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Abstract

Schizophrenia is a complex neuropsychiatric disorder characterized by disrupted
brain dynamics, yet the underlying non-equilibrium mechanisms remain poorly un-
derstood. In this study, we employ the multivariate Ornstein—-Uhlenbeck (MOU)
process to model resting-state fMRI data from individuals diagnosed with schizophre-
nia and healthy controls, aiming to quantify group differences in irreversibility and
linear response properties. By fitting the MOU process to empirical covariance ma-
trices, we estimate subject-specific friction and diffusion matrices, which fully define
the stochastic process. Our results reveal a statistically significant increase in global
EPR among schizophrenia patients, indicating heightened non-equilibrium dynam-
ics. Regional analysis identifies the left inferior temporal gyrus and left pars or-
bitalis as key contributors to this irreversibility. Furthermore, linear response theory
reveals altered propagation of perturbations in schizophrenia, with significant dif-
ferences in area-under-the-curve and latency measures, particularly involving pre-
frontal and parietal regions. These findings suggest that schizophrenia is associated
with widespread disruption of non-equilibrium brain dynamics and highlight po-
tential biomarkers for the disorder.
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Chapter 1

Introduction

Schizophrenia is a complex neuropsychiatric disorder characterized by disruptions
in thought processes, perceptions, and emotional responsiveness [1]. It is linked to a
combination of genetic and neurobiological factors that impact early brain develop-
ment, and typically manifests through a combination of psychotic symptoms, such
as hallucinations and delusions, as well as motivational and cognitive dysfunctions
[2].

Despite extensive research, the underlying neural mechanisms remain poorly
understood [3]. Recent advances in neuroimaging and computational neuroscience
have provided new tools to investigate the dynamical properties of brain activity in
health and disease [4]. In particular, the analysis of resting-state functional magnetic
resonance imaging (fMRI) data offers a window into the spontaneous fluctuations
of brain activity that may reflect fundamental organizational principles of neural
systems [5, 6].

A key feature of healthy brain dynamics is the delicate balance between stabil-
ity and flexibility, allowing for both robust function and adaptive responses. This
balance is thought to be disrupted in schizophrenia, leading to altered patterns of
functional connectivity [7] and information processing [8]. Traditional approaches to
analyzing fMRI data have primarily focused on static functional connectivity, which
captures correlations between brain regions but does not account for the temporal
dynamics and directional influences that may be crucial to understanding the disor-
der [9].

In this work, we employ a framework from non-equilibrium statistical physics,
the multivariate Ornstein-Uhlenbeck (MOU) process, to model and analyze the di-
rected, time-dependent interactions between brain regions in schizophrenia [10].
The MOU process provides an analytically tractable model of linear stochastic dy-
namics in high-dimensional systems, making it suitable for investigating whole-
brain dynamics from fMRI data. Its empirical consistency with key features of the
BOLD signal allows us to quantify relevant aspects of non-equilibrium brain activity
[11,12].

Specifically, we focus on measures of irreversibility and entropy production,
which capture the degree to which the system’s dynamics violate time-reversal sym-
metry, a fundamental signature of non-equilibrium processes. Recent studies have
demonstrated the utility of this approach for characterizing differences in brain dy-
namics across states of consciousness and in various consciousness conditions [13].
Building on this work, we investigate whether similar measures can distinguish be-
tween individuals with schizophrenia and healthy controls, potentially revealing
novel biomarkers of the disorder.

Moreover, we characterize how the brain responds to localized perturbations by
applying linear response theory to the MOU model, which enables the estimation of
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brain responses without the need for explicit stimulation [14]. This model-based ap-
proach allows us to compare effective network dynamics between individuals with
schizophrenia and healthy controls, and has already been successfully employed to
study altered states of consciousness [15].

In summary, our analysis focuses on three main aspects: (1) the global irre-
versibility of brain dynamics, quantified by the entropy production rate; (2) the
regional contributions to irreversibility, assessed via the antisymmetric matrix Q;
and (3) the system’s response to localized perturbations, characterized using linear
response theory.

The thesis is organized as follows. Chapter 2 introduces the theoretical frame-
work of the MOU process and the key measures used in our analysis. Chapter 3
describes the experimental data, the procedure for fitting the model to fMRI signals,
and the application of linear response theory. Chapter 4 presents our results com-
paring brain dynamics between individuals with schizophrenia and healthy con-
trols. Finally, Chapters 5 and 6 discuss the implications of our findings and suggest
directions for future research.

By bridging concepts from non-equilibrium physics with clinical neuroscience,
this work aims to provide new insights into the dynamical alterations associated
with schizophrenia, potentially contributing to the development of more objective
diagnostic tools and a deeper understanding of the disorder’s neural basis.
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Theoretical framework

In this section, we provide a detailed overview of the multivariate Ornstein — Uh-
lenbeck (MOU) process, a fundamental stochastic model for describing linear dy-
namics in high-dimensional systems subject to noise. We begin by introducing the
defining equations and statistical properties of the process, including its Gaussian
nature and the characterization of its stationary state. We then turn to the concept
of irreversibility, quantified through the antisymmetric matrix Q and the scalar en-
tropy production rate ®. We conclude with the application of linear response theory
to characterize how the system reacts to localized perturbations.

