POLITECNICO DI TORINO

Master’s Degree in ICT for Smart Societies

Master’s Degree Thesis

Reinforcement Learning for Dynamic
Scheduling

Supervisors Candidate
Prof. Edoardo FADDA

Prof. Leonardo Kanashiro FELIZARDO Lucca GAMBALLI

September 2025

Summary

This thesis investigates Reinforcement Learning (RL) for the Dynamic Job
Shop Scheduling Problem (DJSSP), where agents make sequencing decisions under
random job arrivals and tardiness is realized only upon job completion. This work
argues that asynchronous per-machine decisions mitigate the credit-assignment
challenge and assist training stability, motivating designs that explicitly align
rewards with the causality of shop-floor events. The scheduler adopts a Centralized-
Training and Decentralized-Execution (CTDE) scheme with parameter sharing and
an event-driven policy that acts only at irregular decision epochs. This preserves
local detail while remaining size-agnostic as queues fluctuate. State is constructed
leveraging a “Minimal Repetition” encoder that packs the top job candidates of
each machine into fixed slots with job-specific features, enabling direct job selection
without fixing problem size. The delayed reward is handled via a chronological
joint-action pipeline: Transitions are buffered without reward and completed only
when a job finishes, allocating a joint signal to the responsible agents in proportion
to the queueing they induced. Finally, this thesis proposes a hierarchical learning
extension to the multi agent scheduler. This introduces a High-Level Agent that
selects operating modes for Low-Level (per-machine) agents, enabling the system to
adapt to the shop-flor current state. Simulation results indicate that the hierarchical
RL framework proposed in this thesis is able to reduce the general shop-flor tardiness
when compared to standard or learning based sequencing rules.

11

Acknowledgements

I am deeply grateful to both my supervisors, Edoardo Fadda and Leonardo
Kanashiro Felizardo, for the guidance, high standards, and steady encouragement
that shaped this work from the first sketches of the problem to its final form. Your
ability to ask the right questions, pushing me to connect methodological choices
with practical impact, and to insist on clear thinking has been invaluable.

Finally, I owe the biggest thanks to my family and friends. To my parents, José
and Carolina, and brother Rafael, for unconditional support, patience through
deadlines, and for reminding me to keep perspective. Also, to friends in Brazil and
Italy who celebrated small wins along the way. This work is as much yours as it is
mine.

IIT

Table of Contents

List of Tables VII
List of Figures VIII
Acronyms X
1 Introduction 1
1.1 Static vs. Dynamic Scheduling 2
1.2 Relevance & Motivation 3
2 Literature Review 5)
2.1 Classical priority dispatching rules. 6
2.2 Learning-based dispatching rules 7
2.3 RL for job shop scheduling 8
2.4 Multi-agent RL design choices 9
2.5 Hierarchical learning L. 12
2.6 Research gaps and positioning 14
3 Job Shop Scheduling 16
3.1 Dynamic Job Shop Scheduling 16
3.2 Dynamic Model Specifications L. 17
3.3 Dynamic Model Behavior 23
4 Methodology 28
4.1 MARL Framework 29
4.2 Minimal Repetition State 31
4.3 Reward Shaping Mechanism 34
4.4 Hierarchical Learning L. 38
4.5 Hierarchical Framework 41
4.6 Hierarchical State Representations. 42
4.7 Hierarchical Reward Design 45

5 Simulation Results
5.1 Experiment Specifications

5.2 Validation & Performance Metrics
5.3 Hierarchical Sequencing Designs
5.4 Simulation Results

6 Conclusions & Future Work

6.1 Conclusion
6.2 Future Work

A Original Work Divergences

Bibliography

VI

48
48
o1
53
95

68
68
69

71

73

List of Tables

3.1

4.1
4.2
4.3
4.4

5.1

5.2

9.3
0.4
9.5
5.6
5.7

DJSSP parameters and configurations 23
Decision share by queue length 32
MR helpers and job features, 32
Qualitative comparison of approaches for dynamic shop-floor control. 40
Local and global state components. 45

Chronological Joint Reward win rates side-by-side comparison by

mode of operation L L 56
Cumulative tardiness win rates side-by-side comparison by mode of

operationo a7
Chronological joint reward shared mode of operation. 58
Chronological joint reward individual mode of operation. 59
Tardiness reward shared mode of operation. 60
Tardiness reward individual mode of operation. 61
Tardiness reward individual mode of operation. 63

VII

List of Figures

3.1
3.2

4.1
4.2
4.3
4.4

5.1
5.2
9.3
5.4
2.5
5.6
5.7

Static vs dynamic jobshops L. 18
Event-driven simulator flow 25
CTDE: centralized training, decentralized execution 30
Agent—environment interaction patterns. 36
Transition and replay pipelines. 37
HL extended CTDE paradigm. 42
Policy network architecture 49
Training loss across loads, considering MARL approach 50
Training loss across loads, considering H-MARL approach 51
Normalized Cumulative Tardiness under chronological joint reward 64
Normalized Cumulative Tardiness under tardiness reward 65
Win Rate summary over benchmark and reward mechanisms. 66
Best competitors benchmark (Tard reward, individual operation).

No reward boosting. o 67

VIII

Acronyms

ATC
Apparent Tardiness Cost

ATCS
Apparent Tardiness Cost with Setups

AVPRO

Average Processing Time per Operation

CI

Confidence Interval

COVERT
Cost Over Time

CR
Critical Ratio

CRSPT

Composite dispatching rule combining CR and SPT

CTDE

Centralized Training with Decentralized Execution

CJ-Shared

Chronological Joint reward with shared operation mode

CJ-Ind

Chronological Joint reward with individual operation mode

X

DDQN
Double Deep Q-Network

DJSS
Dynamic Job Shop Scheduling

DJSSP

Dynamic Job Shop Scheduling Problem
DQN

Deep Q-Network
DRL

Deep Reinforcement Learning

EDD
Earliest Due Date

FIFO
First-In-Frist-Out

GP

Genetic Programming

HL

Hierarchical Learning

HLA
High-Level Agent

HRL

Hierarchical Reinforcement Learning

HH
Hyper-Heuristics

HL-MARL
Hierarchical Multi-Agent Reinforcement Learning

XI

HL-RS

Hierarchical Learning Rule Sequencing

JSSP
Job Shop Scheduling Problem

LWKR
Least Work Remaining

LLA
Low-Level Agent

MARL

Multi-Agent Reinforcement Learning

MS

Minimum Slack

MDD
Modified Due Date

MDP

Markov Decision Process

MLP
Multi-Layer Perceptron

MOD
Modified Operational Due Date

MR

Minimal Repetition (per-machine slot encoder)

NAT

Normalized Average (Cumulative) Tardiness
NCT
Normalized Cumulative Tardiness

XII

NPT

Next-Operation Processing Time

PDR
Priority Dispatching Rule
PT

Processing Time

PTWINQS
Composite dispatching rule combining PT, WINQ), and Slack

RL

Reinforcement Learning

SMDP

Semi-Markov Decision Process

SPT

Shortest Processing Time

Tard-Shared

Tardiness based reward shaping with shared operation mode

Tard-Ind

Tardiness based reward shaping with individual operation mode

TD

Temporal Difference
WINQ
Work In Next Queue

WIP
Work In Progress

WR
Win Rate (fraction of runs with the best result)

XIII

Chapter 1
Introduction

Efficient scheduling of production activities has been a central concern in manu-
facturing and operations management for decades. Among the various scheduling
environments studied in the literature, the Job Shop Scheduling Problem (JSSP)
stands out as one of the most representative and challenging. The JSSP models a
manufacturing system in which a finite set of jobs, each consisting of a predefined
sequence of operations, must be processed on a set of machines or resources. Each
operation is assigned to a specific machine, and the order of operations within a
job must be respected. The central task of the scheduler is to determine a feasible
allocation of jobs to machines over time, with the ultimate goal of optimizing certain
performance criteria, such as minimizing the total completion time (makespan),
average flow time, the number of tardy jobs or a combination of these criteria [1].

The importance of the JSSP stems from its direct applicability to real-world
production systems, particularly in industries where products are highly customized,
and production volumes are relatively low. Examples include tool manufacturing,
metal processing, semiconductor production, and other high-mix, low-volume
environments. In such settings, scheduling plays a critical role in determining
the efficiency of resource utilization, throughput levels, and the ability of firms
to meet delivery commitments. Poor scheduling can lead to increased work-in-
progress (WIP), excessive lead times, higher operating costs, and reduced customer
satisfaction [2].

From a computational perspective, the JSSP is also of significant interest due
to its complexity. It belongs to the class of NP-hard combinatorial optimization
problems, meaning that the solution space grows exponentially with the number of
jobs and machines involved [3]. This complexity makes it impractical to rely solely
on exact optimization methods for realistically sized problems, as computation
times can become prohibitively large. As a result, the JSSP has served as a fertile
testbed for the development and benchmarking of heuristic, metaheuristic, and
hybrid approaches, such as genetic algorithms, tabu search, simulated annealing,

1

Introduction

and more recently, RL methods.

Finally, the study of job shop scheduling is not only limited to academic in-
terest but also aligns closely with the increasing demands of modern manufactur-
ing. Global competition, mass customization, and the emergence of Industry 4.0
paradigms have intensified the need for highly efficient and responsive scheduling
solutions [4]. Its enduring relevance arises from the dual nature of the problem:
it is computationally difficult and, at the same time, directly connected to the
operational efficiency of modern industrial environments.

1.1 Static vs. Dynamic Scheduling

The classical formulation of JSSP assumes a static environment, where all
relevant information is known in advance and remains fixed throughout the planning
horizon. In this setting, the complete set of jobs, their operations, processing
times, and machine requirements are fully specified at the outset. Under such
assumptions, the scheduler can construct a global and comprehensive plan before
execution begins, with the expectation that the schedule will remain valid until all
jobs are completed. This static perspective, while mathematically convenient, is
largely a fragile abstraction from reality [5].

In practice, manufacturing and production systems operate in dynamic en-
vironments, where unexpected events continuously alter the conditions under
which scheduling decisions are made. The Dynamic Job Shop Scheduling Problem
(DJSSP) captures these realities by explicitly considering changes and uncertainties
that occur during the execution of the schedule. These changes may originate
from multiple sources. In many industries, customer orders arrive unpredictably,
often with urgent due dates that were not accounted for in the initial plan. For
example, in a metalworking shop, a high-priority repair order may arrive and need
to be inserted immediately into an already crowded production schedule. Moreover,
equipment may fail unexpectedly, rendering a machine unavailable for a certain
period. This disruption not only delays the jobs assigned to that machine but also
affects downstream operations, creating cascading effects across the schedule. A
further source of change is the fact that in real systems, processing durations are
rarely constant. Factors such as operator performance, material inconsistencies, or
technical adjustments can lead to significant deviations from planned times. Even
small variations may accumulate and compromise the feasibility of the original
schedule. Finally, as a last source of change, customers may cancel orders or request
changes in product specifications. In such cases, the initial schedule may no longer
be valid, and resources allocated to canceled tasks must be reassigned promptly.
These examples illustrate the core distinction between the static JSSP and the

DJSSP [5].

Introduction

The shift from static to dynamic settings also fundamentally alters the criteria
for evaluating schedules. While static scheduling often focuses solely on efficiency-
oriented objectives, such as minimizing makespan or total flow time, dynamic
scheduling must additionally consider attributes such as robustness, the ability of
a schedule to absorb disturbances without significant degradation, stability when
minimizing unnecessary changes to previously assigned operations, and responsive-
ness which is the ability to quickly adapt to new information [6]. Balancing these
sometimes conflicting objectives is a core challenge of the DJSSP.

Moreover, this distinction has important methodological implications. Algo-
rithms that perform well in static environments, such as exact methods, math-
ematical programming are often inadequate in dynamic settings due to their
computational cost and lack of adaptability. Instead, dynamic environments re-
quire approaches that can generate good solutions rapidly and update them in
real time. Examples include dispatching rules, which prioritize jobs according to
simple heuristics, reactive rescheduling methods, which revise the schedule when
disruptions occur, rolling horizon strategies, which periodically re-optimize a subset
of the problem, and learning-based techniques, which leverage historical data or
online feedback to improve scheduling performance under uncertainty.

1.2 Relevance & Motivation

The study of scheduling problems, and in particular the DJSSP, holds great
significance for both academic research and industrial practice. From a practical
standpoint, scheduling directly influences critical aspects of production systems, in-
cluding lead times, resource utilization, throughput, and the ability to meet delivery
deadlines. In an increasingly competitive and customer-driven environment, orga-
nizations are required not only to operate efficiently but also to demonstrate high
levels of flexibility and responsiveness. This makes effective scheduling strategies
an indispensable component of operational success.

The relevance of the DJSSP has grown even more pronounced with the advent
of Industry 4.0 and the digital transformation of manufacturing systems. Modern
production environments are characterized by a high degree of connectivity, au-
tomation, and data availability, enabled by technologies such as the Internet of
Things (IoT), cyber-physical systems, and real-time analytics. These advances have
amplified both the opportunities and the challenges associated with scheduling. On
the one hand, richer data streams and computational power create possibilities for
more sophisticated and adaptive decision-making. On the other hand, the volatility
and unpredictability of global markets, combined with shorter product life cycles,
customized production demands, and complex supply chain interactions, place
unprecedented pressure on scheduling systems to remain robust and adaptable

3

Introduction

under dynamic conditions.

Traditional optimization approaches often struggle to cope with the scale and dy-
namism of modern production systems, creating a need for novel solution strategies
that can reconcile efficiency with adaptability. This has motivated growing interest
in heuristic and metaheuristic methods, multi-agent systems, and machine learning
based techniques (including RL) that can exploit feedback from the environment
to improve scheduling performance [7].

It is in this context that the present work is inserted. The objective is to
contribute to the ongoing search for methods that are both computationally efficient
and operationally realistic, bridging the gap between theoretical scheduling models
and the practical demands of modern industry. By addressing this challenge,
the project aims to extend the work developed in [8], leveraging a Hierarchical
Learning approach on top of the developed Multi Agent Reinforcement Learning
framework. In doing so, it becomes possible to better understand how machine
learning approaches figure in comparison to more classical approaches and also how
they can be further extended or adapted to achieve better results. In this way, it
was possible to:

o Study and understand how and where state of the art machine learning
approaches are situated in comparison to classical approaches.

e Design a Hierarchical Learning approach that enhances current machine learn-
ing approaches, improving how much the overall tardiness can be minimized.

 Introduce a reward boosting mechanism that softly biases per-decision rewards
towards the dominant classical sequencing rules.

e Evaluate how the proposed hierarchical approach behaves under different
circumstances and how well it can adapt to changes in the current shop-floor
state.

Chapter 2

Literature Review

The literature on DJSS spans more than four decades and sits at the intersection
of queueing, combinatorial optimization, and online control. Unlike the static
JSSP, where complete job sets and routes are known a priori, DJSS unfolds under
stochastic arrivals, partial observability, and event-driven decision epochs. Machines
become available asynchronously, buffers evolve with upstream congestion, and
performance hinges on long-horizon interactions between local sequencing choices
and global WIP. Any method intended for deployment on the shop floor must
therefore reconcile three demands: low-latency decisions aligned with machine
events, interpretability and auditability for operational acceptance, and finally,
robustness across regimes of utilization, due-date tightness, variability, and routing
complexity.

This chapter reviews the main families of dispatching and learning based ap-
proaches through that lens, each section covering a specific family. Taken together,
this review distills a set of design principles for DJSS controllers. These principles
can be summarized into keeping the decision boundary local and event-driven, while
normalizing inputs to comparable scales and masking invalid or absent actions
so they are never selectable. Additionally, recent works exploit parameter shar-
ing across exchangeable machines to improve consistency. When congestion and
due-date pressure are decisive factors in the environment, studies often introduce
RL with hierarchy levels. This enables that a manager style signal guides local
dispatch over a specific intent on top of auditable shop-flor parameters.

This chapter is organized as follows: Section 2.1 surveys classical priority
dispatching rules and their hybrids. Section 2.2 reviews learning-based dispatching.
While the next section is dedicated to outline specifically RL for job-shop scheduling.
Section 2.4 synthesizes multi-agent RL design choices, such as state representations,
action abstractions, CTDE, shaping, and evaluation. Finally, Section 2.5 examines
hierarchical learning and its temporal /spatial abstraction and training regimes.
The chapter closes with a synthesis of design principles, their implications for the

5

Literature Review

baselines used later, and where this work is positioned in the literature.

2.1 Classical priority dispatching rules

Priority dispatching rules (PDRs) map a local shop floor state encompassing
queue conditions, due-date pressure, and operation processing times, into a short
horizon job selection at each machine. They are favored for their computational
efficiency, interpretability, and robustness to model and parameter uncertainty,
which explains their persistent adoption and the substantial body of simulation
evidence accumulated since the 1980s [9, 10, 11]. A consistent conclusion from this
literature is that no single PDR is universally dominant. Performance depends
on shop load, due-date tightness, variability, routing structure, and the target
objective, such as mean tardiness, tardy-job rate, or schedule stability [11, 12].

Representative single factor rules, i. e. rules that consider only one primitive,
include Shortest Processing Time (SPT) that selects the job with the smallest
current operation time to reduce mean flow time and congestion [13, 14]. While
Earliest Due Date (EDD) dispatches the job with the earliest due date, which min-
imizes maximum lateness on a single machine [15, 14]. Moreover, Next-operation
Processing Time (NPT) favors jobs whose next operation is short to reduce down-
stream blocking [12]. Least/Most Work Remaining (LWKR/MWKR), in turn,
order jobs by the sum of processing times over the job’s remaining route as a proxy
for downstream load [14, 9]. Finally, Work in Next Queue (WINQ) prefers jobs
whose next machine faces lower queued work to anticipate congestion [16, 12]. Each
of these rules embodies a distinct risk posture when trying to schedule jobs across
the shop-floor.

Since single factor rules can be brittle, hybrid dispatching strategies introduce
limited look-ahead and explicit multi-criteria trade-offs. Notable families include
Critical Ratio (CR), which prioritizes the remaining time until due date over total
work remaining, balancing urgency against size [14, 9]. Minimum Slack (MS)
chooses the smallest slack and emphasizes due-date adherence [14, 9]. Apparent
Tardiness Cost (ATC), in turn, scales a processing-time priority by an exponential
term in time-to-due-date, and ATC with Setups (ATCS) augments ATC with
a setup-time penalty for sequence-dependent setups [16, 17]. Cost OVER Time
(COVERT) prioritizes a cost over expected time index to balance tardiness cost
against processing/queueing exposure [18, 19]. Modified Due Date (MDD) selects
jobs by the larger sum of the current time and remaining processing time. while
Modified Operational Due Date (MOD) select jobs by the larger due date, providing
a due-date—aware look-ahead at completion time [20]. These hybrids generally
enhance robustness as utilization and routing complexity increase, though benefits
remain regime-dependent.

Literature Review

In dynamic job-shop settings, the rescheduling cadence and the triggering policy
(periodic vs. event-driven) are consequential. PDRs are naturally event-driven and
scale with negligible latency. However, the same reactivity can induce schedule
nervousness, which is the frequent resequencing of operations caused by the frequent
top job update due to small state changes. As a result, gains in tardiness or flow
time often come at the cost of lower stability. Composite rules incorporating weak
look-ahead terms can mitigate excessive resequencing by smoothing local choices
in anticipation of downstream congestion [12].

PDRs remain strong baselines for DJSS because they are inexpensive, inter-
pretable, and unexpectedly competitive when aligned with operating regimes.
However, their performance tends to degrade outside their sweet spots and they
do not manage the responsiveness—stability trade-off explicitly. This duality both
motivates and challenges learning-based approaches, which must deliver consistent
improvements over these baselines across regimes rather than only on average.

2.2 Learning-based dispatching rules

Learning-based dispatching denotes methods that learn a reusable mapping
from state to decision and then apply it online with negligible latency. Training
can be either offline or online, but the artifact you deploy is a policy/rule that you
evaluate quickly when a machine becomes idle. This contrasts with metaheuristics,
which perform per-instance search over complete or partial schedules and return
a schedule rather than a policy. When the shop state changes, they require re-
optimization or repair and thus are ill-suited to event-driven dispatch in DJSS.
Learning-based approaches aim to surpass handcrafted priority dispatching rules
(PDRs) while preserving shop floor acceptability in terms of auditability and ease
of deployment. Two predominant methodological families dominate this line of
work: hyper-heuristics (HH) and program synthesis via genetic programming (GP).

Selection based HHs learn a state conditioned policy that chooses among a
portfolio of established rules, while generation based HHs construct new rules
by composing features and operators. The literature covers both online and
offline variants, choice function formulations, and mechanisms for maintaining
portfolio diversity [21, 22]. Selection HHs are comparatively straightforward to
implement, since they reuse verified rules, but their performance is bounded by
the expressiveness of the portfolio. By contrast, generation HHs can uncover
novel functional forms, although with heightened risks of representation bloat and
overfitting [21, 22].

GP evolves priority functions over terminal features and arithmetic/logical
operators, frequently incorporating feature selection or surrogate modeling to
enhance generalization [23]. Advantages include compact, human-readable rules,

7

Literature Review

cross-regime generalization when appropriately regularized, and negligible online
evaluation latency. Limitations include computationally intensive offline evolution,
sensitivity to distributional shift, such as novel routing variability, and the need for
careful terminal operator set design to preclude pathological expressions [23, 24].
A complementary strategy trains classifiers or regressors, as decision trees,
SVMs, artificial neural networks, to imitate “good” dispatch choices extracted from
optimized schedules. These models evaluate quickly and can encode interactions
beyond linear composites. However, training is typically decoupled from deployment
and optimizes a one step decision proxy rather than long-run performance, unless
the learner is embedded within a closed loop simulation for feedback [25]. Since
these methods act essentially over a short horizon and are optimized offline, they
often underperform when long horizon queueing dynamics under non-stationary
arrivals are the primary performance drivers. This setting motivates reinforcement
learning (RL), which explicitly targets sequential, long run objectives [25, 23].

2.3 RL for job shop scheduling

Deep Reinforcement Learning (DRL) combines RL with deep neural networks to
learn policies and /or value functions from raw or engineered observations. The agent
interacts with a stochastic environment, receiving observations o;, taking actions
a;, and obtaining rewards r;. The objective is to maximize expected discounted
return Gy = Y5, 7*ri1 by adjusting the policy parameters 6 considering the
discount factor v [26]. DRL acts on scheduling as sequential decision making under
uncertainty. In static JSSP, agents typically select complete job sequences. In
dynamic DJSS, by contrast, agents act online under partial observability with
evolving WIP. This shift induces event-driven decision epochs, sparse and delayed
rewards, and nonstationary dynamics [25].

A central challenge is obtaining size and order agnostic state representations.
Recent approaches employ permutation invariant set encoders and graph neural
networks over job—machine graphs to generalize across unseen problem sizes and
routings [25, 27]. An alternative is state shaping that restricts attention to a
small, informative candidate set per decision (e.g., SPT/LWKR/MS/WINQ picks),
thereby yielding a fixed size input while preserving job specific features. This
“minimal-repetition” compression is effective in DJSS multi-agent RL because most
dispatching decisions involve few competing jobs and the construction preserves
the one to one job—action mapping. For an explicit instantiation of such MR
compression and a feature set including relevant job information and inter machine
availability, see [8].

