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“The mathematician’s patterns, like the painter’s or the poet’s must be beautiful; the ideas
like the colours or the words, must fit together in a harmonious way. Beauty is the first test:
there is no permanent place in the world for ugly mathematics”

G.H. Hardy, A Mathematician’s Apology
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Abstract

Disorder chaos refers to the extreme sensitivity of the equilibrium states of a sys-
tem to small perturbations of the underlying disorder. While this effect has been
extensively studied and rigorously characterized in fully connected models, its un-
derstanding in diluted systems remains incomplete. We begin by introducing the
framework of spin glass models, reviewing the Sherrington–Kirkpatrick (SK) model
and its generalization to mixed p-spin models. These fully connected models serve
as paradigmatic setting where the mathematical theory is well developed: the pres-
ence of disorder chaos have been rigorously established. We then move to diluted
models, in which each variable interacts with only finitely many others. In this
regime, we focus on several Random Constraint Satisfaction Problems: Random k-
SAT, Random k-NAESAT, Random Hypergraph 2-coloring and Random k-XORSAT,
and interpret them with the spin glass formalism by defining suitable Hamiltonians
with random interactions. This analogy highlights the deep structural connection
between Spin Glasses and Random Constraint Satisfaction Problems, allowing us
to apply techniques originally developed for fully connected systems. Within this
framework, we analyze different perturbation schemes: such as resampling a frac-
tion of clauses or flipping random signs, and investigate their effect on the structure
of the solution space. Our goal is to quantify how correlation between two instances
depend on the degree of the disorder perturbation and to identify the onset of chaos
in these diluted models.
Finally, this thesis aims to establish a rigorous foundation of disorder chaos in di-
luted Random Constraint Satisfaction Problems, extending the mathematical theory
of Spin Glass chaos beyond the fully connected setting. By bridging methods from
Probability Theory and Statistical Physics we show that the same principles gov-
erning disorder chaos in the Sherrington-Kirkpatrick model underline the geometry
and stability of solutions in Random Constraint Satisfaction Problems.
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Chapter 1

The Sherrington-Kirkpatrick
model and Random k-SAT

The central aim of this thesis is to investigate the chaotic nature of the random con-
straint satisfaction problems, exploring how ideas from spin glass theory, and in
particular disorder chaos in the SK model, can shed light on the structure and stabil-
ity of the solution space.

In this introductory chapter we provide a basic description of what a spin glass is,
with particular attention to the Sherrington-Kirkpatrick (SK) model, and its connec-
tion to the random k-SAT model, which belongs to the family of random constraint
satisfaction problems (CSP).
In addition, we discuss other models, such as random k-NAESAT, random k-XORSAT
and random hypergraph 2-coloring, that also play a role in this thesis.

Spin glasses are disordered magnetic systems that exhibit highly non-trivial collec-
tive behavior. Unlike conventional magnets, where the interactions between spins
could be either ferromagnetic, meaning that the energy of the system is minimized
by parallel spin configurations, or antiferromagnetic, where the energy of the sys-
tem is minimized when spins are anti-parallel to each other, in spin glasses the spin
interactions can be both ferromagnetic and antiferromagnetic. This feature, leads
spin glasses to be characterized by frustration (Figure 1.1), the impossibility to si-
multaneously minimize all local interactions, and disorder, which comes from the
random nature of the couplings between spins.
As a consequence, spin glasses typically display a complex energy landscape with a
huge number of nearly degenerate states.

1.1 The Sherrington-Kirkpatrick model

A paradigmatic example of a spin glass is the Sherrington-Kirkpatrick (SK) model,
introduced in 1975 in Solvable Model of a Spin Glass [1]. Its Hamiltonian H is given by

H(σ) =
1√
n

n

∑
i,j=1

Jijσiσj , σ ∈ {−1,+1}n, (1.1)

where the random variables Jij, 1 ≤ i, j ≤ n, are i.i.d. standard Gaussian random
variables. In this model, every pair of spins (σi, σj) interacts through the random
coupling Jij that is equally likely to be positive (ferromagnetic) or negative (antifer-
romagnetic). The 1/

√
n prefactor ensures the extensivity of the model.

The simplification that the SK model introduces with respect to an actual spin glass,
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FIGURE 1.1: "Ising spins on triangular lattice. Six possible configura-
tions for ground state are shown. Arrows indicate the spin direction.
Blue lines denote the frustrated bonds, along which spins are parallel
(Shaginyan, Vasily & Msezane, Alfred Z & Japaridze, G. & Clark,
J. & Amusia, M. & Kirichenko, E.. (2020). Theoretical and experi-
mental developments in quantum spin liquid in geometrically frus-
trated magnets: a review. Journal of Materials Science. 55. 1-34.

10.1007/s10853-019-04128-w." )

where interactions are usually short-ranged, is the fully connected hypothesis: each
spin interacts with each other spin. This assumption corresponds to abandoning the
underlying spatial structure in favor of a fully connected description: there is no no-
tion of Euclidean distance between the positions of the spins, it is also called a fully
connected model, since each spin interacts directly with all the others.
One central question is how to describe the complex structure of the energy land-
scape of this model. In the SK model this is captured by the overlap R between two
configurations defined as

R(σ1, σ2) =
1
n

N

∑
i=1

σ1
i σ2

i , σ1, σ2 ∈ {−1,+1}n. (1.2)

Specifically, later, we will use the probabilistic properties of the overlap of two inde-
pendent equilibrium configurations σ1 and σ2.
In their original solution, Sherrington and Kirkpatrick assumed that the overlap dis-
tribution was trivial: all pairs of equilibrium states have the same overlap. This
hypothesis is known as the replica symmetric ansatz, and it leads to an explicit
formula for the free energy. However, it was soon discovered that this solution is
unstable at low temperatures and leads to unphysical results, such as negative en-
tropy.
A breaktrough came in 1979, when Giorgio Parisi proposed a new type of solution
in his paper Infinite Number of Order Parameters for Spin-Glasses[2] involving a hi-
erarchical organization of the energy landscape and a continuous distribution of
the overlaps. This theory, known as Replica Symmetry Breaking (RSB), leads to
a physically consistent and remarkably reach picture of the spin glass phase. Parisi’s
solution was later proven to be exact, and has become a cornerstone of statistical
mechanics of disordered systems.
The SK model thus provided not only a mathematical tractable approximation of
spin glasses, but also a conceptual framework for understanding complexity in high-
dimensional disordered systems.



1.2. Random k-SAT 3

Another remarkable property of spin glasses, and in particular the SK model, is
their sensitivity to perturbations: Already small changes in the disorder, for instance
a small modification of the coupling parameters Jij, can lead to drastic rearrange-
ment of the equilibrium states.
This phenomenon is known as disorder chaos and reflects the rugged structure of
the energy landscape: as the disorder is perturbed, the equilibrium configurations
of the system reorganize in such a way that typical states in the original system may
bear almost no similarity. In terms of the overlap: equilibrium configurations under
one realization of the disorder may have vanishing overlap with respect to those
equilibrium configurations of a slightly perturbed realization.

1.2 Random k-SAT

Formally a Constraint Satisfaction Problems is defined by: a set of n variables
{x1, ..., xn} each taking values in a finite domain (e.g. {0, 1} or a set of colors), and
by a set of m constraints, each acting on a subset of the variables, specifying which
combinations of values are allowed. The goal is to determine whether there exists at
least one assignment of the variables that satisfies all the constraints.
If such an assignment exists, the instance is said to be satisfiable (SAT). Otherwise it
is unsatisfiable (UNSAT).

The k-SAT problem, which lies at the heart of computational complexity theory,
belongs to the class of decision problems. These are problems with a binary answer:
True or False.
An instance of the k-SAT problem is given by a set of n Boolean variables {x1, . . . , xn}
each of which can take the value True or False, and a set of m constraints in the form
of clauses. Each clause is a logical OR of k literals, where a literal is either a variable
xi or its negation ¬xi. A formula Φ is a conjunction (logic AND) of clauses.

Φ = C1 ∧ ...∧ Cm (1.3)
Ci = (ℓ1 ∨ ...∨ ℓk) (1.4)
ℓi = xi,¬xi (1.5)

This particular form, a conjunction of disjunctions, is called Conjunctive Normal
Form (CNF). A formula Φ is said to be satisfiable (SAT) if there exists an assignment
of truth values to the variables that makes the entire formula true.
We can define a formula for the random k-SAT problem Φ = Φ(k, n, m ∼ Po(λn)) by
taking m ∼ Po(λn) clauses independently where each clause has size k and is cre-
ated by selecting randomly uniformly from {x1,¬x1, . . . , xn,¬xn}. One of the most
basic, yet extremely challenging, questions about random k-SAT is to determine the
range of λ for which a solution exists with high probability (with probability tending
to one as n −→ ∞).

Interestingly, the notion of disorder chaos extends beyond the SK model and has
a natural counterpart in CSPs. Indeed, we can see that there is some analogy be-
tween these two systems: In CSPs, instead of spins interacting through random cou-
plings, we have variables constrained by randomly chosen clauses (spin-coupling
←→ variable-clause). The analogue of changing the disorder on a spin glass corre-
sponds to modifying the set of constraints in the CSP instance.
Even small perturbations, such as flipping the sign of a clause or resampling a
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small fraction of constraints can lead to dramatic changes in the structure of the
solution space.
In this thesis we will investigate the chaotic nature of the random k-SAT problem,
and related models, focusing on how small perturbations in the disorder affect the
correlations between solutions, and how this phenomenon parallels the notion of
disorder chaos in spin glass models.

1.3 Other Models

Beside the random k-SAT problem, several related random constraint satisfaction
problems play an important role in this thesis. These models share structural simi-
larities with k-SAT but introduce different types of constraints or symmetries, which
make them valuable both for comparison and for highlighting the phenomena of
disorder chaos.
In particular we will consider random k-NAESAT,the random Hypergraph 2-col
problem and random k-XORSAT.

1.3.1 Random k-NAESAT

The random k-NAESAT problem is again defined on n Boolean variables x1, . . . , xn.
We generate m ∼ Po(λn) clauses, each consisting of k literals chosen uniformly and
independently from {x1,¬x1, . . . , xn,¬xn}.
A clause is satisfied if not all literals take the same truth value, in other words the
clause is violated only when all literals are simultaneously true or simultaneously
false. Again, one of the central questions is to determine the range of λ for which a
random instance is satisfied with high probability when n −→ ∞.

1.3.2 Random hypergraph 2-coloring

A hypergraph is a generalization of a graph in which edges, called hyperedges, may
connect more than two vertices. Random k-uniform hyperedges can be constructed
selecting m ∼ Po(λn) hyperedges, each consisting of k vertices chosen uniformly at
random from the set of n vertices.
The random hypergraph 2-coloring problem asks whether it is possible to assign one
of two colors to each vertex of a random k-uniform hypergraph in such a way that
no hyperedge is monochromatic, i.e. every hyperedge contains at least one vertex
of each color.
As in the other CSPs, one is interested in the satisfiability threshold, the critical den-
sity λ beyond which a proper 2-coloring ceases to exists with high probability.

1.3.3 Random k-XORSAT

Let x1, . . . , xn ∈ {0, 1}. Construct m ∼ Po(λn) clauses independently, each of the
form

xi1 ⊕ xi2 ⊕ · · · ⊕ xik = b (1.6)

where indices {i1, . . . , ik} are chosen uniformly at random and b ∈ {0, 1} is chosen
uniformly and independently. A clause is satisfied if the XOR (exclusive or) of the
variables equals b.
An instance is satisfiable if the resulting linear system over F2 admits a solution.
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So by comparing these models, which share structural similarities but differ in their
symmetries and constraint types, we aim to understand whether disorder chaos is
a model-specific phenomenon or a more universal property of random constraint
satisfaction problems.
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Chapter 2

Disorder chaos in diluted models

Traditionally, in the context of dynamical systems, chaos refers to the extreme sensi-
bility of trajectories to their initial conditions. In the context of the statistical physics
of disordered systems (such as spin glasses), chaos takes on a slightly different but
related meaning: a system is said to exhibit chaos when its macroscopic state re-
sponds dramatically to arbitrarily small perturbations of external parameters, such
as temperature or the underlying disorder.
The phenomenon of chaos in disorder and temperature has been first discussed by
Bray and Moore in the article "Chaotic Nature of the Spin-Glass Phase". Bray and
Moore showed that the description of the spin glass phase in terms of a T = 0 fixed
point implies a chaotic phase in which the relative orientations of spins are sensitive
to small changes δJ in the disorder or in the temperature δT. In particular, small
changes in the disorder (or temperature) may result in dramatic changes in the loca-
tion of the ground state with energy maxσ Hn(σ) as well as the energy landscape.
As discussed in Chapter 1, a way to measure whether the system is chaotic is to
study the overlap R12 = R(σ1, σ2) = 1

n ∑N
i=1 σ1

i σ2
i between two equilibrium configu-

rations of the system.
Formally, one considers two systems with correlated disorder and studies the distri-
bution of their mutual overlap under the Gibbs measure. Disorder chaos is said to
occur when this overlap concentrates near zero as the system size n diverges.
In this thesis work, we are mainly going to focus on disorder chaos. In the next
sections we will introduce the mathematical framework for this definition, follow-
ing the approach of Chen and Panchenko in Disorder chaos in some diluted spin glass
models[3], and analyze its manifestation in random k-SAT model.