2.1 Multivariate Ornstein-Uhlenbeck (MOU) process

The multivariate Ornstein-Uhlenbeck (MOU) process is the higher-dimensional ex-
tension of the Ornstein-Uhlenbeck process, defined to describe the velocity of a
Brownian particle in one dimension [16, 17]. Therefore, the MOU is a diffusion pro-
cess defined by N-coupled linear Langevin equations of the form:

dx;lnt(t) ==Y BunXn(t) + 11 (t), (mm(B)a(t')) = 2Dpnd(t =), (2.1)

with m,n = 1,...,N. Adopting the vector and matrix notations, denoted using
boldfaced symbols, we get [10]:

DU Bx() + (1), (0" (¥)) = 2D0(t ~ ¥). 22)

Here, the two real N x N matrices are:

e the diffusion matrix D, namely the noise covariance matrix coming from the
multivariate Gaussian white noise (), which is symmetric and positive defi-
nite;

* the friction matrix B, which has eigenvalues with strictly positive real parts and
generally is not symmetric.

The assumptions on B and D ensure that the process relaxes exponentially to
x = 0 in the absence of noise and to a fluctuating stationary state with Gaussian
statistics in the presence of noise. Therefore, the solution of Eq.(2.2), knowing the
initial condition to be x(0), is given by:

x(£) = G(£)x(0) + /O "Gt — $)11(s)ds, 2.3)

where G(t) = ¢ B! is the Green’s function.
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The process x(t) is Gaussian, so its statistics at any time t are entirely charac-
terized by the first two moments: mean value (x(¢)) = G(#)x(0), and zero-lag co-
variance matrix S(t) = (x(t)x!(t)). The latter obeys the following deterministic
differential equation:

dzy) = 2D — BS(t) — S(t)B". (2.4)

The stationary state of the process is Gaussian, with zero mean and stationary co-
variance matrix:

S = lim S(t) = 2/ ()DGT (t)dt, (2.5)
t—r00
and the probability density of the process in the stationary state is:
P(x) = ! ex —lesflx (2.6)
T 2n)N/2(dets)1 2 9P T2 ' '

Using Eq.(2.4), we find the Sylvester equation, which relates the stationary co-
variance matrix S to the matrices B and D defining the process:

BS + SBT = 2D. (2.7)

We extend the definition of the covariance matrix to account for second-order
moments of the process evaluated at different times. This leads to the cross-covariance
matrix, defined as:

Cun(t,s) = (xm(f)xn(s)), for0<s <t (2.8)

This matrix captures the temporal dependencies between the components x;,
and x, of the multivariate process over time.
In the framework of the multivariate Ornstein-Uhlenbeck process, this quantity
satisfies the relation:
C(t,s) = G(t—s)S(s), (2.9)

with the initial condition C(s,s) = S(s) when ¢t = s [10].

In the stationary state, where the system exhibits time-translation invariance, the
cross-covariance depends only on the time lag T = t — s > 0. Adopting the notation
of [13] and consistent with [10], we define the lagged covariance matrix as:

S(1) =G(1)S, S(0)=S. (2.10)

This expression highlights how the temporal structure of the process is governed
by the system propagator G(7) and the stationary covariance S.

2.2 Characterizing irreversibility

The condition for process (2.2) to be reversible, namely the detail balance condition is
[18, 19]:
BD = DB’. (2.11)

In such a case, the stationary state of the process is an equilibrium state, and
solving the Sylvester equation (2.7) to find S is relatively simple [10].

When the symmetry condition (2.11) is not satisfied, the process is irreversible,
but the system can still reach a non-equilibrium stationary state. In this case, solv-
ing the Sylvester equation (2.7) for S is considerably more complicated and requires
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appropriate parametrization:
L=BS=D+0Q, LT=SB'=D-0Q. (2.12)

The matrix L is the Onsager matrix [18]. Its antisymmetric part Q is of particular
interest for our analysis, since it provides a measure of the amount of irreversibility
of the process [10]. If the process is reversible, then Q = 0, L = D, and Eq.(2.11) is
satisfied.

According to one of the standard formulations of the second law of thermody-
namics, an irreversible process is associated with an increase in entropy. In this
work, we characterize irreversibility through the entropy production rate (EPR), which
is defined as the amount of entropy produced per unit of time in an open system.
This quantity is now widely recognized as a key indicator of non-equilibrium sta-
tionary states [20, 21]. The EPR @ is always non-negative: it vanishes in the case of
reversible dynamics and is strictly positive otherwise. As such, ® provides a scalar
measure of the irreversibility of the entire process.

In the present context, the general expression of the entropy production rate ®
per unit time is [10, 22]:

® = (x's7!QD Qs x). (2.13)

Since the stationary state of the process is Gaussian with covariance matrix S, we
have (x"Ax) = tr(SA), with A a generic matrix. In our specific case, it gives:

® = —tr(S'QD!Q) (2.14)

Using Eq.(2.12) and Eq.(2.14), we can recast ® into the following expressions,
without explicitly involving matrix S:

® =tr(B'D1Q) = —tr(D"'BQ). (2.15)

2.3 Linear Response Theory

We apply linear response theory to the multivariate Ornstein-Uhlenbeck process,
following the approaches in [14, 15]. Specifically, we investigate how the process
responds to an external perturbation by analyzing the resulting change in its mean
trajectory. We consider a perturbation of the form:

f(t) =o(t)p, with p=é € RV, (2.16)

where &; denotes the i-th canonical basis vector. This corresponds to applying a
delta-like instantaneous perturbation at time { = 0 to the i-th component of the
process x;(t).