Given the state representation choices, the next design decision is how to expose
a scheduling move as an RL action. In DJSS, two abstractions dominate. Direct

8

Literature Review

job selection considers that, at each idle event, the agent picks a job from the
local queue. The action set varies with queue length, so legal-action masking and
compact candidate-set compression keep decision size-agnostic while preserving
the one-to-one job—action mapping [25, 8]. A second approach is more common in
flexible shops and consists of route allocation. The agent selects a machine (route)
and, optionally, a sequence. This is expressive but combinatorially larger and is
often factorized, route-then-dispatch.

Objectives range from cumulative tardiness, tardy-job ratio, stability penalties,
and changeover or waiting costs. Common training stabilizers include curricula
over utilization levels, prioritized replay, and reward shaping. Credit assignment
is the principal difficulty and refers to the impact of a dispatching decision being
manifested several operations later. Designs that align experience tuples with the
job’s completion event help to narrow this assignment gap [28, 29, 8].

2.4 Multi-agent RL design choices

In a Multi-Agent Reinforcement Learning (MARL) paradigm, each agent is
assigned to an individual machine or work center, aligning the learner’s control
boundary with physical actuation. As machines face the same environment, they
are often exchangeable from a learning perspective, which motivates parameter
sharing. A single policy is shared across agents, optionally conditioned on a role/ID
embedding, for instance machine family, setup group, or a learned positional code.
Parameter sharing reduces sample complexity, encourages consistent behavior
across symmetric entities, and simplifies deployment to new shop sizes. Practical
refinements include role masking to restrict actions incompatible with a machine’s
capabilities. Further refinements includes domain-normalized inputs by scaling
time features scaled by mean processing time, due dates expressed as slack or
critical ratio, to stabilize learning across instances. Finally, event time features are
also included as refinements, as time since last idle or predicted next arrival time,
that capture local cadence. Alternatives to per-machine agents include per-job
agents, which increase action churn, credit-assignment difficulty, and hierarchical
designs with a meta-controller that considers local dispatchers. Empirically, the
per-machine decomposition with parameter sharing remains a strong baseline [30,
31].

Dispatching is inherently asynchronous. Decisions occur when a machine be-
comes idle, and the number of admissible actions equals the queue length. Two
implementation details are critical. First, the environment-learner interface should
be event-synchronous: a training “step” corresponds to a set of machine idle events
at a common simulation timestamp. Agents without an event take a non-operation
and are masked in the loss to avoid spurious gradients. Second, variable action

9

Literature Review

sets require legal-action masking: ()-values or logits for illegal actions are set to
—o0 before the softmax or argmax, and losses ignore masked entries. For actor
critic methods, this masking effectively prevents the agent from selecting illegal
actions during training and inference. Ensuring the agent only explores valid
actions, improving exploration efficiency and preventing illegal moves. For value-
based methods, adopting Double/Dueling @) with masked targets tends to improve
stability [32, 33].

Under the required conditions to deploy decentralized execution, each agent
experiences non-stationary opponents (other learners) and a drifting arrival process.
Centralized training with decentralized execution (CTDE) addresses this by provid-
ing a critic Q4(s, a1.n) or a centralized value baseline with access to joint context,
global WIP, in-transit jobs, utilization regime indicators, while actors consume only
local observations at test time [34, 35]. Value-factorization, VDN or QMIX can be
adapted to event-driven settings by factorizing over the subset of active agents at a
simulation timestamp and carrying forward the previous values for inactive agents.
However, strictly synchronous factorization is often mismatched to DJSS, where
idle events are sparse and uneven. In practice, CTDE with parameter sharing and
event-synchronous updates yields stronger convergence and lower variance than
purely independent learners [8].

Even with CTDE and parameter sharing, a dispatching decision often affects
tardiness only after several downstream operations, making temporal credit assign-
ment the central challenge [25]. To mitigate this issue, different reward designs are
considered in the literature. Potential-based shaping augments the environment
reward with a dense term r, = A®(z;) for a potential ® such as negative total
slack or negative total flow time. This preserves optimal policies while providing
informative intermediate signals in event-driven settings with irregular inter event
times [29, 36]. Then, a completion-aligned approach defers credit until the job
is completed, which reduces reward delay and leakage across overlapping jobs in
congested regimes [8]. Finally, multi-objective penalties are considered for schedule
stability, setups, or changeovers, combined via scalarization or constrained RL.
Curricula over utilization and due-date tightness, n-step returns, prioritized re-
play keyed by tardiness deltas, and conservative reward scales (to avoid gradient
explosion at heavy load) are effective stabilizers [29, 36, 28].

A machine’s local observations typically include queue descriptors, e.g., per-
candidate features such as t;,, WR;, S;, WINQ/NPT proxies, machine status
referring to its setup state, remaining setup time, blocking, and short-horizon pre-
dictions such as expected arrival time of the next upstream job. Rather than learning
free-form communication protocols to share each local observation, lightweight
structured sharing is often sufficient. Exposing downstream machine availability,
aggregate next-queue WIP, or the earliest due date among in-transit jobs enables
the anticipation of congestion with minimal complexity [8]. When coupling is

10

Literature Review

strong, message passing encoders, as graph neural networks over the machine buffer
topology, or limited bandwidth attentional messages can be added, but with explicit
rate limits to match shop floor latency constraints.

Among the most common action encoders, there are three most frequent designs.
Direct job selection, rule selection, and routing/allocation. Direct selection maxi-
mizes expressiveness but faces variable action sets when pairing it with candidate-set
compression, as an example, taking the union of SPT/LWKR/MS/WINQ picks
and top-k shortest processing times. This approach yields a small action space
while preserving near optimal choices in most states [25, 37]. Rule selection is
size agnostic and interpretable but introduces an additional mapping from rule to
job, which can blur credit assignment [38, 37]. Routing/allocation is necessary in
flexible shops, here, a factored action (route, then sequence) or hierarchical policy
(router — dispatcher) reduces combinatorial blow-up [39, 40].

To generalize across shop sizes and permutations, architectures should enforce
permutation invariance/equivariance where appropriate. Set encoders (Deep Sets)
or attention over per-job candidate features for the local queue, maintaining shared
encoders for all machines (parameter sharing) with optional role embeddings,
and normalization by instance-level statistics (mean/variance of processing times,
due-date span). Recurrent policies, as Long Short-Term Memory, can partially com-
pensate for partial observability, while remaining light enough for sub-millisecond
inference [41].

Exploration in dynamic shop-floor control is particularly challenging under
tight due dates, where suboptimal actions incur large penalties. To mitigate
this, it is considered per-agent e-greedy exploration with annealing schedules
tied to utilization curricula, thereby tapering randomness as congestion rises and
learning stabilizes. Further incorporation of entropy regularization while capping its
contribution to prevent thrashing among near-equivalent choices. In addition, safe
action priors are employed that bias sampling toward the top candidates induced
by a baseline portfolio of PDRs, providing a pragmatic anchor when the value
function remains uncertain. For deployment, guardrails are introduced to ensure
operational acceptability. An e-mixtures that interlocks the learned policy with a
verified PDR, explicit negates unsafe actions, forbidding setup starts that violate
stability thresholds, and short “freeze windows” that limit resequencing rates and
reduce disruption on the shop floor [25].

Since events arrive irregularly, experience is time-stamped and discounted using
At-aware horizons, with returns scaled as ¥*/7 to preserve temporal consistency
across variable inter-event intervals. To respect simultaneity among distributed
decision makers, transitions are batched by simulation timestamp so that concur-
rently acting agents contribute coherent updates. Replay is prioritized either by
the absolute change in cumulative tardiness or by temporal-difference (TD) error,
focusing learning on consequential events such as bottleneck releases. To control

11

Literature Review

non-stationarity in this multiagent setting, slowly updated target networks are
maintained, and also it is applied a clipped importance sampling for off-policy
corrections under CTDE when replay is used [28].

Given the event-driven setting with masked actions, parameter sharing, and
CTDE previously described, evaluation protocols in the literature are designed
to stress both performance and robustness under the same constraints. Baseline
portfolios span single-factor rules, SPT, EDD, CR/MS, LWKR/MWKR, and
WINQ, and composite heuristics including ATC/ATCS, COVERT, each tuned to
the operating regime. Regime sweeps cover utilization levels, due-date tightness,
processing-time variability, and routing structures. Metrics include normalized
cumulative tardiness, tardy-job ratio, flow time, WIP, and stability indicators such
as resequencing rate and deferred starts, alongside wall-clock inference time to assess
deployability. Generalization is validated via zero-shot transfer to unseen sizes and
routes, temporal drift in arrival rates, and heavy-tailed processing times. Statistical
analysis goes beyond means, reporting win rates against the best baseline per
instance, interquartile ranges, and paired bootstrap tests with effect sizes. Finally,
ablation studies isolate the contributions of parameter sharing, CTDE, candidate-set
compression, reward shaping, and structured inter-agent communication, following
recent guidance for learning-based dispatching in job-shop environments [12, 16,
42, 27, 8.

2.5 Hierarchical learning

Hierarchical Learning (HL) introduces temporal and functional abstraction to
address long-horizon credit assignment and combinatorial action spaces in DJSS.
A two-level design is natural and frequent: a manager (global or area-level) sets
short-horizon intents or limits, WIP caps, due-date bands, setup budgets, routing
choices, while per-machine agents execute fine grained dispatching decisions that
track these intents. This separation lowers the manager’s decision rate, regularizes
local behavior via top-down guidance, and curbs schedule nervousness through
commitment windows that limit resequencing [43].

Typically, studies also consider spatial abstraction to complement this picture.
Useful partitions include route then sequence, where the manager selects a routing
or machine family for flexible operations and workers sequence locally under the
chosen route. A second option is release then dispatch, where the manager throttles
WIP via order release and workers dispatch among available jobs. Finally, setup
aware batching, in which the manager proposes batch/sequence templates to
reduce changeovers and workers fill templates while honoring due-date risk bounds.
Interfaces are often built from soft goals, such as targets for local slack or bounds
on next-queue WIP, and hard constraints, as action masks that forbid setups above

12

Literature Review

a threshold or explicit WIP caps. It is also common to adopt a from of goal
conditioning at the worker level [29].

Across hierarchy levels, CTDE is frequently adopted, equipping critics with joint
context (global WIP, bottleneck status, arrival-rate regime) while actors depend
on local observations and the manager’s goal signal. This is done to mitigate inter-
level non-stationarity. Representative HL algorithms include options and call-and-
return [43], option-critic for end-to-end learning of policies and terminations [44],
and also goal relabeling for consistent off-policy updates [45]. Several works
report pretraining workers by distillation from strong PDRs to anchor behavior in
interpretable skills before fine-tuning with HL.

Attributing returns to the appropriate level is a central concern. Reported
mechanisms include advantage decomposition with separate critics (often sharing
encoders). They also include completion-aligned targets that defer bootstrapping
to job completion to reduce leakage across overlapping options in congested regimes.
Commitment-consistent bootstrapping updating high-level targets only at option
termination or commit-window expiration is used to align learning with operational
commitment policies [36].

To respect shop-floor latencies, observability and communication are typically
lightweight. Managers consume coarse, slowly varying summaries, while workers ob-
serve candidate-level features plus the goal embedding. Upward messages indicating
localized lateness risk are rate-limited, while downward directives (goal updates) are
likewise updated no more than once per commitment window to avoid oscillations.
Staged exploration is common: managers sample among conservative macro-intents
(moderate WIP caps, routing preferences), while workers explore within legal-action
masks biased by PDR priors. Safety mechanisms include e-mixtures with certified
PDR fallbacks, vetoes on hard-constraint violations, and interruption policies that
allow early option termination under exogenous events (machine breakdowns, rush
orders), with penalties accounted for during training.

Reported implementations keep the manager’s decisions infrequent and mod-
erately sized, whereas workers use compact encoders for a quick dispatch. Event
batching and shared encoders amortize cost, and goal embeddings avoid recomput-
ing global features at every dispatch. Evaluation typically augments the metrics
in Section 2.4 with HRL-specific indicators: commitment adherence (fraction of
actions within commit windows), interruption rate and penalties, manager overhead
(updates per hour), and skill-utilization diversity. Baselines include flat MARL,
rule-selection hierarchies (in which the manager chooses a PDR and workers ap-
ply it), and release-control heuristics paired with tuned local PDRs. Ablation
studies vary option duration, interface type (goals vs. constraints), and the pres-
ence of distillation or relabeling. Representative methods adapted to event-driven
DJSS include options [43], option-critic [44], hierarchical actor—critic with goal
relabeling [45], and feudal networks [46].

13

Literature Review

When comparing HL to classical dispatching rules, it is noted that dispatching
rules are fast and robust, but static, they adapt poorly to distributional shift and
offer limited cross machine coordination [47, 9, 48]. Metaheuristics can optimize full
schedules but must be re-solved frequently, incurring latency on decisions in highly
dynamic shops [5, 49, 21, 22|. HL, however, learns reusable skills offline and applies
them online with low latency. The manager selects a context appropriate mode,
and per-machine agents are responsible for coherent local decisions consistent with
that mode, preserving the agility of rules while enabling context driven adaptation
and system level coordination.

Supervised approaches learn to imitate “good” decisions but require labeled
targets and struggle when problem size and context vary over time. They also do
not address delayed consequences. HL is reinforcement-driven and optimizes long
horizon objectives under changing conditions. Learned skills can transfer across
utilization regimes and product mixes without re-labeling [50].

Flat RL learns end-to-end mappings from raw states to primitive actions at
every step, facing sparse and delayed reward, large combinatorial actions (job
selection per machine), and multi-agent non-stationarity. In MARL, CTDE style
approaches mitigate some of these issues but still leave exploration and credit
assignment challenging at fine temporal scales [34, 51, 35]. HL narrows the low-
level search through subgoals, shapes exploration, and improves credit assignment
via aggregated feedback at the high level. Intrinsic or shaped rewards can further
align local behavior with system objectives [29].

2.6 Research gaps and positioning

The literature shows a progression from basic single-factor PDRs and their
hybrids, through learning-based dispatching (hyper-heuristics, GP, imitation), to
flat MARL and, more recently, hierarchical designs. Event-driven DJSS imposes
asynchronous decision epochs, partial observability, delayed rewards, and regime
dependence (utilization, due-date tightness, routing variability). Methods that suc-
ceed operationally tend to be robust to long horizons, adaptable over stochasticity,
and consistent across regimes rather than only on average.

Despite notable progress, several recurring themes emerge across the literature.
First, credit assignment under asynchrony remains unsettled: completion-aligned
returns and shaping techniques show promise but lack standardization, and their
effects appear to vary across operating regimes. Second, action abstraction warrants
clearer isolation of its benefits: while direct selection from compact candidate sets
performs well, few studies disentangle its contribution relative to rule selection or
routing/allocation within identical evaluation protocols. Third, the field’s emphasis
on tardiness and flow often eclipses other dimensions of responsiveness and stability.

14

Literature Review

Schedule nervousness and the consequences of setups and changeovers are treated
less systematically. Fourth, interfaces for hierarchical reinforcement learning are
frequently task-specific, more attention is needed to design anchored in auditable
shop-floor levers—such as WIP caps, setup budgets, or due-date bands. Finally,
generalization claims are common, yet comprehensive examinations under regime
drift, in arrival rates, for instance, and in the presence of heavy-tailed phenomena,
remain comparatively rare.

Motivated by these gaps, this thesis proposes a strong Hierarchical MARL
baseline to develop a scheduling strategy for the DJSSP. The proposed Hierarchical
MARL baseline considers per-machine agents with parameter sharing leveraging
a CTDE paradigm. Additionally, it is evaluated against tuned PDR portfolios
across regimes, including stability metrics. This is done to achieve the main goal
of minimizing the overall tardiness in a dynamic job shop environment.

15

Chapter 3

Job Shop Scheduling

The JSSP is a classical combinatorial optimization challenge in which a set of
jobs must be processed by specific machines. Each job is composed of a sequence
of operations. Furthermore, every operation has its own fixed processing time and
requires exclusive use of the designated machine. Operations must be processed
respecting a predefined execution order. Finally, only after all operations that
compose a job are completed, the job can then be considered processed.

When formulated in this way, the JSSP considers static conditions on the
behavior of the shop floor. Even though the static approach is widely studied [1,
5], it rarely reflects how real world manufacturing environments behave. Modern
production systems face dynamic conditions, such as sudden job arrival, abrupt
machine failure or even inconsistent processing time. Under this scenario, a static
job shop model quickly becomes invalid and the need to model the shop floor
dynamically arises.

It is in this context that the DJSSP is inserted. It is an extension of the
JSSP that considers the dynamicity of real world manufacturing environments. In
the DJSSP, the set of jobs in the system changes over time as new jobs arrive
and existing jobs are completed, making the problem size non-constant and the
scheduling horizon potentially unbounded.

This Chapter discusses the DJSSP and how it differs from the JSSP in Section 3.1.
Then it presents the DJSSP model specifications and motivate the choices made
in Section 3.2. Finally, a discussion of how the model behaves is presented in
Section 3.3, both in terms of how it functions and how it is affected by its parameters.

3.1 Dynamic Job Shop Scheduling

The distinction between the static and dynamic variants of the job shop schedul-
ing problem lies primarily in how they handle the evolution of the shop floor state

16

Job Shop Scheduling

over time. In the static JSSP, all jobs, their processing routes, and associated
parameters are known in advance, enabling the construction of a complete schedule
before execution begins. In contrast, the DJSSP operates under continuous change,
new jobs may arrive unexpectedly, processing times can vary, and machine avail-
ability may be disrupted. These dynamic events require scheduling decisions to be
revised, often without full knowledge of future events. Figure 3.1 illustrates the
conceptual difference between static and dynamic job shop scheduling, highlighting
the arrival of a new job and the need for continuous adaptation required in the
latter.

On the left-hand side of Figure 3.1, it can be seen that all jobs that will arrive
at the shop floor are known in advance, which allows for a complete schedule to be
built before execution. However, on the other side, only a fraction of the jobs that
can arrive at the shop floor are known. In this example, a new job arrives during
execution and then it is needed to reschedule in order to resume job processing.
The arrival of the new job illustrates the impact of dynamic events on the shop
floor.

In real world manufacturing, three recurring situations illustrate the need to
model the shop floor dynamically. First, make-to-order or built-to-order environ-
ments experience stochastic order arrivals with custom attributes that are not
homogeneous across time, so the set of jobs is not fully known at release time
and schedules must consider both non-peak and peak periods [5, 52]. Second,
equipment disruptions, both unplanned breakdowns and planned maintenance
windows, invalidate precomputed sequences and trigger rescheduling to restore
production feasibility and performance [49, 53]. Third, stochastic processing times
and delay effects that may occur due to product variability, rework, or operator
quality fluctuations, undermine deterministic assumptions, requiring policies that
adapt as actual processing times deviate from estimates [54, 55].

Under this dynamic environment, the main objective of the DJSSP then becomes
to minimize performance metrics such as makespan or tardiness. The former being
the total time to complete all jobs, while the latter refers to the amount of time
elapsed after a job’s due date. Minimizing metrics like these means enhancing the
utilization of available resources of the shop floor, and also increasing responsiveness
of the productive system.

3.2 Dynamic Model Specifications

Since this project is inserted in the context of extending the work of [8], the
shop floor model is maintained the same. The model built by [8] considers generic
scenarios with random job arrivals, and it also considers extended simulation
horizons for both training and testing. Random arrivals inject stochasticity and a

17

Job Shop Scheduling

Job Shop Scheduling Dynamic Job Shop
Problem Scheduling Problem
_ e A . . Initial set of Jobs
(Set ofJobsJ = [j; j2 ..]"]1 ‘ I=[G2 - gl }
\ 4 \ 4
Scheduling Scheduling

H
Exectuion H Exectuion

Rescheduling

New job j,,+1 arrival

Exectuion

Figure 3.1: Conceptual contrast between a static Job Shop Scheduling Problem
(left) and its dynamic variant (right). In the static case, the full set of jobs and
routes is known a priori, enabling an off-line schedule executed without further
change. In the dynamic case, stochastic job arrivals (illustrated by the new job
arrival j,41) and other disturbances require on-line rescheduling during execution,
so only a partial schedule is valid at any time.

diverse mix of jobs, while long-run simulations expose periods of uneven utilization
of the system’s capacity. Moreover, each job must be processed by each machine
exactly once. Scheduling is carried out in a discrete event simulator by decentralized
agents acting at the machine level. A scheduling operation occurs whenever a
machine becomes idle and at least two jobs are waiting to be processed, then the
local agent selects the next operation with the objective of minimizing job tardiness.
The selected operation must be among those that compose one of the jobs waiting

18

Job Shop Scheduling

to be processed.
The built environment obeys the following modeling assumptions and constraints:

1. Operations are non-preemptive and, once started, run to completion.
2. Rework and re-entrant job flows are not considered.
3. Machine setup times and job transfer/movement times are neglected.

4. Jobs are independent and each machine can process only one job at any given
time.

5. Jobs queue buffers are considered to have unlimited capacity and are not
explicitly modeled.

In this model, the goal of the scheduling strategy is to minimize the cumulative
tardiness C'T". It is considered as the objective to be minimized because it captures
service level performance as experienced both by customers and supply chain
partners, additionally, it ties scheduling decisions to customer satisfaction. In a
competitive market setting where loyalty is critical, tardiness-based indicators are
key to evaluating schedule quality [1, 2].

Formally, over the evaluation horizon, cumulative tardiness is derived as

N
CT =) CT, (3.1)

=1

where C'T; represents the tardiness of J;, N represents the total number of jobs
processed and can be obtained as

CT'Z = maX(Ci — Di, O), (32)

where C; denotes the completion time of job J;, D; denotes the due date of job J;.

In a dynamic job shop with stochastic arrivals and long horizons, service level
is fundamentally about meeting due dates and not merely finishing a finite batch
quickly. The cumulative tardiness C'T" directly measures due-date adherence across
all decisions over time and is therefore the natural objective for this setting. By
contrast, makespan is well-posed in static, one-shot instances but becomes ill-defined
in ongoing dynamic environments. Optimizing makespan can also ignore due-date
urgency, encouraging schedules that clear the final job early while allowing many
intermediate jobs to miss deadlines, which is undesirable in markets where customer
satisfaction and partner SLAs depend on on-time delivery. The DJSS literature
emphasizes that dynamic disruptions continually change problem specifications
and trigger rescheduling, thus, performance should reflect rolling service quality,
not one terminal completion time.

19

Job Shop Scheduling

Other common metrics have their own pitfalls here. Mean flow time promotes low
WIP and short cycles but does not penalize lateness. Rules that excel on flow-time
objectives often behave differently under tardiness objectives, so optimizing one
does not guarantee performance on the other. Comparative studies explicitly show
priority-rule rankings shifting between flow-time and tardiness criteria, underscoring
the need to choose the metric that matches the operational goal (on-time delivery).

Number of tardy jobs counts delays but is insensitive to how late jobs are. A
single severely late order is treated the same as a marginal miss. In contrast,
CT captures both incidence and magnitude of lateness and is therefore a more
discriminative and optimizable training signal for RL. Finally, from an RL design
standpoint, C'T" aggregates the long-run effects of local event-driven decisions and
admits principled credit assignment, enabling decentralized agents to learn policies
that consistently improve due-date performance in dynamic contexts.

Since the DJSSP is a stochastic problem, where safe, repeatable experimentation
on a real shop floor is impractical, both the development and validation of scheduling
strategies are simulation based. The simulation environment must model the
stochastic dynamics of job arrivals while enabling large-scale, safe, and reproducible
experimentation that is necessary for training and comparing RL-based policies [5,
25]. Alongside with its goals and objectives, a proper simulation environment can
be created and defined by three key factors, which are the job shop utilization rate,
the job processing time and the due date tightness.

