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Abstract

Image recognition constitutes a key component of machine learning that enables
intelligent systems to interpret visual information. Conventional optical character
recognition (OCR) tools often encounter challenges with variations in font style,
text orientation, language, and the presence of technical symbols. To address these
challenges, a convolutional neural network (CNN) was implemented to identify
characters individually within annotated labels of electrical circuit images. A post-
processing function was integrated to reconstruct the detected characters, ensuring
semantic coherence and compliance with standard circuit notation. The proposed
method was then compared with a conventional OCR tool to evaluate accuracy and
flexibility. Experimental results demonstrate that this approach enhances technical
consistency and streamlines the automation of circuit label annotation in intelligent

Systems.
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Chapter 1

Introduction

The utilization of artificial intelligence (AI) and machine learning algorithms for
the resolution of tangible issues has been adopted in numerous domains in recent
years. The field of applications is wide-ranging, encompassing the use of predictive
analytics for the detection of fraud or aberrant patterns within the banking and
financial sectors. Additionally, it extends to the implementation of algorithms for the
early detection of serious diseases and the analysis of medical images. In the domain
of transport and logistics, it is used for the purpose of making forecasts within the

supply chain, among other applications.

These techniques have also been applied in an educational context with the aim
of creating an intelligent system capable of identifying and understanding electrical
circuit diagrams based on images. The purpose of this project is to implement a
cutting-edge web service for students and professors to use as an interactive tool for
analyzing electrical circuits. This platform, ‘autoCircuits’ [1], incorporates a range

of functionalities designed to automate the generation of electrical circuit theory

problems, as shown in Figure 1.1.

»@—» autoCircuits

Home Get Circuit Help Credits FAQ

Welcome to the autoCircuits service!

The first web service for the automated generation of circuit problems. Simple or difficult, numeric or symbolic, you can build fully customized circuit theory
exercises, with solution!

If you are a student: preparing and passing your electric circuit exams with top marks will be smoother and faster. You will be able to practice on a virtually
infinite number of circuit analysis problems, always different and generated on-demand in real time.

If you are an instructor: you can use this service to generate exam templates for your students. Thanks to the parameterization of the back-end algorithms, all
circuit problems generated with the same control options will be consistent.

Generate a totally random Choose between general Select and customize a Define your own circuit as
circuit problem circuit analysis types particular circuit problem a SPICE netlist

Figure 1.1: Web-service functionalities.

The primary objective is to assist students in enhancing their proficiency in circuit
analysis and to provide a valuable support mechanism for professors by generating a

vast number of unique circuit problems. This makes it an efficacious instrument for



Introduction

creating consistent and diverse exam templates, as shown in Figure 1.2.

@ @ 2w

| 4 &1 <>—‘
03 i INTELLIGENT
oimy _) SYSTEM
12mH % ®3) ° 959
T)7imv 1 1
. . D) i autoCircuits
e /_\
(1) — W\, 00 ®
860 () 52mH

GENERATED CIRCUIT IMAGE

Figure 1.2: Electric circuit generated and analyzed by the system.

From the back-end perspective, the intelligent system process is initiated by the
generation of an image containing the electrical circuit. This image is utilized as
input to the trained YOLO (you only look once) model, which is a real-time object
detection algorithm. All electrical components, outputs, and electrical elements (e.g.,
voltage and current arrows) along with their associated annotations, are detected in
this stage. This is achieved through the recognition of standardized circuit symbols
and the detection of junctions formed by the corresponding connection lines, as
shown in Figure 1.3. Subsequently, all of these components are extracted from the

circuit image so that they can be analyzed separately by means of image processing

techniques, with a view to obtaining the complete topology of the network.

@ LoV © 2 A B
0—@ =+ | ® | + ‘ — ]
0_2 %4

Figure 1.3: Circuits elements recognized by the intelligent system.
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The data obtained by this method is incorporated into two nested structures,
which are employed to reconstruct the original graph from the ground up. A compar-
ison is finally made between the original and reconstructed graphs. This comparison
is performed from two perspectives: graphical and structural, to evaluate the correct

functioning of the system.

As mentioned before, the annotations within the image are extracted and inde-
pendently detected through ‘Pytesseract’, an optical character recognition (OCR)
tool, to recognize the labels associated with the electrical circuit. However, the
issue arises due to Pytesseract’s inability to accurately identify certain annotations
present within the image, particularly those involving mathematical symbols or
fractional formats for annotation. This method is heavily reliant on the quality of
image resolution; consequently, low-resolution images, or those containing italic fonts
for component annotations, present considerable challenges for accurate annotation
detection and identification. The incorporation of multilingual labels further increases

the complexity of the task.

These errors highlight the limitations of ‘Pytesseract’ in handling equation-style
annotations, thus necessitating the use of an alternative tool capable of reliably
identifying labels in electronic circuit components. Thus, the objective of this re-
search is to explore two alternatives for accurately recognizing these annotations. For
this purpose, the aim is to develop a function using a Convolutional neural network
to detect characters and translate them into equation-style expressions, utilizing a
post-processing function that assigns contextual meaning to each component. The
performance of the proposed method is then evaluated by comparing it with another
optical character recognition tool called Pix2Tex, which is predefined in the Python

libraries.

This thesis is structured into seven chapters. Chapter 2 presents a comprehensive
overview of machine learning algorithms, the principles underlying optical character

recognition, and the fundamental components of a convolutional neural network.

Chapter 3 describes the construction of the dataset employed to train the pro-
posed convolutional model, incorporating augmentation techniques to enhance data

diversity.

Chapter 4 outlines the methodologies applied during the models training process,

leading to the configuration that achieved the highest accuracy.

Chapter 5 of this text provides a comprehensive overview of the core function
that facilitates the comprehensive process of recognizing annotations on a circuit.

This function is employed to replicate the entire process on other computers.
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Chapter 6 addresses the post-processing stage conducted after text extraction,
detailing the methods used to assign contextual meaning to electronic circuit annota-

tions in accordance with the models predictions.

Chapter 7 reports the experimental results obtained from evaluating the model on
a substantial image dataset and provides a comparative analysis with the 'Pix2Tex’
tool, a learning-based system designed to convert mathematical equations into LaTeX
format. The results obtained from both methods, CNN and Pix2Tex, will be com-
pared with the ground truth text annotations of the original image using a predefined
function. This function reconstructs the circuit from the predictions generated by
both models and compares the reconstructed structure with the original structure of

the circuit.

Finally, the limitations of the proposed approach, including the challenges ob-
served when applying both methods to new unseen data and the potential avenues

for future improvement, are discussed at the conclusion, Chapter 8.



Chapter 2

State of Art

2.1 Machine Learning and Deep Learning

Machine learning is a branch of Artificial Intelligence that automates analytical
model building. It is based on the idea that computers can learn automatically from
data, identify patterns, make decisions autonomously, and improve performance and

accuracy based on experience without being explicitly programmed [2, 3].

It comprises a set of algorithms and statistical models that enable computer or
machine systems to carry out specific tasks without explicit instructions, relying
instead on inference and patterns. On the other hand, Deep Learning, a subset of
machine learning, improves the quality of learning environments by using multilayer
artificial neural networks. These networks are designed to tackle complex tasks such

as image recognition, natural language processing, and speech recognition.

The architecture of deep neural networks characteristically comprises several
hidden layers, which are arranged within complex, deeply nested structures. Rather
than relying on a single activation function, they frequently implement advanced
operations, such as convolutions, or multiple activations within a neuron [4]. These
capabilities enable deep neural networks to process raw input data directly and
automatically learn the representations required for a given learning task. This

ability constitutes the basis of the concept known as "deep learning".

Over the years, numerous deep learning architectures have been proposed to
address a wide variety of learning tasks. Nevertheless, certain architectures demon-
strate greater suitability for specific data types, such as time series, speech, or images.
These distinctions arise primarily from differences in the complexity of the model,
characterized by the types and numbers of layers employed, the number of neuronal

units, and the structure of their interconnections.
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2.2 Types of Deep Learning Architectures

The following section will present five deep learning architectures. These will be
presented in rough order of development, with each successive model being developed

to overcome a weakness identified in a previous model.

2.2.1 Convolutional Neuronal Networks (CNNs)

Convolutional neural networks (CNNs) are a specialized class of neural networks
that are mostly applied in computer vision tasks such as image classification, object
detection and pattern recognition. Exploiting principles from linear algebra, in
particular matrix multiplication, CNNs automatically identify features and patterns

in images and videos.

Structurally, CNNs consist of an input layer, several hidden layers, and an output
layer, with nodes connected by weighted links and activation thresholds. The archi-
tectural design of the CNN will be explained in greater detail in the forthcoming
sections. The main components include Convolutional layers, clustering layers, and
fully connected (FC) layers. Through successive layers, they extract progressively
more complex features: the first layers detect basic patterns such as edges or colors,

while deeper layers capture higher-level structures, up to recognizing entire objects [4].

CNNs outperform traditional neural networks in handling high-dimensional data
such as images, voice, and audio, eliminating the need for manual feature extraction.
Their ability to share and process data between layers increases efficiency and miti-
gates overfitting. However, CNNs also present challenges: they are computationally
intensive, require substantial resources such as GPUs [5, 6], and require expertise in

tuning architectures and hyperparameters.

2.2.2 Recurrent Neuronal Networks (RINNs)

Recurrent Neural Networks (RNNs) are primarily used in natural language pro-
cessing and speech recognition tasks, as they are designed to handle sequential or
time-series data, event sequences, and natural language, enabling them to predict

future outcomes.

The architecture of RNNs incorporates internal feedback loops, allowing them to
learn sequential patterns and model temporal dependencies by forming a memory,
using information from previous inputs to influence current inputs and outputs, as
shown in Figure 2.1. They share parameters across layers and maintain consistent
weight parameters within each layer, which are updated through backpropagation

and gradient descent, supporting reinforcement learning [6].
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Input Layer  Hidden Layers OQutput Layer
Recurrent Neural Network

Figure 2.1: RNNs Architecture (Source:[7]).

Basic RNN architectures encounter difficulties stemming from vanishing or ex-
ploding gradients[5], which can greatly diminish or erase the influence of earlier
inputs[2]. Both problems are associated with the gradient’s magnitude, reflecting the

slope of the loss function [6].

Vanishing gradients occur when gradients become progressively smaller, eventu-
ally causing the weight updates to diminish to zero and halting the learning process.
Conversely, exploding gradients happen when gradients grow excessively large, lead-
ing to unstable models where weights may become undefined (NaN). A common
strategy to mitigate these problems is to reduce the number of hidden layers, thus

simplifying the model [5].

Additionally, these networks often demand long training times, face challenges
when handling large datasets, and become progressively more difficult to optimize as

the number of layers and parameters increases.

2.2.3 Distributed Representation

Distributed representations are of significant importance in the domain of Natural
Language Processing (NLP). These representations are characterized by the use
of continuous vectors in high-dimensional spaces to denote data, which may be
words or phrases. The concept of similarity and semantic meaning is captured by

allowing an entity to be represented by a pattern of values across multiple dimensions.

For instance, in Natural Language Processing (NLP) tasks, words with similar
meanings are represented by vectors located near each other within the embedding
space [2]. This proximity is not arbitrary but emerges from the patterns of contextual
usage learned during training. Word embeddings address the issue of sparsity inherent
in traditional text representation methods, such as one-hot encoding and bag-of-words
(BoW) models, while simultaneously preserving the semantic relationships between
words [8]. As a result, words that frequently occur in similar contexts within a corpus
are positioned closely in the vector space, facilitating more effective modeling of

linguistic structures.
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However, it is important to note that this approach is not without its challenges.
The requirement of large amounts of data to learn meaningful representations is a
significant challenge, and as such, the embeddings may not capture the true semantic
relationships if an insufficient amount of data is available. Furthermore, distributed
representations can require significant computational resources for learning, neces-
sitating substantial processing power and memory, particularly when dealing with
large datasets.

2.2.4 Autodecoders

Autoencoders function similarly to distributed representations, employing an
architectural framework that is also utilized in modern large language models (LLMs).
They consist of two primary components: an encoder and a decoder. A basic ar-
chitecture is illustrated Figure 2.2. The encoder compresses the input data into a
dense, abstract representation, positioning similar data points closer together within
the latent space. The decoder then reconstructs the original input from this com-
pressed form. Through this process, the network is encouraged to preserve essential

information in the latent space while filtering out irrelevant noise [2, 5].

Encoder Latent Decoder

Space
‘_’

—

T

Input Data Encoded Data Reconstructed Data

Figure 2.2: Basic Autoencoders Architecture (Source:[9]).

However, training deep architectures can be computationally intensive. During
unsupervised learning, models may merely replicate input data rather than extract
meaningful features[5]. Furthermore, autoencoders may struggle to identify complex
relationships within structured data, potentially resulting in incomplete or inaccurate

representations.
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2.2.5 Generative Adversarial Neural Network (GAN)

Generative Adversarial Networks (GANs) are neural network architectures de-
signed to generate new data samples that closely resemble the original training
data. GANs consist of two main components: a generator and a discriminator, see
Figure 2.3. The generator produces new samples, such as images, video, or audio,
by learning the underlying distribution of the input data. The discriminator evaluates
these generated samples by comparing them to real data, attempting to distinguish
between authentic and synthetic inputs. Both networks are trained concurrently in a
non-cooperative zero-sum game, where improvements in one network come at the
expense of the other [2]. Training continues until the discriminator can no longer

reliably distinguish between real and generated samples.

Real Image Samples Update

P Real /Fake

Discriminator

Random
Seed
Generator

e
-

Update

Figure 2.3: GANs Basic Architecture (Source:[10]).

GANSs are effective in producing highly realistic data, which can be utilized to aug-
ment machine learning training processes, often requiring minimal or no labeled input.
However, their training can be computationally demanding due to the prolonged
adversarial dynamics between the generator and the discriminator, and typically

requires large data sets to achieve satisfactory performance [5].

This work will be more in-depth in the area of image recognition, specifically in

the area of optical character recognition.

2.3 Optical Character Recognition

Optical Character Recognition (OCR) is a technology that transforms images
containing typed, handwritten, or machine-printed text into editable and machine-
readable text. These images or documents can be classified into two groups, depending
on the input mode: online and offline versions. Online recognition systems typically
refer to images captured directly from a digital pen or tablet during the writing

process. In contrast, offline recognition systems process text images or documents



State of Art

obtained from digital cameras or scanners. It is acknowledged that the images in
question may contain text produced by a machine, such as a printer or a typewriter,

or alternatively by hand [11].

OCR systems contain eight key components: (i) collection of input images, (ii)
input image preprocessing, (iii) text detection, (iv) character segmentation, (v) fea-
ture extraction, (vi) character recognition, (vii) handwriting recognition, and (viii)

post-processing.

INPUT IMAGES

v

PRE-PRO‘CESSING
TEXT IMAGES DECTECTION
CHARACTER SFGMENTATION
FEATURE EXTRACTION

CHARACTER RECOGNITION

\7
POST-PROCESSING

Figure 2.4: OCR components.

(i) Collection of input images: In this step, the dataset is created. It consists
of acquiring handwritten or machine-printed documents and converting them
into digital form. This process is performed using electronic devices such as

digital cameras, scanners, telephones, or tablets to create the set of images.

In addition to the features and classifiers used, the dataset also plays a crucial
role in determining recognition accuracy. Suppose that the input characters
in the dataset are distorted, poorly written, or contain noise that cannot be
effectively removed by pre-processing techniques. In that case, even the most
advanced feature extraction or classification techniques will not be able to

achieve the desired level of accuracy [11].
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(i)

(iii)

(vii)

Input image pre-processing: Pre-processing is one of the most important
steps in OCR. It involves a series of techniques applied to ensure that the quality
of scanned document images is sufficient before the recognition phase begins.
These techniques may include converting images to grayscale, thresholding,
removing unwanted noise or artifacts, binarization, and deskewing, among
others. The goal is to enhance image quality to achieve higher accuracy during
the character detection phase. The specific techniques used in this work will

be explained in detail in Chapter 3.

Text area detection: The text detection phase involves identifying text regions
within images using machine learning models or edge detection techniques that
can locate text areas even in complex layouts [12]. This is achieved by separating
text from non-text elements such as graphs, backgrounds, and charts. This
step is performed prior to segmentation to ensure that only the text areas are

passed on to the subsequent processing stages.

Character segmentation: The segmentation process begins by dividing the
text into individual paragraphs. Each paragraph is then segmented into lines,
which are further broken down into words. These words are subsequently split
into individual characters, and finally, each character may be decomposed
into sub-characters for more granular analysis [11]. Segmentation techniques
are often based on methods such as line detection, word separation, and
advanced algorithms capable of distinguishing characters even in complex fonts

or handwriting [12].

Feature extraction: Feature extraction phase aims to identify and isolate the
unique and distinguishing patterns of each character image, helping improve
recognition accuracy by reducing the amount of data needed[12, 11]. These
features can include lines, curves, corners, and pixel patterns that differentiate
one character from another, allowing even similar-looking characters, such as

“O” and “Q” or “1” and “I”, to be correctly recognized.

Character recognition: Character classification constitutes the final phase
in the OCR process. Following preprocessing, text area detection, and segmen-
tation, each isolated character is analyzed and matched against a repository of
reference patterns. Through this comparison, the system determines the most

appropriate character label, thereby finalizing the recognition process.

Postprocessing: This constitutes the final stage following the character
recognition phase. The primary objective of this function is to improve the
accuracy of predictions during the classification process, ensuring alignment
with the intended context and correcting any identified errors. Typically, this
post-processing stage involves spelling correction, grammatical correction, and
context-based adjustments to rectify misinterpretations made by the recognition

model [12]. For instance, it may include correcting visually similar characters,
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such as replacing "l" with "1" or "0" with "O", especially in cases where certain
fonts render these characters nearly identically. Consequently, additional
processing is necessary to refine and validate the predictions generated by the

model.

2.4 Convolutional Neural Network Architecture Overview

As explained in the previous section, a convolutional neuronal network (CNN) is
designed to mimic the human brain capabilities through the use of different layers
of interconnected neurons. The architecture of a typical CNN is composed of four
fundamental components: (a) a convolution layer, (b) a pooling layer, (c) an activation
function, and (d) a fully connected layer. Figure 2.5 depicts the organization of the
layers in CNN.
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Figure 2.5: CNN layers architecture.

2.4.1 Convolutional Layer

It is composed of multiple learnable filters, also known as kernels, which are
applied to the data before its use. The model performs convolutional operations on
the input image. Fach filter is characterized by its diminutive proportions, measured
in terms of width and height, and its ability to seamlessly accommodate the input
image. Within this framework, the filter performs the computation of dot products
between its assigned weights and the respective input pixels [13, 14]. It typically
follows a standardized numerical sequence, with filter sizes categorized as 3x3, 5x5,
or 7x7. The operation is conducted to encompass the entire extent of the input
volume (input image), and is subsequently followed by a nonlinear activation function
(sigmoid, tanh, ReLU etc.).

The third dimension of the filter is analogous to the number of channels in the

input. In the context of grayscale images, the depth value is set to 1. Conversely,

color images are characterized by 3 RGB (Red, Green, Blue) color channels. This
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process facilitates the identification of local patterns and features within the image.
The output of the convolutional layer is a set of feature maps, which represent the

presence of different features in the input image.

Finally, the output volume depends on three hyperparameters: depth, stride, and
padding [13].

e The depth of the output volume is indicative of the number of filters used in
the convolution operation. Each filter learns a distinct set of features from the

input, including edges, blobs, and colors.

e The stride determines how many steps the filter slides in the input. When the
stride is 1, the filters move one pixel at a time. When the stride is 2, the filters
jump two pixels at a time as the filter is slid. This produces a smaller spatial

output volume.

e Padding is used to influence the dimensions of the output in a convolution
operation. Without padding, applying a convolution typically results in a
smaller output, potentially discarding important data and details. To prevent
this, extra zeros are added around the borders of the input. There are two
frequently used padding methods: valid and same. *Valid’ means no padding
is added, so the output is smaller, while ’same’ ensures the output has the

same dimensions as the input by adding the necessary padding.

