
POLITECNICO DI TORINO

MASTER’s Degree in Communications and Computer
Engineering

MASTER’s Degree Thesis

Automated Recognition of Annotations from Electrical
Circuit Drawings

Supervisor

Prof. Stefano GRIVET TALOCIA

Candidate

Carmen R. MONCADA Q.

Academic Year 2024-2025

Automated Recognition of Annotations from Electrical Circuit Drawings

Carmen R. Moncada Q.

Abstract

Image recognition constitutes a key component of machine learning that enables
intelligent systems to interpret visual information. Conventional optical character
recognition (OCR) tools often encounter challenges with variations in font style,
text orientation, language, and the presence of technical symbols. To address these
challenges, a convolutional neural network (CNN) was implemented to identify
characters individually within annotated labels of electrical circuit images. A post-
processing function was integrated to reconstruct the detected characters, ensuring
semantic coherence and compliance with standard circuit notation. The proposed
method was then compared with a conventional OCR tool to evaluate accuracy and
flexibility. Experimental results demonstrate that this approach enhances technical
consistency and streamlines the automation of circuit label annotation in intelligent
systems.

ACKNOWLEDGMENTS

to my parents, for their infinite love and unwavering belief in me. I hope one day to
give back all that they have so generously given me.

Table of Contents

1 Introduction 1

2 State of Art 5
2.1 Machine Learning and Deep Learning 5
2.2 Types of Deep Learning Architectures 6

2.2.1 Convolutional Neuronal Networks (CNNs) 6
2.2.2 Recurrent Neuronal Networks (RNNs) 6
2.2.3 Distributed Representation 7
2.2.4 Autodecoders . 8
2.2.5 Generative Adversarial Neural Network (GAN) 9

2.3 Optical Character Recognition . 9
2.4 Convolutional Neural Network Architecture Overview 12

2.4.1 Convolutional Layer . 12
2.4.2 Pooling Layer . 13
2.4.3 Activation Function . 13
2.4.4 Sigmoid . 14
2.4.5 Tanh . 15
2.4.6 Rectifier Linear Unit (ReLU) 15
2.4.7 Softmax . 16
2.4.8 Fully-Connected Layer or Dense Layer 16
2.4.9 Regularization . 16
2.4.10 Dropout . 17
2.4.11 Cross Entropy Loss-Function 17

2.5 Image Classification . 18
2.5.1 VGGNet Model . 19
2.5.2 Pix2Tex . 20

3 Dataset Generation 22
3.1 Dataset Generation . 23

3.1.1 Character Generation Algorithm 23
3.1.2 Chars74K-Fonts Dataset . 24
3.1.3 Data Augmentation . 25
3.1.4 Geometric Transformations 26
3.1.5 Color Space Adjustments . 27
3.1.6 Noise Injections . 27

III

TABLE OF CONTENTS

3.1.7 Pixelation . 28
3.1.8 Other Techniques . 28

4 Model Generation and Evaluation 30
4.0.1 Packages . 31

4.1 Script Description . 32
4.1.1 Loading Dataset Function . 32
4.1.2 One-Hot Encoder . 32

4.2 Pre-processing Techniques applied to the Images 33
4.2.1 Resizing . 33
4.2.2 Normalization . 34

4.3 Pre-processing Techniques applied to the Bounding Boxes for Detection 34
4.3.1 Greyscale . 34
4.3.2 Gaussian Blur . 35
4.3.3 Thresholding-Base Image . 35
4.3.4 Denoising Image . 35

4.4 Model Development and Experimental Progression 37
4.4.1 Initial Experiments . 37
4.4.2 VGG-16 model . 37
4.4.3 APROACH 1: VGG16 with 12 Frozen Layers 38
4.4.4 APPROACH 2: VGG16 with 6 Frozen Layers 38
4.4.5 Customized CNN . 39
4.4.6 Customized CNN Layers . 40

4.5 Training Function . 41
4.6 Results of First Models Experiments 42
4.7 Model Fine-Tuning the Customized CNN 44

4.7.1 Results obtained after Model Fine-Tuning 45
4.7.2 Comparison with the baseline model 45
4.7.3 Weakness of the customized CNN 46

5 Main Function 48
5.1 Calling the main functions . 49
5.2 STEP 1: Load CNN model . 49
5.3 STEP 2: Load class labels . 49
5.4 STEP 3: Prediction Phase (predict_characters()) 50

5.4.1 Algorithm . 50
5.5 STEP 4: Post-process function post-processing() 53
5.6 STEP 5: Convert to LaTeX format 53
5.7 STEP 6: Log results . 54
5.8 STEP 7: Return final output . 56