A job shop model utilization rate is defined as the proportion of the available
processing capacity of the shop that is actually being used to process jobs. In
the context of a DJSSP in which every job visits every machine exactly once, the
utilization rate can be obtained by the ratio between the expected processing time
of operations on each individual machine and the expected time interval between
job arrivals as [8]

E(t)
E(At;)’

where E(t) denotes the expected processing time of operations per machine, E(At;)
represents the expected time interval between job arrivals and At; represents the
time interval between job arrivals. The utilization rate of a job shop is the core
value to create training and test scenarios. A higher utilization rate value means
that more jobs arrive at the job shop at random and a more robust scheduling
strategy is needed. Whereas, with a lower utilization rate value fewer jobs will
arrive, which opens space for a less demanding system. By fixing the utilization
rate exogenously, it is possible to shape the congestion regime under which policies
are trained and evaluated. This treats utilization as a design parameter defining
the environment, while the optimization objective for the policy remains cumulative
tardiness C'T". In this work, the job shop model was simulated under utilization
values of 70%, 80% and 90%, as for higher values, a robust strategy is needed the

20

E(utilization rate) = (3.3)

Job Shop Scheduling

most.

Processing times are defined by the duration required to execute job J; on
machine Mj, and it is denoted by ?; ps,. There are different ways to model the
processing time, some studies [27] consider specific distributions obtained empiri-
cally, while others [12, 25] consider an uniform distribution to derive ¢; 5;,. The
uniform distribution is most commonly found in the literature since it opens space
for an easier simulation of different scenarios, while also being easily comparable
and transferable across studies and applications. Following the common practice,
the processing time is drawn from a uniform law,

tivn ~ Ula, b, (3.4)

which induces an expected processing time E(t) = (a + b)/2. The choice of the
interval [a,b] directly influences the shop’s congestion. For a fixed job arrival
dynamics, i. e. a constant E(interval) value, a larger E(¢) increases the expected
utilization rate, as seen in Eq. (3.3). It also raises queue lengths and amplifies
how often a machine actually has to perform a sequencing decision. However, a
smaller E(t) reduces the pressure on the system, diminishing jobs waiting time and
alleviating tardiness pressure. In this work, to balance realism and comparability
across scenarios, processing times are drawn as done in [8]

ting, ~ U[1,50], (3.5)

which is a moderate range that yields diverse machine loads and nontrivial schedul-
ing dynamics [8].

Due-date tightness controls the urgency of jobs by regulating the initial slack at
arrival. Considering job J;, its due date is defined by

D; = NOW 4 TT Diritial (3.6)

where D; represents the due date of job J;, NOW represents the current time at
when the job J; arrives at the system and TT D" represents the initial time
till due of job J;. In this simulation based context, the time till due of a job is
obtained by multiplying the sum of each of its operations processing times by a
tightness factor. The tightness factor «; represents the amount of calendar time
job J; is given relative to its own total processing time and is drawn from a uniform
distribution whenever a job arrives at the shop floor. The initial time till due of
job J; is set as

O;

TTDM ™ = ;Y ¢ 5, (3.7)
j=1

a; ~ U[1, upper limit], (3.8)

21

Job Shop Scheduling

where TT D8l represents the time till due of job J;, O; represents the total
number of operations of job J;, and t; ; represents the processing time of the j-th
operation of job J;. Finally, the slack time, which is used to regulate the due date
tightness, is a measurement of the amount of extra time a job has available beyond
the time it still needs for processing. Using its definition, the initial slack time of
job J; can be obtained as

Siim'tial — TTDZnitial o WR;L:nitial (39)
= > tij— Y tij on initial condition: x =1 (3.10)
O;
~)Y tis, (3.11)
=
where Si"*l represents the initial slack time, W R4 represents the amount of

work remaining time of job J;, x represents the index of the next operation of job
J;. From (3.11), it is possible to control the due date tightness simply by adjusting
the tightness factor «;. A lower value of a; means that jobs have tighter deadlines
which increases the likelihood of tardiness and makes urgency-aware rules more
impactful. Additionally, a very tight «; can cause all rules to under perform, while
looser «a; values can make the problem trivial to solve, since there are many on
time jobs. Choosing the range for a; balances how hard the problem is going to
be. In this work «; is drawn from a uniform distribution U[1,3], since on average it
produces a slack time equal to the job’s total processing time, as follows

E(anitml) Oél _ 1 th] 2 — 1 Zt” Zt i (3.12)

where E(Sital) represents the expected value of the initial slack time of job J; and
E(a;) represents the expected value of the tightness factor of job J;. It is worth
mentioning that any uniform distribution that has the difference between its limits
equals to two would produce the same effect.

An additional factor that characterizes the dynamic model is its size, represented
by the number of machines M, and the induced complexity of scheduling decisions.
Prior studies indicate that the relative performance of dispatching rules is not
overly sensitive to system size, and that a job shop with six or more machines
can already be considered complex [12]. Complementarily, [56] relates problem
difficulty as the ratio of jobs to machines, suggesting a complex regime when the
ratio exceeds 2.5, and a hard regime for instances with N > 15, M > 10, and a
total number of operations above 200.

In line with [8], we adopt a shop with M = 10 machines. This choice satisfies
widely cited complexity thresholds while remaining computationally tractable

22

Job Shop Scheduling

for large scale simulation. Moreover, the extended simulation horizons used in
both training and testing produce job sets that comfortably exceed the hardness
thresholds in terms of total jobs and jobs to machines ratio, ensuring that learned
policies are exercised under demanding conditions.

Table 3.1 summarizes the dynamic model specifications. This parameterization
balances realism and experimental control: (i) utilization is tuned through the
inter arrival process to stress different congestion regimes; (ii) service urgency is
governed by «;, shaping initial slack and tardiness pressure; and (iii) system size
and simulation horizon jointly ensure a challenging yet reproducible benchmark for
training and evaluating RL-based schedulers.

Aspect Possible configurations settings

Number of machines m = 10

Routing Each job J; has O; = m operations (one per machine)
Processing times tix ~ U[1,50]

Due date tightness «a; ~ U[1,3]

Utilization rates {0.70, 0.80, 0.90}

Dispatch trigger When a machine becomes idle and its queue length > 2
Objective Minimize cumulative tardiness 7Ty

Operating regime Discrete-event, random job arrivals & long-run horizons

Table 3.1: Dynamic job shop parameters and configurations used throughout. Jobs
visit each machine exactly once; processing is non-preemptive; no setups/transfer
times, re-entrance, or rework are modeled. Target utilization rates (70%,80%,90%)
are achieved by tuning the inter-arrival process; processing times are sampled as
tir ~U[1,50]; due-date tightness draws a; ~U[1,3] imply initial slack (c; — 1) 3=, t].
The objective is to minimize cumulative tardiness C'T.

3.3 Dynamic Model Behavior

This section describes how the simulated shop evolves over time under random
job arrivals and machine-level dispatching. It also formalizes the event flow and
decision epochs, summarizes the emergent regime-level patterns observed in long-run
simulations, and discusses their implications for learning-based schedulers.

The environment is driven by a discrete event simulation that considers two
types of events, job arrivals and operation completions. Let Ji;, k € [1,2..., K]
and i € [1,2,...,N], represent the job processed by machine M. Let J* =
[Je1, Jk2,- -, Jrn,] denote the set of all jobs that are queued to be processed by
M., with Ny, representing the number of jobs in My queue and J = [Jy, Ja, ..., Jx]

23

Job Shop Scheduling

represent the set of all jobs. A sequencing decision at machine M, is required
when the machine becomes idle and |J¥| > 2, where |-| denotes the cardinality
operator. These decisions are called active. However, if |J*| = 1, then the decision
is called passive. With this approach, each machine makes a decision, i. e. selects
the next operation, only when there is an actual choice to be made. After the
decision is made, the machine can then process the operation. Then, at operation
conclusion, it becomes idle once again and the decision process is repeated. The
event loop for a machine M}, is illustrated in Figure 3.2, it can be seen that the
event loop considers and inserts arriving jobs on the set of all jobs J. Additionally,
for each machine My, the event loop consists of checking the number of jobs in its
queue, making a scheduling decision and processing the selected operation. Then,
the machine M} propagates the concluded operation and the job moves to the
next machine or exits the system. Finally, the machine can check on its queue for
waiting jobs once again to restart the loop and process a new operation.
At each event time ¢, the system evolves as follows:

1. If a new job J; arrives, it is instantiated with route and operation times. Its
due date is set via the tightness mechanism in Section 3.2, and it enters the
first machine’s queue.

2. Machine M, finishes its current operation. If |[J¥| > 2, an active decision
selects the next operation to process. If |J¥| = 1, a passive decision is made
and the only candidate starts immediately. If |J*| = 0, the machine idles.

3. The job with the just completed operation moves to the next machine in its
route (or exits if finished), potentially triggering new active decisions at other
machines.

It is only when a job is completed that tardiness, the objective to be minimized, is
realized. Since machines decide locally and asynchronously, the eventual T; reflects
a chronological chain of earlier decisions by different machines along the job’s
route. A single dispatching choice at machine M, can affect downstream arrival
times at following machines and induce congestion that only manifests several
operations later, often after other machines have made additional interacting choices.
This delayed and distributed effect underlies the credit assignment challenge in
decentralized learning when developing a scheduling strategy. Credit assignment
refers to the problem of mapping a sparse, delayed, team-level outcome, in this
context, the realized tardiness T; at a job’s completion, back to the specific, earlier
local decisions that produced it, so each machine can update its policy in proportion
to its responsibility.

Moreover, random arrivals and finite processing capacity create alternating
behaviors of congestion and slack across machines. The fraction of active decisions
increases with utilization rate since having to choose among waiting jobs becomes

24

Job Shop Scheduling

Set of jobs J J Set of jobs J*
Insert new job in J No Yes
A
Y Y
Stochastic new job M, makes passive M;, makes active
arrival decision scheduling decision

Process operation

\ 4

Propagate

Figure 3.2: Event-driven evolution of the DJSSP simulation. Exogenous job
arrivals are inserted into the global job set and the appropriate machine queues.
When a machine becomes idle, it makes an active sequencing decision if its queue
has more than one job, a passive decision if exactly one job is waiting, or idles
otherwise. The selected operation runs non-preemptively and upon completion
the job moves to its next machine (or exits), potentially triggering new decisions
elsewhere.

more frequent. However, it tends to decrease as the number of machines grows
due to the work being spread more evenly across stations. Both the tardy rate
(number of tardy jobs over total number of jobs) and the average tardiness increase
with the utilization rate due to a collateral increase in congestion. Although when
comparing with the number of machines, a non-monotonic behavior is observed.
More machines reduce per-station congestion, but also create more places to queue

25

Job Shop Scheduling

and more overhead. The balance of these effects makes both the tardy rate and
average tardiness non-monotone in the number of machines. Finally, even at
moderate loads, non-negligible tardiness appears when arrivals meet busy machines
since slack time is consumed while a job waits for service, even if scheduling choices
were reasonable.

This dynamic behavior imposes structural requirements on any scheduler, re-
gardless of how the underlying control problem is solved. First, decisions occur
at irregular, event-driven epochs—precisely when a machine becomes idle with
|J¥| > 2, so the problem is naturally a semi-Markov decision process (SMDP), not
a fixed-time-step MDP. Therefore, Policies should be defined on events rather than
clock ticks. Second, the action set is variable and instance dependent: at each
machine, it is the current queue, which changes in size and composition over time.
Algorithms must handle masking of invalid or absent actions and compare candi-
dates on a common scale. Third, effective policies exploit locality and symmetries,
sequencing depends on features of the few top candidates in a queue, and invariance
to job permutation should be respected. This argues for representations that
are size-agnostic and permutation-aware with parameter sharing across machines.
Fourth, objectives are sparse and delayed, a job’s tardiness C'T; is realized only at
completion after many interacting decisions along its route, so any method needs a
principled way to attribute outcome responsibility along a job’s chronological path.
Finally, since decisions are triggered by machine-idle events, the scheduler must
deliver low-latency choices even under high utilization, which favors policies that
evaluate quickly at run time.

Within this landscape, reinforcement learning is one practical way, though
not the only way, to solve the induced SMDP. Exact dynamic programming is
intractable due to the enormous state space (asynchronous queues across machines,
due-date states, etc.) and variable action sets. Rolling-horizon Mixed Integer Linear
Programming approaches can encode lookahead and side-constraints, but they
often incur nontrivial solve times at each event and require careful re-optimization
under stochastic arrivals and disruptions. Dispatching rules are extremely fast
and interpretable but either rely on fixed templates or require manual tuning
to changing regimes. RL offers an amortized alternative: heavy computation is
shifted to simulation-based training, yielding a policy that maps state to action
rapidly at deployment. Moreover, the event-driven SMDP formulation aligns well
with RL design. Decentralized agents with parameter sharing exploit machine
exchangeability while keeping inference local. Invalid or absent actions are masked
so only feasible jobs are ranked. Experience is stored and updated along each job’s
chronological path so that sparse, completion-time tardiness can be shaped into
learnable signals. Hierarchical extensions can place slower, global decisions above
fast local sequencing to balance agility and schedule stability. RL is adopted here
because it meets the latency and adaptability requirements of the dynamic shop

26

Job Shop Scheduling

while leveraging simulation to learn policies that generalize across tightness and
routing variability. Nonetheless, it complements rather than excludes alternatives

and can be hybridized with rule-based priors or rolling-horizon safeguards when
beneficial.

27

Chapter 4

Methodology

Considering the dynamic job shop model defined in Section 3, a MARL scheduler
was built by [8] to solve the scheduling problem. In this reinforcement learning
approach, each machine acts as an autonomous agent trained to minimize cumulative
tardiness under random job arrivals. A CTDE scheme with parameter sharing was
adopted to mitigate non-stationarity during learning. Experience was structured
using a chronological joint action view with knowledge based reward shaping so
that realized tardiness can be attributed to the actions that caused it, mitigating
the credit assignment issue.

This chapter also extends the MARL framework to a hierarchical setting. Em-
pirically, the analysis with classic dispatching rules suggests that composite rules
such as PTWINQS and CRSPT achieve strong win rates under moderate and high
utilization levels. Motivated by these findings, this chapter proposes a Hierarchical
Multi-Agent Reinforcement Learning (H-MARL) approach that leverages a high
level meta policy to select or blend such modes into the scheduling strategy. At the
same time, low level decentralized agents perform job sequencing decisions guided
by the meta policy, preserving the chronological credit assignment developed by
the reward shaping mechanism introduced in Section 4.3.

DJSS features long decision horizons, asynchronous events, sparse and delayed
rewards (tardiness realized only at completion), and decentralized interactions
among machines. Considering such settings, traditional learning, whether single-
agent or multi-agent, often struggles with exploration, credit assignment, and
non-stationarity. In this context, Hierarchical Learning (HL) is especially useful,
since it addresses these issues by introducing abstraction levels. Higher levels of
abstraction are responsible for selecting modes, goals, or extended options, while
lower levels of abstraction execute the induced sub tasks over multiple steps [43, 57,
50]. For DJSS, this allows a better understanding of the current job shop state and
enables more informed sequencing decisions, improving stability and responsiveness
under volatility.

28

Methodology

The remainder of this chapter first specifies the RL framework in Section 4.1,
then it discusses the Minimal Repetition state representation in Section 4.2. It
proceeds to explain how each agent’s reward is constructed in Section 4.3. Then,
Section 4.4 transitions to the HL approach and states how it differs from more
conventional learning techniques. Section 4.5 discussess how HL is inserted in the
context of the DJSSP. Section 4.6 contains a detailed explanation of how the high
level state and low level states are defined, while Section 4.7 details the reward
mechanism for all hierarchy levels.

4.1 MARL Framework

In the context of this work, the task is fully cooperative. Which means that there
is a single team objective among all agents, minimize cumulative tardiness. This
goal is achieved in a decentralized machine environment, since the shop is modeled
as a multi-agent system where each machine contains an agent that decides the
next operation locally. Each agent primarily sees its local queue features and few
limited information is shared only to “augment observability”. Moreover, agents
are not required to learn a communication protocol, so every agent has only a
partial observation of the complete state. Finally, state transitions depend on each
agent’s decisions, introducing joint-dynamics and multi-agent non-stationarity. This
scenario, a fully cooperative multi-agent task, alongside with all these features, can
be described as a Decentralized Partial Observable Markov Decision Process [58].

Considering that each machine acts with partial information while the environ-
ment’s next state and reward depend on all machines’ choices, i. e. depend on the
joint dynamics. Further considering that, from the perspective of any single agent,
policies of other agents keep changing during learning, making the world appear
non-stationary. A CTDE paradigm with shared network parameters is adopted to
solve this situation. This is achieved by giving learning algorithms access to richer
information at training time while respecting the deployment constraint that deci-
sions must be taken locally and asynchronously with only local observations. This
is achieved by leveraging two steps: training and execution. At the training step, a
centralized critic evaluates the global shop state and on teammates’ observations
and actions, while at the execution step, no centralized controller is required since
actors use only their local inputs and act asynchronously. Figure 4.1 illustrates
how the CTDE paradigm works.

Figure 4.1 depicts CTDE. On Figure 4.1a, during training, all agents interact
with the MARL environment and generate trajectories of local state observations
sii, actions a;; and rewards rj, typically, in a fully cooperative team setting
Tei = Ttj, Vi,j. A policy network with shared parameters § = [6;,...,60x] maps
each agent’s local observation to an action. The Neural Network block represents

29

Methodology

St1, Tt 0 St Tt at N
Agent 1 0, Agent 1

: Shared Policy i :

: Neural Network Shared Policy H

: L parameters 6 L Neural Network L" parameters 6 H
St.NsTt.N On a1 \L) a, N
Agent N :
g : SENS TN Agent N
a¢ N,
L

Y
MARL environment MARL environment

(a) CTDE Training Step. (b) CTDE Execution Step.

AA

Figure 4.1: Centralized Training with Decentralized Execution (CTDE). Training
(left): all agents interact with the MARL environment and a shared policy is
updated using a centralized critic that has access to global state/action information,
mitigating non-stationarity under partial observability. Execution (right): the
learned parameters are deployed read-only; each machine/agent selects actions using
only its local observation, asynchronously and without inter-agent communication
or gradients.

a batched forward pass of my(s;) that produces the joint action vector a;. The
environment applies joint dynamics and returns the next observations and reward
signals. Learning signals derived from each agent’s experience (e.g., policy-gradient
terms, advantages, TD errors) flow back as contributions that are aggregated to
update the single shared parameter set 6. In Figure 4.1b, at execution time, the
learned parameters are respectively transferred to every agent and used read-only.
Each agent now acts purely on its local input s;; to produce an action a;;. There
is no centralized controller, no gradient flow, and no requirement for inter agent
messaging. The environment collects the joint actions, advances one step, and
returns the next local observations, closing the decision loop.

This separation is exactly what CTDE promises, a centralized learning critic that
stabilizes learning under partial observability by lowering target variance, leveraging
a centralized value function over the global shop state. It also mitigates non-
stationarity by conditioning the centralized evaluator on every agent’s observations
and actions so that targets shift less as policies evolve. Credit assignment is
improved because centralized critics can attribute value to joint behavior even with
a shared global reward. Finally, it remains deployable in practice since the learned
actors at runtime consume only their respective local inputs available on the shop
floor.

30

Methodology

4.2 Minimal Repetition State

Using neural networks, deep policies and value functions, all of which require
inputs and outputs of fixed dimensionality, as the basis of the development of a
scheduling strategy raises a contradiction. In a dynamic shop floor, each machine
faces a variable number of candidate jobs, therefore, a variable input space size,
making the contradiction explicit. A common workaround is to compress the
queue into aggregated statistical descriptors (e.g., means or histograms), but such
abstractions blur extreme cases, such as very urgent or very long jobs, and break the
one-to-one correspondence between input features and selectable jobs. Conversely,
restricting experiments to fixed-size instances defeats the purpose of modeling an
open, event-driven system with arbitrary arrivals. Under this scenario, a desired
state space representation must:

1. Preserve job-specific information for candidates under consideration.
2. Maintain a fixed input/output size for the neural networks.

3. Provide a one-to-one mapping from input slots to executable actions.
4. Avoid unnecessary duplication and keep a consistent slot schema.

In order to make it possible to consider variable queue lengths with fixed-size
neural networks, while respecting all four features, a minimal-repetition (MR) state
representation was built by [8].

In order to define the amount of jobs needed to be considered when building
the state and defining the proper input size, a behavioral simulation of the job
shop model was conducted. It considers FIFO as sequencing rule and Table 4.1
shows the ratio between the number of decisions when there are 1, 2, 3, 4, 5 and
above jobs in a machine’s queue and the total number of decisions. Results in
Table 4.1 consider a simulation of the dynamic job shop considering 100 simulation
runs, with each run lasting for 2000 time steps, under all three levels of utilization
rates (70%, 80%, 90%), all machines using First-In-First-Out sequencing. It can
be seen that even at the highest load of 90%, only 6% of decisions happen with 5
and above jobs. Therefore, the MR state representation builds a state space that
covers four jobs.

MR state representation leverages four well known and established sequencing
rules to select optimal candidate jobs to extract information and build the state
space. The rules are SPT, LWKR, MS, WINQ), and each one of them focuses
on a different aspect of a job to guarantee that a candidate job has at least one
feature that makes it more suitable or of a higher priority than other jobs. Beyond
the candidate job information, agents share a small set of data to improve what
each one can observe. To support information sharing in the system, three helper

31

Methodology

Number of jobs in queue
1 2 3 4 | 5 and above
70% | 0,64 | 0,17 | 0,10 | 0,05 0,04
Utilization rate | 80% | 0,61 | 0,18 { 0,11 | 0,05 0,05
90% | 0,57 | 0,19 | 0,11 | 0,07 0,06

Table 4.1: Share of machine-level sequencing decisions by queue length and
utilization level. Values are ratios relative to the total number of decisions in each
scenario; active decisions occur when the queue has two or more jobs. Aggregated
over 100 runs of 2,000 time steps with FIFO dispatching at all machines. Even
at 90% utilization, only 6% of decisions occur with five or more jobs waiting,
motivating an MR state with four candidate slots.

variables are introduced and to build the state five features of each candidate job
are extracted. Table 4.2 depicts each of these variables and features.

Name Definition Condition

SAM,; availability time of the machine that will handle its helper & feature
next operation

CQ; amount of time J; has already waited in its current helper & feature
queue

NA, for machine M, represents the remaining time until helper
the next job arrives

tik job’s own processing-time cost, which also represents feature
the extra delay it would impose on all other jobs if
selected

WR; minimum remaining time to completion, indicating feature
how effectively the current system congestion might be
alleviated

S; slack time, used to measure how urgent the job is feature

Table 4.2: Helper variables and per-job features used to build the Minimal-
Repetition (MR) state. SAM; (next-machine availability) and C'Q; (time already
waited in the current queue) are both shared as helpers and included as features;
N Ay, (time until the next job arrives at M) is a helper only. For each candidate job,

the feature vector [ti,k, WR;, S;, SAM;, CQJ is used; these rows, plus an arriving-
job row, compose the 5x5 MR state tensor consumed by the policy network.