Under this perturbation, the dynamics of the system become:

dx(t)
dt

— —Bx(t) +7(t) + £(1). (2.17)

We are interested in the first-order change in the mean of the process x(t) induced
by the perturbation. This quantity, known as the linear response, is defined as:

R(t) == Alx(t)) ~ /Ot G(t — 5)f(s) ds = G(t)p, 2.18)
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where G(t) is the green function. In this formulation, R(#) is a vector in RN
representing the temporal evolution of the mean response to a unit perturbation in
the i-th component of the process.

Two scalar observables characterizing R(t) are of particular interest in our anal-
ysis:

e The area under the curve (AUC) of each component of the response R(t).

e The latency, defined as the time at which each component of R(#) reaches its
maximum.

By considering perturbations to each of thei = 1,..., N components of the sys-
tem, we obtain a full set of response vectors R()(t). From these, we construct two
matrices:

* A € Mnxn(R), where Aj; is the area under the curve of the j-th component’s
response to a perturbation in the i-th component,

* L € Mnxn(R), where Lj; is the latency of the j-th component’s response to
that same perturbation.
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Methods

In this section, we describe the procedure used to fit the Multivariate Ornstein—
Uhlenbeck (MOU) process to fMRI data acquired from subjects in a resting state. We
assume that the resting-state BOLD signal can be modeled as a stationary stochastic
process. The fitting approach is based on the method introduced in [11], which has
previously been applied to study changes in brain dynamics associated with varying
levels of consciousness, such as the transition from wakefulness to deep sleep [13].

3.1 Experimental data

The model is fitted to fMRI data acquired from 96 subjects in a resting-state con-
dition: 48 individuals diagnosed with schizophrenia (condition = 1) and 48 control
subjects (condition = 0) [23, 24].

The analyzed BOLD fMRI signals of each subject originate from N = 68 anatom-
ically defined cortical brain Regions of Interest (ROIs), based on the widely used
Desikan-Killiany atlas [25]. An example of a recording from a single subject is shown
in Figure 3.1. Each signal consists of a series of fMRI acquisitions, with each time
point corresponding to one image acquisition. The temporal resolution is defined by
the repetition time (TR), with 1TR = 2s. Each subject’s session lasted for T = 152
TRs. Further details on the experimental procedure and data are provided in Ap-
pendix A.

Resting state fMRI of one subject

61 — ROIO
3 . ‘ —— ROI1
> 2
E 0 \ "
‘ R 1“” K ~
2 -4
m_s_

0 20 40 60 80 100 120 140

Time (TR)

FIGURE 3.1: Resting-state fMRI BOLD time series. The plot shows

filtered BOLD signals from subject 29 in condition 1. The signals were

recorded over 152 repetition times (TRs) of 2 seconds each, corre-

sponding to a total recording time of 304 seconds. The first two re-

gions of interest (ROIs) from the Desikan—Killiany parcellation (out
of 68 total) are shown.
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For each subject, we compute empirical covariance matrices with a zero lag §(0),
and a lag of 1 TR §(1). The elements of these two matrices are defined as follows:

A 1 = i 1
Sii(t) = T ; [xi(t) — ] [xj(t+ 1) — ;] with i,j=1,..,N (3.1)

where %; = L Y[, x;(t) denotes the empirical mean of the signal x;(t), and T =
0,1

By normalizing $(0), we obtain the functional connectivity (FC) matrix, which
captures the Pearson correlation coefficients between each pair of ROIs (see Fig-
ure 3.2b): R
5ii(0)

FCij = ———
5ii(0) 5;(0)

with i,j=1,...,N. (3.2)

Another relevant measure derived from neuroimaging data is the structural con-
nectivity (SC) matrix, which quantifies the strength of anatomical connections be-
tween pairs of ROIs. In this study, we use structural connectivity data (see Fig-
ure 3.2a) obtained from unrelated healthy adults in the Human Connectome Project
(HCP) [26, 27].

3.2 Fit MOU process to experimental data

The choice of the MOU model is motivated by its balance between simplicity and
suitability for modeling brain activity. Its linear dynamics allow for tractable analyt-
ical calculations, while its structure is well-suited for whole-brain fMRI data, where
signals are recorded from a parcellation of the cortex into distinct Regions of Interest
(ROIs). Notably, the MOU dynamics generate exponentially decaying autocovari-
ances, which closely resemble the temporal profiles observed in empirical BOLD
signals. The model can be interpreted as a network in which spontaneous fluctua-
tions are locally generated at each node and then propagate through the anatomi-
cal or functional connections across the brain. Despite these advantages, the MOU
model presents two main limitations: it assumes stationarity of the fMRI signals
over time and does not incorporate an explicit hemodynamic component to account
for the transformation from neural activity to BOLD responses [12].

To apply this framework to our data, we fit the MOU process to the fMRI time
series of each subject (an example is shown in Figure 3.1). The fitting procedure fol-
lows the approach introduced in [11]!, which adjusts the covariance structure of the
MOU process to match the empirical covariances defined in Equation (3.1). The ob-
jective is to estimate, for each subject, the friction matrix B and the diffusion matrix
D.

Since each covariance matrix has dimension N x N, we reduce the number of
free parameters to make the fitting procedure tractable by imposing constraints on
B and D. Specifically, we assume that the diffusion matrix D is diagonal, which cor-
responds to assuming that the noise is not only temporally white but also spatially
uncorrelated: (17, (1)1, (') = 2Dynmnd (t — t').

To constrain the structure of the friction matrix B, we apply a subject-specific
topological mask. Such a mask is defined as the logical OR between the subject’s
functional connectivity matrix and the structural connectivity matrix (both of which

IThe notation used in this report corresponds to that of [11], with the following substitutions: B «»
—Jand D & %Z.
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are binarized using a matrix-specific threshold), where the diagonal is forced to be
zero. The threshold values were chosen to strike a balance between the performance
metrics of the fitting procedure, specifically the model error and the goodness of fit,
described in the next Section 4.1. An example of a topological mask is shown in
Figure 3.2c.

