
Sorbonne University
LISN – Laboratoire Interdisciplinaire des Sciences du

Numérique, Université Paris-Saclay

Understanding Turbulence via
Machine Learning

Master Thesis

Author: Valerio Actis Dato Casale
Supervisors: Sergio Chibbaro, Cyril Furtlehner, Alessandro Pelizzola
Laboratory: LISN, Université Paris-Saclay

Academic Year: 2024/2025

Understanding Turbulence via Machine Learning 1

Introduction

Turbulence remains one of the most challenging and fundamental open problems in clas-
sical physics, governing processes from atmospheric circulation to industrial mixing, aero-
dynamics and active matter. Despite the compact look of the governing equations of tur-
bulent flows, the Navier–Stokes equations, their nonlinear and multiscale nature gives rise
to complex behaviors such as intermittency, non-Gaussian fluctuations, and anomalous
scaling, making analytical treatment extremely difficult. A central feature of turbulent
flows is the energy cascade: energy is transferred through swirls and vortex stretching
from large to small scales , where it is eventually dissipated by viscosity. Understand-
ing the underlying mechanisms at play in this phenomenon is one of the key steps in
unraveling the mystery of Turbulence.

To make analytical and numerical progress, simplified models that retain the essential
physical ingredients of turbulence are often employed. Among these, shell models have a
particularly important role. These are systems of coupled ordinary differential equations
designed to mimic the energy cascade across discretized scales (or shells) in Fourier space.
Despite their simplicity, shell models successfully reproduce many statistical features of
fully developed turbulence, including intermittency and multiscaling, while remaining
computationally efficient and analytically more tractable.

In the last decade, machine learning (ML) has greatly renewed the research perspec-
tives in many fields. ML’s ability to extract patterns from complex data and identify
structure in chaotic systems has opened new paths to understand physical phenomena,
including turbulence modeling and reduced-order model discovery. The goal of this thesis
is to test the capability of machine learning to identify and interpret the interaction struc-
ture underlying the energy cascade in turbulence. We employ sparse nonlinear regression
techniques to extract relevant interactions from data generated by a shell model. This is
just a first, elementary step towards the implementation of ML in the study of turbulent
flows. A possible future development might make use of Restricted Boltzmann machines,
inspired by the statistical nature of turbulence theory.

Phenomenological overview

Turbulent flow is supposedly completely described by the Navier-Stokes equation:

∂u
∂t

+ (u · ∇)u = −∇p + ν∇2u + f , (1)

with the incompressibility condition

∇ · u = 0, (2)

For a given geometrical shape of the boundaries The Reynolds number is the only control
parameter of the flow [4]:

Re = V L

ν
, (3)

where V is a characteristic velocity, L a characteristic length scale, and ν the kinematic
viscosity. They are too complex to solve directly at high Reynolds numbers, where
turbulent phenomena occur. Instead, the velocity field u(x, t) is treated as a random
variable, and statistical tools are employed to characterize its behavior.

Energy cascade. A central concept in fully developed turbulence is that of energy
cascade [11]. Energy is injected at large scales through a force term creating disturbances
("eddies"), transferred across intermediate scales in the so called inertial range up to
a viscous cutoff, the Kolmogorov length lD, and finally dissipated into heat at small

Understanding Turbulence via Machine Learning 2

scales by molecular friction. As we will see, this is correctly reproduced by Shell Models.
it’s important to note that the external forcing term is essential for the system to reach
a stationary state as the injected energy is quickly dissipated in heat, and without a
continuous source, the turbulent system would soon go back to a rest state.

Experimental results. From experimental data we can infer two laws valid, at least
approximately, for almost any turbulent flow [4]:

1. Two-thirds law. In a turbulent flow at very high Reynolds number, the mean
square velocity increment ⟨δu(l)2⟩ = ⟨(u(r + l) − u(r))2⟩ ∼ l2/3 behaves approxi-
mately as the two-thirds power of the distance

2. Law of finite energy dissipation in a turbulent flow , keeping all experimental
control parameters constant except for viscosity, which is lowered as much as pos-
sible, the energy dissipation per unit mass dE

dt
= ϵ behaves in a way consistent with

a finite positive limit.

Other statistical experimental findings concern the skewness and kurtosis of the ve-
locity gradients [10]:

S = ⟨(δu)3⟩
⟨(δu)2⟩3/2 →

I
0 l ∼ L

0.4 l → 0 , K = ⟨(δu)4⟩
⟨(δu)2⟩2 →

I
3 l ∼ L

4 l → 0 (4)

For large l these quantities approach values typical of a Gaussian distribution. How-
ever, as l −→ 0, the kurtosis increases to K ≈ 4, and the skewness becomes nonzero,
signaling a deviation from Gaussian behavior and suggesting intermittency in the ve-
locity gradients and an asymmetry in their probability distribution function.

The observed non-zero skewness linked to vortex stretching, a process where vortices
become thinner in the direction perpendicular to the stretching due to the conservation of
fluid volume. This leads to a reduction in the radial size of the vortices, causing larger flow
structures to break apart into smaller ones. This cascade continues until the structures
are sufficiently small for their kinetic energy to be dissipated as heat. Conversely, the high
kurtosis indicates that the tails of the distribution are fatter than those of a Gaussian,
suggesting that extreme values of velocity gradients are more likely to occur and thus
that energy dissipation is highly non-uniform, with intense, localized bursts.

Kolmogorov Theory.At present days there exists no full theory of turbulence directly
derived from the Navier-Stokes equations. However in 1941 Kolmogorov [5] derived one
of the few exact results descending directly from (1) for Re → ∞, the four-fifth law:

⟨[δu(l)]3⟩ = −4
5 ε l, (5)

under the assumptions of isotropy, homogeneity and finiteness of dissipation rate ϵ
(H1).