6 Post-Processing Function 57
6.1 Post-Processing Function . 58

6.1.1 Overview . 58

IV

6.2 Processing Steps . 59
6.3 STEP 1: Inputs of the Post-Processing method 59
6.4 STEP 2: Logical Conditions Applied to Predictions 59

6.4.1 CONDITIONS . 61
6.5 STEP 3: Post-processing Prediction Cases Method 69

6.5.1 Inputs: . 69
6.5.2 Algorithm . 69
6.5.3 case = 1: SIMPLE SUBSCRIPTS SUCH AS 8I2 OR 3VA . . 70
6.5.4 case = 4: SCIENTIFIC NOTATION WITH SUPERSCRIPTS 72
6.5.5 case = 7: LABELS CONTAINING FRACTIONAL VALUES 74
6.5.6 CONTROL CHARACTER ORDER METHOD 80
6.5.7 case = 9: DEALING WITH SYMBOLIC VALUES FOR

DEPENDENT SOURCES . 81
6.6 STEP 4: Bounding Box Consolidation 84
6.7 STEP 5: Outputs of Post-Processing phase 84
6.8 Weakness and Possible Improvements 85

7 Testing Customized CNN Model vs Pix2tex 86
7.1 Intelligence System Description . 87

7.1.1 Modification of predefined Annotation function 87
7.2 Comparison between Pix2Tex vs Customized CNN 88
7.3 Errors Detection . 89

7.3.1 Process Pix2Tex output . 92
7.3.2 Testing Configuration . 93

7.4 RESULTS . 94
7.4.1 Correct Detections . 94
7.4.2 TEST 1 . 97
7.4.3 Percentage of error considering each method separately . . . 99
7.4.4 TEST 2 . 101
7.4.5 Percentage of error considering each method separately . . . 102

7.5 Examples of Types of Errors Encountered 102
7.5.1 Category 1 . 102
7.5.2 Category 2 . 105
7.5.3 Category 3 . 106

7.6 Recommendations for future works 107

8 Conclusions 108

A Additional Functions 109
A.1 Pseudo-code for pattern_detection() function 109

Bibliography 111

V

LIST OF FIGURES

List of Figures

1.1 Web-service functionalities. 1
1.2 Electric circuit generated and analyzed by the system. 2
1.3 Circuits elements recognized by the intelligent system. 2

2.1 RNNs Architecture (Source:[7]). 7
2.2 Basic Autoencoders Architecture (Source:[9]). 8
2.3 GANs Basic Architecture (Source:[10]). 9
2.4 OCR components. 10
2.5 CNN layers architecture. 12
2.6 Max-Pooling Layer . 14
2.7 Comparison Between Fully Connected Layers and Dropout Layers . 17
2.8 VGG16 Model’s Architecture (Source: [19]) 19
2.9 Pix2Tex process. 20

3.1 Samples from Char74K-Font Dataset. 25
3.2 Rotation applied to the images. 26
3.3 Tilted transformation applied to the images. 26
3.4 Brightness transformation applied to the images. 27
3.5 Hue-Saturation applied to the images. 27
3.6 Noise transformation applied to the images. 28
3.7 Brightness transformation applied to the images. 28
3.8 Blurring transformations applied to the images. 29
3.9 Distortion transformation applied to the images. 29

4.1 Gaussian Blurred Image. 35
4.2 Thresholding-Base Image. 36
4.3 Denoised Image. 36
4.4 Customized CNN architecture. 39

5.1 Input annotation image example. 50
5.2 Preprocessed image example. 50
5.3 Output of cv2.Findcontours method. 51
5.4 Bounding boxes generated. 51
5.5 Final prediction. 52

6.1 Image that generated the previous predictions. 62
6.2 Images that generated the following list of predictions. 63

VI

6.3 Image that generated the previous predictions. 64
6.4 Image that generated the previous predictions. 66
6.5 Image that generated the previous predictions. 67
6.6 Dependent voltage source with Subscript format label. 71
6.7 Dependent voltage source after postprocessing. 72
6.8 Dependent source with superscript values. 73
6.9 Controlling variable with fractional value. 77
6.10 Passive Circuit Elements with fractional values. 79
6.11 Dependent sources with symbolic values. 82
6.12 Dependent sources with symbolic values. 83
6.13 Dependent sources with symbolic values. 83

