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Abstract

This thesis explores the integration of Renormalization Group theory with Machine
Learning to develop a multiscale classifier for predicting square lattice site percola-
tion. The model processes binary lattices of varying sizes, mimicking the iterative RG
flow, and demonstrates improved performance when trained on mixed-size data com-
pared to fixed-size training. Key results show that the classifier achieves high accuracy
(90–95%) in phase classification, with the arithmetic averaging first coarse-graining
(AFC) method proving most effective. The learned coarse-graining rules resemble sig-
moidal functions, consistent with theoretical RG expectations, and provide estimates
of the percolation threshold (0.569–0.589) close to the known theoretical value. By
bridging RG theory with machine learning, this framework offers a physics-informed
method for studying critical phenomena.
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I | Introduction
Percolation theory is a branch of statistical physics and probability theory that studies how
a fluid (or any influence like current, disease, or information) moves and spreads through
a medium [4]. At its core, it describes the emergence of long-range connectivity in a
random network, exemplified by the sudden formation of a spanning cluster in a lattice as
the occupation probability of the sites of the network crosses a critical threshold pc. This
phenomenon exhibits universal scaling laws, making it an example of critical behavior.
Traditional analytical and numerical approaches, such as Monte Carlo simulations, have
long been employed to study these properties [16].

In recent decades, the renormalization group (RG) formalism has emerged as a trans-
formative tool for analyzing systems near criticality [9]. By iteratively coarse-graining
microscopic details, which are proven to be negligible near criticality, while preserving
macroscopic observables, allows one to tackle such systems and study their behaviour
around the critical point. However, practical implementations of RG, particularly in sys-
tems lacking exact solutions, often rely on harsh approximations [18].

Lately some attention has been posed on the performance of machine learning (ML)
architectures for the study of critical behaviour. Although some architectures prove to
successfully find the percolation threshold [14] and the full percolation probability [5],
here we focus on models which are rooted in physics, and specifically the RG approach,
addressing the interpretability, or lack thereof, of the former. Moreover, in the statistical
physics context, many problems of interest related to critical phenomena are associated
to fractal structures, containing information at all scales. This results in notoriously diffi-
cult data to capture with standard ML methods. Determining for instance on which side
of a second order phase transition is a given critical system requires deciphering subtle
signatures over a large spectrum of scales. In the case of 2D percolation at hand, it has
been observed [1] that standard tools of image recognition are unable to reliably detect a
spanning cluster close to transition for finite systems.

This thesis bridges the conceptual rigor of RG with the adaptive power of machine
learning (ML), proposing a neural network architecture that learns effective coarse-graining
rules directly from percolation lattices, with the goal of predicting whether a lattice per-
colates or not, inspired from the large-cell-RG approach [16]. Once a successful and
interpretable model is built, it can be also exploited to find the percolation threshold.

In Section II we begin by formalizing Percolation Theory and its relevance under the
lenses of critical phenomena. Then, in Section III we outline the principles of real space
RG and we detail the design of the classifier mimicking the iterative coarse-graining of RG.
We contrast models trained on single lattice sizes with those exposed to multiscale data
(i.e. squares of side lengths 32, 33, 34), demonstrating how mixed training enhances both
stability and generalizability, propose different approaches on how to handle the binary
data, test the finite size effects of the results, and introduce a model with multiple labels
related to the directions of percolation. In Section IV, we report hints of future work, both
short-term and long-term.

II | Percolation Theory
A fundamental concept in probability theory, percolation addresses the following question:
what is the probability that a path exists through a random network from one side to
another? It is used to model a wide range of phenomena, including the flow of water
through soil [8], the spread of diseases in populations [17], the conductivity of random
mixtures of materials [15], and the stability of networks [7].

All of the theory summarised below is adapted from [16].
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Site Percolation (L=64, p=0.4)
Largest Cluster: 54 sites

(a) p < pc; no spanning cluster

Site Percolation (L=64, p=0.6)
Largest Cluster: 1192 sites

(b) p > pc, spanning cluster

Figure 1: Comparison of results with and without clustering

There exist different formulations of the problem and here we shall focus on the fol-
lowing.

Square lattice site percolation: Consider the square lattice given by the set of nodes V =
{1, 2, . . . , L}2. Each node (i, j) can be independently accessible or not, determined by the
Bernoulli random variable

sij =

{
1 ; w.p. p
0 ; w.p. 1− p

. (II.1)

where p is called permeability. The network is called percolating if there exists a connected
component, commonly referred to as cluster, spanning the entire lattice (see Figure 1)

This simple model exhibits surprisingly rich behavior, particularly near the percolation
threshold where long-range connectivity first emerges.

Percolation transition: Let Π(p, L) be the probability that a spanning cluster exists in a
network of dimension L and permeability p. The percolation threshold is the permeability pc
at which an infinite cluster spans the infinite network, namely [6]

[0, 1] ∋ pc : lim
L→∞

Π(p, L) = Θ(p− pc) (II.2)

Note that the limit L→∞ is tantamount to replacing the set of nodes with V = Z2.

This is neither a statistical mechanics phase transition nor a bifurcation, but rather
a mathematical phase transition analogous to phenomena like the traffic flow transition
[13].

When a system undergoes a phase transition, its properties can change dramatically
with small variations in control parameters. Second-order phase transitions, like the per-
colation transition, occur continuously without sudden jumps. Near the critical point (the
percolation threshold pc), the system exhibits scale-invariant behavior where clusters of
all sizes appear, and physical quantities follow power-law distributions (see II.1 and II.2)

A crucial quantity for describing the critical behaviour of the percolation transition is
the following.

