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Abstract

In modern societies social networks are gaining a growing importance for
political debate, which makes opinion dynamics models especially valuable
for their descriptive and predictive power. Understanding how opinions form
and change online can help keep public discourse healthy and protect the
democratic foundations of our increasingly digital societies. This master’s
thesis explores opinion dynamics in complex social systems, with a partic-
ular focus on the role of leaders and their interaction with external events.
To this end, we based our approach on Heider social balance theory. This
latter is well documented in the literature, but the connection between mi-
crolevel balancing processes and broader network dynamics has received lim-
ited attention in existing research. To address this gap, we start from an
opinion dynamics model that incorporates agreement dynamics and exter-
nal information effects and we extend the model by introducing two new
elements: Heider reputation heuristics, a structural property that leads to
social balance, and leader–follower dynamics, essential to reproduce real in-
teraction patterns. To connect theoretical modelling with empirical analysis,
we examined whether real-world networks follow Heider reputation heuris-
tics and how their features respond to external perturbations. We analysed
interactions between normal users and Italian politicians on Twitter/X over
five years, focusing on the Covid-19 pandemic as an external perturbation.
The empirical analysis reveals significant pandemic-related changes: network
balancedness decreased, cross-community retweet flows increased, and aver-
age triadic coherence diminished. We characterized triadic configurations
based on leader-follower composition, identifying different stability patterns
across different triadic types. Once the observables affected by the external
event had been identified in the data, we sought to study these same observ-
ables within the model to validate its robustness. These findings establish
that structural properties coming from triadic relations can be connected to
emergent collective phenomena such as opinion polarization and leader co-
operation dynamics. The extended model effectively captures how opinion
formation and network stability evolve under external perturbations, link-
ing micro-level structural network configurations with macro level collective
responses to crisis events.
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Chapter 1

Introduction

1.1 Generalities
Over the last two decades, the quantitative study of social sciences has at-
tracted increasing attention because the complexity of modern societies re-
quires new approaches. Digital technologies, online communication plat-
forms and the global scale movement of people and goods generate enormous
amounts of data: from social media interactions and mobility traces to eco-
nomic transactions. The scientific community has used the analysis of these
digital traces to shed light on patterns of human behaviour that were previ-
ously invisible and unquantifiable.

At the same time, many of the most pressing challenges of today are the
result of collective phenomena that emerge from the interaction of millions
of individuals: as simple examples, one can think of climate change, financial
crises, pandemics, and political polarization.

In the field of opinion dynamics, everything we observe can be understood
as functioning like a true physical model: interactions at the microscopic level
give rise to observable macroscopic phenomena. For example, in physics, the
electrical force keeps electrons bound to their atoms, and atoms together
form molecules. Similarly, in social systems, the “forces” at play are psy-
chological and relational affinity, hostility, friendship, and influence, which
govern how individuals interact at the micro level among each other. These
interactions give rise to large scale collective phenomena such as polarization,
the formation of communities, and other emergent patterns studied in com-
putational social science. Understanding such phenomena through models
can capture how decisions at the micro scale give rise to large-scale regulari-
ties, just as statistical physics describes how microscopic interactions produce
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1 – Introduction

macroscopic laws. This analogy between social interaction and physical forces
has attracted the interest of physicists and mathematicians, inspiring them
to apply quantitative and modelling approaches to understand human be-
haviour. Governments, policymakers, and private organizations increasingly
depend on this kind of evidence to design interventions, anticipate crises, and
evaluate the impact of their actions.

In short, the need for predictive and explanatory power in the face of
complex, data-rich and interdependent societies is what drives the global
interest in the complexity science.

1.2 Historical trajectory
Here, we aim to illustrate a historical trajectory that begins with the qualita-
tive descriptions of social harmony developed within psychology and evolves
toward the precise mathematical formulation of structural balance theory,
ultimately leading to quantitative models of opinion dynamics. Before the
mid-20th century, there was little common ground between the social sci-
ences and the formal disciplines of physics and mathematics. However, fol-
lowing the development of the first social psychological theories, this began to
change. These conceptual advances, opened the way for subsequent formal-
izations that translated such qualitative ideas into mathematical language,
establishing the foundations for the quantitative study of social systems.

One of the earliest systematic frameworks is Fritz Heider’s social balance
theory [17].

Structural balance theory, proposed by Heider [17], was the first attempt to
explain the structure and origin of human tensions in terms of friendship and
hostility relationships. In particular, it postulates that social systems with
simultaneous friendly/hostile interactions tend to evolve to reduce stress[26].

A decade later, Cartwright and Harary[6] gave a mathematical interpre-
tation to Heider’s theory, exploiting the language of graph theory. This was
a turning point for computational social science and the study of group dy-
namics on graphs. In particular, representing individuals as nodes of a signed
graph and their friendly or hostile relations as positive or negative edges, they
proved that a network is structurally balanced when its vertices can be par-
titioned into two mutually antagonistic groups with positive ties inside each
group and negative ties across groups [6].

Beginning in the 1970, the focus gradually shifted from static descriptions
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1.2 – Historical trajectory

of balanced configurations to models of opinion formation and belief updat-
ing. A major contribution towards this shift was given by the DeGroot con-
sensus model [10], where each agent updates its opinion by taking a weighted
average of its neighbours’ opinions. This iterative scheme became the proto-
type for modern opinion dynamics, and is still used to describe many social
processes, inspiring all the following research on consensus, polarization, and
the spread of influence in complex social networks.

The pioneer study in the early formalization of opinion dynamics from
a probabilistic and statistical-physics perspective was made by Holley and
Liggett (1975) [18], who introduced and analysed the voter model. In their
work they established a rigorous mathematical framework for describing how
local interactions among agents, modelled as stochastic processes on a lattice,
can lead to consensus in the population. The voter model became a corner-
stone for later developments in computational social science and statistical
physics, inspiring numerous extensions that incorporated features such as bi-
ased interactions, social influence, and network structure. Among these, it
is worth mentioning the Deffuant model (2000) [9] that is the first of dealing
with continuos opinions as opposed to binary ones, introducing the concept
of bounded confidence, where individuals only interact with others whose
opinions differ by less than a threshold. This model is the first one able
to reproduce the homophily as a mathematical feature. These early model
offered valuable insights about how local interactions can drive consensus
or polarization, but they typically assumed simplified interaction structures,
often regular lattices or fully mixed population, while real social systems are
characterized of more structural complexity. This exigence, together with
the first developments of network theory from Watts and Strogatz (1998)[30]
and Barabasi (1999) [2], revolutionized the newborn field of opinion dynam-
ics. The introduction of complex network models made it possible to move
beyond the oversimplified representations of social interactions like regular
lattices or mixed populations. Network theory provided a framework to de-
scribe the intricate web of social relationships with a much higher degree of
realism, capturing heterogeneity in connectivity, clustering, and community
structure.

All this, combined with the later development of network science and
the advent of big data, led to the consolidation of a new interdisciplinary
paradigm. The seminal review by Castellano et al. (2009) [7] on the Statis-
tical Physics of Social Dynamics and the manifesto by Lazer et al. (2009)
[20] on Computational Social Science clearly articulated this shift. Together,
they established the theoretical and methodological foundations of a new field
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1 – Introduction

aimed at understanding social phenomena through the joint use of mathemat-
ical modelling, computational tools, and large-scale empirical data. These
works marked a turning point, framing the study of collective human be-
haviour as a true complex system grounded in both physics and data-driven
social science.
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Chapter 2

System Model: Opinion
dynamics with
disagreement and
modulated information

This chapter is devoted to the description of an opinion dynamics model
originally introduced by Sîrbu et al. in [27]. The key innovation of this model
lies in the simultaneous inclusion of disagreement and external information: it
integrates both attractive and repulsive social interactions in a self-consistent
manner, without the need to introduce additional parameters. Furthermore,
it incorporates modulated external information, allowing for the simultaneous
promotion of multiple options rather than a single dominant one. In this
framework, each individual is represented by a probability distribution over
several possible choices, reflecting the likelihood of adopting a given option.
Subsequent studies [29] have analysed the emergent macroscopic properties
of the system, such as cohesion, consensus, and the conditions under which
they arise.

We chose this model as the basis for our master’s thesis because its charac-
teristics align well with the exigence to describe opinion shaping in presence
of an external perturbation. In our case, we want to describe the behaviour
of real data from X, and to do so we want to exploit the framework of Social
Balance Theory. This model, after some modifications and reinterpretations
of parameters, presents all the features that we need:
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2 – System Model: Opinion dynamics with disagreement and modulated information

• The model’s multiple-choice setting reflects the diversity of topics or
political clusters present in online debates. Each choice can represent
a political issue, a stance on a specific topic, or the affiliation of an
individual to a particular party/ideological group.

• The agreement/disagreement mechanism mirrors the interaction dynam-
ics typical of social media platforms, especially X (formerly Twitter),
where users express agreement through actions such as retweets or likes,
and disagreement through critical comments or opposing posts.

• The inclusion of external information is particularly suited to capture the
hierarchical nature of online systems, where influential users or opinion
leaders act as information sources. These actors control and diffuse con-
tent to their followers, shaping collective discussions and opinion trends.

• The binary nature of pairwise interactions allows the system to be repre-
sented as a signed network, where positive and negative links correspond
to agreement and disagreement, respectively. This makes it possible to
study the resulting structure through the lens of structural balance the-
ory.

• Compared to many others opinion dynamics models, our model does not
assume bounded confidence. This allows for greater generality and en-
ables the representation of a wider range of social scenarios, for example
consider The Strength of Weak Ties from Granovetter [16].

