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Dynamics of Gradient Descent in High-dimensional
Non-convex Canyon Landscapes

Dafne Prado Bandeira

Abstract

Continuous constraint satisfaction problems (CCSPs) describe systems with continuous
degrees of freedom subject to random constraints, and they provide a unifying framework
for studying high-dimensional optimization problems such as confluent biological tissues
and artificial neural networks. In this work, we investigate a mean-field model that cap-
tures the essential features of non-convex energy landscapes in the satisfiable (SAT') phase.
We extend the model by introducing correlated replicas to probe how similar initial con-
figurations evolve under gradient descent dynamics. Using dynamical mean-field theory
(DMFT), we analyze the evolution of inter-replica correlations in the overparametrized
regime and find that they relax to non-zero asymptotic values, demonstrating that gradi-
ent descent retains memory of initial overlaps. The scaling behavior of these correlations
exhibits a Lyapunov-like sensitivity to perturbations. This study contributes to the the-
oretical understanding of high-dimensional optimization and offers a tractable setting for
investigating the geometry of solution manifolds relevant to machine learning.
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Chapter 1

Introduction

Continuous constraint satisfaction problems (CCSPs) involve finding solutions for systems
with continuous degrees of freedom that are subject to a set of constraints. These sys-
tems are considered overparametrized when the number of degrees of freedom exceeds
the number of constraints. From a statistical physics perspective, a particularly interest-
ing scenario arises when the constraints are randomly selected from a specific ensemble.
However, most of the literature focuses on discrete, rather than continuous, degrees of
freedom [1], [2].

In such scenarios, large systems typically exhibit a phase transition as the density
of constraints relative to the number of degrees of freedom increases. This transition
occurs from an overparametrized, satisfiable (SAT) phase—where feasible configurations
exist that satisfy all constraints—to an underparametrized, unsatisfiable (UNSAT) phase,
where the minimum number of unsatisfied constraints is greater than zero.

This type of phase transition is reminiscent of the jamming transition of spheres.
In this transition, densely packed spheres move from a fluid-like state to a rigid, solid-
like state as the packing density increases, exhibiting universal features [3]-[5]. Using
the random perceptron problem [6] as a prototype for continuous constraint satisfaction
problems that exhibit jamming-like transitions, previous work [7] has suggested that the
non-trivial criticality and universality of the SAT/UNSAT transition are associated with
non-convexity in the free energy landscape. In more abstract terms, studying this univer-
sality requires characterizing overparametrized non-convex loss landscapes under random
constraints. This exploration is conducted using gradient descent (GD) algorithms, which
iteratively update the system by moving in the direction of the steepest descent of the loss
function. Physically, this corresponds to minimizing a free energy landscape, similar to
Langevin dynamics at zero temperature. However, the specific mechanisms and pathways
through which GD navigates these landscapes remain largely unexplored. Recent progress
has been made in this direction using dynamical mean-field theory (DMFT), which has
revealed hidden dynamical time scales in gradient descent for constraint satisfaction prob-
lems [8]. These insights further motivate the study of simplified solvable models, where
the interplay between geometry and dynamics can be analyzed in detail.

Understanding the abstract nature of CCSPs allows for insights from diverse contexts.
One notable application of CCSPs is in the study of confluent tissues [9]-[11]. Confluent
tissues are biological tissues where cells are tightly packed, with no gaps or overlaps,



forming a tessellated surface. These tissues are typically modeled as polygon-filled surfaces,
with the cells represented as polygons that strive to achieve a target volume and area. The
most relevant models are the Vertex [12] and Voronoi [13] models, where the degrees of
freedom are, respectively, the vertices of the polygons and their centers. These tissues
exhibit various states of aggregation, such as liquid-like, solid-like, and glassy-like states,
and have been shown to undergo phase transitions similar to those found in jamming
models [14]. These transitions are significant in processes like morphogenesis [15] and the
spread of metastatic cancer [16], [17]. In Voronoi models, the rigidity transition from fluid
to solid is attributed to changes in cell shape, with the packing fraction acting as a control
parameter. Added stress due to deviations from the target cell shape occurs because the
surface constraint may make it impossible to satisfy the shape requirements for all cells.