2.1 Disorder chaos in the SK model

Consider two correlated SK Hamiltonians:

H1(σ) =
1√
n

n

∑
i,j=1

J1
ijσiσj and H2(σ) =

1√
n

n

∑
i,j=1

J2
ijσiσj,

where as before, (J1
ij, J2

ij), 1 ≤ i, j ≤ n, are n2 pairs of i.i.d. jointly Gaussian random
variables. We assume that E[J1

ij] = E[J2
ij] = 0 and Var(J1

ij) = Var(J2
ij) = 1 for all

1 ≤ i, j ≤ n. Moreover, the disorders of the Hamiltonians are correlated in such a
way that for all 1 ≤ i, j ≤ n,

E[J1
ij J

2
ij] = e−t, (2.1)
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where t ≥ 0 is a correlation parameter. We can see that if t ≈ 0, then J1
ij ≈ J2

ij
with high probability, while if t → ∞, the disorders of the two system become fully
decoupled or independent.

For each system, we can define the Gibbs measure, i.e. the probability distribu-
tion of the configurations σ at inverse temperature β, as:

Gs(σ) =
exp(βHs(σ))

Zs , s ∈ {1, 2}, (2.2)

where Zs is the partition function of the system defined as:

Zs = ∑
σ

exp(βHs(σ)). (2.3)

Then, it is possible to sample from the Gibbs measures two independent (given the
disorder) configurations:

σ1 ∼ G1 and σ2 ∼ G2

and measure how these two coincide by evaluating their overlap (previously defined
in Chapter 1)

R12(t) =
1
n

n

∑
i=1

σ1
i σ2

i .

A model shows disorder chaos if for a small positive correlation parameter t, the
overlap R12(t) is close to zero. The mathematical proof of disorder chaos in the SK
model at all temperatures β was given by S. Chatterjee in Disorder chaos and multiple
valleys in spin glasses [4]. A concise statement of the following result can also be
found in the book Superconcentration and Related Topics [5]:

Theorem (Disorder chaos in the SK model, [5, Theorem 1.11]). For any integer k ≥ 1,

E
(

R2k
12(t)

)
≤ (C1(β)k)k n−C2(β)k min{1,t},

where C1(β) and C2(β) are positive constants that depend only on β.

This theorem provides a quantitative formulation of disorder chaos.
It shows that the overlap between two systems with correlated disorder decreases
polynomially fast with the system size.
More precisely, for any fixed correlation parameter t > 0 the expected even moments
for the overlap R12(t) vanish as n→ ∞.
This implies that, altough the two Hamiltonians share almost the same realization of
the disorder, their equilibrium configurations become asymptotically uncorrelated.
In physics terms we could say that an infinitesimal perturbation of the disorder, cor-
responding to the resampling of a small fraction of the couplings, is sufficient to
produce a macroscopic rearrangement of the Gibbs states.
In other words, even when the two disorders realization are highly correlated, con-
figurations σ sampled from the Gibbs measure become asymptotically orthogonal.
This implies that arbitrarily small perturbations in the disorder lead to a complete
reorganization of the system’s equilibrium state.
Generally, the presence of disorder chaos is well understood for fully connected
models, such as the SK model.
The previous theorem by Chatterjee can alternatively stated as:
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Theorem (Chaos under independent flips, [5, Theorem 7.6]). Consider the SK model
at inverse temperature β. Take any integer n and p ∈ [0, 1]. Suppose that a randomly
chosen fraction p of the couplings (gij)1≤i<j≤n are replaced by independent copies to give a
perturbed Gibbs measure.
Let σ1 be chosen from the original Gibbs measure and σ2 is chosen from the perturbed mea-
sure. Let R12 be the overlap between the two configurations. Then:

E(R2
12) ≤

C(β)

p log n
,

where C(β) depends only on β.

The fully connected structure makes these models analytically tractable, and rig-
orous results establish that disorder chaos occurs as soon as the disorder realizations
are not identical.
However, the main focus of this thesis lies in diluted systems, models in contrast
to the mean field ones, diluted systems refer to a sparse version of a model. Each
spin interacts with a finite number of randomly chosen others. The diluted setting
is therefore closer to systems on sparse random graphs, such as random k-SAT, ran-
dom k-NAESAT, random hypergraph 2-coloring and random k-XORSAT. To bridge
the gap between these two settings, it is useful to introduce the mixed p-spin model
as a fully connected approximation.

2.1.1 p-spin models

The p-spin model is an infinite-range interaction (or mean-field) model, it was in-
vented in the course of the theoretical study of spin-glasses: here, the parameter p
denotes the order of the interaction, so that the interactions are restricted to groups
of exactly p-spins. Fixing p ≥ 1, its Hamiltonian is thus defined as

Hp(σ) = −
1

n
p−1

2
∑

1≤i1<i2<...<ip≤n
Ji1,...,ip σi1 · · · σip , (2.4)

where the random variables Ji1,...,ip are standard Gaussian and independent for all
(i1, . . . , ip). Hence, the Hamiltonian is a homogeneous function of the spins, it only
contains terms of the form of p-spin interactions.
For instance for p = 2 we recover the SK model:

H2(σ) =
1√
n ∑

1≤i<j≤n
Jijσiσj.

This Hamiltonian describes pairwise interactions between spins. Larger values of p
describe higher-order interactions among spins. For example, for the p = 3 case one
obtains interactions among triples of spins:

H3(σ) =
1
n

n

∑
i,j,k=1

Jijkσiσjσk.

More generally, if we consider a linear combination of the several pure interaction
terms with deterministic weights (βp)p≥2, we define a mixed p-spin model, which
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combines interactions of different orders

H(σ) = ∑
p≥2

βp Hp(σ), (2.5)

where the case p = 1 is excluded since such a term would correspond to a random
field acting independently on each site rather than to an interaction among spins.
Including it would also break the global spin flip symmetry, which is characteristic
of spin glass models.
To ensure that the Hamiltonian is well-defined when the Hamiltonian includes in-
finitely many term, we assume that the weights (βp)p≥2 decrease fast enough, for
example by imposing the condition ∑p 2pβ2

p < ∞. A key feature is that its covari-
ance depends only on the overlap R1,2 = 1

n ∑i σ1
i σ2

i :

E H(σ1)H(σ2) = n ∑
p≥2

β2
p (R1,2)

p.

So if we define a function:

ξ(x) = ∑
p≥2

β2
p xp,

the covariance can be written more compactly as:

E H(σ1)H(σ2) = n ξ(R1,2).

Thus, the function ξ completely encodes the structure of the mixed p-spin model.

2.2 Disorder Chaos in the Diluted Random k-SAT model

As discussed in the previous section, disorder chaos has been rigorously established
in fully connected models. In this section, we turn to diluted systems, focusing on
the work done by Chen and Panchenko [3] on the random k-SAT model, where they
proved disorder chaos at zero temperature for large connectivity.
Chen and Panchenko show that resampling a small proportion of disorders (or signs),
as well as clauses (or configurations), leads to configurations that nearly maximize
the original Hamiltonian becoming nearly orthogonal to those that nearly maximize
the perturbed Hamiltonian, with high probability.

In Chapter 1 we have briefly discussed the random k-SAT model, let us just recall
what this model is:
Let x1, . . . , xn be n Boolean variables which take values in {0, 1} (where 0=False,
1=True). We can construct a k-SAT formula Φ = Φ(k, n, m) by selecting m ∼ Po(λn)
clauses independently. Each clause of size k is obtained by choosing independently
and uniformly at random each literal from {x1,¬x1, . . . , xn,¬xn}. The central ques-
tion in random k-SAT is to determine, as a function of the density parameter λ,
whether the formula admits a satisfying assignment, and to what extent such an
assignment can be found efficiently by algorithms.
Importantly, random k-SAT model can be recast as a spin glass model.
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We can define a clause as the following random function θ(σ1, . . . , σk) on {−1;+1}k:

θ(σ1, · · · , σk) := −∏
j≤k

1 + Jjσj

2
, (2.6)

where (Jj)j≥1 are i.i.d. Rademacher random variables and (σj)j≥1 ∈ {−1;+1}k rep-
resents an assignment of the variables in a given clause to specific truth values. Now,
we can see that the definition of this random function θ is actually a mapping of the
instances of the random k-SAT:

θ(σ1, · · · , σk) =

{
0, if and only if there exists at least one j such that σj ̸= Jj,
−1, if σj = Jj ∀j ≤ k.

So the random function θ takes value −1 when all literals in the clause are unsatis-
fied, and 0 otherwise. Then, denote by θc independent copies of the function θ for
various indices c:

θc(σ1, · · · , σk) := −∏
j≤k

1 + Jj,cσj

2
,

with i.i.d. copies Jj,c.
Then, introducing a connectivity parameter λ > 0, we can write the Hamiltonian of
the model as:

Hλ(σ) = ∑
c≤π(λN)

θc(σi1,c , . . . , σik,c), (2.7)

where π(λn) is a Poisson random variable with mean λn, and the coordinate in-
dices ik,c are independent for different pairs (k, c) and are chosen uniformly from
{1, . . . , n}.
Thus, the Hamiltonian counts, up to a minus sign, the number of violated clauses in
the random k-SAT instance. This makes the model comparable to the spin glass
Hamiltonian, where energy contributions arise from random interactions among
subsets of variables.
The analogy between these two systems becomes clearer if one interprets spins as
the variable assignment within a clause θ and Jj’s signs as the random interaction
coefficient in a spin glass system.
This analogy is key because it allows us to reinterpret the satisfiability problem as a
disordered statistical mechanics system, and therefore to study phenomena such as
disorder chaos in the same mathematical framework used for spin glasses.
In particular, we want to find the assignment of variables σi that maximizes the num-
ber of satisfied clauses, which for a given clause means that at least one σj = −Jj for
1 ≤ j ≤ k.

Within this framework, let us consider two copies H1
λ and H2

λ of the Hamiltonian
Hλ(σ) = ∑c≤π(λn) θc(σi1,c , . . . , σik,c). Similarly to Chapter 1, we will fix a correlation
parameter t, but now we assume that t ∈ [0, 1].
These copies can be defined either by resampling clauses or resampling signs, the
latter will be the main approach in this thesis work. These two approaches will be
described in the following subsections.
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2.2.1 Resampling clauses

The two Hamiltonians H1
λ and H2

λ will have Po(tλn) common clauses and two inde-
pendent Po((1− t)λn) independently generated clauses. So in this case one would
resample both indices (ik,j), and signs (J).
So for ℓ = 1, 2 the Hamiltonians will have the form:

Hℓ
λ = − ∑

c≤π(tλn)
∏
j≤k

1 + Jj,cσj,c

2
− ∑

c≤πℓ((1−t)λn)
∏
j≤k

1 + Jℓj,cσj,c

2
. (2.8)

Where π(tλn),π1((1− t)λn), π2((1− t)λn) are independent Poisson random vari-
ables with means tλn and (1− t)λn.
Notice also the role that the correlation parameter t plays in this kind of resampling:
if t = 1, only the first term of Hℓ

λ exists, meaning that the two systems will share
the same set of π(λn) clauses, they are fully correlated. Whereas, if t = 0 the two
systems are going to be independent.

2.2.2 Resampling random signs

Here, the number of clauses π(tλn) will be the same as well as their indices, since
we are resampling only random signs.
In order to resample random signs we replace the random variable Jj in each clause
by two correlated copies J1

j and J2
j such that their correlation is EJ1

j J2
j = t. This

procedure can be done in two ways:

1. Resample with probability 1− t all random signs J1
1,j, ..., J1

k,j simultaneously to
produce J2

1,j, ..., J2
k,j independently for each clause θj.

In this setting for each clause j, the entire vector (J1
1,j, ..., J1

k,j) is replaced by an
independent clause with probability 1− t and kept unchanged with probabil-
ity t.
Consequently each pair (J1

k,j, J2
k,j) satisfies EJ1

k,j, J2
k,j = t.

2. Replace each J1
k,j with probability 1− t to produce J2

k,j, and keep it unchanged
with probability t such that EJ1

k,j, J2
k,j = t. Notice that in this way, each copy

(J1
k,j, J2

k,j) is independent for all different pairs (k, j), while with the first setting
the pairs (J1

k,j, J2
k,j) within the same clause are correlated.

These equivalent procedures of resampling act like an independent spin flip, a
perturbation. We do this because we want to compare the Hamiltonian with an
independent copy of the latter, which acts like a perturbed Hamiltonian. In such a
way, we have two independet systems.
For all these procedures described above and for large connectivity λ, with high
probability all near maximizers are nearly orthogonal to each other.
This is stated in the theorem that we are going to prove in the next chapter, by Chen
and Panchenko from [3, Theorem 1].

Theorem (Disorder Chaos in Diluted Random k-SAT [3, Theorem 1]). For any ε, t ∈
(0, 1) there exists small enough η > 0 such that for large enough λ the following holds for
large enough n with probability at least 1− Le−Nη2/L: for any configurations σ1, σ2 ∈ V
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that nearly maximize the corresponding Hamiltonian

1
n

Hℓ
λ(σ

ℓ) ≥ 1
N

max
σ∈V

Hℓ
λ(σ)− η

√
λ for ℓ = 1, 2, (2.9)

the overlap R1,2 = 1
n ∑i≤n σ1

i σ2
i between them satisfies |R1,2| ≤ ε.