7.1 A) Original Circuit, B) Annotations predicted by Pi2Tex, C) Annota-
tions predicted by CNN . 94

7.2 A) Original Circuit, B) Annotations predicted by Pi2Tex, C) Annota-
tions predicted by CNN . 95

7.3 A) Original Circuit, B) Annotations predicted by Pi2Tex, C) Annota-
tions predicted by CNN . 96

7.4 Examples of Category 1 errors. 103
7.5 Examples of Category 2 errors. 105
7.6 Examples of Category 3 errors. 106

List of Tables

4.1 One-Hot Encoding of some characters used in the Dataset. 33
4.2 Comparison results of CNN, 12 Layer Frozen, and 6 Layer Frozen

Models during Testing phase. 43
4.3 Performance comparison between the VGG16 model with 6 frozen

layers (baseline) and the fine-tuned customized CNN. 45

6.1 Electronic Circuit Symbols with Meaning, Units, and Examples . . . 59

7.1 Circuits statistics of Test 1. 97
7.2 Summary of errors produced in Test 1. 98
7.3 Circuits statistics of Test 2. 101
7.4 Summary of errors produced in Test 2. 101
7.5 Errors detailed for Category 1. 103
7.6 Errors detailed for Category 2. 106

VII

Acronyms

AI Artificial Intelligence.

DL Deep Learning.

ML Machine Learning.

CNN Convolutional Neuronal Network.

API Application Programming Interface.

TF TensorFlow.

YOLO You only look once.

VIII

Chapter 1

Introduction

The utilization of artificial intelligence (AI) and machine learning algorithms for
the resolution of tangible issues has been adopted in numerous domains in recent
years. The field of applications is wide-ranging, encompassing the use of predictive
analytics for the detection of fraud or aberrant patterns within the banking and
financial sectors. Additionally, it extends to the implementation of algorithms for the
early detection of serious diseases and the analysis of medical images. In the domain
of transport and logistics, it is used for the purpose of making forecasts within the
supply chain, among other applications.

These techniques have also been applied in an educational context with the aim
of creating an intelligent system capable of identifying and understanding electrical
circuit diagrams based on images. The purpose of this project is to implement a
cutting-edge web service for students and professors to use as an interactive tool for
analyzing electrical circuits. This platform, ‘autoCircuits’ [1], incorporates a range
of functionalities designed to automate the generation of electrical circuit theory
problems, as shown in Figure 1.1.

Figure 1.1: Web-service functionalities.

The primary objective is to assist students in enhancing their proficiency in circuit
analysis and to provide a valuable support mechanism for professors by generating a
vast number of unique circuit problems. This makes it an efficacious instrument for

1

Introduction

creating consistent and diverse exam templates, as shown in Figure 1.2.

Figure 1.2: Electric circuit generated and analyzed by the system.

From the back-end perspective, the intelligent system process is initiated by the
generation of an image containing the electrical circuit. This image is utilized as
input to the trained YOLO (you only look once) model, which is a real-time object
detection algorithm. All electrical components, outputs, and electrical elements (e.g.,
voltage and current arrows) along with their associated annotations, are detected in
this stage. This is achieved through the recognition of standardized circuit symbols
and the detection of junctions formed by the corresponding connection lines, as
shown in Figure 1.3. Subsequently, all of these components are extracted from the
circuit image so that they can be analyzed separately by means of image processing
techniques, with a view to obtaining the complete topology of the network.

Figure 1.3: Circuits elements recognized by the intelligent system.

2

Introduction

The data obtained by this method is incorporated into two nested structures,
which are employed to reconstruct the original graph from the ground up. A compar-
ison is finally made between the original and reconstructed graphs. This comparison
is performed from two perspectives: graphical and structural, to evaluate the correct
functioning of the system.

As mentioned before, the annotations within the image are extracted and inde-
pendently detected through ‘Pytesseract’, an optical character recognition (OCR)
tool, to recognize the labels associated with the electrical circuit. However, the
issue arises due to Pytesseract’s inability to accurately identify certain annotations
present within the image, particularly those involving mathematical symbols or
fractional formats for annotation. This method is heavily reliant on the quality of
image resolution; consequently, low-resolution images, or those containing italic fonts
for component annotations, present considerable challenges for accurate annotation
detection and identification. The incorporation of multilingual labels further increases
the complexity of the task.

These errors highlight the limitations of ‘Pytesseract’ in handling equation-style
annotations, thus necessitating the use of an alternative tool capable of reliably
identifying labels in electronic circuit components. Thus, the objective of this re-
search is to explore two alternatives for accurately recognizing these annotations. For
this purpose, the aim is to develop a function using a Convolutional neural network
to detect characters and translate them into equation-style expressions, utilizing a
post-processing function that assigns contextual meaning to each component. The
performance of the proposed method is then evaluated by comparing it with another
optical character recognition tool called Pix2Tex, which is predefined in the Python
libraries.