2.1 Mathematical formulation
Each agent is represented as a probability vector of K components. The
K components represent the different opinions that the agents can express
on a given topic and the ith component of the agent probability vector
x = [p1, .., pK ] is the probability of the agent making the ith opinion choice,
with ∑︁K

i=1 pi = 1. Let us consider a simple example. Suppose the topic
concerns low-carbon energy sources, and the K = 3 options are nuclear, so-
lar, and wind energy. An individual represented by x = [0.3, 0.3, 0.4] can
be interpreted as supporting nuclear and solar energy with equal probability
(0.3 each), and showing a slightly stronger preference for wind energy (0.4).
Geometrically speaking, given a population of N agents, each of them can be
represented as a point of the (K−1)−simplex. Specifically, a (K−1)−simplex
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2.2 – Population generation

is a (K − 1)−dimensional polytope that is the convex hull of its K vertices.

2.2 Population generation
To assess the similarity between two agent in the opinion space, we compute
the cosine similarity oij between their respective opinion vectors xi and xj:

oij = xi · xj

∥xi∥ ∥xj∥
=

K∑︂
k=1

pi
k pj

k⌜⃓⃓⎷ K∑︂
k=1

(pi
k)2

⌜⃓⃓⎷ K∑︂
k=1

(pj
k)2

. (2.1)

The components of the opinion vectors are non-negative, so that oij ∈ [0,1].
If oij = 1, agents i and j occupy the same point on the simplex, whereas if
oij = 0, they lie on two distinct corners of the (K − 1)−simplex. This is why
we will exploit this quantity to generate the initial population.

The main parameter regulating the generation of the population is the
initial overlap (or cohesion), defined as:

ō = 2∑︁i,j oij

N(N − 1) , (2.2)

which represents the probability that a randomly selected pair of individuals
will follow agreement dynamics. This parameters is associated with the initial
distribution of the individuals on the simplex. To build a population of N
individuals, we generate one by one its components. First, we generate a
K−vector x = [p1, ..., pK ] according to Dirichlet distribution on the (K −
1)−simplex so that ∑︁K

i=1 pi = 1 and pi ≥ 0 , ∀i.
Once the vector is created, we calculate its entropy S through:

S = −
K∑︂

i=1
pi log2(pi) (2.3)

To obtain a population with a desired total overlap, we set a threshold
Sthreshold on the entropy value and discard a generated vector with probability
0.9 whenever its entropy S exceeds this threshold.

As the generation process is controlled by Sthreshold, whereas the system
dynamics depends on the initial overlap, Figure 2.1 reports the relationship
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2 – System Model: Opinion dynamics with disagreement and modulated information

between the two quantities, allowing us to select the appropriate threshold
to obtain a population in K dimensions with the desired overlap.

Figure 2.1: Entropy - Overlap trends for K = 3, 5, 10, 20, 30.

From Figure 2.1, we extract the ranges in which the two variables exhibit
a monotonic increasing relationship, enabling direct control of the overlap
parameter through the entropy threshold. These intervals, reported below,
are adopted throughout the remainder of this work.

entropy_ranges =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

3 → (0.8, 1.6)
5 → (1.6, 2.4)
10 → (2.5, 3.7)
20 → (3.6, 4.3)
30 → (4.2, 5.5)

(2.4)
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2.3 – Peer interaction with disagreement

Figure 2.2: Population generation of N = 300 agents with K = 3. By
varying the entropy threshold, we obtain corresponding overlap values of ō =
0.58, 0.66, 0.69, 0.70 for Sthreshold = 1.2,1.50,1.60,1.80, respectively (Values
reported in [29] are verified).

It will become clearer later in this chapter how the initial overlap, as an
initial condition, determines the system’s evolutionary outcome. For now,
let us focus on the physical meaning of this parameter. To better illustrate
its role, Figure 2.2 shows the distribution of a population of N = 300 agents
in K = 3 dimensions on the simplex, for increasing values of the total over-
lap. For lower overlap values, as shown in the leftmost simplex, the centre is
sparsely populated compared to the corners. Conversely, higher entropy val-
ues correspond to a more uniform coverage of the available two-dimensional
surface. It is worth noting that once the simplex becomes fully covered,
the system reaches a plateau, and only small oscillations around the plateau
value of the entropy can be observed, as shown in Figure 2.1.

2.3 Peer interaction with disagreement
The evolution of the generated population proceeds by randomly selecting,
at each time step, a pair of individuals i and j to interact (assuming a fully
connected network). In this framework, we refer to i as the listener and j as
the speaker. The outcome of the interaction is calculated as:⎧⎪⎨⎪⎩

pij
agree = min(1, max(0, oij ± ϵ)) ,

pij
disagree = 1 − pij

agree.
(2.5)

pagree represents the probability that, when i and j interact, the outcome of
their interaction will be agreement. Conversely, pdisagree denotes the proba-
bility that the interaction will result in disagreement. ϵ is a noise term which
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2 – System Model: Opinion dynamics with disagreement and modulated information

avoids lack of interaction due to null vectors similarity and the ± choice
is made at random at each time step. After the interaction, the state of
the speaker j remains unchanged and the state of the listener i is updated
according to the following rule:

pi
l(t + 1) =

⎧⎨⎩pi
l(t) ± α · sign(pj

l − pi
l), if |pj

l − pi
l| > α

pi
l(t) ± 1

2(pj
l − pi

l), otherwise
(2.6)

Here, l is a randomly selected component of the opinion vector. It is
updated by +α (or −α) if agent i agree (or disagree) with j, unless the
difference between their opinions is smaller than α, in which case the change
is set to half of the difference. The parameter α is fixed and determines the
agents’ flexibility, as it sets the time scale for local agreement or disagreement.
The larger α, the faster the two individuals will agree or get separated.

When a component (pl
i) of the vector is modified, the others must be

adjusted so that the total sum remains equal to 1. This is done by uniformly
redistributing, across the other K − 1 components, the amount by which
component l was changed. Since 0 and 1 are absorbing states, the adjustment
must be performed iteratively.

For example, if position l is increased by α, each of the other components
should decrease by −α/(K − 1). However, some of them may become nega-
tive in the process. In such cases, those components are set to zero, and their
deficit is collected into a new amount α′ to be redistributed among the re-
maining non-zero components (excluding l). The procedure is repeated until
no negative values appear. This method ensures that the absolute value of
the change in position l is the same for both agreement and disagreement
updates. The outcome of this interaction scheme can be summarized as fol-
lows: when the listener agrees with the speaker, their opinion moves closer to
that of the speaker on the simplex, and vice versa. An illustrative example
of this process is shown in Figure 4.1 and the pseudo-code for the update is
summarized in Algorithm 1.

14



2.3 – Peer interaction with disagreement

Algorithm 1 Peer Interaction
1: Select two random individuals i and j
2: Compute their similarity oij and the agreement probability:

pij
agree = min (1, max (0, oij ± ϵ))

where the sign ± is randomly chosen at each time step.
3: Select a random topic l among l ∈ {1, . . . , K}
4: Update the listener’s value pi

l according to:

pi
l(t + 1) =

⎧⎨⎩pi
l(t) ± α · sign(pj

l − pi
l) if |pj

l − pi
l| > α

pi
l(t) ± 0.5(pj

l − pi
l) otherwise

where the sign ± depends on the case of agreement/disagreement. The
change always has the same sign as the speaker-listener difference: it
tends to bring pi

l closer to pj
l in case of agreement, and to move it away

in case of disagreement.
5: Iteratively redistribute the amount added/subtracted across the other

vector components, avoiding negative values.

Figure 2.3: Example of the update procedure of the opinion of the listener (A)
after an interaction with the speaker (B) who doesn’t change state. Agree-
ment and disagreement cases are shown in a K = 3 case. Picture taken
from [28].
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2 – System Model: Opinion dynamics with disagreement and modulated information

2.3.1 The effect of initial overlap on the evolution
The initial overlap, defined by Equation (2.2), represents the initial degree
of similarity among individuals in the population. In this subsection, our
aim is to characterize the role of the initial overlap in a system evolving
through peer interaction. We first provide a phenomenological visualization
of the population’s initial and final states on the simplex, and subsequently a
quantitative parameter to describe the observed dynamics. As a case study,
consider a population of N = 100 individuals that evolve through peer in-
teractions over t = 10,000 steps. Two distinct entropy thresholds are set:
Slow0.9, corresponding to a low initial overlap (ōlow = 0.56), and Shigh = 1.6,
corresponding to a high initial overlap (ōhigh = 0.71). The other parame-
ters in the model, namely α and ϵ, do not affect the collective dynamics, as
discussed in the Section 2.3.2, but only determine the time-steps required
to reach equilibrium. Accordingly, we adopt values of α = 0.0167, ϵ = 0.1,
consistent with the settings used in [28].

Figure 2.4 clearly shows two distinct equilibrium configurations. In the
low-overlap case, peer interactions are insufficient to promote cooperation
among agents, and the population remains segregated near the corners of
the simplex (a minimum-entropy configuration). Conversely, in the high-
overlap case, the opinion vectors converge toward the centre of the simplex,
corresponding to a maximum-entropy configuration.
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2.3 – Peer interaction with disagreement

Figure 2.4: Example of the evolution of the population in the simplex with
only peer interaction.

Inspired by this approach and following [27], we proceed to provide a quan-
titative analysis. Once the population has evolved, we perform complete-
linkage hierarchical clustering on the final state [21], using a threshold of 0.8
to ensure that agents within the same cluster exhibit an overlap greater than
0.8. We denote by C the number of clusters obtained at the end of the opin-
ions formation process, i.e., when the number of clusters stabilizes. Since the
number of clusters alone is not sufficiently informative, as it does not capture
how agents are distributed across clusters, we define the Partecipation Ratio
(PR) as:

PR = (∑︁C
i=1 ci)2∑︁C
i=1 c2

i

(2.7)

where ci represents the size of cluster i. In the case of a population organized
into two clusters, PR = 2 if the clusters are of equal size, whereas PR ≈ 1
if one cluster is much smaller than the other. More generally, for a popula-
tion that can form up to K clusters, PR ≈ 1 indicates the presence of one
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2 – System Model: Opinion dynamics with disagreement and modulated information

dominant cluster, while PR ≈ K corresponds to a division of the population
into K clusters of roughly equal size. Figure 2.5 shows how the transition
point increases with K, meaning that cohesion is facilitated by the presence
of more opinion choices. On the other side, the case of agreement in the
population (PR = 1) also implies a general state of indecision. In addition,
we find that the balance between local agreement and repulsion across dis-
tant groups promotes the emergence of segregated communities located at
the corners of the simplex. Importantly, the overall dynamics do not depend
on the value of K, so this parameter can be freely chosen without affecting
the results.