In 3D, it has been observed that when the order parameter is sufficiently large, gradient
descent successfully identifies configurations where the cells achieve their target volume
and surface area [18]. From a constraint satisfaction perspective, this translates into a zero-
energy configuration, corresponding to the ground state of the Hamiltonian. Furthermore,
analysis of the Hessian spectrum of the Hamiltonian indicates an extensive number of zero-
energy modes. Consequently, the minima identified by gradient descent are connected
along a zero-energy manifold of configurations, resembling a canyon in phase space. If the
order parameter is lowered below a critical point, this canyon landscape disappears, and
gradient descent leads to configurations trapped in local minima at finite energy, behaving
like glass. This establishes a direct analogy between the rigidity transition in confluent
tissues and the SAT/UNSAT transition in CCSPs.

This work examines the dynamics of a mean-field abstract model that undergoes a
phase transition similar to the rigidity transition in confluent tissues. Specifically, the
model describes a satisfiability transition for continuous degrees of freedom subjected to
random non-linear equality constraints. Previous studies have suggested that the satisfia-
bility threshold determined by gradient descent dynamics may coincide with the thermo-
dynamic threshold and that zero-temperature replica symmetry breaking does not affect
GD dynamics [11]. Although this model does not derive the rigidity transition from first
principles, it offers the advantage of being analytically solvable.

A similar landscape also appears in artificial neural networks (ANNs). Essentially,
ANNS are used for performing non-linear regression tasks, where training involves mini-
mizing a loss function within a high-dimensional landscape. The zero-training loss mani-
fold, or “canyon”, arises from the constraints on the neural weights imposed by the data
points. This minimization is carried out using gradient descent. The high dimensionality
is due to both the complexity and quantity of the training data and the large number of
parameters to be optimized. Typically, this scenario is overparametrized, with more pa-
rameters than data points. Since the cost function depends on the data, the landscape is
expected to be rugged. As a result, the gradient descent dynamics are highly complex and
do not guarantee finding a global minimum, often leading to entrapment in local minima.

In this thesis, we extend the mean-field framework by explicitly introducing corre-
lated replicas of the system. This construction allows us to track how initially similar
configurations evolve under gradient descent. Owur analysis, based on DMFT and nu-
merical integration, shows that replicas retain a finite memory of their initial overlap:
cross-correlation functions relax to non-zero plateaus, while equal-time correlations ex-
hibit an almost linear scaling with the initial overlap. These findings demonstrate that



gradient descent dynamics preserve structured memory of initial conditions, indicating
that relaxation in high-dimensional landscapes is far from featureless.

The remainder of this thesis is organized as follows. In Chapter 2, we introduce the
mean-field model and its replica extension. Chapter 3 presents the derivation of the DMFT
equations using the Martin-Siggia-Rose-Janssen-De Dominicis (MSRJD) formalism and
discusses the numerical discretization scheme employed for their integration. Our results
for correlation and response functions, including the analysis of cross-replica dynamics,
are reported in Chapter 4. Finally, in Chapter 5, we summarize our findings and outline
possible future extensions of this work.



Chapter 2

Model

The set of degrees of freedom will be taken to be n copies parametrized by v = 0,...,n—1 of
an N-dimensional vector () = [a:gw, a:gw), . x%)] with a fixed modulus |z(")[2= N, which
defines a compact hyper-spherical phase space. For simplicity of notation, we denote  the
vector that includes all these degrees of freedom, therefore ¥ = {5(7)}:;6. The random
constraints will be added by the simplest non-linear term possible, which is a two-body
interaction term. Each replica experiences the same disorder through interaction matrices
J# that add constraints as defined by Eq. (2.1). The matrix is symmetric Jf; = J5; and
has random Gaussian entries with zero mean and unity variance.

N
rﬂ(fg(v)) — %ZJZ%(V):US_W) (2.1)
i<j
Eq. (2.1) delineates a series of M = N non-linear functions, yielding an extensive
random variable. The equality constraints are imposed by holding Eq. (2.1) constant at
ru(Z7) = po for all replicas. Our focus lies within the over-parametrized regime, character-
ized by € < 1, signifying more degrees of freedom than constraints. This behaviour persists
as a function of pg while keeping ¢ fixed. Specifically, for small pg, the model resides in
the satisfiable (SAT /over-parametrized) phase, whereas for large py, it transitions to the
unsatisfiable (UNSAT /under-parametrized) phase.
The value to be optimized is then the square-loss cost function, which may also be
interpreted as the Hamiltonian of our system.

HiE = 5 3 Y (@)~ po)? (2:2)

Therefore, the cost function depends on a non-linear random parameter (r, (7)), the
po value, and the number of constraints M parametrized by the value of . Qualitatively,
for a fixed value of € and sufficiently small pg, there exists a set of solutions Z for which
the Hamiltonian is zero. This corresponds to a perfectly satisfiable problem (’r‘u(fh)) =
Po, Yi,7y), which is achievable for small py because 7, is a Gaussian random variable
with a zero mean (being the convolution of Gaussians with zero mean). Because of the
Gaussian nature of the model, the small values of py are typical realizations (SAT). In



contrast, large values of py are large deviations of the zero energy Hamiltonian (UNSAT).