This theorem states that when both the system size n and the connectivity param-
eter λ are large, the configurations that nearly maximize the energy in the system are
almost orthogonal to those that nearly maximize the energy of the perturbed system.
In other words, even if the two systems differ only by a small perturbation in the dis-
order, their sets of near ground states have vanishing overlap.
This is precisely the manifestation of disorder chaos in diluted random k-SAT: arbi-
trarily small perturbations of the disorder lead to a complete reorganization of the
near optimal solutions.
To conclude this section, let us observe that this implies the existence of exponen-
tially many in n near maximizers of the Hamiltonian Hλ which are nearly orthogonal
to each other.

2.3 Outline of the proof

To conclude this chapter, let us see a high-level description of the proof of Theo-
rem 2.2.2. The proof will be fully discussed with more details in the next chapter.
The main idea is to interpolate between the diluted model and its fully connected
approximation and study the free energy under the constraint |R12| > ε. The deriva-
tive of the interpolated free energy will split into a Gaussian term (coming from
the fully connected model) and a Poisson term (coming from the diluted model). If
the overlap were to stay bounded away from 0, these two contributions would lead
to incompatible estimates for the increment of the free energy. This contradiction
shows that the overlap must concentrate near zero, which is the manifestation of
disorder chaos.
To prove this theorem we need to introduce the fully connected approximation of the
random k-SAT Hamiltonian. The latter is given by the mixed p-spin Hamiltonian

H(σ) =
k

∑
p=1

√(
k
p

)
1

np−1 ∑
1≤i1,··· ,ip≤n

gi1,··· ,ip σi1 · · · σip , (2.10)

where the coefficients (gi1,··· ,ip) are N (0, 1) random variables indexed by
1 ≤ i1 < . . . < ip ≤ n, 1 ≤ p ≤ k, which are independent for all possible index
choices.

Given this approximation it was also shown in [6, 7] that:

1
n

E max
σ∈V

Hλ(σ) = −
λ

2k +

√
λ

2k
1
n

E max
σ∈V

H(σ) +O(λ1/3) (2.11)

as λ→ ∞, uniformly in n.

The theorem by Chen and Panchenko will be proved by contradiction.
We are going to suppose that exist two correlated system with the same near maxi-
mizers.
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First we will introduce an interpolating Hamiltonian:

H(s, σ1, σ2) =
2

∑
ℓ=1

(δHℓ
λ(1−s)(σ

ℓ) +
√

sβHℓ(σℓ)), (2.12)

where s ∈ [0, 1] is the interpolation parameter and the correlated Hamiltonians
Hℓ

λ(1−s), for ℓ = 1, 2, are defined in the same way as the diluted Hamiltonians (2.7)
previously introduced in this chapter, and δ and β are two inverse temperature pa-
rameters, and will be chosen later in the proof. The Hamiltonian (2.12) considers
configuration pairs (σ1, σ2) instead of single configurations σ because the iterpola-
tion is designed to couple two correlated spin system whose disorders share a pre-
scribed correlation structure.
This allows one to track how the overlap R12 = 1

n ∑i σ1
i σ2

i between the two systems
evolves as the correlation in the disorder changes, a key quantitiy in the analysis of
disorder chaos.
Moreover H(0, σ1, σ2) corresponds to:

H(0, σ1, σ2) =
2

∑
ℓ=1

δHℓ
λ(1−s)(σ

ℓ),

two correlated diluted models at inverse temperature δ, and H(1, σ1, σ2) is:

H(1, σ1, σ2) =
2

∑
ℓ=1

√
sβHℓ(σℓ),

corresponding to two correlated fully connected models at inverse temperature β.
In particular, for the fully connected model at s = 1, disorder chaos is already known
to occur. After the interpolated Hamiltonian, it is useful to introduce the interpo-
lated free energy, defined as:

φ(s) =
1
n

E ∑
|R12|>ε

exp H(s, σ1, σ2) (2.13)

of the two correlated systems, coupled by the overlap constraint |R12| > ε.
The central part of the proof will be about the extended computation of the deriva-
tive of this free energy density with respect to s.
The derivative naturally decomposes into two terms: a Gaussian contribution from
the fully connected approximation and a Poissonian contribution from the diluted
system.
The essence of the proof is to show that these two contributions cannot be simulta-
neously consistent if the overlap remains bounded away from zero, which yields the
desired contradiction and establishes disorder chaos.
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Chapter 3

Proof of Disorder Chaos in the
random k-SAT model

In this chapter we will go through the detailed proof at the heart of the paper from
Chen and Panchenko, about the existence of disorder chaos in the diluted random
k-SAT model.
The aim of this chapter is to provide a rigorous derivation of the proof, previously
described in Chapter 2, comparing the diluted model of the random k-SAT with its
fully connected approximation, by means of an interpolated Hamiltonian.
We begin by recalling the definition of the diluted Hamiltonian and its fully con-
nected approximation. We then introduce the interpolating Hamiltonian and the
associated free energy, constrained by the overlap condition. A key step is the com-
putation of the derivative of this interpolated free energy, which naturally splits into
two contributions: a Gaussian term, coming from the fully connected approxima-
tion, and a Poissonian term, coming from the diluted system.
The central part of the chapter is devoted to analyzing these two contributions and
showing that they cannot be consistent under the assumption that the overlap be-
tween near maximizers is bounded away from zero. This contradiction completes
the proof, thereby establishing disorder chaos in the diluted random k-SAT model.

3.1 Approximation to the fully connected model

In this section, we argue that it is reasonable to approximate the random k-SAT
model by a mixed p-spin model for large values of λ, and large but fixed number of
clauses n.
Most importantly we want to show that the covariance of the fully connected model,
depends only on the overlap between two configurations.

Claim. The k-SAT model Hamiltonian

Hλ(σ) = − ∑
c≤π(λn)

∏
j≤k

1 + Jj,cσij,c

2
(3.1)

can be approximated by the following mixed p-spin Hamiltonian:

H(σ) =
k

∑
p=1

√(
k
p

)
1

np−1 ∑
1≤i1,··· ,ip≤n

gi1,··· ,ip σi1 · · · σip , (3.2)

where the coefficients (gi1,··· ,ip) areN (0, 1) random variables indexed by 1 ≤ i1, . . . , ip ≤ n,
1 ≤ p ≤ k, which are independent for all possible index choices.
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Proof. Let us consider a single clause

θc(σi1 , . . . , σik) = −
k

∏
j=1

(1 + Jj,cσij,c)

2
.

Consider a fixed clause and let k = 3, then expand the product (for simplicity we
will drop the index c in the example, since the clause is fixed):

−
k

∏
j=1

(1 + Jjσij)

2
= − 1

23 (1 + J1σi1)(1 + J2σi2)(1 + J3σi3).

By explicitly computing this product, we can group together the terms that have the
same type of interactions: among the 8 terms of the product, we will have single
interaction terms (p = 1), pairwise interactions (p = 2), interaction between three
terms (p = 3) and a constant term (p = 0):

1 + J1σi1 + J2σi2 + J3σi3 + J1 J2σi1 σi2 + J1 J3σi1 σi3 + J2 J3σi2 σi3 + J1 J2 J3σi1 σi2 σi3 .

Then, a single clause can be recasted in a more compact form, taking into account
the order of interactions, as:

−2−k
k

∑
p=0

∑
S⊆[k]
|S|=p

∏
j∈S

Jjσij ,

so each subset S ⊆ {1, . . . , k} with cardinality |S| = p gives a term of order p.
Moreover, we can define the following form for a single clause:

Xc(σ) := θc + 2−k = −2−k
k

∑
p=1

∑
S⊆[k]
|S|=p

∏
j∈S

Jjσij ,

in order to absorb the constant term. By doing so, since Jj,c’s are i.i.d. Rademacher
and indices ij are i.i.d uniformly distributed over {1, . . . , n} we can say that:

E[Xc] = 0.

The Hamiltonian becomes:

Hλ(σ) = −
π(λn)

2k + ∑
c≤π(λn)

Xc(σ).

We can firstly compute the covariance for a single clause. Start by calculating the
expected value over the signs:

E J [X(σ1)X(σ2)] = 2−2k
k

∑
p=1

∑
|S|=p

∏
j∈S

σ1
ij

σ2
ij
,
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Finally, we can define a rescaling for the Hamiltonian in such a way to eliminate
the prefactor 2−2kλn, as:

Ĥλ(σ) :=
2k
√

λ
∑

c≤M
Xc(σ).

In this way, the covariance reads:

E
[

Ĥλ(σ
1)Ĥλ(σ

2)
]
= n

k

∑
p=1

(
k
p

)
Rp

12.

The dependence of the covariance only on the overlap R1,2 plays a crucial role in the
analysis of disorder chaos.
This structure allows the correlation between perturbed copies of the system to be
entirely encoded in the overlap between configurations. As a result, the response
of the system to small perturbations in the disorder can be effectively tracked by
observing the behavior of the overlap as a function of the correlation parameter t.
In particular, the sharp transition in the overlap indicates the existence of disorder
chaos.

Fix p ∈ {1, . . . , k} and an ordered p-uple (i1, . . . , ip) ∈ {1, . . . , n}p.
For a given clause c, let:

Y(i1,...,ip)
c := ∑

S⊆[k]
|S|=p

1{(ij,c)j∈S = (i1, . . . , ip)}∏
j∈S

Jj,c,

which is the total contribution of a clause c to the term σi1 · · · σip obtained by sum-
ming over all p-subsets S of positions inside the clause, the product of corresponding
signs whenever the clause chooses exactly the indices (i1, . . . , ip) at those positions.
Then define:

Cλ
i1,...,ip

:= − 1√
λ

∑
c≤M

Y(i1,...,ip)
c ,

and rewrite the Hamiltonian as:

Ĥλ(σ) =
k

∑
p=1

∑
1≤i1,...,ip≤n

Cλ
i1,...,ip

σi1 · · · σip .

In this way we have created a sum over clauses, so i.i.d. blocks, over which we can
use the Central Limit Theorem.
Notice that:

EYc = 0

Var(Yc) = E[Y2
c ] = ∑

S1,S2⊆[k]
|S1|=|S2|=p

P
(
(ij,c)j∈S1 = (ij,c)j∈S2 = (i1, . . . , ip)

)
E

[
∏
j∈S1

Jj,c ∏
j∈S2

Jj,c

]

= ∑
S⊆[k]
|S|=p

1
np =

(
k
p

)
n−p.
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To perform the CLT with a Poisson number of clauses we could condition over the
number of clauses:
for M = m : {Yc}m

c=1 are i.i.d. with variance πp,n.
For the CLT: 1√

m ∑m
c=1 Yc = N (0, πp,n).

It follows that: Cλ
i1,...,ip

|M = m =⇒ N (0, (m/λ)πp,n).
Now, for M ∼ Po(λn) it holds:

EM = λn, Var(M) = λn

when: λn −→ ∞ =⇒ M
λn −→ 1

So:

Cλ
i1,...,ip

=⇒ N (0, nπp,n) = N
(

0, n1−p
(

k
p

))
, λn −→ ∞

Now, we can define:

gi1,...,ip :=
n

p−1
2√
(k

p)
Cλ

i1,...,ip

Then: Var(gλ
i1,...,ip

) = 1 =⇒ gλ
i1,...,ip

∼ N (0, 1). Substituting back we get:

Ĥ =
k

∑
p=1

√(
k
p

)
n−

p−1
2 ∑

1≤i1,...,ip≤n
gλ

i1,...,ip
σi1 · · · σip

Remark (Heuristic nature of the Gaussian limit). The passage from the diluted Hamil-
tonian to the fully connected Gaussian model is heuristic. Indeed, the clause contributions
are neither independent nor identically distributed: they share indices and create non–trivial
dependencies across products σi1 · · · σip . The approximation above relies on the fact that,
in the large–connectivity regime λ → ∞ (with n large and M ∼ Po(λn)), each coeffi-
cient Cλ

i1,...,ip
is a sum of many weakly dependent, centered terms with variance of order

n1−p(k
p). Under this high–connectivity scaling, a central–limit principle suggests that the

vector of coefficients becomes approximately Gaussian after centering and normalization,
and cross–covariances vanish at leading order. What is used in the sequel is precisely the
covariance structure

E Ĥλ(σ
1)Ĥλ(σ

2) ≈ n
k

∑
p=1

(
k
p

)
Rp

12,

rather than a fully rigorous CLT for all coefficients. Establishing a complete normal approx-
imation with quantitative error bounds is delicate and beyond the scope of this thesis. Our
use of the mixed p-spin surrogate should therefore be viewed as an effective mean filed ap-
proximation: the Gaussian distribution is an effective description of the collective behavior,
not a rigorous convergence result.
Our heuristic fully connected approximation can in principle be made rigorous via a Linde-
berg type replacement argument, done by Chatterjee in "A generalization of the Lindeberg
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principle" [8], provided one establishes appropriate bounds on influences and dependencies
of clause contributions. We do not attempt this verification here.

3.2 Guerra-Toninelli interpolation method

For s ∈ [0, 1], let us consider the following interpolating Hamiltonian

H(s, σ1, σ2) =
2

∑
l=1

(δHl
λ(1−s)(σ

l) +
√

sβHl(σl))

Then let us recall the interpolated free-energy of correlated systems coupled by the
overlap constraint |R1,2| > ε:

φ(s) =
1
N

E log ∑
|R1,2|>ε

exp (H(s, σ1, σ2))

We are interested in computing the derivative of the free energy with respect to s:
in order to do that we need to decompose the Hamiltonian as the sum of two terms
introducing a change of variables.