Figure 2.5: PR values for different initial conditions ō. Dots are the PR
values across the simulations and lines are averages.

2.3.2 Parameters tuning
Our model involves three key parameters: the noise parameter ϵ, the number
of agents N , and the convergence distance α. Throughout all simulations the
noise parameter is conventionally set to 0.1, while the other two parameters
require a more detailed analysis. The convergence study with respect to N
is shown in Figure 2.7 and α in Figure 2.6.
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2.3 – Peer interaction with disagreement

The results demonstrate that the system’s behaviour is robust with re-
spect to both parameters. Figure 2.6 shows that the choice of α produces
predictable effects:

• If α is too large, agents make very big opinion updates, which drives
the system to full consensus for any initial overlap because agreement is
reached too easily.

• Reducing α does not qualitatively alter the final state since the phase
transition is still present, but the equilibrium time gets longer.

• Increasing N makes the phase transition sharper but also significantly
increases the computational time to reach equilibrium. Hence, it is pos-
sible to use populations as small as N = 300 to keep simulation times
reasonable without affecting the final outcomes.

For this reason, in the following we fix α as a K-dependent value reported
in Table 2.1.

K α
3 0.0167
5 0.0100
10 0.0050
20 0.0025

Table 2.1: Values of α for each value of K.

19



2 – System Model: Opinion dynamics with disagreement and modulated information

Figure 2.6: PR values for different values of α to perform calibration. Picture
taken from [28].

Figure 2.7: PR values for different values of N to perform calibration. Pic-
ture taken from [28].
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2.4 – Modulated sources of external information

2.4 Modulated sources of external informa-
tion

Again following the work of [27] and [28] we add to the system another
kind of interaction under the name of external information with modulated
sources. Taking inspiration from real-life process of shaping opinion, where
each individual interacts with peers and with “stable sources” like TV and
radio, we introduce K information sources. The external information source
is represented as a symmetric K × K matrix I∗ where the ith row vector
Ii corresponds to the information source promoting the ith opinion more
strongly. By denoting with a ∈ [0,1] the parameter describing the source
polarization towards its favourite opinion, I∗ can be written as:

I∗ =

⎛⎜⎜⎝
I1

...
IK

⎞⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
a b · · · b

b a
...

... . . .
b · · · b a

⎞⎟⎟⎟⎟⎟⎟⎠ , (2.8)

where each row corresponds to a different information source, b = 1−a
K−1 , and

a ≥ b.
This means that the information source Ii encourages adoption of opinion i

with probability a, and promotes all the other opinions with lower probability
b. When a is close to 1, the sources are highly biased (“extreme”); when a
is close to b, they are more balanced (“mild”). This setup assumes that
all opinions receive the same overall level of promotion, but can easily be
adapted to allow different opinions to be promoted to different degrees.

To evolve the system with the new interaction at each time step, every
individual chooses among the sources according to their current opinion vec-
tor xi: the component of option i represents the probability of interacting
with the source Ii. Once the source is selected, the interaction will happen
with probability PI with the same update rules already described, where
the individual is always the listener, and the information source the speaker.
Of course, any adaptation is possible, but for now we will consider fixed
sources who cannot interact among each other. The pseudo-code is reported
as Algorithm 2.
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2 – System Model: Opinion dynamics with disagreement and modulated information

Algorithm 2 External Information Interaction
1: At each time step, with probability PI , select a random individual i.
2: Choose the information source Ik according to the individual’s current

opinion vector:

P (Ik is selected) = xi,k(t), k ∈ {1, . . . , K}.

3: Compute the similarity oik between the individual and the chosen source
and the agreement probability:

pik
agree = min (1, max (0, oik ± ϵ)) ,

where the sign ± is chosen randomly at each time step.
4: Select a random topic l ∈ {1, . . . , K}.
5: Update the listener’s value pi

l according to Algorithm 1.

In other words, our choice corresponds to people tending to consult infor-
mation that aligns with their own views. For example, in a political analogy,
right-leaning voters are more likely to read right-leaning newspapers and
engage with content promoted by their favourite leaders.

An individual with very polarized opinions will interact with alternative
sources only rarely, whereas a moderate individual, with a mild vector, will
engage with a variety of sources over time. This mechanism well represents
the dynamics of promotion of content adopted from recommender systems.

Figure 2.8 shows a visualization of the effect of external information in-
teraction on the simplex. We set K = 3, N = 300, α = 0.0167, ϵ = 0.1, P I =
0.5,, and a = 0.75 as parameters.

Figure 2.8: Example of population evolution under interaction with external
information only.
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As expected, the points of the simplex corresponding to the K vectors of
the external information are “attractors” for the individuals. In other words,
whereas in the absence of external information the system evolution was fully
determined by the initial overlap, here the polarization of the information
source plays a dominant role.

To fully understand the phenomenon and the global effect of combining
these two types of interactions, we study again the Participation Ratio PR
as a function of a. We fix K = 5, as this behaviour does not depend on
the number of opinions. We generate an initial population in two configu-
rations: one corresponding to high initial overlap (Streshold,high = 2.2) and
the other corresponding to low initial overlap (Streshold,low = 1.65). The
population then evolves under both peer and external information interac-
tions with PI = 0.5. The resulting PR values for the different a values,
a = [0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9], are reported in Figure 2.9.

In the system with peer interaction only, PR = 1 for high initial overlap
and PR = K = 5 for the low case. When we introduce leader interaction,
the leaders act as attractors for the followers, as shown in Figure 2.8. As a
consequence, in the low a case, where the leaders are located in the centre
of the simplex, PR = 1 also for low-overlap, where the peer dynamics would
push the individuals apart but mild leaders win over repulsion and bring
the system in general agreement (cohesion) . Conversely, in the high-overlap
case, for highly polarized sources (a > 0.8) the leaders are separated, each
one is located in one corner of the simplex. Although the evolution of the peer
interaction system would lead to cohesion, the leaders’ polarization breaks
the cohesion and polarize even high overlap population, so PR = K.

This means that the presence of extremely mild or highly polarized sources
of information can steer the evolution of the system in their direction. In
this scenario, the dynamics are no longer governed solely by the external
information source, but are also influenced by the degree of polarization of
the leaders. The overall evolution thus results from a complex interplay
between these two driving forces.
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Figure 2.9: Trend of the final population Partecipation Ratio vs. external
source mildness. The two lines refer to low and high initial overlap configu-
rations.
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Chapter 3

Introducing Social
Balance Theory

This chapter introduces social (or structural) balance theory as a framework
for understanding how patterns of agreement and disagreement shape the
stability of social systems. In essence, social balance theory models social re-
lations as a signed network, where positive ties encode affinity or agreement
and negative ties encode hostility or disagreement, and studies how local
configurations relate to global stability and polarization. We begin with a
brief state of the art, highlighting key results on balanced and partially bal-
anced structures and their implications for cohesion, community formation,
and conflict dynamics.

Our aim in this thesis is to use the Sîrbu–Loreto opinion-dynamics model
together with real data as empirical evidence to characterize how a social
system responds to an external shock. To this purpose, we chose to adopt
social balance theory framework, it lets us cast both the model’s interaction
outcomes and the data-derived interactions as a signed network, whose prop-
erties are richer than those of an unsigned graph and directly tied to notions
of tension, equilibrium, and the reconfiguration of alliances. In this view,
an external shock perturbs the system’s equilibria by altering the pattern
of signs (agreements/disagreements) among actors; social balance provides
the language and metrics to track how these patterns are and how they re-
organize after the perturbation.
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3.1 Generalities and state of the art
The roots of social balance theory lie in Heider framework [17] and its network
interpretation by Cartwright and Harary [6]. According to Structural Bal-
ance Theory (SBT), social balance can be achieved through balanced cycles
of relationships. Among all closed loops possibly present in the network, tri-
ads (or triangles) are the most widely studied structures in literature. Triads
are cycles of length three, between any three members of a social network,
and they are characterized as balanced or unbalanced according to these
heuristics:

Triad Configuration Common saying
Balanced configurations

(+ + +) three mutual friends “Friend of a friend is a friend”
(+ − −) two mutual enemies, both friends with the same person “Friend of an enemy is an enemy”
(− + −) symmetric to (+ − −) “Enemy of a friend is an enemy”
(− − +) two enemies share a common enemy “Enemy of an enemy is a friend”

Unbalanced configurations
(+ + −) two friends disagree about a third person “Friend of my friend is my enemy”
(− − −) everyone is enemy with everyone “All against all”

Table 3.1: Triads in a signed network: sign patterns and their interpretations
according to structural balance theory.

This classification belong to the so called Structural Strong Balance Theory
(SSBT). Later developments [8] broadened the classic framework of SBT by
introducing the idea of K-balanced networks. In this view, a signed graph
is considered balanced when its nodes can be divided into K disjoint groups
such that the links within each group are positive while the links between
different groups are negative. This more general notion of balance forms
the basis of Structural Weak Balance Theory (SWBT). Under SWBT, even
triads consisting entirely of negative edges (−−−) are regarded as balanced,
because each node can be treated as belonging to its own separate group
if needed and thus, intuitively, social frustration in this case is lower than
in other traditionally unbalanced configurations. A summary of possible
configurations is reported in Figure 3.1.

