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Abstract

The aim of this thesis is to study the emergence and stability of cooperation in fluc-
tuating environments, in presence of varying levels of available information about the
current state of the environment. Cooperation’s intrinsic susceptibility to individual de-
viant behaviours makes its stability a central aspect of this collective behaviour. We
consider a model composed of two agents whose resources undergo stochastic multiplica-
tive growth. These growth processes are influenced by the state of a shared fluctuating
environment while being guided by the agents’ individual strategies of investment in the
environment’s states. To improve their growth, the agents are allowed to interact through
two mechanisms: partitioning the total available information about the fluctuating envi-
ronment among them, and sharing fractions of their resources as a common good. We
analyse the interplay between these mechanisms at varying levels of total information
about the environment, thereby exploring the link between uncertainty and cooperation.
We show that full cooperation, achieved through complete resource-sharing and equal
information partition, is stable and evolvable, provided the initial state exhibits a suffi-
cient level of cooperation. We also find that the size of the basin of attraction of the full
cooperation state is determined by the predictability of the environment.
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Chapter 1

Introduction

The ability to adapt and thrive under different conditions is essential in biological systems
as well as in numerous other situations. In the case of many entities co-existing and
interacting, questions about the optimal behaviour to assume towards one another have
been a topic of long-standing investigation. The two approaches of competition and
cooperation [1] have been widely investigated.

Competition may appear as the most natural and advantageous response, since every
individual undergoing evolution experiences competition and should be shaped to max-
imise its own evolutionary success, potentially at the expense of others. Cooperation, on
the contrary, is inherently unstable, as it is susceptible to the tragedy of the commons and
to cheating [2], as it typically involves immediate costs with uncertain or delayed benefits.
Nevertheless, cooperative behaviours are observed across a wide range of contexts and
organisational levels in nature. Therefore, a matter of interest in many different fields,
ranging from biology to economics [3,4], is not only the study of the conditions that
are favourable to the existence of cooperation, but also the conditions that can allow its
emergence and stability.

Stochasticity plays a crucial role in many systems where cooperation emerges [5].
Therefore, one of the possible approaches when aiming to describe the emergence of
cooperation is to adopt a model able to capture the effects of environmental fluctuations.
A canonical framework used to represent such contexts [6,7] is the geometric Brownian
motion [8], which describes the dynamics of the resources an agent possesses, when they
undergo a stochastic multiplicative growth process. This is the case when the effect of
stochasticity scales with the current value of the resources, thereby breaking ergodicity,
rather than acting as an additive noise. The universality of the geometric Brownian
motion allows the resource variable to be interpreted differently depending on the specific
field, such as population abundance in biology or the capital accumulated by an investor
in economics.

A straightforward mechanism for cooperation is the exchange of resources. In general,
many cooperative structures can arise through this mechanism [9] when a net benefit
arises from the cooperative interaction, and it is later redistributed, for example through
reciprocity. However, as in [7], this thesis focuses on the case in which the effects typically
guaranteeing the net benefit, complementarity of resources and resource thresholds for
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Introduction

target outcomes, are not present. Thus, our approach explores cooperation in the presence
of a single qualitative kind of resource for all agents. Resources shared according to
the independent choice of every agent are pooled and then equally redistributed. In
economics, this may be translated as the collection and redistribution of taxes, whereas
in biology it could involve the exchange of a specific nutrient through a common medium.
Cooperation through resource pooling in stochastic multiplicative growth, used to reduce
environmental uncertainty in an ensemble of agents subject to independent fluctuations,
has been studied in [6,7], and shown to be a stable strategy. In these studies, heterogeneity
between entities has been explored, being regarded as independent intrinsic differences in
growth between agents.

An agent’s ability to predict the fluctuations of the environment is fundamental in
determining the stochastic dynamics of its resources [10,11]. In realistic settings, agents
often have means to obtain some partial knowledge about the environment’s state, quan-
tified by the mutual information between the signals they individually receive and the
actual state of the environment. Information in stochastic multiplicative growth systems
has been studied from the perspective of cooperative behaviours. As with resources,
a straightforward cooperative behaviour involving information would be the sharing of
information between individuals. Information pooling, as a means to maximise collec-
tive growth, has been investigated as an alternative or complementary mechanism to
resource pooling in [12]. In the latter work, information pooling and resource sharing are
considered together and described as complementary strategies to enhance growth.

In this thesis, we introduce a fixed level of total information received by the totality of
the agents to serve as a classification for systems, allowing us to compare diverse systems
that share the same level of environmental predictability. This constraint can push agents
to interact in an attempt to assess their optimal share of information. Therefore, we focus
on the inverse approach to information pooling, the information partition mechanism,
which is the process by which agents determine the subdivision of the total information
(that subsequently remains private to each individual).

In this context, minimal models that incorporate both resource pooling and infor-
mation can provide a good quantitative framework to study how cooperation emerges
and persists under uncertainty. The model presented in this thesis follows this approach,
bridging individual decision-making under limited information and resource sharing in
fluctuating environments.



Chapter 2

Modeling framework

We consider a simple system of two agents whose resources undergo stochastic multiplica-
tive growth. We introduce limited information regarding a fluctuating binary environment
as a means to improve the agents’ growth. We allow agents to interact by two mecha-
nisms: (i) partitioning the available information between them, and (ii) sharing fractions
of their resources as a common good. The interplay between these two mechanisms allows
us to explore the relation linking uncertainty and cooperation in a paradigmatic model
with applications in economics and population biology.

2.1 Model formalisation

The system we study consists of two primary components: the environment and the
agents. Agents grow individual quantities, which we call resources or wealth, through
a stochastic process. The environment assumes various states which affect the growth
dynamics of these resources. The agents’ goal is to maximise the growth of their own
resources in the long term. Agents can do so by investing their resources: they choose how
to partition and bet the totality of their wealth on the possible states the environment
can assume. Agents are informed about the current state of the environment through
noisy signals. Each agent receives its own private and independent signal that matches
the state of the environment with a probability that, in principle, could be different for
each private signal. In the present section, we formalise this system.
We assume the environment F can have two states

E={+1,-1}, (2.1)
with equal probability P(F) = 1/2. Agent i receives a signal

S, — { E with prob. P(E = S5;|S;) = p; (2.2)

-F with prob. P(E # S;|S;) =1—1p;

where p; represents signal S;’s reliability.



Modeling framework

We will focus our study on the case of two agents and two states of the environment,
and parameterise distributions as

P(E) =1/2 (2.3)
P(S;) =1/2 (2.4)
P(E|S;) = P(Si|E) = pidp.s, + (1 — pi)op._s, (2.5)

where the first equality in Equation 2.5 follows from Bayes and the choice of equiprobable
environment’s states.

Agents use the information they get from their signals to invest all their resources
in the states of the environment. At each time step, each agent independently invests a
constant fraction

fi € 0,1 (2.6)

of their resources on the environment state £/ = +1, and the remaining part f;” =1 — fi+
on the opposite state £ = —1. Hence, they receive returns from their investments,
depending on the actual state of the environment. We define the investments’ returns as
follows:

by - flai(t if e=F

bi'fiel‘i(t) if G#E

where x;(t) represents the total amount of resources belonging to agent ¢ at time ¢ and
the reward factors
bTa bi >0, (2.8)

are constants that apply uniformly to all agents, reflecting a property of the system (of
the environment the individuals live in) rather than a specificity of single agents. The
arrows notation suggests the context of a system in which a higher reward is given to an
investment matching the environment, while the resources invested in the wrong one have
a lower return, or even are completely lost if by = 0. In the following, we will therefore
assume, without loss of generality,

by > by > 0. (2.9)

We can now assume a discrete-time process and describe the resource update at each
time step as a stochastic process. The relation with the continuous-time process can be
found in section 7.1. We will also always assume delta correlation in time. The investment
strategy, that is, the fractions of wealth an agent invests in every state of the environment,
will depend on its signal. This means we can define signal-dependent fractions as

fe+ 15 =1, (2.10)

where f;j is the fraction invested in state E = +1 once received a signal S;. In these

terms, the resources z;(t) update reads, for a general signal S;, as

fEbyzi(t) + fg byai(t) with probability P(E = +1|5;)

f;ribia:i(t) + fg.brxi(t) with probability P(E = —1|S;)
8

zi(t+1) = { (2.11)



2.2 — The Geometric Brownian Motion

We notice that the investment fractions feature some symmetries. Indeed, it is easy to see
that, since the environment’s states are equiprobable, the fraction of resources invested
in the state of the environment matching (or mismatching) the signal should only depend
on the signal reliability, and not on the specific value +1 or —1, so that we can write

f&+1fs =1
fi=1r (2.12)
fr=F

This reduces the degrees of freedom of the choice of each agent to only one variable, which
we choose to be f = fj[ This will prove to be useful in the calculation of the relevant
growth rate value.