Cluster number: The probability ns(p) that an arbitrary site is the left-hand end of a cluster
of size s.
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In full generality, given gst the number of cluster configurations of size s and perimeter
t, then

ns(p) =
∑
t

gstp
s(1− p)t

Unfortunately, the quantity gst not only does not feature a closed formula in two dimension
(or any finite dimension greater than d = 1, for that matter), but is also computationally
hard to find. Nonetheless, starting from this probability, other "observables" can be de-
fined. For example, we may ask the following question: how large is a cluster to which an
arbitrary occupied site belongs? Calling such random variable S, then

ws ≡ P(S = s|sij = 1) =
P(S = s, sij = 1)

P(Xij = 1)
=

sns(p)

p

Mean cluster size: We refer to

S(p) ≡ E[S] =
∑

s s
2ns(p)

p

as the mean cluster size. To such quantity, the critical exponent γ is associated

S(p) ∝ |p− pc|γ ; p→ pc

To complete the second order phase transition picture, an order parameter which
changes continuously at p = pc is needed.

Strength: The probability P (p) that an arbitrary site belongs to the infinite cluster. The
critical exponent β is defined by

P (p) ∝ |p− pc|β

The order parameter P (p), which serves as a proxy for the normalized average size of
the largest cluster, goes to zero continuously as p approaches pc from above.1 Moreover,
note that

p = P(sij = 1)

=
∑
s

P(sij = 1 | (i, j) is part of an s-cluster)P((i, j) is part of an s-cluster) + P (p)

=
∑
s

sns(p) + P (p)

II.1 Scaling ansatz

As previously mentioned, there’s no exact solution for the distribution ns(p) in two dimen-
sions. However, we can postulate a scaling form for the cluster number distribution:

ns(p) ∼ s−τf ((p− pc)s
σ) ; s≫ 1 ; p→ pc

where:

• τ and σ are critical exponents to be determined

• the scaling function f(z) satisfies:

f(z) ∼

{
const for |z| ≪ 1⇔ s≪ sξ

rapid decay for |z| ≫ 1⇔ s≫ sξ

where sξ ∝ |p− pc|−1/σ defines the characteristic cluster size.

1The largest cluster isn’t necessarily the percolating one, but it isn’t hard to imagine that this holds true
for L → ∞. Hence we can effectively compute numerically the average size of the largest cluster, and divide
by L2 to find P (p) = ⟨S∞⟩/L2.



II.2 Fractal behaviour 6

Figure 2: Realization of a percolating cluster for p ≈ pc and zoomed-in view, manifest-
ing scale invariance

This ansatz leads to several important consequences. First, at criticality (p = pc), the
distribution becomes a pure power law:

ns(pc) ∼ s−τ

The exponents τ and σ are related to previously introduced critical exponents through
scaling relations. For instance, the mean cluster size S(p) can be expressed as

S(p) =
1

p

∑
s

s2ns(p) ∼
∫

s2−τf ((p− pc)s
σ) ds ∝ |p− pc|−γ

Changing variables to u = |p− pc|sσ yields the scaling relation

γ =
3− τ

σ
.

Similarly, the strength of the infinite cluster P (p) can be related to the scaling function

P (p) = p−
∑
s

sns(p) ∼ |p− pc|β (II.3)

giving the relation

β =
τ − 2

σ
.

The scaling function f(z) contains additional universal information about the system.
Its precise form is difficult to determine analytically, but it has been studied extensively
through series expansions and Monte Carlo simulations. Remarkably, while the exponents
τ and σ depend on dimensionality, the qualitative form of the scaling function remains
similar across different lattice types in the same dimension.

II.2 Fractal behaviour

The structure of a percolating cluster in large networks is far from simple. Indeed, near
the percolation threshold pc, the geometry of the largest cluster departs significantly from
that of a regular object. It is neither line-like nor filled, but forms a pattern that lacks a
characteristic length scale.

In order to grasp this quantitatively, we need to define a length scale in the first place.
As customary in statistical physics [11], let’s introduce the following.
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Correlation function and correlation length: the probability g(r) that site (i, j) is in the
same cluster as that of a site at position (ℓ, k), with r ≡ |rij−rℓk|, is referred to as correlation
function. The length scale ξ over which correlations decay is called correlation length.

The correlation length ξ defines a length scale for the system. Indeed, sites distant
r ≫ ξ are likely not part of the same cluster and vice versa. As the occupation probability
p approaches the critical value pc, the correlation length diverges:

ξ ∼ |p− pc|−ν

This divergence signals the absence of any finite cutoff to the range over which sites may
belong to the same connected component.

A diverging length scale has two important consequences. First, it implies that the
system becomes self-similar across scales: clusters exist on all length scales up to the size of
the system, and no characteristic scale dominates. This is precisely what defines a fractal
structure.

Second, a diverging ξ marks the presence of a continuous phase transition. When ξ is
finite, the system looks locally random and fragmented. As ξ → ∞, fluctuations occur on
arbitrarily large scales, and a macroscopic cluster spanning the entire system emerges.