When referring to structural balance, several possible measures of bal-
ancedness can be defined. In this work, inspired by [13] and [14], we adopt
the Structural Strong Balance measure, quantified as the average fraction of
balanced triads at each time-step, or, equivalently, through its frustration
f = n+−n−

n++n−
(the two are actually a scaled version of each other so we can use

them independently).
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3.1 – Generalities and state of the art

Figure 3.1: (a) Structurally strong balanced configurations are reported. (b)
Structurally weak balanced ones. Picture taken from [14].

Beyond these classical definitions, the notion of social balance has inspired
a broad range of formal models and empirical investigations. Early work
primarily focused on the static detection of balanced structures: given a
fully observed signed network, the task was to test whether its configuration
of positive and negative links conforms to the predictions of strong or weak
balance theory. Over time, however, researchers have moved toward a more
dynamic perspective, asking not only whether a network is balanced but also
how balance emerges and is maintained.

A first line of dynamic models treats the signs of edges as the outcome
of local adjustment processes. For example, “spin” models of structural bal-
ance [1] represent each edge as a binary variable that flips when it reduces the
number of unbalanced triads, eventually driving the system toward a globally
balanced or metastable state. Such models highlight how triadic interactions
can create large scale patterns of polarization, even when individual agents
follow only simple local rules.

A complementary direction has examined whether higher-order effects are
truly necessary to explain the prevalence of balanced triads. For example,
Pham et al. [25] demonstrated that the abundance of balanced motifs across
diverse social networks can be reproduced by models relying solely on dyadic
homophily, that is, pairwise interaction. More recently, Galesic et al. [13]
extended this finding by empirical evidence in support of the theoretical
claim. Specifically, by randomly assigning groups to receive either triadic or
dyadic information, they tested whether individuals must perceive triads for
structural balance to emerge—and found that this is not the case.
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These contrasting perspectives illustrate an ongoing debate: is the char-
acteristic pattern of balanced triads a genuine emergent property of triadic
interactions, or merely a reflection of underlying pairwise preferences? In
chapter 4 we give our original contribution for testing structural balance
and for disentangling the roles of dyadic non-homophilic interactions and
neighbours’ opinions in shaping the topology of signed networks. But , in
the following sectinos, we will explore the properties of balancedness of the
Sîrbu–Loreto model without modifying it just re-framing its formalism.

3.2 Mathematical formulation
Given a System Model time evolution, to build the corresponding signed
network at time t, we take a snapshot of the system network history, defining
some rules:

• If agent i and agent j interacted and the outcome of the last interaction
they had is yij(tlast) ∈ {−1,1}.

• If the interaction happens again, we simply substitute the old value with
the new one (arbitrary, averages and other update rules can be defined).

• The signed network of the system is a time evolving matrix A(t) with
entries Aij(t) = yij(tlast).

Let A ∈ {−1,0, +1}N×N be the symmetric signed adjacency matrix (with
Aii = 0), where if two never interacted their entry is 0. A triad is any 3–
cycle (i, j, k) for which AijAjkAki /= 0. It is balanced if AijAjkAki = +1,
unbalanced if AijAjkAki = −1.
Denote by

n+ =
∑︂

1≤i<j<k≤n

1{AijAjkAki = 1},

n− =
∑︂

1≤i<j<k≤n

1{AijAjkAki = −1}.
(3.1)

Clearly n+ + n− is the total number of triads. The triadic balancedness of
the network is the fraction of balanced triads:

B = n+

n+ + n−
.
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Since n+ − n− =
∑︂

1≤i<j<k≤n

AijAjkAki, one can also write

B = 1
2

(︄
1 + n+ − n−

n+ + n−

)︄
= 1

2(1 + f). (3.2)

Finally, using the matrix identity tr(A3) = 6∑︁1≤i<j<k≤n AijAjkAki, the
same quantity can be expressed as

B = tr(|A|3) + tr(A3)
2 tr(|A|3) ,

where |A| is obtained from A by taking the absolute value of each entry.

3.3 Exploring balancedness properties of the
System Model

3.3.1 Peer interaction effect on triadic balancedness
Consider a population of individuals generated as described in Section 2.2,
which evolves solely through random peer interactions until reaching equi-
librium in triadic balancedness B. This equilibrium value is determined em-
pirically, based on when the observed balancedness curves cease to oscillate
and stabilize around a constant value. Since the behaviour of the individuals
on the simplex under peer interaction alone is governed by the population’s
initial overlap (see Section 2.3.1), we compute the average balancedness for
K = 3, 5, 10, 20 under two conditions: high initial overlap and low initial
overlap. This allows us to assess both the influence of K on social balanced-
ness and the effect of the population’s initial configuration. Table 3.2 reports
the simulation parameters and the resulting final PR values. All simulations
were run for t = 5 · 105 steps, which is sufficient for ever the largest K to
reach equilibrium.

The curves for the different values of K are shown in Figure 3.2. From
the plots, we can observe that:

• For all values of K, the population converges to a stable value of B,
which appears to be independent of K.

• The equilibrium value of B depends on whether the system starts from
a low- or high-overlap configuration.
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K Slow Shigh α PRlow PRhigh

3 0.9 1.6 0.0167 2.996 1.000
5 1.5 2.3 0.0100 4.630 1.000
10 2.45 3.6 0.0050 7.246 1.000
20 3.6 4.2 0.0025 12.658 1.041

Table 3.2: Initial values chosen for the simulations. The values of PR are
useful to understand whether the expected behaviour is confirmed.

• The number of iterations required to reach equilibrium increases with
K, as expected.

The first observation is that, when the initial condition allows it, the system
reaches a maximum balancedness level of approximately 85%. This result is
consistent with the findings of [12], which suggest that social systems tend to
self-organize in order to minimize internal tension, thereby exhibiting high,
though never complete, levels of global balancedness. Conversely, to inter-
pret the lower balancedness observed in the low-overlap case, it is instructive
to examine the distribution of triad signs. To this end, we take a snapshot
of the system at two points in time—at the early stage of the simulation
(t = 2000) and at its end—and compare the triad composition in both the
low- and high-overlap configurations. Figure 3.3 reports the triad counts for
the case K = 10, as the qualitative behaviour does not depend on the num-
ber of opinion options. The histogram clearly shows that, in the low–overlap
case, As the system evolves toward a fully connected state, the distribution
remains relatively stable over time: triads of type (++−) and (−−+) dom-
inate. These configurations are typical of polarized systems, characterized
by positive intra–community links and negative inter–community ones.

The behaviour reflects the two main outcomes of the peer–interaction
dynamics: cohesion and polarization. Moreover, in the low–overlap regime
the distribution of triad types preserves its overall shape during the evolution,
since the system evolves toward a configuration qualitatively similar to the
initial one. Conversely, in the high–overlap regime the initial state covers
the entire 2D simplex surface, while in the final state it collapses toward the
centre of the simplex.
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Figure 3.2: Balancedness trends for K = 3,5,10,20. Blue curve indicates the
low overlap trend, orange curves the high overlap trend.

3.3.2 Leader interaction effect on triadic balancedness
Figure 3.4 shows the evolution of a population of N = 300 individuals with
both peer and leader interactions, for K = 3, 5, 10, and 20. A few observa-
tions can be made:
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3 – Introducing Social Balance Theory

(a) Number of triads per triad type at
t = 2,000 timesteps.

(b) Number of triads per triad type at
t = 200,000 timesteps (final time).

Figure 3.3: Analysis of the triad composition during time for K = 10

• In the high-overlap case, for K = 5, 10, and 20, the presence of lead-
ers—regardless of their level of polarization—tends to homogenize the
equilibrium value of the balancedness. This occurs even though, as
shown in Figure 2.9, highly polarized information sources can still drive
the population toward equilibrium states concentrated near the corners
of the simplex, despite the initially high overlap.

• This effect, however, is not observed for K = 3, where the system dy-
namics appear to behave differently.
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Figure 3.4: Balancedness trends for K = 3,5,10,20 in the case of low initial
overlap (left) and high initial overlap (right). Colors correspond to different
values of leader polarization a ∈ [0,1].
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Chapter 4

A Signed-Network
Extension of the System
Model Framework via
Social Pressure

In this chapter, we extend the Sîrbu–Loreto model by introducing a mecha-
nism that accounts for social pressure as an additional driving force toward
triadic balance. The original framework captures the dynamics of opinion
formation through pairwise interactions only, without accounting for group
dynamics of social pressure when deciding on agreement or disagreement.
However, under normal conditions, social systems often display persistent
polarization, where opposing groups maintain unbalanced or conflicting rela-
tionships over time, according to the Heider heuristics dynamics. Conversely,
under exceptional circumstances, such as crises or emergencies, cooperative
behaviours can suddenly emerge, driven by a collective urge to reduce social
tension and align toward a shared goal.

To reproduce this phenomenon, we modify the model by incorporating a
many-body interaction term that represents social pressure. Conceptually,
this term acts as an emergent collective influence, reinforcing system’s ten-
dency to evolve toward balanced triadic configurations. While in the original
model balance emerges solely from local, dyadic interactions, the inclusion
of social pressure introduces a global coupling effect: the state of the overall
social network now influences the stability and evolution of each triad.

By linking social pressure to the system’s response to external stressors,
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such as the urgency, emotional intensity, or societal crisis, we capture how
macroscopic social conditions can alter microscopic interaction rules. The
resulting framework provides a richer description of how collective adaptation
unfolds under stress, showing how external pressure can accelerate, inhibit,
or qualitatively transform the path toward social balance.

4.1 Settings
The evolution of the population’s opinions within the Sîrbu–Loreto frame-
work is governed by Algorithm 1 (peer interaction) and Algorithm 2 (external
information), which updates the opinion vector of the listener i at each time
step with probability PI . The outcome of the interaction is controlled by
pagree ∝ oij where oij is the cosine similarity between the opinion vectors of
i and j (see Equation (2.2)). It is important to underline again that in our
model the Peer Interaction is not homophilic, whereas the interaction with
leaders is probabilistically homophilic. Each interaction has a stochastic bi-
nary outcome of agreement or disagreement, thus our definition of the signed
network starts from here.

