1: For the Pielou Evenness analysis we report accuracy for each category
(a) and distribution of species for each category (b).

Nevertheless, the corresponding KL divergence values are substantial (up to
0.76), indicating that bins with extreme richness levels are heavily influenced by
specific taxa.

Therefore, while images exhibiting moderate trait diversity tend to yield more
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Metric-specific correlation with accuracy

Trait Richness - Accuracy per Category
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Figure C.2: For the Richness analysis we report accuracy for each category (a)

(b)

and distribution of species for each category (b).

stable classification results, this relationship should not be interpreted as causal.
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Metric-specific correlation with accuracy

C.3 Hand Fraction

Sample KL
Category Accuracy size Divergence
Simple 0.778 26988 0.001
Low 0.779 5265 0.003
Medium 0.781 1554 0.007
Medium High 0.781 187 0.071
High 0.737 19 0.144
Very High 0.763 376 0.026

Table C.3: Results of Hand fraction correlation with accuracy analysis. For each
region coverage category we report mean accuracy, sample size and KL divergence
from the dataset distribution.

ANOVA: F =0.148, p = 0.98; the highest mean accuracy is observed in the ‘Medium’ category
(0.781) and the lowest in the ‘High’ category (0.737). No strong statistical evidence of differences.

Accuracy remains highly consistent across all categories of hand fraction, ranging
from 0.77 to 0.78, with no statistically significant differences detected (see Tab. C.3
and Fig. C.3). KL divergence values are uniformly low across all bins.

These findings suggest that the presence of human hands in the images does
not systematically influence or bias the model’s predictions.

C.4 Background/undefined fraction

Similarly, Tab. C.4 and Fig. C.4 show that the fraction of regions labeled as
background or undefined has no consistent association with classification accuracy.
Accuracy values vary only slightly, between 0.76 and 0.79 across categories, while
KL divergence remains below 0.3.

These results confirm that differences in background area do not affect model
correctness, indicating that the classifier effectively concentrates on the relevant
plant regions.

C.5 Image Complexity

Image complexity, expressed as the number of extracted regions per image, shows
a weak but statistically significant tren (see Tab. C.5 and Fig. C.5b). Accuracy
tends to increase slighlty with complexity, reaching its highest value (0.85) for very

80



Metric-specific correlation with accuracy
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Figure C.3: For the Hand fraction analysis we report accuracy for each category
(a) and distribution of species for each category (b).

complex images (more than ten regions). Nonetheless, these categories include few
samples and show higher KL divergence, indicating that the apparent trend may
be driven by species composition.

Overall, while more structurally complex images might provide richer information
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Metric-specific correlation with accuracy

Category Accuracy SSizrénple giI\J/ergence
Simple 0.774 13157 0.001
Low 0.780 9601 0.001
Medium 0.781 6889 0.002
Medium High 0.786 2242 0.008
High 0.761 627 0.026
Very High 0.784 1873 0.009

Table C.4: Results of Background/Undefined fraction correlation with accuracy
analysis. For each region coverage category we report mean accuracy, sample size
and KL divergence from the dataset distribution.

ANOVA: F =0.807, p = 0.55; the highest mean accuracy is observed in the ‘Medium High’
category (0.786) and the lowest in the ‘High’ category (0.761). No strong statistical evidence of

differences.
Category Accuracy SSiz;znple giLvergence
Simple (1) 0.771 3978 0.008
Low (2-3) 0.775 12968 0.002
Medium (4-5) 0.786 10680 0.001
Medium High (6-7) 0.777 4820 0.007
High (8-10) 0.771 1729 0.026
Very High (10+) 0.850 214 0.098

Table C.5: Results of Image complexity (i.e., the number of regions per image)
correlation with accuracy analysis. For each region coverage category we report
mean accuracy, sample size and KL divergence from the dataset distribution.

ANOVA: F = 2.554, p = 0.026; the highest mean accuracy is observed in the ‘Very High’ (10+)
category (0.850) and the lowest in the ‘Simple’ (1) category (0.771). Accuracy differences are
statistically significant (p < 0.05).

for the model, the observed effect is limited.
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Metric-specific correlation with accuracy
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Figure C.4: For the Background/undefined fraction analysis we report accuracy
for each category (a) and distribution of species for each category (b).
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