In the absence of any basic length scale, all the relevant functions become power laws.
For example, at r ≪ ξ (which is always true at p ≈ pc), the scaling ansatz in dimension
d = 2 entails [10]

g(r) ∝ r−2β/ν

II.3 Finite size scaling

All of the previous theoretical results hold nicely for L→∞. However, for both theoretical
approaches and simulations purposes, it is crucial to understand how a finite network
behaves. Intuitively, we can already expect that for L≫ ξ nothing changes (meaning the
characteristic length scale is still ξ), while for L ≫ ξ then criticality is governed by the
length scale L. In general, quantities behaving like power laws naturally emerge from
scaling laws (and viceversa)

X(L, ξ) ∝ |p− pc|−x ⇐⇒ X(L, ξ) ∝

{
ξx/ν L≫ ξ

Lx/ν L≪ ξ

hence studying X as a function of the system size at criticality yields information on the
ratio x/ν.

An interesting curve is how the percolation probability changes as a function of the
size, i.e. Π(p, L). For L ∈ {3, 4, 5} the exact percolation probability can be computed
numerically by enumerating all 2L

2
configurations si ∈ {0, 1}L×L. The percolation proba-

bility is
Π(p, L) =

∑
s∈{0,1}L×L

I[s percolates]
∏
ij

psij (1− p)1−sij

where I[s percolates] is the indicator function that equals 1 if the lattice percolates (has
a connected path of occupied sites between either opposite boundaries), and sij denotes
the state of site (i, j) as in eq. (II.1).

For L ≥ 6, it estimates Π(p, L) using Monte Carlo sampling with the following ap-
proach:

• Generate Lattices: for each (L, p), we create an L × L boolean grid where each site
sij ∈ {0, 1} is accessible with probability p.

• Detect percolation: We check for a spanning cluster connecting the top and bottom
edges. A simple way is to perform a breadth-first search (BFS, [12]) from all open
sites in the top row, marking visited sites and stopping if any visited site reaches the
bottom row. This finds connected components on the lattice.
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• Monte Carlo averaging: for each (L, p) we repeat the lattice generation and con-
nectivity check many times to estimate the percolation probability as the fraction of
trials that percolate, i.e.

Π̂(p, L) ≈ 1

N

N∑
k=1

I[sk percolates] = Π(p, L) +O
(

1√
N

)

• Finite-Size scaling: we use the known critical threshold pc ≈ 0.59724 and critical
exponent ν = 4/3. We plot Π̂(p, L) vs p for each L, and then plot the same data
against the scaled variable x ≡ (p− pc)L

1/ν .

Theory predicts the curves for different L should collapse onto a universal function of
x. Indeed, the simulation (Algorithm 1) produces Figure 3. As L increases, the curves
approach a step function, hence the phase transition as defined in eq. II.2.

It is worth mentioning that if we restrict to percolation in a specific direction (top-
down or left-right), for rectangular a × b there exists a recursive approach of time com-
plexity O(max{a, b}32min{a,b}) for the percolation probability Π(p, a, b), which is explored
in Section D.

Figure 3: Π(p, L) for L ∈ {16, 32, 64, 128}. For each value of p and L, the probability
Π(p, L) has been estimated with 1000 samples.

III | RG-Inspired Classifier
In the context of supervised machine learning [2], a classifier is a model designed to assign
input data to one of several predefined categories. For example, in percolation studies, a
classifier might be trained to decide whether a given lattice configuration belongs to the
percolating or non-percolating phase. The model learns this task by analyzing labeled ex-
amples and adjusting its internal parameters to minimize classification errors. Classifiers
can range from simple linear models to deep neural networks with many layers of abstrac-
tion. In recent years, ML techniques have garnered attention for their potential to analyze
critical behavior in complex systems. Notably, various ML architectures have been applied
to percolation models. For instance, [14] showed that regression-based ML models, such
as gradient boosting and random forests, can accurately predict the percolation thresh-
old across diverse network structures by leveraging structural features of the networks.
Similarly, [5] employed convolutional neural networks to estimate both the percolation
threshold and the full percolation probability in two-dimensional lattice systems.

Despite these results, these structures lack interpretability. Many of these ML mod-
els function as "black boxes," trading off interpretability for complexity. Moreover, criti-
cal phenomena in statistical physics often involve fractal structures and scale invariance,
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characteristics that standard ML models may struggle to capture. For example, accurately
determining the phase of a system near a second-order phase transition requires detecting
subtle, scale-spanning features, hence a task that can be challenging for conventional ML
architectures. In the context of two-dimensional percolation, [1] observed that standard
image recognition tools, including CNNs, fail to reliably detect the presence of a spanning
cluster near the percolation threshold in finite systems.

Given these considerations, our focus shifts toward integrating ML approaches with
physics-based methodologies, particularly the RG framework.

III.1 Renormalization Group approach

Let us briefly formalize the RG approach for percolation as the theoretical foundation of
the model.

The renormalization group is an approach to the problem of critical phenomena which
has been developed in the 60’s–70’s [18]. It is mainly a collection of concepts and tools,
which in some cases crystallize in a well–defined approach. The name renormalization
group is possibly unfortunate, since the transformations used do not form a mathematical
group and the renormalization in the sense of quantum field theory is not an essential in-
gredient, in spite of certain technical analogies. The essential ingredient is coarse–graining,
which induces a flow in the space of parameters of the model under investigation (namely
the permeability p in our case).

In the real-space RG approach to site percolation, the lattice is partitioned into blocks
(cells) of size b × b. Each block is then replaced by a single "super-site" whose occupa-
tion probability p′ is determined by a coarse-graining rule applied to the original sites
within the block. This procedure defines a transformation p′ = Rb(p) that, when applied
iteratively, defines a flow for the value p.