H(s, σ1, σ2) = u(s, σ1, σ2) + v(s, σ1, σ2)

So now the free energy will be defined as:

φ(s) = Φ(u(s), v(s))

Now, the computation of the derivative of the free energy takes the following form:

d
ds

φ(s) =
∂Φ
∂u

du
ds

+
∂Φ
∂v

dv
ds

This derivative gives rise to two separate terms, this allows us to rewrite the deriva-
tive of the free energy, as the sum of two terms:

d
ds

φ = I + I I

Respectively:

I =
〈

∂

∂s
Gauss

〉
s

and I I =
〈

∂

∂s
Poiss

〉
s

3.3 Derivative of the Gaussian term

In this section, we will see the explicit derivation of the first term in the derivative
of the free energy.
The latter being the derivative with respect to s of the Gaussian part of the inter-
polated Hamiltonian, corresponding to the fully connected approximation of the
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model.

I =
β

2
√

sn
∂

∂u
E log ∑

|R12|>ε

exp
(

H(s, σ1, σ2)
)

=
β

2
√

sn
E

∑ℓ Hℓ(σℓ) exp(H(s, σ1, σ2))

∑|R12|>ε exp (H(s, σ1, σ2))

=
β

2
√

sn
E

〈
∑
ℓ

Hℓ(σℓ)

〉
s

Where we used:

Gs(σ
1, σ2) =

exp H(s, σ1, σ2)

∑|R12|>ε exp H(s, σ1, σ2)
(3.3)

which is the average with respect to the Gibbs measure on {(σ1, σ2) ∈ V2 : |R1,2| >
ε} corresponding to the Hamiltonian H(s, σ1, σ2).

Gaussian integration by parts

To fully get the explicit expression in terms of the overlaps for this first contribution,
let us focus on how to compute the expected value of the average with respect to the
Gibbs measure. The whole expression can be written as follows:

E
〈

H1(σ1) + H2(σ2)
〉

s
= ∑

σ1,σ2

E
[
(H1(σ1) + H2(σ2))Gs(σ

1, σ2)
]

Then, defining: H1(σ1) + H2(σ2) := x(σ), we have:

E ⟨x(σ)⟩s = ∑
σ

E [x(σ)Gs(σ)]

Lemma (Chatterjee[5],Talagrand[9]). Suppose g is a Gaussian random variable, and f :
R −→ R is an absolutely continuous function. Under the assumption that E| f ′(x)| < ∞,
an application of integration by parts gives the identity:

Eg f (g) = E f ′(g)

This identity can be generalized to n dimensions. Suppose that g = (g1, ..., gn) is a centered
Gaussian vector. If f : Rn −→ R is an absolutely continuous function such that |∇ f (g)|
has finite expectation, then for any i,

E(gi f (g)) =
n

∑
j=1

E(gigj)E(∂i f (g))

Using the above Lemma, we can explicitly compute the expected value over the
Hamiltonian as:

∑
σ

E [x(σ)Gs(σ)] = ∑
σ

∑
τ

E [x(σ)x(τ)]E

[
∂Gs(σ)

∂x(τ)

]
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Now let us evaluate the derivative:

∂

∂x(τ)
exp(
√

sβx(σ))
∑ρ:|R|>ε exp(

√
sβx(ρ))

=

(√
sβ exp(

√
sβx(σ)δσ=τ)

) (
∑ρ exp(

√
sβx(ρ))

)
−
(
exp(
√

sβx(σ))
) (√

sβ ∑τ exp(
√

sβx(τ))
)

(
∑ρ exp(

√
sβx(ρ))

)2

=

√
sβ exp(

√
sβx(σ))

(
δσ=τ ∑ρ exp

(√
sβx(ρ)

)
−∑τ exp

(√
sβx(τ)

))(
∑ρ exp(

√
sβx(ρ))

) (
∑ρ exp(

√
sβx(ρ))

)

=
√

sβ
exp(
√

sβx(σ))
∑ρ exp(

√
sβx(ρ))

(
δσ=τ ∑ρ exp

(√
sβx(ρ)

)
−∑τ exp

(√
sβx(τ)

))
∑ρ exp(

√
sβx(ρ))

=
√

sβGs(σ)

(
δσ=τ −∑

τ

Gs(τ)

)

Now, we can substitute the derivative back into the formula:

√
sβ ∑

σ
∑
τ

E

[
(x(σ)x(τ)

(
Gs(σ)δσ=τ − Gs(σ)∑

τ

Gs(τ)

)]

=
√

sβE

[
∑
σ

x(σ)x(σ)Gs(σ)−∑
σ

∑
τ

x(σ)x(τ)Gs(σ)Gs(τ)

]

=
√

sβE

[
∑
σ

〈
x(σ)2〉

s −∑
σ

∑
τ

⟨x(σ)x(τ)⟩s

]

Then:

√
sβE

[
∑

σ1σ2

〈(
H1(σ1) + H2(σ2)

)2
〉

s
− ∑

σ1σ2
∑

τ1τ2

〈(
H1(σ1) + H2(σ2)

) (
H1(τ1) + H2(τ2)

)〉
s

]

Now we can deal with these two terms independently:

∑
σ1σ2

E

〈(
H1(σ1) + H2(σ2)

)2
〉

s

= ∑
σ1σ2

E
〈

H1(σ1)2
〉

s
+ ∑

σ1σ2

E
〈

H2(σ2)2〉
s + 2 ∑

σ1σ2

E
〈

H1(σ1)H2(σ2)
〉

s
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Now we know that the covariance of the Gaussian Hamiltonians is given by:

EH1(σ1)H2(σ2) = nξ(R12)

We can also denote the overlap between the i.i.d. replicas coming from the Gibbs
measure as:

Rj,j′

ℓ,ℓ′ =
1
n

n

∑
i=1

σ
ℓ,j
i σ

ℓ′,j′

i (3.4)

So:

∑
σ1

E
〈

H1(σ1)H1(σ1)
〉

s
= nξ(1)

∑
σ2

E
〈

H2(σ2)H2(σ2)
〉

s = nξ(1)

2 ∑
σ1σ2

E
〈

H1(σ1)H2(σ2)
〉

s
= 2nE⟨ξ(R12

11)⟩s

As well we can write in terms of the overlaps the second term as follows:

∑
σ1σ2

∑
τ1τ2

E
〈(

H1(σ1) + H2(σ2)
) (

H1(τ1) + H2(τ2)
)〉

s

= ∑
σ1σ2

∑
τ1τ2

E
(
⟨H1(σ1)H1(τ1)⟩s + ⟨H1(σ1)H2(τ2)⟩s + ⟨H2(σ2)H1(τ1)⟩s + ⟨H2(σ2)(H2(τ2)⟩s

)
so:

∑
σ1σ2

∑
τ1τ2

E⟨H1(σ1)H1(τ1)⟩s = nE⟨ξ(R11
12)⟩s

∑
σ1σ2

∑
τ1τ2

E⟨H1(σ1)H2(τ2)⟩s = nE⟨ξ(tR12
12)⟩s

∑
σ1σ2

∑
τ1τ2

E⟨H2(σ2)H1(τ1)⟩s = nE⟨ξ(tR21
12)⟩s

∑
σ1σ2

∑
τ1τ2

E⟨H2(σ2)H2(τ2)⟩s = nE⟨ξ(R22
12)⟩s

Where the term t ∈ (0, 1) is the correlation parameter between two different
Hamiltonians.
Putting everything together, we finally get that:

I =
β2

2

(
2nξ(1) + 2E⟨ξ(R12

11)⟩s −E
〈

ξ(R11
12) + ξ(tR12

12) + ξ(tR21
12) + ξ(R22

12)
〉

s

)
(3.5)
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3.4 Derivative of the Poissonian term

The second term corresponds to the diluted Hamiltonian and it has to be computed
by taking the Poisson derivative with respect to s. In order to do that we can use the
following lemma:

Lemma. Let X ∼ Po((1− s)λN) and f : R −→ R be a function
s.t: E[| f (x)|] < ∞,then:

∂

∂s
E[ f (X)] = E[ f (X + 1)]−E[ f (X)]

Proof. The proof follows from direct calculations

Given the Poisson distribution: P(X = k) =
[λ(1− s)N]n

k!
e−λ(1−s)n

Then: E[ f (X)] =
∞

∑
k=0

f (k)
[λ(1− s)n]k

k!
e−λ(1−s)n

Now we can compute the derivative with respect to s of the expectation value:

∂

∂s
E[ f (X)] =

∞

∑
k=0

f (k)
k!

∂

∂s

(
[λ(1− s)n]ke−λ(1−s)n

)
=

∞

∑
k=0

f (k)
k!

(
−k[λ(1− s)n]k−1(λn) e−λ(1−s)n − [λ(1− s)n]k (λN) e−λ(1−s)n

)
= −

∞

∑
k=1

f (k)
(k− 1)!

[λ(1− s)n]k−1e−λ(1−s)nλn−
∞

∑
k=0

f (k)
k!

[λ(1− s)n]ke−λ(1−s)nλn

= −λn

[
∞

∑
k=1

f (k)
(k− 1)!

[λ(1− s)n]k−1e−λ(1−s)n +
∞

∑
k=0

f (k)
k!

[λ(1− s)n]ke−λ(1−s)n

]

then we make the following change of index for the first term: ℓ = k− 1

= −λn

[
∞

∑
ℓ=0

f (ℓ+ 1)
ℓ!

[λ(1− s)n]ℓe−λ(1−s)n +
∞

∑
k=0

f (k)
k!

[λ(1− s)n]ke−λ(1−s)n

]

= −λn (E[ f (X + 1)] + E[ f (X)])

Applying the above lemma, we get:

I I =
∂Φ
∂v

dv
ds

=
∂

∂v(s)
1
n

E log ∑
|R12|>ε

exp H(s, σ1, σ2)

= −λ

(
E log ∑

|R12|>ε

exp H+(s, σ1, σ2) + E log ∑
|R12|>ε

exp H(s, σ1, σ2)

)

As one can see from the proof of the lemma, computing the derivative of a Poisson
random variable with respect to its parameter, corresponds to adding a clause. The
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direct application of this lemma to our term results in this full calculation:

I I =
1
n

∂

∂s
E log ∑

|R12|>ε

exp

(
2

∑
ℓ=1

δHℓ
λ(1−s)(σ

ℓ)

)

=
1
n

∂

∂s
E log ∑

|R12|>ε

exp
(

δ
(

H1
λ(1−s)(σ

1) + H2
λ(1−s)(σ

2)
))

=
1
n

∂

∂s
E log ∑

|R12|>ε

exp

(
δ

λπ(1−s)n

∑
j=1

(
θ1

j (σ
1) + θ2

j (σ
2)
))

= −λE log ∑
|R12|>ε

exp

(
δ
(λπ(1−s)n)+1

∑
j=1

(
θ1

j (σ
1) + θ2

j (σ
2)
))

+

+ λE log ∑
|R12|>ε

exp

(
δ

λπ(1−s)n

∑
j=1

(
θ1

j (σ
1) + θ2

j (σ
2)
))

= −λ

(
E log ∑

|R12|>ε

exp

(
δ
(λπ(1−s)n)+1

∑
j=1

(
θ1

j (σ
1) + θ2

j (σ
2)
))

−E log ∑
|R12|>ε

exp

(
δ

λπ(1−s)N

∑
j=1

(
θ1

j (σ
1) + θ2

j (σ
2)
)))

= −λ

(
E log ∑

|R12|>ε

exp H+(s, σ1, σ2)−E log ∑
|R12|>ε

exp H(s, σ1, σ2)

)

Where

H+(s, σ1, σ2) = H(s, σ1, σ2) + δθ1(σ1
i1 · · · σ

1
ik
) + δθ2(σ2

i1 · · · σ
2
ik
), (3.6)

and these clauses are independent of H(s, σ1, σ2) and are given by:

θℓ(σℓ
i1 , · · · , σℓ

ik
) = −∏

j≤k

1 + Jℓj σℓ
j

2
,

where the random signs Jℓj are correlated in the sense that they are resampled
with probability 1− t either independently or simultaneously within this one clause.
Now, notice that the term I I can be rewritten as follows:

= −λ

(
E log ∑

|R12|>ε

exp H(s, σ1, σ2) exp(δθ1) exp(δθ2)−E log Zs

)

= −λE log
∑|R12|>ε H(s, σ1, σ2) exp δθ1 exp δθ2

Zs

= −λE log
〈

exp δθ1(σ1
i1 , · · · , σ1

ik
) exp δθ2(σ2

i1 , · · · , σ2
ik
)
〉

s

Now, since each clause θ ∈ {−1, 0} we can rewrite each exponential term as:

exp δθ = 1 + (1− e−δ)θ
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then:

exp δθ1 exp δθ2 =
(

1 + (1− eδ)θ1
) (

1 + (1− eδ)θ2
)

= 1 + (1− eδ)θ2 + (1− eδ)θ1 + (1− eδ)2 θ1θ2

= 1− (1− eδ)

(
∏
j≤k

1 + J2
j σ2

ij

2

)
− (1− eδ)

(
∏
j≤k

1 + J1
j σ1

ij

2

)
+ (1− eδ)2 ∏

j≤k

1 + J1
j σ1

ij

2

1 + J2
j σ2

ij

2

= 1− (1− eδ)

(
∏
j≤k

1 + J1
j σ1

ij

2
+ ∏

j≤k

1 + J2
j σ2

ij

2
− (1− eδ)∏

j≤k

1 + J1
j σ1

ij

2

1 + J2
j σ2

ij

2

)
= 1− (1− eδ)∆(σ1, σ2)

Notice that:

0 ≤ ∆(σ1, σ2) ≤ 1 + e−δ

that also means: ∆(σ1, σ2)(1− e−δ) ≤ 1− e−2δ

leading to the fact that: ∆(σ1, σ2) < 1

Knowing these bounds, we can safely expand the logarithm using the Taylor
series as:

I I = λ ∑
n≥1

(1− e−δ)n

n
E⟨∆(σ1, σ2)⟩ns + I I I (3.7)

where we define the remainder

I I I := λ ∑
n≥3

(1− e−δ)n

n
E
〈
∆(σ1, σ2)

〉 n
s .