Structural Connectivity opological Mask
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Functional Connectivity
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FIGURE 3.2: Structural and Functional Connectivity, and Combined
Topological Mask. (A) Normalized structural connectivity (SC) ma-
trix computed from ENIGMA diffusion MRI data using the ENIGMA
Toolbox [28], based on the Desikan—Killiany atlas with 68 cortical and
subcortical regions of interest (ROIs). Each element represents the
normalized streamline count between pairs of ROIs, reflecting the es-
timated white-matter connectivity strength. (B) Empirical functional
connectivity matrix for subject 29 in condition 1, derived from resting-
state BOLD signals. The matrix entries correspond to Pearson corre-
lation coefficients between pairs of ROIs. (C) Topological mask for
subject 29 in condition 1, computed as the logical OR between the
structural connectivity matrix in subfigure (A) (thresholded at 0.9)
and the functional connectivity matrix in subfigure (B) (thresholded
at0.1)

We employ a gradient descent algorithm to iteratively update the matrices B and
D to minimize the following loss function:

L = [|AS(0)[]* +[|as(1)]? (3.3)

where AS(7) = S(7) — S(7), with §(7) defined in Equation (3.1), and S(t) com-
puted using the theoretical model (Equation (2.10)).

The updates for B and D are derived by exploiting Equations (2.7) and (2.10). In
particular, the Sylvester equation (2.7) is solved using the Bartels-Stewart algorithm
[29].

More specifically, the update for the diffusion matrix D is obtained by perturbing
B, S(0) in Equation (2.7) and keeping the first order expansion, given by:

AD = ep (BAS(O) + AS(O)BT) , (3.4)

where ep absorbs constants and acts as the learning rate.
While the friction matrix B is updated by perturbing S(0) and S(1) and keeping
the first order expansion, given by:

AB ~ e S(0) (As(o) - AS(l)eBT> , (3.5)

where €p is the learning rate for B.
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In summary, the update AB exploits the sensitivity of S(1) to changes in B, while
AD is derived from the constraint given by the Sylvester Equation (2.7). The learning
rates ep and ep are chosen to ensure convergence and numerical stability during the
optimization process.

3.3 Linear response analysis

In experimental neuroscience, external perturbations have been used to probe brain
dynamics in different levels of consciousness, for instance, through the combination
of Transcranial Magnetic Stimulation (TMS) and EEG recordings [30].

Inspired by this approach, it is of interest to investigate how the brain would re-
spond to perturbations using model-based methods, applied to resting states record-
ings, which avoid the need for actual stimulation. This is also possible with the
model used in our study, the Multivariate Ornstein-Uhlenbeck (MOU) process, by
applying Linear Response Theory. Such an approach has previously been employed
to compare brain dynamics between healthy individuals and patients in altered
states of consciousness, such as coma [15].

In this work, we adopt a similar strategy to investigate localized differences in
brain dynamics between control subjects and individuals diagnosed with schizophre-
nia. After the fitting procedure described in Section 3.2, we obtain for each subject
a matrix B and a matrix D, which together define a subject-specific Multivariate
Ornstein-Uhlenbeck (MOU) process that models the observed fMRI BOLD signals.
To characterize how these signals respond to localized perturbations, we use linear
response theory, as introduced in Section 2.3. Specifically, we analyze the system’s
response to a delta-like perturbation applied to a single brain region i. This theo-
retical perturbation can be interpreted as a proxy for real external stimulation of the
brain, which would manifest as a Dirac delta in the recorded BOLD signal.

Figure 3.3 shows an example of the response function R()(t), as defined in Equa-
tion (2.18), following a perturbation of region i = 47 in a specific subject. For
each subject and condition, we compute the response functions for all regions i =
1,...,68. From these, we derive two matrices that characterize the response for each
subject: the area under the curve A and the latency L, as introduced in Section 2.3.

0.007 Response of brain regions to a delta perturbation in a single ROI

—— ROI 47
ROI 58
ROI 66
—— ROI 20
ROI 43
ROI 64
ROl 48
ROI 67
ROI 6
ROI 54

0.006

__0.005

(a.u.

o
=3
S
=
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(=]
o
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FIGURE 3.3: Response of brain regions to a delta perturbation in a

single ROL Response functions of the brain regions of subject 29 in

condition 1 following a perturbation in region 47. For clarity, only the

10 regions with the highest area under the curve (AUC) and lowest
latency are shown.
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Chapter 4

Results

In this section, we present the results obtained by fitting the Multivariate Ornstein
- Uhlenbeck (MOU) model to the resting-state fMRI data of both control subjects
and patients diagnosed with schizophrenia. The analysis is structured into three
main parts. First, we evaluate the quality of the model fitting procedure using two
performance measures: model error and goodness of fit.

Second, we assess the degree of time-irreversibility in brain dynamics by com-
puting the irreversibility matrix Q and the associated entropy production rate (EPR)
®. This includes both a global comparison between the two populations and a re-
gional analysis to identify local contributions to the observed differences.

Finally, we apply linear response theory to characterize how brain regions re-
act to localized perturbations. We analyze both the area under the curve and the
latency of the modeled responses to uncover specific perturbation-response connec-
tions that differ significantly between the two groups. This approach allows us to
detect subtle changes in directed interactions that are not captured by global mea-
sures alone.