As previously mentioned, the lack of a length scale (i.e. ξ → ∞) signals a phase tran-
sition. The fixed point(s) p∗ = Rb(p

∗) of the transformation signals the phase transition.
Indeed, after one RG step, the correlation length transforms as

ξ′ =
ξ

b
(III.1)

therefore the fixed point is equivalent to ξ = ξ/b. We conclude then

• ξ = 0⇐⇒ p∗ = 0 ∨ p∗ = 1

• ξ →∞⇐⇒ p∗ = pc

that is to say, the non-trivial fixed point of this transformation corresponds to the critical
percolation threshold.

As noted in Section II.2, near the critical point pc the correlation length diverges as
ξ ∝ |p− pc|−ν , hence after an RG step equation (III.1) becomes

ξ′ = const. |p′ − pc|−ν = const. |Rb(p)− pc|−ν

=
ξ

b
= const. |p− pc|−ν

which can be solved for (
|Rb(p)− pc|
|p− pc|

)−ν

=
1

b

which, in the limit p→ pc becomes a way to estimate the critical exponent ν

ν =
ln b

ln dRb
dp

∣∣∣
p=pc

. (III.2)
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III.2 Foundation of the classifier

The implemented classifier embodies a machine-learned realization of the real-space RG
approach. Formally, the model operates on lattice configurations s(0) ∈ {0, 1}L×L where
L = bk represents the block side length, for some integers k, and b. The core computational
procedure consists of an iterative coarse-graining transformation of the matrix s(0) into a
scalar by recursively applying the following procedure:

1. Block decomposition: At each RG step t, the lattice s(t) ∈ RLt×Lt is partitioned into
non-overlapping blocks of size b× b, yielding Nt = (Lt/b)

2 patches:

P(t) =
{
p
(t)
i,j ∈ Rb×b | 0 ≤ i, j < Lt/b

}
2. Learned renormalization rule: Each block p

(t)
i,j is flattened to a vector v

(t)
i,j ∈ Rb2

and transformed by a parameterized function fθ : Rb2 → [0, 1] which maps the
whole patch into a scalar

R ∋ s
(t+1)
i,j = fθ(v

(t)
i,j )

where fθ is implemented as a neural network

fθ(v) = σ(W2 · ReLU(W1v + b1) + b2)

with learnable parameters θ = {W1,b1,W2, b2}, and σ denoting the sigmoid acti-
vation. Unless otherwise specificed, the neural network is comprised of n = 64
neurons and ℓ = 1 layers.

3. Coarse-grained lattice: The transformed scalars s(t+1)
i,j constitute the coarse-grained

lattice new lattice s(t+1) ∈ R(Lt/b)×(Lt/b):

s(t+1) =


s
(t+1)
0,0 · · · s

(t+1)
0,N−1

...
. . .

...
s
(t+1)
N−1,0 · · · s

(t+1)
N−1,N−1

 , N = Lt/b

This transformation is applied iteratively for T = ⌊logb L⌋ steps, until the lattice s is
coarse-grained into a scalar value q = s(T ).

The parameters θ are optimized using a training dataset D = {(si, yi)}Ni=1, where the
lattices are generated by creating a boolean grid where each site sij ∈ {0, 1} is accessible
with permeability p and

yi = I[si percolates]

= 1− (1− I[si top-down percolates])(1− I[si side-to-side percolates])

= 1− (1− τ
(1)
i )(1− τ

(2)
i )

(III.3)

by optimizing what’s known as binary cross-entropy loss

L(θ) = − 1

N

N∑
i=1

[yi log qi + (1− yi) log(1− qi)] (III.4)

which is a fundamental objective function in machine learning for binary classification
tasks, as it quantifies the discrepancy between predicted probabilities and true binary
labels. The optimization task is performed via Stochastic Gradient Descent [3]

θt+1 = θt − ηt∇θLB(θt)

where LB(θt) is the loss in eq. III.4 but computed on a batch of size B of the dataset D.
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The two types of percolation (top-down and side-to-side) in eq. (III.3) have been
associated to boolean variables τ (1), τ (2) and have been made explicit to highlight that,
for the time being, the architecture doesn’t distinguish between the two (see Section III.5
for an extension of the model).

The model fθ learns an effective block transformation Rb that maps local configu-
rations to renormalized probabilities (for the sake of clarity, the interpretation of such
probabilities shall wait). Unlike analytical RG where Rb is prescribed, here Rb emerges
from data-driven optimization while maintaining the RG structure through the iterative
coarse-graining procedure.

The learned function fθ takes vectors in Rb2 as input. However, as noted in Section
III.1, the analytical coarse-graining rule maps probabilities into probabilities. Hence, in
order to extrapolate an estimate R̂b(p) of the rule Rb(p) from fθ we can project it as

R̂b(p) = fθ(p1) ; 1 ≡ (1, 1, . . . , 1) ∈ Rb2

For what concerns the classification task, the final prediction is given by

ŷ = I
[
q >

1

2

]
.

The pseudocode for the foundation of the classifier is reported in Algorithm 2.