2.4.2 Pooling Layer

This layer is employed after convolution layers to reduce the dimension of the
feature maps (also referred to as sub-sampling or down-sampling). The application
of the pooling operation to the input data is achieved by means of a filter that
slides over it in the pooling layer (max, min, avg). The two most common types of
pooling layers are max-pooling and average-pooling, where the maximum or average
values are taken, respectively, when performing the sliding. However, Max-pooling
is utilized more frequently than the average. Moreover, the hyperparameters of the
pooling layer comprise the filter size and strides. The latter quantity denotes the
number of pixels that the pooling window (or filter) shifts over the input feature
map during each operation. To illustrate this, consider a scenario in which a stride
of two pixels has been defined. In such a case, the pooling window will progress two
units at a time after each operation [14], as illustrated in Figure 2.6. The pooling

layer does not have parameters that can be learned.

2.4.3 Activation Function

In neural network architectures, each layer computes its output by performing

a linear transformation on the output of the preceding layer. In the absence of
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Figure 2.6: Max-Pooling Layer

any non-linear modification, this linear processing is propagated through successive
layers, limiting the representational capacity of the model. However, introducing
an activation function adds non-linearity to the model. This enables the network
to approximate complex nonlinear functions, significantly enhancing its capacity
to model diverse real-world patterns and relationships. An activation function is a
mathematical function applied to the output of a filter. The most commonly used

activation functions include the following:

2.4.4 Sigmoid

The sigmoid activation function maps input values to an output range between 0
and 1, making it suitable for tasks such as normalizing neuron outputs or modeling
probabilistic predictions. It is particularly useful in binary classification problems,
where the output can be interpreted as a probability [15, 16]. The mathematical

formulation of the sigmoid function is given by:

Despite its usefulness, the sigmoid activation function presents certain limitations.
When a neuron’s output approaches the extremes of 0 or 1, the derivative of the
sigmoid function becomes very small [15]. As a result, during backpropagation,
the gradients associated with these neurons tend to vanish, leading to minimal or
no weight updates. This effect slows down learning and can propagate backward
through the network, causing the gradients of earlier layers to diminish significantly,

a phenomenon known as the vanishing gradient problem.
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2.4.5 Tanh

The hyperbolic tangent (tanh) activation function transforms the input values
into a range between -1 and 1, effectively centering the data and often leading to
improved convergence during training compared to the sigmoid function, solving the
problem of sigmoid functions not centering the output at 0 [15]. However, when the
input values are very large or very small, the output of the tanh function saturates,
resulting in small gradients. This saturation effect can hinder effective weight updates

during backpropagation, contributing to the problem of vanishing gradients.

2.4.6 Rectifier Linear Unit (ReLU)

ReLU is one of the most widely used activation functions. It is a segmented linear

function, specifically a ramp function, represented by the following equation:

f(x) = max(0, ) (2.3) L,

ReLU addresses several shortcomings of the sigmoid and tanh activation functions.
Due to its piecewise-linear nature, ReLU is computationally efficient and faster to
evaluate than its nonlinear counterparts. For positive input values, its derivative is
equal to 1, which helps alleviate the vanishing gradient problem and facilitates faster

convergence during gradient descent optimization [15].

However, it is important to note that this approach may be susceptible to the
Dead ReLU problem. In essence, this problem occurs when the input is negative,
resulting in a gradient that is precisely zero. Consequently, ReLLU neurons are more

prone to "dying" during the training process.
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2.4.7 Softmax

The softmax function is a common activation function used in multi-class clas-
sification tasks. It is characterized by the transformation of the output scores into
normalized probability distributions over multiple classes. The calculation of proba-
bilities is achieved through the compression of the values of a real vector of length
K between 0 and 1. To validate the probability distribution, it is necessary that
the total sum of vector values is equal to 1. The outputs of the activation function
are indicative of the estimated likelihood that the input belongs to each of the K
categories. Higher values suggest a stronger confidence (probability) in the associated
class [15]. This is characteristic of a K-class classification problem. The softmax

function is defined by the following equation:

0,05

ezi 0.04

SOﬂ]maX(.ﬁi) = W for ¢ = 1, ey K 0,04
J= 0.02

(24) 0,01

where z; is the i-th element of the input vector x, and K is the total number of
classes.

Moreover, a notable constraint of softmax functions emerges in scenarios where
the input to the activation function attains a substantially negative value, leading to
a gradient that approaches zero. Consequently, the corresponding weights receive
minimal to no updates during the backpropagation process. The phenomenon of
neuronal activation gives rise to neurons that remain inactive over time. These
neurons are commonly referred to as "dead" neurons, and they fail to contribute to

learning, which in turn affects the model’s performance.

2.4.8 Fully-Connected Layer or Dense Layer

A fully connected layer is generally located at the end of the network for classifica-
tion. Each neuron belonging to the fully connected layer is successively connected to
all neurons and their preceding layers. It is customary for a CNN to process the input
to generate multiple feature maps (after several convolution and pooling operations),
which are then flattened into a single vector. The vector is then passed through one
or more fully connected layers, which in turn transform spatial feature maps into

class probabilities, and finally directs it to the output layer for classification. [13, 15].

2.4.9 Regularization

CNNs are typically used for image classification tasks, where overfitting is a

significant concern. Overfitting occurs when the model generalizes or represents well
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during training but performs poorly with new, unseen data in the test set. This
occurs when the model has been intensively trained using all available information,
but cannot generalize well with new information [17, 16]. This is where regularization
techniques play a key role in the model, as they prevent overfitting during the training
phase. The idea behind regularization is to increase the variability of the data at
different stages of the CNN.

The regularization techniques are a set of algorithms that aim to reduce the error
on data that does not belong to the training set. A prevalent regularization technique

that is frequently employed in CNNs is Dropout.

2.4.10 Dropout

Dropout is a technique that facilitates regularization in the network by randomly
removing some neurons or connections with a predetermined probability. This im-
proves generalization by forcing the entire system to learn more features [15, 17].
The stochastic omission of specific connections or units leads to the formation of
multiple sparse network architectures, from which a single representative model with

reduced weights is selected. Figure 2.7 illustrates the functionality of this method.

(a) Fully connected layer (b) Dropout layer

Figure 2.7: Comparison Between Fully Connected Layers and Dropout Layers

2.4.11 Cross Entropy Loss-Function

The loss function is an effective method to evaluate the divergence between the
model’s predicted outputs and the corresponding true values. This mechanism is of
particular relevance in multi-class classification tasks, where class labels are required
to be transformed into one-hot encoded vectors to facilitate comparison. Within this
paradigm, the cross-entropy function calculates the loss for each class individually
and subsequently adds them together to compute the overall loss. It quantifies the
dissimilarity by the application of penalties to predictions that deviate from the true

labels, thereby guiding the optimization process during model training. The equation
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of the cross-entropy function is presented in 2.5.

1o
L= N Zyi log(xz;)  (2.5)
i=1

N represents the total number of data samples, in this case, circuit images. y; is

the true probability of class ¢, and x; is the predicted probability of class 3.

2.5 Image Classification

In the domain of computer vision, image classification is widely regarded as one
of the most challenging tasks. The objective is to differentiate between object classes,
including but not limited to animals, vehicles, and people, based on the features
presented in the images [15]. To perform image classification, it is necessary to select
a classification model that is suited to the specific characteristics and requirements
of the specified task.

The selection of a reference model for the character annotation recognition com-
ponent of this thesis was largely based on the findings of Rizky (2023) [18], who
conducted a comparative study of pre-trained CNN architectures for text recogni-
tion in images. The experiments demonstrated that applying transfer learning to
standard CNN backbone architectures (e.g., VGG-16, ResNet18, DenseNet121, etc)
and combining it with appropriate image augmentations (rotations, scaling, blurring)
produces high accuracy, with VGG16 being the model that achieved high accuracy
on the test set with 98.16%.

Since part of the task of this research work is the recognition of numerical and
symbolic labels in circuit diagrams, it shares many characteristics with the character
recognition scenario in [18] (small symbols, variable fonts, possible noise or distor-
tions), and the same architectural options are promising. Therefore, it was decided
to adopt VGG-16 as the base model, using transfer learning from ImageNet weights
and employing some analogous augmentation strategies to make the model robust
to variations in the quality of circuit annotation images. This choice is justified not
only by the empirical performance described in their work, but also by the fact that
their methodology addresses some of the challenges it is expected, such as different

character sizes, rotations, variable fonts, and noise.

The subsequent section will provide a detailed exposition of the selected model

and its architecture.
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2.5.1 VGGNet Model

The VGG model is a convolutional neural network architecture developed by the
Visual Geometry Group at the University of Oxford. The model was trained on the
ImageNet dataset, which includes millions of annotated images across a wide range
of object categories. This makes it well-suited to large-scale image recognition tasks.
VGG-16 is distinguished by its simple and uniform architecture, a feature that has
been identified as a contributing factor to its notable performance in the ImageNet
Large Scale Visual Recognition Challenge (ILSVRC) 2014. Despite its architectural
simplicity, the model contains approximately 138 million parameters, thereby demon-

strating significant representational capacity and computational demand.
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Figure 2.8: VGG16 Model’s Architecture (Source: [19])

The architecture of the model consists of 13 convolutional layers with 3x3 filters,
a stride of 1, and the same padding, followed by 3 fully connected (dense) layers.
The final dense layer is paired with a Softmaz activation function for classification.
Furthermore, the network incorporates five max-pooling layers, which serve to pro-
gressively reduce the spatial dimensions of feature maps. It is important to note that,
although the model comprises 21 layers in total when accounting for all operations,
as shown in Figure 2.8, only the 16 convolutional and dense layers possess trainable

weights and are considered the weight-bearing components of the network.

Furthermore, there are OCR tools that facilitate the translation of images into
LaTeX format. One of the most popular of these is called Pix2Latex. This OCR
tool performs a similar task to that which is to be implemented in this work. The

application receives an image containing a mathematical equation and translates it
into its LaTeX representation.

In this thesis, the proposed method (CNN along with a postprocessing function)
will be evaluated by means of a comparative analysis, in which the performance of the
method is measured and contrasted with that of Pix2Tex. In the following section, an

exposition will be made of the architecture and functionality of the aforementioned

tool.
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2.5.2 Pix2Tex

Pix2Tex is an open-source model developed by Lukas Blecher. It was designed to
convert mathematical images into LaTeX markup. It employs an encoder-decoder
framework, utilizing a scalable coarse-to-fine attention mechanism to generate presen-
tational markup. The encoder typically consists of a Convolutional Neural Network
(CNN), often based on a ResNet architecture, which extracts visual features from
input images. These extracted features are then passed to a decoder, which is gener-
ally implemented using either Transformer or LSTM architectures, to sequentially

predict LaTeX tokens. The entire process is illustrated in Figure 2.9.

The primary function of the encoder is to identify and represent the visual charac-
ters present in the input image as a set of feature embeddings. These embeddings are
subsequently processed by the decoder to produce the corresponding LaTeX represen-
tation. Depending on the modeling approach, sequence prediction or classification,
the training process may use either cross-entropy loss or Connectionist Temporal
Classification (CTC) loss.
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Figure 2.9: Pix2Tex process.

According to the documentation [20], the model performs better with low-
resolution images. This is why another neural network model was implemented
in the preprocessing phase to adapt the input images to an optimal resolution. This
model automatically resizes custom images to resemble the training data as closely
as possible, increasing the performance of images found in the wild. However, this

does not guarantee success in all cases.

As discussed in this chapter, there are numerous architectures in the domain
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of deep learning, each meticulously designed to fulfill a specific function. In the
context of image recognition, CNNs represent a prominent class of algorithms that
is extensively employed in contemporary OCR tools. A CNN is composed of a
sequence of interconnected layers, whose structure and parameters play a crucial role
in determining the model’s performance during training. Furthermore, the efficacy of
a convolutional model depends to a significant level on the dataset employed during
the training process, as the model learns patterns from the samples comprised in it.
The subsequent section will provide a detailed exposition on the generation of images
that will be utilized for the CNN implemented in this thesis.
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Chapter 3

Dataset (Generation

The objective of this study is to propose a method capable of identifying machine-
printed characters, with special attention to digitized or printed text. To achieve
this, a selected CNN model will be trained on a comprehensive dataset comprising
character images that exhibit a wide range of typographical variations, including
differences in font style, size, aspect ratio, and image quality. In order to enhance

the model’s generalization capability across diverse printed-text representations.

A well-curated dataset can enable a relatively simple model to outperform a more
complex one trained on poor-quality data. Recognition performance is influenced not
only by the feature extraction and classification methods used but also by the quality
and size of the training data. Factors such as dataset size, font styles, background
variability, color, and contrast play a significant role in building a robust and general-

izable dataset, and they will be taken into account during the dataset creation process.
This chapter focuses on the creation of a dataset composed of images containing

alphabetic and numeric characters, mathematical symbols, and selected Greek letters,

specifically tailored for applications in electronic circuit design.
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3.1 Dataset Generation

The generation of a suitable set of images constitutes a significant challenge,
given the requirement of neural models for large volumes of data, whether typed or
handwritten, paired with accurate ground-truth labels for optimal performance. The

manual production of these labels is a costly and time-consuming process.

To facilitate effective model training, it is essential that each generated image is
accurately associated with a corresponding label denoting its class. To address this
requirement, the process of image generation and label assignment was automated
through the development and implementation of a dedicated algorithm in MATLAB.
This automation is designed to ensure consistency, efficiency, and scalability in the
creation of a labeled dataset suitable for training and validating of the recognition

model. The algorithm is presented in the following section.

3.1.1 Character Generation Algorithm

The script automates the generation of images in PNG format, employing LaTeX
rendering to depict characters or mathematical symbols. The character representation
can be specified as standard text symbols or mathematical expressions. The fonts
employed for this purpose are typically classified within a particular font-family,
such as "Mathpazo", "Fourier", "Unicode-Math", "Euler", "Times New Roman", or

"Palatino", thereby ensuring a greater diversity of samples.

The subsequent stage of the process is to define the list of characters to be created.
The function will then iterate through each element until it generates a separate
LaTeX file containing that symbol, and then compile it into a PDF using the specified
LaTeX compiler. LaTeX provides three distinct approaches to document compilation:
pdflatex, Xelatex, and lualatex. To satisfy the requirements of this feature, Xelatex
was selected based on its ability to compile characters from the majority of the

selected fonts. Finally, the resulting PDF format is converted to a PNG image.

This Algorithm 1 is a particularly effective tool for creating a visual dictionary
or a dataset of symbols rendered in LaTeX using different fonts. The characters
that comprise the dataset are upper and lower case letters of the alphabet, numerals,
fundamental mathematical symbols, and a selection of Greek letters, in both lower-

and uppercase, that can be utilized as variables within certain electronic circuits.

Similarly, given that the majority of the font families utilized in Algorithm
1 yielded analogous visually font styles for the Greek letters, it was imperative to
explore alternative fonts capable of offering greater variability in character generation.
Consequently, the generation of selected Greek letters was facilitated through the

utilization of LaTeX Equation Editor available in Sciweavers [21], an open-source,
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Algorithm 1 Generate Symbol Images from LaTeX

Input: math_mode, font_name, compiler_type
Output: PNG images of LaTeX-rendered symbols
Set character_list depending on math_mode
Initialize math_dict and filename_dict maps
Define output directory and ensure it exists
for all symbol in character_list do
if symbol € math_dict then
filename < filename_dict [symbol]
latex_symbol <— math_dict [symbol]
else
filename < infer name from symbol
latex_symbol < symbol
end if
: end for
. if math_mode is False then
Generate a standalone LaTeX file with symbol
. else
Generate LaTeX math file with latex_symbol
: end if
: Compile using selected compiler_type
: Convert PDF to PNG
: Clean auxiliary files

NN DN RN = e e e e e e e

online tool that furnishes a compendium of fonts endowed with mathematical func-
tionality, different sizes, colors, and supports several file formats. The total number

of new images generated with this tool for each Greek letter was 14.

Pattern matching studies show that recognition performance is not only influenced
by the choice of features and classification algorithms, but also by the quality and

quantity of the training data.

To develop a robust character recognition dataset, it is essential to include a
substantial number of character images that encompass a diverse range of font
styles, deformations, and typographic variations, such as italic, bold, and regular
forms. Ensuring that the model can effectively distinguish between these stylistic
differences is critical for accurate and efficient character identification within images.
However, manually generating approximately 100,000 images along with their labels
is a time and resource-intensive process. To address this, the present work utilizes

the Chars74K-Fonts dataset to streamline the image generation process.

3.1.2 Chars74K-Fonts Dataset

This open-source dataset [22] contains 62,992 character images categorized into
62 classes, representing alphanumeric characters (0-9, a-z, A-Z) of which 10,160 are

digit samples and 26,416 samples each for uppercase and lowercase. Each image
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has a resolution of 128x128 pixels and contains a character rendered in black using
computer-generated fonts on a white background. The data set includes four distinct
typographic variations that represent different combinations of regular, bold, and
italic font styles. The dataset has 7705 natural character images, 3401 hand-drawn

characters using PC, and 62,992 computer-synthesized fonts. Figure 3.1, show some

M X

Capital ‘G’ Small ‘f’ Capital ‘M’ Capital ‘X’

f@

character examples used in the dataset

"SH»
O\

Capital ‘A’ Capital ‘C’ Capital ‘D’
Small ‘g’ Small ‘W’ Small ‘¢’
Zero ‘0’ Small ‘0’ Capital ‘O’ Capital ‘7’

Figure 3.1: Samples from Char74K-Font Dataset.

3.1.3 Data Augmentation

Data augmentation is a technique that is both efficient and cost-effective for
increasing the size of a dataset. Recent research [23, 24] has demonstrated that
augmented data can replicate the essential characteristics of real-world data. This
method is widely used to enhance the diversity of training data, thereby improving
the model’s ability to distinguish features across varying scenarios. As a result, it
enables the acquisition of more robust feature representations with unseen data,

which ultimately contributes to improved system performance on new tasks.

Therefore, to increase the variability in the image set, the following transforma-
tions were applied to the preexisting data set using the Albumentations library:
geometric transformations, color space adjustment, noise injections to emulate real-
world scenarios, pixelation, and other techniques. A duplicate image was generated
for each input image along with its label, as shown in Figure 3.2. Consequently,

the image and the duplicate will be fed into the neural network.
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3.1.4 Geometric Transformations

o Rotation: Assists the model in recognizing characters that may appear slightly
slanted due to camera misalignment, writing slant, or document skew. Improves

rotational invariance and generalizes better to non-ideal input.

To introduce a rotation effect during the image augmentation process, the
predefined function "ShiftScaleRotate" within the Albumentations library
was employed. The parameter shift_limit was set to 0.0625 (i.e., 6.25%)
to control horizontal and vertical translations, representing a fraction of the
images height and width. To simulate rotational variance, a maximum rotation
angle of 45° was applied, resulting in a tilting effect that mimics changes in
camera perspective or object orientation. The transformation was configured
to be applied with a probability of 100% (p=1.0), while all other parameters
were maintained at their default values. As a result, Figure 3.2 illustrates the

visual changes introduced by this augmentation.

>

ORIGINAL IMAGE ROTATED IMAGE

Figure 3.2: Rotation applied to the images.

o Tilt: Simulates oblique angles and perspective distortions, which are common
in natural scene text, on walls, or signs. This improves the model’s ability to
interpret characters when viewed from slanted viewpoints. The tilt function was
established with a factor of 0.2 (i.e. 20%) in order to guarantee a noticeable but
subtle effect, achieved by shearing the image horizontally in proportion to its
vertical position. As depicted in Figure 3.3 , a comparison is drawn between
the original image and the transformed image, highlighting the alterations

made during the transformation process.

»>

ORIGINAL IMAGE TILTED IMAGE

Figure 3.3: Tilted transformation applied to the images.
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3.1.5 Color Space Adjustments

e Brightness: Improves the models robustness to varying lighting conditions
by encouraging it to focus on shape rather than intensity, making it effective
on underexposed and overexposed images. The RandomBrightnessContrast
function was used in this context with its default parameters, introducing
random variations in brightness and contrast within a range of +20%. This
means that some images may appear brighter or darker, while others may
exhibit increased or reduced contrast. These variations help to create a more

diverse and robust data set.

»>

ORIGINAL IMAGE BRIGHTENED
IMAGE

Figure 3.4: Brightness transformation applied to the images.