The thermodynamic properties of this problem for a fixed value of ¢ and a single
replica in the zero temperature limit were studied in reference [9]. The study reveals the
existence of two regions separated by a critical value p; . In one region, with probability
one, the typical configuration of the Gibbs measure defined by Eq. (2.2) has zero energy,
corresponding to the SAT phase. In contrast, the other region is characterized by a single
minimum solution (UNSAT phase). Additionally, within the SAT region, there are two
phases separated by another critical value pg. This transition in the SAT region occurs
when one-step replica symmetry breaking solutions (p < pg) become unstable at the
critical value pg and undergo a Gardner transition into a full replica symmetry breaking
phase (pg < p < py) [19]. This type of transition belongs to the same universality class
as other non-convex continuous constraint satisfaction problems [4].

This study aims to explore the characteristics of out-of-equilibrium algorithms and
juxtapose them with the thermodynamic framework. Specifically, we concentrate on the
gradient descent dynamics as described by equations derived from dynamical mean-field
theory (DMFT), as previously investigated in [11] for a single replica. Our focus lies in
seeking zero-energy solutions across the multiple replicas of the degrees of freedom. The
rationale behind employing multiple replicas is to gain a deeper insight into the canyon
landscape and the significance of correlations between the degrees of freedom.

2.1 Generalization of the non-linear constraint

The model can be generalized by considering that the variance of the distribution of Eq.
(2.1) can be expressed as a generalized function G(g), as shown in Eq. (2.3). With this,
hu(%) is a general Gaussian random variable that correlates the degrees of freedom.

— o oo Ty
Tﬂ(x)rv(y) = 5M,VG <]\§/> (23)
ru(%) = Z a; N~7/2 Z Jh i Ty T (2.4)
T iy <<y
In Eq. (2.4), J;: _,; isarank 7 tensor that contracts with 7 terms of Z. These terms

are unitary Gaussian variables with zero mean. Consequently, a general function G(q) can
be expanded as a Taylor series in powers of ¢, with coefficients a.

2.2 Dynamical equations

In statistical mechanics, the configuration of a dynamical system is represented by a point
in phase space that evolves over time. This point can become trapped in the numerous
wells (local minima) of the free energy landscape or relax to the ground state. Equilib-
rium properties can be determined using classical statistical mechanics methods, such as
the cavity approach and the replica method. However, out-of-equilibrium properties are
best described by envisioning the system’s movement through this landscape according
to Langevin dynamics. In the model described in this chapter, the Langevin equation
minimizes the Hamiltonian for all degrees of freedom, which corresponds to the physical



description of gradient descent dynamics. This process is constrained on the hyper-sphere
at all times by the dynamical Lagrange multiplier (") (t).

OH
o (t)

The initial conditions are uniformly selected at random within the constrained spherical
space, resulting in a Gaussian distribution as the flat measure. This set of Nn differential
equations can be solved using the mean-field character of the model [20]. To study the
dynamics, we focus on the time-dependence of the correlation (Eq. (2.6)) and response
(Eq. (2.7)) functions for different replicas, which can be found through dynamical mean
field theory (DMFT).

i () = = ()2 (1) -

1

(2.5)

OB (1. 1) = <f<a> (ta>]-vf<ﬁ> <tb>> (2.6)

x(a) 5 (#)(t,)) ‘

RO (t,.1,) = (2.7)

h(ﬁ) (ty)=
where the angled brackets (-) represent average over disorder and initial condition, while
h(P) (tp) represents an instantaneous linear perturbation applied to the replica parametrized
by 3 at time ¢,. The response function in Eq. (2.7) indicates how this linear perturbation
affects the trajectory of replica « at the instant ¢,. According to causality, the response
is zero if ¢, > t,. Additionally, one should expect that, for o # f, R(a:) (ta,tp) = 0 since
the response for different replicas should be independent for all times.