4.1 Fit MOU process to experimental data

We fit the MOU to the data of each subject, and we use two matrices of performance
to evaluate the process: Model Error and Goodness of Fit.
The model error is defined as:

Model error = % [18(0) = S(O) ||+ [|S(1) =S| -] - (4.1)

where ||Al[p = /5, Al-zj is the Frobenius norm.

While the goodness of fit is computed by first vectorising the upper-triangular
part (excluding the diagonal) of each covariance matrix,

Smodel = vec[S(£)], Sdata = vedS(¢)], with ¢ € {0,1}, (4.2)
to then subsequently compute the Pearson Coefficient:

= COV (Smodel, Sdata) ) t€{0,1}, (4.3)

OUmodel Tdata

And average the two results:

1

Goodness of fit = > (ro+11). (4.4)
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The model error quantifies the element-wise discrepancy between the model-
generated and empirical covariance matrices and is sensitive to both pattern and
scale differences. A lower value indicates a better match. Conversely, the Pearson
correlation coefficient is scale-invariant and evaluates the similarity in the spatial
pattern of connectivity between the two matrices. Therefore, a higher value of good-
ness of fit, ideally close to 1, indicates a better reproduction of the empirical covari-
ance structure.

Figure 4.1 summarizes the results of the fitting procedure in the 48 subjects in
both conditions. As shown, each subject achieves a goodness of fit above 0.6, while
the model error remains mostly below 0.8, indicating a generally good agreement
between the model and empirical data.

-~ <

CTR scz
Condition

e o =
IN o (o)

Model error

o
[N}

o
o

(a)

CTR scz
Condition

(B)

FIGURE 4.1: Model Error and Goodness of Fit Across Subjects and
Conditions. (A) Model error of the overall fitting procedure. Each
dot represents a subject in a specific condition, while the violin plots
illustrate the distribution of model errors across subjects for the two
conditions (SCZ = schizophrenia, CTR = control). (B) Model good-
ness of fit, measured as the average Pearson correlation between the
model and empirical covariance matrices. Each dot corresponds to
a subject in a specific condition, and the violin plots summarize the
distribution across subjects in the two groups.
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4.2 Irreversibility: matrix Q and entropy production rate &

Using the subject-specific parameters obtained from the fitting procedure described
in Section 3.2, namely the matrices B and D, we compute the matrix Q, which we
name irreversibility matrix for each subject. From Q, we then derive the correspond-
ing entropy production rate (EPR) ® using Equation (2.15).

To assess differences in the global irreversibility of the process between the two
populations, we compare the distributions of EPR values across the two groups.
Since the data are independent and no assumption was made on their Gaussianity,
we employ the non-parametric Mann-Whitney U test to statistically evaluate the
group differences.

%k
g p = 0.008

Entropy production rate (EPR): ®

CTR scz
Condition

FIGURE 4.2: MOU Entropy Production Rate of each individual
in each condition. Results of the Mann-Whitney U test compar-
ing the distributions of entropy production rate (EPR) between the
two groups: subjects diagnosed with schizophrenia (SCZ) and con-
trol subjects (CTR). The test reveals a statistically significant differ-
ence with a p-value of p = 0.008, below the significance threshold
of p < 0.05 (corresponding to a 95% confidence level). Each point
corresponds to one subject; the horizontal line in the middle of each
distribution indicates the population median. Asterisks denote the
level of statistical significance, with one to three stars indicating in-
creasing levels of significance.

As shown in Figure 4.2, we find a statistically significant difference in the EPR @
values between the subjects in each condition: subjects diagnosed with schizophre-
nia exhibit significantly higher entropy production rates compared to the control
group. These findings suggest that the entropy production rate may serve as a global
neural marker associated with schizophrenia.

To investigate the regional contributions to the global difference in irreversibil-
ity, reflected in the significant difference in the entropy production rate of the two
conditions, we analyze the differences in the Q matrices between the two groups.
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Specifically, to assess the contribution of each Region of Interest (ROI) to global irre-
versibility, we define the nodal irreversibility of node i as:

ve=Y1Qi, i=1,...,68 (4.5)
j

This yields, for each subject, a vector V€ whose components provide a proxy for
the local irreversibility associated with each ROL.

To identify ROIs with significant differences in nodal irreversibility between the
two populations, we perform a Mann-Whitney U test independently on each com-
ponent of V9. Given the multiple hypothesis tests involved, we apply the Bonfer-
roni correction to control the risk of false positives and maintain the reliability of the
results.

This analysis reveals statistically significant differences in two specific ROIs, high-
lighted in Figure 4.3.

(a) e (b)

ROI VQ(1) — VRQ(0)
l.inferiortemporal 0.7270
l.parsorbitalis 2.1130

0 05 1 1.5 2

FIGURE 4.3: Statistically significant differences in nodal irre-
versibility V. (a) Cortical surface visualization with regions defined
by the Desikan—Killiany atlas. The color map represents the group-

level difference in nodal irreversibility: VQ(1) — VQ(0), where (1)

indicates the schizophrenia group and (0) the control group. Only

regions exhibiting statistically significant differences after Bonferroni

correction are shown. (b) Table listing the names of the ROIs with sta-

tistically significant group differences in nodal irreversibility, along
with the corresponding differences in group means.

These two brain regions provide the most significant local contributions to the
observed global difference in the entropy production rate. However, they are not
solely responsible for this global effect: repeating the comparison of the EPR associ-
ated with the two conditions, after excluding these ROIs, we still find a statistically
significant difference. This suggests that the increase in irreversibility observed in
schizophrenia is distributed across multiple brain regions rather than being localized
to a few specific areas.