In the same year Kolmogorov proposed a phenomenological theory (K41) based on
H1 and an assumption of global scaling invariance (H2) such that l → Al:

x → Λ x, v → Λh v, t → Λ1−h t, (6)
with A an arbitrary scaling factor and h the scaling exponent. From this and (5) we

have:

Λ3h⟨[δu(l)]3⟩ = −Λ4
5 ε l −→ h = 1/3 (7)

and thus, for higher order moments, in jargon structure functions:

Understanding Turbulence via Machine Learning 3

Sp(l) = ⟨|δv(l)|p⟩ ∼ lζp ζp = p/3 (8)
Finally, the famous inertial-range energy spectrum can be derived:

E(k) ∼ CK ε2/3 k−5/3, (9)
with CK being the Kolmogorov constant. The invariance of the energy transfer rate

under the scaling (7) is confirmed by its transformation law:

ε → A3h−1 ε, (10)
so that with h = 1

3 , ε remains invariant.
Unfortunately, experimental data and numerical simulations reveal that the exponents

ζp deviate from the linear prediction of K41 for p > 3. This inadequacy is strictly
related to the aforementioned phenomenon of intermittency, detectable, indeed, through
higher order moments. The problem directly stems from assumption H2, as global scaling
invariance implies uniform dissipation, a condition hardly encountered in real turbulent
systems.

Multifractality.To describe the intermittent nature of turbulence the hypothesis that
energy dissipation occurs uniformly on a fractal structure with fractal dimension DF < 3
was firstly introduced, yet with unsatisfactory results. Successively, a multifractal model
was proposed [8, 9], where, at odds with the K41 theory which assumes a single global
scaling exponent h, only a local scaling invariance is assumed (H3): different regions of
the turbulent flow experience different rates of energy transfer, leading to a continuous
spectrum of scaling exponents instead of a single value. More formally h < 1 (for h ≥ 1
the velocity gradients are not singular) is assumed on a fractal set F :

F =
Û
h

Ω(h)

Ω(h) = {x | δu(x, l) ∼ lz, z ∈ [h, h + dh]}. (11)
each subset Ω(h) is itself a fractal of dimension D(h). being Pl(h) the probability of

having scaling exponent h proportional to the volume of Ω(h) over the total volume we
have:

⟨|δv(l)|p⟩ ∼
Ú

lhp+3−D(h)dh (12)

and using a saddle point approximation

ζp = min
h

[ph + 3 − D(h)] . (13)

K41 is recovered for Pl(h) = δ(h − 1/3), D(h = 1/3) = 3. The computation of D(h)
from the Navier-Stokes is the next big open question.

Shell models

Shell models are simplified dynamical systems designed to capture the essential features
of turbulent energy cascades while remaining computationally tractable [3]. They replace
the full Navier–Stokes equations with a system of coupled nonlinear ordinary differential
equations that describe the evolution of velocity fluctuations across scales.Shell models
follow the dynamics of complex-valued, scalar variables un(t) (geometry and space are
completely lost!), each associated with a discrete shell in Fourier space, corresponding to
a wavenumber kn = k0λ

n, where λ is the intershell ratio, typically set to 2. This implies

Understanding Turbulence via Machine Learning 4

that the shells are logarithmically spaced, covering a wide range of scales with relatively
few degrees of freedom.

The motivation behind shell models is clear: we need a simple, dimensionally consis-
tent system that captures the multiscale, nonlinear, and chaotic nature of turbulence while
being more analytically and computationally manageable than the full Navier–Stokes
equations. Shell models aim to describe a deterministic dynamical evolution of a set
of variables defined across a wide range of spatial scales, each associated with different
characteristic times. In other words, the goal is to construct a model that embodies
the phenomenological picture of the Richardson energy cascade, where energy flows from
large to small scales, while retaining a well-defined deterministic time evolution.

The evolution equation for each shell variable typically takes the form:

dun

dt
= νk2

nun + Gn[u, u] + fn, (14)

where νk2
nun represents viscous dissipation, Gn[u, u] is a quadratic nonlinear coupling

term that mediates energy transfer between shells, and fn is an external forcing term.
The nonlinear term Gn[u, u] is constructed to preserve key physical invariants of the

original Navier–Stokes dynamics—such as total energy and helicity—while restricting
interactions to neighboring shells (nearest and next-nearest neighbors). This locality in
Fourier space reflects the idea that most energy transfers in turbulent flows occur between
adjacent scales. In the following we will focus on the so called Sabra model:

dun

dt
= i(kn+1Au∗

n+1un+2 + knBu∗
n−1un+1 − kn−1Cun−2un−1)ü ûú ý

nonlinear

− νk2
nunü ûú ý

dissipation

+ fnüûúý
forcing

Such model exhibits a form of intermittency that is both qualitatively and quanti-
tatively similar to that observed in real turbulent flows governed by the Navier–Stokes
equations. In particular, it was showed that the anomalous scaling of velocity increments
in turbulence is well reproduced [1]. This agreement supports the idea that shell models
not only reproduce the correct energy cascade but also capture the intermittent nature
of turbulence. The shell model thus provides a valuable tool to investigate the statistical
features of turbulence without the full complexity of fluid dynamics in physical space.

setting A=1, the model contains two free parameters, B and C, which control the
relative weights of the nonlinear interactions. In the inviscid (ν = 0) and unforced
(fn = 0) limit these parameters are constrained by the requirement of conservation of
two quadratic invariants:

E =
Ø

n

|un|2, (total energy) (15)

Q2 =
Ø

n

(−1)nk− logλ |1−B|
n |un|2 (16)

The energy conservation fixes: C = −(1 + B). A particularly popular choice consists in
requiring the second invariant to have the same physical dimensions as a quantity called
helicity in the Navier–Stokes equations. This is achieved by setting − logλ |1 − B| = 1,
which, for the commonly used intershell ratio λ = 2 , leads to B = −1/2.