Chapter 3

Methods

3.1 Dynamical mean field theory (DMFT)

The dynamic nature of the system provides a way to identify phase transitions in disor-
dered systems without the need for replica calculations [21]. Employing the mean-field
approach, we derive a set of equations for dynamic correlation and response functions, par-
ticularly in scenarios with a large number of degrees of freedom (N — o), using Dynamical
Mean Field Theory (DMFT) [20]. These DMFT equations are obtained through path inte-
grals, known as the Martin-Siggia-Rose-Jenssen-De Dominicis (MSRJD) approach [22]. To
simplify our calculations, we introduce Grassmann algebra, generating a supersymmetric
(SUSY) field. Within this framework, the symmetries of the action functional implicitly
encode the fluctuation-dissipation relations and time homogeneity properties of the system
[23].

The dynamical generating functional is given by forcing the satisfaction of Eq. (2.5) in
the entire path and averaging over disorder, and initial conditions. This formalism gives
the MSRJD identity (Eq. (3.1)) due to the causality of the dynamics.

Zdyn =1

=</ﬁm NHH6< <a><>£)<t>—aH>>

i=0 a=0 833@(@

:</Hma> Hpie explz/dw |

. <‘a‘?(a>(t) — p I OF (1) - 3;‘5(75))] >

where we have included the conjugate field 7 to rewrite the delta function restriction. It
can be shown that the dynamical partition function can be written as

(3.1)

Zagn = { [ DHODED exp (210 + Siaa(0)]). (32)

where we defined DE(t)DZ(t) = HZ;(l) DF (£)Di*(t) and, as before, #(t) = {#® )=y



for simplicity of notation. In Eq. (3.2), the action is separated in kinetic and interaction
parts, Sk and S, respectively, which are explicitly given as

fzz / At (0)[0; + ) (O] (1) (33)

Sint(Z(t)) = —ZZ / it a;z'<a> o8 (3.4)

Notice that only the interaction action depends on disorder through the Hamiltonian.
One can then introduce the super-symmetric (SUSY) formalism [23] to incorporate the
variables # and 7 in a single variable X by extending the time coordinate to include a
Grassmann coordinate 0 as t, — a = (tq,6,).

X@(a) = #(t,) 4 10, (tq) (3.5)
Due to the inherent properties of Grassmann algebra [24], any function involving Grass-
mann variables must be linear in these terms. This is a consequence of the anticommuting
algebra of the Grassmann variables, which causes integration and derivation to be equiv-
alent operations concerning the Grassman variable.
It can be shown that the interaction action can be rewritten as a function of the
Grassmann variable. For simplicity of notation we denote X = {X (o‘)}g;é.

n—1

Sin(X) = = Y [ daH[X(a) (36)

a=0

where H[X ] is defined by Eq. (2.2). Also, the kinetic action can be written as a function
of a kinetic kernel K(®)(a,b).

(%) = — Z / dadbX @ (a) K@) (a, b) TO)(b) (3.7)

aﬂO

The kinetic kernel can be explicitly expressed as K@) (a,b) = 254,56 (ta — t3)0[0r, +
,u(ﬁ)(tb)]. The disorder average, denoted by E, specifically applies to the term influenced by
disorder within the interaction matrix. Eq. (3.8) calculates this average for the pertinent
term within S;,¢, up to a multiplicative constant.

M n—-1 N A(a)
Eexp Z Zi/damN(a) Ji‘;Xi(a)(a)XJ(a)(a)
p=1a=0i<j (3 8)
AL o 2 @)X (@)X (@) 757 0)X7 () X 0)
~ ew (-} [ a e =
pu=14,j5=1 a,8=0

This can be simplified using the dynamical overlap matrix defined by Eq. (3.9) and a
function G(Q).



X©@)(a) - XB)(p)
N

QP (a,b) = (3.9)
Q) (a,b))?
2

with this change of variables, the average over the disorder of the interaction action can
be rewritten as

G(QP(a,b)) = G (a,b) = (3.10)

E exp(Sim (X)) = / pipF [ [ e / da (—;(rfﬁ)(a) —po)+ if,ga>(a)r,ga>(a)>
pn=1a=0
1 n—1
1 / dadb 3" 7 ()7 (5)G(Q (a, b))
2 P
5 n—1 eN
= | \/det(G + Iexp % > / dadb(G~H(Q™) (a, b)) + 1)
a,B=0
= zeN,
(3.11)

where I represents the identity operator, and the determinant appears from successive
Gaussian integrals. The conjugate field 7 is introduced to obtain a functional integral
representation of the delta function. Notice that the kinetic action in Eq. (3.7) can be
expressed as a function of (), making it extensive with IV, similar to the interaction action
defined by Eq. (3.11). Using this result, the dynamical partition function can be computed
for large N using a saddle-node approximation.