Since 0 ≤ ∆(σ1, σ2) < 1, we have
∣∣E⟨∆⟩ n

s
∣∣ ≤ 1 for all n ≥ 1, hence

|I I I| ≤ λ ∑
n≥3

(1− e−δ)n

n
≤ λ ∑

n≥3
(1− e−δ)n = λ

(1− e−δ)3

e−δ
= O(λ δ3),

uniformly in s. Using replicas we can represent the last term as follows:

E⟨∆(σ1, σ2)⟩ns = E

〈
∏
ℓ≤n

∆(σℓ,1, σℓ,2)

〉
s

= E

〈
E′ ∏

ℓ≤n
∆(σℓ,1, σℓ,2)

〉
s

Where E′ is the expectation with respect to the randomness J1
k , J2

k and ik of the
clauses θ1 and θ2, which is independent of the randomness in ⟨·⟩s. So we can com-
pute the expectation with respect to the randomness knowing that the correlations
between disorders J1

j , J2
j is given as: EJ1

j , J2
j = t, so:

E J ∏
j≤k

1 + J1
j σ1

ij

2

1 + J2
j σ2

ij

2
= ∏

j≤k

1 + E J J2
j σ2

ij
+ E J J1

j σ1
ij
+ E J J1

j J2
j σ1

ij
σ2

ij

4
= ∏

j≤k

1 + tσ1
ij

σ2
ij

4
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while taking the expectation with respect to the random indices ik, we get:

E′∏
j≤k

1 + J1
j σ1

ij

2

1 + J2
j σ2

ij

2
= ∏

j≤k

1 + J2
j E′σ2

ij
+ J1

j E′σ1
ij
+ J1

j J2
j E′σ1

ij
σ2

ij

4
=

1 + ξ(tR1,2)

4k

Now we can compute E⟨∆(σ1, σ2)⟩ns for n = 1, 2. First, for n = 1:

E⟨∆(σ1, σ2)⟩s = E

〈
∏
j≤k

1 + J1
j σ1

ij

2
+ ∏

j≤k

1 + J2
j σ2

ij

2
− (1− e−δ)∏

j≤k

1 + J1
j σ1

ij

2

1 + J2
j σ2

ij

2

〉
s

=
2
2k −

1− e−δ

4k (1 + E⟨(tR12
11)⟩s)

while, for n = 2 (we will separate the terms that contain the factor (1− e−δ)):

E⟨∆(σ1, σ2)⟩2s = E

(∑
σ1σ2

Gs(σ
1, σ2)∆(σ1, σ2)

)2


here we need to introduce two separate copies (σ1σ2), (τ1τ2) such that:

G⊗s
(
(σ1σ2)(τ1τ2)

)
= Gs(σ

1σ2)Gs(τ
1τ2)

then:

= ∑
σ1σ2

Gs(σ
1σ2)∆(σ1σ2) ∑

τ1τ2

Gs(τ
1τ2)∆(τ1τ2)

= ⟨∆(σ1σ2)∆(τ1τ2)⟩s

For the sake of clarity and simplicity let us change notation for this computation.
Recall that:

∆(σ1σ2) = ∏
j≤k

1 + J1
j σ1

ij

2
+ ∏

j≤k

1 + J2
j σ2

ij

2
− (1− eδ)∏

j≤k

1 + J1
j σ1

ij

2

1 + J2
j σ2

ij

2

Then let us define:

∆(σ1σ2) := A(σ1) + B(σ2) + cA(σ1)B(σ2)

∆(τ1τ2) := A(τ1) + B(τ2) + cA(τ1)B(τ2)

with: c = 1− e−δ

so:

E
〈

∆(σ1σ2)∆(τ1τ2)
〉

s

= E
〈(

A(σ1) + B(σ2) + cA(σ1)B(σ2)
)
·
(

A(τ1) + B(τ2) + cA(τ1)B(τ2)
)〉

s

= E⟨A(σ1)A(τ1)⟩s + E⟨A(σ1)B(τ2)⟩s + E⟨B(σ2)A(τ1)⟩s + E⟨B(σ2)B(τ2)⟩s + I I I

= E

〈
1 + ξ(R11

12)

4k +
1 + ξ(tR12

12)

4k +
1 + ξ(tR21

12)

4k +
1 + ξ(R22

12)

4K

〉
+ I I I
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Now we can insert everything inside I I:

I I =
2λ(1− e−δ)

2k − λ(1− e−δ)2

4k (1 + E⟨ξ(tR12
11)⟩s)

+
4λ(1− e−δ)2

2 · 4k +
λ(1− e−δ)2

2 · 4k E⟨ξ(R11
12) + ξ(tR12

12) + ξ(tR21
12) + ξ(R22

12)⟩s + I I I

Then, we make the following choice of β:

β =

√
λ(1− e−δ)

2k

With this choice of β we finally get that the derivative of the free energy is:

φ′(s) =
2λ(1− e−δ)

2k +
2λ(1− e−δ)2

2 · 2k + I I I

And by performing a Taylor expansion around δ→ 0:

φ′(s) =
2λδ

2k +O(λδ3)

Then, integrating between 0 and 1, with respect to s:∫ 1

0
φ′(s) ds = φ(1)− φ(0) =

2λδ

2k +O(λδ3)

So: ∣∣∣∣φ(0) + 2λδ

2k − φ(1)
∣∣∣∣ = O(λδ3)∣∣∣∣1δ φ(0) +

2λ

2k −
1
δ

φ(1)
∣∣∣∣ = O(λδ2)

3.5 Bounds for the energy

Now we want to estimate the upper-bound and the lower-bound for the expression
of the free energy.
To do so, let us first take the exponential term, and notice that we can write the
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following estimate to get the lower-bound for the free energy:

max
σ1σ2

exp H(s, σ1, σ2) = exp H(s, σ1∗, σ2∗) ≤ ∑
|R12|>ε

exp H(s, σ1, σ2)

log exp H(s, σ1∗, σ2∗) ≤ log ∑
|R12|>ε

exp H(s, σ1, σ2)

max
σ1σ2

H(s, σ1, σ2) ≤ log ∑
|R12|>ε

exp H(s, σ1, σ2)

1
n

E max
σ1σ2

H(s, σ1, σ2) ≤ 1
n

E log ∑
|R12|>ε

exp H(s, σ1, σ2)

1
n

E max
σ1σ2

H(s, σ1, σ2) ≤ φ(s)

Moreover:

exp H(s, σ1, σ2) ≤ max
σ1σ2

exp H(s, σ1, σ2)

∑
|R12|>ε

exp H(s, σ1, σ2) ≤ ∑
|R12|>ε:{(σ1,σ2)∈max}

exp H(s, σ1, σ2)

∑
|R12|>ε

exp H(s, σ1, σ2) ≤ 22n max
σ1σ2

exp H(s, σ1, σ2)

log ∑
|R12|>ε

exp H(s, σ1, σ2) ≤ 2n log 2 + max
σ1σ2

H(s, σ1, σ2)

φ(s) ≤ 1
n

E max
σ1σ2

H(s, σ1, σ2) + 2 log 2

Finally we see that the free energy is bounded as:

1
n

E max
σ1σ2

H(s, σ1, σ2) ≤ φ(s) ≤ 1
n

E max
σ1σ2

H(s, σ1, σ2) + 2 log 2∣∣∣∣ 1nE max
|R12|>ε

H(s, σ1, σ2)− φ(s)
∣∣∣∣ ≤ 2 log 2

Then we can evaluate this bound for s = 0 and s = 1:

s = 0 −→H(0, σ1, σ2) = δ
(

H1
λ(σ

1) + H2
λ(σ

2)
)

∣∣∣∣ 1nE max
|R12|>ε

(
H1

λ(σ
1) + H2

λ(σ
2)
)
− 1

δ
φ(0)

∣∣∣∣ ≤ 2 log 2
δ

s = 1 −→H(1, σ1, σ2) = β
(

H1(σ1) + H2(σ2)
)

∣∣∣∣βδ 1
n

E max
|R12|>ε

(
H1(σ1) + H2(σ2)

)
− 1

δ
φ(1)

∣∣∣∣ ≤ 2 log 2
δ
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Then from these two bounds we find that:

1
δ

φ(0) =
1
n

E max
|R12|>ε

(
H1

λ(σ
1) + H2

λ(σ
2)
)
+O

(
1
δ

)
and

1
δ

φ(1) =
β

δ

1
n

E max
|R12|>ε

(
H1(σ1) + H2(σ2)

)
+O

(
1
δ

)
Now, from the result of the previous integration, we know that:

1
δ

φ(0) =
1
δ

φ(1)− 2λ

2k +O(λδ2) (3.8)

So:

1
n

E max
|R12|>ε

(
H1

λ(σ
1) + H2

λ(σ
2)
)
=

β

δ

1
n

E max
|R12|>ε

(
H1(σ1) + H2(σ2)

)
− 2λ

2k +O
(

λδ2 +
1
δ

)
(3.9)

Now we can perform a Taylor expansion on our choice of β to get the following:

β =

√
λ

2k +O
(√

λδ2
)

(3.10)

And by substituting it into the previous expression we get:

1
n

E max
|R12|>ε

(
H1

λ(σ
1) + H2

λ(σ
2)
)
=

√
λ

2k
1
n

E max
|R12|>ε

(
H1(σ1) + H2(σ2)

)
− 2λ

2k +O
(

λδ2 +
1
δ
+
√

λδ2

)
(3.11)

With the choice of δ = λ−
1
3 , the error term is O(λ 1

3 ).

Now using the following:

Theorem. [3, Theorem 2] for any ε, t ∈ (0, 1), there exists η > 0 such that, for large enough
n:

1
n

E max
|R12|>ϵ

(
H1(σ1) + H2(σ2)

)
≤ 2

n
E max

σ
H(σ)− η (3.12)

We can write the following inequality:

1
n

E max
|R12|>ε

(
H1

λ(σ
1) + H2

λ(σ
2)
)
≤ −2λ

2k +
2
√

λ

2k E max
σ

H(σ)− 2
√

λη

2k + Lλ
1
3 (3.13)

Moreover, we can write the latter expression as a function of Hλ by using the
approximation:

1
n

E max
σ

Hλ(σ) = −
λ

2k +

√
λ

2k
1
n

E max
σ∈V

H(σ) +O(λ 1
3 ), as λ→ ∞
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And we get:

1
n

E max
|R12|>ε

(
H1

λ(σ
1) + H2

λ(σ
2)
)
≤ 2

n
E max

σ
Hλ(σ)−

2
√

λη

2k + Lλ
1
3 (3.14)

Now, for λ ≥ Lη−6 for large enough constant L = L(k):

1
n

E max
|R12|>ε

(
H1

λ(σ
1) + H2

λ(σ
2)
)
≤ 2

n
E max

σ
Hλ(σ)−

√
λη

L
(3.15)

Finally, by Azuma’s inequality:

1
n

max
|R12|>ε

(
H1

λ(σ
1) + H2

λ(σ
2)
)
≤ 1

n

(
max

σ
H1

λ(σ
1) + max

σ
H2

λ(σ
2)
)
−
√

λη

L

with probability at least: 1− Le−
nη2

L

On this event, the existence of σ1, σ2 such that:

1
n

Hℓ
λ(σ

ℓ) ≥ 1
n

max
σ

Hℓ
λ(σ

ℓ)−
√

λη

3L
(3.16)

and such that |R12| > ε would lead to contradiction.
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Chapter 4

Other Models

In this chapter we extend the discussion of disorder chaos from diluted random
k-SAT to three closely related CSPs: random k-NAESAT, random hypergraph 2-
coloring problem and random k-XORSAT.
For each model, we will follow the same strategy adopted to show the evidence of
disorder chaos in diluted random k-SAT. So each model will be reformulated as a
spin system, by expressing the instance as a Hamiltonian on {−1;+1}n. The contri-
bution of each clause, or hyperedge, will be expanded to identify the effective order
of interactions. Then, the high-connectivity regime will be discussed, first letting
n → ∞ at fixed connectivity λ, then λ → ∞, in which the diluted Hamiltonian can
be approximated by a fully connected mean-field model.
Finally, we show that, in this regime, the resulting Gaussian Hamiltonian has a con-
variance that depends only on the overlap R(σ1, σ2), which is the key structural
property underlying the analysis of mixed p-spin models an the rigorous theory of
disorder chaos.
As well as in Chapter 3, also in this chapter it is crucial to stress that the fully con-
nected approximation that will be discussed for each model, is heuristic. The con-
vergence of the diluted Hamiltonian to a Gaussian process cannot be justified by a
direct application of the canonical central limit theorem. In the diluted models, each
spin variable appears in a random number of clauses, and the corresponding inter-
action terms are neither identically distributed nor independent, they share indices
and exhibit complex correlations, as a result, the standard CLT assumptions: inde-
pendence and uniform variance scaling, are violated. In this thesis, we rely on the
heuristic observation that in the high-connectivity regime the clause contributions
become weakly dependent, and their cumulative effect is approximately Gaussian.
This motivates the use of a fully connected mixed p-spin model as an effective de-
scription of the diluted systems, allowing us to discuss, at a qualitative level, the
emergence of disorder chaos across these different random CSPs.