Understanding Turbulence via Machine Learning 5

Generating the Data

The initial step in our work was developing a flexible and extensible code capable of
simulating a large number of complex-valued datasets from equation (15) under various
parameters configurations. We based our implementation on existing reference codes,
which we significantly modified to suit our objectives. This included generalizing the
overall structure and expanding the range of tunable parameters. The resulting Fortran
code, based on standard 4th order Runge-Kutta integration, embeds the external appli-
cation of forcing to the system, and computes the energy spectra, structure functions up
to any order (in principle), and the energy flux across individual shells. The number of
shells used in the simulations will be indicated as nn, and it has to be finite. This means
that the boundary shells must implement slightly different equations:

N(u1) = ik2Au∗
2u3 N(u2) = i(k3Au∗

3u4 + k2Bu∗
1u3 − k1Cu0u1)

N(unn−1) = i(knnBu∗
nn−2unn − knn−1Cunn−3unn−2) N(unn) = −iknn−1Cunn−2unn−1

For the forcing, we adopted this scheme: we calculate the total energy in the forcing range
(defined as the range from shell ndwn up to shell nupp to which we apply the forcing) and
determine a scaling factor α:

Ef =
nnØ

n=1
|un|2 · Θ(n − ndwn) · Θ(nupp − n) =

uppØ
n=dwn

|un|2 α = ϵ

Ef

and the forcing term is:

fn = un(α + iϕn) · Θ(n − ndwn) · Θ(nupp − n)
where: Θ(x) is the Heaviside step function, ϕn is a random phase.In the following we

will always use ndwn = 1,nupp = 3. For the initial state of the system the variables un are
randomly initialized. We used the parameters A = 1, B = A

r
− A, and C = −A

r
, r, the

intershell ratio, can be arbitrarily chosen, we experimented with r = 2 and the golden
ratio r = 1+

√
5

2 . Other key parameters include step (the total number of iterations),
sstep (the interval between two samples of the spectra) and fstep (the interval between
two samples of the fluxes). The timestep is defined as dt = β

ñ
ν
ϵ
, where β, ν and ϵ are

all tunable parameters. This choice ensures that dt remains smaller than the smallest
timescale of the system, crucial for numerical stability and accurate temporal resolution.
To validate the code and ensure it reproduces the expected dynamical behavior, we tested
for the attainment of a statistically steady state. This was done by monitoring the running
average of the total energy and of quantity eq. (16) and checking for convergence over time.
An example of this process is shown in fig. 1, where also the time evolution of the quantity
ϵ(t) = q

n k2
n|un|2 (enstrophy) is displayed, to clearly visualize the strong intermittent

behavior. Once equilibrium was established, we used the subsequent time series data
to compute various statistical observables, including the second-order structure function
and the average energy dissipation per shell. These results are presented in fig. 19. As
expected, the second-order structure function exhibits a scaling exponent close to 2/3,
in agreement with the Two-Thirds law. Furthermore, the average energy flux remains
nearly constant across the inertial range, confirming the consistency of the simulation
with theoretical predictions. In figs. 14 and 15 we show similar plots for different nn and
r values

Understanding Turbulence via Machine Learning 6

Figure 1: r = 2,nn = 20, ν = 10−8, ϵ = 1. Energy (left) and ϵ(t) (right) timeseries. the red curves
represent the average values and the dashed green line the timestep after which the system is considered
at equilibrium.

101 102 103 104 105 106
k

10 4

10 3

10 2

10 1

100

|u
|2

k 2/3

=1e 08
nn=20

101 102 103 104 105 106
k

1.0

0.5

0.0

0.5

1.0

1.5

=1e 08
nn=20

Figure 2: r = 2,nn = 20, ν = 10−8, and ϵ = 1. Left: Second-order structure function (green line)
compared to the theoretical scaling k−2/3 (black dashed line), log-log scale. Right: Average energy flux
per shell. The flux remains approximately constant in the inertial range, which lies between the two
dashed purple lines. The forcing range is evident in the first three shells, while the dissipation range
appears in the last three.

Learning from Data

The central goal of this part of the project is to explore whether the nonlinear structure
of turbulence, as modeled by the SABRA shell model, can be recovered directly from
the generated data using machine learning techniques.Several approaches are possible
and we decided to start with a sparse Nonlinear Regression [2]. In particular, we aim
to reconstruct the dynamical equations governing the evolution of each shell variable un

by assuming that its time derivative u̇n can be expressed as a sparse combination of
nonlinear interactions. For this purpose, We extensively utilized Lasso regression.

Lasso Regression and Sparsity Promotion
Lasso (least absolute shrinkage and selection operator) regression is a popular technique
for sparse modeling, where the goal is to balance prediction accuracy with model sim-
plicity by penalizing the ℓ1 norm of the coefficient vector [6]. Originally formulated for
linear regression, the Lasso estimator solves the optimization problem:

min
W ∈Rp

; 1
N

...y − W T X
...2

2
+ λ∥W∥1

<
(17)

Here, X ∈ Rp×N is the matrix containing the input terms evaluated at N time points,
y ∈ RN is the vector of time derivatives u̇n, W is the vector of coefficients ξj, and λ > 0

Understanding Turbulence via Machine Learning 7

controls the strength of the sparsity penalty.
The solution Ŵ can be interpreted as a soft-thresholded version of the ordinary least

squares (OLS) estimate:

Ŵj = SN,λ

1
Ŵ OLS

j

2
= Ŵ OLS

j · max
0, 1 − Nλ

|Ŵ OLS
j |

 (18)

Ŵ OLS
j = (X⊤X)−1X⊤y (or simply Ŵ OLS

j = X⊤y if X⊤X = I) (19)
Here, SN,λ denotes the soft thresholding operator, which sets small coefficients to zero

and shrinks larger ones toward zero, thus promoting sparsity.
While Lasso uses an ℓ1 penalty, Ridge regression instead penalizes the ℓ2 norm of the

coefficient vector:

min
W

; 1
N

...y − W T X
...2

2
+ λ∥W∥2

2

<
(20)

This results in small but non-zero coefficients for all features, promoting smoothness
rather than sparsity. Unlike Lasso, Ridge cannot perform variable selection [7] (i.e., it
does not drive coefficients to zero).

It is important to note that Lasso, while effective for identifying relevant interactions,
can distort the true values of the coefficients. This is due to the ℓ1 penalty shrinking all
coefficients—including large, physically meaningful ones—toward zero. As a result, the
learned coefficients may not faithfully reproduce the original magnitudes. In practice,
a common workaround is to use Lasso for feature selection and then refit the selected
model using unregularized (OLS) regression to recover unbiased coefficient estimates.