Each variable in Table 4.2 captures a complementary facet of local or downstream

32

Methodology

congestion in time units. For a job J; currently waiting at machine Mjy, t; 5/, denotes
its processing time on M} and acts as the immediate service-time cost as well as the
opportunity cost imposed on all other jobs if J; is selected (the basis of SPT). The
remaining-work term W R; aggregates the processing times of all yet-to-be-executed
operations for J;, smaller W R; indicates that scheduling J; now is more likely to
release it from the system sooner, thereby easing global WIP (the intuition of
LWKR). Job urgency is measured by the slack S; = (D; — NOW) — W R;, i.e., time-
to-due-date minus remaining work, low or negative .S; flags imminent or inevitable
tardiness and motivates prioritization (MS). Two quantities are included, both as
features and as lightweight shared “helpers.” The first, SAM;, is the estimated
availability time of the successor machine that will process J;’s next operation,
smaller SAM; suggests a receptive downstream station and encourages choices that
avoid pushing work into future bottlenecks (WINQ-style look-ahead). The second,
CQ;, is the elapsed time J; has already spent waiting in the current queue at M,
providing the policy with recency /fairness context that correlates with tardiness
risk under congestion. Finally, N A is a helper, not a selectable feature row, giving
the remaining time until the next job is expected to arrive to My, it informs the
arriving-job context row so the agent can anticipate load, trading off immediate
service against impending work to reduce idleness and resequencing.

Algorithm 1 is invoked online at every machine-level sequencing epoch both
during training rollouts and evaluation. It is triggered whenever M) completes an
operation or a new arrival changes the local feasible set. Given the local queue
J%, the current machine-availability Ay, , the helper N Ay, and a fixed candidate
budget K=4, the procedure assembles the observation consumed by the policy at
that instant. It initializes an empty state tensor s; (to be reshaped to 5x5 at the
end) and, for bookkeeping, maintains an action mask m and a slot—job map g
(useful for logging and credit assignment). The first stage fills the candidate slots
with distinct jobs when available: for slot ¢ € {1,..., K}, the rule r = R[c] (SPT,
LWKR, MS, WINQ, in order) selects the best job among the yet-unassigned set U,
with ties broken by earliest due date and then FIFO arrival. For each selected job,
the corresponding feature row [t;x, WR;, S;, SAM;, CQ),] is appended to s;, and
the slot is marked actionable if |J*| > 2.

If fewer than K rows were obtained (i.e., |J*| < 4), a second stage replicates
jobs to keep input dimensionality fixed. The algorithm cycles through the rule
list R and, this time, selects from the full queue J*, allowing the same job to
appear in multiple slots when it satisfies several criteria. Finally, a non-actionable
arriving-job context row is appended, if some upstream job will next visit My, the
row [ty i, W Ry, Sy, An, NAg] for that job g is inserted. Otherwise a dummy row
[0,0,0, Ay, ,0] is used. The result is a fixed 5x5 tensor in which the top four rows
correspond one-to-one with selectable slots (possibly with duplicate entries when
the queue is short), and the fifth row provides look-ahead context to discourage

33

Methodology

myopic dispatching into imminent congestion.

Having built this state representation, the action space acts over it. Each action
targets one of the four candidate slots in the top rows of the 5 x 5 matrix. Since
jobs can be replicated when the queue is short, multiple slots may point to the
same job. The agent processes the slot with the highest state—action value, and
over time it learns a direct mapping from job-specific features to job selection.

4.3 Reward Shaping Mechanism

Learning signals for event-driven DJSS are fundamentally different from those
in short-horizon, episodic tasks. The objective of reducing cumulative tardiness
emerges from long chains of interdependent, asynchronous decisions. Feedback is
not an immediate win/loss or dense per-step score. Instead, the relevant signal,
tardiness, materializes only when a job completes, long after the local decision that
set parts of that outcome in motion. This makes temporal credit assignment the
central challenge.

Following the slack-based view introduced by [8], each job’s initial slack is
treated as a finite time budget that is gradually consumed while waiting in queues.
If, by completion, the accumulated consumption exceeds the initial budget, the
excess equals the observed tardiness. Shaping the reward around this overspend
aligns the agent’s incentives with the objective. Decisions that inflate queueing
delays for urgent jobs receive stronger penalties, while inessential waiting under
low criticality is down weighted. To make these penalties causally meaningful,
the learning pipeline must also align the timing of reward assignment with when
consequences are revealed.

Unlike standard MARL benchmarks where agents advance in synchronized
rounds, each agent acts at step t, receives immediate feedback at t+1, and stores a
complete transition tuple. Scheduling on a shop floor unfolds in a fundamentally
different rhythm. Here, every decision is tied to a particular job’s trajectory, and
the true impact of that decision becomes visible only when the job exits the system.
This event-driven coupling between decisions and their eventual outcomes can be
described as a chronological joint action perspective.

This view has implications for both the state-transition bookkeeping and the data
that enter the replay buffer. During rollouts, the system must retain incomplete
transitions, states and actions without rewards, keyed to the corresponding job
until completion reveals the appropriate feedback. Practically, this calls for a
parallel, job-indexed pipeline that buffers partial records and later finalizes them
by backfilling the shaped penalties. Figures 4.2 and 4.3 illustrate the contrast:
panels 4.2a and 4.3a depict synchronous MARL with immediate rewards, whereas
panels 4.2b and 4.3b show the asynchronous, chronological process with deferred

34

Methodology

Algorithm 1 Construct Minimal-Repetition (MR) state for machine M},

Require: Local queue J*; machine availability Ay, ; helper N Ay; candidate budget

K=4; rule list R = [SPT, LWKR, MS, WINQ]

Ensure: State tensor s; € R°*®; action mask m € {0,1}*; slot—job map g €

10:
11:
12:
13:
14:

15:
16:
17:
18:
19:
20:
21:
22:

23:
24:
25:
26:
27:
28:
29:

(IFu{L})?

s+ [] > rows will be appended; final shape is 5 x 5
m <« [0,0,0,0] > mask
g« [L, L, 1 1] > slot—job mapping
U+ J* > U is the set of unassigned jobs
c+1 > ¢ indexes candidate slots

Stage 1: fill with distinct jobs when available (no replication).
while U # () and ¢ < K do

r < R]c] > use rule aligned with the slot index
J* «+—argmin;cy Key(j,r) > ties: earliest due date, then FIFO arrival
Append [tj*,k‘a WRJ'*, Sj*, SAMj*, OQ]'*} to s,
gle] «j*
mlc] < 1[|J*| > 2] > only actionable if at least two jobs exist
U« U\{j"}
¢+ c+1

end while

Stage 2: if fewer than K rows, replicate by cycling rules.
while ¢ < K do
r < R[((c—1) mod 4) + 1] > cycle SPT-LWKR—MS—WINQ
J* < argmin;egr K ey(j,r) > replication allowed
Append [tj*,k, WRje, Sje, SAM;., CQJ.*} to s
gl < j*
mlc] < 1[|J¥| > 2]
¢+ c+1
end while
Arriving-job context (non-actionable fifth row).
if HASUPSTREAMJOBNEXTTO(M}) then
Let g be that job
Append [tw, WR,, Sq, Awm,s NAk} to s,
else
Append [0,0,0, AMk,O} to s;
end if

return s;

35

Methodology

attribution used in scheduling.

t1 ty ty ty

] T T
| |
| |
| |
| 1
| I
| |
|

\4

Synchronous Agents block

St1,Tt1 agy Sty,1, Tty 1 Q1
Agent 1 Agent 1
a,
Agent 2 - 155,25 Tty,2 [
L) + > Agent2
—>t Ll

|
St3,31Tt,3 Aty3
il :| » Agent3

aty,1
Sty,NsTty,N| Ay N :
..... > AgentN Qty,N.
Asynchronous Agents block

MARL environment <
(a) Common MARL: syn- O

chronous block updates.

81,2,Tt,2

*
T
|
1
|
!
!
I
I
|
I
I

MARL environment

(b) Scheduling MARL: asynchronous, chronological joint
action.

Figure 4.2: Agent—environment interaction patterns. (a) Common MARL with
synchronous joint steps. (b) Scheduling with asynchronous events; the effective
“joint action” unfolds chronologically as machines become eligible.

In Figures 4.2 and 4.3, the contrast between the MARL and the dynamics of a
job shop is illustrated, and it shows why a different replay pipeline is required. In
conventional MARL, Figure 4.2a, all agents act synchronously at step ¢, yielding a
joint action A; = {%1 ...a¢ n| and an immediate joint reward R; = |r¢1 ... 7%, N} . In
scheduling problems, Figure 4.2b, machines (agents) make decisions asynchronously
as their queues become eligible, thus the joint decision is realized as a chronological
sequence a ~¢,, and the true outcome that occurs along a job’s route and is only
revealed upon completion. Consequently, the classic construction, Figure 4.3a,
stores complete transitions (S, Gk, St+1.k, rx) With immediate rewards. The
proposed scheme, Figure 4.3b, first buffers incomplete transitions (s; g, @, St41.1)
without reward, then, when a job finishes, backtracks along its operation sequence
to compute each agent’s reward contribution, fills in r;;, and finally commits
complete experiences to replay. This chronological joint action, alongside with a
delayed reward attribution, better matches the causal structure of the shop floor
and mitigates the credit assignment issue.

To respect the chronological-joint-action view, a queue-time-based shaping rule
is adopted. This shaping issues rewards only at job completion, when the full causal
chain is known. At that moment, the job’s production record is traversed backward
and the overall outcome is redistributed across the machines that handled it in
proportion to the queueing delays their decisions induced.

36

Methodology

e ™
At time ¢, agent k observe

state s¢k and take action
Atk

Y

~ . J
Attime ¢, agent k ¢
observe state s; x and 4)
take action a; Agent updates to next
/ timestamp, t + 1
¢ N\ J
(N\ ¢
Environment updates to e _ N
next timestamp, ¢ + 1 Store experiences
L) (8t,k> Gtk St41,k) in the
incomplete replay memory
v N)
e a ¢
Agent k receives 4) ()
No) . Yes
reward 7 All operations of job J are »| Compute job J's tardiness
S) complete? d J
¢ \ J \ J
) v
Store experiences e N
(8t ks Qs Ttk St1,) N Backtrack J's route and give
the replay memory) each agent k its reward r
N J
(a) Classic MARL g |
transition/replay: im- Complete the experience
diat d: (Stks Gt oy St41,) With the
medilate reward; com- reward and store in the
plete tuples. __complete memory replay)

(b) Scheduling replay: buffer incomplete tuples; backtrack
at job completion to assign shaped rewards.

Figure 4.3: Transition and replay pipelines. (a) Classic immediate-reward tuples.
(b) Buffering/backtracking to align rewards with the job that reveals the conse-
quence.

The shaping respects five design commitments. First, urgency modulates penal-
ties: the slack observed on arrival is smoothly mapped to a criticality weight
f € (0,2) via a saturating (sigmoid-like) transform, with a sensitivity parameter
0 tuning how sharply § grows as slack shrinks, so that detaining low-slack jobs
is penalized more strongly. Second, to avoid punishing delays outside the agent’s
control, queue-time accounting begins only when a job becomes selectable at a
machine. Only waiting attributable to the actionable decision is charged. Third,
since a local sequencing choice also propagates downstream, a fraction of the next
station’s waiting is “shifted back” to the current decision. A coefficient o = 0.2
is used to internalize part of the congestion the decision creates at the successor
and thereby discourage pushing work into already loaded queues. Fourth, only

37

Methodology

late completions are penalized: every station that processed a tardy job receives a
non-positive contribution, whereas early or on-time jobs yield zero reward, avoiding
the common pitfall of incentivizing gratuitous earliness that can reduce tardy
incidence while worsening aggregate tardiness. Finally, for numerical stability and
emphasis on harmful tails, the penalty scales quadratically with the reconstructed
waiting time and is normalized by a factor ¢ so that most shaped rewards fall in
[—1,0], providing well-behaved gradients while preserving the intended preference
ordering.

The complete procedure is triggered only when a job J; finishes, because that
is the first moment its true consequence, tardiness, is known. If the tardiness is
equal to zero, no penalties are issued and a zero vector of length equal to the job’s
number of operations O; is returned. If the job is late, the algorithm walks through
each operation j = 1,...,0; and reconstructs the portion of delay attributable to
the sequencing decision taken at that machine by operating over each operation’s
queue time @;, j. The reconstructed waiting time RQ;; = (1—a)Qi; + aQ; i1
transforms the queue. Each decision is penalized with its own queue time and a
small shift-back fraction « of the next station’s queue time, attributing part of
downstream congestion to the upstream decision that set that arrival time. This
redistribution internalizes part of the downstream congestion created by choosing J;
now rather than an alternative, discouraging short term pushes into already-loaded
buffers.

Each reconstructed wait is then modulated by the job’s urgency at the time it
arrived to that station. The mapping f=1— (Sf /(1571 +5)) smoothly compresses a
wide slack range into the interval (0,2). Large positive slack yields 8 ~ 0 concurring
in mild or no penalty for delaying a comfortable job. Slack near zero sits around
£ =~ 1 providing neutral scaling, and negative slack drives § toward 2 driving a
strong penalty for detaining already endangered work. The shaped contribution is
a negative quadratic in the scaled wait, R; j = — (6 RQ;;/ ¢22, which emphasizes
harmful tails and de-emphasizes small, routine waits. Finally, values are clipped
to [—1,0] for numerical stability. The net effect is a sparse, delayed signal that
penalizes only late jobs, attributes blame to the specific machines/agents that
caused the waiting, weight the penalty factor by how critical the job was at the
time, and lightly “looks ahead” via « so local choices account for the congestion
they induce downstream.

4.4 Hierarchical Learning

HL decomposes the problem it is trying to solve into multiple levels of abstraction.
A common two-level scheme consists of a High-Level agent (HLA) acting in an
abstract space, and one or more Low-Level Agents (LLA) at every decision point,

38

Methodology

conditioned on the current high-level agent directive. Formally, when the HLA
chooses an macro-action o at state s; that persists for 7 steps. A macro or
extended action is defined by an intra-option policy m,(a | s) and a termination
rule 3,(s) € [0,1]. The process is a semi-Markovian Decision Process (SMDP) [43,
59] and the corresponding backup is

T—1
Q(s1,0) =E|> Vro+7 max Q(st4+,0) |, (4.1)

k=0
where Q(s;,0) represents the option value function, i. e. the expected discounted
return when starting in s; and choosing the macro-action o, and following the
specified high-level policy. s; represents the state at high-level decision at time
t. The number of low-level steps the option o executes before terminating is
represented by 7, which is governed by the environment dynamics and 3,. The the
reward at low-level step ¢ + £ is denoted by 71k, it is the resulting reward k steps
after the choosing o, while v represents the discount factor. Finally, s;,, represents
the state when option o ends and the next high-level choice is made. The SMPD
backup given by (4.1) compresses long range consequences into fewer decisions [43].

HL operationalizes temporal abstraction by letting the HLA pick options that
commit LLAs to consistent local behavior until a termination condition is met. In
the options framework, each option o is defined by an initiation set Z, C S, an
intra-option policy m,(a | s), and a stochastic termination rule (,(s) € [0,1] [43].
When the HLA samples o ~ (- | s;) with s; € Z,, the environment evolves for 7
low-level steps under m,, and the high level updates only at option boundaries via
the SMDP backup in (4.1). This abstract time scale structure enables to compress
long range consequences into fewer high-level decisions while preserving reactivity
at the low level.

Beyond temporal abstraction, HL enables structural abstraction through state
and action factoring. The HLA reasons over compact, slowly varying context, such
as system congestion, due-date tightness, bottleneck load, while LLAs observe rich,
local features needed to make feasible and responsive choices. Learning can proceed
off-policy with SMDP Q-learning at the high level and standard actor—critic or
value-based updates at the low level. End-to-end variants such as Option-Critic
differentiate through 7, and 5, to discover options automatically [44], while goal-
conditioned designs, such as [45, 46, 60] pass subgoals or embeddings that LLAs
optimize with shaped or intrinsic rewards [46, 45, 60].

For a scheduling context, the abstraction is natural: the HLA selects a mode, for
instance expedite tardy jobs, balance WIP across bottlenecks, minimize setups, and
LLAs at individual machines convert that mode into concrete dispatches subject
to local constraints. Termination can be event driven, for instance, when lateness
backlog drops below a threshold, or time-based, reevaluating every H minutes. This
separation yields low decision latency, once LLAs evaluate simple mode conditioned

39

Methodology

scores. Additionally, HL promotes coherent cross machine behavior, since all LLAs
are conditioned on the same intent. Finally, it also provides robustness, due to the
HLA being able to switch modes as context drifts.

Approach Decision Drift System-level — Labels Horizon Re-solve
PP Latency Adaptivity Coordination Needed Handling Frequency
Dispatching Very low Low Limited None Short-horizon None
Rules
Metaheuristics High Medium High None Long-horizon Frequent
Superylsed Low Medium Limited Required Short-horizon Retra.m
Learning on shift
Flat RL Continuous
MARL Medium-High ~ Medium Medium None Long-horizon training
Hierarchical . . . Continuous
R, (HL) Low High High None Long-horizon training

Table 4.3: Qualitative comparison of shop-floor control approaches. Columns
summarize decision latency, adaptation to distributional shift (drift adaptivity),
system-level coordination, need for labels, ability to handle long horizons, and how
often re-optimization /re-training is required. Higher is better for “Drift Adaptivity”
and “System-level Coordination”, while lower is better for “Decision Latency” and
“Re-solve Frequency”.

Under a scheduling context Table 4.3 summarizes how HL compares to other
approaches. Dispatching rules are unmatched for speed but provide weak cross-
machine coupling [47, 9, 48]. Metaheuristics, on the other hand, can coordinate
globally but incur re-optimization delays that are ill-suited to highly dynamic
environments. Supervised policies replicate historical “good” choices yet struggle
when problem size, routing, or product mix evolves and do not address delayed
consequences. Flat RL/MARL improves horizon reasoning but pays a heavy
exploration and credit assignment tax at primitive time scales [34, 51, 35].

HL occupies a sweet spot, it amortizes long horizon reasoning and communicates
intents, while LLAs keep per-decision latency comparable to rules. Since feedback
at the high level aggregates across many low-level steps, exploration and credit
assignment are easier, and shaped or intrinsic rewards align local actions with
system objectives [29]. These properties make HL a particularly good fit for
dynamic job shop control, where fast, local feasibility must coexist with global,
long-horizon performance.

The DJSSP exhibits three properties that make it natural to target with HL.
First, it contains asynchronous decisions over a long horizon coupling. This means
that machines act at different times, yet tardiness depends on a chain of decisions

40

Methodology

across machines. A HLA that sets intents promotes consistency across these
asynchronous local choices. Second, feedback is sparse and delayed, tardiness
materializes only at completion. Nevertheless, a LLA can receive intrinsic or
shaped rewards aligned with the current mode, while the HLA optimizes longer
horizon metrics [29]. Third, there is context drift and heterogeneity. Utilization
rate and product mix change over time, so skills specialized for “high congestion”
vs. “low congestion” or “tight” vs. “loose” due dates can be reused and recombined,
improving sample efficiency and robustness [50, 60, 45].

4.5 Hierarchical Framework

A HL framework that considers two levels of abstraction was designed to develop
sequencing strategies. It was built considering different levels of abstraction ideas
in hierarchical RL [43, 57, 50, 44, 46, 45, 60], and leveraging the best performing
Heuristics (PTWINQS and CRSPT). A HLA is responsible for analyzing the current
state of the job shop modeled as in Section 3 and set the mode of operation of the
LLAs. Then, each LLA is responsible for making sequencing decisions under the
assigned mode of operation. When assigning an operation mode to a LLA, the
HLA chooses one among three possible options: (i) PTWINQS, (ii) CRSPT or (iii)
MARL. In this framework, there is only one HLA for the entire shop floor, while
there is one LLA per machine.

Agents in all hierarchy levels contain neural networks that are trained leveraging
RL techniques. After a brief warm-up period that fills the replay buffers with
exploratory experience, the HLA and the LLAs learn simultaneously and influence
each other’s behavior. During the warm-up, both levels of hierarchy explore the
environment gathering experience of early environment interaction data. Later,
this experience is randomly sampled, which is done to reduce the bias introduced
by considering sequential experiences. Concretely, the HLA observes a compact
representation of the job shop state and at each decision point, it selects a mode of
operation for the LLAs among PTWINQS, CRSPT and MARL. Which is done
via an e-greedy policy and stores the transition (s/*, af'%, sf4, r{1%) in a high level
replay buffer. At the low level, each machine hosts a LLA that makes sequencing
choices under the mode prescribed by the HLA. LLAs follow the CTDE scheme with
parameter sharing as defined in Section 4. All machines write their experiences to
a single replay memory and are served by one shared value network whose outputs
score up to four candidate jobs extracted from the local queue, while actions are
chosen e-greedily. Figure 4.4 illustrates how the CTDE paradigm is extended to
accommodate both hierarchy levels.

Figure 4.4 represents the extended CTDE scheme to two hierarchy levels for
DJSS. In the Training Step, Figure 4.4a, the HLA observes an abstract shop

41

Methodology

SHL_pHL
t 0Tt High Level P afll

Agent St High Level .
Agent At

HL
ajy

S41,T : >

LT o Level 0, . 861,781 a0t

Agent 1 AN o Low Level | *

Agent 1
v
: Shared Policy Shared Neural Shared Neural Shared Policy :
: parameters 6 Network Network parameters 0

- a1 [ov
St THN Low Level On T |: . :|

Agent N St,N, Tt N

— ai N

MARL environment MARL er

(b) CTDE HL extended Execution Step.

KA

(a) CTDE HL extended Training Step.

Figure 4.4: CTDE extended to a two-level hierarchy for DJSS. Left (training): the
High-Level Agent (HLA) observes an abstract shop state sf, selects a mode vector
[al}, ..., aRY], and conditions the shared Low-Level network used by per-machine
LLAs, each LLA uses a local state s;; and shaped reward r,;. Right (execution):
learning is disabled and the same policies act in inference. Shared parameters 6

enable fast, decentralized dispatching coordinated by a common global intent.

state s;'* and its aggregated reward r{'", selects a mode vector [a{'}, ... a}}]

and broadcasts it to condition the shared low-level network. Each LLA, one per
machine, supplies its local state s;;, receives shaped reward r;;, and—via the
shared value network with parameters ¢ chooses a dispatching action a;,;. The
MARL environment executes the actions and returns next states and rewards. In
the Execution Step, Figure 4.4b, learning is disabled and the same policies are used
in inference. The HLA continues to issue the mode leveragin [af}, . ,a%ﬁ], LLAs
act with the frozen shared parameters 6, and the environment advances. This
architecture yields fast, decentralized dispatching conditioned on a global intent,
while learning is centralized and sample efficient via shared representations.

4.6 Hierarchical State Representations

At each decision point ¢, the HLA observes a compact job shop state representa-
tion and selects a sequencing mode for the LLAs from one of the possible options
((i) PTWINQS, (ii) CRSPT, (iii) MARL). The chosen mode can be applied either
globally to all machines or individually to each, depending on how the HLA is
set to handle the DJSSP. In this way, there are two possible representations for

42

Methodology

the high level state. It is worth mentioning that once training starts, it is not
possible to change between setting the HLA to apply the operation mode globally
or individually. When set to apply the operation mode globally, the state vector g;
contains only descriptive information that summarizes capacity usage, workload
balance, due-date pressure, downstream congestion, and realized lateness on the
current state of the job shop floor. However, when set to apply the operation
mode individually to each machine, g; is appended by the machine’s i vector of
local descriptive information d;; to produce the state vector s;; = [gt dm}. The
latter situation compensates increased state space size by adding extra information,
which is most often meaningful to solve the problem.

The compact g, aggregates shop wide signals. Using only ¢; yields a single
mode applied consistently across all machines, which enforces coherent behavior.
In homogeneous or lightly unbalanced regimes, a coherent global rule is often near
optimal [47, 9, 12, 48] and trains faster [57, 50]. The augmented s;; = [gt dt,i]
adds local summaries, allowing the HL policy to tailor the mode to each machine
while still considering the global context. This reduces state aliasing at bottlenecks
and improves responsiveness under heterogeneous routing and variable processing
times.