III.2.1 Handling the first layer

The RG approach, formally speaking, maps a probability p into another p′ = Rb(p), hence
it can be argued that feeding the neural network directly configurations s ∈ {0, 1}L×L is
counter-intuitive. Therefore three variations for the first step (i.e., the one dealing with
the binary input data) are explored and compared throughout this report:

• NFC approach: No First Coarse-graining at all, hence the algorithm explained above

• AFC approach: generating the first coarse-grained lattice as

s
(1)
i,j =

〈
p
(0)
i,j

〉
=

1

b2

∑
ℓ,k

(p
(1)
i,j )ℓ,k

hence performing arithmetic Average as a First Coarse-graining of the binary values

• PFC approach: generating the first coarse-grained lattice as in AFC, then mapping
the values onto the corresponding Percolation probability using the function Π(p, b),
meaning

s
(1)
i,j = Π

(〈
p
(0)
i,j

〉
, b
)
= Π

1

b

∑
ℓ,k

(p
(1)
i,j )ℓ,k, b


computed numerically as in Section II.3.

In Figure 4 a sketch of how a lattice is handled by the classifier is shown.

III.3 Fixed-size training and testing

At first we provide the network with samples Db,k = {(si, yi)}Ni=1 with s ∈ {0, 1}bk×bk . We
train the network multiple times, compare different configurations of (b, k), by using each
of the three approaches described in Section III.2.1.

In Table 1 we report the results with L = 32 and L = 33, in the three approaches.
For each run, the number of samples is Ntrain = 103, learning rate is η = 10−3, number
of epochs is E = 10 and batch size B = 10. The accuracy is simply computed as the
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Figure 4: Sketch of the handling of a lattice by the classifier

percentage of missclassified lattices in a freshly generated test dataset Dtest = {si, yi}Ntest
i=1 ,

i.e.

ϵtest ≡
1

Ntest

Ntest∑
i=1

I[yi = ŷi]

with Ntest = 100.
For what concerns the learned rule R̂b(p), we note that three situations arise (in Figure

5 an output example is provided, however a full report can be found in Appendix B), as
the network learns one of the following

1. monotonically increasing sigmoid

2. monotonically decreasing sigmoid

3. curve with a minimum and a maximum

In all of the three cases, the classifier works well in determining the phase of lattices
whose size is the same as training. However, when generalizing to different size, only the
monotonically increasing sigmoid shows good results.

We shall address the elephant in the room: how does a decreasing curve work so well?
The answer lies in the neural network structure: the output value q can be (not formally)
expressed by the operation

q = s(T ) =
(
⃝T

i=2fθ
)
(f1(s))

where f1(s) has been made manifest since it depends on which approach has been chosen
for the first layer. If fθ is monotonically decreasing, with each composition the learned
rule "flips" back and forth between increasing and decreasing. Therefore, a neural network
trained on size bk which learns the decreasing curve generalizes well to powers bk

′
with

|k′ − k| ≥ 2. The third kind of curve could then be a combination of the former two.
In Table 2 we report the estimate of the critical point. For the same arguments as

above, both the first and second kind of curves yield the same estimate of pc. Indeed,
the intersection of a sigmoid S(x) with the function (S ◦ S)(x) occurs trivially at the fixed
point x∗

S(x∗) = S(S(x∗)) =⇒ S−1(S(x∗)) = S−1(S(S(x∗)) =⇒ S(x∗) = x∗ , (III.5)

2. However, the AFC approach provides a much better estimate of pc (although still not
satisfactory), and therefore it shall be the preferred method henceforth.

2The function S−1(x) is well-defined since S : [0, 1] → [0, 1] is a bijection.
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Figure 5: 10 different instances of learned rule R̂b(p) = fθ(p1), trained on N = 103

lattices of side length L = 33, learning rate η = 10−3, batch size B = 10, and number
of epochs E = 10. For a full picture, we refer to Appendix B.

Table 2 also presents the accuracy of the model when presented with critical data, i.e.
lattices generated with p ∼ U(0.55, 0.65). However at this stage this is mostly reported for
completeness since, as described in Section III.1, the RG approach works best as the size
k increases. Indeed, the more steps the coarse-graining procedure requires, the closer the
rule R̂b(p) will be to the fixed point. If anything, a low accuracy is nothing but a different
way to interpret the finite-size effects of the curve Π(p, L) for low L.

Of course there are further refinements which can be implemented to improve the
results. First of all, as customary for ML models, we could track the evolution of the
loss L(θ) and accuracy ϵtest, in order to ensure proper convergence and fine-tune the
amount of neurons and layers in the neural network. Moreover, given the struggle of ML
architectures with fractal data, another safety measured is having a larger training sample
around the critical point could prove to be beneficial. Nonetheless they will be explored
in the following section, where a more reliable method is established.

bk
ϵtest NFC AFC PFC

32 0.353 ± 0.375 0.907 ± 0.025 0.916 ± 0.025
33 0.909 ± 0.026 0.921 ± 0.019 0.919 ± 0.200
34 0.326 ± 0.402 0.950 ± 0.021 0.960 ± 0.016

Table 1: Fraction of successfully classified lattices of various sizes, generated with p ∼ U(0, 1) and
evaluated across the three approaches (NFC, AFC, PFC). The network was trained solely on size 33

lattices (highlighted in cyan); 32 and 34 rows (highlighted in yellow) test its ability to generalize
to smaller and larger sizes. Each entry is the average over 10 runs.
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Metric
Approach

NFC AFC PFC

p̂c 0.47345 ± 0.02651 0.557560 ± 0.01265 0.63453 ± 0.02908
ϵtest 0.766 ± 0.022 0.781 ± 0.027 0.761 ± 0.024

Table 2: Estimate of the percolation threshold and fraction of successfully classified lattices of the
same size as that of training (here 32) with p ∼ U(0.55, 0.65) and in the three approaches. Each
entry is the average over 10 runs.