¢ Hue-saturation: Simulates color variations due to different backgrounds, light-
ing, or scanning artifacts. Allows the model to differentiate between characters
that may be printed in different colors or placed on colored backgrounds. The
default parameters were used for the HueSaturationValue function to create
several images with different shades of colors, thus preventing overfitting to
the exact hues and saturation of the training set. The resulting augmentation

is shown in Figure 3.5.

>

ORIGINAL IMAGE HUE-SATURATED
IMAGE

Figure 3.5: Hue-Saturation applied to the images.

3.1.6 Noise Injections

e Gaussian Noise: This process assists in the modeling of generalization by
guiding it to prioritize essential structural patterns over individual pixel varia-
tions. This approach emulates real-world imperfections, including sensor noise,

substandard images, and compression artifacts.
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Gaussian noise is a statistical noise model that follows a normal distribution. It
is frequently employed to simulate real sensor noise in image data. The normal
distribution is defined by two parameters: the mean value of the noise (u),
which is 0, and the standard deviation (o), which controls the dispersion of
the noise values with respect to the mean. The standard deviation was set to
25, which resulted in a brightness fluctuation that was neither systematic nor
regular, see augmentation is shown in Figure 3.6, but rather exhibited a more

erratic and fluctuating pattern.

»>

ORIGINAL IMAGE NOISY IMAGE

Figure 3.6: Noise transformation applied to the images.

3.1.7 Pixelation

e Pixelation: This technique degrades the resolution of the image by downscal-
ing it and then scaling it back up to its original size, creating a "pixelated"
effect. Increase the model’s robustness to varying image quality. In this func-
tion, a pixelation factor of 10 was applied, yielding images characterized by
moderately sized, blocklike artifacts that simulate reduced resolution, as shown

in Figure 3.7.

>

ORIGINAL IMAGE PIXELATED IMAGE

Figure 3.7: Brightness transformation applied to the images.

3.1.8 Other Techniques

e Blurring: Mimics motion blur or out-of-focus captures to encourage the model
to learn the basic shapes of characters rather than relying on sharp edges or

contours. The blur augmentation was implemented using the Albumentations
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librarys Blur transform with a 7x7 kernel. The size of the kernel determines
the extent of the neighborhood around each pixel that is used in the averaging
process during image blurring. This choice of kernel size attenuates fine image
details and produces a pronounced softening effect, as can be observed in

Figure 3.8, thereby simulating a realistic sensor in the training data.

»>

ORIGINAL IMAGE BLURRED IMAGE

Figure 3.8: Blurring transformations applied to the images.

e Distortion: Applies perspective distortions to images to improve the robustness
of the model to irregular deformations in character shapes. ElasticDeformation
was applied using an initial global affine perturbation of magnitude 50, which
introduced modest random translations, rotations, shears, or scaling of up to
$50 pixels or degrees, thereby creating coarse positional ’jitter’. Subsequently, a
smooth displacement field was generated by sampling random x- and y-offsets
and convolving them with a Gaussian filter with a standard deviation (o) of 50.
Due to the large o, the resulting displacement field changes gradually across the
image. Finally, the smoothed offsets were scaled by a factor of 1 («), producing
maximum per-pixel shifts of approximately 1 to 2 pixels over broad regions

and creating gentle bulging distortions illustrated in Figure 3.9.

>

ORIGINAL IMAGE DISTORTED IMAGE

Figure 3.9: Distortion transformation applied to the images.

The final dataset comprises 94,381 images distributed across 258 classes, with

resolutions ranging from 70x70 pixels to 128x128 pixels.
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Chapter 4

Model Generation and

Evaluation

Subsequent to the generation of the dataset, the next step is to define the
Convolutional neural network model and the training process for the character
recognition task. This chapter provides a detailed exposition of the preprocessing
techniques that were applied to the images in the dataset. In addition, it describes
the different tests that were performed using 'transfer learning’ for the VGG16 model
and a customized CNN model. These tests aimed to select the final model to be
used during the inference phase. Finally, the Python libraries utilized will also be

delineated in this chapter.
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4.0.1 Packages

Before providing a detailed explanation of the functions incorporated within the
script that constitute the final model and the training process, it is necessary to

establish an overview of the libraries utilized in the implementation process.

TensorFlow was the principal software utilized in the development of this par-
ticular work. It is an open-source library focusing on the development of machine
learning and artificial intelligence algorithms. TF was designed as a comprehensive
framework, making it possible to construct convolutional neural networks (CNNs) at
all levels, from the most basic to the use of pretrained models. Its main objective
is to support the training and prediction of machine learning models and facilitate

other data processing tasks.

Keras is a TensorFlow application programming interface (API) that simplifies
and optimizes the development of neural network architectures and training processes.
It provides a set of functions for the specification of hyperparameters, such as the
learning rate, batch size, and number of epochs, as well as for the layer definition
when developing the model workflow [25]. In addition, it supports both recurrent
neural networks (RNN) and convolutional neural networks (CNN), making it suitable

for a variety of deep learning applications.

Scikit-Learn is an open-source Python library offering a broad selection of tools
for both supervised and unsupervised learning. Its core features include algorithms
for classification, regression, and clustering, as well as techniques for dimensionality
reduction. The library also provides various methods for model selection and perfor-
mance evaluation, along with essential utilities for data preprocessing. The version

employed was 3.10.

Imageio is a Python library that allows processing and interpreting images in

different formats.

OpenCV2 is a freely available software library developed for computer vision
and machine learning tasks, including image and video processing, object detection,
and text recognition. The software offers a comprehensive range of functionalities

that facilitate the manipulation of images and videos.
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4.1 Script Description

4.1.1 Loading Dataset Function

The script begins with the function load_dataset described in Algortihm 2,
generates two primary lists: X and Y, representing the images and their correspond-
ing labels, respectively. Each element in the Y list indicates the class to which
the associated image in X belongs. The X list contains a total of 94.381 samples,
each of which undergoes a series of preprocessing techniques aimed at enhancing
image quality. These techniques are applied to improve the overall efficiency and
generalization ability of the machine learning model used in the subsequent stages.
A detailed explanation of these preprocessing methods is provided in the following

section.

Regarding the Y list, which contains the categorical class labels for each image,
a One-Hot encoding approach is used to convert these categorical values into a
numerical format. This step is crucial because most machine learning algorithms
require numerical input for training and prediction and cannot directly process
categorical data, such as text labels. One-Hot encoding is a standard solution to
this limitation and ensures that the data set is compatible with a wide range of ML

models.

Algorithm 2 Load Dataset and Pre-process Images

1: function Load_ DataSet(path_dataset, target_ size)

2 Initialize empty lists X, y

3 classes < sorted list of folders in path_dataset, each folder represent a class
4 class to_index < map each class name to a unique index

5: for all class in classes do

6 folder path < path to class folder

7 for all image in class folder do

8 img_path < full path to image

9 image < read image as grayscale

10: Preprocessed Image < preprocessing_cnn(image, target_ size)
11: Append preprocessed image to X

12: Append class_to__index|class] to y

13: end for

14: end for

15: X < concatenate X to stack arrays vertically in a list.

16: Yy <— convert y to numpy array.

17: y_onehot < Apply One-hot Encode(y, depth=number of classes).

18: return X,y _onehot,y, classes, class_to_index

19: end function

4.1.2 One-Hot Encoder

To facilitate a deeper understanding of the mechanisms underlying encoding, the

following example is presented. The categorization of characters is achieved through
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the utilization of a list comprising the respective names of each character, such as ‘A’
‘a_ lowercase’, ‘B’, ‘b__lowercase’, ‘alpha’, ‘beta’, ‘sigma’, ‘minus’, ‘plus’,
and so forth. The classes mentioned above are encoded using the One-Hot method,
whereby an explicit binary value is assigned to each category. As demonstrated in
Table 4.1, this pattern guarantees that each categorical value has its own array of

binary values 1 or 0, facilitating its integration into machine learning models.

Table 4.1: One-Hot Encoding of some characters used in the Dataset.

Character One-Hot Encoding
A [1,0,0,0,0,0,0,0,0,0, 0, 0, 0]
B [0, 1,0,0,0,0,0,0,0,0, 0, 0, 0]
C 0,0,1,0,0,0,0,0,0,0,0,0, 0]
a_lowercase | [0, 0,0, 1,0,0,0,0,0,0, 0,0, 0]
b_lowercase | [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0]
c_lowercase | [0, 0, 0, 0,0, 1, 0, 0, 0, 0, 0, 0, 0]
a [0,0,0,0,0,0,1,0,0,0,0, 0, 0]
3 [0,0,0,0,0,0,0,1,0,0, 0,0, 0]
A [0, 0,0,0,0,0,0,0, 1, 0, 0, 0, 0]
minus | [0, 0,0,0,0,0,0,0,0,1,0,0, 0]
sum [0, 0,0,0,0,0,0,0,0,0, 1, 0, 0]
point [0, 0,0,0,0,0,0,0,0,0,0, 1, 0]
other [0, 0,0,0,0,0,0,0,0,0, 0, 0, 1]

4.2 Pre-processing Techniques applied to the Images

The application of specific pre-processing techniques is a key component to en-
hance the image quality. Given that the dataset under consideration is composed of
typed-text characters, in which the majority of cases contain a white background,
whilst other cases exhibit a contrasting, saturated color background or different
sizes. The importance of standardizing the input images that will subsequently
feed the CNN model cannot be underestimated, as it influences the models ability
to consistently extract and learn discriminative features from each character, thus
enhancing its generalization performance. The preprocessing function that has been

implemented is presented in Algorithm 3.

The following list details the processing techniques applied to the images:

4.2.1 Resizing

The process of resizing images is a fundamental step in ensuring consistency
and uniformity in the dimensions of all input data. This is a prerequisite for the
effective functioning of machine learning algorithms. The OpenCV resize() method

was implemented for the modification of image dimensions, by using interpolation
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INTER_AREA, which is particularly effective in the context of downsizing images. The

input size specified for the images was 64x64 pixels.

4.2.2 Normalization

In the context of the VGG16 model, the process of normalization is integrated
within the Keras applications for the model (keras.applications.vggl6). The spe-
cific method is designated as preprocess_input , essentially involves the subtraction
of the mean pixel value of each color channel BGR (Blue, Green, Red) derived during
the training set of the ImageNet dataset, from the respective channels of each input
image. Therefore, the resulting pixel distribution is centered around zero or within the

range of 0 and 1. Facilitating convergence and consistency during the training process.

Algorithm 3 Preprocessing an image for CNN input

Require: Image, Target size
Ensure: preprocessed image is ready for CNN input
1: if Image has only two dimensions (grayscale) then
2 Convert image to 3-channel RGB by duplicating values
3: end if
4: Resize image to the target size using interpolation.
5: Apply VGG preprocessing to the resized image.
6: Convert pixel values to type float32
7. Expand dimensions so shape changes from (H, W, 3) to (1, H, W, 3).
8: return Preprocessed image

4.3 Pre-processing Techniques applied to the Bounding

Boxes for Detection

To detect the bounding boxes successfully, it was also necessary to apply some
pre-processing techniques. These techniques enhance the performance of the method
findcontours , which is an OpenCV function used to identify the contours around
an object in an image more effectively, thereby minimizing the influence of noise
and artifacts that could compromise image resolution. The preprocessing steps
implemented to improve bounding box detection are outlined in Algorithm 4 and

explained in the following sections.

4.3.1 Greyscale

Converting images to grayscale is a crucial pre-processing step that ensures uni-
formity in the color scale across the dataset. This standardization not only facilitates
more consistent feature extraction but also reduces computational complexity by
limiting the image data to a single channel. The cvtColor function from the

OpenCV library was employed to perform the RGB-to-grayscale conversion.
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4.3.2 Gaussian Blur

Blurring is a technique used to reduce unwanted noise in images by minimiz-
ing fine details. In this study, a Gaussian blur method was applied using a 5(ES
convolution kernel present in the OpenCV library. This kernel size offers a balance
between noise suppression and edge preservation. For instance, smaller kernels,
such as 3x3, are capable of providing a lighter smoothing effect. Whilst the em-
ployment of larger kernels enhances clarity by reducing the blurring of the image.
However, there is a risk that this will obscure fine details and merge closely positioned
contours. Since there may be potential variations in lighting conditions in some
images of the dataset, a moderately sized kernel (5x5) was selected, see Figure 4.1.

It is effective for substantial noise reduction while retaining essential edge information.

Ornginal Character A’ Blurred Image (3x3) Blurred Image (bxb)

Figure 4.1: Gaussian Blurred Image.

4.3.3 Thresholding-Base Image

The subsequent technique applied to the images was binary thresholding with
inversion. A threshold value of 156 was selected for the detection. The operation
converts all pixel intensities falling below the threshold to black (i.e., the minimum
pixel value of 0) and those falling above the threshold to white (i.e., the maximum
pixel value of 255). This effectively inverts the image colour. This method established
a boundary between the elements that make up the foreground and those comprising
the background by rendering the former dark against the latter, which were rendered
bright, as illustrated in Figure 4.2. This facilitates more accurate contour detection.

The threshold method presented in OpenCV was implemented for this purpose.

4.3.4 Denoising Image

The next technique applied was non-local means denoising using the OpenCV
function fastN1MeansDenoising . This method only works with grayscale images
and retains the edge details and contours of each image after applying thresholding

while filtering out residual noise, as shown in Figure 4.3.

35



Model Generation and Evaluation

Original Character ‘A’ Binary Thresholding (Inverted)

Figure 4.2: Thresholding-Base Image.

The method was configured with the following parameters: a filter strength
(h) of 30. Medium to high filter values remove noise and small artifacts from previous
processes; however, excessively high values (A > 30) may result in the removal of
too many details, which is why a moderate value was chosen. Conversely, imple-
menting a larger template window facilitates the identification of analogous pixel
neighborhoods, thereby enhancing denoising quality. The value set in this field was 7.
Concurrently, a reduced search window of 21 was selected for this task to improve
computational efficiency without compromising denoising performance, as the noise
pattern is relatively uniform across the image. For convention, it is recommended

that the template window and the search windows should have odd numerical values.

These parameters ensure a robust balance between noise suppression and struc-

tural preservation, enabling a more reliable contour extraction in subsequent stages.

Original Character 'A'

Denoised Image

Figure 4.3: Denoised Image.

Algorithm 4 Preprocessing for bounding boxes detection

Require: Image, kernel_size(5,5)
Ensure: Denoised binary image is ready for prediction.
1: Convert the input image from RGB to grayscale.
2: Apply a Gaussian blur with the given kernel size to reduce noise.
3: Apply binary inverse thresholding with a threshold default value of 156.
Resulting in a binary image where black represents the background, and the
white pixels the character.
4: Apply Non-Local Means Denoising to the binary image.
5: return Image preprocessed for BB detection
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4.4 Model Development and Experimental Progression

To develop a robust model for character detection in typed images, several
architectures and training strategies were explored. The following section delineates
the experimental process, highlighting key decisions, and discusses the performance

and limitations of each approach.

4.4.1 Initial Experiments

Subsequent to defining the dataset comprising all possible classes, the next step
was to define the Convolutional Neural Networks utilized for character detection.
Numerous models are available for image recognition, with deep-learning CNN demon-
strating the highest level of performance among other classifiers for this character
recognition task. In this work, a model for detecting text annotations in a circuit

will be proposed.

As a first approach, a transfer learning technique was employed, which involves
reusing a pre-trained model to address a new problem. This method leverages the
knowledge acquired from a prior task with a large dataset to improve generalization
in a different task with limited data. Instead of learning entirely from scratch, the
model builds upon previously learned patterns and representations, allowing it to

adapt more efficiently and effectively to the new context.

For these initial experiments, the dataset used contained only the main charac-
ters (the alphabet, the digits 09, some mathematical symbols, and Greek letters),
equivalent to 79,452 samples with 91 classes. Of these, 64% of the dataset (50,848
samples) was used for training; 16% (12,713 samples) was allocated for validation;

and the remaining 20% (15,891 samples) was reserved for testing.

The architectural model and training configuration utilized are outlined in the

following section.

4.4.2 VGG-16 model

The VGG16 model, a convolutional neural network (CNN) pre-trained on the
ImageNet dataset, was used for character detection in this study. As outlined in
Section 2.5.1, the model comprises 16 layers with a learnable set of parameters. In
the initial experiments, the first 12 layers (for attempt 1) and 6 layers (for attempt 2)
of the VGG16 model were kept fixed. These early layers primarily extract low-level,
generic features such as edges, textures, and simple geometric patterns. Freezing
them helps preserve foundational feature extraction capabilities that are typically
transferable across different image datasets. Additionally, this approach reduces
the number of trainable parameters, thereby accelerating the training process and

mitigating the risk of overfitting.
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Enabling only the deeper layers, particularly the fully connected layers, to remain
trainable means that the model can focus on learning task-specific representations.
To further reduce the risk of overfitting, a dropout regularization technique is applied
after each dense layer with a rate of 0.25. The dropout randomly deactivates a
proportion of neurons during training to encourage the network to develop more

robust and generalized feature representations.

Finally, the output layer is implemented with a softmax activation function. This
function converts the raw network output into a probability distribution for the
potential classes, allowing the model to make probabilistic predictions for multi-class

classification tasks.

The final architectural structure applied in this first approach is summarized as

follows.

4.4.3 APROACH 1: VGG16 with 12 Frozen Layers

12 Pretrained Layers
Conv4__3: 512 filters, 3z3 kernel, ReLU activation.
Max Pooling (Pool4): 222 pool size, stride 2.
Conv5__1: 512 filters, 3z3 kernel, ReLU activation.
Convb5__2: 512 filters, 323 kernel, ReLU activation.
Conv5__3: 512 filters, 323 kernel, ReLLU activation.
Max Pooling (Pool5): 222 pool size, stride 2.

Flatten
Dense (256): 256 units, ReLU activation. Dropout (0.25)

Dense (number__classes): number classes units, Softmax activation.

4.4.4 APPROACH 2: VGG16 with 6 Frozen Layers

6 Pretrained Layers

Conv3__1: 256 filters, 323 kernel, ReLU activation.

Conv3__2: 256 filters, 3z3 kernel, ReLU activation.

Conv3__3: 256 filters, 323 kernel, ReLLU activation.
Max Pooling (Pool3): 222 pool size, stride 2.

Conv4_ 1: 512 filters, 323 kernel, ReLLU activation.

Conv4__2: 512 filters, 3z3 kernel, ReLU activation.

Conv4__3: 512 filters, 3z3 kernel, ReLU activation.
Max Pooling (Pool4): 2z2 pool size, stride 2.

Max Pooling: 2z2 pool size, stride 2
Conv5__1: 256 filters, 3z3 kernel, ReLU activation.
Conv5__2: 256 filters, 323 kernel, ReLLU activation.
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Conv5__3: 91 filters, 3x3 kernel, RELU activation
Flatten
Dense (256): 256 units, ReLU activation. Dropout (0.25)
Dense (256): 256 units, ReLU activation. Dropout (0.25)

Dense (number__classes): (Number of classes) units, Softmax activation.

4.4.5 Customized CNN

A tailored deep convolutional neural network architecture was created using Keras
Sequential stacking, a method utilized by well-established models to add layers
one after the other in a linear fashion, where the output of one is the input to the
next. The initial block of convolutional layers was selected to extract fundamental
visual features such as edges, lines, and textures, applying 128 filters. In the sub-
sequent block, the number of filters was increased to 256, enabling the network to
learn more complex representations, including corners and motifs, by integrating
lower-level features. The final convolutional block was configured with 512 filters. It
was designed to capture high-level abstract representations that may correspond to
components, such as object or character structures. The structural architecture of
this tailored CNN was inspired by the predefined VGG16 model, as illustrated in
Figure 4.4.

Subsequent to the convolutional blocks, a flatten layer was incorporated to con-
vert the 3D output of the max pooling layer into a 1D output. Two dense layers
(fully connected layers) with sizes of 512 units and 1024 units were added, using the
activation function ‘RELU’. Likewise, to prevent overfitting, a dropout layer was
incorporated between each fully connected layer as a regularization technique. The
ultimate classification layer incorporates the ‘Softmax’ activation function, with the

output size being equivalent to the number of classes in the data.