For SABRA model
We have access to time series of {un(t)} and we can compute numerically their time
derivatives, thus we represent the system state as a vector U(t) ∈ Cnn (with nn number
of shells) where each component is a shell velocity at time t:

U(t) = [u1(t), u2(t), ..., unn(t)]T (21)

The SABRA model can be written in matrix form:
dU(t)

dt
= F(U(t)) = N(U(t)) − DU(t) + f(t) (22)

where: N(U(t)) is the nonlinear term, D is the diagonal dissipation matrix with
Dnn = νk2

n, and f(t) is the forcing vector.To reproduce the Lasso regression structure,
we construct a dictionary of functions Φ(U(t)), which consists of pre-computed features
derived from the system state U(t). These features are assumed to capture the relevant
interactions necessary to model the time evolution dU(t)

dt
. Adopting a Machine Learning

perspective, we deliberately ignore any prior knowledge about the underlying equations or
the model used to generate the data. Instead, we hypothesize a general class of functions
that could potentially describe the dynamics, add them to the dictionary, and let the
Lasso algorithm select the most informative ones based solely on the data. We consider
two distinct scenarios for learning the dynamics:

Understanding Turbulence via Machine Learning 8

Case 1: Subtracting Dissipation (SubDiss)

In this case, we assume that the dissipation matrix D is known1. We subtract both the
dissipation and forcing terms from the target data2, allowing us to focus exclusively on
identifying the structure of the nonlinear interactions. The nonlinear terms for the i-th
shell is then approximated as:

N(Ui(t)) ≈
Ø

j

WijΦj(U(t)) (23)

Here, we assume that only pairwise interactions between shells are relevant. How-
ever, due to the complex-valued nature of the system, we must consider not only products
of the form ui(t)uj(t), but also combinations involving complex conjugates. Therefore,
the dictionary vector includes the following types of interactions for all pairs of shells i, j:

Φ(1)
ij (t) = ui(t)uj(t), Φ(2)

ij (t) = u∗
i (t)uj(t), Φ(3)

ij (t) = ui(t)u∗
j(t), Φ(4)

ij (t) = u∗
i (t)u∗

j(t)
(24)

Each of these terms is a candidate nonlinear interaction in the regression problem.
The full dictionary (Φ(U(t))) therefore consists of all such terms evaluated at each time
t. For nn = 20, we get Φ(U(t)) ∈ Rnn2=1600 (this notation of Φ(U(t)) might appear
confusing: Φ(U(t)) remains a vector for the single shell, we use double indexing only to
identify the type of interaction).

The Lasso optimization problem becomes:

min
W

 1
Nt

.....dUi

dt
+ DUi − fi − WT Φ(U)

.....
2

2
+ λ∥W∥1

 (25)

where dUi

dt
is the vector whose components are values of the time derivatives of shell i at

all the considered timesteps, Ui and fi are the vectors containing the timeseries of shell
ui(t) and forcing fi(t) and U is the matrix obtained stacking the vectors Ui for every
shell i (note how Φ(U) is a matrix made up of vectors Φ(U(t1)), Φ(U(t2)),... stacked
together) . In this formulation, the Lasso regression is responsible only for identifying the
sparse set of nonlinear coefficients Wj, as the dissipation and forcing have already been
removed from the target.

Case 2: Not Subtracting Dissipation (NoSubDiss)

In this case, we still subtract the forcing term f, but we do not remove the dissipation
one. Instead, we include the linear terms U(t) as additional features in our dictionary.
This allows the regression to learn both nonlinear and linear (dissipative) terms directly
from data.

The dictionary is expanded to include U(t) itself:

Φ′(U(t)) = [Φ(U(t)), U(t)] (26)

with, for nn = 20, Φ(U(t)) ∈ Rnn2+nn=1620 The model is now:

dui(t)
dt

− fi(t) ≈
Ø

j

WijΦ′
j(U(t)) (27)

1This assumption is not arbitrary: the quadratic dependence on kn in the coefficients of the dissipation
terms naturally arises from the Navier-Stokes equations (1) and can therefore be inferred.

2This procedure is also justifiable: since the forcing is external, it is not unreasonable to assume that
it can be independently measured or controlled in an experimental setup.

Understanding Turbulence via Machine Learning 9

and the optimization problem becomes:

min
W

 1
Nt

.....dUi

dt
− fi − WT Φ′(U)

.....
2

2
+ λ∥W∥1

 (28)

In this formulation, the Lasso not only identifies the dominant nonlinear interactions
but also recovers the dissipation structure by assigning appropriate weights to the linear
terms in Φ.

Applying Lasso regression we expect to recover a good approximation of the structure
of the interactions of the original model (15). in case 1 only 3 types of interactions
are expected: backward-forward with coefficient iBkn, forward-forward with coefficient
iAkn+1, and backward-backward with coefficient iCkn−1. In case 2 we expect to recover
the same interactions plus an additional coefficient νk2

n associated to the dissipation term.
We would like to stress the fact that so far only uncoupled learning has been presented, i.e.
each shell is assumed to have access to all interactions and the model selects independently,
shell by shell, which interactions are relevant for the different shells.

LassoCV and Model Selection in Practice
In practice, we employed the LassoCV implementation from the scikit-learn Python
library to perform automatic selection of the regularization parameter λ through cross-
validation. The standard Lasso estimator solves the objective

min
W ∈Rp

; 1
2N

...y − XT W
...2

2
+ λ∥W∥1

<
, (29)

where λ controls the trade-off between data fidelity and model sparsity. Selecting an
appropriate value of λ is crucial for obtaining a meaningful sparse model.

To automate this, LassoCV performs k-fold cross-validation: the dataset is split into k
equally sized subsets (folds), and the model is trained on k−1 of them while evaluated on
the remaining fold. This process is repeated k times, each time using a different fold as
the validation set. The mean validation error across folds is computed for each candidate
λ, and the value minimizing this error is selected.

This procedure helps prevent overfitting and underfitting by assessing generalization
performance on unseen data. It is especially beneficial in our setting where the dictionary
Φ(U(t)) may contain many irrelevant or redundant features.

The optimization is carried out via coordinate descent, and the regularization path is
evaluated over a logarithmically spaced grid of λ values. The final model corresponds to
the λ that yields the lowest average validation error.