III.4 Mixed-size training

Training the network with lattices of mixed size, i.e. k ∈ {2, 3, 4}, reveals results which
are much more stable. Here we shall focus on AFS approach, which proved to be most
successful for critical data in the previous section.

Convergence parameters are as above, but now we shall fine-tune the number of train-
ing samples N , number of parameters |θ| in the neural network, and epochs E. Namely,
in Section C we report some examples of the evolution of train and test loss, for different
ratios |θ|/N and for b ∈ {3, 4, 5}.

In Figure 6 and Table 3 we note that the curves are all of the first kind, and the accuracy
across the board is improved with respect to the previous case.

b = 3 b = 4

bk ϵtest bk ϵtest

34 0.959 ± 0.0250 44 0.972 ± 0.0260
35 0.962 ± 0.0340 45 0.968 ± 0.035
36 0.969 ± 0.0310 46 0.962 ± 0.040
37 0.960 ± 0.0800 47 0.988 ± 0.014

Table 3: Fraction of successfully classified lattices of various sizes, with bk sites and b ∈ {3, 4},
generated using p ∼ U(0, 1). The neural networks were trained on a mixture of lattice sizes with
k ∈ {2, 3, 4} (i.e., up to b4 sites). Only the k = 4 rows correspond to sizes seen during training;
the k ∈ {5, 6, 7} rows test generalization to larger lattices. Each entry is the average over 15 runs,
each with Ntest = 100.

For what concerns critical data, N/2 training samples have been generated with p ∈
(0.55, 0.65). This policy shall be maintained throughout the whole report henceforth.

For a better estimation of pc, each entry corresponds to an average 50 instances of
learned rule (which are also the curves in Figure 6), albeit sacrificing testing over larger
powers due to computational limitations. In Table 4 we note that the value p̂c is a better
estimate than before.

b = 3 b = 4 b = 5

bk p̂c ϵtest bk p̂c ϵtest bk p̂c ϵtest

32 0.569 0.795 ± 0.050 42 0.577 0.785 ± 0.057 52 0.589 0.768 ± 0.057
33 0.780 ± 0.058 43 0.826 ± 0.050 53 0.838 ± 0.045
34 0.852 ± 0.045 44 0.881 ± 0.037 54 0.848 ± 0.042
35 0.895 ± 0.036 45 0.889 ± 0.034 55 0.851 ± 0.032

Table 4: Estimated percolation threshold p̂c (one per base b) and classification accuracy ϵtest with
standard deviation, for various lattice sizes bk. Neural networks were trained on a mix of lattice
sizes with k ∈ {2, 3, 4}; these rows (highlighted in cyan) correspond to sizes used in training. The
k = 5 row (highlighted in yellow) shows generalization performance on unseen, larger lattices.
Each value is averaged over 50 runs, with Ntest = 100.

As already anticipated in Section III.3, the accuracy ϵtest improves as k increases: this
is due to the fact that the RG approach holds true for k → ∞. The larger k is, the
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more the function fθ(p) approaches the step function Θ(p− p̂c), hence the bottleneck in
performance is the estimate p̂c itself, which improves as b increases.

This can be ascribed to the fact that, since there’s no distinction between the direc-
tion of percolation as noted in Section III.2, a proposed RG scheme for square lattices is
large-cell renormalization [16], where the coarse-graining rule is directly the percolation
probability of the b × b sublattice: Rb(p) = Π(p, b). As the name suggests, the method
improves as b increases, which is what occurs for the classifier as well.
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Figure 6: Projections fθ(p1), learned by training with lattices of mixed size and with
a denser sample around the critical point. The estimation p̂c improves with base side
length b, although the standard deviation σpc

is noticeable, especially for b = 5.
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Figure 7: Scaling collapse of the functions gk(x) defined in eq. (III.6) for k ∈ {1, . . . , 6}.
The parameters in fθ have been optimized with learning rate η = 10−3, epochs E = 10,
number of training samples N = 2 · 104, and batch size B = 10.

III.4.1 Comparison with the scaling function

There is already strong suspicion that the classifier is learning directly the percolation
probability curve of the sublattice. In order to grasp further properties of R̂b(p), we can
test the scaling collapse by plotting the functions

gk(x) ≡
[
⃝k

i=1fθ(p1)
]
(x) ; x ≡ (p− p̂c)b

k/ν (III.6)

for k ∈ N and rescale them as explained in Section II.3. Indeed, the function gk(x) pertains
to the coarse-graining of a lattice of side length L = bk+1. The result is reported in Figure
7, where b = 3 has been chosen.

In addition to that, we are also going to follow a different visualization approach:

• generate Nsample lattices of side length bk for values of p ∈ (0.4, 0.8)

• compute the average prediction ⟨q⟩ of the neural network

• plot the curve ⟨q⟩ vs x = (p− p̂c)b
k/ν

• repeat for k ∈ N

The results are reported in Figure 8 and this visualization method shall be exploited once
more in the following section.

In both cases it is not a surprise that the curves intersect the (estimated) fixed point p̂c,
due to eq. (III.5). However, the true critical exponent ν = 4/3 has been used to produce
the plots, which explain the deviation of the rescaled functions from the collapse. The
immediate fix is to use eq. (III.2) to find an estimate ν̂ from the learned rule R̂b(p), and
then use the rescaled variable x = (p− p̂c)b

k/ν̂ .