2.2 The Geometric Brownian Motion

The Geometric Brownian Motion (GBM) constitutes a natural description of the resource
growth process. The relevant characteristics of this process [8] are therefore briefly de-
scribed here. A first idea of what a GBM process is can be grasped from the fact that it
can be regarded in the logarithms’ space as a simple Brownian Motion. The GBM is a
multiplicative White Noise process described by the equation

de = zpdt +xo dW (), (2.13)

where W (t) is a Wiener process and dW (¢) represents the noise term; x stands for the
agent’s wealth in our case. We also define the new variable

qg=logz . (2.14)

This new variable ¢ constitutes a better quantity to handle, and it is the variable we
will mainly treat in the following. Performing the change of variable by resorting to Itd
calculus 7.2 we can write the Brownian Motion equation Equation 7.38

2

_ o
i) = (u— %)+ oelt), (215)
where €(t) is a Gaussian white noise, and
t
q@%:%t+a/1ﬁ%@% (2.16)
0
with the new drift term gg = p — %2 This allows us to calculate the solution for

x(t) (7.46), and its average:

2

((t)) = 2(0) exp <(90 + (;)t> (2.17)
~ x(0)et. (2.18)

9



Modeling framework

We conclude by noticing the fact that the average value grows much faster than the
typical (median of the lognormal distribution) value

(z(t)) ~ e (2.19)
ela®) o g90t — o=t (2.20)

2.2.1 Non-ergodicity and growth

The last equations (2.19) and (2.20) highlight a fundamental property of the GBM: the
lack of ergodicity. The solution (7.46) shows how the process z(t) is not stationary. On
one hand, the time average can either be 0 or diverge, depending on the sign of the It
exponent p — 0—22 On the other hand, the ensemble average always grows exponentially
in time.

The time-average growth rate, which we called gg, is the result of the removal of
stochasticity using time [13]

0.2

- (2.21)

1
= lim — (1 = —
g0 = lim — (logx(t)) =
and is able to capture the effect of fluctuations, contrary to the ensemble average growth
rate

o1
Jim  log(a(t)) = 4, (2.22)

which is instead the result of the removal of stochasticity by means of an increasing
ensemble size

In a multiplicative growth picture, the difference in the time and ensemble average
growth rates can be better understood by noticing the parallelism of these quantities
with, respectively, the geometric and arithmetic mean. From our perspective, the relevant
quantity is the typical growth an individual agent can expect to experience in the long
term, rather than the growth achieved in the large-population limit by the population
average. Therefore, the time average gg is the most natural quantity that agents can look
at to maximise their growth.

Resorting to our discrete-time model, we can define agents’ objective function as
follows

(0 )s 5 = <log "’”S(J;)l)>s R (2.23)

10



Chapter 3

Total information constraint

Motivation

In the study of stochastic growth under environmental uncertainty, information can play
a role comparable to that of resources under the circumstances that it is a limited asset
that agents must exploit to improve their growth.

By constraining the total information available to the agents, we compare systems
under the same "budget of knowledge" about the environment, and we can thus explore
how different partitions of this budget affect the agents’ behaviour. This perspective
is particularly relevant in fluctuating environments, where asymmetry in information
can alter the balance between cooperative and selfish strategies. The definition of an
appropriate measure of information division is therefore essential to link the analysis of
cooperation with the informational constraints naturally present in real systems.

3.1 Mutual information definition and evaluation

The agents receive information about the fluctuating environment through their private,
independent, noisy signals. We set a constraint on the value of the total information that
agents receive. We can define the total mutual information Z between the state of the
environment E and the signals S [12,14]

7=IE;S)= gj I(E; S;) — R(E; S), (3.1)
i=1

where N is the total number of agents and R is the coefficient of redundancy. The latter
measures the difference 1(Sy;...Sy) — I(S1;...SnN|E). To have a better interpretation
of this quantity, we can consider the relation between mutual information and entropy.
Mutual information can be written as the difference in Shannon entropy

_AH(E)

I(E;S;) = H(E)— H(E|S;) = AS;

(3.2)

11



Total information constraint

This allows us to generalise the information on multiple signals as

N N 9 N
B S A*H(E) ANH(E)
IE:S)=YIES)~ Y Sane = co——a

and using the identity H(X,Y) = H(X|Y) + H(Y) we can write

A’H(E) A

AS:AS;  AS; (H(Ewi) - H(E))
= 1(S;; S;) — I1(Si; S| E)
= R(E; Si; S])

(3.4)

(3.5)
(3.6)

Then, the coefficient of redundancy can be interpreted as the part of information that
would appear in every term of the sum of single agent informations I(S;; F), and its
subtraction corresponds to taking care of the overcounting of the shared (redundant)

information. Hence, the total information constraint in our two-agent system reads

1= I(E;S1) -I—I(E; SQ) — 1(51;52) + I(Sl;SQ|E),

(3.7)

which allows for the straightforward graphical representation shown in Figure 3.1. Using

Figure 3.1. Entropy representation of information. Mutual information between two
events corresponds to the intersection of their entropy shape. The information I(S;;S;)
corresponds to the union of the green and bi-coloured areas. Overcounting of the latter

area explains the redundancy term.

the Kullback-Leibler definition of information, each term gives (Appendix 7.3):

I(S;; E) = log2 + p;logp; + (1 — p;) log(1 — p;)
I(S1; S2) = log2 + m(p1, p2) log(m(p1, p2))+
+ (1 — 7(p1,p2)) log(1 — w(p1,p2))

1(Sy1; S,|E) = 0,

12



3.1 — Mutual information definition and evaluation

where 7(x,y) = x + y — 2xy is related to the mutual exclusive probability P(X @ Y).
Putting all terms together, or equivalently, using the mutual information definition di-
rectly

A P(E, S1,59)

= (3.11)
{E}{S1}.{S2}

the condition on total information reads (Appendix 7.3.1):

—,

Z=1(FE;S)= log2+
+ p1logpr + (1 —p1)log(1 — p1)+
+ p2logpa + (1 — p2) log(1 — p2)+
— m(p1,p2)log m(p1, p2) — (1 — w(p1,p2))log(l — 7(p1, p2))

= log2 — h(p1) — h(p2) + h(m(p1,p2)), (3.12)

where we defined the entropy function h(z) = —xlogz — (1 — z)log(1l — z). The shape of
the total information is shown in Figure 3.2.

Figure 3.2. Shape of the information function on the p; — ps space.