Ziyn = / DQexp (NSaynlQ)) =5 exp (N Sayn[Q”]) (3.12)
1 1=
Sayn = FIn(det(Q)) +elnZ — 5 a%;() / dadbK P (a,5)Q'P) (4, b) (3.13)

and the saddle point Q* satisfies for a given element Q*(®7) (a,c)

5den[Q] —
6Q(a’ﬁ{) (a¢ C) Q*
_K(aﬁ/) (a7 C) Q_l (C“a'\/) (a7 C) 5an
5 + 5 +6(5Q(0‘»7)(a, 3o = 0. (3.14)

With the saddle-point approximation, the average of () over the Gibbs measure of Zg,,,
is given by the saddle-point itself.
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(Q“(a,b)) 2y, = QP (a,b)
B @) (a) - 2 (b) o i (a) - 5(5)(())
B N ¢ N (3.15)

10, 2@ O 5(“’(a)]\-[§?(5)(b)

= C(a’/j) (tcu tb) + eaR(/B’a) (tba ta) + ebR(a”B) (ta? tb)

In the second equality, we notice that the term proportional to 6,0, is zero because the
Lagrange multipliers 7 that ensure the Langevin equation cannot correlate. Additionally,
in the last equality, we recognize the correlation defined in Eq. (2.6). Moreover, it can be
shown that in this setting the reaction can be written as Eq. (3.16), as defined explicitly
in reference [20].

(a

N—
1 oz,
(aﬁ 1 ta) ‘ 1
R (ta,tp) = N E:o: h(ﬂ) R(B) (t,)=0 (3.16)

From this point forward, we adopt the simplified notation R (t,,t) = Rgp,
C@P)(ty, 1) = Cap = Cha, and Q) (a,b) = Qap = Qpa-

Through the relation of Q4 with the correlations expressed in Eq. (3.15), the saddle-
point given by Eq. (3.14) can be interpreted as a Schwinger—Dyson equation [24], which
describes the relationship between correlation functions in quantum field theory. This
relationship can be expressed more conveniently by multiplying it by @, integrating over
¢ and summing over vy [25], as demonstrated in Eq. (3.17) through an explicit derivation
of the Z term.

Z / dCKachb = (ea + eb)éa,ﬁé(ta - tb) +e€ Z/dCAcaG/(Qac)ch
! (3.17)
+5p0 Z /de dk dCAeaG/(Qac) cchb

€,KR,Y

Aap = (I +G) " (Qav) = CH P (tg, ts) + 0, R (b4, ta) + 0RO (tg, 1) (3.18)

This expansion is possible due to the Grassmann properties. In what follows, we use the
simplified notation R4 (A (¢, 1) = R4 and CA@A)(t,,1,) = CA = C{2. Tt can be shown
that no term proportional to 6,0, survives, similar to the dynamical overlap matrix. By
introducing the definition of the kinetic kernel and unfolding the supersymmetric algebra
of the functions A, G’ and @ into Eq. (3.17) one obtains the dynamical equations for the
correlation and reaction functions for ¢, > t.
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9y, Copy = — b—sZ/ dt.RpeCAG (Ce)

—EZ / At [CreRILG! (Cue) 4+ RaeG" (Coe) CAC)

(3.19)
ta ty
+epy > / dt, / dt, / Aty R2 R4 G’ (Cae) Rye
€,K,7Y
ta ta te
+ep > / dt, / dt, / dtx R RA R G (Cae) Che
€,K,7Y

ta
8taRab = _M(a) (ta)Rab + 6a,ﬁ5(ta — tb> —€ Z / dtc[Rch/(Cac)Rcb + C‘fCGN(Cac)Rchac]

ta ta te
+ep Y / dte / dt. / dtx R R5.G" (Cue) RacRay

€,K,7Y

(3.20)

The equation for the Lagrange multiplier is found by imposing C(®®)(t,t) = 1 —
9@ (¢ t) =0,

_EpOZ/ dte/ dtc/ dthA(Te) t,t )RA(”/H)(t tk)R(T'y)(t tc)

€,K,7Y
X |GUCTD (1, 1)) + G (CTD (1, 8)) T (2, t,)
t 3.21
> / dt, [RW) (t,1.)CATD (1, 1) (CTD (1, 1,)) (3:21)
0
+ RATN (¢, 1) G (CT (¢, 1)) CTN (¢, 1)
+ RO (8, ) CA T (#,1)G"(CT (8, 1.)C T (8, t,)

Or, setting G(q) = ¢?/2, it simplifies to

p(t) = 2ep? Z/ dte/ dtc/ dtx R (8,6 ) RY) (2o, 11 ) RT (8, ) C T (8, 8,)