Accordingly, for every interaction between individuals i and j at time step
t, we introduce a binary random variable

X
(t)
ij =

⎧⎨⎩+1, if the interaction results in agreement,
−1, if the interaction results in disagreement.

This variable encodes the signed outcome of the peer (or leader–follower)
encounter at that specific time.

Since interactions take place sequentially, the signed network is itself a
time–evolving object. Therefore, we consider the signed adjacency matrix at
time t,

A(t) =
[︂
wij(t)

]︂N
i,j=1.

Since the entries of A(t) are the running empirical means of the outcomes of
the interactions between individuals i and j up to time t, we can write:

wij(t) = 1
nij(t)

∑︂
τ∈Tij(t)

X
(τ)
ij , (4.1)

where Tij(t) is the set of time steps τ ≤ t at which i and j have interacted
and nij(t) = |Tij(t)| is the total number of such interactions. Hence, it is
clear that wij ∈ [−1,1].
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Positive weights wij(t) > 0 indicate a predominance of agreements up to
time t, negative weights wij(t) < 0 indicate a predominance of disagreements,
and wij(t) = 0 corresponds to a perfectly balanced (neutral) history of inter-
actions. Because each edge carries both a sign and a magnitude |wij(t)|, the
structure (V, E(t), w(t)) forms a time–evolving weighted signed network. Note
that, as time progresses, the interaction network becomes fully connected.

4.2 Triadic interaction modelling
A natural question arises when extending the original model: how can we
introduce a contribution that accounts for the social pressure exerted by the
surrounding network? In other words, how can we represent the tendency of
neighbouring nodes to promote triadic structural balance? In the standard
formulation presented in Chapter 2, whenever two individuals are selected
to interact, the sign of the outcome depends solely on the overlap of their
opinions. However, real social behaviour suggests that this is only part of
the picture.

To better capture these dynamics, we aim to incorporate Social Balance
Theory into the model’s “decision rule” by introducing a term that reflects
triadic social pressure—the collective influence exerted by the immediate
neighbourhood of the interacting pair. Consider, for instance, the case of
sharing content on social media. Before reposting an opinion, a user typi-
cally considers not only their personal agreement with the content, but also
the social identity of the original poster. Sharing material associated with
an opposing faction can generate tension: friends or family may question
the choice, and individuals tend to minimize such social friction. A similar
mechanism occurs in everyday life—when introducing a new acquaintance to
a close group of friends, one’s perception of the newcomer is often influenced
by the group’s collective attitude. This illustrates a fundamental tension
between personal opinion and the social environment: an individual’s stance
can be reinforced or challenged by the views of their neighbours.

To model this effect, we introduce a parameter of social pressure, denoted
by η, which represents the relative weight of the neighbourhood’s influence
compared to the individual, unbiased reputation based on opinion overlap.
Accordingly, we redefine the pairwise overlap oij (see Equation 2.2) into an
effective overlap õij, modified to account for the pressure toward triadic bal-
ancedness within the local neighbourhood. To gain intuition about the be-
haviour of this effective overlap, let us examine the two illustrative cases (a)
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and (b) presented in Figure 4.1.

Figure 4.1: (a) Example of social pressure that pushes a disagreement link
to be more “agreeing”. (b) Example where the two social circles are contra-
dictory. Red links are disagreement/negative opinion.

In case (a), following the “friend of a friend” heuristic, the influence of
the neighbours tends to make the negative link (jl) more positive. Similarly,
in case (b), although the two links in the triad (ljk) are negative, the “en-
emy of my enemy is a friend” heuristic promotes greater agreement on link
(jl). However, a natural question arises: what happens when the various tri-
ads involving (jl) are not concordant, that is, when the local configurations
suggest conflicting influences on the same link? This situation calls for the
introduction of a weighted average. Accordingly, we define the signed triadic
contribution on the link (ij) as:

τ signed
ij =

∑︂
k∈N(i)∩N(j)

wik wkj wikj∑︂
k∈N(i)∩N(j)

wikj
(4.2)

where N(i)∩N(j) denotes the set of common neighbours of nodes i and j and
wikj = |wik||wkj|. This definition corresponds to a weighted average over all
triads involving the two nodes, with weights defined in Equation (4.1). This
triadic contribution is then incorporated into the original pairwise overlap to
obtain an effective overlap:

oij̃ = (1 − η)oij + η τij (4.3)

where η is the social pressure parameter, controlling the relative importance
of neighbors’ influence compared to the original overlap oij.

Let us calculate the overlaps oij and õij in the two cases (a) and (b) shown
in Figure 4.2, with η fixed at 0.3.
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Figure 4.2: Numerical examples of two cases of social pressure influence on
the final õ. In case (a) the neighbours’ opinion are concordant and push the
overlap to be bigger. In case (b) they are in disagreement, and the final
outcomes depends on the links’ weights.

In case (a), we obtain τij,signed = 0.107 and τij = 0.5535. Computing
the overlaps, we have oij = 0.4 and õij = 0.45 which is consistent with the
expected outcome, since both triads in the example act to push the link
toward a more positive value. In case (b), we obtain τij,signed = −0.28 and
τij = 0.36. Computing the overlaps, we have oij = 0.4 and õij = 0.388. Here,
the right-hand triad tends to push the link toward a positive value, whereas
the left-hand triad favours a negative one. As a result, we expected the triad
with the stronger influence to determine the final effective overlap.

4.3 Influence of triadic interactions on social
balance

4.3.1 Effect of social pressure on peer interactions
Figure 3.2 shows that the value of K does not qualitatively alter the system
dynamics; it primarily affects the convergence time and the minimum level
of balancedness reached. This property allows us to fix K for subsequent
analyses. Accordingly, from this point onward, we consider K = 5, for
reasons that will become clear in the following chapter. To investigate the
effect of η on the system’s social balance, we first consider a standard scenario:
a population of N = 300 individuals evolving solely through peer interaction,
without any leaders. The system is allowed to evolve for t = 2·105 time steps,
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while the parameter η is swept over the interval [0,1] in increments of 0.1.
The simulation has been run in the two usual configurations of low and high
overlap. Results are illustrated in Figure 4.3.

Figure 4.3: Results of sweeping of η parameter on a K = 5 population with
peer interactions only.

As we can see, η has a direct impact on social balancedness, even if the
outcome of its influence is not obvious: indeed, in both configurations higher
values of η cause the balancedness of the system to diminish instead of get-
ting higher, which is highly counter-intuitive since the parameter η has been
explicitly created to respect social balancedness rules on triads. This is a
first taste of the important result that we are going to prove.

4.3.2 Effect of social pressure on peer and leader in-
teractions

We perform the same analysis as in the previous subsection, but now with
η fixed at 0.3, a reasonable value for social systems, while sweeping the
polarization parameter a over the interval [0,1]. The result is illustrated in
Figure 4.4.

As we can see in this case as well the level of balancedness is determined
by a, although not in a proportional way: indeed, to the highest a value
we don’t get the highest or lowest balancedness value accordingly. We get
a pretty intuitive result from the simulation. In the low overlap case, we
have that in the evolution the population will collapse in the 3 corners of the
simplex, this is why a highly polarized source of information will help the
social balance of the system as we can see from left plot in Figure 4.4. On
the other side, in the high overlap case, the population will evolve towards a
PR = 1 situation where all the individuals are in the center: that is why mild
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Figure 4.4: Results of sweeping a parameter on a K = 5 population with
leaders and peer interactions. η = 0.3 fixed.

polarization of a are the ones that favour the most social balance. The take
home message of this is that having sources of information that represent the
opinion of the population is crucial to obtain social balance in a system.

4.3.3 How social pressure, polarization, and noise shape
social balance dynamics

To complete the characterization of our model, we investigate the interplay of
social pressure (η) and noise (ϵ). These parameters are of particular interest
as they capture the main effects of external perturbations on the system. As
before, we consider peer interaction only, sweeping η and ϵ in the intervals
[0,1] and [0, 0.5], respectively.

As we can see, the low and high overlap configurations behave in the
same way, differing only by the value of the balancedness. Raising too much
the value of ϵ break the spontaneous high level of social balance caused by
the low value of η. This is due to the fact that adding a high noise in the
overlap completely breaks the dependency of pagree from oij that the dyadic
interaction that guarantees the balancedness in the system.

Let’s do the same thing but with leaders interactions as well, with fixed
a. Just to prove that again the behaviour doesn’t change but the value of
balancedness is lower. We proved before that if the external information
sources are polarized they have a high level of balancedness with a polarized
population, that is why if we fix a = 0.8, as we can see below, the level of
balancedness is low in both cases.
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Figure 4.5: Double sweeping of parameters of social pressure and noise for
a K = 5 population of 300 individuals, evolution is subject only to peer
interaction.

Figure 4.6: Double sweeping of parameters of social pressure and noise for a
K = 5 population of 300 individuals, with peer leaders interaction.

Note that the values are way lower than if we assigned completely ran-
domly the signs to a fully connected network, where in that case it would be
of ∼ 50%.

To conclude the characterization of balancedness of the evolution accord-
ing to the parameters, let’s study the double parameters sweep of η and a,
keeping ϵ = 0.1 fixed, the others parameters stay unchanged.

As we can see, in both overlap cases there is a change in the balancedness
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Figure 4.7: Double sweeping of parameter of social pressure and leaders
polarization

when a = 0.5. Furthermore, we can confirm that when η, the social pressure
parameter is high, we obtain low social balance.

4.4 Emergent balance and the limits of social
pressure

The results obtained in the previous section are far from trivial. We in-
troduced a parameter representing social pressure, which was expected to
drive the system toward a higher level of balancedness by fostering coordina-
tion among agents. Surprisingly, the opposite behaviour emerges: increasing
social pressure systematically reduces the level of triadic balance across all
tested scenarios.