Max pooling
Conv2_2:256 filters, 3x3 kernel
Conv2_3:256 filters, 3x3 kernel
Conv3_2:512 filters, 3x3 kernel

Max pooling
Layer (FC1): 512 units, ReLU

activation, Dropout: 0.25

activation, Dropout: 0.25

Convolutional & Pooling layer
Convl_1:128 filters, 3x3 kernel
Convl_2:128 filters, 3x3 kernel
Conv2_1:256 filters, 3x3 kernel
Conv3_1:512 filters, 3x3 kernel
Conv3_3:512 filters, 3x3 kernel

Fully connected layers
Dense |Layer (FC2): 1024 units, ReLU

Dense

Figure 4.4: Customized CNN architecture.

Before being processed by the model, all input images were resized to a standard-

ized resolution of 64x64 pixels to ensure consistency in input dimensions.

The structural configuration of this model is presented in the following Sec-
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tion 4.4.6.

4.4.6 Customized CNN Layers

Convl__1: 128 filters, 3x3 kernel, ReLU activation, padding = “same”
Convl_ 2: 128 filters, 3x3 kernel, ReLU activation, padding = “same”
Max Pooling: 2x2 pool size

Conv2_ 1: 256 filters, 3x3 kernel, ReLU activation, padding = “same”

Conv2_ 2: 256 filters, 3x3 kernel, ReLU activation, padding = “same”

Conv2__3: 256 filters, 3x3 kernel, ReLLU activation, padding = “same”
Max Pooling: 2x2 pool size

Conv3__1: 512 filters, 3x3 kernel, ReLU activation, padding = “same”

Conv3_ 2: 512 filters, 3x3 kernel, ReLLU activation, padding = “same”

Conv3__3: 512 filters, 3x3 kernel, ReLU activation, padding = “same”
Max Pooling: 2x2 pool size

Flatten
Dense Layer (FC1): 512 units, ReLU activation, Dropout: 0.25
Dense Layer (FC2): 1024 units, ReLU activation, Dropout: 0.25

Output Layer (output): (Number of classes) units, Softmax activation.

For the initial experiments, the three models were compiled using the Adam
(Adaptive Moment Estimation) optimizer by default. This optimizer is renowned for
its capacity to adapt the learning rate based on the average of the first and second
moments of the gradients[26], often resulting in more rapid and stable convergence.
Therefore, the learning rate was set to le™ for the customized CNN and to le™® for
the VGG16 model with six and 12 frozen layers.

The loss function chosen was Categorical Cross-Entropy, which is widely used
in multi-class classification tasks. The difference between the predicted probability
distribution and the true one-hot encoded distribution is computed by this loss
function. As each image in the dataset belongs to a unique class, the aim is to
minimize the loss, ensuring the predicted probabilities closely align with the actual
labels. Likewise, performance was evaluated using Accuracy metric, which measures

the proportion of correctly classified samples in each epoch.

The training dataset comprised 50,848 samples (64%), which were utilized across
three distinct models: a customized CNN, the VGG16 model with 6 frozen layers,
and the VGG16 model with 12 frozen layers. The validation set consisted of 12,713
(16%) samples, while the test set included 15,891 samples (20%).
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4.5 Training Function

The train_cnn_model function was designed to train a CNN using a given dataset

of input images and their corresponding class labels. It has two purposes:

o First, it prepares the dataset by converting it into the correct numerical format

and partitioning it into training, validation, and test subsets.

e Second, it initializes the CNN model with the correct input and output dimen-

sions.

Initially, the input data corresponding to the images, denoted by X, and the labels
(y_onehot and y_index) are converted into NumPy arrays with the correct data
types, step 1 in Algorithm 5. The feature matrix X and one-hot encoded labels
y_onehot are both cast to “float32” to guarantee compatibility with the categorical
cross-entropy loss function. Likewise, to preserve the distribution of classes during

the process of stratified sampling, the class indices (y_index) are converted to “int32”.

In the subsequent stage of the procedure, the dataset is divided into three subsets
by means of a two-stage stratified splitting procedure (step 2 in Algorithm 5). In
the initial phase, 20% of the data is designated as a test set, thereby ensuring that the
class distribution in the test subset matches that of the original dataset. The remain-
ing 80% is stored as a temporary subset. In the subsequent phase, this provisional
subset is subjected to further segmentation, with 64% of the total dataset allocated to
the training set and 16% to the validation set. This process employs stratification to
ensure the preservation of balanced class distributions. The resultant data is divided
into three partitions: 64% for training, 16% for validation, and 20% for
testing. This configuration is a common practice in machine learning, as it facilitates

both the optimization of models and the evaluation of performance in an unbiased way.

Following the division of the data, the model is initialized. Multiple monitoring
and optimization strategies are configured to track the process, such as EpochLogger,
which systematically saves the metrics (train and validation accuracy and loss) at an

epoch level, step 4 in Algorithm 5.

Training is then executed using the ‘fit’ method (step 5 in Algorithm 5). In
accordance with this method, certain hyperparameters were established, including
the batch size, which was set to the typical value of 32, and the number of epochs, set
at 50. In machine learning, batch size refers to the number of training samples that
the model processes to calculate predictions. These predictions are then compared
with the true labels, where the error (loss) is calculated. This process continues until
all the samples in the training set have been used, marking the completion of one

epoch.
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Similarly, the ‘shuffled’ option was enabled in the ‘fit’ method in each epoch to
enhance generalization, and the validation set was employed to monitor the model’s
progress in each epoch. The training process was stopped after the validation accu-
racy metric did not improve after five epochs. The model is then saved for future

use and reproducibility.

The implementation of this function was conducted for all model architectures
proposed in Sections 4.4.3, 4.4.4, 4.4.5.

Algorithm 5 Train a CNN model function train_cnn()

Require: Feature data X, One-hot labels y_ onehot, Class indices y_ index, Map-
ping dictionary class_to_index, Optional parameters: batch_ size, epochs
Ensure: Trained CNN model saved to disk.
1: Step 1: Convert input data to correct types
2: X < float32 NumPy array.

3:  y_onehot < float32 NumPy array.

4:  y_index < int32 NumPy array.

5: Step 2: Split data into Train, Validation, and Test sets

6:  Split X and y_onehot into 80% Training+Validation and 20% Test (stratified
by y_index)

7. Split Training+Validation into Training (64%) and Validation (16%) sets.

8: Step 3: Create CNN model
:  cnn_model(input_shape, number of classes)
10:  Print model summary.
11: Step 4: Setup logging and callbacks
12:  Initialize training log file.
13:  Create custom callback for per-epoch logging.
14: Step 5: Train the model
15:  Call model. fit() with:

16: Training data (X __train,y_train)
17: Validation data (X _wval,y_val)
18: Batch size, epochs, callbacks, verbose=2, shufle=True.

19: Step 6: Save trained model
20:  Save model to model__save__path

4.6 Results of First Models Experiments

The comparative results of the three models, Customized CNN, 12 Layer Frozen,
and 6 Layer Frozen, are illustrated in Table 4.2, demonstrating notable differences

in performance across the training, validation, and test phases.

The 6 Layer Frozen model exhibited superior performance in terms of overall
generalization, attaining the lowest test loss (0.0814) and the highest test accuracy
(0.9732), while exhibiting the fewest total errors (426) and unique errors (62). In

contrast, the 12-layer frozen model demonstrates the poorest performance, exhibiting
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Table 4.2: Comparison results of CNN, 12 Layer Frozen, and 6 Layer Frozen
Models during Testing phase.

Metric Customized CNN |12 Layer Frozen |6 Layer Frozen

Train Loss 0.0341 0.0748 0.0288

Train Accuracy 0.9864 0.9718 0.9879

Validation Loss 0.0842 0.1132 0.0668

Validation Accuracy 0.9707 0.9633 0.9781

Test Loss 0.0929 0.1175 0.0814

Test Accuracy 0.9682 0.9600 0.9732
Total Errors 506 635 426
Unique Errors 104 122 62

the highest test loss (0.1175), the lowest test accuracy (0.9600), and the greatest
number of errors and unique errors. Although the customized CNN model achieves
robust results, with a test accuracy of 0.9682 and moderate error counts (506 in
total, 104 of which are unique), it is marginally outperformed by the 6-layer frozen
configuration. This suggests that partial fine-tuning (freezing only six layers) provides

a favorable balance between transfer learning and model adaptability.

Table 4.2 also reports the number of unique classification errors made by the
model, referring to distinct types of misclassifications observed during the testing
phase. The total error count reflects the frequency with which each misclassifications
occurred. For example, if the character 'l’ or 'O’ was incorrectly classified as '1’ or
'0’ on multiple occasions, each instance contributes to the total error count, the total
errors out of 15.891 test images. In contrast, the uniqueerror count captures only
the presence of a particular type of mis-classification (i.e., how frequent a class was

incorrectly classified), regardless of the number of times it occurred.

Since the results achieved by the proposed CNN were robust and comparable
to those obtained with the pre-trained VGG16 model using six frozen layers, this
suggests that the application of fine-tuning techniques, such as early stopping and
learning rate annealing, may further improve generalization in custom models and
potentially yield superior performance. Accordingly, the following section describes

the fine-tuning strategies applied to the customized CNN.
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4.7 Model Fine-Tuning the Customized CNN

To refine the proposed Convolutional Neural Network (CNN) model and mitigate
excessive overfitting during training, several fine-tuning techniques were implemented
in the training method described in the Section 4.5. These strategies also con-
tributed to improving the model’s overall accuracy. The applied methods were

employing Keras callbacks, and they are presented below:

1. Learning Rate Adjustment: This parameter controls the step size at which
the model recalibrates its weights during the training phase. The correct selection of
this parameter is therefore essential to avoid unstable training or the convergence
to sub-optimal solutions. In the initial experiment, a learning rate of 1 x 1073 was
employed during the training stage. This value could be high for a customized neural
network, since it exhibited early overfitting in comparison with the VGG16 model.
In order to address this issue during the fine-tuning process of the model, a lower
learning rate of 10 was adopted, with the objective of achieving a more gradual and

stable convergence.

2. Early Stopping: Early stopping is a regularization technique that is used to
prevent overfitting by terminating the training process once the model’s performance
on a validation set has stopped improving. Typically the selected metric corresponds
to validation loss. If there is no improvement over a specified number of consecutive
epochs (patience parameter) training process ends, and the model weights corre-
sponding to the lowest validation loss are automatically recovered. In this case, for

the customized CNN a patience value of five epochs was implemented.

3. ReduceLROnPlateau: This method serves as a model optimization by
reducing the learning rate when performance improvements stall, thus minimizing
the risk of overfitting. By applying a controlled reduction, the model performs more
refined updates of the weights, improving its convergence as the training progresses.
Particularly, the learning rate was adjusted based on the validation loss metric. If
this metric stops improving for 3 consecutive epochs, the learning rate is halved, with

a predefined minimum threshold of 1 x 1076.

4. Model Check Point: The ModelCheckpoint method is used to preserve the
most optimal version of the model achieved throughout the training process. The
selection is determined based on a specified evaluation metric, such as validation
loss or validation accuracy. The model whose weights demonstrate the most optimal
performance according to the selected metric is then saved. Adopting this technique
will increase the likelihood of achieving superior predictive accuracy during the testing

phase.

5. Increasing dataset: A new set of images was incorporated into the existing
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dataset for this new experiment with the fine-tune model. The total number of
samples used was 94,381. Images generated comprised subscripts and superscripts,
particularly in instances involving resistors. capacitors, inductors, and voltages
(Ry,Co, L5, etc). Images found on the internet were also incorporated for a more

robust dataset.

4.7.1 Results obtained after Model Fine-Tuning

This section presents the results obtained from applying the aforementioned

model refinement techniques.

Table 4.3: Performance comparison between the VGG16 model with 6 frozen layers
(baseline) and the fine-tuned customized CNN.

Metric VGG16 (6 Frozen Layers) | Customized CNN
Train Loss 0.0114 0.0118

Train Accuracy 0.9949 0.9954
Validation Loss 0.0387 0.0424
Validation Accuracy 0.9877 0.9880

Test Loss 0.0399 0.0404

Test Accuracy 0.9887 0.9886

Total Errors 258 256

Unique Errors 70 65

As demonstrated in Table 4.3, the implementation of fine-tuning techniques on
the previous model led to substantial improvements in accuracy across all training,
validation, and testing scenarios. This was accompanied by a significant decrease
in loss at each stage. These observations suggest improvements in training, general-
ization, and robustness. Furthermore, the customized CNN fine-tuned resulted in a
significant reduction in classification errors, both in total and in uniquely misclassi-

fied samples, in comparison to the one observed in the prior experiment (Section 4.3).

The findings indicate that the architecture and training strategy employed in
the CNN customized fine-tuning process were more effective in capturing the un-
derlying structure of the data, including variations in font and style. Consequently,
this approach yields predictions that are more reliable and generalizable than those

obtained from experiments performed as a starting point.

4.7.2 Comparison with the baseline model

Furthermore, the results obtained with the pre-trained model and the customized
CNN fine-tuned under the same conditions outperformed VGG16 with 6 frozen layers
across most evaluation metrics; the performance margin between the two is relatively
small. Since VGG16 is used as the baseline model to evaluate the performance of the

proposed model, the results highlight a positive generalization for the fine-tuned CNN.
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Similarly, as shown in Table 4.3, a slight discrepancy was observed in the vali-
dation test, with results of 98.8% and 98.7% for the customized CNN and VGG16
models, respectively. Both models demonstrated high effectiveness when evaluated
on unseen data, indicating their ability to predict with new information. Likewise, it
achieved a test accuracy of 98.86% (customized CNN) compared to 98.87% for the
pre-trained VGG16.

These differences, although measurable, are minor when the advantages of custom
architecture are taken into account. Having greater control over parameter settings
and applying a lightweight model can be beneficial to the task. In practical terms,
these discrepancies are within the range of run-to-run variability for models of this
size, especially when considering stochastic factors (initialization, batch sorting,
data augmentation, etc.). Similarly, the test loss of the customized CNN showed
small discrepancies, 0.0404 vs. 0.0399 corresponding to the VGG16 model, and the
error count differed slightly, with only 2 more total errors and 5 more unique errors

(258 vs. 256). Therefore, they are within the expected variability of deeplearning runs.

A key benefit of customized CINN is its architectural flexibility and reduced
computational complexity in contrast to VGG16, which is a deep and resource-
intensive model with more than 138 million parameters (even after six frozen layers,
the number of pretrained parameters would be 260 M). The customized CNN was
designed with a more compact structure, tailored specifically to the characteristics
of the dataset, such as character recognition in varying fonts and styles, and has 25
million parameters. This enhancement in efficiency is particularly pronounced in

environments characterized by limited computational resources.

This finding indicates that the fine-tuning techniques were sufficiently effective to
optimize a lightweight model to a point that its performance is almost equivalent
to that of a much deeper and pre-trained architecture. This was therefore the final
model selected for making predictions about the characters in the subsequent stages.
In addition, the optimized model was saved in the *.h5 format to preserve its weights
and parameters learned during the training phase, facilitating straightforward loading

and deployment in other instances.

4.7.3 Weakness of the customized CNN

Certain errors were identified during the testing phase. These errors are primarily
attributable to visually similar characters with which the model occasionally experi-

ences difficulty in distinguishing.

The Snippet 4.1 provides an illustration of the 10 classes in which the model

generated the most classification errors, along with the frequency with which these
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errors occurred during the testing phase.

Listing 4.1: Most Frequent Recognition Errors.

1|# Predicted Label vs True Labels (Unique Errors)
371. Predicted: 0O_zero True: O | Count: 84
11 2. Predicted: O True: O_zero | Count: 44
5°3. Predicted: I True: 1_lower | Count: 33
6 4. Predicted: 1_lower True: 1 | Count: 14
7 5. Predicted: 1_lower True: I | Count: 13
s/ 6. Predicted: 1 True: 1_lower | Count: 10
9. 7. Predicted: U True: u_lower | Count

10 8. Predicted: k_lower True: K | Count: 5
11'9. Predicted: Y True: y_lower | Count: 4
12/ 10. Predicted: p_lower True: P | Count: 4

47



Chapter 5

Main Function

The main function is responsible for synthesizing all the steps necessary to imple-

ment the prediction of the annotations. In essence, it is the function employed for

the reproducibility of the algorithm developed in this study.

The following steps constitute the primary function:

1.

2.

Load the CNN model.
Load the class labels list.

Execute the prediction phase for the character detection.

. Execute the post-processing function to assign the meaning and label form to

the characters predicted.
Convert the final label string into LaTeX format.
Log results obtained.

Return the final result.
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5.1 Calling the main functions

The main function designated as cnn_detection() receives as input the image
to be recognized and essentially executes the character detection and post-processing
functions. The resulting string is then transferred to a method that converts the
post-processed predictions into LaTeX format. These results are saved in a text file

for subsequent analysis.

The returned output of this function is the formatted string representing the label
of the circuit. Algorithm 6 provides a comprehensive overview of the procedure
implemented in this function. All these steps will be explained in detail in the

following sections.

Algorithm 6 Main function call cnn__detection()

Require: Image path img_ path
Ensure: Predicted text in LaTeX format
1: STEP 1: Load CNN model
Load the trained CNN model from the specified path.
2: STEP 2: Load class labels
Read class names from the class labels file into a list.
3: STEP 3: Prediction Phase (predict__characters())
Pass the input image to the CNN model to obtain the character predictions,
bounding boxes coordinates and confidence scores.
4: STEP 4: Post-process function (post__processing())
Refine the predicted text via post-processing.
5: STEP 5: Convert to LaTeX
Transform the refined predictions into LaTeX-formatted text.
6: STEP 6: Log results
Save prediction logs including confidence scores and processing time.
7. STEP 7: Return final output
Return the final LaTeX-formatted text.

5.2 STEP 1: Load CNN model

In this step, the Convolutional model that will be used for prediction is loaded.
In this instance, the model to be employed is the one defined before in Section 4,

corresponding to the customized CNN.

5.3 STEP 2: Load class labels

Consequently, in this step, the labels of the classes employed in the dataset were
loaded. In order to ensure reproducibility, it is recommended that the class labels
be saved in a *.txt file. This will allow them to be loaded on any other computer

without the need for the original dataset.
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5.4 STEP 3: Prediction Phase (predict_characters())

5.4.1 Algorithm

This function aims to execute the inference (prediction) phase using the annota-

tions received by the circuit. It receives as input the following parameters:

o Image path,
o A list with the labels of the classes that have been defined in the model.

e The CNN model.

The output of this function corresponds to three *txt file that contain: the model-
predicted characters, the prediction time, and the confidence level of the inference.

Examples of these file are presented in Snippet 6.19, Snippet 6.20, Snippet 5.4.

STEP 1: Loading Image

The method is initiated by loading the input image. An example of a possible

input annotation image is shown in Figure 5.1.

3.8 mH

Figure 5.1: Input annotation image example.

STEP 2: Pre-processing image for contour detection

Subsequently, the image is passed to the preprocessing function for bounding
boxes, to prepare it for the contour detection method. The latter must match the
pre-processing steps employed during model training. This is due to fact that the
model has been trained on pre-processed image data. Discrepancies between training
data and inference preprocessing have the potential to compromise the integrity of
the pipeline, resulting in a distribution shift, therefore, affecting the final predictions.
The preprocessing steps applied are already described in Section 4.3. Figure 5.2

depicts an example of an image after preprocessing steps.

.0 M

Figure 5.2: Preprocessed image example.
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STEP 3: Detecting Contours and sort contours from left to right.

Following this, contour detection is applied to the preprocessed image. This
technique is employed to identify the candidate character region within the image
by delineating a contour around it, as illustrated in Figure 5.3. The method was
implemented using the openCV function cv2.Findcontours (), which is designed to
detect all points having the same color and intensity, and return them as a contour,
the threshold value was set to 156. These, in turn, are the representations of the

shapes present in the image.

.0 M

Figure 5.3: Output of cv2.Findcontours method.

Subsequently, the contours are sorted from left-to-right and top-to-bottom in
order to maintain consistent spatial order. This preserve natural reading sequence in

the image.

STEP 4: Bounding boxing (BB) generation.