The imposition of this constraint corresponds to identifying sets of couples (p1,p2),
i.e. sets of systems, that receive the same total information in varying partitions between
the two agents. This means we are classifying systems according to different contour
lines at values Z on the total information. The shape of some of these lines of constant
total information, restricted to the first quarter of the (p; — p2)-plane thanks to the
symmetry around the p; = 1/2 value, is shown in Figure 3.3. Additionally, symmetry
between the two agents upon exchange p; <> po allows us to further restrict to half
the first quarter. We observe that, while for lower Z values the contour lines can be

13



Total information constraint

I(E751a52)

1.0 3

0.6

0.5

0.4

0.3

0.2

0.1

0.5

L i L L L L

0.5 06 0.7 0.8 0.9 1.0

P1

Figure 3.3. Contour plot of the total information function on the first quarter of the
(p1, p2)-plane centred in (0.5, 0.5).

approximated by circumferences, for higher constant values of total information, the
contour lines progressively transition to the rectangular shape of the maximum 7 = log 2.
For 7 tending to log2, the two signal reliabilities p; and ps approach the limit curve
corresponding to perfect signals p; = p2 = 1. In other words, the values pyiq(Z) of
symmetry between the agents’ signals, lying on the intersection between the contour line
of value Z and the diagonal p; = ps, approach the maximum value pyax for increasing 7.

3.2 Information division and symmetrisation

The total information constraint bounds the signal reliability values as (pl,pg(pl,I))

and allows us to choose p1 € [0, pmax(Z)], restricted to p1 € [1/2, pmax(Z)], as a natural
variable along which to evaluate the growth rate values at fixed Z. However, we notice
that, due to the contour level shapes, the position of pyiq(Z) := p1 = po is shifted towards
Pmax- The choice of py is, therefore, natural, but cannot display the symmetry around
the point of equal information partition, which is required to disclose some of the features
of this model. We define here, as an alternative to p1, a new measure that exhibits this
symmetry. For this purpose, we resort to the entropy representation of information.
Exploiting the previous calculation of the terms composing the total information

14



3.2 — Information division and symmetrisation

I(E; S:1,S2), we can improve the representation given in Figure 3.1. We notice that, due

Figure 3.4. Entropy representation of information, in the case
P(S51,52|E) = P(S1|E)P(S2|E). The area shaded in grey corresponds to Z = I(E; Sy, S2),
while the union of the hatched areas corresponds to I1(Sy; E).

to P(S1,S2|E) = P(S1|E)P(S2|E), the term I(S1,S2|E) = 0, and therefore the diagrams
corresponding to H(S1) and H(S2) can have intersections only within H(FE), as shown
in Figure 3.4. Hence, we can write

I(S1; E) = I(S1; E|S2) + I(S1;.52) (3.13)
I(SQ;E) :I(SQ;E’31)+I(51;SQ). (3.14)

This means that the surface covered by H(S;) and H(S2) within H(FE), the pictorial
element corresponding to Z, must remain constant along a contour line, while the differ-
ent values of p; and ps, determining I(S1; E) and I(Ss; F), increase with the area of the
intersection between their respective signal entropy and H(FE).

Our objective here is to find a measure that could represent the partition of total informa-
tion between the two agents, translating our representation in terms of signal reliabilities
into another representation closer to information quantities. We observe that the single-
agent information of agent 1, I(S1; E), is composed by a unique and a redundant part,
respectively corresponding to I(S1; E|S2) and I(S;;S3), while for the synergistic part
I(S1,S2|E) = 0 [15]. The unique part of information, which is not shared with the part-
ner, is what actually determines the difference between the two agents, while the shared
part plays the same role for both agents. The new measure must therefore be of the form

Ii(p1) = I(S1; E1S2) + f1(1(51; S2)) (3.15)
Iy(p1) = I(S2; E[S1) + fa(I1(S1; S2)), (3.16)

where f1, fo are some functions of the redundant part of information. In order to identify
suitable functions f; and fs, we require the new measure to satisfy the properties:

e The sum of the measures of the two agents is the total information
L(pl) + L(p1) =Z Y pi. (3.17)
15



Total information constraint

e The measures of the two agents are equal when the information partition is fair

I (Pmia) = I2(Pmia)- (3.18)
e No signal is preferred
I (p2) = I2(p1). (3.19)
e The measure is non-negative
Ii(p1), Io(p1) 20 V p1. (3.20)

e The measure is monotonic in pj.

A simple solution consists in equally dividing the redundant information between the
agents:

1 1

Ii(p1) = 1(S1; E|S2) + 51(51; So) = I(S1; E) — 51(51; Sa) (3.21)
1 1

Ir(p1) = I(S2; E|S1) + 51(51; So) = I(S2; ) — 51(51; Sa). (3.22)

This choice satisfies all the previous properties, as shown in Figure 3.5, and can be written
explicitly as

1i(p1) = hlpn) = (w1, pa(on))) - 5 log2 (3.23)

0.15 -

o
o
5

Iz
===1(51;52)/2
———1(Sy;E)
——=1(Sz;E)
Prmia

Information

h
0.50

Figure 3.5. Single agent information measure for two values of total information Z. Both
agents’ measures and their components are shown.
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Chapter 4

Problem setting I: Information
Partition

Motivation

Before introducing interaction through the mechanism of wealth sharing, we discuss the
fundamental properties of systems composed of agents that receive a partitioned informa-
tion Z. Our focus is on the long-term growth rate, which is the quantity that agents aim
at maximising. We therefore analyse its dependence on varying partitions of the total
information.

4.1 Optimal growth rate evaluation (I)

As discussed in section 2.1, the stochastic multiplicative growth process consists of agents
gambling on the state of the environment. We can define, for every agent, returns from
investments in discrete time. The investment amounts consist of continuous fractions of
the resources z;(t) owned by agent i at time . We assume that every agent always invests
the totality of its resources in the two possible states of the environment, so that at the
next time step t + 1, the wealth becomes:

(t+1) fEbrai(t) + fo byxi(t) with probability P(E = +1|S;) (41)
i = ’ ’ .
f;im:ri(t) + fg,brxi(t) with probability P(E = —1[5;)
The long-term growth rate for agent i, defined in Equation 2.21, reads
M _ 1 zi(t+1) f;:bT +(1- f;:-)bi with probability P(E = +1|5;) (4.2)
0= 08T féby + (1= f&)by  with probability P(E = —1|S;) ~

and making use of the symmetries of the investment fractions (2.12), we can express the
growth rate with only one degree of freedom, which we choose to be fi(l).

With these simplifications, and omitting the agent index in f;i @ fg—:_ for clarity, the

17



Problem setting I: Information Partition

average of the growth rate becomes

() _ o .I‘Z'(t + 1)
o = Qos ™57 ) (1.3
= Y  P(Si,E)log zilt+1) (4.4)
{SHE} zi(t)
= 3" P(S)[P(B = +1ISi)log (fbr + (1= F§)b)+ (4.5)
{Si}

4 P(E = —1]8;)log ((1 — f$)by + fstbi)}

_ ;[P(E — 118, = +1)log (fFby + (1 — F1)b,)+ (4.6)
+ P(E = ~1|S; = +1)log (1 = f)by + f1b))+

+ P(E = +1|8; = —1)log (1 — f)br + F5b, )+

+ P(E = —18; = —1)log (b + (1 - fi)bi)}

= P(E = +1|8; = +1)log (f1br + (1 = [1)by )+ (4.7)

+ P(E = +1|E = ~1)log (1 - f)b + f1b,)

= plog [£1br+ (1= FDb] + (L p)log [(1— £+ F1b). (48)
In accordance with the Kelly criterion [16], to maximise the long-term growth rate, here
we derive with respect to the only degree of freedom f; := :(2), and find the stationary
point:
0=05, (a) (4.9)
by — by by — by
e A L ey AT (410)
leading to
by — by by — by
Di =(1- Pi 4.11
fiby 4+ (1 = fi)by ( )(1 — fi)by + fiby (4-11)
pi(br+ filby = b)) = (1= pi) (b + filbr — b)) (4.12)
fi(by = bp)(pi + 1 —pi) = (1 — pi)by — piby, (4.13)
and finally
N b b
- - L (1-p). (4.14)



4.1 — Optimal growth rate evaluation (I)

The fraction of resources invested in a state can only take values in the range [0, 1], hence

we need to bound the optimal investment fraction f; = argmaxy, <g(()i)) as a piecewise

function:
. N b

1 if fl->1<:>pi>bTJIbi
. ] . )

b b o
sl — pog(L—p) i 7 €(01)

An example of the analytical behaviour of f; for the case by =10, b, € [0,1] shown in
Figure 4.1.