4.3 Linear Response Results

We analyze the response matrices A and L derived from the Linear Response Theory
framework, as described in Section 3.3, comparing control subjects and individuals
with schizophrenia across all region pairs. Our focus is on statistically significant
differences in both the magnitude, quantified by the area under the curve (AUC),
and the timing of responses, quantified by the latency.
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Therefore, we compare the elements of the response-based matrices A and L
across the two populations. Specifically, we test for statistically significant differ-
ences in A;; and L;;, which respectively quantify the magnitude and latency of the
modeled response in region j following a perturbation in region i. This analysis
aims to reveal alterations in the directional propagation of activity between ROIs in
patients diagnosed with schizophrenia.

For each pair (i, ), we perform a Mann-Whitney U test independently on the
values of Ajj or L;; across subjects in the two groups. As in the analysis of V? in
Section 4.2, we apply the Bonferroni correction to account for multiple comparisons.

The analysis of the magnitude matrix A reveals statistically significant differ-
ences between the two populations in specific perturbation-response pairs, as illus-
trated in the directed graph in Figure 4.4. The connections shown in the graph corre-
spond to those listed in Table 4.1, which reports the names of the region pairs along
with the corresponding differences in response magnitude between control subjects
and patients diagnosed with schizophrenia. Positive values indicate stronger re-
sponses in control subjects compared to the schizophrenia group. In summary,
the model predicts that for specific perturbation-response pairs, individuals with
schizophrenia exhibit a reduced response magnitude following a delta-like pertur-
bation to the BOLD signals.

(a) ol (© XL0-=

(b)

FIGURE 4.4: Significant Differences in Area Under the Curve (AUC)
between control subjects and schizophrenic patients.The plot high-
lights statistically significant differences in the area under the curve
(AUC) of the response functions between the two populations. Only
statistically significant pairs are shown; all other entries were set to
zero. The color map represents the value of the mean difference of the
AUC in the two conditions. Specifically, for each pair (7,j) we com-
pute the average of the AUC in the subjects in each condition (condi-
tion 0 = control, condition 1 = schizophrenia), and then we compute
the respective difference: A;;(0) — A;j(1). Node colors indicate di-
rectionality: red for perturbed nodes, blue for response nodes, and
purple for nodes acting in both roles, depending on the connection.
Subfigures (a), (b), and (c) show sagittal (x = 0), coronal (y = 0), and
axial (z = 0) projections, respectively.
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TABLE 4.1: Region pairs showing the largest AUC response differ-

ences. Each entry lists a perturbed-response ROI pair exhibiting a

significant difference in the area under the curve (AUC) of the re-

sponse function between groups. Values are reported as x1072 in
arbitrary units (a.u.).

Perturbed ROI Response ROI Mean AUC Difference
Lsupramarginal rinsula 2.5
Linsula rinsula 3.9
rcaudalmiddlefrontal ~ lsupramarginal 42
r.caudalmiddlefrontal — risthmuscingulate 4.6
r.caudalmiddlefrontal ~ rinsula 3.1
rinferiorparietal rinsula 11
risthmuscingulate rbankssts 8.3
risthmuscingulate rinsula 3.7
r.precuneus Lparstriangularis 6.9
r.precuneus Lposteriorcingulate 41
r.precuneus Lsuperiorfrontal 3.0
r.precuneus rbankssts 6.0
r.precuneus risthmuscingulate 52
rtransversetemporal  l.superiorfrontal 34

Moreover, analysis of the in-degree and out-degree of the directed graph pro-
vides further insights into the organization of perturbation-response interactions.
Notably, the right precuneus and the right caudal middle frontal gyrus emerge as
key driver regions, exerting influence over multiple targets when perturbed, as shown
in Table 4.3 and represented in Figure 4.5. On the other hand, the right insula ap-
pears prominently as a receiver, exhibiting consistent and widespread responses to
a variety of perturbations, as reported in Table 4.2 and represented in Figure 4.5.

It is important to note that this is not a global effect. The observed differences are
localized to specific directed connections, rather than reflecting a widespread reduc-
tion in response magnitude across the brain. To verify this, we perform an additional
analysis: for each subject, we compute the average of the entire matrix A, obtaining
a scalar value A = (A);;. Comparing these values across the two populations, we
do not observe a statistically significant difference.

(@)

(b)

0 05115 2 25 3 35 4 45 5

FIGURE 4.5: Brain regions with significant difference in AUC,

ranked based on nodal degree. The figure shows the cortical surface

with regions defined by the Desikan—Killiany atlas. (a) ROIs ranked

based on the out-degree represented in the color map. The regions are

the ones listed in Table 4.3. (b) ROIs ranked based on the in-degree

represented in the color map. The regions are the ones listed in Table
4.2.
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TABLE 4.2: Brain regions ranked by in-degree. Each ROI is ranked
by its in-degree, defined as the number of perturbations from other
regions that elicit a significant response in the ROL

ROI In-degree

rinsula 5
risthmuscingulate 2
rbankssts 2
l.superiorfrontal 2
Lsupramarginal 1
l.parstriangularis 1
lL.posteriorcingulate 1

TABLE 4.3: Brain regions ranked by out-degree. Each ROI is ranked
by its out-degree, defined as the number of other regions that exhibit
significant response differences when the listed ROl is perturbed.