III.5 Directional percolation

We note that in Section III.2, the model doesn’t distinguish between the directions of
percolation. Let’s now generalize the model to keep track individually of the two possible
ways in which two opposite sides of a square can be connected by a cluster. Denoting
them by i ∈ {1, 2} and introducing the labels τ (1), τ (2) the goal now is to learn a coarse-
graining rule fθ : R2b2 → R2. During the coarse-graining procedure performed by the
network, to each cell of the original lattice we associate 2 values, effectively turning it into
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Figure 8: Scaling collapse of the prediction q from a neural network trained with
learning rate η = 10−3, epochs E = 8, number of training samples N = 2 · 103, and
batch size B = 10. Each point ⟨q⟩ (x) is the average over Nsamples = 500

a hyperlattice. The pipeline of Section III.2 is maintained, meaning that at step t of the
coarse-graining procedure we have a hyperlattice s(t) ∈ RLt×Lt×2, then we proceed with
a block decomposition

P(t) =
{
p
(t)
i,j ∈ Rb×b×2|0 ≤ i, j < Lt/b

}
and via SGD the parameters θ are learned in order to compute

R2 ∋ s
(t+1)
i,j = fθ(p

(1),p(2)) ; p(i) ∈ R2

and to form the lattice s(t+1) ∈ R(Lt/b)×(Lt/b)×2.
The loss function now reads

L(θ) = − 1

2N

N∑
i=1

2∑
k=1

[
τ
(k)
i log q

(k)
i + (1− τ

(k)
i ) log

(
1− q

(k)
i

)]
Among the output vector values q = (q(1), q(2)), the relevant ones are the first two,

since they are related to top-down and left-right connectivity, meaning the actual direc-
tions for which the percolation transition occurs.

For what concerns visualization of the rule, the problem isn’t straightforward anymore
since fθ now maps to R2 instead of scalars. However, from the prediction q we can
compute a scalar prediction in the same fashion of eq. (III.3)

Q ≡ q(1) + q(2) − q(1)q(2)

and then visualize the RG flow with the method explained in Section III.4.1, i.e. by plotting
⟨Q⟩ vs p for different system sizes, averaged over many runs. One may argue that the
correct quantity to plot is Q = 1 −

∏6
i=1(1 − q(i)). However, as previously mentioned,

the RG approach is supposed to work only for the directions in which the theory holds,
i.e. q(1) and q(2). Extending the model to include q(3), . . . , q(6) would require a completely
different approach, not deep-rooted in iterative coarse-graining.

IV | Conclusion
This report has explored the integration of renormalization group (RG) theory with ma-
chine learning to develop a scale-invariant classifier for square lattice site percolation. By
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designing neural networks that learn coarse-graining rules inspired by the RG framework,
we have created models capable of predicting percolation states across multiple scales
while maintaining physical interpretability.

Our key findings demonstrate that:

• The arithmetic averaging first coarse-graining (AFC) approach outperforms other
initialization strategies, achieving 90-95% accuracy in phase classification across
lattice sizes

• Mixed-size training (using lattices of side lengths b2, b3, and b4) significantly en-
hances model stability and generalizability compared to fixed-size training, as well
as achieving almost 90% accuracy when classifying fractal data already at side length
L = 44

• The learned coarse-graining rules consistently converge to sigmoidal functions re-
sembling theoretical RG transformations

• The hybrid ML-RG approach provides reasonable estimates of the percolation thresh-
old pc (0.569-0.589 depending on block size b), approaching the theoretical value of
0.5927

The multiscale architecture effectively captures the fractal nature of critical percola-
tion configurations by processing information hierarchically through successive coarse-
graining steps. This addresses a fundamental limitation of conventional CNNs in detect-
ing spanning clusters near criticality. Visualizations of the learned rules confirm that the
network approximates the RG flow, with the sigmoidal shape reflecting the characteristic
probability renormalization observed in theoretical RG treatments.

Future work could explore:

• Adjusting the range of p values over which the critical lattices are generated, based
on the side length bk. Indeed, lattices show fractal properties when p is in the range
such that Π(p, bk) sufficiently departs from 0 or 1.

• As introduced in Section III.5, informing the network of the directions of percolation.
This type of neural network will likely require more neurons n and layers ℓ than the
one used so far.

• Investigating deeper architectures with attention mechanisms to better capture long-
range correlations, althought it could prove challenging to maintain interpretability.

• Applying the framework to other critical phenomena exhibiting scale invariance.

• Changing the learning structure fundamentally by using message-passing algorithms
instead of gradient-based learning

By maintaining a direct connection to RG theory while exploiting the flexibility of
neural networks, this work provides a foundation for physics-informed machine learning
approaches to critical systems. The resulting models offer both predictive power and
interpretability, bridging a gap between theoretical physics and data-driven methods.
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A | Pseudocode and GitHub Repository
All of the results and figures reported in this document can be recreated using the code
found in this repository.

Below we report pseudocode for Figure 3 and for the foundation of the classifier in
Section III.2.