Figure 4.1. Kelly optimal investment as function of p; and by, given by = 10. For b =0,
fi1(p1) = p1. For non-zero values of by, the linear function acquires a shift and an angular
coefficient determined by the combination of the two reward factors.
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Problem setting I: Information Partition

By substituting the optimal unbounded strategy f; into g(()i), and consequently ex-

pressing it as a function of p;

(g87)" = pitog [ £y + (1 = F7)by] + (1 = pi)log [(1 = f)by + f7b] (4.16)
= p; log fl*(l% — bi) + bi} + (1 — pi) log [ — fi*(bT — bi) + bT}

= p; log _pri —b (1 —pi) + bi} + (1 —p;)log [— bipi +b (1 —pi) + bT}

= pilog [pi(by +by)| + (1= pi)log [ (1 — pi) (b + by)|
= log(by +by) — h(pi), (4.17)

so that we can now define the piecewise function f]éi) (pi) = <g(()i)( fi(pi), pi)>, reading;:

b
piloghy + (1 —pi)loghy  if [7=1 = pi>; ib (4.18a)
) T 1
i = by
0 pilogby + (1 — p;) log by if ff=0<+<= p< bt b (4.18b)
0 1
log(by +0-) — h(pi) if f*e(0,1) (4.18c¢)

where the cases (4.18a) and (4.18b) straightforwardly follow from Equation 4.8 by sub-
stituting, respectively, fjrr =1 and fi =0.

4.2 Growth rate interpretation and its extremal values

We begin by focusing on the analytical expression of the average long-term growth rate
in the case where the investment fractions remain within their physical limits (4.18c¢), i.e.
without saturating to their extremal values, as illustrated in Figure 4.2. We observe that
its expression is composed of two terms, allowing for the following interpretation:

e An environment generosity term log(by + b)), independent of the signal reliability
p;. Depending only on the sum of the two reward factors, this term accounts for
the stress of the environment, regardless of the agents’ ability to predict its state.
It is therefore a positive shift of the entropic term.

o An uncertainty term, minus the entropy h(p;), dependent on the signal reliability
p1. Recalling Equation 3.8, h(p;) can be rewritten as log2 — I(S;; E), that is,
the information agent ¢ would need to have perfect knowledge about the two-state
environment.

Then, the average long-term growth rate for diversified investments can be interpreted as
the baseline contribution of the environment generosity, corrected by the penalty due to
uncertainty. Equivalently, it is determined by how far the agent remains from the ideal
reference of perfect knowledge of the environment.
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4.2 — Growth rate interpretation and its extremal values

7Z=0.15

1

Figure 4.2. Average long-term growth rate in the case f* € (0,1), shown for different
values of the total information constraint, as a function of the two variables p; and Iy, for
parameters by = 10, b = 0. The minimum and maximum theoretical values, respectively
log(by + b)) — log2 and log(by + b)) — (log2 — I), are shown in grey. The I; variable
representation emphasises symmetry between the two agents’ growth rates around the
equal information partition point, where they coincide. Higher information leads to faster
growth, and brings the equal growth rate value closer to the upper bound, reflecting a
higher redundancy I(S7;S2) in information.

Thanks to the direct relation of the average long-term growth rate with information,
by means of the previous reformulation of the entropic term, we can explore the implica-
tions of the maximum total information constraint on agents’ growth.

We can rewrite Equation 4.18¢ in terms of the information quantity I(S;; E) as

!

— log(bs + b)) — [log2 — I(S;: E)]. 4.19
feo og(bt + b)) — [log2 — I(S;; E)] (4.19)

Now, recalling the total information decomposition in Equation 3.7, and considering the
constraint Z = I(S1, So; E), follows that the single agent information must be bounded
as

0 < I(S;E) < T <log2, (4.20)
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Problem setting I: Information Partition

hence, the analytical average long-term growth rate

log(by + b)) —log2 < g((f) < log(by + b)) — (log2 — Z) <log(bs +by). (4.21)

o fre(,1)
Therefore, we conclude that the constraint on total information sets the limit on the
maximum growth rate.

4.3 Diversification breakdown in the optimal strategy

In the previous section 4.2, we characterised the growth rate in the case where agents
optimally diversify without saturating their allocation. However, depending on the system
parameters, the optimal investment strategy can drive the allocation fractions to their
boundaries, corresponding to bets on a single state of the environment. In this section,
we take a step back and turn our attention to the regimes f* = 1 and f* = 0, where
diversification breaks down.

We define a system as saturating when, for some partition of the available informa-
tion, the optimal investment fractions reach their extremal values. Therefore, we identify
the distinctive characteristic of these systems as the combination of the values of the set
of parameters (Z, by, by).

To illustrate the role these parameters play in deciding whether investment fraction sat-
uration occurs, we can show in the p; —po space the total information contour line at
information Z together with the function fl, as in Figure 4.3. The shape of fl as a func-

b, =0 b, =3

Figure 4.3. Investment fraction fl for two values of the parameter b, and 7 =
0.2, by = 10. The contour line of constant information Z is shown to highlight the
intersection between the two curves.

tion of p; at fixed Z is given by the projection of the intersection between the contour
line and the surface, which results in a piecewise linear profile. By symmetry, the surface
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4.3 — Diversification breakdown in the optimal strategy

for fg in the p; —po plane coincides with that of fl, but oriented to be increasing along
the po direction. Hence, the projection of the intersection as a function of p; results in a
piecewise curve. The investment fractions for both agents are shown together as functions
of p1 in Figure 4.4, for the same set of parameters as in Figure 4.3.

by =0 by =3
Investment fraction Investment fraction
1.0 10
09 0.9
0.8 — f1 08
or —rf2 .

06 06

L S S S L 05

log (bp +by)-log2

Figure 4.4. Investment fractions and corresponding growth rates, for both agents,
with parameters by = 10, Z = 0.2.

The onset of saturation is determined by the intersection of the contour line with the
fl =1or fl = 0 regions. This means that, restricting the discussion to pi,ps > 0.5
by symmetry, and recalling the assumption by > b, we can analyse the role of each
parameter as follows:

b;) For b, = 0, saturation is inhibited. For b, > 0, fl can saturate for sufficiently high
p1.

bs) Once by > 0, the difference between the two reward factors by — b; determines the
size, in terms of p; values, of the saturating region. For lower differences in reward
factors, gambling on the two states of the environment has a more similar outcome;
investing in the mismatched state becomes less "dangerous’, or less disadvantageous,
and this allows for more extreme strategies, giving up on the safety ensured by
diversification.
The condition b, = 0, by > 0 makes bets on the matching state infinitely more
convenient, requiring conservative investments.
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Problem setting I: Information Partition

T) Higher values of total information select a contour line closer to the saturation
regions: highly reliable signals allow agents to invest with confidence.

In Figure 4.4 we show, for both agents, the investment fractions corresponding to
the cases illustrated in Figure 4.3, and the resulting average long-term growth rates. In
this figure, one can notice that gf)” and f}(()2) do not reach the maximum theoretical value
log(by +by) — (log2 —Z). This is due to the saturating investment fractions: to reach the
latter value, agents would be required to invest more than the totality of their resources,
exceeding the upper limit of their investment fractions. Indeed, the distance from the
analytical maximum disappears for the unbounded growth rate <g((f)>* of Equation 4.17,
while it increases for fractions saturating in greater regions of the p; —po plane, as shown
in Figure 4.5.