On the other hand, the creation of the bounding boxes involved the implemen-
tation of a for loop, which was apply to systematically iterate through the list of
contours that had been previously identified. The cv2.boundingRect() method,
available in the OpenCV library, was applied in order to generate the rectangle
around the shape of the identified object, see Figure 5.4. The function returns a
lists of coordinates of the detected bounding boxes in the following format: The coor-
dinates are specified as [x_min, y_min, x_max, y_max] . Where [x_min, y_min]

represent the top-left-corner of a box and [x_max, y_max] the bottom-right-corner.

Figure 5.4: Bounding boxes generated.

STEP 5: Character Prediction

The final stage involves predicting the character contained within each bounding

box. Another for loop was apply to iterate through the list of bounding boxes
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detected in the previous step. To ensure that the extracted region adequately encom-
passes the character, a padding margin is applied around each bounding box. This

was performed by modifying the BB coordinates accordingly.

The character was then subjected to cropping from the image using the BB
coordinates. The extracted segments were passed to the preprocessing function for
the input images to prepare it for the prediction phase. Once again, the function
utilized for this scope, must be the same used during the training of the model. This

was defined in Section 4.2.

Following preprocessing, the processed image segments are passed through the
CNN model loaded before, using the predict () method for inference. The out-
put of this stage are then saved in a *.txt file for analysis to be performed later.

Figure 5.5 shows a representation of the original image with the predicted characters.

8.8 mH

Figure 5.5: Final prediction.

STEP 6: Save results

The results comprise the predicted characters, together with the coordinates of
the bounding boxes and the corresponding confidence levels. Snippet 5.1 show the

raw predictions obtained after character detection.

Snippet 5.1: Raw predictions output.
1 [((’8°, 0.28), (2, 0, 13, 40)),

2 (7.2, 1.0), (15, 19, 13, 26)),
; ((’82, 1.0), (32, 19, 13, 26)),
[ (C’m2, 1.0), (62, 1, 22, 36)),

5 ((?’H?, 1.0), (98, 10, 23, 27))]

Algorithm 7 also provided a comprehensive overview of the steps involved in

the prediction phase.

52



Main Function

Algorithm 7 Character Prediction from Image (predict_characters())
STEP 1: Load image

STEP 2: Pre-process image for contour detection

STEP 3: Detect contours and sort bounding boxes from left to right
STEP 4: Generate bounding boxes
STEP 5: Prediction of Characters

for each box in bounding_boxes do
Apply padding and crop character region
Pre-process the cropped image for CNN input
Predict character using the trained model
Extract predicted label string and confidence
Store prediction with bounding box coordinates

return List of predicted characters, prediction time, and confidence scores

5.5 STEP 4: Post-process function post-processing|()

In Chapter 6, comprehensive details on the post-processing function will be
provided. This method essentially retrieves the predictions generated by the pre-
dict__characters() function and processes them in a way that ensures the resulting
output aligns with the specified annotation label format. The function’s output is a

string containing the annotation.

5.6 STEP 5: Convert to LaTeX format

The outcomes of the post-processing method occasionally yield a sequence of char-
acters that does not align with the LaTeX cleaner format. In this research project, the
notations recognized by the CNN + post-processing function and Pix2Tex methods
must be written in a format compatible with LaTeX format, as these predictions will

later be used to compare the two methods.

For this reason, the convert_to_latex() function was developed. This function
receives the post-processed predicted tokens (character string) as an input parameter
and converts them to LaTeX format. It identifies numerical expressions, fractional
values, Greek letters, electrical units, and scientific notation, and reformat them
in order to produce correct cleaner LaTeX syntax. The ’'re’ library in Python was
implemented to generate the regular expression required to identify and extract

specific structures within a text string.

For instance, when processing a label such as "alpha_{1}i_{22}" a correspond-
ing regular expression is then constructed to identify this specific pattern of characters.
If a match is found, the function automatically replaces the Greek word with its

LaTeX equivalent, denoted by "\alpha', thus ensuring that the label is correctly
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formatted as "\alpha_{1}i_{22}" in the final output. The same logic was applied

to the rest of the cases mentioned before.

In this transformation, mathematical commands and markups associated with
the LaTeX format are not included. The final result must exclusively maintain the
structure of LaTeX expression, incorporating elements such as subscripts, super-

scripts, and fractional formats.

Finally, the resulting data is stored in a text file. Snippet 5.2 depicts the

resulting output after applying the conversion.

Snippet 5.2: Example of reformatting performed.

1 Input Output

2 67 Omega -> 67 \Omega

s alpha_{1}i_{22} -> \alpha_{1}i_{22}
i phi_{3}i_{5} -> \Phi_{3}i_{5%}

5 3/4 V_{2} -> \frac{3}{4}v_{2}

6.90.10°{-3}i_{6} -> 90\cdot10~{-3}i_{6}

An example of the resulting final predictions, following post-processing and

conversion to a LaTeX-like syntax, is presented in Snippet 5.3.

Snippet 5.3: Post-processed predictions after LaTex conversion.

1| (5)

2 \frac{3}{2}A

3 8.8mH

(1)

5 (3)

6 \frac{6}{17}A
7 \frac{20}{17}H
0 (6)
10 \frac{5}{18}V
11 \frac{5}{4}\Omega
12 13\ Omega

13 V_{9}

14 i_{9%}

15 6.3V

16 41mH

17 37\ Omega

18 7.3mH

5.7 STEP 6: Log results

After converting the predicted label into the standard LaTeX format, the infor-

mation is saved in a text file for control information purposes. The content of this
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file corresponds to the following elements and they are depicted in Snippet 5.4:

o the list of predicted characters resulting from the prediction__characters()

function;
o the predicted label after post-processing; and

e the time taken for the entire prediction process, which is the sum of the

prediction time and the post-processing time.

Snippet 5.4: List of predicted characters
i/ Initial_prediction:[((°(’, 1.0), (2, 4, 21, 85)), ((’57,
1.0), (32, 11, 34, 58)), ((’)’, 1.0), (75, 4, 21, 85))]
After postprocessing:(5)
;) Time after pp: 0.31528615951538086 seconds

5 Initial _prediction:[((’-’, 0.83), (3, 46, 33, 6)), ((’2’,
1.0), (6, 61, 26, 40)), ((’3’, 1.0), (7, 0, 25, 40)), ((
A2, 1.0), (59, 11, 50, 61))1]

¢ After postprocessing:\frac{3}{2}A

7 Time after pp: 0.46279072761535645 seconds

o Initial_prediction:[((’(’, 1.0), (2, 4, 21, 86)), ((’1°’,
1.0), (385, 10, 29, 59)), ((’)’, 1.0), (75, 4, 20, 86))]

10 After postprocessing: (1)

11 Time after pp: 0.3351309299468994 seconds

15 Initial _prediction:[((’(’, 1.0), (3, 4, 21, 85)), ((’3’,
1.0), (32, 10, 35, 60)), ((’)’, 1.0), (76, 4, 21, 85))]

14 After postprocessing:(3)

15 Time after pp: 0.35938501358032227 seconds

17 Initial_prediction:[((’-’, 0.82), (4, 50, 61, 5)), ((’17,
1.0), (8, 65, 23, 39)), ((’6’, 1.0), (21, 2, 25, 40)),
(¢’7°, 1.0), (36, 65, 27, 39)), ((’A’, 1.0), (88, 15,
51, 59))]

1s After postprocessing:\frac{6}{17}A

19 Time after pp: 0.5673356056213379 seconds

21 Initial_prediction:[((’6°, 1.0), (1, 2, 35, 60)), ((’omega’
, 1.0), (66, 0, 55, 62))]

22 After postprocessing:6\0mega

23 Time after pp: 0.24060463905334473 seconds

o5, Initial _prediction:[((’5’, 1.0), (0, 6, 34, 59)), ((.’,
1.0), (46, 55, 7, 8)), ((’8’, 1.0), (65, 5, 34, 60)), ((
’vy’, 1.0), (119, 3, 51, 60))]

26/ After postprocessing:5.8V
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27 Time after pp: 0.0001556873321533203 seconds

20 Initial _prediction:[((’5’, 1.0), (0, 8, 35, 58)), ((’.’,
1.0), (47, 56, 7, 8)), ((’4’, 1.0), (63, 7, 39, 57)), ((
'm’, 0.93), (124, 25, 53, 39)), ((’A’, 1.0), (186, 4,
50, 61))]

30 After postprocessing:5.4mA

31 Time after pp: 0.00020241737365722656 seconds

5.8 STEP 7: Return final output

The function cnn__detection() returns the final predicted label string of the
annotated image. For instance, in the case of the example illustrated in STEP 3, the

final output string would be 8.8mH.
This function is of vital importance when considering applying this application to

other projects. In essence, it is the function that is utilized to make predictions using

the CNN model trained in this study and the developed post-processing function.
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Chapter 6
Post-Processing Function

This chapter delineates the functions associated with post-processing applied to
the characters predicted by the Convolutional model. The CNN model generates
a list of raw character predictions extracted directly from the annotation image
received. These predictions must be verified and adjusted if any errors occurred

during the recognition phase.

Post-processing involves the refinement of preliminary model results through the
adjustment of specific pre-processing parameters, with the objective of enhancing
prediction accuracy. The CNN model is employed to formulate a new prediction,
with the parameters being adjusted accordingly. As a result, the new prediction
generated may be the same as the previous one or show a character that had not
been correctly identified during the first prediction. In the final stage of the process,
the function assigns the context to the label according to the characters that were

previously predicted.
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6.1 Post-Processing Function

6.1.1 Overview

The post_processing() function has been developed to refine the raw predic-
tions generated by the CNN model for circuit-related labels (such as voltages, currents,
resistances, and component identifiers). The predict__characters() (Section 5.4)
method generates an initial list of predicted characters that often exhibit misclas-
sifications arising during the prediction process, since the model is susceptible to

misclassifications for visually similar characters.

This function applies a set of rule-based conditions to correct these issues and
produce context-format labels. On the other hand, the function also stores the
processed results in a *.txt file. In order to obtain a comprehensive overview of the
post-processing function, the Algorithm 8 delineates the primary steps involved in

the detection and creation of each circuit label.

The summary of these steps is illustrated in Algorithm 8.

Algorithm 8 Post-Processing of CNN Predictions (post_processing())

STEP 1: Load the input image from img__path

Extract predicted characters from the initial predicted list (first character,
last character, and if available, second and third)

Initialize merged_text < ()

STEP 2: Evaluate predictions against predefined conditions C1, Cy, ..., Cy

for i =1 to C:
if predictions satisfy condition C;:
Apply correction rules for Cj
Optionally re-run character recognition on bounding boxes
Merge corrected characters into merged__text
If no condition is satisfied: re-predict characters directly from bounding

boxes and merge into merged_ text

STEP 3: Post-process the image using pp_prediction_cases()
Save annotated image
STEP 4: Consolidate the Bounding boxes into a single one, after postprocessing of
the characters predicted initially.
STEP 5: Log refined label into output *.txt file.
Log confidence scores into confidence file.
Compute post-processing time prediction_pp_ time .

return (merged_text, prediction_pp_time)
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6.2 Processing Steps

The subsequent section will provide a comprehensive explanation of the function.

6.3 STEP 1: Inputs of the Post-Processing method

o predictions: The initial list of characters predicted by CNN in the prediction
method. Each element is a tuple that contains the predicted character and its

corresponding bounding box.
e img_path: Path to the image labels.
e« model: The CNN model used for character recognition.

o classes: The set of possible output classes (characters) the model can predict.

6.4 STEP 2: Logical Conditions Applied to Predictions

In this step, all the conditions were defined. Each condition was designed to
determine a specific labeling pattern based on the list of predicted characters. Es-
sentially, a set of conditions are evaluated to establish whether the characters on
the list satisfy the patterns outlined in these conditions. Examples of these patterns
include dependent sources written with subscripts, scientific notation or superscripts,

values with decimal numbers, symbolic values, circuit units, and misclassified symbols.

Table 6.1: Electronic Circuit Symbols with Meaning, Units, and Examples

Symbol Meaning Unit Notes Example
A% Voltage source v Independent source Vy=12V
v Voltage source A% Dependent source v = [B3u4
R Resistor Q Passive element R=1kQ
C Capacitor F Passive element C =10 uF
L Inductor H Passive element L=5mH
A Current A Independent current source | Iy =2 A
i Current A Dependent source 1 =3Iy
P Power W | Power delivered/consumed | P =VI
S Switch — | Switching element -

E Voltage source v Independent source E=5V
F Faraday F Capacitor unit -
H Inductance H Inductor unit -
Q Resistance Q Resistor unit -
G Conductance S Reciprocal of resistance G=1/R

In order to facilitate a better understanding of the subject, the conditions were
created with the understanding that the numerical values, alphabetical letters, and

Greek letters found in the annotations or labels of an electrical circuit possess a
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meaning depending on the manner in which they are presented. Table 6.1 provides
a comprehensive overview of the respective meanings of each letter within the context

of an electronic circuit.
Explanation of make_new_prediction() Function

Prior to the description of the conditions, it is necessary to explain the method
that will be used in the following steps. This function performs the same actions as
the function detailed in Section 5.4 (predict_characters()). The sole discrepancy

between the two lies in the input parameters that the former is capable of receiving.

The purpose of this function is to fine-tuning the preprocessing of BBs phase,
to facilitate the simplification of the inference method, thereby allowing certain
parameters to be modified simply by passing them as hyper-parameters when the

function is invoked.

The new input parameters aggregated are the following:

e order: Case variable refers to two possible ways to sort the BB when using
cv2.findContour() method during the inference. So that it facilitates read

the sequence during the post-processing.

— For order=0: The BB will be sorted from left-to-right and top-to-bottom.
— For order=1: The BB will be sorted from top-right to button-left.

e var: The purpose of this variable is to finetune the parameters of the pre-
processing of the bounding boxes stage, with a view to facilitating the character
detection. The parameter is associated with the image binary cv2.threshold()
technique applied during the preprocessing of BB steps (see section 4.3.3). The

possible values for thresholding parameters are:

— var=1 —keep the threshold in 158 (default, using during first prediction

in predicted__characters()).

— var=2 —reduce the threshold to 130, for a smooth definition in the

characters, it makes the edges less stark.

e pad: Allow the modification of the quantity of padding added during the

generation of BB.

The modification of certain parameters in order to detect the Bounding Boxes
technique has been shown to facilitate the identification of the contours surrounding
the characters, thus ensuring the generation of the Bounding Boxes in an optimal
manner. It is imperative to emphasize that this step was incorporated for the purpose

of fine-tuning the post-processing. Improves bounding box quality; doesnt alter
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CNNs learned features.

6.4.1 CONDITIONS

The conditions were structured into a series of rules based on input predictions.
The following segment will provide an explanation of the most relevant conditions
established in the postprocessing function to illustrate the logic behind this rules,

with the presentation of a corresponding example.

CONDITION 1: Component annotations including numerical subscripts.

Condition 1 has been specifically designed to detect annotations containing nu-
meric prefixes only for voltages, currents, capacitors, resistors, or inductors. This
notation is typically used in dependent sources. The label considering in this con-
dition includes only integer numbers in the numeric part of the label, such as: 3V7,
3R5, 112413, 23C5.

The following conditions must be met for the instruction to be executed:

e The first character of the predicted list must be a digit or the letter
l'Ill‘
This ensures that the expression begins with a numeric value (e.g., 3, 112, etc.)
or with the letter I in case of misclassifications of visually similar characters,

such as: digit ’1’ erroneously classified as lower case letter I’

e The last character of the predicted list is also a digit.
This condition enforces that the last predicted character in the list ends with a

numerical value.

e The prediction list must contain at least one character from the

predefined set of valid variable electric symbols.
V={V,R,CL,1,i,B,u,U}

V' voltage,
— R: resistance,
C": capacitance,
— L: inductance,
— I: current,
— B: for misclassified '3’,
— wu,U: commonly misclassified voltage sources.

¢ The prediction list must exclude invalid characters, specifically hy-

phens (—), decimal points (.), or the letter m character.
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Since none of those symbols are within the expected case to be handled in this
condition, they are explicitly filtered out. This case handles only integer values
for the numeric part. For the decimal numbers case, another condition was
defined to handle this pattern.

For a better understanding, consider the predicted list illustrated in Snippet 6.1.
The following list of predictions corresponds to the image Figure 6.1, where the
characters in the list are in accordance with the rules presented in Condition 1, given

that all the preceding criteria have been met.

Snippet 6.1: Example when the condition 1 is met.

o [CCe1r, (1, 2, 20, 36)), ((‘v’, (34, 1, 24, 39))
2 (€12, (45, 1, 28, 42)), ((‘0°, (50, 1, 32, 45))]

]. V1o

Figure 6.1: Image that generated the previous predictions.

Once the aforementioned conditions are satisfied, an additional inference step
is performed to correct previously detected errors. This refinement is implemented

through the make_new_prediction() method, with adjusted parameters:

Snippet 6.2: New prediction function with hyperparameter.

i new_pred = make_new_prediction(model, classes, image,

predictions, order=0, var=1, pad=1)

e var = 1 — modifies the fixed thresholding level in cv2.threshold during

the preprocessing of bounding boxes to improve the object detection.

e pad =1 — reduces the padding around bounding boxes (default value is
2), thereby improving character recognition accuracy by minimizing excess

background.

The new prediction generates a new list of predicted characters, which may
match the first prediction or may reveal a new character that had previously
been misclassified or omitted. This new prediction is then passed to the func-
tion pp_prediction_cases() responsible for organizing the predicted characters

according to the context defined for that case.

If the new prediction contains a decimal point (.), the pp_prediction_cases()

method processes the prediction list with the case set for case=5; otherwise, the
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predictions are processed with the case set in case=1 (subscription cases). The

results of this function are detailed in Section 6.5.

CONDITION 2: Handle labels with scientific notation (passive compo-

nents and dependent sources).

The purpose of this condition was to detect labels containing power expressions
or scientific notation. The following label examples are pertinent to this specific case:
13.107% g or 4.103H. In order for this to be achieved, the following conditions

must be satisfied:

o Both the first and last characters of the prediction list must be digits.
This approach facilitates the expeditious identification of dependent sources,

i.e., those containing subscripts.

e At least one character in the list corresponds to a recognized electric
symbol, including I, i, L, 1, 7, ., V, F, A, R, or H, Omega,. Letters 'L’ and
'I" are included to take into account the misclassifications due to similar visual

characters.

e The prediction contains a sequence indicative of a superscript, such
as .10, .10-, m.10-, or m10-.

The following example illustrates a prediction list that satisfied condition 2.

90 - 10_3 "6

Figure 6.2: Images that generated the following list of predictions.

Snippet 6.3: Example when the condition 2 is met.

1[92, (o, 7, 21, 37)),

20 (207, (24, 7, 22, 37)),

30 (2.2, (59, 24, 12, 11)),
i (217, (85, 7, 20, 37)),

5. (0, (108, 7, 23, 37)),
6 (?-2, (135, 14, 23, 4)),
7 (3, (160, 1, 17, 25)),
g (’1°, (190, 18, 10, 27)),
o (7.2, (194, 5, 11, 10)),
(’6’, (200, 26, 15, 25))]

Once the condition is satisfied, the prediction list is processed with pp__pre-
diction__cases() function, using the hyperparameter case=4 to handle superscript-

related formatting for passive components and those containing dependent sources.
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An example of this condition is provided in Section 6.5.4.

CONDITION 3: Labels containing rational values.

This condition is intended to identify annotations that contain rational numbers,
such as %H or %.75. The initial prediction list must satisfy the following criteria to

execute this condition:

o The first character belongs to the set {., -}. The point (.) symbol has
been included in order to handle a possible misclassification of a hyphen symbol

that occurred in the initial prediction.

e At least one subsequent character in the prediction list corresponds
to a valid symbol from the set {i, 1, L, v, omega, I, V, C, H, A, E, F, G,
S, P}.

Snippet 6.4 illustrates an exemplar of the array of predictions that align with

the aforementioned rules. These predictions are generated from the Figure 6.3.

Snippet 6.4: Example when the condition 3 is met.

2 [(9, (22, 1, 25, 39)),
30 (., (104, 14, 8, 8)),

i (I, (93, 34, 14, 39)),
5| (1, (111, 47, 22, 38)),
6 C., (3, 49, 63, 4)),

71 (1, (9, 64, 22, 37)),

s (7, (37, 64, 25, 38))]

9 -
Figure 6.3: Image that generated the previous predictions.