ROI Out-degree

r.precuneus 5
r.caudalmiddlefrontal 3
risthmuscingulate 2
Linsula 1
Lsupramarginal 1
rinferiorparietal 1
r.transversetemporal 1

In addition to the analysis of response AUC, we investigate the latency of the
system’s reaction, which encodes a different aspect of the dynamics; specifically, the
rapidity or delay with which the system responds to external perturbation. While
the area under the curve reflects the overall magnitude of the response, the latency
focuses on its temporal characteristics.

Figure 4.6 illustrates the connections for which the latency differs significantly
between the two groups. Each edge represents a perturbation-response pair, and the
edge color indicates the group-level difference in average latency values: L;;(0) —
Lij(1). Only connections with an average latency difference above 1.7s are shown
for visualization clarity.

The corresponding region pairs are listed in Table 4.4, region pairs are listed in
Table 5, which highlights the most delayed responses. These differences reveal that,
for specific connections, the response in control subjects is not only stronger (as pre-
viously shown) but also slower compared to patients with schizophrenia. This sug-
gests that the dynamical propagation of information may be altered in schizophre-
nia, potentially reflecting a shift toward faster but less robust responses.
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FIGURE 4.6: Significant Differences in Latency between control
subjects and schizophrenic patients.The plot highlights statistically
significant differences in the latency of the response functions be-
tween the two populations, computed as the group-level difference
for each connection: L;;(0) — L;;(1). Only statistically significant pairs
are shown; all other entries were set to zero. For visualization pur-
poses, we display only the connections with a mean latency differ-
ence greater than 1.7. Node colors indicate directionality: red for per-
turbed nodes, blue for response nodes, and purple for nodes acting in
both roles, depending on the connection. Subfigures (a), (b), and (c)
show sagittal (x = 0), coronal (y = 0), and axial (z = 0) projections,
respectively.

TABLE 4.4: Region pairs with the largest differences in response

latency. Each entry lists a perturbed-response ROI pair showing a

significant difference in the latency of the response function between
groups, higher than 1.7 s.

Perturbed ROI Response ROI Mean Latency Difference (s)
Lfusiform Lsuperiorfrontal 1.87
l.precentral r.parstriangularis 1.70
Lprecentral r.superiorfrontal 1.81
r.caudalmiddlefrontal ~ l.middletemporal 1.77
r.fusiform Lparstriangularis 1.71
r.fusiform r.caudalanteriorcingulate 1.77
rlateralorbitofrontal Lsupramarginal 1.74
r.parstriangularis Lsuperiorfrontal 1.88
r.parstriangularis rinsula 1.77
r.superiorfrontal Lprecentral 1.91
r.superiorparietal r.superiorfrontal 1.73
r.supramarginal r]ateralorbitofrontal 1.77
r.supramarginal r.superiorfrontal 1.69
rinsula r.parstriangularis 1.71

We also analyze the out-degree and in-degree of the directed graph based on
latency differences. As shown in Table 4.5 and represented in Figure 4.7, the right
pars triangularis region acts as a major source of faster responses when perturbed.
Conversely, Table 4.6 shows that the right pars triangularis, the left precentral, and
right superior frontal gyrus are the most frequent targets of short-latency effects,
indicating their consistent role as fast responders to external perturbations.



4.3. Linear Response Results 19

Finally, we test whether the observed differences in latency are global or local-
ized. By averaging the latency values across the entire matrix for each subject and
comparing the group-level means, we do not observe a statistically significant dif-
ference. This confirms that, as with the area under the curve, latency alterations are
specific to particular perturbation-response connections, rather than being a general
property of the system.

(a)

FIGURE 4.7: Brain regions with significant difference in latency,

ranked based on nodal degree. The figure shows the cortical surface

with regions defined by the Desikan—Killiany atlas. (a) ROIs ranked

based on the out-degree represented in the color map. The regions are

the ones listed in Table 4.5. (b) ROIs ranked based on the in-degree

represented in the color map. The regions are the ones listed in Table
4.6.

TABLE 4.5: Perturbed regions ranked by out-degree. ROIs are

ranked by out-degree, defined as the number of other regions show-

ing significant latency differences in response to their perturbation.
Only regions with an out-degree greater than 4 are shown.

Perturbed ROI Out-degree
r.parstriangularis 6
r.caudalmiddlefrontal 4
Lprecentral 4
r.precuneus 4
r.supramarginal 4

TABLE 4.6: Response regions ranked by in-degree. ROIs are ranked

by in-degree, defined as the number of perturbations from other re-

gions that elicit significant latency changes in the listed ROIL. Only
regions with an in-degree greater than 4 are shown.

Response ROI In-degree

r.parstriangularis
l.precentral
r.superiorfrontal
r.lateralorbitofrontal
r.precentral
risthmuscingulate

B > = 01 U1 O







21

Chapter 5

Discussion

We employ concepts of non-equilibrium physics to investigate alterations in brain
dynamics in schizophrenia by modeling resting-state fMRI data with the multivari-
ate Ornstein-Uhlenbeck (MOU) process. Our analysis reveals that individuals diag-
nosed with schizophrenia exhibit greater global irreversibility in brain dynamics, as
indicated by a significantly higher entropy production rate (EPR). This aligns with
the growing literature linking neuropsychiatric disorders to non-equilibrium pro-
cesses [12, 31]. The higher EPR in schizophrenia may be due to altered feedback
mechanisms or aberrant synaptic efficiency, leading to less predictable neural activ-
ity [32].