Investment fractions

100

oof f‘|
08" f2

0.7F

0.6F

05! ¢ ‘ ‘ ‘ ‘
05 06 07 08 09 P1

Growth rate

2.4; log (bT +/)¢)—(|092—I)

231
22F
21F

20

log (b +by)—log 2

05 06 07 08 09 P1

Figure 4.5. Investment fractions and growth rates for by =10, b, = 3, Z = 0.5.
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Chapter 5

Problem setting II: Information
Partition and Wealth Sharing

Motivation

In chapter 4, the main properties of systems of agents partitioning a fixed total infor-
mation have been discussed. Now, we introduce the second mechanism of interaction:
wealth sharing.

Sharing resources is a behaviour that emerges in both biological [17, 18] and socio-
economic systems [19], where individuals may pool part of their resources for collective
benefit. In our framework, this mechanism allows agents to cooperate by contributing
a fraction of their wealth to a common pool, which is then redistributed equally. This
addition allows agents to altruistically and asymmetrically cooperate with the aim of
increasing their own average long-term growth rate. Reciprocity is therefore required
for the agents to balance the cost of sharing and improve their growth. In the present
chapter, we study this mechanism of interaction at interplay with the previously analysed
information partition, expanding on the setting described in [5-7]

5.1 Optimal growth rate evaluation (II)

5.1.1 Analytical expression for the growth rate

This subsection 5.1.1 mainly follows the contents from [6].

In this new wealth-sharing setting, the interaction mechanism can be formalised in
discrete time. We define the value a; as the fraction of resources z;(¢) that is shared by
agent ¢ at time ¢. An important remark is that while the amount of resources evolves
in time, the fraction a; is a constant characterising agent ¢’s strategy in the long-term
growth. The totality of the pooled resources is then redistributed equally between all the
agents, which in our case are two, independently of the fraction of resources they shared.
The discrete-time dynamics can therefore be considered as a two-step process (with the
order of the steps being irrelevant in the continuous time limit). The first step consists
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Problem setting II: Information Partition and Wealth Sharing

in the sharing process

—a1T1 (t) “+ asxo (t)

x1(t+1/2) = x1(t) + 5 , (5.1)
and the second step consists in the individual growth of resources
z1(t+1) = z1(t + 1/2)G (1), (5.2)

where the stochastic multiplicative noise (1(t) corresponds to the discrete-time resources
update described in Equation 2.11.

In continuous time, agents’ dynamics &;(t) = p;x; + 0;2:&(t), where &(t) is a delta-
correlated white noise, become coupled:

.%(t) = W;x; + azmzfz(t) + %[aja;j(t) — aixi(t)], (5.3)

where j # i and a; = a;/At in the continuous time limit At — 0 is the sharing rate.
The ¢;(t) = log(z;(t)) is again convenient to analytically describe the average long-term
growth rate

g = lim + (gi(t)), (5.4)

t—oo t

and using It6 calculus it’s possible to show that, for agent 1
. 1) 01 02 _
(@) = g0 — 5 + 5 (=) (), (5.5)

where, with a slight change of notation, g(()% is the uncoupled average long-term growth

rate for some choice of investment strategy. The dynamics of (e2279) (¢) can be ana-
lytically derived, and it is ergodic with a stationary distribution <eq2—q1>eq. Then, it
is possible to find an analytical expression for gsl)‘ag,
presence of wealth sharing with sharing rates ay, as:

the growth rate of agent ¢ in the

s Koo (V552)
n _ 1 _ @ n a0 —1+’7+a2205‘1 o2 56
gal\ocg - 90|0 7 9 K (m) ) ( . )
—y4+ 0‘22;5‘1 o2
2 + 2
where K, (z) are modified Bessel functions of the second kind, o2 := %(1 —p) is the
1_ (2
effective magnitude of stochasticity, p is the correlation across agents, and ~ := M

g
is the difference between the uncoupled growth rates with respect to stochasticity.

5.1.2 Numerical evaluation of the growth rate

The analytical expressions discussed in subsection 5.1.1 have been implemented in Julia
and Wolfram Mathematica programming languages. The code numerically evaluates
the average long-term growth rate of the agents in the presence of wealth sharing, for
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5.1 — Optimal growth rate evaluation (II)

given parameters (pi, Z, a1, aa, by, b)), relying on the SpecialFunctions package for
the evaluation of the modified Bessel functions of the second kind.

Evaluating numerically the average long-term growth rate, for arbitrary investment
strategies, as a function of p; (Figure 5.1), a first property emerges:

a1 >0 ANag >0 — (1) (2) (5.7)

ga1|a2 = ga1|a2’

for all sets of physical values of the remaining parameters (p1, Z, by, b}).

Jolo Jai |z Wealth Sharing Advantage

Growth rate

1.80 to0f oz

~
~
175 N\ 0.15
175 N\

1.70 _— \\ 0.10

’ — Agent 1 N\
\ 0.05
165 170 Agent 2 \
\ 055 060 065 070 075 \_080 Pl
160 \

0.55 0.60 0.65 0.70 0.75 0.80 P 0.55 0.60 0.65 0.70 0.75 0.80 P1

Figure 5.1.  Growth rates for zero and non-zero wealth sharing, and the individual wealth
sharing advantage g((;l)‘% — g(()%, for investment strategies f; = 0.6, fo = fa(p1), sharing

rates a; = 0.2, ap = 0.05, system parameters by = 10, by =0, 7 = 0.2.

The coincidence of the two growth rate values for arbitrarily small sharing rates can
be understood considering the fact that any difference in growth rate between the two
agents is exponentially amplified in terms of accumulated resources over the infinite time
horizon we are considering. Consequently, the agent experiencing the lower multiplica-
tive noise dominates the long-term dynamics, effectively taking the lead by setting the
pace of collective growth. The other agent, whose fluctuations are larger, has a growth
rate dictated by the resources inflow received through sharing, and therefore reflects the
partner’s growth rate, according to the stationarity of the distribution of (exp(g2 — ¢1)) eq*

Furthermore, a deeper understanding of this cooperative coupling between the agents’
dynamics can be obtained by comparing the (vx;ealth—slge)tring growth rate with the uncou-
3 k3

|

arlas — Y000 quantifies the net advantage of

pled one. The difference between the two, g
cooperation.

As illustrated in Figure 5.1, we can see how the wealth sharing advantage for agent 2
is negative when its uncoupled growth rate significantly exceeds the partner’s, and it is
positive when it benefits from the other agent’s faster growth. Interestingly, when the
two uncoupled growth rates are equal, the advantage in sharing remains positive. The
collective benefit originates from the threefold diversification of investments: each agent
effectively allocates its resources not only into the two states of the environment, but also
into the partner’s wealth. The latter acts as a reinvesting channel, by gambling (approx-
imately with the same proficiency) with the received resources and sharing at the next
time step, thereby damping fluctuations.

This effect is therefore a first hallmark of an advantageous cooperative behaviour, and
we will investigate it in the following.
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Problem setting II: Information Partition and Wealth Sharing

5.1.3 Optimal investment strategy

The agents’ objective is to maximise the long-term growth of their resources. Their
investment strategies will therefore be designed to accomplish this task. In general, for
agents able to share their wealth, such strategies would correspond to argmaxy, ggl)m,
where the optimal fraction depends on the signal reliability, as in Equation 4.15, but
also on the coupled dynamics through the sharing rates. The mutual dependence of the
two agents’ strategies in the three-dimensional parameter space (p1, a1, o) makes the
analytical treatments of this optimisation non-trivial.