€,K,7Y
—e) dtc 2R (¢,1.))CA T (8, 1) C T (¢, )
v 0

+ RATD (8, ) (CTV (8, ))?).
(3.22)

To close the system of equations represented by Eq. (3.19) and Eq. (3.20), we need to
find explicitly the expressions for C4 and R“. This is achieved by unfolding the definitions
of A and A~! and utilizing the delta relation
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n—1
> / deAac AL} = 0400 50(ta — t). (3.23)
v=0

One can then conclude

0 n—1 CA
[5%65(% _tb):| = Z%) / dteMpe [Ré‘c] , (3.24)
’y:

05,80(tc — o) + RyeG'(Che) G(Che) }

2
0 8, 58(te — 1) + ReyG'(Che) (3:25)

Mbc = |:
Using these results, we can numerically integrate the equations for the response and
correlation functions by inverting the operator in Eq. (3.25).

3.2 Numerical Integration

In this section, we introduce a numerical method for solving the DMFT equations by
discretizing time into small intervals. The Lagrange multiplier p only accounts for the
linear order of the spherical constraint in a discrete system; hence, the equations are
solved approximately. We employ a discrete time step dt, representing two-point func-
tions as matrices and one-point functions as vectors. Additionally, we must establish a
parametrization to manage the replica and the time indexes simultaneously.

Let T denote the number of steps, and n the number of replicas. A two-point function
in this interval is described by an nT" x nT matrix, while one-point functions are described
by a vector with nT" elements. The parametrization is organized in blocks of the same time
for all replicas, resembling the organization of a tensor product in the form (¢,, ) ® (o, )
or (t;) ® (). The time discretization takes t, = a dt, where a € [0,7 — 1].

APty 1) = APV adt, bdt) = Ay, o b

0l (ta) = '@ (@dt) = van-ta (3.26)

where A and v represent generic two-point and one-point functions or operators, respec-
tively. Since a is always paired with a, we simplify the notation as

Aa,b = A&nJra,EnJrB

Vq = Van+a - (327)
And the original indexes can be recovered by

Aqp = A% Gt(a f n], dt[b/ /n))
ve = v (dt[a//n]), (3.28)

where % denotes the modulus and // represents the truncating integer division operators.
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It is important to note that with this parametrization, it is not necessary for Ry, Rp, = 0
because the diagonal blocks for equal times are symmetric with respect to the replicas,
unlike the previous lower triangular arrangement. However, as explained before, we expect
the response for different replicas to be null, resulting in diagonal matrices for each pair
of times. Therefore, we can maintain the lower triangular property of the matrix R. The
parametrization also does not affect the symmetric property of the matrix C.

The numerical integration of equations Eq. (3.19) and Eq. (3.20) will be carried out
using a simple Euler scheme. The process involves discretizing time, which transforms all
integrals into sums.

(b+1)n—1
C(a+n)7b - Ca,b = dt|: - ,uaca,b —edt Z Rb,ccﬁcG/(Ca,c)

(a+1)n—1
—edt Y [CyeRi G (Cae) + RacG"(Care)CitoCoyl
c=0 (3.29)
(a+1)n—1 (b+1)n—1 (e+1)n—1
+ epidt Z R}, Y G(Cac)Rye R,
c=0 k=0
(a+1)n 1 (a+1)n—1 (c+1)n—1
+ epRdt® Z R, S RuG(Cad)Che Y Rg}k}
c=0 k=0
(&—‘rl)n—l
R(aJrn),b - Ra,b = _5a,b + dt{ - ,uaRa,b —edt Z [R:;{CG/(CLL,C)RC,I;
c=bn
+ CéA,cG//(Ca,c)Rc,bRa,c]
(a+1)n—1 (a+1)n—1 (¢+1)n—1
+ Epodt?’ Z R Z G”(Ca,c)Ra,cRb,c Z Rék:|
c=bn k=0

(3.30)

As in the continuous case, we have that t, > t;,. However, one must be careful in the
discretization of equal times to maintain causality. Therefore, still using the Euler scheme,
one finds

@B (dt(a+1),dt(a+1)) = C@P(dt(a+1), dta)+ CB (dt(a+1), dta) — CP) (dta, dta)
(3.31)

which can be written in matrix indexes as

C(a-i—n,b—i—n) - C’(a-i-n,b) + C(b+n,a) - C(b,a) : b//n - a//n (3'32)