When these conditions are satisfied, a new prediction is performed to verify that
the characters are correctly classified, using the function presented in the Snippet
6.5.

Snippet 6.5: New prediction function with hyperparameter.

1 make_new_prediction(model, classes, image, predictions,

order=1, var=2)

In this procedure, the parameter order=1 specifies the order in which the bound-

ing boxes are ordered. For instance, if the image contains the label 2/3 F', the
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first prediction yields the sequence -23F, since the bounding boxes are sorted from
left-to-right to top-to-bottom. By repeating the prediction with a different bounding
box order (top-to-right to bottom-left), the classification sequence changes to
2F-3. This adjustment is performed to facilitate the subsequent post-processing step,

where the correct meaning of the label can be assigned more reliably.

The parameter var=2 acts as a hyperparameter that controls the thresholding
used during pre-processing of bounding boxes. In this case, the threshold is slightly
reduced (130) compared to its default value (158), which allows the method to
generalize better and improve the accuracy of character classification, particularly in

challenging or noisy cases.

Finally, the new prediction is passed to the pp_prediction_cases(..., case=7)
function. In this case, the hyperparameter case=7 triggers the execution of an ad-
ditional method, pattern_detection(), which is further detailed in the Section
6.5.5. Basically, this method arranges the identified characters according to their
correct fractional order and corresponding electrical component type (dependent
sources or passive components). Likewise, the original first prediction was also
passed to the pp_prediction_cases function to help maintain semantic formatting

consistency.

CONDITION 4: Symbolic values for dependent sources (part I)

This condition refers to instances where labels contain subscripts with symbolic
values, typically written with Greek or alphabetic letters for dependent voltages and
current sources, such as pusVy or Baigg, T2i20. Please note that, in this particular
instance, the symbolic values (8, «, ¢) consist exclusively of a single digit as a
subscript. The situation in which the subscript comprises multiple digits is addressed

in Condition 5.

Formally, this condition is satisfied when the characters in the prediction list

meet the following conditions:

e The first character is in the Greek dictionary. This dictionary contains

the Greek letter names, for instance: mu, rho, alpha, etc.

e The last character is a digit or alphabet letter.

Corresponding to the subscript cases.

o At least one of the predicted characters belongs to the set
V;I7’L.7g77a7/’1”67L7l7U7u'
Some letters are included to manage possible misclassifications due to similar

visual characters, such as ‘u’ instead of ‘v’, ‘I’ instead of ‘I’, etc. This set
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comprises more Greek letter characters; however, for the purposes of simplicity

in explanation, the set shown contains only two (‘5’, ‘u’).

o None of the predicted characters is a minus sign or hyphen (-).
Filtering out the hyphens avoids including fractional numbers, since these
symbols are typically encountered in the prediction lists of the cases that

contain those numeric values.

For better understanding, consider the following examples of prediction lists that

satisfied this condition.

Snippet 6.6: Example when the condition 4 is met.
1| [(’beta’, (7, 30, 58, 49)),
o (24, (74, 47, 31, 4T7)),
50 (°I7, (119, 30, 18, 49)),
4 C>.2, (133, 8, 8, 8)),
5/ (>1°, (137, 48, 31, 45)),
¢ (?0°, (174, 48, 31, 45))]

54 10

Figure 6.4: Image that generated the previous predictions.

Once the rules are satisfied, the prediction list of characters is passed to the func-
tion pp_prediction_cases(..., case=9) that will assign the context of the label
based on the characters detected. In this method, the case indicated was (case=9),
which ensures that subscripts are properly aligned and consistently formatted with
respect to their base symbols (Greek or alphabetic letters). The Section 6.5.7

delineates the operational dynamics of this case.

CONDITION 5: Symbolic values for dependent sources (part II)

The logic of Condition 4 is extended in this new rule. For this case, it is intended
to match the labels whose symbolic values contain more than one digit as subscripts,
such as cases involving multiple numerical subscripts (e.g., asg or Ba5i20). Formally,

this condition is satisfied when:

o The first character is not a digit.

e The second and third characters on the prediction list are digits.

Ensures the numerical subscripts.

e The last character is also a digit.
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e Length of the predicted list is greater than 2 digits.

o At least one of the predicted characters belongs to the set {V.I,i, 9,7, u, 5, L,1, A}|
This list can be modified to include additional characters for the symbolic values

if necessary. It is intended to encompass the most likely cases.

« None of the predicted characters is a minus sign (-).

To facilitate a more profound comprehension of this matter, it is useful to consider

the following example of prediction lists that satisfied this condition.

Snippet 6.7: Example when the condition 5 is met.
1 [(’alpha’, (7, 30, 58, 49)),
2 (37, (74, 47, 31, 47)),
30 (232, (109, 47, 31, 47)),
(12, (150, 30, 18, 49)),
5/ (2.2, (164, 8, 8, 8)),
6 (27, (168, 48, 31, 45),)
71 (2?2, (205, 48, 31, 45))]

Figure 6.5: Image that generated the previous predictions.

When this condition is satisfied, a new prediction is carried out by passing the

image to make_new_prediction(..., order_contours=1) function.

Snippet 6.8: New prediction function with hyperparameter.

i new_pred = make_new_prediction(model, classes, image,

predictions, order_contours=1)

In this step, the order_contour was set to 1, which resulted in the sorting of the
bounding boxes from top-right to bottom-left during the cv2.findcontours method.
Thereby refining the new prediction. Consequently, the new prediction list is passed
to the function pp_prediction_cases() with hyperparameter values that depend

on the first recognized character on the list.

DEFAULT CONDITION: General Case Handling

When none of the defined conditions are satisfied, the framework falls back to
the default processing strategy. In this instance, all detected characters are merged
without the application of any specialized rules or constraints. The merging process is
executed via the pp_prediction_cases() function, which serves to consolidate the

predictions into a unified textual representation, merging the predicted character with
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the default settings. This default pathway is designed to ensure that even unclassified
or unforeseen patterns are handled in a consistent manner, thereby preserving the

interpretability of the recognition system.

Furthermore, the default condition was established with the aim of integrating
the expression identified during the models initial prediction. This condition also
plays a critical role in assessing whether additional conditions need to be defined or

whether existing ones require a revision.
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6.5 STEP 3: Post-processing Prediction Cases Method

The function pp_prediction_cases() acts as the core of the post-processing
stage in the recognition pipeline. Its purpose is to refine raw predictions or the
new prediction generated by the CNN-based model by enforcing domain-specific
formatting rules, correcting systematic OCR errors, and ensuring consistency with

physical notation in electrical engineering contexts.

The application of these rules is guided by the hyperparameter known as case.
However, prior to a detailed examination of the rule-based cases, the inputs parameter

of this method will be explained in detail.

6.5.1 Inputs:

The method receives the following parameters:
e data: List of predicted characters with associated bounding boxes.
e image: Input image containing the label expression.

e threshold_ratio: Scaling factor used to compute the margin around bounding
boxes (default: 0.09).

e case: Control hyperparameter that determines which post-processing rule set

to apply (linked to the conditions defined earlier).

o old_prediction: Optional string representing the first merged prediction (used

for comparison in ambiguous cases).
e bbox: Optional bounding box information for refining special symbols (e.g.,
distinguishing between uppercase and lowercase v).

6.5.2 Algorithm

The function operates in three main stages:

STEP 1: Initialization

Once one of the conditions defined in the previous chapter is satisfied, the char-
acters within the prediction list passed to the pp_processing_cases() function are
concatenated into a raw merged string (merged_ text) as illustrated in the Snip-
pet 6.9. Additionally, a dynamic threshold (measured in pixels) is calculated based
on the image dimensions. This threshold is subsequently used in STEP 3 to expand

the bounding box dimensions.
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Snippet 6.9: Example of the characters merged from the list of predictions.
1 Prediction 1list: [(¢1’, (1, 2, 20, 36)),(‘v’, (34, 1, 24, 3
9)),(“1>, (45, 1, 28, 42)),(‘0’, (50, 1, 32, 45))]

2 merged_text = ‘1V10°

STEP 2: Rule-based Normalization

Depending on the value of case, different regular expression patterns are applied
to restructure the prediction into a compatible context format. In this section, some

examples of the cases defined will be explained:

6.5.3 case =1: SIMPLE SUBSCRIPTS SUCH AS 8], OR 3V,

When the hyperparameter case is set to 1, the function specifically handles
simple subscript expressions, where the detected string structure corresponds to cases

such as:

214 (a number followed by a variable with a letter subscript) or

2V12 (a number followed by a variable with a numeric subscript).

e Pattern Matching
Pattern matching was conducted using Pythons re module, which provides
functionality for working with regular expressions. This module enables the
identification of specific patterns within text and supports the extraction of
matched groups. To illustrate this process more clearly, the regular expression

employed in this case was as follows:

Snippet 6.10: Regular expression pattern for voltages and currents.

1 pattern = r"(\d+) ([VvIilL])\.?(\d+|[a-zA-Z]+)$"
2 match_str = re.match(pattern, merged_text)

This pattern in Snippet 6.10 decomposes the string into three groups:

1. (\d@+) —number Match one or more digits (the base number, e.g., 2),

2. ([VvIilL]) —component Match a single character that may represent
voltage/current symbols (V, v, I, i) or possible misclassifications of I as
1/L,

3. (\d+| [a-zA-Z]+) —subscript Match either a sequence of digits or al-
phabetic characters (the intended subscript).

e Standardization
If the merged string is matched with the predefined pattern, the correction of
some misreading characters is performed. For instance, if the detected letter is

misclassified as 1 or L, it is reassigned to i (to correct OCR misclassifications
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of visually similar letters such as "l" and "i"). In this way, it handles the
inconsistency. Additionally, the letter is normalized to lowercase, ensuring
consistency and standardization in the type of circuit label before adding the

subscript.

To provide a clearer picture of the procedure, the following example of a typical

dependent voltage source label is provided:

]. V1o

Figure 6.6: Dependent voltage source with Subscript format label.

After passing through the post-processing function, the predicted character list

is merged into a single string like the following:

predicted_list = ((‘1’), (1, 2, 20, 36)),((‘V’), (34, 1, 24,
39)),((“1°), (45, 1, 28, 42)),((‘0’), (50, 1, 32, 45))
processed_label = 1V10

In the current example, the string constitutes an unformatted sequence of
characters. The pp_prediction_cases() method plays a crucial role in this
context by assigning the appropriate semantic expression to the label, based
on the specification of the case parameter. It is noteworthy that the resulting
expressions are constructed in accordance with standardized labeling conven-

tions commonly used in the representation of electrical circuits.

e Reconstruction
After applying the regular expression depicted in Snippet 6.10, the corrected
expression is then reconstructed in an equation style format. Since the case=1
handles subscripts with one or more numeric or alphabetic characters, the final

text label will be organized with the following form:

processed_label = {number}{component}_{subscript}

processed_label = 1V

As shown in Figure 6.7.

It is important to note that, in this case, the equation format used is consistent
with the LaTeX format. However, it should be noted that not all cases defined in this

section will conform to this format, since, following the assignment of the context to
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110}
V10

Figure 6.7: Dependent voltage source after postprocessing.

the label, the expected string will be passed to a function that will convert the entire

expression into a correct LaTeX cleaner format.

6.5.4 case =4: SCIENTIFIC NOTATION WITH SUPERSCRIPTS

When the hyperparameter case is set to 4, the function processes expressions
involving superscripts, such as scientific notation or exponential scaling, which are
frequently used in electrical variables, such as 2.1073V,, 18.1076F. This case is

addressed similarly to the previous condition.

In the superscript case, two possible label formats are identified. The first type
contains dependent sources, such as Vi, I,. The second type represents the passive
components, for example, with numerical values and their component units, such as

VvV, Q, A, F, H.
TYPE 1: Dependent Sources (Numerical values using scientific notation).

Following the same line, consider the example described in Condition 2, where

the predicted list is given by the following list:

predicted_list = [(°9’, (0, 7, 21, 37)),
0>, (24, 7, 22, 37)),
.7, (59, 24, 12, 11)),
(’1°, (85, 7, 20, 37)),
¢o’, (108, 7, 23, 37)),
(°->, (135, 14, 23, 4)),
°3’, (160, 1, 17, 25)),
(’1°, (190, 18, 10, 27)),
.7, (194, 5, 11, 10)),

(’6’, (200, 26, 15, 25))]
merged_text = 90.10-31.6

o Pattern Matching
The regular expression to match this pattern of prediction is illustrated in
Snippet 6.11:
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Snippet 6.11: Regular expression pattern of a dependent source.

1 pattern = r’~(\d+(?:\.\d+)?) ([-,+]) (\d+) ([iI1LvVRM (]|

Im_lower)\.(\d+|[A-Za-2])$’

2 match_str = re.match(pattern, merged_text)

This pattern decomposes the detected string into:

1.

(\d+(?:.\d+)?) —main_number The main number can be an integer or

decimal, e.g., 9 or 9.10).
([-,+]) —sign Capture the sign of the exponent, either - or +.
(\d+) —exponent Captures the exponent itself (e.g., 3 in 1073, 10%).

([iI1LvVR(] |1m_lower) —component Captures a single character or
token indicating the variable (common OCR confusions are normalized,

e.g., I, 1, L, i, (, or the placeholder lm_ lower).
(\d+| [A-Za-z]) —subscript The subscript attached to the variable can

be numerical or alphabetic (e.g., A or 8).

Standardization
Once the pattern of the merged text has been matched, any character belong-

ing to the set (1., L., (., 1m) is normalized to the lowercase letter i to

standardize the notation and mitigate inconsistencies arising from visual or clas-

sification ambiguities, particularly those involving the uppercase and lowercase
of letter ‘I’, (when the stem of the 'i’ is detected as ‘I’ or (’). Similarly, if the

detected letter is ‘V?, it is replaced with lowercase ‘v’ to maintain the notation.

Reconstruction and Result

Finally, Figure 6.8 illustrates an example of how the matched string is

reconstructed with the LaTeX expression as:

merged_text = main_number

{sign exponent} component {subscript}

Input: 2.10-3VA — Processed Output: 2.10"{—3}v4

Input: 90.10-31.6 — Processed Output: 90.10"{—3}ig

ZIN ﬁf—.}}i_ 3 .
. O lg
Figure 6.8: Dependent source with superscript values.
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The final result of the string will then be reformatted with a cleaner LaTeX text
style.

TYPE 2: Passive Component (Numerical values using scientific notation without

subscript)

The second case involves numerical values that contain superscripts but not

subscripts in the units. The following section will present the pattern used to identify

these cases.

e Pattern Matching

The regular expression is:

Snippet 6.12: Regular expression for numeric labels with superscipts.

1 pattern = r’~(\d+(?:\.\d+)?) ([-,+]17) (\d+) ([vVRHAFS])$’
2 match_str = re.match(pattern, merged_text)

Snippet 6.12 shows the pattern that captures strings that contain the following

structure:
1. (\d+(?:.\d+)?) — numeric_value the main number may be expressed
as a decimal or an integer.
2. ([-,+]17) — sign Optionally captures the sign of the exponent.
3. (\d+) — exponent Captures the exponent number.

4. ([vVRHAFS]) — unit the associated component unit (e.g., V, R, H, A| F,
S).

e Standardization
After matching the structure, the standardization of the labels is implemented

in accordance with the following structure.

merged_text = numeric_value {sign} {exponentiall ,pj¢

An example of this case is presented:
Input: 8.10-3H — Processed Output: 8.1073H

6.5.5 case =T7: LABELS CONTAINING FRACTIONAL VALUES

The present case addresses the systematic identification and interpretation of
fractional numerical labels in electrical circuits, particularly those that incorporate

explicit units such as volts (V), amperes (A), farads (F), resistors (R), and others.
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A method, titled pattern_detection() , has been developed to facilitate the post-
processing of such labels. The method is structured into four principal analytical
sections, each targeting a specific subset of the labeling patterns observed in circuit
schematics. To comprehend the underlying logic of this function, please refer to the

Appendix A.1l, where the pseudo code is outlined.

The initial two sections of the pattern_detection() function are dedicated to
the detection of controlled (dependent) sources, wherein the labeled values represent
voltages or currents expressed as fractional multiples of other circuit variables. For
instance, expressions such as %vl, gig are commonly used to denote voltage- or
current-controlled sources. These elements are indicative of active components whose
outputs are linearly dependent on a voltage or current present elsewhere in the
circuit. These format corresponds to the standard forms of voltage-controlled volt-
age sources (VCVS), current-controlled voltage sources (CCVS), voltage-controlled

current sources (VCCS), or current-controlled current sources (CCCS).

Whilst the third and fourth sections of the pattern_detection() method focus
on fractional values associated with passive circuit elements, wherein the fractional
number is paired with a unit (H,F,V,A) which is indicative of a component property.
Examples of this include %F, which corresponds to a capacitor, or %A, which may
represent either the rated current of a passive element or a measured value in the

circuit context.

To differentiate between these cases, the pattern_detection() method employs
regular expression (regex) matching for fractional patterns in conjunction with unit
detection and contextual symbol analysis, similar to the previous cases explained.
In this section, only 2 cases of this method will be explained to illustrate the idea.
Those are dependent current sources (numerical values of current sources with a

subscript) and a passive circuit element (numerical label with units).

In order to correctly identify the fractions, two predictions performed by the
model were utilized. The first of these corresponds to the initial prediction (first
prediction), with the standard preprocessing for bounding boxes employed for all the
labels. The second corresponds to the new prediction performed in Condition 3
(6.4.1), where some preprocessing parameters for BB detection were adjusted, to
reorganize the order of the predicted characters to facilitate the organization further

in this section.

Example 1: Dependent Current Sources Case in pattern_detection()

e Regex for Fraction Detection
The core regular expression defined for the dependent current sources case is

presented in the Snippet 6.13. This regex used to match the merged charac-
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ters of the new prediction list (second prediction) performed in Condition 3
(6.4.1):

Snippet 6.13: Regular expression example for the current dependent source.

1 match = re.match(xr’~(\d+(?:\.\d+)?) [.1?2(C[1LiT1]) (\d+)
[.-1(\d+)$’, merge_text)

2 numerator , token, subscript, denominator = match.groups

O

This pattern in snippet 6.13 is broken down as follows:

1. (\d+(?:\.\d+)?) — numerator Captures the numerator of the fraction

(integer or decimal).

2. [.17 — Optionally, it matches a literal dot, which indicates the dot on

nsn

the lowercase "i", since OCR for cases with fractions detects characters

from top-left to bottom-right order.

3. ([1LiI1]) — component Matches possible misclassifications of the current

symbol (i), which could appear as lowercase L, uppercase I, or even digit

1.
4. (\d+) — subscript Captures the subscript of the current.

5. [.-] — division sign Matches either a dot or a hyphen, both of which

are common OCR substitutions for the fraction separator /.

6. (\d+) — denominator Captures the denominator of the fraction.

¢ Reconstruction of the Expression

The reconstruction of the standardized string is achieved through the expression
of a dependent source. Preventing OCR errors from propagating into the final

structured output.

Snippet 6.14: Standard form for the fractional cases.

1 label = "{numerator}/{denominator}i_{subscript}"

This guarantees the fraction structure is preserved. The current variable is

always written with letter “i” standardized, even if OCR misread it as “I, L, or 1"

To further clarify the proposed procedure, consider the following example.
Assume that the merged string generated in accordance with the predicted list

of characters of Condition 3 (6.4.1) is given by

predicted_list = [(’9’, (22, 1, 25, 39)),
(’.’, (104, 14, 8, 8)),
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(1, (93, 34, 14, 39)),
1, (111, 47, 22, 38)),
., (3, 49, 63, 4)),
12, (9, 64, 22, 37)),
(7>, (37, 64, 25, 38))]
merged_text = 9.I11-17.

When applying the regular expression presented in Snippet 6.15, the resulting
matching groups can be directly associated with the variables of interest, since

each group was correctly matched:

numerator = 9,
token = .1,
subscript = 1,

denominator = 17.

Based on this decomposition, it was possible to reconstruct the standardized
form of the label, within the context of the current controlled source, obtaining
the string in Figure 6.9. These strings will be converted into LaTeX syntax

in a further stage of the post_processing() function:

9/17iy

9f1g}
7 1

Figure 6.9: Controlling variable with fractional value.

o Normalization using First Predictions
To ensure consistency with original model outputs (first prediction), an addi-

tional regular expression is performed on the 0ld_prediction string:

Snippet 6.15: Regular expression example original model prediction.