For this reason, in the following analysis here, we will adopt a simplified but significant
approach: we will assume that each agent invests according to the uncoupled optimal
fractions, i.e., the values ﬁ that maximise the growth rate in the absence of wealth
sharing g(()lz). This choice allows us to isolate and characterise the sole effect of wealth
sharing on the growth dynamics, without introducing additional dependencies due to
reoptimisation of the investment strategy. In other words, agents are considered to follow
their individual Kelly strategies while optimising the wealth sharing rates, so that any
observed change in growth rate can be attributed exclusively to the cooperative behaviour
rather than to a redefinition of their investment strategy. Moreover, this assumption
can be interpreted as a realistic constraint: in biological, social, or economic systems,
agents may not continuously reoptimise their strategies due, for example, to adaptation
timescales or inertia in their response. The investment rule that is optimal in isolation
thus serves as a baseline behaviour, with respect to which the effects of cooperation can
be evaluated.

5.2 Optimal collective behaviours

The study of the emergence of cooperation requires analysing how cooperation behaves
under small perturbations of the agents’ strategies. In this context, an evolutionary
stable state (ESS) corresponds to a configuration of the agents’ parameters that cannot
be invaded by small deviations in the sharing rate or in the information partition.

For our analysis, we focus on the analysis of the average long-term growth rate g, |a,,
already optimised over the agents’ investment strategies. As a first step, we consider
the simplified case where both agents adopt the same sharing rate. This allows us to
characterise the collective behaviours before introducing asymmetrical strategic choices.

5.2.1 Equal sharing rates

A first step in the study of the average long-term growth rate optimised as specified in
subsection 5.1.3, denoted as gy, |a,, is to consider the special case in which the two agents
adopt the same sharing rate

a=a) = . (5.8)

We can numerically evaluate §a|a(p1) for different values of the common sharing rate
«, as shown in Figure 5.2. It is possible to identify a threshold «, = 0.35 corresponding
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Figure 5.2. Average long-term growth rate g, and wealth sharing advantage gq|o — géj()),

for various values of & = a1 = ap, with parameters Z = 0.2, by = 10, by = 0.

to the critical point of a supercritical pitchfork bifurcation [20].

By examining the wealth sharing advantage, §qjo — g((;lz), we observe that the difference
between the curves above and below o, lies in the fact that at equal information par-
tition higher sharing rates enhance growth more than lower ones, while for unbalanced
information partition the situation is the opposite.

A broader picture can be obtained by numerically evaluating the growth rate gqq
in the bidimensional parameter space (pi1,®). As shown in Figure 5.3, the transition
along the a direction gives rise to the coexistence of multiple local maxima. These can
be regarded as attraction points of the system’s evolutive dynamics in this restricted
parameter space.

We can identify two qualitatively distinct evolutionary outcomes:

Asymmetric attractors: They are characterised by one agent that effectively drives
the growth by employing all the information, while the other agent follows. A
wealth sharing rate close to zero reduces the cost of maintaining the slower agent,
while any value of « strictly higher than zero is yet sufficient for the follower agent
to share the leader’s growth rate. On the other hand, both agents’ advantage comes
from supplying the leading agent with as much information as possible, thus push-
ing the system to the extremes of the p; axis.
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Figure 5.3. Average long-term growth rate g,|, as function of p; and a = a3 = aq, for
a € [0.01,0.99], with parameters Z = 0.2, by = 10, by = 0. The two kinds of attraction
points have been highlighted with different markers: (light green circle) cooperation at-
traction point (pmid, 1); (dark green triangle and square) asymmetric attraction points,
respectively (Pmax, 0.01) and (0.5, 0.01).

Because of the source of growth of the follower agent, this point of attraction can
describe "parasitic" systems, or, taking the opposite point of view, "greedy" be-
haviours.

In our case, restricted to o > 0, we observe two symmetric attractors of this kind,
namely (pmax, 0.01) and (0.5, 0.01), highlighted with dark green markers in Fig-
ure 5.3.

Full cooperation attractors: These attraction points represent evolutionary outcomes
in which both agents equally participate to cooperate. Along the information par-
tition axis, stability is ensured by the fact that the equal partition point pmq cor-
responds to the maximum position. As shown in [6], along the wealth sharing rate
axis, agents with equal uncoupled growth rates take advantage in sharing more
than the partner, leading to the ESS aess — 00. Therefore, if we restrict our sys-
tem to the one represented in Figure 5.3 with values of @ = a3 = as < 1, we can
identify the point (pmid, max) as an ESS (highlighted with a light green marker in
figure); more in general, systems with a3 = aw exhibit the evolutionary stable state
(Pmid, @ — 00).

5.2.2 Asymmetric sharing rates

We are now ready to generalise the framework investigated in subsection 5.2.1 by relaxing
the constraint of equal wealth sharing rates. We can still numerically evaluate the aver-
age long-term growth rate, but the now three-dimensional parameter space (pi, a1, as2)
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5.2 — Optimal collective behaviours

requires different methods for a visual representation. Therefore, we take a step further
in the direction of addressing the questions concerning not only the location of the attrac-
tors, but also the size of the basins of attraction, i.e. the sets of points in the parameter
space leading to each of the points of attraction. With this in mind, we numerically evalu-
ate the gradient of the average long-term growth rate by making use of the Julia package
FiniteDifferences. Additionally, we perform the gradient evaluation in the rescaled
parameter space (p1,a1,a2) — (I1, a1, a2), using the single agent information measure
Equation 3.23. The latter ensures symmetry along the information partition direction,
thus paving the way for a more significant study of the basins of attraction by properly
rescaling the finite differences employed in the gradient evaluation. Furthermore, it al-
lows us to restrict our discussion only to the first half of the information partition axis
I, € [0, Z/2], being the gradient such that
Vdaater L~ 1) = (~5 - fjon (1), a1, 5 GfenlD)) s (59)

where V = (0r1,, Oay, Oay)-

For the analysis of the gradient, we implemented a Julia code that, using the Distributed
package for parallelisation, evaluates the gradient on a three-dimensional lattice; gener-
ates walkers on every lattice point; tracks their walk in the continuous parameter space,
following at every step the previously evaluated gradient for the currently occupied lattice
cell. In this way, we are able to characterise the range of parameters considered in the
previous subsection 5.2.1 ay, ag € (0,1).

We find that the restricted dynamics converge to three attraction points, shown in Fig-
ure 5.4, which fall into the same two categories exposed in subsection 5.2.1, at coordinates:

C= (2/27 Omax, amax); (5.10)
G= (07 Qmax; min )7 (511)
P=(Z, Qmin, Omax)- (5.12)

The full cooperation attraction point C shares the same coordinates as the one encoun-
tered in the symmetric sharing case. Indeed, the surface shown in Figure 5.3 lies on
the diagonal surface of the new "cubic" parameter space that contains the I; axis and
the point C'. The two asymmetric attractors, instead, have different sharing rates with
respect to the previous ones. The increase in the sharing rate of the follower agent can
be explained by the fact that, when gambling without any information, the best effective
investment is represented by the other agent. Hence, these two attractors can represent
a slightly different, more exploitative type of parasitic relation.

To further characterise these attractors, we can now focus on their basins of attraction.
In Figure 5.5, we colour every point of the parameter space lattice, up to the equal
information-partition surface, with the colour of the final point of the corresponding
dynamics. We rescale each coordinate to be in the interval [0, 255] and use the codification

Red =1, (5.13)
Green = oy (5.14)
Blue = ao, (5.15)
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a2

Figure 5.4. Attraction points in the parameters space (I, a1, ag), for aj,as €
(0,1), with Z = 0.35, by = 10, by = 0. The colours of the markers correspond to
their coordinates codified in RGB. The dashed-line part of the cube is redundant by
symmetry with the solid-line part.

Figure 5.5. Basins of attraction over the first half of the information partition axis, for
a1, a0 € (0,1), with Z = 0.2, by = 10, b = 0. Each colored cell corresponds in position to
the starting point of a single dynamics, and in colour to the coordinates, codified in RGB,
of the final point of that dynamics.

so that, for example, the full cooperation attraction point C is coloured in (R: 128, G:
255, B:255), while the colour shading is due to the slow optimisation dynamics of some
points.