This finding suggests that triadic balancedness does not originate because
of social pressure, but rather emerges spontaneously from the underlying
dyadic interactions themselves [24]. In other words, the tendency toward
structural balance appears to be an intrinsic property of local pairwise dy-
namics [13], rather than a consequence of externally imposed collective con-
straints. Conversely, when social pressure becomes strong and dominates over
individual opinions, the system exhibits lower overall balancedness, indicat-
ing that excessive conformity can hinder the natural self-organizing process
through which balance emerges.

This is a striking and counter-intuitive result: it challenges the intuitive
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expectation that social pressure necessary stabilizes or reinforces social har-
mony. Instead, it reveals the subtle and potentially destabilizing role that
collective influence can play in shaping social dynamic, suggesting that when
individuals align their behaviour too closely with others’ opinions rather than
their own, the group may become less, rather than more, socially coherent.
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Chapter 5

Opinion Dynamics on
Real-World Data: The X
Case Study

As often happens in theoretical physics, once a theory is firmly grounded,
the next step regards testing theoretical models against real-world data. This
practice is well established in traditional branches of physics but it is often
more challenging within the study of complex systems. In particular, mod-
elling social dynamics presents significant difficulties, as these phenomena are
hard to formalize mathematically and even harder to measure accurately. As
a result, many studies in social physics remain at a theoretical level, propos-
ing a variety of models for the same processes but with limited empirical
validation or connection to real data. In this chapter, we aim to bridge this
gap by confronting the model developed in the previous sections with empiri-
cal observations from a real opinion system derived from Twitter data. To do
so, we base our work on two tools which are recently becoming fundamental
in social science research to measure people’s opinions dynamics: social net-
work’s data and natural language processing. First, we will give a detailed
description of the dataset in use, apply some statistics and describe intrest-
ing observables to see how the dataset behaves during COVID-19 emergency
period. Then, the data will be manipulated to build the correct framework
to be used in our simulations, and lately a comparison between model and
real data is made.
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5.1 Data collection
X (formerly Twitter) is a social networking and microblogging platform that
allows users to share and engage with short messages—known as tweets—
which may include text, images, links, or emojis. For the purposes of this
study, we focus exclusively on the textual content of tweets. Our analysis fo-
cuses on the social debate that took place on X between 2018 and 2022, driven
by Italian information leaders from both the political and media spheres. To
capture a comprehensive picture of this debate, the dataset includes tweets
produced by a curated set of Italian news outlets and political actors, com-
piled from external authoritative sources. With the exception of political ac-
counts, the information leaders included in the dataset are accompanied by
a Reliability Rating assigned by Newsguard [23], and are therefore classified
as trustworthy (T), non-trustworthy (N), or satirical (S). This categorization
is particularly valuable for our purposes, as it closely aligns with the lead-
ers’ interaction type present in our theoretical framework under the label of
external information interaction (see Algorithm 2). By first examining the
structure and dynamics of the leaders-only network, we gain crucial insights
into the broader network organization. Given the inherent complexity of
the full model, this stepwise approach—analyzing its main components sepa-
rately—provides a clearer understanding of how external information sources
influence the overall opinion dynamics.

For each tweet published by the information leaders selected, all corre-
sponding retweets and quote tweets were collected. In addition, for any
retweets, quote tweets, or replies produced by these sources, all referenced
tweets were also retrieved. The dataset used in this study corresponds to (or
partially overlaps with) the one previously analysed in [3, 4, 5]. For com-
prehensive details on its collection and analysis, we refer the reader to the
cited works. For the purpose of this analysis, we organized the dataset as
represented in Table 5.1.

The dataset is composed of ∼ 50 million interactions made by ∼ 2 million
users, and the distribution of the reference_type (one of quoted, retweeted,
commented, replied_to) is as follows:

The variable agreement represents a score in [0,1] derived from stance
detection, as described in [4]. Retweets as treated as instances of full en-
dorsement, and therefore assigned an agreement score of 1. Assuming that
all retweets represent endorsement imposes a positive bias on interaction
data. However, this assumption aligns with socio-psychological research lit-
erature in which it is recognized that social systems tend to over represent
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Table 5.1: Description of the dataset columns.

Column Description
reference_author Identifier or username of the author who made the

reference.
reference_type Category of the reference.
referenced_id Identifier of the content being referenced.
referenced_author Author or source of the referenced item.
reference_time Timestamp indicating when the original post was

made.
agreement Boolean or categorical indicator showing whether

the reference expresses agreement, disagreement, or
neutrality.

Note. Every time an interaction (retweet, comment, reply, or quote) occurs, it is
assigned a unique identifier that is recorded. In this case, reference_id denotes
the identifier of the interaction, while referenced_id refers to the post on which
the interaction takes place.

Reference Type Number of Tweets
quoted 9,402,418
retweeted 30,410,513
replied_to 50,311
commented 23,047

Table 5.2: Number of tweets by reference _type.

agreement and similarity among connected individuals [15]. In highly polar-
ized or homophilic networks, where echo chambers prevail, such bias is not
only expected but often reflective of real underlying dynamics.

In terms of network description, our dataset describes a tripartite temporal
network consisting on the three layers: reference_author, referenced_id,
and referenced_author, as represented in Figure 5.1, where green links
indicate agreement references, while the red ones stand for disagreement.

We average on the referenced_id layer, month by month, to obtain a
weighted bipartite network reference_author ↔ referenced_author. In
this way, for each month, we construct a directed weighted edge from one
layer to another. The weight of this edge corresponds to the average interac-
tion score computed over all the contents produced by the referenced_author

47



5 – Opinion Dynamics on Real-World Data: The X Case Study

Figure 5.1: Network representation of the dataset structure. The green links
in the first layer indicate agreement references, while the red ones stand for
disagreement.

during that month. For example, if user A interacts with four different posts
from user B in April 2019, the bipartite network will contain an undirected
link A ↔ B, whose weight is given by the average of all the corresponding
red and green links shown in Figure 5.1.

5.2 Behaviour of leaders network

5.2.1 Grouping political accounts
Starting from the leaders classification and filtering the complete dataset
to retain only the ids corresponding to political figures, we can obtain a
leader → leader interaction network, where both layers consist exclu-
sively of leaders—specifically, 39 profiles. Morevover, we retain only the
retweeted reference_type, in order to examine more closely how endorse-
ment dynamics between political communities were influenced by an external
perturbation—namely, the COVID-19 pandemic. In words, we focus exclu-
sively on agreement interactions occurring from leader to leader. By aver-
aging all the retweet interactions between each pair of leaders, we obtain a
weighted leader–leader network. Applying the Louvain community detection
algorithm [22] to this network yields a partition into five distinct communities
(with modularity Q = 0.5), as reported in Table 5.3.

This is particularly valuable for network analysis, as it allows us to further
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Table 5.3: Detected political communities and their members.

Community A (4 members)
gparagone, mov5stelle, giuseppeconteit, luigidimaio
Community B (6 members)
unione_popolare, demagistris, direzioneprc, manifesta_it, movimen-
todema, potere_alpopolo
Community C (7 members)
nfratoianni, si_sinistra, articolounomdp, europaverde_it, angelobonelli1,
robersperanza, ellyesse
Community D (9 members)
fratelliditalia, giorgiameloni, legasalvini, coraggio_italia, luigibrugnaro,
forza_italia, giovannitoti, matteosalvinimi, berlusconi
Community E (9 members)
matteorenzi, carlocalenda, emmabonino, piu_europa, enricoletta, pdnet-
work, azione_it, sbonaccini, italiaviva

enrich our dataset by introducing a cluster column associated with the
referenced_author values. In this way, we complement the endorsement
information captured by retweets with additional insight into the community
affiliation of the endorsed user, offering a deeper understanding of political
interactions on the platform.

5.2.2 Temporal evolution of politically aligned leader
communities

How did the leaders distribute their endorsement onto the five political groups
division? To capture the temporal evolution of political orientation, we
built monthly opinion vectors representing how each leader’s retweet activ-
ity was distributed across the identified clusters. This process involved a
systematic sequence of data filtering, aggregation, and normalization steps,
allowing us to track how leaders’ alignment with different political commu-
nities changed over time. Namely, we first filtered the dataset so that both
reference_author and referenced_author corresponded to leader identi-
fiers. Then, for each month, we computed a probability vector for every
leader over the five detected political communities. This representation al-
lows us to map leaders onto an opinion simplex, as illustrated in Figure 5.2,
providing a compact visualization of their temporal positioning within the
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political landscape (Data are displayed at 5-month intervals).

Figure 5.2: Italian information leaders represented on an opinion simplex.
Data are displayed at 5-month intervals.

In contrast, constructing opinion vectors for followers is challenging: fol-
lowers spread their retweets across many other followers who are not clearly
embedded in a stable community, and community detection on the full retweet
network performs poorly being the network structure too large and too dense.
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For these reasons, we defer the estimation of follower opinion vectors to fu-
ture work and, in this study, restrict our analysis to the projection over
leaders who mainly interact with other leaders, whose opinion cluster can be
detected.

5.2.3 Defining the COVID-19 period for analysis
In the temporal analyses presented in the following, three main annotations
will be considered to indicate the key phases of the COVID-19 pandemic in
Italy:

• March 2020 - Outbreak of the COVID-19 in Italy [31];

• December 2020 - Start of the national vaccination campaign [19];

• March 2022 - Beginning of the reopening phase and end of the state of
emergency [11].

The interval between March 2020 and March 2022 is therefore identified as
the COVID-19 period in the following analyses. This temporal window is
highlighted in the plots to facilitate the comparison of network and opinion
dynamics before, during, and after the pandemic.