1 match_old = re.search(r’(?:[.-1)7?C(i_\{[\dA-Za-z]+\}|I_
\{[\dA-Za-z]+\}| [\dA-Za-z]+)$’, old_prediction)

The initial prediction made by the model, designated as old__prediction, is
utilized in this method to rectify potential truncation or splitting errors. The
purpose of this procedure is to verify whether the preceding prediction included

a correctly formatted subscript, such as i19 or Io3.
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In this context, when a match is identified, the subscript from the preceding
prediction is utilized to correct potential truncations introduced during the
optical character recognition (OCR) process. This mechanism is particularly
relevant in scenarios where subscripts are inadvertently split into separate
tokens. For example, consider the case in which the variable 719 is misrecog-
nized by the model as two discrete tokens: 4; and 0. In such instances, the
denominator of a fractional expression may be incorrectly interpreted as a con-
tinuation of the subscript, thereby leading to semantic ambiguity. To mitigate
this, the method applies a rectification process wherein the isolated token is
reattached to its corresponding subscript, resulting in the corrected form 1.
This ensures a clear distinction between subscripts and numerical denominators,

thereby preserving the syntactic and semantic integrity of circuit element labels.

In a similar manner, in contexts involving other cases in the pattern__detec-
tion() function, such as voltage-dependent sources, or cases including passive
component with unit of voltage, capacitor, inductor, or resistors with fractional
expressions, the same logic as in the preceding example was implemented,

utilizing regular expressions from the Python re library.

Example 2: Passive Circuit Elements with fractional values case in

pattern_detection()

An additional example is presented for the passive circuit element with fractional

values.

Snippet 6.16: Regular expression example of first model prediction.

1 match = re.match(r’~(\d+) ([CHLAEFGSP|-1+)[.-1(\d+)$’,
merge_text)

2 numerator , unit, denominator = match.groups()

Snippet 6.16 illustrates the regular expression used to match the complete
merged string obtained from the prediction lists of characters in Condi-
tion 3(6.4.1) against the predefined pattern. This can be found in the
fourth section of Appendix A.1l procedure, which encompasses the cases
corresponding to passive circuit elements. The following is a breakdown of the

aforementioned regular expression:

1. (\d+) — numerator Captures one or more digits at the beginning of the

string.

2. ([CHLAEFGSP|-]+) — unit Matches one or more characters from the set
{C,H,L,AE,F,G, S, P, |,-}. This group is captured as the symbol, which
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denotes the physical unit or element. Examples include: A (Ampere), L
(Inductance), H (Henry), F (Farad), etc.

3. [.-] — division symbol Matches either a dot (.) or a hyphen (-), which
serves as the separator. This marker plays the role of a division operator

(analogous to writing a fraction, e.g., 20/7).

4. (\d+) — denominator Captures one or more digits.

Reconstruction

Snippet 6.17: Standard form for passive component with fractional cases.

1 label = "{numerator}/{denominator}{unitl}"

Suppose the predicted merged string is given by:

predicted_list = [(°1’, (10, 4, 22, 38)),
(°4>, (37, 5, 28, 37)),
(H’, (96, 15, 43, 60)),
(°->, (5, 51, 62, 6)),
(1, (10, 67, 22, 38)),
(°5’, (38, 68, 24, 38))]
merged_string — 14H-15

After applying the regular expression, the matching groups assign the corre-

sponding values to each variable as follows:

numerator = 14,
unit = H,

denominator = 15.

Once each group is identified, the function to detect the correct order is
applied by sending the characters matched in each group (denominator and
numerator) to the controlling_order () function, see Section 6.5.6. This
verifies the sequence of characters in the correct order, together with the
standardized representation outlined in Snippet 6.17, yields the following

final label expression:
14/15H

Tﬂ

Figure 6.10: Passive Circuit Elements with fractional values.
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6.5.6 CONTROL CHARACTER ORDER METHOD

The function controlling_order () has been designed to reconstruct structured
numerical labels from a set of character-level predictions. Each prediction is denoted
by a tuple comprising a character and its associated bounding box coordinates, stored

in a list, e.g:
('5',(8,3,24,38)), ('QY, (62,11,53,62)), ("', (4,49, 33,6)), ('3, (8,63, 25, 40))

The primary objective is to separate and order the characters belonging to the
numerator and denominator of a fractional annotation or label, ensuring that the

sequence of symbols is sorted according to their spatial position.

Initially, the function identifies specific separator symbols (a dot or a hyphen)
as tokens within the predictions list, and utilizes the vertical coordinate of their
bounding boxes as a threshold to differentiate between the numerator and denomi-
nator regions. Given that this symbol is always located in the middle of the image
containing the fractional value. Predictions that are located above this threshold are
considered numerator candidates, whereas those that are located below or equal to

the threshold are treated as denominator candidates.

To extract the characters of interest, the auxiliary function extract_sequence ()
is defined. This function sorts the predictions by their horizontal coordinate and
iteratively selects characters that match the expected sequence (numerator or denom-
inator). In this way, only characters consistent with the target string are retained,

and their left-to-right order is preserved.

The procedure then constructs the numerator by means of concatenating the
characters extracted from the upper region or upper bounding boxes. To avoid the
reuse of characters, the indices of the selected characters are removed from the list of
predictions. Consequently, the denominator is assembled from the lower region in an

analogous manner.

The function returns two strings: the numerator and denominator, in a left-to-
right order that has been standardized. The outputs of this process provide a robust
reconstruction of the intended fractional label from the raw prediction data, thereby
ensuring that both the spatial layout (above/below the separator) and the sequence

order (left-to-right) are respected.
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6.5.7 case =9: DEALING WITH SYMBOLIC VALUES FOR DE-
PENDENT SOURCES

Finally, in the context of mathematics, Greek letters are conventionally employed
to denote quantities, units, or variables. In the context of electronic circuits, these
quantities, denoted by Greek letters, are symbolic variables whose values are deter-

mined by other circuit elements.

This case accounts for two possible scenarios that may arise when the prediction

generated by the model is evaluated under Condition 4.

First Scenario:

The first situation occurs when the prediction misclassifies the digit '1’ as the
letter 'L’ or 'I’, triggering the rules established in Condition 4. For instance, consider

the following merged string:

Predicted string = [il.5

However, the predicted string in the given example corresponds to a misrecog-
nition of the numerical values of the expression. These were interpreted as the
characters ”I’, ’LL”, instead of ’11°. That is the reason why Condition 4 is triggered
when the expression includes either two consecutive alphabetic characters or one
Greek letter. It is imperative that these potential misclassifications, which are a
result of visual similarity between the characters, are addressed within the context of

the case.

In this context, a special case was created to handle situations that correspond
to numeric values with dependent currents and voltages. The regular expression
re.match() was employed to ensure that the characters are arranged in the correct
sequence. During the regular expression corresponding to the number’ field, any
numeric values that were not correctly detected by the model are replaced with

the correct number. For instance, the letter "1" or "L" is assigned to the number "1".

The construction of the final label format follows the same procedure as the
previously described cases. An illustrative example of this transformation is given

below:

Predicted string =1ll.5 — Final Label = 11i5

number = [,
letter = .,

subscript = 5.
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Second Scenario:

The second case is intended for expressions that contain symbolic values, such as
Greek letters and alphabetical variables. These annotations are typically rendered
using subscript notation to represent dependent sources. In order to ensure the correct
organization of the predicted characters, the function ‘symbolic__detection()’ was

created.

This method distinguishes among the possible types of labels in this case: those
consisting exclusively of Greek letters, those combining Greek and alphabetic charac-

ters with subscripts, and those composed solely of alphabetic variables with subscripts.

For annotations containing Greek and alphabetic letters, the following rules are

applied:

o If the predicted string begins with the name of a Greek letter (e.g., mu, alpha,

beta, etc.), this prefix is extracted from the string.

e The remaining elements of the string are then compared against the regular

expression, which is outlined in Snippet 6.18:

Balho 2 V7

Figure 6.11: Dependent sources with symbolic values.

Example 1 Example 2
merged text = beta4:10 merged text = mu2v7
Greek letter extracted = beta  Greek letter extracted = mu

remaining part = 4410 remaining part = 207

Snippet 6.18: Regular expression to match with the rest of the string.
1 match = re.match(r’([a-zA-Z0-9]+) ([vViIlLuU1,]1)\.7?([a-zA-Z0

-9]+)’, remaining_part)
2 subscript_symbool, component, subscript_component = match.
groups ()}

1. ([a-zA-Z0-9]+) — subscript of symbolic letter. It is important to note
that this corresponds to the number or letter following the Greek symbol, and

that it captures the character or digit of the subscript.
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2. ([vViIlLuU1,]).? — component This expression captures the possible electri-
cal components associated with the annotation, specifically voltages or currents,

which are typically the dependent sources.

3. ([a-zA-Z0-9]+) — subscript of alphabetic letter. Captures the sub-

script associated to the electrical component, with one or more digits.

If a match is found, two possible scenarios may occur:

Example 1 Example 2

geek letter = beta geek letter = mu
subscript_symbol =4  subscript_ symbol = 2
component = ¢ component = v

subscript = 10. subscript = 7.

R T L)
Baho [13V7

Figure 6.12: Dependent sources with symbolic values.

In instances where the annotation initiates with an alphabetic letter, the same
aforementioned procedure is implemented. Initially, the first character of the sequence
is extracted, after which the residual sequence is then compared against the regular ex-
pression in order to identify the values of each element that constitute the label. These
characters are subsequently arranged into the designated label format. It should be
noted that two scenarios are distinguished in this case: those containing a dependent

source and those representing a single quantity. The final outcome is illustrated below.

Example 3
subscript__symbol = vartheta,

subscript = 2.

i N i 7

Figure 6.13: Dependent sources with symbolic values.
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6.6 STEP 4: Bounding Box Consolidation

After reconstructing the predicted characters into a standardized label format,
the bounding boxes are merged by identifying the outermost boxes and combining
them into a single bounding box that encompasses the entire annotation elements.
This procedure ensures a consistent and accurate representation of the bounding
box for enclosing the formatted prediction within the image, as shown in the figures
presented before 6.12,6.9,6.8.

6.7 STEP 5: Outputs of Post-Processing phase

In addition, the prediction strings resulting from the pp_processing_cases()
are stored in a text file as output. This file contains the predicted labels after
assigning them a circuit context meaning in the post-processing phase Snippet 6.19.

These results serves to monitor the predictions.

Snippet 6.19: Examples of results without converting to LateX cleaner format.

(5)
3/2A
(2)
(1)
(3)
6/17A
20/17H
8/5H
(0)
(6)
8/TA
5/18V
3/4V
11/6V
5/4omega

© 00 J O Ut = W N

e e e e e e
DD UL W NN = O

13omega

v_{9}

—_
EN

Another *.txt file was also saved, including the confidence levels associated with

each raw prediction as shown in Snippet 6.20.

Snippet 6.20: Raw predictions with their confidence level

1 (5), confidence:1.00

2 3/2A, confidence:0.83
3 (2), confidence:1.00

4 (1), confidence:1.00

5 (3), confidence:1.00

6 6/17A, confidence:0.82
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7 20/17H, confidence:0.80

8 8/5H, confidence:0.70

9 (0), confidence:0.88

10 (6), confidence:1.00

11 8/7A, confidence:0.81

12 5/18V, confidence:0.98

13 3/4V, confidence:0.82

14 11/6V, confidence:0.87

15 5/4omega, confidence:0.73
16 13omega, confidence:1.00

6.8 Weakness and Possible Improvements

The post-processing stage was designed based on the most common conventions
for representing annotations in electronic circuits. As specific rules must be satisfied
in order to reorganize the predicted characters correctly, this approach may not
encompass all possible annotation cases. Consequently, if the final label generated
by the application does not match the expected label despite the characters being
predicted correctly, it is recommended that a new condition is defined for that
specific case. If necessary, an additional case should also be incorporated into the

pp_prediction_case() function.

It is important to note that the first prediction produced by the model determines
which condition will be applied during post-processing. At this stage, an additional
prediction can be made by adjusting the pre-processing parameters for the bounding
boxes and making a new prediction. This ensures that each character or symbol is
reliably detected. The post-processing function can then be applied by specifying
a new condition or reusing an existing one. However, it is essential to verify that
the newly defined condition does not overlap with any of the previously established

cases.
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Chapter 7

Testing Customized CNN Model

vs Pix2tex

In accordance with the definition of the customized CNN model and the re-
spective post-processing function, the subsequent step is to conduct a series of
tests for the purpose of comparing the predictions generated by the Pix2Tex library
and the predictions performed by the customized CNN with the post-processing stage.

Prior to the comparison, it was necessary to delineate an overview of the ap-
plication utilized for the development of the electrical circuits recognition system.
This comprises a concise description of the functions developed in a preceding study
that were employed during the tests conducted. In a similar manner, this chapter
delineates the methodology employed for the extraction of information and the

management of errors.
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7.1 Intelligence System Description

This work emerged from the necessity to adjust the predictions made by a pre-
defined OCR tool called ‘Pytesseract’, which encountered difficulties in correctly
detecting the annotations of an electronic circuit generated by the intelligent system
developed in Cusano Michele’s research thesis (2024). This intelligent system has
been designed to detect all the components of a given electronic circuit image and
extract the relevant information to solve the circuit. It is capable of recognizing
nodes, components, the orientation of sources, text annotations, label components,
topologies, and bridges, among other elements that may be present. For further
details, refer to [27].

Similarly, all data collected from the circuit is stored in text files for future utiliza-
tion. The final phase of image recognition is the process of graphic reconstruction. To
this end, a versatile data structure was created for deployment through the MATLAB
environment. The intelligent system was developed in Python; however, to regenerate
the image once the detections were made, the information had to be transferred to

MATLAB.

In order to accomplish this, two structures were required: the first, designated as
G, comprises a simplified description of the circuit to be generated, incorporating
rudimentary information regarding the nodes, corners, and components; and the
second, Ggraw, encompasses all the information about annotations, nodes, and edge
coordinates, in addition to the bounding box of the entire circuit. These structures
were utilized to establish a comparison between the original circuit and the circuit
detected following the recognition task. The algorithm created for this purpose is
described in Chapter 8 of the research thesis [27].

From this point, it was possible to perform the comparison between the predictions
made by both methods, Pix2Tex and Customized CNN.

7.1.1 Modification of predefined Annotation function

Initially, the script ‘annotations_ID.py’ developed by Cusano (2024) for the
circuit annotations step was modified in this step. In this script, each annotation
found in the circuit is extracted using the bounding boxes around the annotations.
The resulting images are then saved in a directory associated with the generated
circuit, following the standard format ‘C_n_nodes_b_elements_yymmdd_hh:mm:ss’.
In this format, ‘n’ and ‘b’ are numbers configured during the creation of the circuit
image, and they determine the maximum number of nodes and components that
can be generated. In a similar fashion, the data pertaining to the evaluated circuit,
including but not limited to the number of nodes, components, coordinates, and

bounding boxes, JSON file structures of the circuits, is also stored in this folder.
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Subsequent to the saving of the annotation images, the character recognition
phase is initiated. For this thesis, the ‘detect_annotations_with_contours()’
function of the ‘annotations_ID.py’ script was adapted to incorporate the char-
acter detection using both methods, one using the Pix2Tex library and the other

using the customized CNN model with the post-processing step developed in this work.

The results obtained were then saved in a text file containing the detected strings
along with their bounding boxes coordinates, following the standardized format

text x y w h, as shown in Snippet 7.1.

Snippet 7.1: Resulting prediction for both cases.

(3) 0.311276 0.902540 0.028560 0.033132
0.1\Omega 0.209708 0.102001 0.048270 0.023713
8mA 0.790695 0.817272 0.047466 0.023713

(0) 0.688992 0.351749 0.028560 0.033468
8.70\0mega 0.557254 0.737723 0.048807 0.025059
2.6H 0.354519 0.262866 0.048270 0.024891

7 v_{5} 0.412443 0.940128 0.019576 0.024218

8 0.46F 0.791164 0.437857 0.056718 0.024723

9 80mF 0.500201 0.437857 0.056449 0.024723

10 i_{13} 0.146621 0.581988 0.022660 0.027750

S U W N

7.2 Comparison between Pix2Tex vs Customized CNN

In order to facilitate a comparison between the two methods, the baseline func-
tion ‘Comparison.m’ was employed. The script, originally introduced by Michele
Cusano in [27], was developed in the MATLAB programming environment for the
purpose of completing the image recognition cycle. The procedure was implemented
to automatically generate images of electrical circuits using the service AutoCircuits
[1], which is a web application equipped with a MATLAB back-end that can be used
programmatically to generate abstract circuit descriptions and the associated circuit

diagram.

Subsequent to the image generation, the image recognition algorithm is initiated
for the component and text identification, following the procedure outlined in the
preceding section. The process thus reaches its conclusion with the regeneration of
the circuit diagram based on the predictions obtained by the intelligent system that

has been designed.

The script in reference is responsible for executing the steps delineated in Algo-

rithm 9. The comparison was performed at six different levels, namely:

¢ checks the number of nodes
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e checks the number of elements

e checks the distribution of node degrees

e checks the isomorphism of the graphs

e checks the isomorphism of the graphs and the preservation of edge labels

e checks the isomorphism of the graphs and the preservation of edge labels and

values.

However, given the scope of this investigation, the most relevant check is the
one relating to the values of the edge labels. If the values stored in the MATLAB
structure ‘G2’ (Pix2tex) or ‘G3’ (customized CNN) coincide with those in the original
structure, the prediction can be said to be correct. Conversely, if a discrepancy is

detected, an error has occurred, and it is marked in a log file created for this scope.

Algorithm 9 Comparison Workflow

Step 1: Circuit generation

Generate circuits automatically.

Step 2: Intelligent system execution

Execute the designed intelligent system for image recognition.

Step 3: Structure creation

Generate G and Ggypqy structures from the JSON files generated.

Step 4: Structure comparison

Compare the original G MATLAB structure with the structure created from Pix2Tex
prediction and customized CNN prediction (G2 and G3).

7.3 Errors Detection

The process of error detection occurs concurrently with the execution of the
Comparison.m file. The creation of two text files is fundamental to the logging of
results. The first file, entitled ‘Log_file_execution.txt’, is used to record the in-
formation associated with the state of execution. The file contains the folder name of

the circuit created, along with the state after execution, as illustrated in Snippet 7.2.
In this context, five distinct states can be distinguished:

1. No erros occurred.

2. Strutcture Go (Pix2tex) values differ from the original structure G, but structure

G3 (Customized CNN) values were correct.

3. Strutcture Gz (Customized CNN) values differ from the original structure G,

but structure G2 (Pix2tex) values were correct.

4. Both structures (G2 and G3) differed from the G structure.
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5. Error during execution of the Python script.

S O = W N~

7
8
9
10

Snippet 7.2: Log execution file.

C_6_nodes_7_elements_20250928_141621
C_6_nodes_7_elements_20250928_141730
C_6_nodes_7_elements_20250928_141831
C_6_nodes_7_elements_20250928_141940
C_6_nodes_7_elements_20250928_142044
C_6_nodes_7_elements_20250928_142202
C_6_nodes_7_elements_20250928_142306

C_6_nodes_7_elements_20250928_180602
C_6_nodes_7_elements_20250928_180719

.png:
.png:
.png:
.png:
.png:
.png:
.png:

.png:
.png:

no errors

no errors

occurred

occurred

Python went wrong

no errors
no errors
no errors

no errors

both went

no errors

occurred
occurred
occurred

occurred

wrong

occurred

In a similar manner, the second file, entitled ‘Errors.csv’, comprises a counter

for five distinct cases. This file contains two columns, one indicating the case and

the second with the counter, [number, counter| as shown in Snippet 7.3. The

cases delineated in this file are analogous to the previous one, with the incorporation

of two additional cases. The following list explains the meaning of each number.

1
2
3
4
)
6

Number of times the entire execution did not generate an error (circuits are

identical)

the original structure G.

. Number of times both MATLAB structures G5 and G3 were not identical to

Number of times the MATLAB structure G3 (Customized CNN) was not

identical to the original one (circuits are not identical). While the structure G

(Pix2tex) was identical to the original G.