Let M be the set of machines. The HL global vector is

gt = ﬂta ﬂgq)a O-t2(q)7 :u§8)7 pgurgem)a Iug\ViHQ), O-tZ(Winq)a rgtardyq7 (42)

where %, represents the the average utilization up to time ¢, ;{9 represents the
average queue length at time ¢, 02 represents the system wide queue variance

at time t, Mf) represents the mean slack time of jobs in queue at time t, pgurgent)
represents the ratio of urgent jobs in queue at time #, "™ and o2 represents

the system wide average work in queue and variance at time ¢, respectively, finally
r,Et““dY) represents the tardy rate at time t. The reasons for considering these

variables to build the high level state are as follows:

 u; (mean utilization) is a measurement of the shop’s capacity usage. At high
us, due-date pressure typically rises and options that prioritize urgency become
preferable, while at low u;, efficiency-oriented rules are often adequate.

. ugq) and crt2 @ (mean and variance of queue lengths) separate global load from
imbalance. A high variance is a flag for emerging bottlenecks when a balancing
option tends to reduce downstream blocking, whereas a uniformly long queue
landscape calls for system wide expediting.

. uff’) (mean slack) and pg ratio urgent jobs) quantify how tight the due-

date landscape is. When these indicate strong pressure, CR style or slack
aware modes are favored, when pressure is mild, processing time oriented
choices are less risky.

urgent) (

43

Methodology

(wing winq)

o i) and Uf (summarize expected work in the next queues across the
shop, i.e., a one-step look-ahead of congestion propagation. These signals
directly align with PTWINQS reasoning, processing time efficiency tempered
by predicted downstream load, allowing the HLA to switch into a “congestion-
aware” mode before blocking materializes.

ritardY) (tardy rate) closes the loop between high level decisions and realized

performance, giving the SMDP critic a dense, aggregated proxy of long-horizon
cost while low level shaped rewards handle credit assignment within options.

Using only ¢ yields a single mode broadcast to all machines, enforcing coherent
shop-wide behavior, useful in homogeneous regimes and faster to learn. When
heterogeneity is pronounced, augmenting with d,; to form si = [g;, d;;] reduces
state aliasing for the HLA by exposing local summaries at option selection time,
enabling machine specific modes without losing global context.

When selecting modes individually per machine, the global vector g; is augmented
with machine local statistics. Machine ¢ produces the sate vector

Sti = [gt dt,z}) (4~3)

i K 2(q, 8,0 urgent,i wing,? 2(wingq,?
dt,i:{|q§)|, p0D G2ad (o) furgentd) - (winad) q)}’ (4.4)

t) ’) t) t)

where \qt(i)\ is the local queue length, u'™” and p{""#™*") are the local slack mean

and urgent-job ratio, and ™" o219 ummarize downstream workload from
1. This feature selection was motivated by the same reason as in the construction of
gt, however, from a local perspective. The HL input is then either s, = g; (global
mode) or s;; = [gt, d¢;] (per-machine). Finally, a summary of the high level state
is represented in Table 4.4.

When considering either g; or each s;;, a HLA action means to select a mode of
operation. Which results in the high level action space A having cardinality equal

to 3, containing each possible decision mode and being represented by
A= {PTWINQS CRSPT DDQN}. (4.5)

Finally, the low level state representation leverages the same MR construction
described in Section 4. Using this strategy, the low-level state s; stacks four queued
jobs plus a fifth “arriving-job” option as rows, each described by five features.
Constructing a 5 x 5 local queue snapshot in the typical case. When multiple
jobs wait, the four queued rows are populated by selecting distinct candidates via
column wise minimization over the state features to diversify options. If fewer than
four exist, the tensor is padded as done in Section 4.2. The fifth row represents the
best imminent arrival on this machine, enabling the policy to consider intentional

44

Methodology

Symbol Scope Description

\q,gi)| Local Queue length at i

{7 Mean local work content
o) Variance of local work
nae Mean slack at i

¢
guréenf’l) Urgent job ratio
(wing,7) Avg. downstream load

t
o 2wina:0) Var. of downstream load

an Global Mean utilization

MS]’, atQ @ Load & imbalance

) System slack

plureent) System urgency

M?““‘”, J? (wing) Downstream congestion
p{tardy) Tardy jobs ratio

Table 4.4: Local and global features used in the high-level state. Local terms
(indexed by machine 7) describe the queue and downstream workload seen by a
single machine, while global terms summarize shop-wide congestion, urgency, and
performance. The HLA consumes either the global vector ¢; (shared mode) or the

concatenated vector sgi) (per-machine mode).

idleness. An action then maps a selected row to a concrete queue position. It is
worth mentioning that classic dispatching rules operate only on the queued jobs of
S¢, so the arriving-job row influences only the learned policy. Alongside with the
state space, the action space also stays the same as in Section 4.2.

4.7 Hierarchical Reward Design

In a hierarchical scheduler, the high level and low level agents solve different
control problems on different clocks with different levers and visibility, so they
require different rewards to learn efficiently and avoid interference. The HLA acts by
selecting a system mode that shapes macro dynamics. Its feedback must therefore
reflect global outcomes aggregated over a window, such as tardiness, lateness mix,
WIP stability, or a summary of recent LLA outcomes, so that the value of a mode
is identifiable. The LLA acts at every dispatch, directly choosing which job a
machine processes next, if it were trained only on sparse global objectives realized at
completion, without proper treatment, credit assignment would traverse long chains
of decisions with high variance and stall learning. Instead, LLA needs dense, local

45

Methodology

shaping tied to immediate consequences based terms, which reduce variance while
preserving the global optimum. Using a single shared reward either floods HL. with
short-horizon noise (if made dense for LLA) or starves LLA of signal (if kept sparse
for HLA), and it blurs responsibilities so that modes become indistinguishable or
oscillatory. Distinct rewards thus decouple roles: HLA optimizes strategic mode
selection against system level metrics, LLA optimizes fine-grain dispatch under that
mode. Therefore, for the HLA it was considered two possible reward construction
mechanisms, while the LLA counts with a single option to obtain its reward.

In order to minimize the total tardiness observed by the system a naive reward
mechanism was built. This first approach allows the HLA to select, at every
low level decision, the mode by which machines should sequence. At each high
level decision point the naive reward is constructed by aggregating the tardiness
produced system wide. Formally, it can be obtained as

N
rid = =3 Tard;, (4.6)
=0

where Tard; is the realized tardiness of each job i and rf**¢ is HLA reward at time

t. The leading minus sign converts tardiness, a cost we wish to minimize, into
a reward to be maximized by the RL algorithm. This naive approach directly
optimizes the thesis objective by minimizing system wide tardiness.

A second approach to build the HLA reward was still considered. The second
approach tries to leverage the chronological joint reward mechanism described in
Section 4. Instead of attempting to directly increase system wide performance by
minimizing tardiness as the naive one, it chooses an indirect path. By considering
the accumulated latest shaped reward in each machine, this indirect approach can
be defined as

K
T?L = Z R%,Ii‘asm (47)
k=1

where, r;"™ is the HLA reward and RpY,, represents the most recent reward obtained
by machine k, last specifies the recent most reward obtained. In this way, ri'* does
not directly minimize system wide tardiness. However, by passing the most recent
low level signals up to the high level, it makes the high level’s target sensitive to the
machines’ current congestion and urgency. Therefore, it optimizes for congestion
and urgency, indirectly affecting overall tardiness.

When considering the low level agents, the reward shaping mechanism is pre-
served the same as the one discussed in Section 4. Rewards are assigned only after
a job J; completes. Its route is backtracked and each of its operations receives a
penalty proportional to a reconstructed queue time that internalizes downstream

congestion,
RQ;j; = 1-0)Qij + aQijt1, a € [0,1], (4.8)
46

Methodology

where RQ); ; attributes waiting to the decision taken for operation j of job 7. The

shift-back coefficient « internalizes a small fraction of downstream delay created

by the current choice. @); ; is the queueing time observed before operation j and

Qi j+1 is the queueing time observed before the next operation on the job’s route.
Urgency f;; is captured by the job’s slack S;; upon arrival, mapped to a

criticality factor

Sy
1Sijl +0

where S, ; is the slack observed when job 7 arrives to the station executing operation

J (time-to-due-date minus remaining work). The mapping compresses a wide slack

range into f3;; € (0,2). Lower slack values implies in larger 3; ;, more urgent jobs,

while comfortable slack produces smaller f3; ;. The parameter ¢ controls sensitivity.
The per operation reward is then

Bi,j =1 o> 0, (49)

2
ij RQi
ril= - <5 J d)Q vﬂ) , (4.10)
where TzLJL is the shaped reward assigned to the agent that sequenced operation j of

job i, and ¢ > 0 scales magnitudes so typical values lie in [—1,0]. Values are clipped
to [—1,0] for numerical stability. The negative quadratic emphasizes harmful long
waits while de-emphasizing small, routine delays.

Queue time counting begins only when the job becomes selectable on a machine,
and on time or early completions are not positively rewarded to avoid incentivizing
earliness. This shaping yields dense, low-variance feedback that drives agents to
relieve congestion and protect urgent jobs, while remaining aligned with the global
objective of reducing tardiness.

47

Chapter 5

Simulation Results

5.1 Experiment Specifications

Each machine is associated with a RL agent, and all agents share the same neural
network architecture and hyperparameters under a parameter-sharing scheme. The
input features primarily consist of raw time-based quantities, such as operation
processing times t; ; and job slack S;. Since these features naturally extend be-
yond the effective input range of common activation functions, they can aggravate
vanishing-gradient problems during training. Additionally, the state vector itself
lacks temporal ordering or graph connectivity, being simply a collection of het-
erogeneous time measurements. To address these issues, the input features are
first normalized using Layer Normalization, after which the agents learn over the
stabilized representation through a multi-layer perceptron (MLP).

The MLP adopts a lightweight yet expressive design. It consists of six hidden
layers with progressively decreasing widths, structured as 64 x 48 x 48 x 36 x 24 x 12.
Nonlinear transformations are performed using the hyperbolic tangent activation
function, and the network is optimized with stochastic gradient descent enhanced
by a momentum term of 0.9. The optimization objective is defined through the
Huber loss, chosen for its robustness to outliers and stability across varying error
magnitudes. Training begins with a learning rate of 5 x 1073, which gradually
decays to 1073 to encourage convergence toward more stable minima.

From the reinforcement learning perspective, the agents employ a discount factor
of v = 0.95, balancing immediate and long-term scheduling outcomes. Exploration
is guided by an e-greedy policy, with the exploration rate decaying from 40% to
10% as training progresses. Experience replay is used to stabilize learning: the
replay buffer holds up to 1,024 transitions, from which minibatches of size 64 are
sampled to perform updates. The network layout is depicted in Figure 5.1.

A training run simulates 100,000 units of time, while a validation run simulates

48

Simulation Results

1 ©
Hidden Output
FCé6 Layer

o

La%/er

Hidden Hidden FC4

Normal-
ization Hidden Foz Fos

FC1

Input layer 1 &

Figure 5.1: Policy network used by all agents (parameter sharing). The input is
the 5x5 Minimal-Repetition (MR) state flattened and layer-normalized, followed by
an MLP with hidden sizes 64—48—48—36—24—12 (tanh), producing 5 outputs that
score the four candidate queue slots plus the arriving-job slot. A higher Q-value
represents a higher selection preference.

2,000 units of time. Under the three utilization levels, the shop floor receives
2,800, 3,200, and 3,600 job arrivals, respectively, during training and 56, 64, 72
jobs arrivals during validation. In order to better understand the behavior and
responsiveness of the proposed model it was submitted to 30 different training and
validation runs. The one that provided the best validation results was selected.

Running a large number of independent training and validation runs is needed
because both the DJSSP environment and the learning algorithm are inherently
stochastic, which makes single run results unreliable. In the formulated job shop
instance, inter arrival times are sampled from an exponential distribution, processing
times from a uniform distribution, and due-date tightness from a uniform range.
Which when combined with three utilization rate scenarios produce different
realizations instances across runs, and thus different learning signals for each
agent. Beyond environment noise, RL itself adds variability through random
initialization and exploration, yielding performance distributions that are often
skewed, consequently, many seeds are needed to estimate means and variability
faithfully rather than over or under estimating performance from a “lucky” seed.
Empirical RL guidance further shows that confidence intervals become reliable
with roughly 30 runs, achieving a practical balance between statistical stability
and compute cost [61].

Figure 5.3 reports the evolution of the training loss across all training steps
for three utilization rates, when considering the MARL approach. In each panel,

49

Simulation Results

the highlighted curve is the moving-average mean over 30 independent runs (win-
dow=50), and the shaded area represents a 95% confidence interval (CI). At 70%
utilization the loss quickly drops and stabilizes at a low level with a narrow CI,
indicating fast, stable learning in a relatively easier, lighter loaded shop. At 80%
utilization the loss exhibits a pronounced transient rising to a peak around 5000
steps before decaying, while the CI widens during this phase, reflecting variability
as the agent adapts to a busier, more non-stationary queueing process. At 90%
utilization the loss stays higher and oscillatory throughout, and the CI remains
broad, revealing persistent instability and greater sensitivity to stochastic realiza-
tions under heavy congestion. Overall, increasing utilization makes the problem
harder, slows convergence, and increases variability.

Utilization rate=0.70 | Loss mean + 95% ClI Utilization rate=0.80 | Loss mean + 95% CI Utilization rate=0.90 | Loss mean + 95% ClI
(MA w=50, n=30, steps=18010) (MA w=50, n=30, steps=18010) (MA w=50, n=30, steps=18010)

0.200 A
0.1754
0.150 4

0.125 — —

"

2

3 0.100 J 1 WM%
0.075 1 — —
0.050 1 M E ,

[2500 5000 7500 10000 12500 15000 17500 0 2500 5000 7500 10000 12500 15000 17500 [2500 5000 7500 10000 12500 15000 17500
Training step (index) Training step (index) Training step (index)

0.025 1

Figure 5.2: Training loss vs. step under three utilization regimes, considering
MARL approach. Curves show the moving-average mean (window = 50) across
n=30 independent runs; shaded bands are 95% CIs (steps = 18,010). Learning
is fast and stable at 70%, shows a transient and wider variability at 80%, and
remains higher/oscillatory at 90%, indicating increased difficulty and sensitivity
under heavy congestion.

Figure 5.3 reports the same diagnostic for the HL approach that considers
individual operation application mode and tardiness as high level reward. This
result was computed as in Figure 5.3 (moving-average mean with window = 50
across n=30 runs; shaded 95% CIs). At 70% utilization the curve closely matches
the non-hierarchical MARL baseline, showing a rapid drop and a tight CI, indicating
that hierarchy adds little overhead in an already easy regime. At 80% utilization the
transient is clearly attenuated: the peak loss is lower, the decay begins earlier, and
the CI narrows sooner, consistent with the HLA stabilizing WIP and shaping LLAs’
exploration through the mode vector. At 90% utilization the loss remains higher
than at lighter loads but is less oscillatory and accompanied by a noticeably tighter
CI, suggesting improved robustness to stochastic congestion. Overall, injecting a
global intent via the HLA reduces non-stationarity seen by the shared low-level
value network, yielding faster and more stable convergence in medium-to-heavy
traffic while preserving performance in light traffic.

50

Simulation Results

Utilization rate=0.70 | Loss mean + 95% CI Utilization rate=0.80 | Loss mean + 95% CI Utilization rate=0.90 | Loss mean = 95% ClI
(MA w=50, n=120, steps=18010) (MA w=50, n=120, steps=18010) (MA w=50, n=120, steps=18010)

0.15 4 4
@
§0.10 1 4

o 2500 5000 7500 10000 12500 15000 17500 0 2500 5000 7500 10000 12500 15000 17500 0 2500 5000 7500 10000 12500 15000 17500
Training step (index) Training step (index) Training step (index)

Figure 5.3: Training loss vs. step for the H-MARL approach under three utilization
regimes. Curves show moving-average means (window = 50) across n=30 runs;
shaded bands are 95% Cls (steps = 18,010). Relative to the non-hierarchical
MARL baseline (Fig. 5.3), hierarchy (i) matches fast, stable learning at 70%, (ii)
attenuates the transient at 80% (lower peak, earlier decay, tighter CI), and (iii)
reduces oscillations and variability at 90%), indicating improved robustness under
heavy congestion.

Building directly on the flat CTDE MARL scheduler for DJSSP proposed
by [8], it was developed an algorithmic extension and a methodological upgrade.
Algorithmically, it is introduced a two-level hierarchy in which a HLA issues a
per-machine mode vector that conditions the shared Low-Level value network
used by all per-machine agents. This preserves decentralized, fast dispatching
while mitigating the non-stationarity faced by LLAs. Methodologically, we adopt
a statistically grounded evaluation: for each utilization regime (70/80/90%), we
run 30 independent seeds and report moving-average means with 95% confidence
intervals. The resulting diagnostics show that, relative to the baseline MARL,
hierarchy matches the rapid, stable convergence at low load, attenuates the transient
and narrows variability at medium load, and reduces oscillations and dispersion
under heavy congestion, evidencing that the HLA’s global intent improves training
stability and robustness without sacrificing the original CTDE design.

5.2 Validation & Performance Metrics

After training, each sequencing method is frozen (no learning, no exploration)
and evaluated on the same validation set composed of R=100 independent runs
at three utilization regimes (70%, 80%, 90%). Each run instantiates a fresh
DJSSP trajectory from the stochastic generators used in this study (exponential
inter-arrivals, uniform processing times, uniformly sampled due-date tightness),
producing distinct event streams and queue dynamics. For fairness, all competing
methods in a given regime are exposed to the same pool of validation instances.

For comparative context, both learning-based schedulers against are compared

51

Simulation Results

against a set of classical dispatching rules widely used in the DJSS literature. First
considering singular-factor rules that compute a priority score per job at each
decision epoch. ATC balances short processing times and due-date urgency via an
exponential look-ahead term, favoring jobs with small slack. Average Processing
Time per Operation (AVPRO) prioritizes jobs with smaller average remaining
operation times, implicitly smoothing variability along the route. COVERT ranks
jobs by an urgency-per-time ratio, seeking the largest marginal tardiness reduction
per unit of processing time. CR uses the ratio between time-to-due and remaining
processing time; values below one indicate imminent risk of lateness. EDD sequences
strictly by due dates, minimizing the number of late jobs when processing times
are similar. LWKR selects the job with the smallest sum of remaining processing
times, a horizon-aware alternative to myopic rules. MDD replaces the due date
by the minimum between the true due date and the projected completion under
current load, mitigating unrealistic earliness/latency signals. MOD extends MDD
at the operation level by attributing intermediate due dates along the route. MS
schedules the job with the least slack (time-to-due minus remaining processing time),
emphasizing immediate urgency. NPT is a purely local variant that prioritizes the
shortest next operation. SPT chooses the minimum immediate processing time and
is known to reduce average flow time in light traffic. Finally, WINQ anticipates
downstream congestion by preferring jobs whose next machine has the smallest
queued workload. Unless a rule is natively “maximize,” all indices are oriented so
that lower scores are preferred to ensure comparability at selection time.

Beyond single-factor, it is also considered composite linear combinations that
blend complementary signals. CR4+SPT merges due-date urgency with short pro-
cessing times. LWKR+SPT tempers myopia by adding horizon awareness to SPT;
and LWKR+MOD couples remaining workload with operation-level due-date con-
trol. Congestion-aware blends include PT+WINQ, which trades off immediate
processing time against the next-station buffer, and PT+WINQ+S, which augments
that trade-off with slack to better protect due-date feasibility. Two higher-weight
composites 2PT+LWKR+S and 2PT+WINQ+NPT up-weight immediate process-
ing time while retaining either horizon- or congestion-awareness (and, in the latter
case, local next-operation time). Coefficients are fixed and indices are normalized
to comparable scales before summation to avoid dominance by any single term.
As a simple reference, First-In-First-Out (FIFO) is included, which sequences by
arrival order without regard to processing times or due-dates.

Each method 7 is evaluated using four complementary metrics computed over

the validation runs: L
cT;

NAT; = —=* 5.1

min(CT) (5.1)
CT’Z - CTbaseline

NCT; = , 5.2

C1T’baseline ()

52

Simulation Results

1 iv:
PL), = —Y I, (5.3)
N =™
100
R 100; x 100 (5.4)

where N AT; represents the normalized average tardiness of sequencing rule 7,
CT; represents the average cumulative tardiness of sequencing rule i, CT =
[CT,...,CTj] represents the array of average cumulative tardiness and min(-)
represents the min operator. Moreover, NCT; represents the normalized cumulative
tardiness of sequencing rule i, while C'T; represents the cumulative tardiness of rule
sequencing 7 and C'Tjaseline represents the baseline cumulative tardiness. Addition-
ally, PLJ; represents the proportion of late jobs when considering sequencing rule
i, N represents the total number of jobs processed and J; is equal to one if job j is
late and zero if it is not. WR; represents the win rate obtained by sequencing rule
1 and T; is equal to one if the cumulative tardiness obtained by sequencing rule ¢ is
the lowest among all sequencing rules. Formally. J; and T; can be expressed by

1, if job j is late,
J; = 5.5
! {0, otherwise, (5:5)
1, it CT;, < CT; Vi # j,
T, = & HOL<COLViz) (5.6)
0, otherwise.

5.3 Hierarchical Sequencing Designs

Across Sections 4.5 to 4.7, 4 different variants of a Hierarchical Learning Rule
Sequencing (HL-RS) approaches were proposed. They differ in the high level reward
mechanism and how the high level action is applied over each LLA. The HLA
reward can be constructed in a way to minimize the system cumulative tardiness or
to leverage the chronological joint reward mechanism. While the action application
mode can be set either globally or on a per machine basis. If set to global mode,
the HLA action is always applied to every machine of the shop floor, however, if
set to a machine individual application, the HLA affects exclusive a single machine.
Additionally, when in global mode the HLA state is constructed using ¢;, whereas
when applying individually to each machine the HLA state is built by s;;. In such
way, the HL approach can be referred to by one of the 4 following approaches:

1. Chronological Joint Reward on shared operation modes (CJ-Shared),

2. Chronological Joint Reward on individual operation modes (CJ-Ind),

53

Simulation Results

3. Cumulative Tardiness on shared operation modes (Tard-Shared),
4. Cumulative Tardiness on individual operation modes (Tard-Ind).

Each of these four approaches were submitted to the event driven based simula-
tion environment described in Chapter 3. In this way, it is possible to compare
them with the MARL framework described in Chapter 4 by leveraging the set up
detailed in Section 5.2.

In order to foster leverage the most performing dispatching rules, an adaptation
of the low level reward mechanism was developed. This adaptation considers a
small boost that increases low level agents’ reward when the selection aligns with
the either one of PTWINQS or CRSPT heuristics. In other words, when the low
level agent selects an operation that is the same operation that either PTWINQS or
CRSPT heuristics would select, a small boost is added to its reward. Considering
machine k, its reward can be modeled as

RE;OSt — R%E +)\]Ik,ta (57)

where R}C’z‘m is the reward obtained by machine k after the boost A is applied,
RH; is the original reward that follows the cronological joint reward echanism,
A represents the reward boosting factor, PTWINQS(sy () represents the action
chosen by PTWINQS sequencing rule given the state (sj;), CRSPT(sk) repre-
sents the action chosen by CRSPT sequencing rule given the state s;,. Finally,
Iyt (ak,t, PTWINQS(sk ¢), CRSPT (skt)) represents an indicator to wether or not the
selected ay; matches the action chosen by PTWINQS or CRSPT. It can be defined
as

1, if At = PTWINQS(Sk,t),
Hkvt(ak’t, PTVVIN(QS(Skm)7 CRSPT(Sk7t)) = 1, if At = CRSPT(Sk,t), (58)
0, otherwise.