Algorithm 1 Finite-Size Scaling of 2D Percolation

Input: Lattice sizes L ∈ {16, 32, 64, 128}, probabilities p ∈ [0.4, 0.7], samples N = 1000,
pc = 0.59275, ν = 4/3

Output: Percolation probability Π(p, L) and scaling collapse Π((p− pc)L
1/ν)

1: function GENERATELATTICE(L, p)
2: return Boolean grid s ∼ Bernoulli(p)L×L

3: end function
4: function CHECKPERCOLATION(s)
5: Initialize queue Q and visited grid same shape as s
6: for each column j in top row do
7: if s[0, j] is occupied then
8: Mark (0, j) as visited and enqueue into Q
9: end if

10: end for
11: while Q not empty do
12: Dequeue (i, j) from Q
13: if i = L− 1 then
14: return True
15: end if
16: for each neighbor (i′, j′) of (i, j) do
17: if (i′, j′) in bounds, occupied and unvisited then
18: Mark as visited and enqueue
19: end if
20: end for
21: end while
22: return False
23: end function
24: function ESTIMATEPI(L, p,N)
25: C ← 0
26: for k = 1 to N do
27: s(k) ← GENERATELATTICE(L, p)
28: if CHECKPERCOLATION(s(k)) then
29: C ← C + 1
30: end if
31: end for
32: return C/N
33: end function
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Algorithm 2 Pseudocode for the foundation of the classifier

Input: Block size b, coarse-graining steps T , training samples N , batch size B, epochs E
Output: Trained PercolationModel fθ

LATTICE GENERATION

1: function GENERATE_LATTICE(size, p)
2: return np.random.choice([0, 1], size = (size, size), p = [1− p, p])
3: end function

PERCOLATION CHECK

4: function CHECK_PERCOLATION(s)
5: Label connected components (4-connectivity)
6: return I[∃ spanning cluster]
7: end function

MODEL DEFINITION

8: procedure PERCOLATIONMODEL

9: rule← Sequential(
10: Linear(b2 → 64), ReLU(),
11: Linear(64→ 1), Sigmoid()
12: )
13: end procedure

FORWARD PASS

14: function MODEL_FORWARD(s, T )
15: while H ≥ b and W ≥ b and t < T do
16: patches← unfold(s, kernel_size = b)
17: patches← reshape(−1, b2)
18: s′ ← fθ(patches)
19: s← reshape(s′, (B,C,H/b,W/b))
20: end while
21: return squeeze(s)
22: end function

TRAINING

23: function TRAIN(N , L)
24: D ← ∅
25: for i← 1 to N do
26: p ∼ U(0, 1)
27: s← generate_lattice(L, p)
28: y ← check_percolation(s)
29: D ← D ∪ {(s, y)}
30: end for
31: θ ← SGD(fθ, lr = 0.001)
32: L ← BCELoss()
33: for epoch = 1 to E do
34: for batch ∼ D do
35: sbatch,ybatch ← batch
36: ŷ← fθ(sbatch)
37: loss← L(ŷ,ybatch)
38: ∇θloss← backward()
39: θ ← θ − η∇θloss
40: end for
41: end for
42: return fθ
43: end function



24

B | Learned rule for fixed size training

0.0 0.2 0.4 0.6 0.8 1.0
p

0.0

0.2

0.4

0.6

0.8

1.0
f

(p
1)

NFC Rule Projection - Configuration 3^2

f(p) = p
Mean Fixed Point: 0.4784

0.0 0.2 0.4 0.6 0.8 1.0
p

0.0

0.2

0.4

0.6

0.8

1.0

f
(p
1)

AFC Rule Projection - Configuration 3^2
f(p) = p
Mean Fixed Point: 0.5494

0.0 0.2 0.4 0.6 0.8 1.0
p

0.0

0.2

0.4

0.6

0.8

1.0

f
(p
1)

PFC Rule Projection - Configuration 3^2
f(p) = p
Mean Fixed Point: 0.6370

Figure 9: Projection fθ(p1) for all methods and size 32. For each run, the number of
samples is N = 104, learning rate is η = 10−3, number of epochs is E = 10 and batch
size B = 10.
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Figure 10: Projection fθ(p1) for all methods and size 33. For each run, the number of
samples is N = 104, learning rate is η = 10−3, number of epochs is E = 10 and batch
size B = 10.
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C | Train and test error

Figure 11: Train and test error as a function of the number of epochs, for b ∈ {3, 4, 5}.
One ratio |θ|/N is shown per base b.
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D | Recursive approach for Π(p, n,m) with
m = 3

Let Yn be the random variable "the lattice percolates up to layer n". Such a layer can
present itself in 23 different configurations, represented by an index i ∈ {1, . . . , 8} (Figure
12).

Figure 12: The 8 configurations of a three-cell lattice.

We can exploit them to establish the equation

Π(p, n, 3) = P(Yn = 1) =

8∑
i=1

P(Yn|i)P(i)

For the sake of simplicity, we can rewrite it by defining fn ≡ P(Yn = 1) and g
(i)
n ≡ P(Yn =

1|i) to write

fn = p3g(1)n + p2(1− p)(g(3)n + g(4)n + g(5)n ) + p(1− p)2(g(5)n + g(6)n + g(7)n )

as g
(8)
n = P(Yn = 1|i = 8) = 0. The probabilities {g(i)n }8i=1 satisfy the following recursive

system of equations

gn = Mgn−1 =



1 1 1 1 1 1 1
1 1 1 1 1 1 0
1 1 1 1 1 0 1
1 1 1 1 0 1 1
1 1 1 0 1 0 0
1 1 0 1 0 1 0
1 0 1 1 0 0 1


gn−1 = Mng1

with the initial conditions

g
(i)
1 = pni(1− p)3−ni ; ni =

3∑
j=1

Xij .

The matrix power Mn can be computed in O(log n) multiplications, each taking O(n3)
operations, although the matrix M itself requires O(2m) operations.
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