We investigated the brain-regional contributions to the global difference in irre-
versibility by examining the matrix Q. Our findings show that the left inferior tem-
poral gyrus and the left pars orbitalis are key contributors to the difference in the
entropy production rate of the two populations. Such regions are known to play a
role in semantic processing and executive function, cognitive domains that are often
impaired in schizophrenia [33-35]. However, the persistence of a significant global
difference in EPR, even after excluding these regions, implies a distributed nature of
the irreversibility alteration, consistent with the disorder’s whole-brain dysconnec-
tivity [36].

The linear response analysis further supports this interpretation by revealing di-
rectional, pairwise differences in how perturbations propagate through the brain
network. Notably, the precuneus and insula emerged as hubs of dysregulated con-
nectivity, echoing their roles in self-referential processing and salience detection.
Furthermore, the observed latency differences in prefrontal-parietal interactions may
reflect a temporal dysregulation of information integration, potentially underlying
the cognitive fragmentation characteristic of the disorder. Importantly, both AUC
and latency effects were found to be connection-specific rather than global, meaning
that localized perturbations significantly affect the responses of particular region
pairs without altering the overall network dynamics.

The MOU model employed in this work provides analytical tractability and cap-
tures the stationary structure of empirical BOLD signals. However, it has several
limitations. Most notably, it assumes a diagonal diffusion matrix D, thereby neglect-
ing spatial correlations in the noise. This simplification may underestimate interac-
tions among ROIs and misrepresent the true structure of neural variability. Addi-
tionally, the assumption of stationarity in BOLD signals remains unverifiable due to
experimental constraints.

Moreover, since the MOU is linear, it doesn’t take into account non-Gaussian or
nonlinear dynamics, which could play a role in investigating the dynamical brain
differences in schizophrenia. Finally, the model does not incorporate an explicit
hemodynamic component to account for the transformation from neural activity to
BOLD responses [12].
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Future studies could take into account the hemodynamic nature of the BOLD
activity and use more biophysically based models to connect these whole-brain dy-
namics observed differences with the biological mechanisms underlying them. More-
over, structural connectivity constraints could be integrated more rigorously, and
also time-resolved EPR explored.
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Chapter 6

Conclusion

This study shows the utility of tools from non-equilibrium statistical physics in re-
vealing whole-brain dynamical features of schizophrenia. By modeling fMRI data
with the MOU process, we identified increased irreversibility and altered linear re-
sponse properties in patients, supporting the hypothesis that schizophrenia involves
a higher degree of non-equilibrium dynamics in neural processes.

The entropy production rate and the irreversibility matrix provide, respectively,
global and local metrics that may aid future diagnostic methods. In contrast, the per-
turbative approach offers insight into how localized perturbations propagate across
the brain network, which could inform therapeutic strategies.

These findings underscore the value of physics-inspired tools in clinical neuro-
science and pave the way for further investigations into dynamical biomarkers of
psychiatric disorders.
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Appendix A

Experimental data

The experimental data used in this study were obtained from the publicly avail-
able dataset associated with the UCLA Consortium for Neuropsychiatric Phenomics
(CNP) LA5c Study [37, 38]. The dataset includes resting-state fMRI (rs-fMRI) scans
from both cognitively healthy control participants and individuals diagnosed with
schizophrenia (SCZ). Each subject’s raw BOLD rs-fMRI data consisted of 152 time
frames acquired over 304 seconds. From these volumes, noise-corrected time series
of 152 samples were extracted for 68 cortical regions covering both hemispheres,
based on the Desikan—Killiany atlas. The final sample comprised 48 patients diag-
nosed with schizophrenia (12 female, mean age: 36.5 & 8.8) and 48 healthy controls
(16 female, mean age: 36.6 £ 8.9). Diagnostic criteria, behavioral assessments, imag-
ing acquisition parameters, and preprocessing steps are described in detail in the
associated publications [23, 37]. The processed data and scripts used for analysis are
available at the corresponding GitHub repository [24].
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Appendix B

Complete derivation of the fit
updates

We compute the updates for B and D in order to minimize the loss function in Equa-
tion (3.2).

Using Equation (2.7) we find the update for AD.

We start from Sylvester Equation (2.7):

BS(0) +S(0)BT = 2D. (B.1)

Perturb B, S(0), and D by AB, AS(0), and AD, respectively. The first-order expan-
sion gives:

ABS(0) + BAS(0) + AS(0)BT +S(0)AB” = 2AD. (B.2)
Rearranging for AD:
AD = % (ABS(O) + BAS(0) + AS(0)BT + S(O)ABT> . (B.3)

Assuming symmetry and neglecting cross-terms involving AB, we approximate:
AD = ep (BAS(O) + As(o)BT) , (B.4)

where ep absorbs constants and acts as the learning rate.
Using Equation (2.10), we find the update for AB. Starting from the time-lagged
covariance in Equation (2.10):

S(1) = S(0)e B". (B.5)
Perturb B and S(0), leading to:
AS(1) = AS(0)e B — S(0)e B ABT. (B.6)
Rearrange for AB:
S(0)e B ABT = AS(0)e B — AS(1). (B.7)

-1
Multiply both sides by (S(O)e‘BT) =eBS(0)~ %

ABT = ¢BS(0) ! (As(o)e—BT - As(1)) . (B.8)
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Take the transpose (noting S(0), AS(0), and AS(1) are symmetric):
AB = e5 S(0)~! (As(o) - AS(l)eBT) , (B.9)
where €p is the learning rate for B.
Combining the results, the final parameter updates are the ones reported in

Equations (3.5) (3.4):

AB = ¢ 8(0) [As(o) - AS(l)eBT] , (B.10)

AD = ep (BAS(O) + AS(o)BT) . (B.11)
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