Equation (5.7) preserves the shaped signal’s objective orientation (tardiness
reduction via queue time penalties) while giving a small, consistent increment
toward the LLA’s guidance. In effect, the boost plays the role of a behavioral prior:
when the LLA selects an action that agrees with known well performing rules, LLA
agents are slightly rewarded for agreement, otherwise they remain governed by
the main shaped signal. Because A is small, boosting does not overpower the base
reward, it simply accelerates the training toward policy regions favored by well
performing sequencing rules.

Moreover, all four HL-RS approaches can consider the reward boosting mecha-
nism. The reward boosting factor A\ acts, in this way, as a tunable hyperparameter.
Therefore, to proper define a value for A a hyperparameter tuning was considered

o4

Simulation Results

over the array [0.0l 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1] Due to
computational complexity, when considering the hyperparameter tuning scenario
only 5 independent training and validation runs were considered. After obtaining
the best A value, the 8 resulting HL. approaches (4 that considers reward boosting
and 4 that do not) were submited to 30 independent training and validation runs
were considered and once again selected the models that achieved the best validation
performance.

Both Tables 5.1 and 5.2 report the average WR over the 5 runs of the hyperpa-
rameter tuning over the boost factor A. Table 5.1(a) reports the results considering
the chronological joint reward with shared operation modes, while Table 5.1(b)
reports the results considering the chronological joint reward with individual oper-
ation modes. Table 5.2(a) reports the results considering the cumulative tardiness
with shared operation modes, while Table 5.2(b) reports the results considering
the cumulative tardiness with individual operation modes. All tables consider
all utilization rates values. The patterns are in a way consistent, however some
statistical variance can be explained due to the few number of runs. Smaller boosts
excel at light and moderate load, as in CJ-Shared at 80% with A = 0.01 at 33 WR,
but mid boosts become reliably strong as load increases, as seen at CT—Shared at
90% with A = 0.04 at 24 WR and CT-Ind at 80-90% with A = 0.04 at 33 and
16. When we aggregate across tables and loads, A = 0.04 is the most robust single
choice: it achieves the highest overall wins while being consistent enough over
utilization rates. Intuitively, A = 0.04 amplifies useful temporal credit without over-
boosting noisy local signals, yielding stable improvements across reward definitions,
coordination modes, hence A = 0.04 is chosen as best value, referred as HL-Boost.

5.4 Simulation Results

Having defined the best A value as 0.04, it becomes possible to better compare
the HL approaches that consider the reward boosting mechanism with all other
considered sequencing rules. Then, all 8 HL. approaches are tested and compared
against both the MARL-RS and the sequencing rule benchmark. Table 5.3 repre-
sents the results when the HL approaches consider CJ-Shared, Table 5.4 represents
the results when the HL approaches consider CJ-Ind, while Tables 5.5 and 5.6
represents the results when the HL approaches consider Tard-Shared and Tard-Ind,
respectively. Tables 5.3-5.6 show the performance of several sequencing rules over
100 validation runs at three congestion levels using three metrics: NAT, PLJ, and
WR. NAT is the normalized average cumulative tardiness, obtained by (5.1), PLJ
is the percentage of late jobs, obtained by (5.3) and WR is the fraction of runs in
which a rule attains the lowest cumulative tardiness, obtained by (5.4).

HL-RS when set as CJ-Shared, produces the results depicted in Table 5.3. It

59

Simulation Results

(a) Win rates percentages — (b) Win rates percentages —
Chronological Joint Reward - Shared Chronological Joint Reward -
operation Individual operation

Utilization rate Utilization rate

Boost Factor | 70% | 80% | 90% Boost Factor | 70% | 80% | 90%
0.01 10 | 33 15 0.01 20 22 8
0.02 13 16 8 0.02 19 17 15
0.03 7 26 17 0.03 16 19 19
0.04 16 28 12 0.04 15 17 21
0.05 9 13 9 0.05 11 15 19
0.06 12 26 9 0.06 11 | 28 6
0.07 13 21 12 0.07 10 22 11
0.08 13 12 18 0.08 12 18 18
0.09 17 | 19 13 0.09 17 15 | 21
0.10 14 15 12 0.10 8 17 11

Table 5.1: Hyperparameter sweep of reward-boost factor A under the chronological
joint high-level reward. Cells report average win rate (WR, %) over 5 independent
training/validation runs at three utilization levels (70%, 80%, 90%). (a) Shared:
a single mode broadcast to all machines; (b) Individual: mode set per machine.
Boldface marks the highest WR within each utilization column.

shows that HL-RS is competitive to dominant as congestion rises. It attains the
best NAT at 80% and 90% (both 100%) and the top WR at 80% (23%) and 90%
(21%). At 70%, PTWINQS leads on NAT (100%) and WR. (26%), indicating that
in light traffic a queue aware heuristic can edge out learned policies. PLJ shows
a different picture: SPT delivers the lowest late-job rate at 70% (44.87%), while
AVPRO minimizes PLJ at 80% and 90% (54.73% and 61.06%), yet both have poor
NAT and WR values. MARL-RS often exhibits lower PLJ than HL-RS, such as
49.45% vs. 51.48% at 70%, but loses in NAT and WR, suggesting that although
MARL-RS keeps more jobs on time, the lateness when it occurs tends to be larger,
increasing cumulative tardiness.

Analysing Table 5.4, it can be seen that once again performance shifts with
congestion. At 70%, PTWINQS is best on NAT (100%) and WR, (26%). At 80%,
HL-Boost reaches the best NAT (100%) while HL-RS and HL-Boost tie on WR
(both 19%), signaling that the boosting mechanism can match HL-RS in moderate
load. At 90%, HL-RS takes the lead with the best NAT (100%) and highest WR
(23%). As before, the lowest PLJ is achieved by rules like SPT and AVPRO rather
than by the NAT or WR winners, reinforcing that minimizing the proportion of
late jobs does not necessarily minimize cumulative tardiness.

56

Simulation Results

(a) Win rates percentages — (b) Win rates percentages —
Cumulative Tardiness - Individual Cumulative Tardiness - Shared
operation operation

Utilization rate Utilization rate

Boost Factor | 70% | 80% | 90% Boost Factor | 70% | 80% | 90%
0.01 16 16 14 0.01 28 24 13
0.02 14 21 5 0.02 18 16 4
0.03 18 16 10 0.03 10 25 8
0.04 20 33 16 0.04 26 21 24
0.05 24 7 9 0.05 9 17 16
0.06 11 20 15 0.06 15 20 12
0.07 13 10 15 0.07 16 11 10
0.08 19 10 6 0.08 18 26 4
0.09 11 14 7 0.09 18 18 21
0.10 12 17 8 0.10 20 13 16

Table 5.2: Hyperparameter sweep of reward-boost factor A under the cumulative
tardiness (Tard) high-level reward. Entries are average win rate (WR, %) over 5
runs at 70%, 80%, and 90% utilization. (a) Individual: mode set per machine; (b)
Shared: single mode broadcast. Boldface denotes the highest WR per utilization.

Moving on to the case when HL is set as Tard-Shared, represented in Table 5.5.
In this scenario the leadership alternates, PTWINQS tops NAT at 70% and 90%
(100% in both) and has the highest WR at 90% (17%). HL-RS dominates the 80%
block, with best NAT (100%) and the strongest WR margin (31%). HL-Boost is
consistently close but generally trails HL-RS on NAT and WR. The PLJ minima
are again delivered by SPT and AVPRO, not by the NAT or WR leaders.

Finally, the last possible way HL can be set is Tard-Ind, its results are shown in
Table 5.6. This is the clearest win for the hierarchical approach, HL-RS sweeps
NAT across all utilization rates (exactly 100% at 70%, 80%, and 90%) and is
the top WR in each block (32%, 26%, and 20%). HL-Boost and PTWINQS are
competitive but consistently behind HL-RS on NAT and WR. As in other tables,
SPT and AVPRO minimize PLJ, but at the cost of substantially worse NAT and
WR.

From Tables 5.3- 5.6, several observations emerge. Hierarchy helps under stress,
as utilization rises, HL-RS gains strength. Frequently taking both best NAT and
highest WR, at 80-90% in CJ-Shared and CJ-Ind, and it outright dominates under
Tard-Ind. HL-Boost occasionally matches or ties HL-RS (for example, best NAT
at 80% in CJ-Ind and a tied WR there), but it rarely surpasses HL-RS and is
less robust at high congestion, with NAT exceeding 100% at 90% in CJ-Shared

57

Simulation Results

Utilization Rate = 70% Utilization = 80% Utilization Rate = 90%

Method NAT (%) | PLY (%) | WR (%) | NAT (%) | PLJ (%) | WR (%) | NAT (%) | PLJ (%) | WR (%)
HL-RS 105.01% 51.48% 15.00% | 100.00% 63.23% | 23.00% | 100.00% 74.47% | 21.00%
HL-Boost 109.86% 53.18% 11.00% 100.30% 63.88% 22.00% 106.75% 72.33% 10.00%
MARL-RS 110.16% 49.45% 11.00% 106.04% 57.52% 15.00% 106.60% 65.94% 10.00%
PTWINQS 100.00% 58.77% | 26.00% 104.32% 74.23% 13.00% 104.47% 85.78% 15.00%
ATC 115.76% 58.04% 2.00% 114.48% 73.72% 1.00% 113.32% 84.28% 2.00%
AVPRO 159.13% 45.55% 0.00% 134.31% | 54.73% 0.00% 123.72% | 61.06% 0.00%
COVERT 149.78% 64.66% 0.00% 132.69% 78.53% 0.00% 124.22% 88.58% 0.00%
CR 112.82% 66.36% 9.00% 116.11% 83.14% 4.00% 113.17% 92.35% 0.00%
CRSPT 117.94% 45.39% 2.00% 108.98% 58.00% 1.00% 103.93% 66.86% 10.00%

DPTLWKRS 110.31% | 56.29% | 10.00% 113.80% | 72.78% 2.00% 111.51% | 82.78% 2.00%
DPTWINQNPT | 134.79% | 45.77% 0.00% 117.80% | 56.94% 1.00% 112.25% | 66.46% 3.00%

EDD 116.46% | 57.32% 1.00% 116.27% | 73.02% 1.00% 115.99% | 82.97% 0.00%
FIFO 199.80% | 58.93% 0.00% 178.93% | 72.61% 0.00% 174.13% | 82.74% 0.00%
LWKR 159.22% | 48.39% 0.00% 135.61% | 57.70% 0.00% 123.71% | 64.78% 0.00%
LWKRMOD 117.20% | 53.46% 1.00% 110.36% | 67.73% 2.00% 108.22% | 78.18% 6.00%
LWKRSPT 147.14% | 47.25% 0.00% 125.00% | 56.41% 3.00% 113.98% | 63.06% 7.00%
MDD 114.51% | 53.73% 3.00% 110.79% | 67.80% 5.00% 109.14% | 78.74% 7.00%
MOD 112.95% | 56.79% 2.00% 109.52% | 72.77% 4.00% 109.57% | 83.35% 3.00%
MS 115.62% | 62.39% 6.00% 120.53% | 79.17% 2.00% 118.80% | 89.33% 0.00%
NPT 183.01% | 52.34% 0.00% 154.55% | 61.30% 0.00% 137.66% | 68.88% 0.00%
PTWINQ 133.06% | 46.34% 0.00% | 119.51% | 57.83% 1.00% 112.89% | 66.85% 1.00%
SPT 130.58% | 44.87% 1.00% 118.36% | 55.27% 0.00% 112.85% | 63.58% 3.00%
WINQ 161.85% | 51.52% 0.00% 139.93% | 62.08% 0.00% 130.97% | 71.07% 0.00%

Table 5.3: Full benchmark with CJ high-level reward and shared mode selection.
Metrics over 30 validation runs at 70%, 80%, and 90% utilization: NAT (normalized
average cumulative tardiness; lower is better, the best method in each block equals
100%, PLJ (late-job rate; lower is better), and WR (win rate; higher is better).
HL-Boost uses A = 0.04. Boldface highlights the best value per column (lowest
NAT and PLJ, highest WR).

and Tard-Ind. PTWINQS excels in light traffic and sometimes even at very high
load. Under Tard-Shared, it repeatedly wins the 70% blocks and captures the
90% NAT and WR, yet it tends to degrade in the 80-90% range in the other
setups. There is a NAT-PLJ trade-off, rules that minimize the fraction of late jobs
(SPT, AVPRO) often perform poorly on cumulative tardiness (NAT) and rarely
win runs (WR). Conversely, MARL-RS frequently attains lower PLJ than HL-RS
but still loses on NAT and WR, implying larger lateness magnitudes when tardy
events occur. Practically, policy choice should hinge on whether the objective is to
minimize the number of late jobs or the total lateness. Moreover, some baselines
are consistently weak. FIFO and NPT remain clearly inferior across metrics and
utilizations, and COVERT and WINQ also underperform on NAT and WR despite
middling PLJ. Finally, if the primary goal is minimizing cumulative tardiness,
HL-RS set as Tard-Ind is the most reliable choice, since it achieves best in class
NAT and the highest WR in all utilization rates (Table 5.6). However, if the goal
is to prioritize few late jobs over total lateness, rules like SPT or AVPRO minimize

58

Simulation Results

Utilization Rate = 70% Utilization = 80% Utilization Rate = 90%
Method NAT (%) | PLY (%) | WR (%) | NAT (%) | PLJ (%) | WR (%) | NAT (%) | PLJ (%) | WR (%)
HL-RS 103.48% 55.04% 20.00% 102.97% 60.98% | 19.00% | 100.00% | 72.93% | 23.00%
HL-Boost 106.81% 55.43% 12.00% | 100.00% | 63.95% | 19.00% | 101.86% 69.71% 13.00%
MARL-RS 107.84% 50.32% 10.00% 104.83% 57.52% 14.00% 104.69% 65.94% 12.00%
PTWINQS 100.00% | 58.95% | 26.00% | 103.13% 74.23% 16.00% 102.59% 85.78% 10.00%
ATC 119.04% 60.89% 4.00% 113.18% 73.72% 0.00% 111.28% 84.28% 2.00%
AVPRO 151.25% 47.38% 0.00% 132.78% 54.73% 0.00% 121.50% 61.06% 0.00%
COVERT 148.29% 66.09% 0.00% 131.18% 78.53% 0.00% 121.99% 88.58% 0.00%
CR 112.42% 68.09% 6.00% 114.79% 83.14% 5.00% 111.13% 92.35% 1.00%
CRSPT 118.83% 47.89% 1.00% 107.74% 58.00% 3.00% 102.06% 66.86% 10.00%

DPTLWKRS 110.69% | 57.48% 3.00% 112.50% | 72.78% 2.00% 109.50% | 82.78% 3.00%
DPTWINQNPT | 129.21% | 47.59% 1.00% 116.46% | 56.94% 2.00% 110.24% | 66.46% 4.00%

EDD 115.73% | 58.54% 3.00% 114.94% | 73.02% 1.00% 113.91% | 82.97% 0.00%
FIFO 193.60% | 60.04% 0.00% 176.89% | 72.61% 0.00% 171.00% | 82.74% 0.00%
LWKR 156.60% | 49.71% 0.00% 134.07% | 57.70% 0.00% 121.49% | 64.78% 0.00%

LWKRMOD 116.78% | 54.89% 2.00% 109.11% | 67.73% 5.00% 106.28% | 78.18% 5.00%
LWKRSPT 147.37% | 49.21% 0.00% 123.57% | 56.41% 3.00% 111.93% | 63.06% 6.00%

MDD 114.94% | 54.62% 1.00% 109.53% | 67.80% 4.00% 107.18% | 78.74% 5.00%
MOD 112.26% | 58.30% 5.00% 108.28% | 72.77% 2.00% 107.60% | 83.35% 2.00%
MS 114.85% | 62.66% 6.00% 119.16% | 79.17% 3.00% 116.66% | 89.33% 0.00%
NPT 175.52% | 52.54% 0.00% 152.79% | 61.30% 0.00% 135.19% | 68.88% 0.00%
PTWINQ 132.11% | 48.05% 0.00% 118.15% | 57.83% 2.00% 110.87% | 66.85% 2.00%
SPT 127.69% | 46.09% | 0.00% 117.01% | 55.27% 0.00% 110.82% | 63.58% 2.00%
WINQ 159.00% | 53.23% 0.00% 138.33% | 62.08% 0.00% 128.62% | 71.07% 0.00%

Table 5.4: Full benchmark with CJ high-level reward and individual mode selection.
Metrics over 30 validation runs at 70%, 80%, and 90% utilization: NAT (normalized
average cumulative tardiness; lower is better, the best method in each block equals
100%, PLJ (late-job rate; lower is better), and WR (win rate; higher is better).
HL-Boost uses A = 0.04. Boldface highlights the best value per column (lowest
NAT and PLJ, highest WR).

PLJ, but expect worse overall tardiness (higher NAT) and fewer wins (lower WR).

As done in Section 5.1 an analysis considering only the best performing sequenc-
ing rules was conducted. Figures 5.4 and 5.5 display the performance distributions
across all test instances, leveraging violin plots. The vertical axis is the Normal-
ized Cumulative Tardiness (NCT, %), obtained by (5.2). Each violin encodes the
empirical distribution (its width is the density), the center marker denotes the
median, and whiskers indicate the observed range. Each row in Figures 5.4 and 5.5
are grouped by shop utilization rates (70%, 80%, 90%), whereas columns are how
the HLA is set (Shared or Individual). Red violins correspond to the proposed
hierarchical methods, HL-RS and HL-Boost, while blue violins are benchmark
dispatching rules. The dashed horizontal line represents the mean obtained by
HL-RS, chosen as reference since HL-RS Tard-Ind was the best performing over the
complete benchmark. Figure 5.6 reports the win rate (WR, %), i. e. the fraction
of instances (within each utilization) in which a method achieves the best NCT,
obtained by (5.4). Bars are grouped by how the high level is set CJ-Shared, CJ-Ind,

59

Simulation Results

Utilization Rate = 70% Utilization = 80% Utilization Rate = 90%
Method NAT (%) | PLY (%) | WR (%) | NAT (%) | PLJ (%) | WR (%) | NAT (%) | PLJ (%) | WR (%)
HL-RS 100.48% 49.82% | 24.00% | 100.00% | 60.38% | 31.00% | 100.52% 64.15% 13.00%
HL-Boost 105.99% 51.09% 13.00% 109.72% 64.47% 10.00% 100.86% 66.47% 10.00%
MARL-RS 109.76% 49.48% 8.00% 111.25% 56.44% 8.00% 103.84% 64.75% 10.00%
PTWINQS 100.00% | 57.86% | 24.00% 107.18% 72.75% 13.00% | 100.00% | 83.14% | 17.00%
ATC 118.47% 58.61% 0.00% 120.42% 72.16% 1.00% 108.38% 81.89% 1.00%
AVPRO 154.48% 46.29% 0.00% 142.84% | 52.47% 1.00% 124.39% | 59.93% 0.00%
COVERT 148.81% 65.55% 0.00% 140.28% 78.05% 0.00% 121.96% 86.21% 0.00%
CR 111.30% 67.32% 7.00% 118.90% 82.03% 5.00% 110.92% 90.47% 1.00%
CRSPT 118.27% 46.16% 2.00% 112.77% 56.06% 5.00% 100.38% 65.79% 15.00%

DPTLWKRS 111.80% | 56.61% 5.00% 115.22% | 69.91% 3.00% 107.45% | 80.03% 2.00%
DPTWINQNPT | 134.88% | 46.75% 0.00% 126.41% | 55.42% 0.00% 110.48% | 64.43% 1.00%

EDD 116.33% | 56.98% 0.00% 120.10% | 71.16% 1.00% 109.87% | 80.86% 0.00%
FIFO 197.29% | 59.02% 0.00% 189.80% | 69.95% 0.00% 170.08% | 80.13% 0.00%
LWKR 152.11% | 49.05% 1.00% 140.22% | 56.28% 0.00% 122.59% | 63.57% 0.00%

LWKRMOD 116.36% | 53.37% 2.00% 112.26% | 65.36% 4.00% 104.09% | 75.54% | 10.00%
LWKRSPT 143.92% | 47.46% 0.00% 129.09% | 54.69% 3.00% 111.07% | 61.56% 3.00%

MDD 114.22% | 53.23% 4.00% 115.26% | 66.42% 6.00% 103.68% | 76.67% 8.00%
MOD 111.75% | 56.64% 2.00% 114.47% | 70.17% 2.00% 104.17% | 80.92% 3.00%
MS 116.06% | 62.50% 8.00% 121.27% | 77.38% 5.00% 115.73% | 86.75% 4.00%
NPT 176.30% | 51.20% 0.00% 157.26% | 60.16% 0.00% 134.87% | 67.03% 0.00%
PTWINQ 136.19% | 47.37% 0.00% 126.16% | 55.84% 1.00% 111.09% | 64.32% 1.00%
SPT 131.11% | 45.57% | 0.00% 122.98% | 53.95% 1.00% 111.09% | 62.68% 1.00%
WINQ 163.29% | 51.50% 0.00% 150.16% | 60.88% 0.00% 129.99% | 69.79% 0.00%

Table 5.5: Full benchmark with Tard high-level reward and shared mode selection.
Metrics over 30 validation runs at 70%, 80%, and 90% utilization: NAT (normalized
average cumulative tardiness; lower is better, the best method in each block equals
100%, PLJ (late-job rate; lower is better), and WR (win rate; higher is better).
HL-Boost uses A = 0.04. Boldface highlights the best value per column (lowest
NAT and PLJ, highest WR).

Tard-Shared, Tard-Ind.

In Figure 5.4, both hierarchical strategies stay above the mojority of other
sequencing rules and show similar spreads to most benchmarks, with the advantage
decreasing as utilization rises. At 70% (light congestion), most rules are viable,
but HL-RS and HL-Boost achieve higher means and smaller spreads than the
majority of baselines, falling behind only to PTWINQS. At 80%, the differences is
diminished, the HL. methods overcome PTWONQS at CJ-Shared and the distance
at CJ-Ind is smaller. Additionally, they remain on top of other rules with shorter
upper tails, indicating better and more stable performance, while several baselines
develop heavy upper tails, signaling reduced reliability. Near saturation at 90%,
the HL methods overcome all other rules, the benefit of hierarchical coordination
is most evident here. Under the chronological joint reward, individual credit yields
slightly higher means at 70-80%; at 90% the gap narrows, but HL remains clearly
superior to all baselines in both the Shared and Individual variants.