These equations are solved if we give explicit values for i, C4, and R4. The Lagrange
multiplier approximately imposes the spherical constraint by fixing the diagonal elements
of matrix C' to one,
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(a+1)n—1
pa=—cedt > (RacCi.G'(Cac) + CacRit /G (Cae) + RaeG"(Cae)CitCac)
c=0 (333)
(a+1)n—1 ( (c+1 n—1

ZR

Finally, one needs to express the discrete version of Eq. (3.24) in a convenient way to
be able to perform the inversion.
nT—1

)
]

In the last equality, the unique transformation described by Eq. (3.27) enables this
simplification. Let us multiply the matrix My, by dt and index its entries with superscripts
[(Mpcloo = M., [Mpclor = M2, [Mpclio = M3, and [My]11 = M. By considering all
possible values of b € [0,nT — 1], the left-hand side of Eq. (3.34) becomes a vector of size
2nT', with a single non-zero value for each given value of a. Meanwhile, the right-hand
side can be expressed as a simple matrix-vector multiplication.

a+1)n—1
+ epidt Z R}, Y Rae(G'(Cae) +G"(Ca
c=0

n—1T-1

_dtZZMbc[ }

70 =0 (3.34)

[0 ] [ Mg MO(nT y | T M, Mo wr-1 ][ szo 1
. : . : " .
0 M(nT 1),0 M(nT 1),(nT— 1) M(nT 1),0 M(nT 1),(nT—1) Ca (nT-1)
8a r r b
d)to MOO MO (nT 1) M Mé,(anl) Ra. ,0
6 . B . . . N . . A
_%_ L _M?TLT—1)7O M?TLT—I),('(LT—I)_ _M?TLT—1)7O M?TLT—l),(’ILT—l)_ i _Ra,(anl)_

By observing the individual elements, we can identify some simplifications. Specifically,
when b > ¢, we have M}, = M}, and M}, ./\/l;fC = 0. Additionally, M3, = 0 is symmetric
and /\/12C for all values of band c. T herefore7 we can transform this matrix to be upper
triangular, which is advantageous for the numerical computation of the inversion. This is
because the system can then be computed recursively. With this transformation, we can
rewrite Eq. (3.34) as @(a) = T'#(a) to obtain C*4 and R* for any given value of a.

2nT—1
S Tijos(a) (3.35)
=0
cA . j <nT
vila) = { epT—mt IS0 (3.36)
Ra j%nT J=nl
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6a,i%nT Z > TLT

wi(a) = {0 p<nd (3.37)
dt

Oij + At Ry _1_i%nt, nT—1—%nT G (Crnr—1—i%nT, nT—1—j%mr) 1 < J <nT

T, = 0i,j + At Risgnt j9%n1 G (CigenT j%nT) j>i>nT
dtG(Crr—1—i%nT, j%nT) i<nT,j>nT
0 i>j
(3.38)

In the context of solving the equations, the use of this particular structure guarantees
causality. This means that the values for a specific time can be obtained without relying
on future realizations. For each value of a, the corresponding row vectors in the matrices
C4 and RA can be extracted and used as inputs in (3.29) and Eq. (3.30) to perform the
integration for future times.



16

Chapter 4

Results

To explore the dynamical evolution of replica configurations, we initialize n replicas with
a fixed mutual correlation ¢. The initial correlation matrix contains ones on the diagonal
(normalization) and ¢ in all off-diagonal entries, ensuring that replicas start from nearby
points in the high-dimensional phase space. This setup is analogous to initializing differ-
ent neural network trainings from correlated weights, thereby allowing us to probe how
memory of shared structure persists under gradient-based dynamics.

The prescribed initial correlation is implemented by constructing each replica Z") on
the N-dimensional hypersphere (with |#(7)|?>= N) as a combination of a shared direction
E and replica-specific orthogonal fluctuations 7(7):

7 = VN (Va€+vi—qi?). (4.1)

Here, { is a fixed unit vector common to all replicas, while the 7" are unit vectors
orthogonal to 5 and mutually orthogonal across replicas. This construction guarantees that
the scalar product between distinct replicas satisfies #(® - Z(8) /N = ¢, thereby realizing
the desired overlap.

As a consistency check, we first consider the limiting case ¢ = 0, where replicas are
initialized independently. In this regime, the dynamics reduce to those of a single replica:
intra-replica correlations remain finite, while inter-replica correlations vanish. This ex-
pectation is confirmed in Fig. 4.1, where both the correlation function and the Lagrange
multiplier u reproduce the single-replica behavior reported in Ref. [11].
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Figure 4.1: Same-replica correlation function (left) and Lagrange multiplier p (right) for
different values of py, with uncorrelated initial conditions (¢ = 0). Results match the
single-replica case [11], as expected from the single-replica analysis.