The structure of the basins of attraction strongly depends on the total information
T available to the agents. By varying this parameter, we can explore how environmental
predictability shapes the stability and prevalence of cooperative behaviours.
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For low values of Z, the agents have limited predictive ability, and stochastic fluc-
tuations dominate the dynamics. In this regime, the cooperative attractor is smaller
and confined to initial conditions with already high levels of sharing. As Z increases,
the agents’ capacity to anticipate environmental states improves, and the basin of full
cooperation expands, progressively incorporating configurations with weaker initial co-
operation.

This behaviour reflects the stabilising role of information: higher environmental pre-
dictability not only enhances the average growth rate but also makes cooperation more
resistant to deviations. The qualitative change in the shape and size of the basins as 7
grows can be observed by the comparison of Figure 5.5, at Z = 0.2, with Figure 5.6.

Figure 5.6. Basins of attraction over the first half of the information partition axis, for
aq, 09 € (0,1), with Z =0.5, by =10, by =0.

33



34



Chapter 6

Conclusion

This thesis has investigated the emergence and stability of cooperation in stochastic en-
vironments through the lens of information partitioning and wealth-sharing mechanisms.
By integrating concepts from information theory, stochastic processes, and evolutionary
game theory, we have provided new insights into how environmental uncertainty shapes
cooperative behaviours in multiplicative growth systems.

Results

Our first contribution is introducing a total information constraint in a system of agents
with partial knowledge about a fluctuating environment. This serves as a framework for
comparing systems with equivalent predictive capabilities and introduces the additional
dimension of information partition for the optimisation of growth.

In chapter 3, we formally defined the total information constraint, presented the
relevant properties of mutual information and proposed an information measure able
to capture the symmetries of the system under study. In chapter 4, we explored the
implications of the total information constraint on the growth of two-agent systems. We
discussed how limited knowledge about a binary stochastic environment can influence
the decision-making process and shape the optimal average long-term growth rate. We
showed how, depending on the combination of the values of investment return factors and
individual knowledge, the growth of an agent’s resources can have two kinds of regimes.
The first regime involves non-diversified investments. Whenever the two potential returns
from investing resources become sufficiently similar, a condition that allows the individual
information to adequately compensate for the risk of loss, leading to the diversification
breakdown. The second regime requires diversified investments to handle the amplitude
of variations. In this case, the growth rate is given by the sum of two terms: the first,
dependent on the reward factors, accounts for the generosity of the system; the second
term is dependent on the signal reliability and expresses, through entropy, the knowledge
about the environment.

A further substantial contribution of this thesis lies in the explicit analysis of the
interplay between information partitioning and wealth sharing.

In chapter 5, we integrated the mechanism of information partition into the framework
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Conclusion

of [6], which allows for the sharing of resources. This approach enabled us to quantita-
tively investigate the combination of these two distinct forms of interaction, both operat-
ing under the constraint on the value of total information about a stochastic environment.
We characterised the optimal strategies for maximising the collective long-term growth
rate, and found two kinds of attraction points, respectively corresponding to asymmet-
ric leader-follower agent roles and equitable full cooperation. The former can describe
exploitation relations, relying on the (minimum) generosity of an agent that employs
the totality of the available information to improve its growth, and consequently the
partner’s. The latter kind of attraction point, full cooperation, describes a completely
symmetric strategy. It shows that an equal information partition can be stable in suf-
ficiently cooperative resource-sharing contexts. This implies that in the corresponding
basin of attraction, agents with superior initial knowledge of the environment are willing
to sacrifice part of it to reach equality, the advantage of this informational cost coming
from the enhancement of the performance of the diversification channel provided by the
partner.

Finally, we numerically illustrated how higher values of the total available information
constraint lead to larger sizes of the basin of attraction of cooperation, therefore expand-
ing the range of initial strategies that converge to an egalitarian cooperative behaviour.
Contrarily, systems with more unforeseeable fluctuations are more inclined to produce
social disintegration.

Model limitations and future directions

Several simplifying assumptions of our model suggest directions for future research. Our
analysis focused on the two-agent case for analytical tractability. Extending to N-agent
systems would reveal how cooperation scales with group size and whether new qualitative
behaviours emerge in larger populations, eventually integrating network structures. The
choice of a binary environment with equiprobable states, while making the mathematical
analysis more treatable, limits the generalisability to more complex environments. Fu-
ture work could explore, for example, the introduction of diverse probability distributions
for the environment’s states. The optimisation of the wealth-sharing average long-term
growth rate (currently in progress) could provide new insights into collective behaviours.
The introduction of explicit costs for cooperative behaviours would allow for a generalisa-
tion of the model towards more realistic situations. Finally, we are currently investigating
the possibility of agents sharing the private signals with the partners through noisy chan-
nels. This will introduce the mechanism of information sharing in the current framework,
requiring the development of more sophisticated collective strategies.
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Chapter 7

Appendix

7.1 Continuous limit of the discrete-time GBM process
Our discrete-time GBM process can be written as
z(t+ 1) =z(t)((t) (7.1)
q(t+1) = g +log¢(1),

where log ((t) is a random variable with E[log ((¢)] := ¢g and Var[log((t)] := s>. We can
rewrite Equation 7.2 as

M
q(t + MAL) = q(t) + > log((t — mAb), (7.3)
m=1

assuming the discrete-time noise term to be, in the limit At — 0, the result of a continuous
process or, in other words, a Gaussian noise

M

log((t) = Z log C(t — mAt) ~ N(g- MAt, s*- MAt) (7.4)
m=1
Ellog ¢(t + At)] = gAt (7.5)

Var[log C(t + At)] = s2At,

implying
M ~
¢y = T[ &Gt — mav) (7.7)
m=1
~ Lognormal(g - MAt, s*- MAt) (7.8)
~ exp(gM At + sV M Atn(t)), (7.9)

where n(t) ~ N (0, 1).
Assuming continuous time as the limit d¢ — 0 where At = N dt in such a way that
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At

G = N, we can write

x(t + At) = x(t) + log [exp (gAt + sVALN dt&(t))] (7.10)
x(t) + gAt + sAtE(t), (7.11)

where 7(t) has been interpreted as a Wiener process, since it is the result of the sum of
“microscopic” noises £(t) ~ N (0, 1). Finally, the limit for At — 0 gives

H1) = Jim (AT + SAME() = g+ sE(1). (7.12)

which features approzimately the same values of mean and variance as the discrete process.
An alternative way to derive the continuous process from the discrete one is the
following. We write the noise ((t) as

¢(t) = E[C(1)] + Std[C(£)IC(1) (7.13)
=1+ p+oC(2), (7.14)

where ((t) ~ Lognormal(a, b). The equation for z(t) becomes

o(t + MAL) = z(t + (M — 1)At)[1 + pAt + o VAL (t + (M — 1)At)]

M
= z(t)[1 + MAtu+ VAL Y ((t —mAt)+
m=1

M-1 M ~ R
+ oAt Y Y C(t—mAL(t — IAL) + O((A)?)]
m=1l=m+1
= z(t)[1 + MAtu + oV AL Mn(t) + o2 At M(]\é_l)n’(t) +0((A)?)]
~ z(t)[1 + MAtp+ oV MAtn(t) + %an’(t)] (7.15)
= z(t)¢" (1), (7.16)

where 7, 1’ are standard Gaussian noise terms, and the equation for the logarithms for
a single At step reads

log C*(t) = log [1 + Atu + oV Atn(t) + \}iMAtn’(t)]

~ Atp+ oV A(t) + \}QUQAtn/(t) — %Atqf(t) +O((At)*/?)