4.1 Disorder Chaos in random k-NAESAT

As defined in Section 1.3.1, each clause in the random k-NAESAT model forbids all k
literals from taking the same value, in contrast to the k-SAT where clauses are penal-
ized only when none of the variables are satisfied. We will see that this symmetry
under global spin flip leads to the cancellation of all odd-interaction terms in the
expansion of the Hamiltonian.
In this section we reformulate the model as a spin system and develop its fully con-
nected approximation, which will later allow us to study its covariance structure
and the emergence of disorder chaos.
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4.1.1 The k-NAESAT Hamiltonian

To study the problem using tools from statistical physics we reformulate the problem
in terms of a spin system.
Each boolean variable xi is mapped to a spin variable σi.

xi = 1←→ σi = +1 and xi = 0←→ σi = −1

As briefly described above, each clause in the k-NAESAT problem imposes a con-
straint: not all literals in the clause should have the same truth value. In spin vari-
ables this means that the clause is violated if all σis are equal, i.e., either all +1 or−1.
We define an energy penalty for such violating configurations, the contribution of
each clause can be defined as:

θ(σ1, . . . , σk) := −
k

∏
j=1

1 + Jjσj

2
−

k

∏
j=1

1− Jjσj

2
, (σ1, . . . , σk) ∈ {−1, 1}k.

This expression equals −1 if all literals are simultaneously true or false, and 0 other-
wise, therefore the full Hamiltonian is the sum over all such clause contributions:

Hλ(σ) = ∑
c≤π(λn)

[(
−∏

j≤k

1 + Jj,cσij,c

2

)
−
(

∏
j≤k

1− Jj,cσij,c

2

)]

= − ∑
c≤π(λn)

[(
−∏

j≤k

1 + Jj,cσij,c

2

)
+

(
∏
j≤k

1− Jj,cσij,c

2

)]
.

This defines a spin-glass-type energy landscape for the k-NAESAT model.

4.1.2 The k-NAESAT fully connected approximation

The Hamiltonian of the k-NAESAT model can be approximated, in a very similar
way to the k-SAT Hamiltonian, by fully connected model in the large connectivity
regime.

Proof. Let us consider the contribution of a single clause:

θ(σ1, . . . , σk) = −
k

∏
j=1

1 + Jjσj

2
−

k

∏
j=1

1− Jjσj

2
.

We can try to expand the single factors in one clause as:

k

∏
j=1

(
1 + Jjσj

)
= ∑

S⊆k
∏
j∈S

Jjσj,

k

∏
j=1

(
1− Jjσj

)
= ∑

S⊆k
(−1)|S|∏

j∈S
Jjσj.
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Recalling that |S| is the cardinality of the number of interactions between spins, this
means that in each clause, only spins with an even number of interactions will con-
tribute, and we obtain:

θ = −2 ∑
S⊆k
|S|even

∏
j∈S

Jjσj

So the Hamiltonian takes the form:

Hλ = − 2
2k ∑

c≤π(λn)
∑
S⊆k
|S|even

∏
j∈S

Jj,cσij,c ,

grouping terms by their interaction order p = |S|, the Hamiltonian becomes

Hλ = − 2
2k

k

∑
p=2

∑
S⊆k
|S|=p
|S| even

(
∑

c≤π(λn)
∏
j∈S

Jj,cσij,c

)
. (4.1)

This expression has the same structure as the expansion of the diluted k-SAT model,
except for the fact that in this case only terms that enter the Hamiltonian with an
even number of interactions, contribute to the energy. In the large connectivity
limit (λ → ∞), each coefficient in front of the product σi1 . . . σip is the sum of many
weakly dependent random contributions. After centering and normalizing so that
Var(H) ∼ n , these coefficients become approximately Gaussian by the central limit
theorem.
It is important to remark again that, in the high connectivity regime, the clause coef-
ficients can be viewed as approximately Gaussian by a central limit-type argument.
The rigorous justification of such a limit typically relies on the Lindeberg interpola-
tion method [8] which we do not reproduce here. Hence, the k-NAESAT Hamilto-
nian can be approximated by the following fully connected Gaussian model:

H(σ) =
k

∑
p=2

p even

√(
k
p

)
1

np−1 ∑
1≤i1,··· ,ip≤n

gi1,··· ,ip σi1 · · · σip ,

where coefficients gi1,··· ,ip are independent standard random variables.
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4.1.3 Covariance computation

Let us verify whether in this case as well the covariance depends only on the overlap

EH(σ1)H(σ2) =
k

∑
p=2

p even

(
k
p

)
1

np−1 ∑
i1,··· ,ip

σ1
i1 · · · σ

1
ip

σ2
i1 · · · σ

2
ip

=
k

∑
p=2

p even

(
k
p

)
1

np−1 npRp
1,2

or

=
k/2

∑
p=1

(
k

2p

)
1

n2p−1 n2pR2p
1,2

We can see that also in this case the covariance depends only on the overlap. This
allows us to extend the previous proof on the existence of disorder chaos also to the
k-NAESAT model.

In conclusion, the Hamiltonian of the k-NAESAT model in the fully connected
limit retains the essential Gaussian properties, with a covariance that depends only
on the overlap between configurations.
In the fully connected limit, the k-NAESAT Hamiltonian belongs to the class of even
p-spin models, characterized by a covariance that is an even polynomial of the over-
lap. Consequently, small independent perturbations of the disorder are expected to
cause rapid decorrelation between equilibrium configurations: an explicit manifes-
tation of disorder chaos analogous to that observed in even p-spin systems. This
establishes that, in the high connectivity regime, the k-NAESAT model exhibits the
same qualitative mechanism of chaos as its fully connected counterpart.

4.2 Disorder Chaos in hypergraph 2-coloring

Let us now turn to the Hypergraph 2-coloring model which, as introduced in Sec-
tion 1.3.2, is defined on a k-uniform hypergraph where each hyperedge connects
k vertices chosen uniformly at random. The goal is to assign one of two colors
(or equivalently, spin values σi ∈ −1,+1) to each vertex so that no hyperedge is
monochromatic, meaning that not all vertices within it share the same color.
Importantly, this model is closely related to the random k-NAESAT model: both for-
bid configurations in which all variables in a clause, or hyperedge, take the same
value, or color. However, in contrast to k-NAESAT, the hypergraph 2-coloring prob-
lem contains no random signs Jj, and hence its disorder arises only from the random
choice of hyperedges. In what follows, we reformulate the model as a spin glass
Hamiltonian and derive its fully connected approximation, which will again exhibit
a covariance depending only on the overlap.
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4.3 The Hypergraph 2-col Hamiltonian

Each hyperedge ej ⊆ 1, . . . , n contributes an energy penalty if all spins within it are
equal. The contribution of a single hyperedge can therefore be written as

θej(σ) = −

∏
i∈ej

1 + σi

2
+ ∏

i∈ej

1− σi

2


where ej ⊂ [n] is a hyperedge of cardinality k.
This function evaluates to 1 if all spins in the clause are equal (i.e., the hyperedge is
monochromatic), and to 0 otherwise. Given a k-uniform random hypergraph with a
Poisson-distributed number of edges π(λn), the total Hamiltonian is then:

Hλ(σ) = −
π(λn)

∑
j=1

∏
i∈ej

1 + σi

2
+ ∏

i∈ej

1− σi

2

 ,

where each hyperedge ej is chosen uniformly at random from the set of all k-tuples
of vertices. This Hamiltonian counts the total number of violated constraints and
therefore defines the energy landscape of the 2-coloring problem.

4.3.1 The Hypergraph 2-coloring fully connected approximation

Recalling that a single clause is:

θej(σ) = −

∏
i∈ej

1 + σi

2
+ ∏

i∈ej

1− σi

2


And also remarking that each clause is a hyper-edge ej = {1, · · · , ik} ⊆ n chosen
uniformly at random. So we have ej hyper-edges, formed by choosing k vertices
from n.
We can expand each term of a clause as:

∏
i∈ej

1 + σi

2
=

1
2k ∑

S⊆ej

∏
i∈S

σi,

∏
i∈ej

1− σi

2
=

1
2k ∑

S⊆ej

(−1)|S|∏
i∈S

σi,

adding these expressions cancels all terms of odd order, so only even-order interac-
tions contribute. The Hamiltonian can thus be written as:

Hλ(σ) =
1

2k−1

π(λn)

∑
j=1

∑
S⊆ej
|S| even

∏
i∈S

σi.

Now, by fixing a subset S ⊆ n, |S| = p ≤ k, p even, and grouping terms with the
same interaction order, the Hamiltonian can be redefined as follows:

Hλ(σ) = ∑
S⊆n

|S| even≤k

cS ∏
i∈S

σi,
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where

cS :=
π(λn)

∑
j

1
2k−1 I(S ⊆ ej). (4.2)

Now we have π(λn) clauses, and each ej clause is independent. We can take the λ→
∞ limit and use the CLT over cS coefficients to get the fully connected approximation
of the Hamiltonian as:

H(σ) =
k

∑
p=2

p even

∑
i1,··· ,ip

Ap gi1,··· ,ip σi1 · · · σip ,

where g ∼ N (0, 1). Although the original Hamiltonian contains only positive con-
tributions, the randomness in the hyperedge sampling induces fluctuations in the
coefficients cS. After centering around their mean, these coefficients behave approx-
imately as independent Gaussian variables in the large-connectivity limit, by the
Poisson–normal approximation. Hence, the fully connected model can still be rep-
resented as a Gaussian process with the same covariance structure.

To determine the correct normalization, we compute the variance of the Hamil-
tonian and impose that it remains extensive, that is E[H2] ∼ n. This requirement
fixes the prefactor Ap in front of each p-spin term ensuring that the total variance of
H(σ) grows proportionally to the system size:

E[H2] =

(
k
p

)
1

np
imposing−−−−→

(
k
p

)
1

np = A2
pn

We get the prefactor leading, also in this case, to the form of the fully connected
Hamiltonian:

H(σ) =
k

∑
p=2

p even

√(
k
p

)
1

np−1 ∑
1≤i1,··· ,ip≤n

gi1,··· ,ip σi1 · · · σip

Consequently, we obtain the fully connected approximation in the standard form
of a mixed even p-spin model, which captures the same large-scale statistical prop-
erties as the original diluted system.
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4.3.2 Covariance computation

Having established the fully connected form of the Hamiltonian, we now verify that
its covariance depends only on the overlap between configurations. For two config-
urations σ1 and σ2, we compute the expected value of the product of the Hamiltoni-
ans, which reads:

EH(σ1)H(σ2) =
k

∑
p=2

p even

(
k
p

)
1

np−1 ∑
i1,··· ,ip

σ1
i1 · · · σ

1
ip

σ2
i1 · · · σ

2
ip

=
k

∑
p=2

p even

(
k
p

)
1

np−1 npRp
1,2

or

=
k/2

∑
p=1

(
k

2p

)
1

n2p−1 n2pR2p
1,2.

In conclusion, the hypergraph 2-coloring model shares the same effective mean-
field structure as the k-NAESAT model, leading to a covariance that depends solely
on the overlap between configurations. This structural analogy implies that, in the
large-connectivity regime, the model is also expected to exhibit disorder chaos: small
perturbations in the underlying disorder or in the graph structure induce a macro-
scopic reorganization of equilibrium configurations.

4.4 Disorder Chaos in random k-XORSAT

We now turn to another closely related system: the random k-XORSAT model,defined
in Section 1.3.3, which despite its algebraic solvability, also reveals a rich spin glass–like
structure and provides further insight into the universality of disorder chaos across
different random constraint satisfaction problems. In contrast with other CSP mod-
els like the k-SAT or the k-NAESAT, the k-XORSAT has a linear algebraic structure:
each clause represents an equation over the field F2, and the whole instance can be
solved in polynomial time through gaussian elimination.
Despite this polynomial-time solvability, random k-XORSAT formulas exhibit rich
structural properties, such as phase transitions and clustering phenomena, making
this model very interesting for studying complex behaviors in disordered systems.
In particular, also the k-XORSAT can be mapped onto a spin system, allowing us to
use methods from statistical physics to better understand it.

4.4.1 The k-XORSAT Hamiltonian

To study the k-XORSAT problem using tools from statistical physics, we reformulate
it in terms of spin variables, each Boolean variable xi ∈ {0, 1} is mapped to a spin
variable σi ∈ {−1,+1} via:

xi = 1←→ σi = +1 and xi = 0←→ σi = −1
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Within this mapping, the XOR constraint

xi1 ⊕ xi2 ⊕ · · · ⊕ xiK = b

is satisfied if and only if the product of the corresponding spin equals (−1)b, i.e.:

K

∏
j=1

σij = (−1)b.