The complex-valued nature of the data posed significant challenges for the implemen-
tation of the regression. An initial approach based on the modulus, |U(t)|, was attempted
but proved unsuccessful. Subsequently, we adopted a strategy that treats the real and
imaginary components separately. Specifically, both the data and the dictionary func-
tions were split into their real and imaginary parts, which were then stacked vertically
to form an extended real-valued dataset. The imaginary unit multiplying the interac-
tion coefficients was incorporated directly into the precomputed values of the dictionary
functions.

We experimented with several Lasso-based regression strategies, including growing-
window learning, batch-wise model aggregation, and greedy interaction selection. Each
method sheds light on different aspects of learnability, model robustness, and the structure
of turbulence.We chose to focus primarily on a dataset characterized by the parameters:
nn = 20, r = 2, sstep = 100,000, and step = 5 × 109, resulting in a total of 50,000
time samples for each shell. Unless otherwise specified, all subsequent analyses refer to

Understanding Turbulence via Machine Learning 10

this dataset. In the following, we display selected example images, showing only a subset
of shells and interaction coefficients to avoid excessive clutter. A more comprehensive
collection of visualizations is provided in the Appendix.

Figure 3: Evolution of NoSubDiss Lasso coefficients for selected interaction terms for shell 2, as a
function of the number of training samples. Each row corresponds to an interaction, identified by the
2 numbers of the shell interacting and by the type of the interaction. "D" stands for dissipation. The
values are row-normalized by the maximum value reached by the coefficient along its time evolution, to
facilitate comparison in variability between interactions. in green the expected interactions/dissipations
in black or red the unexpected interactions and dissipations.

Figure 4:
Evolution of
SubDiss Lasso
coefficients for
selected inter-
action terms
as a function
of the number
of training
samples for
shell 6.

Direct LassoCV on Growing Time Series
As a first approach, we applied LassoCV to each shell independently, using an increasing
number of time samples from the generated time series. This setup allowed us to study
the convergence behavior of the learned coefficients as more data became available. We
recorded snapshots of the Lasso coefficients at various stages of training, producing a
temporal map of how the learned interactions evolved. This analysis highlights which in-
teractions emerge early, which stabilize over time, and how the identified models fluctuate
with increasing data availability. Fig.(3) shows a heatmap illustrating the evolution of

Understanding Turbulence via Machine Learning 11

Figure 5: Evolution of
number of nonzero No-
SubDiss Lasso coefficients
for selected interaction
terms as a function of the
number of training sam-
ples for shell 2.

Figure 6: Evolution of
number of nonzero Sub-
Diss Lasso coefficients for
selected interaction terms
as a function of the num-
ber of training samples for
shell 6.

the coefficients’ magnitudes for Shell 2 in the NoSubDiss case, while Fig.(4) presents
the same for Shell 6 in the SubDiss case.

It is important to note that during the fitting, LassoCV selects many unexpected inter-
action terms that are not shown in the figures. The interactions displayed were selected
using the following criterion: we retained the top n (here n = 10) largest interactions (in
absolute value) from the first snapshot (N = 1999) and the top n from the last snapshot
(N = 49999).These two sets are visually separated by a blue dashed line in the heatmaps.
If fewer than 2n total interactions are displayed, it indicates that some interactions were
among the largest both at the beginning and at the end. At this point, one might be con-
cerned by the presence of several unexpected interactions identified by the regression. To
address this, it is instructive to examine the magnitudes of the corresponding coefficients.

Figure 7 clearly shows that the coefficients associated with the expected interactions
are several orders of magnitude larger than those of the unexpected ones, effectively
rendering the latter irrelevant. In practice, such small-magnitude coefficients may result
from overfitting to noise introduced by the numerical integration procedure. Plots(5,6)
support this interpretation: in both cases, the number of identified interactions decreases
as more samples are added, reaching a minimum around 14,000 samples. Beyond this
point, the number either stabilizes or begins to increase again, which may signal the
onset of overfitting. Assuming the underlying model is strongly sparse, one might consider
manually increasing the regularization parameter λ beyond the value selected by LassoCV,
in order to enforce a more stringent sparsity constraint. When doing so, the coefficient
selection improves considerably, and in some cases becomes exact,as shown in fig. 16,17
in the Appendix. However, this approach is inherently heuristic and difficult to justify
unless prior knowledge about the number of active interactions is available.

So far, several observations can be made. The model generally succeeds in identify-

Understanding Turbulence via Machine Learning 12

Figure 7: Magnitude
of coefficients for
NoSubDiss shell 2
and SubDiss shell 6
at the final snapshot.
The histograms show
a clear separation in
scale between expected
and unexpected inter-
actions, with expected
ones dominating by
several orders of mag-
nitude.

ing the expected interactions, which are consistently present throughout the increasing
sample window and exhibit large magnitudes. Some unexpected interactions are also
selected, but they typically appear with smaller magnitudes and less persistence.

However, the quality of learning degrades significantly under certain conditions. No-
tably, we observe a clear deterioration in performance for higher shell indices. While the
lower shells—representing large-scale dynamics—tend to converge toward sparse and in-
terpretable models, the higher shells exhibit noisier and less reliable results. This is likely
due to a reduced signal-to-noise ratio at smaller scales, combined with the increasingly
stiff dynamics of the system, which complicate the regression task.

As shown in the figures in the Appendix, and evident also from Fig. (9,10), the
SubDiss case yields robust results across all shells: the correct interactions are recovered
consistently. Still, both the number and magnitude of unexpected interactions increase
with shell index.

In contrast, the NoSubDiss case presents a more fundamental difficulty. Although
the regression still captures the expected dissipation terms, the majority of expected
nonlinear interactions are no longer learned. As the shell number increases, the dissipation
coefficients, which scale quadratically with kn, begin to dominate, effectively disrupting

the identification of meaningful interactions, as shown in Fig.(8). A preliminary ap-
proach to face this problem consisted in normalizing both the derivatives and Φ(U) by
the value kn of the target shell, but it did not lead to a significant improvement. The
magnitude of the coefficients, as expected, is not accurately recovered by LassoCV. How-
ever, from equation (15), we know that the true coefficients follow a specific order when
sorted by magnitude. This raises the question of whether the regression procedure is
at least capable of recovering the correct ranking. Unfortunately, as shown in figs. 22
and 23, in the Appendix, this is almost never the case.