~ Aty + oV AN dté(t) — %U2At — %UzAt\/N dte, (1) + O((AL)3/2),  (7.17)

where £, &, are other standard Gaussian noise terms and taking again the limit, we get

2

. , T
q(t) = Ahtmﬁ o A log ¢*(t) ~ (M - 2) + o(t). (7.18)

At/dt — N
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7.2 — It6 integration

7.2 1It6 integration

The amount of wealth an agent has at a certain time z(t) is statistically independent of
the noise at time ¢’ > ¢ due to the causality of the process. The Stochastic Differential
Equations (SDE) described by Equation 2.13 can be exactly solved using It6 Integration.
A stochastic quantity x(t) obeys the general 1t6 SDE

da(t) = a(x(t),t) dt +b(x(t),t) AW (), (7.19)
if V ¢, ¢ t t
x(t) = zo + t a(z(t'), ') dt’ + t b(z(t),t") dW (1), (7.20)

and for the solution to exist and to be unique, the following are required
e Lipschitz condition
3K :|a(z,t) — a(y,t)| + |b(z,t) — b(y, t)| < K|z —y. (7.21)
e Growth condition
3K Yt € [to, T] a(z, t)]> + bz, t)> < K2(1 + |z]?). (7.22)

In the following, we will assume that these conditions are satisfied due to the finiteness
of the process.
In GBM case coefficients are products of z(t) and do not explicitly depend on ¢ :

alw(t),t) = a(a(t)) = pa(t) (7.23)
b(x(t),t) = b(x(t)) = ox(t). (7.24)
Then, the SDE becomes
dz(t) = px(t) dt +ox(t) AW (t) (7.25)
= px(t) dt +ox(t)e(t) dt, (7.26)
where we used the Wiener process definition as the integral of a Gaussian white noise
e(t)
¢
/ ety dt’ = W (1) (7.27)
0
dW(t) =W (t+dt) — W(t) = e(t) dt, (7.28)

and we renamed the coefficients to match their meaning of mean (u) and variance (o?)
in the GBM case.

We can now recall the following properties of the Wiener process in non-anticipating
functions’ It6 integrals

dw(@t)? —dt (7.29)
dw @)™ -0 VYN >0 (7.30)
dWw(t)dt — 0. (7.31)
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These imply that when differentiating a function f(W(t),t) we need to keep only terms
up to dW (¢)%:

af . 18%f of
5 A5 o (A7 + S dW(t) +

1 9%f
20W?2

o2 f
Sy A AW () +

(of 10 of
<8t + 28W2> dt—i—w dW( ) (7.32)

df(W(t),t) = [dW (1)]*+

+

We can now consider the case of an arbitrary function of z(t): flz(t)]. It will obey the
differential equation

df[z(@)] = flz(t) + do(t)] — flz(1)]
= Pl da(t) +5 ()] de(t)? +
= ['a()] - {ala(®), ] dt +bla(t), 1] W (1) }+

N %f,/[x(t)] bla(t), ] AW (t)% +

= {afur(t), 1 [o(0)] + 0le(t), 12" e(e)] } At +0la(t), A [a(0)] AW (1), (7.38)

where terms of higher order have been discarded. Equation 7.33 is known as Itd’s
formula. It shows that a variable change such as (2.14) is not given by ordinary calculus
since f[x(t)] is not linear in z(t).

In the specific case of our variable change (2.14), in the GBM frame, we get

dq(t) = {pa (t)x(t) ()2< xé)?) }dt+ax(t)x(1t) A (t)

={u % 2 dt+o dW (1
_ (M "2> dt +o AW (¢) (7.34)
_ (M . f) at +oe(t) dt. (7.35)

That is, we obtain a Brownian Motion for ¢

alz(t),t] =a :u—% 7.36)

blz(t),t] =b =0 (7.37)
2

G(t) = (n— =) + oe(t) (7.38)



7.3 — Information evaluation

where we define

so that Equation 7.38 simply reads

i(t) = go + oe(t).

Finally, we can solve Equation 7.40 integrating as [6]

t
a(t) =gt +o [ dte(t)
0

We can rewrite the last integral as

/O t dt'e(t') = Q(t)n(t),
-/ i | s (e(s)e(s"),

and using in the general case the noise correlation to have the form

(e(t)e(t)) = exp(—|t — t'|/7)/2m,

where

(7.39)

(7.40)

(7.41)

(7.42)

(7.43)

(7.44)

we get that in the case of delta-correlated noise (t > 7) Q(t) ~ v/t ; 1 is a Gaussian
random variable with zero mean and variance 1. Then we can write the equation for z(t)

2(t) ~ 2(0) exp (g0t + o Q()n(1))
~ x(0) exp (9ot +0VEn(1)),

0.2
(x(t)) ~ (0) exp ((go + 2)75)

~ x(0)et.

7.3 Information evaluation

We can evaluate each term of the total information constraint

I =1(E;51) + I(E;S2) — I(S1; S2) + I(S1; 52| E),

using the definition

P(X,Y)
V)= 33y os (5 )-
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as follows:

o Information carried by a single signal .S;

P(E,S))
Si)=>_Y P(E,S;)log () (7.51)
{E}{Si} P(E)P(S:)
=Y "> P(Si|E)P(E)log Ps;? (7.52)
{E} {si} !
5 Z > [pids,.e+ (1 — pi)és,—g] - [log 2 + log(pids, e + (1 — pi)ds, —£)]
{E} {si}
(7.53)
= log 2 + p; log(p;) + (1 — p;) log(1 — pi), (7.54)
where we used P(E) = 1/2 and P(S;|E) = piés, g + (1 — pi)ds, —E-
e Mutual information between the two signals
S, S
1(S1:8) = 3 3" P(81,55) log( (é)l (25))) (7.55)
{S1} {S2} e
=> > > P(5,8,E (M) (7.56)
{1} {S2} {E} (51)P(52)
=3 N Y PSP P og (o) (75
{Sl}{SQ}{E, (51)P(52)
- Z >N P(S1|E")P(S2|E') log P(S1, S2)+ (7.58)
{51} {S2H{E"}
— = Z (Z P(S,|E) ) (Z P(SQE)) log P(S2)+
{E’ {s1} {S2}

_Z(ZP@WO(ZP@WOMH&)

{E'} \{51} {82}

1
- Z >N P(S1|E")P(S2|E') log P(S1, 52) — 2logg.  (7.59)
2 {5} {sa) {7

Now we can use the parameterisations of P(S1|E) and P(S2|F) in the log in the
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first term to write

log P(S1,5) =log | Y~ P(S1,5|E")P(E") (7.60)
{E"}

= 10%{ > [p15sl,E” + (1 —p1)5sl,—E”} : (7.61)
{E"}

. |:p1551,E” + (1 _pl)(SSl’_E”:| } - 10g2

= IOg {(1 - W(p17p2))651,52 + 7T(p1>p2)551,—52} - 10g27 (762)

where 7(x,y) = x + y — 22y, and therefore we find

I(S1;52) = m(p1,p2) log(m(p1, p2))+ (7.63)
+ (1 = m(p1, p2)) log(1 — m(p1,p2)) + log 2,

e Mutual information between the two signals, given the state of the environment

P(Sla S2‘E)
Sla52|E Z Z ZP 517527 (764)
{51} {52} {B} P(S1|E)P(S2|E)
P(S1|E)P(S2|E)
=2 > > P(S1,5 B)log (7.65)
(51} {2} (B} P(S1|E)P(S2|E)
=0 (7.66)

7.3.1 Direct total information calculation

An alternative direct calculation for the total mutual information is the following:

P(E, S)
E;S) = P(E, S)1o a 7.67
I( {EE}{S} ) G (7.67)
= Y P(E)P(S1|E)P(Ss|E)log PE)P(SI|E)P(5:|E) (7.68)

P(E)P(S1,52)

{BHS1}{S2}
1 1
== Y P($1|E)log P(S1|E) + 5 > P(S|E)log P(So|E)+  (7.69)
{EHS1} {E}{S2}
1

1
-3 Y P(Si|E)P(S:|E)log (2 > P(Slel)P(SEE/))
{EHS1HS2} {E"}

=1log2 — h(p1) — h(p2) + h(m(p1, p2))- (7.70)
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