This allows us to define an energy penalty function for a single violated clause:

θ = −
1− (−1)b ∏K

k=1 σik

2

This convention ensures that satisfied clauses contribute zero energy, while violated
ones contribute positively. Therefore, given an instance of m clauses indexed by
α = 1, . . . , m, the total Hamiltonian is:

Hλ(σ) = −
m

∑
α=1

1− (−1)bα ∏k
j=1 σα

ij

2
.

This defines a spin glass system with k-body interactions, where the disorder is en-
coded in the right-hand side values bα and in the random choice of variables in each
clause, ormally similar to other diluted models introduced before.

4.4.2 The k-XORSAT fully connected approximation

We now construct a fully connected approximation to the k-XORSAT model Hamil-
tonian, replacing the sparse interaction structure with a dense mean-field one. Ne-
glecting additive constant, the Hamiltonian can be written as:

Hλ ≈ −
1
2

M

∑
α=1

Jα

K

∏
k=1

σα
ik

, (4.3)

where (−1)bα := Jα are i.i.d. random signs taking values +1,−1 with equal prob-
ability. This shows that the random k-XORSAT model can be viewed as a random
k-spin spin glass system with disorder given by the Jα’s coefficients. In the large-
connectivity limit, we approximate the sum over the m random clauses by a sum
over all possible k-tuples of spins, each weighted by an independent Gaussian coef-
ficient. This leads to the fully connected Hamiltonian

H(σ) =
1

n(k−1)/2 ∑
1≤i1,··· ,ip≤n

gi1,··· ,ip σi1 · · · σip

Which is the Hamiltonian for a k-spin spin model. The prefactor comes from com-
puting the covariance of the Hamiltonian, since we want an energy which grows
with n, in analogy with the pure p-spin model, where the coefficients gi1,...,ik are in-
dependent standard Gaussian random variables. The normalization is chosen so
that Var(H) scales linearly with n, ensuring that the energy is extensive, as in the
pure p-spin model. Again, it is important to emphasize that this construction is
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heuristic: the clause contributions in the diluted model are not independent, but
in the high-connectivity regime their cumulative fluctuations behave approximately
Gaussian. Such mean-field approximations and Gaussian interpolation methods are
the subject of dedicated research, e.g. Optimization on sparse random hypergraphs and
spin glasses [10], and are not trivial.

4.4.3 Covariance computation

The covariance can be computed explicitly. For two configurations σ1 and σ2, the
expectation of their product is:

E[H(σ1)H(σ2)] =
1

nk−1 ∑
i1,...,ik

(σ1
i1 σ2

i1) · · · (σ
1
iK

σ2
ik
),

using the overlap R(σ1, σ2) = 1
N ∑N

i=1 σ1
i σ2

i , we get:

E[H(σ1)H(σ2)] =
1

nk−1

(
n

∑
i=1

σ1
i σ2

i

)k

=
1

nk−1 nkRk = nRk

Thus, the covariance depends only on the overlap, as in the pure p-spin model.
This confirms that, in the fully connected limit, random k-XORSAT belongs to the
class of k-spin models whose covariance structure is determined solely by the over-
lap between configurations.
Notice that the prefactor appearing in the computation for the covariance follows
again from the direct calculation to get the energy to be extensive:

E[H(σ1)H(σ2)] =
1

n2α ∑
1≤i1,··· ,ip≤n

E[gi1,··· ,ip ]
2

k

∏
ℓ=1

σ1
iK

σ2
ik
=

nRk

n2α

So

nk

n2α
∼ n =⇒ α =

k− 1
2

.

The fully connected approximation provides an effective Gaussian representation of
the k-XORSAT Hamiltonian, characterized by a covariance proportional to Rk

12. This
places the model within the same universality class as the p-spin spin glass, and
thus the analytical results and heuristic arguments on disorder chaos developed for
mean-field models apply here as well. Despite the algebraic solvability of XORSAT,
its spin glass formulation captures the same qualitative phenomenon: small pertur-
bations of the disorder lead to a rapid decorrelation between the equilibrium con-
figurations, confirming the robustness of this phenomenon across different random
CSPs.
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Chapter 5

Simulations

The rigorous results obtained in the previous chapter establish the occurrence of dis-
order chaos in diluted random constraint satisfaction problems with large connec-
tivity via an interpolation argument. However, the proof is by necessity asymptotic
and does not provide quantitative information about the finite-size systems.
In order to complement the theoretical analysis we now turn to simulations. For each
model, we investigate the behavior of the overlap as a function of the correlation
parameter t: our goal is to observe how the average overlap R(t) changes as the cor-
relation decreases. In particular we aim to determine whether R(t) exhibits a rapid
decay when the correlation slightly decreases from t = 1. For each case, we gener-
ate pairs of correlated instances with correlation parameter t, compute ground states
and measure their mutual overlap. This numerical exploration provides finite-size
a perspective on the phenomenon of disorder chaos and complements theoretical
results discussed in Chapter 3 and Chapter 4.

5.1 Random k-SAT

We performed numerical experiments on the random k-SAT problem with n = 100
variables, clause arity k = 3 and M = 400 number of clauses.
For each correlation parameter t ∈ [0, 1], two formulas were generated with corre-
lated disorder: given a set of random signs J1, the corresponding correlated set J2

was obtained by keeping each literal identical with probability t and resampling it
otherwise.
This interpolation produces two instances whose disorder is coupled with probabil-
ity t, so that:

E[J1 J2] = t.

In this way the parameter t directly controls the correlation of the disorder between
the two formulas.
Each formula was optimized using a greedy local search algorithm with multiple
restarts: starting from a random assignment, variables are flipped at random and
the move is accepted only if it does not decrease the number of satisfied clauses.The
best solution across the restart is retained.
To quantify the similarity between the solutions of two correlated formulas, we mea-
sure the overlap between the corresponding assignments σ1 and σ2:

R(σ1, σ2) =
1
n

∣∣∣∣∣ n

∑
i=1

σ1
i σ2

i

∣∣∣∣∣ ,
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where we take the absolute value because we are interested in the magnitude of
the correlation between the two configurations, not in its orientation, this ensures
that configurations which are globally or partially inverted are still recognized as
strongly correlated. For each value of the correlation parameter t, we compute the
overlap R(σ1, σ2) between the two solutions and then average it several indepen-
dent realizations of the disorder.
In this way we obtain the function t 7→ E[R(t)], which describes how the similarity
between ground states decays as the correlation of the disorders is reduced.
The result is showed in Fig.5.1. As expected, for t = 1 the two formulas coincide,

FIGURE 5.1: Average overlap R between solutions of correlated 3-
SAT instances as a function of the correlation parameter t. The sharp
decrease of R(t) away from t = 1 illustrates the occurrence of disor-

der chaos in random k-SAT.

hence the same solution is recovered and the overlap is equal to 1. For t = 0, the two
instances are completely independent and the overlap approaches to zero.
Most importantly, the decay of R(t) as t < 1 is very sharp: even a small perturbation
of the disorder produces ground state configurations that are essentially uncorre-
lated.
This can be seen in Fig.5.2, where it is shown that for t = 0.95 the overlap R(t) the
overlap rapidly decreases from 1 to 0.284.
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FIGURE 5.2: Numerical values of the overlap R(t) for values of the
correlation parameter t. Even at t = 0.95 the overlap has already
dropped significantly. So the data confirms a sharp decay of the over-

lap away from t = 1.

5.1.1 Pseudo-code for the random k-SAT simulation
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Algorithm 1 Simulation of Disorder Chaos in Random k-SAT

1: Input: n, k, M, ts, ntrials, max_iter, nrestarts
2: Output: List of average overlaps for each value of t
3: function GENERATECLAUSE(n, k)
4: return k variables randomly selected from {1, . . . , n}
5: end function
6: function CORRELATEDSIGNS(t, k)
7: J1 ← list of k random signs in {−1,+1}
8: for i = 1 to k do
9: J2[i]← J1[i] with probability t, otherwise a new random sign

10: end for
11: return (J1, J2)
12: end function
13: function CLAUSESATISFIED(clause, signs, σ)
14: return

∨
i(signi · σclausei = 1)

15: end function
16: function EVALUATEFORMULA(clauses, signs, σ)
17: return number of clauses satisfied by σ
18: end function
19: function GREEDYSEARCH(clauses, signs)
20: for r = 1 to nrestarts do
21: σ← random assignment
22: for k = 1 to max_iter do
23: randomly choose i in 1, . . . , n
24: flip σ[i]
25: if formula score improves then
26: accept the change
27: else
28: revert the flip
29: end if
30: end for
31: store the best σ found
32: end for
33: return best σ
34: end function
35: Initialize results← []
36: for each t ∈ ts do
37: overlaps← []
38: for trial = 1 to ntrials do
39: generate M random clauses
40: generate (J1, J2) for each clause with correlation t
41: if t == 1 then
42: σ← GREEDYSEARCH(clauses, J1)
43: σ1 ← σ2 ← σ
44: else
45: σ1 ← GREEDYSEARCH(clauses, J1)
46: σ2 ← GREEDYSEARCH(clauses, J2)
47: end if
48: R← 1

n |∑i σ1[i] · σ2[i]|
49: append R to overlaps
50: end for
51: append mean(overlaps) to results
52: end for
53: return results
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5.2 Random k-NAESAT

We now turn to the random k-NAESAT problem. As seen in Chapter 1, this model is
defined in the same setting as the k-SAT, but a clause is satisfied if and only if not all
literals take the same value. We performed the same simulation procedure as before,
generating pairs of correlated formulas with parameter t and optimizing them via
greedy local search.
The result of the simulation shows the presence of disorder chaos also in this case.
We can see from the plot in Fig.5.3 that when the value of the correlation parameter
t becomes slightly smaller than 1, a sharp transition of the overlap occurs.

FIGURE 5.3: Average overlap R between solutions of correlated 3-
NAESAT instances as a function of the correlation parameter t. The
sharp decrease of R(t) away from t = 1 illustrates also in this case the
occurence of disorder chaos in the random k-NAESAT. Notice also
that the transition to chaos in this case is sharper than the one occur-

ing in random k-SAT.

What is interesting to notice here, is the difference in the sharpness of the transi-
tion to disorder chaos between the k-SAT model and the k-NAESAT.
This could be due to symmetry reasons. In the k-NAESAT a clause is satisfied if and
only if not all literals take the same value. This introduces a global symmetry in the
model: if σ is a solution, then −σ is a solution as well.
Heuristically, this would mean that optimal solutions "compete in pairs". A small
change in the disorder can flip the preference between a configuration σ and its
negation, so even tiny perturbations can cause the Gibbs measure to jump from one
"cluster" to its opposite and the overlap collapses.
But in the k-SAT, this global symmetry does not exist. Therefore small perturbations
tend to move the solutions "gradually".
This can be seen in the table shown in Fig.5.4, where we observe that for values of
t < 1, like t = 0.95, the overlap rapidly decreases.

5.3 Random hypergraph 2-coloring

We next consider the random hypergraph 2-coloring problem. As seen in Chapter
1, in this model we generate a random k-uniform hypergraph with n = 100 vertices
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FIGURE 5.4: Numerical values of the overlap R(t) for values of the
correlation parameter t. We can clearly see that disorder chaos man-
ifests for small deviation from t = 1. Moreover, the transition is

sharper than the one occuring in k-SAT.

and M = 400 hyperedges.
Each hyperedge is a subset of k vertices, and the constraint requires that its vertices
are not all assigned the same color.
To investigate the effect of disorder chaos, we generate two correlated hypergraphs
with correlation parameter t ∈ [0, 1].
Let us recall the hypergraph 2-coloring problem Hamiltonian. The function θ is
given as:

θej(σ) =

∏
i∈ej

1 + σi

2
+ ∏

i∈ej

1− σi

2

 ,

where ej ⊂ [n] is a hyperedge of cardinality k.
Then, given a k-random uniform hypergraph with a Poisson-distributed number of
clauses π(λn), the Hamiltonain takes the form:

Hλ(σ) =
π(λN)

∑
j=1

∏
i∈ej

1 + σi

2
+ ∏

i∈ej

1− σi

2

 ,
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where each hyperedge ej is chosen uniformly at random from the set of all k-tuples of
vertices. Hence, the Hamiltonian counts the number of monochromatic hyperedges.
Notice that, in this case there are no literal signs (J′s), the only source of randomness
is the set of hyperedges itself.
To introduce a correlation t ∈ [0, 1] between two instances we proceed as follows:
for each position m = 1, . . . , M we keep the m-hyperedge identical in the two copies
with probability t, and we resample it otherwise.
In other words, if e(1)m and e(2)m denote the m-th hyperedge in the two instances, then:

P
(

e(1)m = e(2)m

)
= t.

In this way, t directly controls the structural correlation of the disorder between the
two hypergraphs. Then, as before, to quantify the similarity between two colorings
σ1 and σ2 we can study the overlap R(σ1, σ2) = 1

n

∣∣∑n
i=1 σ1σ2

∣∣ between them. Then,
following the same precedure as previously, the overlap is averaged for each value
of t over several independent realizations of the disorder, leading to the function
t 7→ E[R(t)].
The results shown in Fig.5.5, confirm the presence of disorder chaos in random hy-
pergraph 2-coloring. For t = 1 , the two instances coincide and the overlap is equal
to 1. As t < 1, the overlap decreases, indicating that even a small perturbation of the
disorder leads to macroscopic rearrangements of the ground state coloring.