Batch-wise Lasso and Interaction Consensus
We saw how in the first approach we encountered several difficulties: the inability to
recover the correct magnitudes or ordering of the coefficients, the absence of interactions in

Understanding Turbulence via Machine Learning 13

Figure 8: Evo-
lution of SubDiss
Lasso coefficients for
shell 18: only the
expected dissipation
is found, no trace
of the expected
interactions.

the large-k shells for the NoSubDiss case, and the presence of many undesired interactions.
To address the latter issue, we explored alternative strategies aimed at improving

interaction selection. Specifically, we partitioned the time series into several batches and
applied independent Lasso regressions in parallel, one for each batch. For each regression,
we recorded which interaction terms were selected. We then counted the number of times
each interaction or dissipation term was selected across all batches. To retain only the
most relevant terms, we introduced a threshold on the minimum number of occurrences
required for a term to be considered significant.

From the set of selected terms, we constructed a final model Wfinal using only the
retained coefficients. We experimented with various parameter combinations, including
the number of batches (nbatches = 5, 10) and the occurrence threshold (minocc = 5, 8, 9).

This allowed us to identify interactions that appeared consistently across batches,
indicating robustness and potential physical relevance. In the following, we present several
figures to comprehensively visualize and compare the results of the increasing-window
approach (from now on referred to as single) and the batch-wise approach.

Batch vs Increasing-Window Comparison
In Fig.(9), two panels are shown for the SubDiss case: the top one refers to the batch
approach (5 batches, minocc=5), while the bottom corresponds to the single approach.
Each panel includes four subplots:

The top left subplot shows the number of selected interaction terms per shell, sep-
arated into expected and unexpected. This highlights a clear improvement introduced
by the batch approach: the number of unexpected interactions is significantly reduced,
especially for large-k shells. (Note the difference in vertical scale between the batch and
single approaches). The bottom left subplot displays the same data, but zooms in on the
expected interactions only. Red dashed lines indicate the maximum number of possible
expected interactions. This limit accounts for the fact that, although there are only three
types of expected interactions, the dictionary also includes their symmetric counterparts
(e.g., both u∗

i uj and uju
∗
i , which are effectively the same), and can lead to apparent du-

plication of interactions. We observe that Lasso successfully selects nearly all expected
coefficients for every shell. However, in the batch approach, the cross-checking procedure
slightly impacts the recovery of expected terms, resulting in one missed interaction for
shell 2 and two missed interactions for shell 19.The top right subplot shows the percent-
age contributions of expected and unexpected interactions to the total sum of coefficient
magnitudes. This confirms the earlier observation: although unexpected interactions may
be numerous, their magnitudes are generally much smaller than those of expected terms.

Understanding Turbulence via Machine Learning 14

As a result, the main contribution to the total coefficient magnitude consistently comes
from the expected interactions. The bottom right subplot displays how the total sum
of coefficient magnitudes varies with the shell index. Figure(10) presents the same set of
plots for the NoSubDiss case.

Figure 9: Summary of the two approaches for SubDiss. Top frame: batch approach with n(batches)
and minocc=5. Top left: number of interactions per shell, split into expected and unexpected. Bottom
left: same, zoomed in on expected only. Top right: percentage of expected vs. unexpected contribution
to total coefficient magnitude per shell. Bottom right: total coefficient magnitude per shell.

Here, one can clearly observe the emergence of expected dissipative terms and their
dominant contribution to the overall magnitude. More importantly, however, we note

Understanding Turbulence via Machine Learning 15

a stark difference between the two approaches: while the single-window method results
in partial recovery of expected interactions, the batch approach leads to their complete
disappearance at higher shell indices.

Figure 10: Same summary, but for NoSubDiss case.
In Figure(12), we propose a further global visualization of the regression results.For

each shell, we selected the 10 largest interactions/dissipations, expected or not.We then
filled a global list of all 10 · nn = 200 selected interactions and sorted it by magnitude.
From this sorted list, we extracted the top 90 terms and plotted their occurrence in an
interaction matrix. In each matrix, both the x- and y-axes correspond to shell indices. A
filled square indicates that the corresponding shell pair engages in an interaction or dissi-
pation. The colormap encodes only the presence or absence of a selected interaction, and

Understanding Turbulence via Machine Learning 16

thus any overlap between terms is not explicitly shown unless originated by a dissipation
and an interaction.

Figure 12: Matrix of all interactions/dissipations learnt by each shell. top left and right: single and
batch (nbatches = 5, minocc=5) in SubDiss. Bottom left and right: single and batch (nbatches = 5,
minocc=5) in NoSubDiss. The dashed white borders are present if the interaction is expected.

Greedy Selection of Interactions by Importance
Lastly, we reversed the standard Lasso approach. Instead of starting with a full dictio-
nary of interactions and selecting a sparse subset, we masked all interactions but one,
applied LassoCV (Also Ridge and OLS have been attempted, leading to similar results),
and evaluated the resulting loss. Repeating this for each candidate interaction, we ranked
them by their individual ability to reduce prediction error. This procedure might help
reduce overfitting by avoiding situations where many small, unexpected interactions com-
bine to explain the data. By testing one interaction at a time, we limit the chance of the
model relying on noisy or spurious terms. We then built a sparse model incrementally
by adding interactions one by one in the order of decreasing effectiveness. At each iter-
ation, we measured the loss, selecting the interaction that provided the most significant
improvement. In Fig.(13), we present the results of this procedure when a maximum of
three interactions is selected per shell for the SubDiss case (shell indices are 0-based). The
resulting interaction matrix closely resembles that of Fig.(12). Similarly, the behavior of
the final R2 scores shows a familiar pattern: a systematic decrease in fitting performance

Understanding Turbulence via Machine Learning 17

with increasing shell number. The slight increase in R2 observed beyond shell 17 might be
explained by the fact that fitting shells 18 and 19 requires only two and one interactions,
respectively.