We now turn to finite initial correlations. Using the numerical integration scheme
outlined in Sec. 3.2, we compute cross-replica observables for various values of ¢, with
parameters fixed at N = 500, At = 0.025, and pg = 1.4. Two quantities are particu-
larly informative: the cross-correlation at unequal times, C' (1’2)(15, 0), and at equal times,
C12)(t,t). The former probes how much memory a replica retains of another’s initial
condition, while the latter reflects their degree of dynamical alignment at time t.

Figure 4.2 shows that C(1?)(¢,0) decays from its initial value but saturates at a non-zero
plateau. This indicates that replicas retain partial memory of their shared initialization
even after long times.
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Figure 4.2: Right: Time evolution of C'?)(£,0) for various initial correlations q. Left:
Long-time plateau values as a function of ¢q. All results obtained for py = 1.4.

A similar picture emerges for C'(1:2) (t,t), which also reaches a non-zero plateau at
long times (Fig. 4.3). Plotting the plateau values against ¢ in log-log scale reveals an
exponent of approximately 1.04, suggesting an almost linear scaling with a mild deviation
from linearity. This near-linear response can be interpreted as a marginal Lyapunov-like
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sensitivity: replicas remain strongly correlated, in contrast to chaotic systems where small
perturbations are exponentially amplified. The persistence of alignment indicates that
the dynamics explore the landscape in a structured way, with long-time memory of initial
overlaps. A natural extension of this work would be to investigate the energy barriers
between solutions along geodesic pathways, as recently studied in neural network models
[26], [27]. The simplicity of the present model makes such an analysis accessible both
through simulations and potentially through an analytical treatment.
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Figure 4.3: Right: Evolution of C(12) (¢, t) for different initial correlations q. Left: Plateau
values plotted in log-log scale vs. ¢, revealing a scaling exponent = 1.04.

In summary, while the dynamics drive each replica toward relaxation, cross-replica
observables retain a lasting imprint of the initial configuration. The persistence and scaling
of these correlations show that memory of initial conditions is not completely lost. These
findings highlight that the relaxation dynamics preserve structured correlations across
replicas, providing a controlled setting to study how gradient descent explores complex
non-convex landscapes.
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Chapter 5

Conclusions

In this work, we revisited a simplified mean-field model originally proposed to describe
the rigidity transition in biological tissues and applied it as a framework to explore high-
dimensional energy landscapes typical of continuous constraint satisfaction problems (CC-
SPs). We derived the dynamical mean-field theory (DMFT) equations using the Martin-
Siggia-Rose-Janssen-De Dominicis formalism and implemented a discretization scheme to
solve them numerically. This allowed us to compute time-dependent correlation and re-
sponse functions, offering an exact description of gradient descent (GD) dynamics in the
overparametrized regime.

A central contribution of this study is the introduction of correlated replicas, which
enabled us to probe how initially similar configurations evolve under GD. We found that
replicas retain a finite memory of their initial overlap throughout the relaxation dynamics.
Specifically, the cross-correlation function C(1:2) (t,0) converges to a plateau that increases
linearly with the initial correlation ¢. In contrast, the equal-time correlation C'!2)(¢, t)
displays an approximately linear scaling with ¢, suggesting a Lyapunov-like sensitivity to
initial conditions. These results indicate that the relaxation dynamics of the system do not
fully erase the memory of the initial configurations, highlighting the non-trivial structure
of the landscape and the dynamical stability of the canyon manifold.

Several promising directions emerge from this work. First, the replicated model could
provide direct access to energy barriers between solutions, for example, by computing
barrier heights along geodesic paths. The simplicity of the present model makes such an
extension accessible both through simulations and, potentially, via analytical treatment.
Second, the replica framework naturally suggests a route to study stochastic gradient de-
scent (SGD), where mini-batches could be modeled as subsets of replicas. This perspective
may clarify the origin of the empirical efficiency of SGD and its superiority over standard
GD in navigating high-dimensional non-convex landscapes.

In summary, the Canyon model provides an analytically tractable and numerically
solvable framework to investigate complex energy landscapes and the dynamics of opti-
mization algorithms. Our findings demonstrate that gradient descent dynamics preserve
a finite memory of initial correlations, underscoring the structured nature of relaxation in
high dimensions. Beyond its immediate results, this work provides a foundation for study-
ing energy barriers between solutions, stochastic dynamics, and the geometry of solution
manifolds, with implications for both statistical physics and machine learning.
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