Number of times the MATLAB structure G2 (Pix2tex) was not identical to the

original one (circuits are not identical). While the structure G3 (Customized

CNN) was identical to the original G.

Number of times the Python execution failed.

Number of times the script has been executed.

Snippet 7.3: Errors counter.

1,324
2,1
3,2
4,0
5,4
6,331
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If any of the aforementioned errors occur during the execution of the comparison
‘Comparison.m’, the information pertaining to the circuit (images of the circuit,
annotations, the circuit, the circuit nodes, the JSON structure, and *.txt files
associated with component recognition and labels) is stored in a specific folder. This

process facilitates access to the errors produced, thereby enabling subsequent analysis.

Once the information was collected in these two files, Snippet 7.2 and Snip-
pet 7.3, a script was created to separate the directories containing errors according to
the categories mentioned above. Following the categorization of errors, an assessment
was conducted to determine the number of images that generated errors within a
circuit folder. For the purpose of comparison, the *.txt files (Snippet 7.1) for both
Pix2Tex and CNN method created during the recognition of the circuit annotations
(labels), were utilized. The predicted string labels for both methods were compared,
with any discrepancies recorded as an error. From this point onward, the image that
was misclassified can be more easily identified. It is important to clarify that, in

Snippet 7.1, each string label represents an annotation on the circuit image.

The results obtained after counting the number of images misclassified in the

circuits are saved in a *.txt file, as presented in Snippet 7.4

Snippet 7.4: Images misclassified per circuit.

1 Processing folder: pix2tex_went_wrong_cnn_no
2 Folder: C_6_nodes_9_elements_20250925_171741
3 Number of annotations: 26

4 Total errors: 1

5

6 Processing folder: cnn_went_wrong_pix2tex_no
7 Folder: C_6_nodes_9 _elements_20250925_131348
8 Number of annotations: 30

9 Total errors: 1

10 Folder: C_6_nodes_9_elements_20250925_141446
11 Number of annotations: 27

12/ Total errors: 1

13

14 Processing folder: Both_prediction_wrong

15 Folder: C_6_nodes_9_elements_20250925_125932
16 Number of annotations: 26

17 Total errors: O

18 Folder: C_6_nodes_9_elements_20250925_142508
19 Number of annotations: 31

20 Total errors: O

21

22 Processing folder: Python_errors

[\
w

Folder: C_6_nodes_9_elements_20250925_120253

Number of annotations: 26

NN
[SARNTS

Total errors: O
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26 Folder: C_6_nodes_9_elements_20250925_125502
27 Number of annotations: 32

28 Total errors: 2

29 Folder: C_6_nodes_9_elements_20250925_140737
30 Number of annotations: 19

31 Total errors: 1

7.3.1 Process Pix2Tex output

The expression resulting from Pix2Tex is a mathematical LaTeX expression that
primarily consists of a series of characters and commands commonly utilized in
this format. In order to facilitate a comparison between Pix2Tex and the CNN +
post-processing function, it is necessary to employ a more elementary text format
for the predictions made, whilst preserving the structure of the expression, and the

mathematical commands and symbols that may be generated by this OCR tool.

The latex2text() function was developed for the purpose of extracting all
mathematical commands, characters, and superfluous spaces and font styles from the
raw Pix2Tex expression. It receives the predicted label string with the mathematical
LaTeX format, process the math string via regular expressions, and return a simplified,
standardized "text-like" version of it with the minimal markup. Some details of the

standardizations applied to clean expressions are mentioned below.

¢ Cleans LaTeX formatting:
Removes spacing commands like \;, \,, ~, and unnecessary spaces.
Deletes font/style commands (\mathbf, \mathit, \textbf, etc.).

e Standardizes key math structures:
Detects and protects:
Fractions cases (\frac{...}{...})
Subscripts cases (_{...2})
Superscripts cases ("{...})

e Removes unnecessary braces and backslashes:
It deletes any extra {} outside the protected structures.
Removes unnecessary \left and \right. To ensure these structures are not

broken when braces are removed later.

e among others.

The following segment illustrates the functionality of the function:

Snippet 7.5: Example of transformation using the latex2text function

1 Input : \mathbf{\frac{11}{15}}~v_{6}
2 Output: \frac{11}{15}v_{6}
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7.3.2 Testing Configuration

The performance of the Pix2Tex and Customized CNN methods was evaluated
through three tests, which were executed simultaneously. The quantity of circuits
generated is dependent upon the time that is set for execution. For first test, a
duration of 90,000 seconds was established. For the second test, the execution time

was set at 80,000 seconds.

The following section will provide a presentation of the results.
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7.4 RESULTS

7.4.1 Correct Detections

The following are illustrative examples of the circuits generated and correctly
recognized for each of the two methods: Pix2Tex and CNN.

(2 2V (5) 3Q (7
& W

1H Is .
2Q § Vo
) =
0 &) o
1V

Problem:

Data:

Vi=1V
Vo =2V
Vs =2V
Vi=3V
V=1V
Ry =2Q
R, =3Q
L, =3H
Ly =1H

Problem:

Data:

Vi=1V
Vo=2V
V3 =2V
Vi =3V
Vs =1V
Ry =20Q
Ry, =3Q
L, =3H
L, =1H

C)

Figure 7.1: A) Original Circuit, B) Annotations predicted by Pi2Tex, C)
Annotations predicted by CNN
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Figure 7.2: A) Original Circuit, B) Annotations predicted by Pi2Tex, C)
Annotations predicted by CNN
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Figure 7.3: A) Original Circuit, B) Annotations predicted by Pi2Tex, C)
Annotations predicted by CNN
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The three illustrations presented in Figures 7.1, 7.2, and 7.3 exemplify three
distinct instances of a correct execution. As demonstrated in the electrical circuit
diagram A), the numerical values assigned to the labels are consistent with the values
predicted by both Pix2Tex and the customized CNN methods B) and C), thereby

facilitating the reconstruction of the original image.

As previously stated, two tests were conducted in order to evaluate the recognition
performance of the two methods. During the execution of these tests, the majority of
the generated circuits demonstrated correctly classified annotations for both methods.
However, it should be noted that in certain instances, errors were generated and
classified into a single category. A comprehensive overview of the errors detected in

these tests is provided in the following section.

7.4.2 TEST 1

Total number of circuits | Circuits without errors | Circuits with errors
Total 1253 1190 63
% 100% 95.22% 4.78%

Table 7.1: Circuits statistics of Test 1.

The results obtained in Test 1 are displayed in Table 7.1. A total of 1253 circuits
were generated, of which 1190 corresponded to circuits that did not report errors
during execution, representing 95.22% of the generated diagrams. Meanwhile, 63
of the circuits, representing 4.78%, presented some of the errors classified into the

following four categories:

(i) Category 1: The annotation predictions made by Pix2Tex correspond to the
values of the original circuit. In contrast, the annotation prediction performed

by CNN did not correspond to the values of the original circuit.

(ii) Category 2: The annotation predictions made by CNN correspond to the
values of the original circuit. In contrast, the annotation prediction performed

by Pix2Tex did not correspond to the values of the original circuit.
(iii) Category 3: Both predictions did not match the values of the original circuit.

(iv) Category 4: Errors generated during execution of the Python script.

As illustrated in Table 7.2, the errors generated in Test 1 are classified into the
four categories aforementioned for the purpose of analysis. In Category 1, 6 errors
were identified in instances where the predictions derived from the customized CNN
were erroneous yet were accurately identified by Pix2Tex. Furthermore, column 3 of
Table 7.2 demonstrates the number of errors per annotation (label) of the circuit.

For instance, consider a circuit containing 21 annotations, with only one misclassified
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image label; the error per images is 1/21.

Error category

Number of

Errors per

Errors per
number of

images in the

Type of Errors

Python Errors

Category .
circuit
1/21
Category 1: 1/18
CNN structure was not 1/96 e 4 Errors due to
equal to the original G. 6 1/26 image cropping.
Pix2tex structure was 1/23 e 2 Classification
identical to the original error.
1/28
G.
1/18 . .
e 8 Classification
Category 2: 1/22
error.
Pix2tex structure was 1/18
o e 2 Errors due to
not equal to the original 1/18 )
10 the conversion to
G. 1/17
LaTeX cleaner
CNN structure was iden- 1/19
. . format.
tical to the original G.
2/23
1/20
1/18
1/23
Category 3: )
o 0/25 o Overlapping
Both predictions were
1/14 Labels.
wrong. 17
. 2/19 o Errors due to
Both structures differed ) ]
. 2/25 image cropping.
from the original G.
1/18
1/21
e Overlapping
Category 4: Labels.
o1y 28 N/A

e Errors due to

image cropping.

Table 7.2: Summary of errors produced in Test 1.

In Category 2, 10 errors were identified, corresponding to incorrect detections
by Pix2Tex, yet these were correctly identified by the Customized CNN. Of the 10 cir-

cuits that exhibited an error during the identification process, only a single annotation

was misclassified with respect to the set of total labels allocated to that specific circuit.
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Similarly, errors classified under Category 3 accounted for 17 cases. The mis-
classifications are attributed to the fact that some annotations were not correctly
identified during the process of label extraction by the Intelligent System, which
employed the YOLO library. During the annotation detection and cropping stage,

some bounding boxes extracted other nearby elements that affected label prediction.

Finally, Category 4 indicates errors generated during the execution of the Python
script. The intelligent system developed in [27] for the recognition of components,
nodes, annotations, and the extraction of circuit information contained an error
related to the libraries implemented for these tasks. Consequently, these represent

propagation errors that have the potential to influence the result.
Visual representations of these errors are presented in the section 7.5.

7.4.3 Percentage of error considering each method separately

e Category 1

Considering only the errors generated by CNN and assuming that those of
Pix2Tex are correct, the percentage of errors during the classification from
CNN is as follows.

30+ 17+ 10
1253 + 6

Error per circuit using CNN = = 0.046 =~ 4.52%

o Category 2

Similarly, considering only the errors generated by Pix2Tex and assuming that
those of CNN are correct, the percentage of errors during the classification

from Pix2Tex is as follows.

30+17+6

=0.053 = 4.19
1253 + 10 %

Error per circuit using Pix2Tex =

Prior to the execution of Test 2, modifications were implemented in the processing
function latex2text (), which applies the conversion of Pix2TeX’s raw predictions

into a more refined, text-style format.

Some of these include: Adding a new regular expression to remove all commands
related to font style, such as ‘\mathbf’, ‘\mathit’, and ‘\textbf’, from the final
predicted expression. Converting similar visual characters, such as '’ misclassified
as 'l’, from the prediction. Additionally, some adjustments are required to clean up
expressions containing subscripts with commands such as ‘\textrm{...}’, which

were not considered during the first test.
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In a similar manner, the postprocessing function of CNN was modified due to the
identification of a bug in the function during the initial test. It was observed that
one of the conditions incorporated a parameter that was not being updated during

execution. This resulted in the occurrence of errors during prediction.

100



Testing Customized CNN Model vs Pix2tex

7.4.4 TEST 2

Total number of circuits

Circuits without errors

Circuits with errors

Total

962

943

19

%

100%

98.1%

1.9%

Table 7.3: Circuits statistics of Test 2.

Error category

Number of

Errors per

Errors per
number of

images in the

Type of Errors

Python Errors

Category .
circuit
Category 1:
CNN structure was not 1/19 e 1 Errors due to
equal to the original G. 5 1/21 image cropping.
Pix2tex structure was e 1 Classification
identical to the original error.
G.
Category 2:
Pix2tex structure was e 1 Error due to
not equal to the original ) 1/91 the conversion to
G. Latex cleaner
CNN structure was iden- format.
tical to the original G.
Category 3: 1/24 )
o e Overlapping
Both predictions were 1/23
Labels.
wrong. 4 1/22
. e Errors due to
Both structures differed 1/21 ) )
.. image cropping.
from the original G.
e Overlapping
Category 4: Labels.
sory 12 N/A

e Errors due to

image cropping.

Table 7.4: Summary of errors produced in Test 2.

For the final experiment, the circuit generation time was increased. A total of

962 circuits were generated, of which 943 did not present any errors during execution

or during the recognition of the circuit annotations. The error rate was found to be

1.9%, with only 19 circuits experiencing at least one error in the categories mentioned

above, see Table 7.3.

As demonstrated in Table 7.4, a decrease in the number of errors produced in

each category was observed in comparison to the preceding tests. This is attributed to

the adjustments made between tests. The modification of post-processing functions in

101




Testing Customized CNN Model vs Pix2tex

the case of CNN, or the LaTeX conversion function in the case of Pix2Tex, facilitates
the rectification of potential future errors. In addition, the nature of the errors

observed in this study was comparable to those previously identified in Test 1.

7.4.5 Percentage of error considering each method separately

o Category 1

Considering only the errors generated by CNN and assuming that those of
Pix2Tex are correct, the percentage of errors during the classification from
CNN is as follows.

2+4412
E ircuit using CNN = ————— = 0.018 = 1.86
rror per circuit using 962 + 1 %

o Category 2

If we consider only the errors generated by the Pix2Tex and assume as correct

those of CNN, the percentage of error is the following.

1+4412
E ircuit using Pix2Ter = ——— = 0.017 = 1.76
rror per circuit using Pix2Tex 962 1 2 %

7.5 Examples of Types of Errors Encountered

7.5.1 Category 1

909 9)
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GENERATED 230 oy zen
ANNOTATION ©

v

0.3A0.4mV

GENERATED
ANNOTATION

v

1.1 V13|

GENERATED
ANNOTATION

Figure 7.4: Examples of Category 1 errors.

Table 7.5: Errors detailed for Category 1.

Error per Original Detected by Detected by
Type of Error Image
Annotation Annotation CNN Pix2Tex
Due to a mis- 1/30 4.8uF 48, F 4.8uF A
classifications.
1/21 8.2mF 38.2mF 8.2mF B
Due to the

. . 1/18 0.4mV ).4mV 0.4mV C
image croppin

8¢ cropping 1/30 L1Vi L11Vis 11Vis D

process.

Table 7.5 provides a comprehensive overview of the errors identified in Category
1 during the experimental phase. As demonstrated in the table, only one image of
the annotations of a single circuit was found to contain an error, due to two factors:
character misclassifications or errors resulting from image cropping. Of the 2,000
circuit images that were assessed in the tests, a mere two errors were attributable
to misclassifications for the Customized CNN, as evidenced in Table 7.5. The
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residual errors were associated with the cropping process that was employed during

the extraction of the annotations from the original circuit.

CNNs are more susceptible to misclassifications in the presence of any non-
standardized shapes that may be in the image, whether due to an error during
cropping of the annotation, clipping characters or overlapping labels. These erroneous
characters are not predefined in the dataset utilized for the training of the network
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7.5.2 Category 2
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Figure 7.5: Examples of Category 2 errors.
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Table 7.6: Errors detailed for Category 2.

Error per Original Detected by Detected by
Type of Error A ) ) Image
Annotations Annotation CNN Pix2Tex
1/28 2V Vi frac215Vis A
Due to a mis- 1/23 0.4A 0.4A omicron.4A B
classification 1/26 0.2F 0.2F omicron.2F C

Errors pertaining to Category 2 are predominantly attributable to misclassifi-
cations or arise during the conversion of the predicted strings to LaTeX format, as
illustrated in Table 7.6. It has been observed that the function that converts the
raw strings predicted by Pix2Tex to LaTeX format occasionally generates incomplete
processing of the annotation string. These inconsistencies are the result of the
application of a regular expression in order to clean up the raw output produced by
Pix2Tex.

7.5.3 Category 3

v

v10.84 pF

OVERLAPPING -

V1(O.§4 71

GENERATED
ANNOTATION

v

CROPPING STAGE
ERROR

126.imF

GENERATED
ANNOTATION

Figure 7.6: Examples of Category 3 errors.

In instances where both models failed during the circuit annotation predictions,

i.e. in Category 3, the errors produced are primarily attributable to the annotation
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extraction process. These errors are attributed to flaws in the Python YOLO library
itself, which occasionally experiences difficulties in accurately identifying the label
during detection when two labels are in close proximity to each other. This directly
impacts the prediction of annotations, as these are the images that both models
will subsequently evaluate. Figure 7.6 depicts some examples of errors due to this

category.

7.6 Recommendations for future works

The results demonstrated an optimal performance for the methods under evalua-
tion. Errors in Categories 1 and 2 can be rectified by modifying the relevant functions.
In the case of Pix2Tex, the function that converts the strings into text-style represen-
tations is applied subsequent to the prediction being produced. It is recommended
that this function be adjusted in order to minimize the number of errors. Similarly,
the adjustment of the post-processing function for the Customized CNN has been

demonstrated to assist in the reduction of misclassifications of annotations.
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Chapter 8

Conclusions

The motivation for this investigation stems from the necessity to rectify errors
that occur during the process of detecting annotations in an electrical circuit. The
intelligent system previously developed by a student utilized Pytesseract as an OCR
tool for label detection. However, the reliability of this model for detecting the
annotation was found to be deficient, with the model frequently generating erroneous
detections.

In this research project, a convolutional model was implemented for the detection
of characters comprising mathematical symbols, alphanumeric characters, and some
letters of the Greek alphabet. The neural network was trained with a dataset that
included images of these characters until the best accuracy was achieved. Subsequently,
a post-processing function was applied to assign a meaning to the characters predicted
by the CNN in order to standardize the format of annotations. A predefined Python
tool, Pix2Tex, was utilized to detect mathematical formulas in images and convert
them into text. In order to ascertain the most efficacious method for detecting circuit
annotations, both approaches were executed concurrently during the generation of
the circuit.

The preceding stages were successfully executed by an automated code capable of
generating and testing images of electrical circuits. The findings from both methods
demonstrated optimal performance in a series of tests conducted over a defined time
period. It is evident that errors were identified during the prediction process. While
these errors may not constitute the majority of the results obtained, they must
nevertheless be taken into consideration when contemplating future deployment of
the application.

Finally, it is important to mention that this application is a work in progress.
It is recommended that handwritten character images be incorporated into the
convolutional model, with the aim of creating a more robust model capable of

detecting and identifying circuit labels from handwritten images.
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Appendix A

Additional Functions

A.1 Pseudo-code for pattern_detection() function

This method is used during the postprocessing function of annotations containing

fractional cases, comprising controlled sources or passive components.

Algorithm 10 Pattern Detection Function (Part 1)

Require: merge text, old_ prediction (optional), old_ list (optional)

=

[ S
Ll > vl =

15:
16:
17:
18:
19:
20:
21:
22:

. Initialize text = ""

—SECTION I: Currents (i, I ) —
if pattern matches current fraction (e.g., 5.18-3) then
Extract numerator, token, subscript, denominator
Refine values using old_prediction
Reorder components with controlling_order ()
Format as $numerator/denominator i_{subscript}$
return formatted text
end if
if pattern matches misclassified ’i’ as ’,” current (e.g., 4,7-5) then
Replace token (e.g., comma — I)
Reorder and return $numerator/denominator I_{subscriptl}$
: end if
. if pattern matches simplified form, when point is detected first that the stem of
the character i’ (e.g., 9.1-54) then
Parse and reorder controlling_order ()
return formatted current expression
end if
if pattern includes subscript letter (e.g., 5.1A-3) then
Adjust subscript with old_prediction
Handle 14-case and reorder
return $numerator/denominator i {A}$

end if
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Algorithm 11 Pattern Detection Function (Part 2)

=

: — SECTION 2: Resistors ( Q) —

if pattern matches resistor (e.g., 16omega-17) then
Extract numerator and denominator
controlling order ()

return $numerator/denominator w$

end if
—SECTION 3: Voltages (V, v, U) —

8: if pattern matches voltage fraction (e.g., 3V-20) then

10:
11:
12:
13:
14:

15:
16:
17:
18:
19:
20:

Normalize voltage symbol

Handle missing or incorrect subscripts

Fix wrong digits (I/L/1 1)

Apply controlling_order () function.

return $numerator/denominator V_{subscriptl}$

end if

if pattern matches generic component (e.g., 20L-7) then
Extract component symbol
Apply controlling order() correction and reorder.
return $numerator/denominator Letter$

end if

—SECTION 4: Other components (R, L, C, A, F, H, etc.
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