60

Simulation Results

Utilization Rate = 70% Utilization = 80% Utilization Rate = 90%
Method NAT (%) | PLY (%) | WR (%) | NAT (%) | PLJ (%) | WR (%) | NAT (%) | PLJ (%) | WR (%)
HL-RS 100.00% | 51.07% | 32.00% | 100.00% | 58.80% | 26.00% | 100.00% 69.82% | 20.00%
HL-Boost 110.77% 48.91% 8.00% 100.49% 57.67% 21.00% 106.21% 65.54% 11.00%
MARL-RS 111.02% 49.70% 8.00% 111.61% 53.14% 2.00% 106.71% 64.31% 11.00%
PTWINQS 107.27% 59.36% 13.00% 103.06% 67.84% 19.00% 102.24% 83.50% 14.00%
ATC 119.67% 58.98% 2.00% 117.51% 68.14% 0.00% 111.13% 82.57% 1.00%
AVPRO 154.32% 46.11% 0.00% 144.59% 51.23% 0.00% 123.13% 59.85% 2.00%
COVERT 154.33% 66.29% 0.00% 141.49% 73.80% 0.00% 123.18% 86.68% 0.00%
CR 117.07% 67.41% 8.00% 116.12% 76.70% 6.00% 111.12% 90.08% 2.00%
CRSPT 118.69% 45.84% 2.00% 111.11% 51.75% 5.00% 103.20% 65.93% 10.00%

DPTLWKRS 113.61% | 57.25% 7.00% 112.58% | 66.42% 5.00% 109.72% | 81.14% 4.00%
DPTWINQNPT | 136.18% | 47.27% 0.00% 124.10% | 52.09% 0.00% 111.61% | 64.68% 0.00%

EDD 118.58% | 58.27% 2.00% 116.96% | 68.09% 1.00% 113.92% | 81.92% 0.00%
FIFO 204.07% | 60.23% 0.00% 190.34% | 67.09% 0.00% 171.45% | 80.19% 0.00%
LWKR 157.16% | 48.96% 0.00% 146.57% | 54.23% 0.00% 122.82% | 63.31% 0.00%

LWKRMOD 119.44% | 54.48% 3.00% 116.87% | 62.34% 0.00% 106.23% | 76.04% 6.00%
LWKRSPT 146.26% | 47.52% 0.00% 136.93% | 52.97% 2.00% 114.43% | 62.08% 3.00%

MDD 116.19% | 54.87% 5.00% 114.34% | 63.38% 5.00% 109.33% | 75.92% 9.00%
MOD 115.36% | 57.89% 3.00% 112.82% | 67.30% 2.00% 107.79% | 81.72% 4.00%
MS 117.74% | 63.43% 7.00% 117.52% | 72.47% 6.00% 114.79% | 86.51% 1.00%
NPT 181.70% | 52.50% 0.00% 164.86% | 57.14% 0.00% 137.20% | 67.32% 0.00%
PTWINQ 135.52% | 47.62% 0.00% 123.98% | 52.98% 0.00% 113.71% | 64.44% 1.00%
SPT 133.30% | 45.09% | 0.00% 123.60% | 49.98% 0.00% 113.81% | 62.82% 1.00%
WINQ 163.61% | 52.14% 0.00% 148.77% | 57.44% 0.00% 132.30% | 69.35% 0.00%

Table 5.6: Full benchmark with Tard high-level reward and individual mode
selection. Metrics over 30 validation runs at 70%, 80%, and 90% utilization: NAT
(normalized average cumulative tardiness; lower is better, the best method in each
block equals 100%, PLJ (late-job rate; lower is better), and WR (win rate; higher
is better). HL-Boost uses A = 0.04. Boldface highlights the best value per column
(lowest NAT and PLJ, highest WR).

In Figure 5.5, aligning the high-level signal with the objective (tardiness) pre-
serves the advantages of hierarchy and often strengthens them, especially at 70-80%
utilization. At 70%, HL-RS is only smallet than PTWINQS over the Shared mode,
it remains above all other rules. HL-Boost remain competitive yet typically lag
and exhibit fat tails on Individual mode. At 80%, HL-RS attains a very high NCT,
the greatest among all rules, with HL-Boost close behind on Individual and a bit
further on Shared modes. Benchmark performance degrades with long upper and
lower tails. Under heavy load at 90%, HL remains robust, maintaining high means
and shorter tails as many heuristics become volatile. With the tardiness signal,
setting machine modes individually presents itself more beneficial than allowing
machines to share operation modes. Specially, considering that, HL-RS always
comes up with the highest mean NCT across all utilization rates.

In Figure 5.6, which consolidates the frequency of best results on terms of WR,
at 70% utilization HL-RS on Tard-Ind achieves the highest win rate of 40%, while
HL-Boost falls behind at 9%. Benchmarks sit mostly in the single digits to low

61

Simulation Results

teens, with PTWINQS being an exception that is able to compete with HL-RS. At
80% utilization, HL-RS on Tard-Shared leads at 35% WR, with HL-Boost close
behind (mid—-20s), and the best benchmark trailing by a clear margin (low 20s)
being once again PTWINQS. Near saturation at 90%, HL-RS (CJ-Ind) wins most
often at 26% win rate, while in this scenario PTWINQS falls short and the WR
becomes more evenly spread across benchmark rules. Overall, Figure 5.6 clearly
illustrates that hierarchical methods dominate win rate.

HL-RS and HL-Boost consistently reduce NCT relative to strong dispatching
baselines and do so more reliably, especially as utilization increases. Second, setting
the HLA properly matters: objective aligned (tardiness) signal is more effective
under low congestion, while CJ is more valuable at moderate congestion. Among
the compared rules, PTWINQS and MARL-RS are the most competitive, while due
date centric or simple ratio rules develop wider high tardiness tails as utilization
rises. Overall, hierarchy improves not only average performance but also robustness
by avoiding catastrophic tails, crucial for such environments.

Finally, since HL-RS set under Tard-Ind consistently produced the best results,
the experiment was repeated to understand how it would behave when not running
against its reward boosted counterpart. Table 5.7 and Fig. 5.7 confirm that
HL-RS remains the best method across all utilization rates. By construction
NAT is normalized to the best method, and HL-RS attains 100% at 70/80/90%
utilization, whereas the strongest competitors stay above it. At 70% the closest
rule is PTWINQS (107.27%), at 80% PTWINQS narrows the gap (103.06%), and
at 90% it is again the nearest challenger (102.24%). The corresponding win rates
(WR) in the full method set of Table 5.7 are 35%, 30%, and 22% for 70/80/90%
utilization, respectively. Which are the highest among all rules. When we plot
only the reduced competitors set in Figure 5.7, the absolute number of HL-RS
wins is unchanged but, because fewer methods are considered, the WR percentage
appears slightly higher (43%, 35%, 25% for 70/80/90%). The difference arises from
the denominator, Table 5.7 computes WR over all listed rules, whereas Figure 5.7
shows a subset. Indicating that it consistently wins over other rules.

The left column of Figure 5.7 (violin plots) shows that HL-RS has a higher mean
than the best heuristics in each utilization regime, since all other rules lies below
the dashed horizontal line that represents HL-RS mean. Competing rules exhibit
heavier upper tails, indicating occasional large tardiness spikes. This distributional
robustness is reflected on the right column (WR bars), where HL-RS wins at all
loads, while PTWINQS is the only heuristic that becomes competitive as congestion
increases (30% WR at 80% and 22% at 90% in the reduced set).

Although HL-RS minimizes N AT, it does not always yield the smallest fraction
of late jobs. For instance, at 70% utilization the lowest PL.J values are achieved
by due date or service time oriented heuristics such as SPT (45.09%) and CRSPT
(45.84%), and AVPRO reaches 51.23% at 80% and 59.85% at 90%. However,

62

Simulation Results

these same rules incur substantially higher N AT revealing a classic trade-off: they
reduce the count of late jobs by letting a smaller subset become very late, inflating
cumulative tardiness. HL-RS, in contrast, reduces the magnitude of lateness,
curbing catastrophic tails and improving overall weighted tardiness.

Removing the reward—boosted competitor does not alter the central conclusion,
HL-RS (Tard-Ind) remains the top performing among the tested rules, offering the
best average performance and the most reliable distribution across utilizations. At
moderate and high congestion (80-90%), PTWINQS is the most credible baseline,
but it still trails HL-RS both in NAT and in win frequency.

Utilization Rate = 70% Utilization = 80% Utilization Rate = 90%
Method NAT (%) | PLJ (%) | WR (%) | NAT (%) | PLJ (%) | WR (%) || NAT (%) | PLJ (%) | WR (%)
HL-RS 100.00% | 51.07% | 35.00% | 100.00% | 58.80% | 30.00% || 100.00% | 69.82% | 22.00%
MARL-RS 111.02% 49.70% 9.00% 111.61% 53.14% 3.00% 106.71% 64.31% 11.00%
PTWINQS 107.27% 59.36% 14.00% 103.06% 67.84% 22.00% 102.24% 83.50% 18.00%
ATC 119.67% 58.98% 2.00% 117.51% 68.14% 1.00% 111.13% 82.57% 1.00%
AVPRO 154.32% 46.11% 0.00% 144.59% | 51.23% 0.00% 123.13% | 59.85% 2.00%
COVERT 154.33% 66.29% 0.00% 141.49% 73.80% 0.00% 123.18% 86.68% 0.00%
CR 117.07% 67.41% 8.00% 116.12% 76.70% 9.00% 111.12% 90.08% 2.00%
CRSPT 118.69% 45.84% 2.00% 111.11% 51.75% 10.00% 103.20% 65.93% 12.00%

DPTLWKRS 113.61% | 57.25% 8.00% 112.58% | 66.42% 5.00% 109.72% | 81.14% 4.00%
DPTWINQNPT | 136.18% | 47.27% 0.00% 124.10% | 52.09% 0.00% 111.61% | 64.68% 1.00%

EDD 118.58% | 58.27% 2.00% 116.96% | 68.09% 1.00% 113.92% | 81.92% 0.00%
FIFO 204.07% | 60.23% 0.00% 190.34% | 67.09% 0.00% 171.45% | 80.19% 0.00%
LWKR 157.16% | 48.96% 0.00% 146.57% | 54.23% 0.00% 122.82% | 63.31% 0.00%

LWKRMOD 119.44% | 54.48% 3.00% 116.87% | 62.34% 0.00% 106.23% | 76.04% 7.00%
LWKRSPT 146.26% | 47.52% 0.00% 136.93% | 52.97% 2.00% 114.43% | 62.08% 4.00%

MDD 116.19% | 54.87% 6.00% 114.34% | 63.38% 6.00% 109.33% | 75.92% 9.00%
MOD 115.36% | 57.89% 3.00% 112.82% | 67.30% 4.00% 107.79% | 81.72% 4.00%
MS 117.74% | 63.43% 7.00% 117.52% | 72.47% 6.00% 114.79% | 86.51% 1.00%
NPT 181.70% | 52.50% 0.00% 164.86% | 57.14% 0.00% 137.20% | 67.32% 0.00%
PTWINQ 135.52% | 47.62% 0.00% 123.98% | 52.98% 0.00% 113.71% | 64.44% 1.00%
SPT 133.30% | 45.09% | 1.00% 123.60% | 49.98% 1.00% 113.81% | 62.82% 1.00%
WINQ 163.61% | 52.14% 0.00% 148.77% | 57.44% 0.00% 132.30% | 69.35% 0.00%

Table 5.7: Full benchmark with Tard high-level reward and individual mode
selection excluding the rewarding boosting variant method. This removal allows
to better understand how the most consistent approach behaves. Metrics over
30 validation runs at 70%, 80%), and 90% utilization: NAT (normalized average
cumulative tardiness; lower is better, the best method in each block equals 100%,
PLJ (late-job rate; lower is better), and WR (win rate; higher is better). Boldface
highlights the best value per column (lowest NAT and PLJ, highest WR).

63

Simulation Results

(a.1) Utilization 0.70 - Chronological Joint Reward - Shared — NCT

(a.2) Utilization 0.70 - Chronological Joint Reward - Individual — NCT

80 -
80
3 60 8
£ £ |- - . . R 18,01
AT B BN VN BN B B W B R
H £ 09
£ w9 E
£ E
- H
9] 9]
- -
2 5
s £ 20
E'27 £
s s
z -3
04 o4
o o] & o &
£ TS S S & F S S
x & » & &
> < & e > <« S e
(b.1) Utilization 0.80 - Chronological Joint Reward - Shared — NCT (b.2) Utilization 0.80 - Chronelogical Joint Reward - Individual — NCT
801 80
704 704
® 604 £ 601
B 50 1 T 50 1
@ S
& 40 § 40
E]]
£ £
5 30 S %0
B 8
T ®
E 204 E 204
2 2
10 10 4
04 04
& & & o o 9 & & & © o Q
4 & & & ijé & l}"o & S QSQ" & & F <3Ejé & &‘@0 Y ¥y
& F e o S &
(c.1) Utilization 0.90 - Chronological Joint Reward - Shared — NCT (c.2) Utilization 0.90 - Chronological Joint Reward - Individual — NCT
60 1
601
50 4
& 501 g
g g
(S S W T . o e =3 - Reor £ [B B - .- - — - 1.09
E 40 4 E a0
v v
2z H
= k5
5 5
E € o
O 304 o
o o
] &
i s
= 5
2 204 S 20
10 104
. = q‘ 7 = - T T = T S i 3 ") T T .
o & & & L& ‘39"0 & F o & & F & & 6_@0{’ & &
& ¢ & & & & & &

Figure 5.4: Distribution of normalized cumulative tardiness under the chronologi-
cal joint high-level reward across utilization levels and mode setting regimes. Red
violins are hierarchical methods; blue violins are benchmark dispatching rules.

64

Simulation Results

(a.1) Utilization 0.70 - Cumulative Tardiness - Shared — NCT (a.2) Utilization 0.70 - Cumulative Tardiness - Individual — NCT
80
704
=] _ 60
g g
@ 49 7% 9 E= = S === SRS s =5 B == 106
o e e e Py - e e p— [l s o L]
£ < 50
B B
£ a0 &
H g
] § 40
E] E]
E E
3 204 3
b B
E E
£ o] 2 201
10
-20
T T T T T T T 0- T T T T T T T T T
& o & 9 9 9 & o o] 9 ol o)
.3?5 & & él\\e" &‘f {\«3" ‘&‘b" ® o ® .‘\v& & f"' é@\‘\" (3.4‘ /\é‘«g‘ @\@ L
¥ o & ¥ &
(b.1) Utilization 0.80 - Cumulative Tardiness - Shared — NCT (b.2) Utilization 0.80 - Cumulative Tardiness - Individual — NCT
80 g0
70 4
F 601 g 60
Bsod_ == = = == e o LA I 8.7% B
g g
g 2 40
3 40 =
3 S
E E
5 5
o o
T ¥ K
& 8 204
]]
§ 20 £
2 =2
10 o
o4
& o & o o &)
QVQ'? o & & & 657@\ & ,lgl’go & & Q&e'? . & oF & (395‘ & qs"oo & &
& ¢ & & & & & &
(c.1) Utilization 0.90 - Cumulative Tardiness - Shared — NCT (c.2) Utilization 0.90 - Cumulative Tardiness - Individual — NCT
70 {
70 4
60 4
—_ 60 4 —_
g F
it < 5l
g g
£ 50 5
B i = _— - el ez = piza® _ I 41 4%
) © 404
5 g
E 404~ | - —y 1— — — e s 0.2% E
5 5
E E 3
o o
304 K
= =
] 3 50
£ g
Z 20 =z
10
10
o4
& o o & o) Q 9 5 o o 3 9o o)
& S & FFE S S
& & & & & & & &

Figure 5.5: Distribution of normalized cumulative tardiness under the tardiness
high-level reward across utilization levels and mode setting regimes. Red violins
are hierarchical methods; blue violins are benchmark dispatching rules.

65

Simulation Results

Utilization Rate = 70% Strategy
50 = CJ-Shared == Cind

mw Tard-Shared M Tard-Ind

40

30

20

Win rate (%)

10

3.0 502030

5 Utilization Rate = 80%

Win rate (%)

Utilization Rate = 90%

Win rate (%)

&©
&

o
%oo §0 nyz'
& & &

Figure 5.6: Win rate (WR, %) grouped by high-level setup (CJ-Shared,
CJ-Individual, Tard—Shared, Tard-Individual) and by utilization level (70%, 80%,
90%). Bars compare hierarchical methods against strong dispatching baselines over
100 validation runs per utilization. Higher is better.

66

Simulation Results

Normalized Cumulative Tardiness (%) Normalized Cumulative Tardiness (%)

Normalized Cumulative Tardiness (%)

804

60 1

204

70 4

60

(a.1) Utilization 0.70 — NCT

(a.2) Utilization 0.70 — Win Rate

Win Rate (%)

100

80 1

60 1

o o o) o o o o Q o o
A A B w@“«p@"é@@@@@é"
& & & & & & & &
(b.1) Utilization 0.80 — NCT 65 (b.2) Utilization 0.80 — Win Rate
80 1
1 — a— A NE— L s S~ — 49 0%
. 60
&
g
&
£
= 204
35%
0%
204
T T T T T T T 0-
o 3 o o o) o 3 3 N & & o S
Q\‘:ﬁ Q}? \eo (3&{\ 4"‘\@ 3‘,‘0 & & ,wgb quL @:s\o 6.4 _@‘1& &"p ® ®©
& & ¥ EA
(c.1) Utilization 0.90 — NCT - (c.2) Utilization 0.90 — Win Rate
80
iz ey = e fr - _ 60
£
L
2
<
H el
o o o)) o o o o 9) o
& F F d&"‘é & & ® & £ @"é & & & F
W« & & Sl S

Figure 5.7: Reduced competitor benchmark under Tard-Individual. Left: violin
plots of NCT (%) comparing HL-RS against top baselines; the dashed line is HL-RS
mean. Right: WR (%) over the same set. Higher NCT and WR are better.

67

Chapter 6

Conclusions & Future Work

6.1 Conclusion

This thesis investigated reinforcement learning for the DJSSP in an event-driven,
asynchronous setting where machines act locally and tardiness is realized only at
job completion. It was first revisited the MARL baseline under a CTDE scheme
with parameter sharing, adopting two architectural elements that proved decisive
in dynamic contexts: a fixed-size MR state to preserve job-specific detail while
remaining size-agnostic to fluctuating queue lengths and a chronological joint-action
view with knowledge-based reward shaping to align sparse, delayed tardiness with
the actions that caused it, thereby mitigating the distributed credit-assignment
challenge.

Building on this foundation, it was proposed a HL extension in which a high-
level manager sets machine operation modes over short commitment windows,
while low-level (per-machine) agents perform job selection. Two families of high-
level signals were studied, chronological-joint and tardiness aligned, each under
Shared and Individual mode settings. It was further introduced a lightweight
reward-boost mechanism for the low level agents and calibrated its strength via a
simple hyperparameter search, across utilization levels, A\ = 0.04 emerged as the
most robust setting, amplifying informative temporal credit without destabilizing
learning.

Comprehensive simulation results across 70%, 80%, and 90% utilization show
that hierarchy systematically improves robustness and top-line performance against
strong dispatching-rule baselines and the MARL baseline. In particular, HL-RS with
Tard-Ind consistently delivered the best normalized average cumulative tardiness
(NAT) and the highest win rates, while maintaining shorter tails under heavy load.
The PTWINQS composite rule remained the most competitive heuristic, yet was
typically overtaken by hierarchical methods as congestion increased. These findings

68

Conclusions & Future Work

support three main contributions.

Firstly, it was introduced a hierarchical MARL scheduler in which a high-level
manager selects machine operation modes over short commitment windows while
low-level agents execute job selection. This design addresses the need to tame
schedule nervousness under stochastic arrivals and to concentrate learning on
leverageful decision epochs, yielding consistent NAT gains and shorter tails at
70-90% utilization.

Secondly, it was designed and compared two signal families (Chronological-
Joint vs. Tardiness-aligned) under Shared and Individual scopes. Additionally, a
lightweight reward-boost that scales temporally reconstructed credit for low-level
agents. A simple, hyperparameter calibration identifies A=0.04 as a robust setting
that amplifies informative temporal credit without destabilizing learning.

Thirdly, experiments results show that aligning the HLA reward signal with real-
ized tardiness at the machine level (Tard-Ind) most effectively resolves distributed
credit assignment in asynchronous settings. This contribution operationalizes the
thesis’s main goal of extending the work of [8]. Improving on tardiness optimization
by allowing agents to adapt to the current job shop state, raising stability and
performance as congestion increases.

At a broader level, this work reinforces that size-agnostic representations (MR
state), asynchronous credit attribution (chronological joint action and reward
shaping), and hierarchical intent are complementary ingredients for DJSSP. They
jointly narrow the gap to well-tuned heuristics and, under high congestion, surpass
them with better reliability.

6.2 Future Work

Several directions appear promising. A first direction is to develop a progressive
training curriculum that systematically sweeps utilization levels, due-date tightness,
and routing complexity from easier to harder regimes. Concretely, this would start
with lightly loaded systems and loose due dates to stabilize policy learning, then
incrementally introduce higher arrival rates, tighter slack, longer routing chains,
and more heterogeneous processing times. Evaluation should track learning curves,
sample efficiency, and generalization across curriculum stages, with ablation studies
isolating the contribution of each curriculum dimension.

A second direction is to replace hand-crafted MR slots with permutation-invariant
encoders that better exploit cross-queue structure while retaining size-agnostic
inputs and outputs. Set encoders or graph transformers can natively handle variable
numbers of jobs and machines, capture pairwise and higher-order interactions (e.g.,
contention for downstream resources), and maintain equivariance to permutations
of job order. Practical design choices include learned positional surrogates for

69

Conclusions & Future Work

event chronology, attention masks keyed to machine availability, and hierarchical
pooling to summarize queues without losing critical detail. This line should be
benchmarked against MR slots on representational fidelity, policy performance,
and compute overhead to confirm that expressivity gains justify added complexity.

A third line of work is to investigate counterfactual baselines and value decompo-
sition variants explicitly adapted to asynchronous decision epochs, while preserving
the chronological linkage of rewards. For example, counterfactual credit assignment
can be re-formulated on event time, with baselines conditioned on the realized local
configuration and pending dispatch options at each machine tick. Similarly, value
decomposition (e.g., QMIX, VDN, or monotonic relaxations) could be extended
with time-stamped mixing networks that aggregate per-agent utilities only when
actions are co-temporal or causally coupled.

A fourth opportunity is to expand the HLA’s action space and systematically
study commitment windows to make explicit the trade-off between agility and
schedule stability. Beyond mode selection, high-level controls could include dynamic
WIP caps, due-date banding (prioritization tiers), and setup/changeover budgets
that constrain reconfiguration frequency. Commitment windows can be tuned to
smooth oscillations and reduce schedule nervousness while retaining responsiveness
to changes. Adaptive schemes might lengthen windows under steady state and
shorten them during disruptions.

A fifth path is to incorporate operational realism, setups, transport times,
re-entrant flows, and machine calendars. Setups introduce sequence dependent
changeovers that challenge both dispatch and mode decisions. Transport and
blocking effects create spatial coupling, while re-entrancy generates cyclical resource
contention. Finally, calendars impose non-stationary availability.

A final contribution to the community would be to release seeded dynamic
problem suites and containerized stacks to standardize comparisons and reduce
environment drift across studies. Problem suites should cover a matrix of utilization,
variability, and routing patterns, with fixed random seeds and auditable generators
to ensure replicability. The software stack containing containerized simulators, data
loggers, and training scripts, should pin dependency versions, expose clean APIs
for state and action hooks, and bundle evaluation assessment with pre-registered
metrics and reporting templates. Such artifacts would enable robust baselines,
facilitate ablations, and make incremental progress measurable and comparable
across research groups.

70

Appendix A

Original Work Divergences

This section lists why the MARL results reported in Chapter 4 did not reach the
original performance of the MARL baseline found in [8]. The points below isolate
where small but consequential differences may arise for dynamic job shop scheduling
(DJSS), and how those differences propagate into the objective of interest.