5.2.4 From polarization to cooperation: Opinion lead-
ers during the COVID-19 Crisis

As shown in Figure 5.2, leaders appear highly polarized, with mass concen-
trated near the corners of the simplex. However, based on visual inspection
alone, it is not immediately clear whether significant changes occur dur-
ing exceptional periods of crisis or uncertainty. Over the period analyzed
(2018–2022), the event that most strongly impacted the stability of the in-
formation system and political equilibria was the COVID-19 pandemic. For
this reason, we aim to characterize leaders’ behaviour during this critical pe-
riod. Specifically, within the System Model framework—where the control
parameter is entropy or overlap—we ask: Does a strong external perturba-
tion foster cooperation and cohesion among opinion leaders, or, in the face
of a heightened threat, do communities withdraw further into their echo
chambers? What is the most appropriate metrics to understand the opinion
dynamics of leaders during the emergency?

To answer these questions, we compute several monthly metrics: the mean
entropy (Figure 5.4, top), the mean distance of points from the centre of
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the simplex (Figure 5.4, centre), the percentage of cross-community retweets
(Figure 5.4, bottom), and the average monthly overlap of the opinion vectors,
as defined by Equation (2.2). In addition, on a monthly basis, we compute
the percentage of cross-community retweets between political accounts (Fig-
ure 5.3). These quantities reveal a very unequivocal behaviour discussed
below.

• Cross-community retweets spike. We observe an increase in the
percentage of cross-community retweets. Although the overall retweet
volume grows during the COVID-19 pandemic, normalization ensures
that this measure remains informative. The spike in cross-community
interactions indicates that previously separated ideological groups en-
gaged more with each other. Leaders appear to interact across commu-
nity boundaries, likely reflecting a shared focus on the common crisis
or heightened public attention. Interestingly, this behaviour was largely
confined to the COVID-19 period, as the metric returns to pre-pandemic
levels once the emergency subsides.

• Average overlap. The average overlap of the population, as defined
in Equation 2.2 within the System Model framework, is not shown in
detail because it exhibits no notable spike. The relative alignment be-
tween opinion vectors remains largely unchanged. This indicates that,
although the content of opinions becomes somewhat more varied and
less extreme, the underlying ideological structure and group affiliations
among leaders remain largely stable over all period.

• Entropy spike. The entropy of the opinion vectors grows during the
COVID-19 period, indicating that more leaders distribute their retweets
beyond their own community, producing fewer vectors of the form [1,0,0,0,0]
and more with multiple non-zero components. This points to a broader
exploration of topics or positions and a less uniform discourse, probably
due to a topic shift, though investigating topical dynamics lies beyond
the scope of this thesis. In terms of metrics, it is worth noting that we
proved that in real-world systems, overlap and entropy are not neces-
sarily linked. The direct proportionality observed in the System Model
arises from the homogeneous distribution of opinions on the simplex;
however, this condition is far removed from that of real system commu-
nities. Even so, entropy appears to be meaningful for analyzing leader
cooperation, as it exhibits a clear spike. In contrast, overlap does not,

52



5.2 – Behaviour of leaders network

since a simple rigid shift of the population on the simplex does not affect
the average overlap, even though it significantly alters the dynamics.

• Component-level trends. Inspecting the time evolution of individual
components, we detect a mild increase in communities E and C, together
with a slight decrease in component A. While these shifts are not visu-
ally striking, they are consistent with the entropy and cross-community
evidence, suggesting a gradual redistribution of attention across commu-
nities rather than a wholesale realignment. These communities are the
one defined in Table 5.3.

Figure 5.3: Monthly averaged percentage of cross-community retweets in the
politicians network. In orange the three-month moving average.
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Figure 5.4: In the top, centre, and bottom panels, we show, respectively, the
distance from the centre, entropy over time, and the evolution of a single
component over time. The red shaded area highlights the COVID-19 period,
as defined in Subsection 5.2.3. 54



Chapter 6

Balancedness and
Stability in the X network

In this chapter, we extend our analysis of X by examining patterns of tri-
adic balancedness and stability within the interaction data, with the aim of
assessing how these properties are affected by external perturbations.

A central motivation for this study is to understand how network stability
evolves during major societal disruptions, with particular attention to the
COVID-19 pandemic. This period represents a natural experiment in collec-
tive behaviour, offering a rare opportunity to observe how social structures
adapt under stress.

Analysing stability in real data is essential both to validate theoretical
predictions and to uncover the mechanisms that drive social resilience and
structural change. By studying the temporal evolution of triadic relations
on Twitter, we aim to detect patterns that reflect the stability or fragility
of social alliances in digital environments, and to clarify the role played by
opinion leaders within these dynamics.

In Chapter 5, the System Model already provided a characterization of po-
litical leaders in terms of the formalism underlying opinion dynamics. How-
ever, that framework could not be directly extended to ordinary users. We
therefore argue that social balance theory offers a sufficiently general lens to
investigate emergent coordination patterns in the full network — encompass-
ing both leaders and followers — particularly during periods of crisis.

The following sections detail the data preparation, methodological design,
and empirical results, offering insights into how balance theory manifests in
large-scale, real-world social systems.
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6.1 Triad extraction and categorization pro-
cedure

The dataset described in Table 5.1 represents a weighted and signed (agreement)
interaction edgelist between pairs of users (reference_author–referenced_author),
each associated with a timestamp (referenced_time). By aggregating these
interactions on a monthly basis for each pair, we can construct a triads
dataset, where each entry represents a set of three interconnected nodes and
their corresponding signed relationships, structured as follows.

• Each triad entry includes identifiers for the three vertices (V1_name,
V2_name, V3_name) along with their corresponding ratings (V1_Rating,
V2_Rating, V3_Rating), which distinguish whether each vertex is a
leader—classified according to one of the Newsguard categories (T for
trustworthy, N for non-trustworthy, S for satirical) or P for political
actors—or a follower. The dataset consists of 14,613,773 triads.

• A categorical field rating_combination is created to encode the triad
type (e.g., FFN, FFT, FFP, PPP, etc.).

• Since the analysis is conducted on a monthly basis, a new character field
YYYY_mon (e.g., 2019_jan, 2020_mar, . . . ) is created to identify the
reference month within the period under study. Each triad is associated
with a column for each month, containing a Boolean value that is True
if the triad is balanced in that month-year, False if it is unbalanced,
and NaN if the triad does not exist in that month-year.

We computed the distribution of triad types (rating_combination in the
dataset. Approximately 60% of the triads consist of two followers and one
leader labeled as P or T. About 13% of the triads are composed solely of
followers (FFF), while the remaining 27% correspond to the other possible
combinations of leaders and followers (See Figure 6.1a).

6.2 Monthly triad stability metrics
All metrics are computed on a monthly basis, considering only the triads
with non-missing data in the given month.

Percentage Balanced (balancedness). For month t, let Bt be the num-
ber of triads marked as balanced and Nt the number of triads with
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(a) Distribution of triad types.

Triad type Condition
Only Followers FFF
Only Politicians PPP
Mixed (P+F) contains P and F
Satire included contains at least one S
Mixed content all other combinations

(b) Triad types.

observed values. The percentage of balanced triads of is then

pct_balanced(t) = 100 × Bt

Nt
.

Number of Changes. For each triad, changes counts how many times it
transitions between balanced and unbalanced states over the entire ob-
servation period (2018–2022).

Coherence. Let non_na denote the number of months a triad is observed.
Coherence measures the stability of a triad over time:

coherence =

⎧⎪⎪⎨⎪⎪⎩
1 − changes

non_na − 1 , if non_na > 1,

NA, otherwise.

When aggregated monthly, the reported metric is the average coherence
of all observed triads in that month, expressed as a percentage.

6.3 Temporal trends in triadic balancedness
and stability

In this section, we present the temporal evolution of the monthly averaged
quantities defined in Section 6.2.

57



6 – Balancedness and Stability in the X network

The results reported in Figure 6.2 indicate a clear decline in triadic bal-
ancedness during the COVID-19 period, indicating that the network became
structurally less stable.

Figure 6.2: Metrics for the total triads dataset with COVID-19 Event study.

Several qualitative factors may explain this pattern. First, during the pan-
demic, previously unpopular actors, such as virologists and epidemiologists,
gained sudden visibility and influence. Being largely apolitical, these figures
were accepted across different ideological communities, temporarily soften-
ing group-based biases and resistance to cross-community sharing. Second,
alliances appear to have shifted in response to an overwhelming external
challenge, fostering momentary cooperation within the system. As shown
quantitatively in Section 5.2.4, the leaders’ network dynamics experienced a
temporary convergence, reflected in reduced distances on the opinion simplex.
This small-scale alignment among leaders likely contributed to a broader dis-
ruption of social balance across the wider network.

The metric average changes measures the mean number of state transitions
(balanced↔unbalanced) per triad within each month. An increase in this
indicator during the COVID-19 period suggests a surge in dynamically active
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triads, i.e. configurations that changed sign more frequently. This reflects a
phase of rapid opinion realignment and a decrease in social balance, which can
be interpreted as an immediate collective response to the crisis. This pattern
reflects a phase of rapid opinion realignment and reduced social balance,
which can be interpreted as an immediate collective response to the crisis.
However, these newly formed connections appear to be weak: the higher rate
of change and lower coherence observed during the emergency period imply
that these ties were unstable and unlikely to persist. In this sense, triadic
volatility serves as a proxy for the fragility of the system’s adaptive response.
This behaviour also aligns with the increased overall retweet activity observed
in that period, driven partly by the engagement of previously inactive, and
likely less polarized, users.

The coherence parameter exhibits a complementary pattern. Defined as
the temporal stability of a triad’s configuration, its decline during the pan-
demic period indicates that active triads were more prone to changing sign,
further supporting the interpretation of weaker and more transient relational
structures.

6.4 Triadic dynamics by category
To investigate this instability in greater detail, triads were further aggregated
into three main categories, and the same set of metrics was computed and
plotted for each group. References to these plots are provided in the Image
Label column of Table 6.1.