FIGURE 5.5: Average overlap R between optimized colorings of two
correlated k-uniform hypergraphs (n = 100, k = 3, M = 400) as
a function of the correlation t. The curve decays as soon as t < 1,

evidencing disorder chaos.

Notice that at the level of local constraints, the hypergraph 2-coloring problem is
very similar to the random k-NAESAT.
A k-NAESAT clause is violated if and only if all its k literals are equal and a k uniform
hyperedge is violated if and only if all its k vertices have the same coloring.
In other words, a NAESAT clause is violated when:

Ji1 σi1 = Ji2 σi2 = . . . = Jik σik ,
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while a 2-coloring hyperedge is violated when:

σi1 = σi2 = . . . = σik .

Now, to highlight this structural similarity of the two models, it could be possible to
perform a change of variable that absorbs the J signs and turns each NAESAT clause
into a "not-all-equal-hyperedges" constraint.
Moreover, both models share the same global Z2 symmetry: if σ is a solution, then
−σ is also a solution.
In this sense the cost functions θ and the Hamiltonians are nearly identical.
Despite the near identity of the local constraints, the mechanism of perturbation is
actually harsher in k-NAESAT.
In NAESAT, random signs J produce spin-glass-like mean-zero interactions. A small
decrease of t flips many clause preference and this triggers abrupt jumps of the Gibbs
measure between opposite clusters.
In 2-coloring, by contrast, interactions are uniform, i.e.: there are no random signs J
and the disorder is purely which hyperedges exist.
This could make the optimal coloring rearrange more gradually, so the drop in
E[R(t)] near t = 1 is less steep, as shown in Fig.5.6.

FIGURE 5.6: Numerical values of E[R(t)] for selected t. The data
confirm a smoother decay near t = 1 than in k-NAESAT.
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5.3.1 Pseudo-code for the hypergraph 2-col simulation

In this section the pseudo-code for the hypergraph 2-coloring is shown. Notice that
the algorithm is very similar to the k-SAT simulation one, hence, only the specific
operations for the hypergraph 2-col are shown. Greedy local search with restarts,
the overlap computation, the averaging over trials, and the t=1 shortcut σ(1)=σ(2)

are identical to the k-SAT case and are omitted here.

Algorithm 2 Only the components specific to hypergraph 2-coloring
1: function CORRELATEDHYPEREDGES(t, n, M, k)
2: C1← [ ], C2← [ ]
3: for m = 1 to M do
4: e← k-subset of {1, . . . , n} sampled u.a.r.
5: if Bernoulli(t) = 1 then ▷ keep the same edge w.p. t
6: append e to C1 and to C2
7: else
8: append e to C1 and a fresh k-subset to C2
9: end if

10: end for
11: return (C1, C2) E[1{e(1)m = e(2)m }] = t
12: end function
13: function CLAUSESATISFIED-2COL(e, σ) ▷ NAE: not all equal
14: return ¬

(
all σi = +1 or all σi = −1

)
for i ∈ e

15: end function
16: function EVALUATE(C, σ)
17: return # of e ∈ C with CLAUSESATISFIED-2COL(e, σ) true
18: end function

5.4 Random k-XORSAT

Finally, we will go through the random k-XORSAT simulation.
We consider instances with n = 100 variables, clause arity k = 3 and M = 250
clauses.
Notice that here we chose M = 250 with n = 100 so that, at this scale, we obtain
a non-negligible fraction of both SAT instances (solvable exactly via Gaussian elim-
ination over F2) and UNSAT instances, where we measure the minimum number
of violated equations. With M = 400 the inconsistency probability at these sizes
increases substantially, and the analysis would focus almost exclusively on the UN-
SAT regime. Using M = 250 therefore allows us to observe both regimes within the
same numerical setting.
Let us briefly recall that each clause impose a constraint as:

xi1 ⊕ xi2 ⊕ · · · ⊕ xik = b, b ∈ {0; 1}.

In spin variables σi ∈ {−1;+1} this is satisfied of and only if ∏k
j=1 σij = (−1)b.

As in previous models, we measure energy as the number of violated equations.
To probe disorder chaos, we generate for each t ∈ [0, 1], two copies on the same
clause hypergraph, but with right hand side vectors b(1) and b(2) coupled indepen-
dently clause by clause: with probability t, b(2)α = b(1)α ; otherwise b(2)α is resampled in
{0, 1}. Equivalently for the signs (−1)b we have E[(−1)b(1)(−1)b(2) ] = 2t− 1. Thus
t = 1 yields to identical instances and t = 0 yields independent right hand sides.
Then, if an instance is SAT, we compute an exact solution by Gaussian elimination
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over F2. This gives us a not approximated solution.
While, if the system is in the UNSAT regime, we need to find the assignment with the
minimum number of violated equations. This can be done by simulated annealing,
which is more convenient than a greedy algorithm: in this model the optimization
landscape in the UNSAT regime is extremely rugged meaning many nearly optimal
configurations are separated by high energy or entropic barriers. Standard greedy
local search algorithms, which only accept improving moves, tend to get trapped
very quickly in suboptimal minima. For this reason, we adopted simulated anneal-
ing to approximate the ground states. This algorithm allows for temporary uphill
moves controlled by a decreasing temperature schedule, making it more capable of
escaping shallow minima and exploring different valleys of the energy landscape.
The relevance of such barriers has been analyzed in detail by Bellitti, Ricci-Tersenghi,
and Scardicchio in Entropic barriers as a reason for hardness in both classical and quantum
algorithms [11], who studied the dynamics of classical and quantum algorithms on
the 3-XORSAT problem and identified entropic barriers as a main source of algorith-
mic hardness. Their results show that even simulated annealing tends to converge to
positive-energy states due to the complex structure of the configuration space, con-
firming that XORSAT exhibits glassy behavior and slow relaxation. In our context,
we use simulated annealing not as an exact solver, but as a more robust heuristic for
exploring this rugged landscape compared to purely local greedy dynamics.
Then, we can measure the similarity of the solutions by computing the overlap be-
tween them as before: R(σ1, σ2) = 1

n

∣∣∑n
i=1 σ1σ2

∣∣. Then, following the same prece-
dure as previously, the overlap is averaged for each value of t over several indepen-
dent realizations of the disorder, leading to the function t 7→ E[R(t)].
As expected, when t=1 the two instances coincide and the overlap is equal to one.
On the other hand, when t=0 the right-hand sides are completely independent and
the overlap approaches zero. t 7→ E[R(t)] shows a very sharp decay as soon as
t < 1. Even a small perturbation of the right-hand sides produces solutions that are
essentially uncorrelated.

FIGURE 5.7: Average overlap R between solutions of correlated 3-
XORSAT instances as a function of the correlation parameter t. The
curve drops sharply as soon as t < 1, showing that even tiny pertur-
bations of the right-hand side are sufficient to decorrelate the ground
states. This provides numerical evidence of disorder chaos in random

k-XORSAT.
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FIGURE 5.8: Numerical values of the average overlap R(t) for se-
lected values of the correlation parameter t. Already for t = 0.95 the
overlap has decreased significantly, confirming the sharp sensitivity

of 3-XORSAT solutions to disorder perturbations.
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5.4.1 Pseudo-code for the simulated annealing (XORSAT)

Algorithm 3 Simulated Annealing for minimizing violated equations in k-XORSAT

1: function SA-MINIMIZE(clauses, rhs, var2cls, max_sweeps, restarts, T0, Tmin, cooling)
2: bestσ← ∅, bestE← +∞
3: for r = 1 to restarts do
4: σ← random assignment in {0, 1}n

5: status← CLAUSESTATUSES(clauses, rhs, σ)
6: E← # of violated clauses in status
7: T ← T0
8: steps← max_sweeps× n
9: for step = 1 to steps do

10: choose variable i ∈ {1, . . . , n} uniformly
11: ∆E← DELTAENERGYFORFLIP(i, var2cls, status)
12: if ∆E ≤ 0 or rand() < e−∆E/T then
13: flip σ[i]
14: E← E + ∆E
15: UPDATESTATUSESAFTERFLIP(i, var2cls, status)
16: if E < bestE then
17: bestE← E, bestσ← σ
18: if bestE = 0 then return bestσ
19: end if
20: end if
21: end if
22: T ← max(T · cooling, Tmin)
23: end for
24: end for
25: return bestσ
26: end function
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Chapter 6

Conclusions and Open Problems

This work suggests several directions for future research: one of them could be
the study of Temperature Chaos for the studied models. Temperature Chaos is
the statement that at fixed disorder two Gibbs measures at two different tempera-
tures β1 ̸= β2 yield typical configurations whose overlap, R1,2 = 1

N ∑N
i=1 σ1

i σ2
i where

σ1 ∼ GN(β1) and σ2 ∼ GN(β2), concentrates on a deterministic value as N −→ ∞,
where this value is typically zero.
In words: even a small change of temperature reshuffles the Gibbs weights so that
configurations sampled at β1 and β2 become asymptotically decorrelated. The phe-
nomenon of temperature chaos has been investigated in the physics literature for
mean-field spin glasses, notably by Parisi and collaborators, but it remains largely
open from a mathematical perspective. In particular, the paper Chaos in Temperature
in Diluted Mean-Field Spin Glasses [12] by Parisi and Rizzo suggests that temperature
chaos should be stronger in diluted systems than in fully connected ones. From a
theoretical standpoint, proving temperature chaos even for the SK model remains
an open and challenging problem, as current techniques based on interpolation and
superconcentration, are not yet sufficient to capture this form of instability.

6.1 k-XORSAT: Temperature Chaos

One of the models which could be iteresting to be studied from the point of view of
Temperature Chaos, is the random k-XORSAT model. In the context of random k-
XORSAT, introducing a positive temperature T = 1

β corresponds to relaxing the hard
constraints of the system: we don’t look for exact solutions for the XOR equation sys-
tem, but we want to study the probability of having partially satisfying assignments
in a thermodynamic context, modeled by an energy function and a Boltzmann dis-
tribution P ∝ exp(−βH(x)), where H(x) is the Hamiltonian of the model. At zero
temperature (β → ∞), the measure concentrates on satisfying assignments, recov-
ering the combinatorial optimization problem. At finite temperature, one expects
configurations that minimize the Hamiltonian only approximately to contribute sig-
nificantly. Understanding whether and how these Gibbs measures at nearby temper-
atures decorrelate, i.e., whether temperature chaos occurs in diluted systems such as
random k-XORSAT, remains an open question. Based on heuristic arguments and
numerical evidence (see again Parisi and Rizzo, [12]), one expects this effect to be
even more pronounced than in fully connected models, due to the stronger influ-
ence of local fluctuations.
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6.2 Conclusions

In this thesis we have investigated the phenomenon of disorder chaos, putting par-
ticular emphasis on diluted spin glass models and constraint satisfaction problems.
Starting from the rigorous results established by Chen and Panchenko for the di-
luted random k-SAT model, we have provided a detalied reconstruction of the main
ideas behind their proof and discussed how the phenomenon extends beyond fully
connected mean-field systems.
We began by introducing the Sherrington-Kirkpatrick model and its generalization
to mixed p-spin Hamiltonian, which serve as the fully connected limit of diluted
models.
Within this framework, we reviewed the notion of overlap and showed that in the
Sherrington-Kirkpatrick model, small perturbations in the disorder lead to a van-
ishing correlation between equilibrium configurations, an effect known as disorder
chaos.
We then reinterpreted Random Constraint Satisfaction Problems: Random k-SAT,
Random k-NAESAT, Hypergraph 2-coloring and Random k-XORSAT, as diluted spin
systems, where variables interact through randomly selected constraints.
By studying perturbations in these models, either by resampling clauses (flipping
fractions of spins) or by resampling signs (flipping independent spins), we demon-
strated the close analogy between the two frameworks: even minor modifications
in the disorder chaos cause optimal or near-optimal solutions to become almost or-
thogonal, indicating the same type of chaotic behavior observed in spin glasses.
Using an interpolation method between diluted and fully connected models, we fol-
lowed the Guerra-Toninelli approach to analyze the derivative of the interpolated
free-energy.
The incompatibility of the Gaussian and Poissonian distributions under the assump-
tion of non-vanishing overlap leads to a contradiction, thereby confirming the emer-
gence of disorder chaos in the diluted setting.
The rigorous argument was further supported by numerical simulations, which showed
a sharp decay of the overlap as the correlation parameter t decreases from 1, across
all the studied models.
Beyond the analytical results, this work suggests a broader message: the tools of sta-
tistical physics originally developed to study glassy systems, offer a unifying per-
spective on the complexity and instability of solution space in combinatorial opti-
mization.
Understanding how solutions reorganize under disorder perturbations gives insight
into the geometry of the energy landscape and may inform the design of more ro-
bust algorithms for random optimization problems.
Finally, several directions remain open. Extending these results to finite tempera-
ture, i.e. the study of temperature chaos in diluted mean-field models, hopefully is
a next step, as well as disorder chaos in random k-SAT model for smaller connec-
tivity values λ, which would require a proof that does not interpolate to the fully
connected SK model.
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