1. Codebase version: Authors of [8] themselves now flag the repository [62]
that contains the DJSSP codebase as “vulnerable to job-overstay”, causing
training instability and failure, and “no longer maintained”. Additionally, the
environment stack (SimPy, PyTorch/NumPy/Matplotlib) is fragile to version
drift. Even small library changes shift event timing and stochastic streams,
which breaks reproducibility unless versions, seeds, and determinism are locked
down.

2. RL weigth’s initialization: It determines the agent’s very first action
preferences and, therefore, the entire trajectory of data it will learn from.
In value-based RL with bootstrapping, tiny differences in initial Q-values
alter early e-greedy choices, which change what enters replay, which changes
gradients, quickly pushing runs with different seeds into different solutions.
In DJSS/MARL, this effect is amplified. A slightly different early dispatch
at one machine perturbs downstream queues and due-date pressure seen by
others, cascading into distinct coordination patterns and final policies.

3. Environment mismatch: DJSS is highly sensitive to the exact data-
generation protocol. Even modest deviations in due-date generation (tight-
ness/offsets), job-arrival process (distribution and warm-up), routing (route-
length distribution), processing-time distribution, and queue tie-breaks or
preemption rules can reshape congestion and alter tardiness by wide margins.
If the simulators are not able to produce the same distribution on any of these

71

Original Work Divergences

axes, the attainable absolute numbers shift and gaps appear, even when the
setups look “equivalent” on paper.

. Decentralized learning amplifies credit-assignment difficulty: Per-
machine agents act asynchronously while tardiness is realized only at job
completion, T; = max(C; — D;,0). Thus, each T; embeds a long causal chain
spanning multiple machines and earlier decisions. This delayed, distributed
credit makes value estimation noisier and typically demands stronger critics,
explicit counterfactual baselines, or longer training to match the quality
achieved under settings that reduce this burden.

. Training stability: Unstable learning magnifies seed-level quirks into large
performance swings. If TD targets oscillate, gradients spike, or exploration is
erratic, two runs that start almost identically will diverge and yield different
NAT, Tardy, and WR statistics. Stabilizers, such as Double Q (and dueling),
Huber loss with TD-error clipping, soft target updates, and gradient-norm
clipping, make the learning dynamics smoother and less sensitive to initial
conditions. However, does not entirely solve it.

. Statistical protocol: Differences in the number of validation seeds/runs,
tie-handling for win rate (WR) can shift reported metrics. The proposed
protocol emphasizes robustness (e.g., many validation runs across multiple
loads), which tends to produce results that are statistically more meaningful.

72

Bibliography

Michael Pinedo. Scheduling: Theory, Algorithms, and Systems. 5th ed. Springer|
2016 (cit. on pp. 1, 16, 19).

Wallace J. Hopp and Mark L. Spearman. Factory Physics. 3rd ed. McGraw-
Hill, 2011 (cit. on pp. 1, 19).

J. K. Lenstra, A. H. G. Rinnooy Kan, and P. Brucker. «Complexity of Machine
Scheduling Problems». In: Annals of Discrete Mathematics 1 (1977), pp. 343
362. DOI: 10.1016/S0167-5060(08)70743-X (cit. on p. 1).

H. Lasi, P. Fettke, H.-G. Kemper, T. Feld, and M. Hoffmann. «Industry 4.0».
In: Business & Information Systems Engineering 6.4 (2014), pp. 239-242.
DOI: 10.1007/s12599-014-0334~4 (cit. on p. 2).

Djamila Ouelhadj and Sanja Petrovic. « A Survey of Dynamic Scheduling in
Manufacturing Systems». In: Journal of Scheduling 12.4 (2009), pp. 417-431.
DOL: 10.1007/510951-008-0090-8 (cit. on pp. 2, 14, 16, 17, 20).

G. E. Vieira, J. W. Herrmann, and E. Lin. «Rescheduling: A Framework for
Research and Practice». In: International Journal of Production Research
41.23 (2003), pp- 5113-5133. DOI1: 10.1080/00207540310001638023 (Cit. on
p. 3).

B. Waschneck, A. Reichstaller, L. Belzner, et al. «Optimization of Global
Production Scheduling with Deep Reinforcement Learning». In: Procedia
CIRP. Vol. 72. 2018, pp. 1264-1269. por: 10.1016/j.procir.2018.03.212
(cit. on p. 4).

Renke Liu, Rajesh Piplani, and Carlos Toro. «A Deep Multi-Agent Rein-
forcement Learning Approach to Solve Dynamic Job Shop Scheduling Prob-
lemy. In: Computers & Operations Research 159 (2023), p. 106294. por:
10.1016/j.cor.2023.106294 (cit. on pp. 4, 8-10, 12, 17, 20-22, 28, 31, 34,
51, 69, 71).

73

https://doi.org/10.1016/S0167-5060(08)70743-X
https://doi.org/10.1007/s12599-014-0334-4
https://doi.org/10.1007/s10951-008-0090-8
https://doi.org/10.1080/00207540310001638023
https://doi.org/10.1016/j.procir.2018.03.212
https://doi.org/10.1016/j.cor.2023.106294

BIBLIOGRAPHY

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[18]

[19]

[20]

John H. Blackstone, John A. Phillips, and Glen L. Hogg. «A State-of-the-Art
Survey of Dispatching Rules for Manufacturing Job Shop Operationsy. In:
International Journal of Production Research 20.1 (1982), pp. 27-45. DOL:
10.1080/00207548208947774 (cit. on pp. 6, 14, 40, 43).

R. Haupt. «A Survey of Priority Rule-Based Scheduling». In: OR Spektrum
11.1 (1989), pp. 3-16. po1: 10.1007/BF01721070 (cit. on p. 6).

Ramaswamy Ramasesh. « Dynamic Job Shop Scheduling: A Survey of Sim-
ulation Researchy. In: Omega 18.1 (1990), pp. 43-55. DOI: 10.1016/0305-
0483(90)90055-0 (cit. on p. 6).

Oliver Holthaus and Chelliah Rajendran. «Efficient Dispatching Rules for
Scheduling in a Job Shop». In: International Journal of Production Economics
48.1 (1997), pp. 87-105. DOI: 10.1016/S0925-5273(96) 00077-8 (cit. on
pp. 6, 7, 12, 21, 22, 43).

W. E. Smith. «Various optimizers for single-stage productiony. In: Naval
Research Logistics Quarterly 3 (1956), pp. 59-66 (cit. on p. 6).

R. W. Conway, W. L. Maxwell, and L. W. Miller. Theory of Scheduling.
Addison-Wesley, 1967 (cit. on p. 6).

J. R. Jackson. «Scheduling a production line to minimize maximum lateness».
In: Management Science 2 (1955), pp. 45-50 (cit. on p. 6).

Ari P. J. Vepsildinen and Thomas E. Morton. «Priority Rules for Job
Shops with Weighted Tardiness Costs». In: Management Science 33.8 (1987),
pp. 1035-1047. pOI: 10.1287/mnsc.33.8.1035 (cit. on pp. 6, 12).

Young Hoon Lee, Kumar Bhaskaran, and Michael Pinedo. «A heuristic to
minimize the total weighted tardiness with sequence-dependent setupsy. In:
IIE Transactions 29.1 (1997), pp. 45-52. DOI: 10.1080/07408179708966311
(cit. on p. 6).

Daniel C. Carroll. «Heuristic Sequencing of Single and Multiple Component
Jobs». Ph.D. dissertation. PhD thesis. Cambridge, MA: Massachusetts Insti-
tute of Technology, 1965. URL: https://dspace.mit.edu/handle/1721.1/
112600 (cit. on p. 6).

Christos Koulamas. «The Total Tardiness Problem: Review and Extensionsy.
In: Operations Research 42.6 (1994), pp. 1025-1041. DOI: 10.1287/opre.42.
6.1025 (cit. on p. 6).

Kenneth R. Baker and John J. Kanet. «Job shop scheduling with modified
due datesy». In: Journal of Operations Management 4.1 (1983), pp. 11-22.
DOI: 10.1016/0272-6963(83)90022-0 (Cit. on p. 6).

74

https://doi.org/10.1080/00207548208947774
https://doi.org/10.1007/BF01721070
https://doi.org/10.1016/0305-0483(90)90055-O
https://doi.org/10.1016/0305-0483(90)90055-O
https://doi.org/10.1016/S0925-5273(96)00077-8
https://doi.org/10.1287/mnsc.33.8.1035
https://doi.org/10.1080/07408179708966311
https://dspace.mit.edu/handle/1721.1/112600
https://dspace.mit.edu/handle/1721.1/112600
https://doi.org/10.1287/opre.42.6.1025
https://doi.org/10.1287/opre.42.6.1025
https://doi.org/10.1016/0272-6963(83)90022-0

BIBLIOGRAPHY

[21]

22]

23]

[24]

[30]

Edmund K. Burke, Matthew Hyde, Graham Kendall, Gabriela Ochoa, Ender
Ozcan, and Rong Qu. «Hyper-heuristics: A Survey of the State of the Arty.
In: Journal of the Operational Research Society 64.12 (2013), pp. 1695-1724.
DOI: 10.1057/jors.2013.71 (cit. on pp. 7, 14).

John H. Drake, Ahmed Kheiri, Ender Ozcan, and Edmund K. Burke. «Recent
Advances in Selection Hyper-heuristics». In: Furopean Journal of Operational
Research 285.2 (2020), pp. 405-428. pDOIL: 10.1016/j.ejor.2019.07.073
(cit. on pp. 7, 14).

Cristiane Ferreira, Gongalo Figueira, and Pedro Amorim. «Effective and
Interpretable Dispatching Rules for Dynamic Job Shops via Guided Empirical
Learning». In: Omega 111 (2022), p. 102646. DOI: 10.1016/j.omega.2022.
102646 (cit. on pp. 7, 8).

Fangfang Zhang, Yi Mei, Su Nguyen, and Mengjie Zhang. «Survey on Genetic
Programming and Machine Learning Techniques for Heuristic Design in Job
Shop Scheduling». In: IEEE Transactions on Evolutionary Computation 28.1
(2024), pp. 147-167. DOI: 10.1109/TEVC.2023.3255246 (cit. on p. 8).

Cong Zhang, Wen Song, Zhiguang Cao, Jie Zhang, Puay Siew Tan, and Chi
Xu. «Learning to Dispatch for Job Shop Scheduling via Deep Reinforcement
Learning». In: Advances in Neural Information Processing Systems (NeurIPS).
2020, pp. 16211632 (cit. on pp. 811, 20, 21).

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Intro-
duction. Second. Cambridge, MA: MIT Press, 2018. URL: http://incomplet
eideas.net/book/the-book-2nd.html (cit. on p. 8).

Igor G. Smit, Jianan Zhou, Robbert Reijnen, Yaoxin Wu, Jian Chen, Cong
Zhang, Zaharah Bukhsh, Yinggian Zhang, and Wim Nuijten. «Graph Neural
Networks for Job Shop Scheduling Problems: A Survey». In: arXiv preprint
arXiv:2406.14096 (2024) (cit. on pp. 8, 12, 21).

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. «Prioritized

Experience Replay». In: International Conference on Learning Representations
(ICLR). 2016 (cit. on pp. 9, 10, 12).

Andrew Y. Ng, Daishi Harada, and Stuart J. Russell. «Policy Invariance
Under Reward Transformations: Theory and Application to Reward Shaping».
In: Proceedings of the 16th International Conference on Machine Learning

(ICML). 1999, pp. 278287 (cit. on pp. 9, 10, 13, 14, 40, 41).

Justin K. Terry, Nathaniel Grammel, Sanghyun Son, Benjamin Black, and
Aakriti Agrawal. «Revisiting Parameter Sharing in Multi-Agent Deep Rein-
forcement Learning». In: arXiv preprint arXiv:2005.13625 (2020) (cit. on

p. 9).

75

https://doi.org/10.1057/jors.2013.71
https://doi.org/10.1016/j.ejor.2019.07.073
https://doi.org/10.1016/j.omega.2022.102646
https://doi.org/10.1016/j.omega.2022.102646
https://doi.org/10.1109/TEVC.2023.3255246
http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html

BIBLIOGRAPHY

[31]

32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

Jayesh K. Gupta, Maxim Egorov, and Mykel Kochenderfer. « Cooperative
Multi-Agent Control Using Deep Reinforcement Learning». In: International
Conference on Autonomous Agents and Multiagent Systems (AAMAS) Work-
shops, Best Papers, Revised Selected Papers. Springer, 2017, pp. 66-83 (cit. on
p. 9).

Hado van Hasselt, Arthur Guez, and David Silver. «Deep Reinforcement Learn-
ing with Double Q-Learning». In: AAAI Conference on Artificial Intelligence.
2016 (cit. on p. 10).

Ziyu Wang, Tom Schaul, Matteo Hessel, Hado van Hasselt, Marc Lanctot, and
Nando de Freitas. «Dueling Network Architectures for Deep Reinforcement
Learningy. In: International Conference on Machine Learning (ICML). 2016,
pp- 1995-2003 (cit. on p. 10).

Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mordatch.
«Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments».
In: Advances in Neural Information Processing Systems (NeurIPS). 2017 (cit.
on pp. 10, 14, 40).

Jakob N. Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli,
and Shimon Whiteson. «Counterfactual Multi-Agent Policy Gradients». In:
Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 32. 2018
(cit. on pp. 10, 14, 40).

Sam Devlin, Logan Yliniemi, Daniel Kudenko, and Kagan Tumer. «Potential-
Based Difference Rewards for Multiagent Reinforcement Learningy. In: AA-
MAS. 2014, pp. 165-172 (cit. on pp. 10, 13).

Pierre Tassel, Martin Gebser, and Konstantin Schekotihin. A Reinforcement
Learning Environment for Job-Shop Scheduling. 2021. arXiv: 2104 .03760
[cs.LG]. URL: https://arxiv.org/abs/2104.03760 (cit. on p. 11).

Kosmas Alexopoulos, Panagiotis Mavrothalassitis, Emmanouil Bakopoulos,
Nikolaos Nikolakis, and Dimitris Mourtzis. «Deep Reinforcement Learning
for Selection of Dispatch Rules for Scheduling of Production Systems». In:
Applied Sciences 15.1 (2025), p. 232. DOI: 10 . 3390/ app15010232. URL:
https://www.mdpi.com/2076-3417/15/1/232 (cit. on p. 11).

Runqging Wang, Gang Wang, Jian Sun, Fang Deng, and Jie Chen. «Flexible Job
Shop Scheduling via Dual Attention Network Based Reinforcement Learningy.
In: (2023). arXiv: 2305.05119 [cs.LG]. URL: https://arxiv.org/abs/
2305.05119 (cit. on p. 11).

Lanjun Wan, Long Fu, Changyun Li, and Keqin Li. «Flexible Job Shop
Scheduling via Deep Reinforcement Learning with Meta-Path-Based Hetero-
geneous Graph Neural Networky. In: Knowledge-Based Systems 296 (2024),
p. 111940. por: 10.1016/j .knosys.2024.111940 (cit. on p. 11).

76

https://arxiv.org/abs/2104.03760
https://arxiv.org/abs/2104.03760
https://arxiv.org/abs/2104.03760
https://doi.org/10.3390/app15010232
https://www.mdpi.com/2076-3417/15/1/232
https://arxiv.org/abs/2305.05119
https://arxiv.org/abs/2305.05119
https://arxiv.org/abs/2305.05119
https://doi.org/10.1016/j.knosys.2024.111940

BIBLIOGRAPHY

[41]

[42]

[44]

[45]

[46]

[47]

[48]

[50]

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Ruslan
Salakhutdinov, and Alexander Smola. «Deep Sets». In: Advances in Neural
Information Processing Systems (NeurIPS). 2017 (cit. on p. 11).

Young Hoon Lee, Kumar Bhaskaran, and Michael Pinedo. « A Heuristic to
Minimize the Total Weighted Tardiness with Sequence-Dependent Setups». In:
IIE Transactions 29.1 (1997), pp. 45-52. DOIL: 10.1080/07408179708966311
(cit. on p. 12).

Richard S. Sutton, Doina Precup, and Satinder Singh. «Between MDPs
and Semi-MDPs: A Framework for Temporal Abstraction in Reinforcement
Learning». In: Artificial Intelligence 112.1-2 (1999), pp. 181-211. DOI: 10.
1016/S0004-3702(99) 000521 (cit. on pp. 12, 13, 28, 39, 41).

Pierre-Luc Bacon, Jean Harb, and Doina Precup. «The Option-Critic Archi-
tecture». In: Proceedings of the AAAI Conference on Artificial Intelligence.
Vol. 31. 2017 (cit. on pp. 13, 39, 41).

Ofir Nachum, Shixiang Gu, Honglak Lee, and Sergey Levine. «Data-Efficient
Hierarchical Reinforcement Learningy. In: Advances in Neural Information

Processing Systems (NeurIPS). Vol. 31. 2018 (cit. on pp. 13, 39, 41).

Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, Nicolas Heess,
Max Jaderberg, David Silver, and Koray Kavukcuoglu. «FeUdal Networks
for Hierarchical Reinforcement Learning». In: Proceedings of the 34th Inter-
national Conference on Machine Learning (ICML). Vol. 70. Proceedings of
Machine Learning Research. PMLR, 2017, pp. 3540-3549 (cit. on pp. 13, 39,
41).

S. S. Panwalkar and Wafik Iskander. « A Survey of Scheduling Rules». In:
Operations Research 25.1 (1977), pp. 45—61. DOI: 10.1287/opre.25.1.45
(cit. on pp. 14, 40, 43).

Chandrasekharan Rajendran and Oliver Holthaus. « A Comparative Study
of Dispatching Rules in Dynamic Flowshops and Jobshops». In: Furopean
Journal of Operational Research 116.1 (1999), pp. 156-170. pot: 10.1016/
S0377-2217(98)00122-0 (cit. on pp. 14, 40, 43).

Guilherme E. Vieira, Jeffrey W. Herrmann, and Edward Lin. «Rescheduling
Manufacturing Systems: A Framework of Strategies, Policies, and Methods».
In: Journal of Scheduling 6.1 (2003), pp. 39-62. DOI: 10.1023/A:102223551
9958 (cit. on pp. 14, 17).

Andrew G. Barto and Sridhar Mahadevan. «Recent Advances in Hierarchical
Reinforcement Learningy. In: Discrete Event Dynamic Systems 13.4 (2003),
pp. 341-379. DOI: 10.1023/A:1025696116075 (cit. on pp. 14, 28, 41, 43).

7

https://doi.org/10.1080/07408179708966311
https://doi.org/10.1016/S0004-3702(99)00052-1
https://doi.org/10.1016/S0004-3702(99)00052-1
https://doi.org/10.1287/opre.25.1.45
https://doi.org/10.1016/S0377-2217(98)00122-0
https://doi.org/10.1016/S0377-2217(98)00122-0
https://doi.org/10.1023/A:1022235519958
https://doi.org/10.1023/A:1022235519958
https://doi.org/10.1023/A:1025696116075

BIBLIOGRAPHY

[51]

[52]

[59]

[60]

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder de Witt, Gregory Far-
quhar, Jakob Foerster, and Shimon Whiteson. « QMIX: Monotonic Value Func-
tion Factorisation for Deep Multi-Agent Reinforcement Learningy. In: Pro-
ceedings of the 35th International Conference on Machine Learning (ICML).
2018 (cit. on pp. 14, 40).

Shu Luo, Xuan Li, and Liang Gao. «Dynamic Scheduling for Flexible Job
Shop with New Job Insertions by Deep Reinforcement Learningy». In: Applied
Soft Computing 91 (2020), p. 106208. DOI: 10.1016/j.asoc.2020.106208
(cit. on p. 17).

Ming Zhang, Yang Lu, Lin Chen, Yifei Chen, and Wenxin Shao. « Dynamic
Scheduling Method for Job-Shop Manufacturing Systems by Deep Reinforce-
ment Learning with Proximal Policy Optimization». In: Sustainability 14.9
(2022), p. 5177. DOI: 10.3390/su14095177 (cit. on p. 17).

Albert T. Jones and Luis C. Rabelo. «Survey of Job Shop Scheduling Tech-
niquesy. In: Encyclopedia of Electrical and Electronics Engineering. New York:
Wiley, 1998 (cit. on p. 17).

Alexander Aschauer, Florian Roetzer, Andreas Steinboeck, and Andreas Kugi.
«Efficient Scheduling of a Stochastic No-Wait Job Shop with Controllable
Processing Times». In: Expert Systems with Applications 162 (2020), p. 113879.
DOI: 10.1016/j.eswa.2020.113879 (cit. on p. 17).

A. S. Jain and S. Meeran. «Deterministic Job-Shop Scheduling: Past, Present
and Futurey. In: European Journal of Operational Research 113.2 (Mar. 1999),
pp. 390-434. DOI: 10.1016/S0377-2217(98)00113-1 (cit. on p. 22).

Thomas G. Dietterich. «Hierarchical Reinforcement Learning with the MAXQ
Value Function Decomposition». In: Journal of Artificial Intelligence Research
13 (2000), pp. 227-303 (cit. on pp. 28, 41, 43).

Frans A. Oliehoek and Christopher Amato. A Concise Introduction to De-
centralized POMDPs. SpringerBriefs in Intelligent Systems. Cham: Springer,
2016. 1SBN: 978-3-319-28928-1. DOI: 10.1007/978-3-319-28929-8 (cit. on
p. 29).

Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic
Programming. New York: John Wiley & Sons, 1994. 1SBN: 0-471-57997-X (cit.
on p. 39).

Andrew Levy, George Konidaris, Robert Platt, and Kate Saenko. «Learning
Multi-Level Hierarchies with Hindsight». In: arXiv preprint arXiv:1712.00948
(2019). DOIL: 10.48550/arXiv.1712.00948 (cit. on pp. 39, 41).

78

https://doi.org/10.1016/j.asoc.2020.106208
https://doi.org/10.3390/su14095177
https://doi.org/10.1016/j.eswa.2020.113879
https://doi.org/10.1016/S0377-2217(98)00113-1
https://doi.org/10.1007/978-3-319-28929-8
https://doi.org/10.48550/arXiv.1712.00948

BIBLIOGRAPHY

[61]

Andrew Patterson, Samuel Neumann, Martha White, and Adam White. «Em-
pirical Design in Reinforcement Learning». In: Journal of Machine Learning
Research 25.318 (2024), pp. 1-63. URL: http://jmlr.org/papers/v25/23-
0183.html (cit. on p. 49).

Renke Liu. Deep-MARL-for-Dynamic-JSP. 2023. URL: https://github.
com/RK0731/Deep-MARL-for-Dynamic-JSP (cit. on p. 71).

79

http://jmlr.org/papers/v25/23-0183.html
http://jmlr.org/papers/v25/23-0183.html
https://github.com/RK0731/Deep-MARL-for-Dynamic-JSP
https://github.com/RK0731/Deep-MARL-for-Dynamic-JSP

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Static vs. Dynamic Scheduling
	Relevance & Motivation

	Literature Review
	Classical priority dispatching rules
	Learning-based dispatching rules
	RL for job shop scheduling
	Multi-agent RL design choices
	Hierarchical learning
	Research gaps and positioning

	Job Shop Scheduling
	Dynamic Job Shop Scheduling
	Dynamic Model Specifications
	Dynamic Model Behavior

	Methodology
	MARL Framework
	Minimal Repetition State
	Reward Shaping Mechanism
	Hierarchical Learning
	Hierarchical Framework
	Hierarchical State Representations
	Hierarchical Reward Design

	Simulation Results
	Experiment Specifications
	Validation & Performance Metrics
	Hierarchical Sequencing Designs
	Simulation Results

	Conclusions & Future Work
	Conclusion
	Future Work

	Original Work Divergences
	Bibliography