Category Percentage Image Label
Other 48.3% 6.3
Mixed P + F 38.4% 6.4
Only Followers 12.7% 6.5

Table 6.1: Distribution of follower categories with corresponding image la-
bels.

These plots retain substantial descriptive information:

• “Other” and “P+F” categories. Both categories (Figure 6.3 and
Figure 6.4, respectively) exhibit patterns consistent with those observed
in the aggregate analysis (Figure 6.2). Specifically, we observe a con-
current decline in Balancedness and Coherence, accompanied by a rise
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in Changes. This behaviour is expected, given that these two categories
represent the majority of triads in the dataset. Their alignment with
the general trend confirms that the overall destabilization observed dur-
ing the pandemic primarily originated from triads involving at least one
leader.

• “FFF” category. In contrast, triads composed exclusively of followers
show a remarkably stable pattern over time. As depicted in Figure 6.5,
their social balancedness remains consistently at 100% throughout the
entire observation period, showing no response to the COVID-19 out-
break. This suggests that interactions among ordinary users are highly
cohesive and structurally resilient. Since these users are not directly
involved in the more volatile processes of influence or opinion leader-
ship, their relational dynamics appear largely insulated from large-scale
external shocks such as the pandemic.

Figure 6.3: Metrics for the “other” triads category with COVID-19 Event
study.
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Figure 6.4: Metrics for the “P + F” triads category with COVID-19 Event
study. Triad category is any combination of “P” and “F”.

Figure 6.5: Metrics for the “FFF” triads category with COVID-19 Event
study. We refer here to only followers triads.
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6.5 Differences in political and information
triads with followers

Once the general behaviour for each triad category has been analysed, we
now provide a final characterization to complete the description.

In Figure 6.6, we report the analysis of the same metrics specified in Sec-
tion 6.2, using a 3-month moving average and further distinguishing between
triads “FFN” and “FFT” to assess whether the presence of a trustworthy or
non-trustworthy source alters the behaviour. One can immediately observe
that triads “FFT” exhibit lower balancedness, while “P + F” and “FFN”
share similar average balancedness and coherence, and also show a compara-
ble number of changes. Triads involving a trustworthy source of information
consistently exhibit a higher number of changes, which results in lower co-
herence, though this does not directly explain the reduced balancedness.

To quantify this process, Figure 6.7 shows the percentages of each triad
category over the total number of triads, tracked over time. It is very clear
that during the pandemic crisis period, the category “FFT” experiences
a striking increase, along with a milder rise in the percentage of “FFN”
triads. Correspondingly, the proportion of “FFP” triads decreases. This
indicates that activity and interactions involving information leaders, rather
than political figures, increased significantly during the COVID period.
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Figure 6.6: 3 months averaged key-metrics for triads division in
“FFF”,“FFN”,“FFT”, “P + F”.

Figure 6.7: Percentage of triads types over total number of triads present in
the dataset, for triads “FFN”, “FFT” and “FFP”.
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6.6 Summary of triadic dynamics and actor
roles during COVID-19

To conclude, we summarize the main findings on triadic balancedness and
actor-type interactions during the COVID-19 crisis, highlighting how differ-
ent behaviours relate and influence each other:

• Global instability and structural imbalance. The total network
exhibits a clear decrease in balancedness and coherence, coupled with a
rise in the number of changes during the pandemic (Figure 6.2). This
reflects a systemic instability, where opinion realignments and tempo-
rary shifts in alliances disrupted previously stable configurations. The
decrease in coherence and growth in changes is associated to a rise of
volatility of relationships in the system.

• Dominant role of mixed and heterogeneous triads. The categories
“P + F” and “Other“, which make up the majority of the dataset (Ta-
ble 6.1), replicate the general trend of instability (Figures 6.3 and 6.4).
This indicates that the overall network behaviour is largely driven by
these heterogeneous triads involving both political and follower actors,
whose dynamics were more sensitive to the crisis.

• Stability of purely follower-based interactions. In contrast, the
“FFF” category (Figure 6.5) remains entirely stable, showing 100% bal-
ancedness throughout. This suggests that ordinary users, when inter-
acting only among themselves, form a stable and insulated subnetwork,
less exposed to the influence-driven volatility that affects leader-related
triads, and are characterized of higher coherence.

• Information triads and trustworthiness effects. A finer-grained
analysis (Figure 6.6) shows that triads involving non-trustworthy infor-
mation sources (“FFT”) experience the lowest balancedness and coher-
ence. Meanwhile, trustworthy information actors (“FFN”) lead to more
dynamic interactions (more changes), but without improving balance.
During the pandemic, such triads surged in proportion (Figure 6.7),
while political ones decreased, indicating a shift from political to infor-
mational engagement. This behavioural shift in influence dynamics is
probably a key driver of the broader network destabilization observed.
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Chapter 7

Conclusions

Understanding how societies respond to crises enables us to anticipate politi-
cal instability during future disruptions and, crucially, to defend democracy:
by modelling opinion dynamics, we can detect anomalous patterns indicative
of manipulation and distinguish organic consensus building from coordinated
influence operations. This thesis investigates how opinions evolve under large
external perturbations, with a focus on the COVID-19 pandemic as a shock
to social systems. We study whether cooperative behaviour among leaders
can emerge during crises, what system-level consequences follow, and which
modelling frameworks best describe and forecast these dynamics.

Summary of the work
We built the work on the Sîrbu–Loreto framework to model agreement/dis-
agreement dynamics with modulated external information and reframed the
process within Social Balance Theory (SBT), so that individuals interac-
tions outcomes could be represented as a signed, time-evolving network. The
project combined three components:

1. Theory and modelling. We reviewed the literature from Heider’s
social balance to modern opinion dynamics and chose the Sîrbu–Loreto
model as a baseline. The original model was reproduced and discussed.

2. SBT re-framing and extension. We chose to adopt social balance
theory to opinion dynamics, mapping interaction outcomes to a signed
network and measured triadic balancedness in the original model, to
study it under a different perspective. We then proposed an extension
introducing a social pressure term η that modifies the effective overlap
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via triadic cues, operationalized through a weighted triadic signal τij.
We found out that social balance originates from dyadic interaction and
social pressure, contrarily, damages social balance.

3. Empirical analysis on Twitter/X. We constructed monthly opinion
vectors for users and leaders in the Italian political sphere (2018–2022),
creating a system model kind of population. From the data, we derived
monthly signed triads of real users and tracked balancedness, changes,
and coherence across the pandemic window and recorded spikes under
the effect of the external perturbation.

Main findings
Triadic balancedness in the model.

• In peer-only dynamics, triadic balancedness B settles to stable values
that do not depend on K but do reflect initial cohesion. Consistent with
the literature, the system organises at high (but not perfect) balanced-
ness in favourable conditions.

• Introducing social pressure η (triad-informed effective overlap) yields a
counter-intuitive result: increasing η reduces balancedness, both with
and without leaders. This suggests that, in this setting, triadic balance
emerges spontaneously from dyadic dynamics, while strong conformance
to local triadic pressure can disrupt the system’s natural route to bal-
ance.

• Noise ϵ erodes balancedness when large, by decoupling pagree from opin-
ion similarity. With leaders present, the absolute level of B depends
on the match between source polarization a and the emergent opinion
geometry (e.g., high a aligns with polarized follower populations but
depresses balancedness when populations are in a cohesion state).

Empirical patterns in Italian political Twitter/X (2018–2022).

• The leaders’ retweet network partitions into five communities with sub-
stantial modularity. During COVID-19, we proved quantitatively that
the leaders’ network undergoes a transition that can be characterized
in terms of our model: leaders got closer on the simplex, indicating a
temporary relaxation of echo-chamber boundaries and the emergence of
interactions across different ideological blocs.
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• In the triad time series Leaders and followers are behaving in a complete
different way. Social stability among normal users is not affected by the
perturbation, but when leaders take part in the triads with users, the
balancedness decreases. This, in addition to the leaders cooperation that
emerged from data, means that the real change, on opinion dynamics
level, happens on leaders. The way the changing in leaders dynamics
propagate to followers needs further study.

Conceptual implications
• Emergence of collective phenomena The thesis shows that struc-

tural properties derived from triadic relations (balancedness, coherence)
can be linked to macro phenomena (cooperation) under external pertur-
bations.

• Leaders as control parameters. In the dynamics we came across
leaders and followers don’t play absolutely the same role. Leader’s be-
haviour shapes follower’s one and follower’s stability is not affected by
the external perturbation.

• More social pressure does not imply more social stability. The
finding that larger η reduces balancedness challenges the intuition that
explicit triadic interaction improves stability. In our setting, balance is
an emergent outcome of dyadic dynamics; imposing strong social pres-
sure may introduce conflicting constraints that destabilize local adapta-
tion.

Limitations
• Signed-network construction from data. Month-level aggregation

and last-interaction (or averaging) rules for signs inevitably simplify tem-
poral causality. We got rid of the post-id layer by averaging but that is
an extreme semplification.

• Model idealizations. The model chooses randomly the interacting
people, as an extreme and useful simplification.
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7 – Conclusions

Future directions
• Performing statistical validation on the signed network links.

To solve the simplification made when filtering out the post-id layer, a
statistical validation of links should be performed, to both decrease the
number of links without filtering and to avoid simple averages. This
could lead to more statistically valid results.

• Heterogeneous triadic pressure. Replace global η with node- or
community-specific ηi, or context-dependent η(t) that rises during emer-
gencies and relaxes afterward. This could reproduce the different group-
dynamics observed in the Italian communities.

• Richer exposure models. Introduce network topology and platform
mediation (e.g., algorithmic recommender biases) to move beyond fully
mixed peer selection; test how structural features interact with a, ϵ, and
η.

• Partial/weak balance. Track both strong and weak balance metrics
and motif-resolved pathways (e.g., + + − vs. − − −) to highlight which
motif transitions dominate instability during shocks and what changes
to the balancedness this could lead to.
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