An additional observation, less evident in Fig.(13), becomes more apparent in Figs.(21,20)
in the appendix, where up to five or seven interactions per shell are allowed.In the evo-
lutions of R2 value we can clearly see that (particularly for small-k shells), the R2 curves
often exhibit an “elbow” at step 2—corresponding to the addition of the third interac-
tion. After this point, the increase in R2 becomes significantly slower. This suggests
that the first three interactions contribute most of the predictive power, while additional
interactions provide diminishing returns. This suggests the right number of expected
interactions per shell.

Figure 13: Greedy selection. top left: R2 scores as a function of the steps for all shells,
top right: final R2 scores by shell, bottom left: number of selected interactions by shell,
bottom right: interaction matrix (note that now the shells are indexed with a 0-based
convention).

Synthesis and Interpretation of Results
Each of the above methods offers complementary insights into the regression of interaction
terms from dynamical data. The growing-window Lasso approach reveals how learning

Understanding Turbulence via Machine Learning 18

stabilizes as the data volume increases. In particular, it confirms the consistency and
persistence of the expected interactions across increasingly larger sample sizes,
while also indicating the approximate number of samples required to identify the relevant
coefficients. This insight is valuable beyond the first method itself: for instance, if around
14,000 samples are necessary for stable identification, then in the batch-wise setting
using 5 batches of 50,000 samples each (i.e., batches of 10,000 samples) already brings us
reasonably close to that target. Taking significantly more batches would reduce the batch
size and risk moving further from this ideal, potentially weakening the identification.

The second, batch-wise approach provides a refined mechanism for filtering out
spurious interactions, improving sparsity and interpretability. By cross-verifying which
interactions appear consistently across multiple independently trained models, it becomes
possible to rule out most of the unexpected terms. Interestingly, even when the batch
data are randomly shuffled in time—thus destroying temporal continuity—the expected
interactions remained among the most frequently recovered, further supporting
their robustness and likely physical relevance.

The third method, based on a greedy ranking of interactions by individual
effectiveness, complements the previous approaches by offering a reverse, bottom-up
perspective. It does not assume sparsity from the beginning but builds it progressively,
selecting at each step the interaction that most improves predictive performance. The
results from this method confirm the relevance and dominance of the expected
interactions, as these are typically selected in the first few steps. The appearance of
a clear "elbow" in the R2 growth curve—especially prominent in small-k shells—after
the inclusion of the third interaction, strongly suggests that three interactions are
sufficient to capture the essential dynamics per shell. This aligns perfectly with the
theoretical expectation and the patterns identified by the previous methods.

Across all approaches, a consistent theme emerges: the expected interactions are
always the most relevant—either by being selected first in greedy procedures, by
dominating the coefficient magnitudes by several orders, or by persisting across different
subsets of data. Taken together, these findings build a coherent picture where, despite
variations in strategy, the most meaningful interactions stand out both statistically and
dynamically. This suggests that even in noisy or partial data regimes, a combination
of thoughtful regression strategies can yield insight into the structure of the underlying
physical system.

Conclusion and Future Perspectives

The analysis presented in this work demonstrates how different regression strategies can
complement one another in uncovering the underlying interaction structure of the SABRA
shell model. The growing-window approach helped establish the stability and consistency
of expected interactions as more data are added, and even informed the selection of batch
sizes for the second method. The batch-wise strategy improved model robustness by filter-
ing out many spurious terms while retaining the key interactions. The greedy approach,
in turn, confirmed from a reverse perspective that only a small number of interaction
terms—typically three per shell—are needed to achieve high predictive accuracy, a fact
reflected in the shape of the R2 score curves.

A common feature across all methods was the dominance of expected interactions in
terms of both frequency of selection and magnitude. These terms consistently appear
as the most relevant, which reinforces their physical credibility and suggests a stable
underlying structure in the system dynamics.

The next objective is to improve the estimation of the actual values of the interaction
coefficients, Something at which LassoCV fails. Ridge regression has been tested, giving
better results in terms of accuracy of the coefficients’ values but paired with a less sharp
feature selection. The crucial step is now to retain only the features selected by LassoCV

Understanding Turbulence via Machine Learning 19

and perform ordinary least square (OLS) regression to recover their associated coefficients,
this time with the exact numerical value. Unfortunately, such procedure, apparently
trivial, has turned out to be problematic and unable to correctly identify the expected
coefficients.

In parallel, we propose a possible future coarse-grained approach exploiting again
the Lasso feature selection. Rather than focusing on individual interaction terms, we
group them into interaction classes based on the shell separation distance d = |i − j|
between the indices of the interacting shells i and j. For each shell n, we retain only
those dictionary terms previously identified by the LassoCV approach in which shell n
interacts with shell n ± d, and aggregate them into a single class indexed by d. Each
class therefore captures all interactions occurring at a fixed shell distance. Using the
coefficients estimated by the initial regression, we weight each term accordingly and
construct a new dictionary whose entries are class-wise aggregated functions, this will be
our new ϕ matrix. The associated new, shorter coefficient vector W will thus regulate
the relative importance of each interaction class. This class-based reformulation may
facilitate the identification of dominant interaction ranges—such as classes c1 and c2 in
our case—and could enhance physical interpretability. Specifically, if we assume that
interaction dynamics do not vary significantly across shells, we can encourage structural
consistency by coupling the regressions performed for different shells. One strategy is to
introduce an adaptive regularization term in the per-shell loss function: if, for example,
class c2 is found to be important for shell 1, we can reward its selection in subsequent shells
by adding a term whose strength grows with the number of prior shells that identified c2
as relevant. This history-aware regularization helps reinforce coherent model structure
and may even stabilize learning for large-index shells, where the fitting has proven less
effective.

Alternatively, we propose a more integrated approach via joint learning. Instead of
fitting each shell independently, we concatenate all shell time series into a single target
vector y, and we stack the class-based interaction dictionaries for each shell horizontally
into a global matrix Φ. In this coupled setting, the regression yields a single coefficient
vector W that governs the importance of each interaction class across all shells simulta-
neously. This strategy extracts information globally, ensuring that the relative relevance
of each class is inferred from the collective behavior of the system.

Finally, we plan to explore the use of data-driven generative models. In particular,
we already implemented a first Restricted Boltzmann Machine (RBM) on the time series
of shell variables. The RBM will be used to model the statistical structure of the system,
potentially allowing us to generate synthetic but physically consistent dynamics. The
team has also developed a theoretical framework to extract causality relationships from
the structure of a trained RBM. Such framework could be applied also in our case, to
push forward the power of pattern recognition and dynamics modelization in Turbulence.

References

[1] Luca Biferale. Shell models of energy cascade in turbulence. Annual Review of Fluid
Mechanics - ANNU REV FLUID MECH, 35:441–468, 01 2003.

[2] Christopher M. Bishop. Pattern Recognition and Machine Learning (Information
Science and Statistics). Springer-Verlag, Berlin, Heidelberg, 2006.

[3] Tomas Bohr, Mogens H. Jensen, Giovanni Paladin, and Angelo Vulpiani. Dynamical
Systems Approach to Turbulence. Cambridge Nonlinear Science Series. Cambridge
University Press, 1998.

[4] Uriel Frisch. Turbulence: The Legacy of A. N. Kolmogorov. Cambridge University
Press, 1995.

Understanding Turbulence via Machine Learning 20

[5] Andrei Nikolaevich Kolmogorov, V. Levin, Julian Charles Roland Hunt, Owen Mar-
tin Phillips, and David Williams. Dissipation of energy in the locally isotropic tur-
bulence. Proceedings of the Royal Society of London. Series A: Mathematical and
Physical Sciences, 434(1890):15–17, 1991.

[6] Pankaj Mehta, Marin Bukov, Ching-Hao Wang, Alexandre G.R. Day, Clint Richard-
son, Charles K. Fisher, and David J. Schwab. A high-bias, low-variance introduction
to machine learning for physicists. Physics Reports, 810:1–124, 2019. A high-bias,
low-variance introduction to Machine Learning for physicists.

[7] L.E. Melkumova and S.Ya. Shatskikh. Comparing ridge and lasso estimators for
data analysis. Procedia Engineering, 201:746–755, 2017. 3rd International Confer-
ence “Information Technology and Nanotechnology", ITNT-2017, 25-27 April 2017,
Samara, Russia.

[8] Giovanni Paladin and Angelo Vulpiani. Anomalous scaling laws in multifractal ob-
jects. Physics Reports, 156(4):147–225, 1987.

[9] G. Parisi and Uriel Frisch. On the singularity structure of fully developed turbulence
in turbulence and predictability in geophysical fluid dynamics and climate dynamics.
NTurbulence and Predictability of Geophysical Flows and Climate Dynamics, 88, 01
1985.

[10] A. R. Paterson. Statistical fluid mechanics: Mechanics of turbulence. vol 2. a. s.
monin and a. m. yaglom. mit press, cambridge, massachusetts. 1975. 874 pp. £25.00.
The Aeronautical Journal, 80(781):44–44, 1976.

[11] Lewis Fry Richardson. Weather Prediction by Numerical Process. Cambridge Math-
ematical Library. Cambridge University Press, 2 edition, 2007.

Appendix: some additional figures

Figure 14: r = 1+
√

5
2 , nn = 30, ν = 10−8, ϵ = 1. same plot as fig. 1, for a different set of parameters.

The teq in the top left corner is the equilibration time found for quantity eq. (16)

Understanding Turbulence via Machine Learning 21

101 102 103 104 105 106
k

10 5

10 4

10 3

10 2

10 1

100

|u
|2

k 2/3

=1e 08
nn=30

101 102 103 104 105 106
k

1.0

0.5

0.0

0.5

1.0

1.5

=1e 08
nn=30

Figure 15: r = 1+
√

5
2 , nn = 30, ν = 10−8, ϵ = 1. same plot as fig. 19, for a different set of parameters

Figure 16: Evolution of SubDiss coefficients for Shell 2 as a function of number of sam-
ples obtained using Lasso instead of LassoCV, with fixed λ = 500. The only nonzero
coefficients are the expected ones.

Figure 17: number of nonzero SubDiss coefficients for shell 2 as a function number of
samples obtained using Lasso instead of LassoCV, with fixed λ = 500. The number of
coefficients is 3 (corresponding to the 3 expected interactions) already after 2000 samples,
and remain constant all the way.

Understanding Turbulence via Machine Learning 22

Figure 18: Evolution of values of λ selected by LassoCV as a function of the number of samples for
shell 4 SubDiss (right) and NoSubDiss (left). The x-axis is reversed: tick 49001 means that 999 samples
have been used.

Figure 19: Evolution of values of λ selected by LassoCV as a function of the number of samples for
shell 13 SubDiss (right) and NoSubDiss (left).

Understanding Turbulence via Machine Learning 23

Figure 20: Greedy selection allowing for 5 interactions per shell, NoSubDiss.

Figure 21: Greedy selection for a single shell SubDiss. Also here one can clearly observe
the "elbow" at step 2

Understanding Turbulence via Machine Learning 24

Figure 22: Ranking of magnitudes of expected coefficients NoSubDiss learnt by the model,
different colors of the bins indicates different types of interactions. The tick or the cross
on top of each graph indicate if the relative ordering in the coefficients’ magnitude is
correctly learnt.

Understanding Turbulence via Machine Learning 25

Figure 23: Ranking of magnitudes of expected coefficients SubDiss learnt by the model,
different colors of the bins indicates different types of interactions. The tick or the cross
on top of each graph indicate if the relative ordering in the coefficients’ magnitude is
correctly learnt.

	Introduction
	Phenomenological overview
	Shell models
	Generating the Data
	Learning from Data
	Lasso Regression and Sparsity Promotion
	For SABRA model
	LassoCV and Model Selection in Practice
	Direct LassoCV on Growing Time Series
	Batch-wise Lasso and Interaction Consensus
	Batch vs Increasing-Window Comparison
	Greedy Selection of Interactions by Importance
	Synthesis and Interpretation of Results

	Conclusion and Future Perspectives
	Appendix: some additional figures