This thesis is structured into seven chapters. Chapter 2 presents a comprehensive
overview of machine learning algorithms, the principles underlying optical character
recognition, and the fundamental components of a convolutional neural network.

Chapter 3 describes the construction of the dataset employed to train the pro-
posed convolutional model, incorporating augmentation techniques to enhance data
diversity.

Chapter 4 outlines the methodologies applied during the models training process,
leading to the configuration that achieved the highest accuracy.

Chapter 5 of this text provides a comprehensive overview of the core function
that facilitates the comprehensive process of recognizing annotations on a circuit.
This function is employed to replicate the entire process on other computers.

3

Introduction

Chapter 6 addresses the post-processing stage conducted after text extraction,
detailing the methods used to assign contextual meaning to electronic circuit annota-
tions in accordance with the models predictions.

Chapter 7 reports the experimental results obtained from evaluating the model on
a substantial image dataset and provides a comparative analysis with the ’Pix2Tex’
tool, a learning-based system designed to convert mathematical equations into LaTeX
format. The results obtained from both methods, CNN and Pix2Tex, will be com-
pared with the ground truth text annotations of the original image using a predefined
function. This function reconstructs the circuit from the predictions generated by
both models and compares the reconstructed structure with the original structure of
the circuit.

Finally, the limitations of the proposed approach, including the challenges ob-
served when applying both methods to new unseen data and the potential avenues
for future improvement, are discussed at the conclusion, Chapter 8.

4

Chapter 2

State of Art

2.1 Machine Learning and Deep Learning

Machine learning is a branch of Artificial Intelligence that automates analytical
model building. It is based on the idea that computers can learn automatically from
data, identify patterns, make decisions autonomously, and improve performance and
accuracy based on experience without being explicitly programmed [2, 3].

It comprises a set of algorithms and statistical models that enable computer or
machine systems to carry out specific tasks without explicit instructions, relying
instead on inference and patterns. On the other hand, Deep Learning, a subset of
machine learning, improves the quality of learning environments by using multilayer
artificial neural networks. These networks are designed to tackle complex tasks such
as image recognition, natural language processing, and speech recognition.

The architecture of deep neural networks characteristically comprises several
hidden layers, which are arranged within complex, deeply nested structures. Rather
than relying on a single activation function, they frequently implement advanced
operations, such as convolutions, or multiple activations within a neuron [4]. These
capabilities enable deep neural networks to process raw input data directly and
automatically learn the representations required for a given learning task. This
ability constitutes the basis of the concept known as "deep learning".

Over the years, numerous deep learning architectures have been proposed to
address a wide variety of learning tasks. Nevertheless, certain architectures demon-
strate greater suitability for specific data types, such as time series, speech, or images.
These distinctions arise primarily from differences in the complexity of the model,
characterized by the types and numbers of layers employed, the number of neuronal
units, and the structure of their interconnections.

5

State of Art

2.2 Types of Deep Learning Architectures

The following section will present five deep learning architectures. These will be
presented in rough order of development, with each successive model being developed
to overcome a weakness identified in a previous model.

2.2.1 Convolutional Neuronal Networks (CNNs)

Convolutional neural networks (CNNs) are a specialized class of neural networks
that are mostly applied in computer vision tasks such as image classification, object
detection and pattern recognition. Exploiting principles from linear algebra, in
particular matrix multiplication, CNNs automatically identify features and patterns
in images and videos.

Structurally, CNNs consist of an input layer, several hidden layers, and an output
layer, with nodes connected by weighted links and activation thresholds. The archi-
tectural design of the CNN will be explained in greater detail in the forthcoming
sections. The main components include Convolutional layers, clustering layers, and
fully connected (FC) layers. Through successive layers, they extract progressively
more complex features: the first layers detect basic patterns such as edges or colors,
while deeper layers capture higher-level structures, up to recognizing entire objects [4].

CNNs outperform traditional neural networks in handling high-dimensional data
such as images, voice, and audio, eliminating the need for manual feature extraction.
Their ability to share and process data between layers increases efficiency and miti-
gates overfitting. However, CNNs also present challenges: they are computationally
intensive, require substantial resources such as GPUs [5, 6], and require expertise in
tuning architectures and hyperparameters.

2.2.2 Recurrent Neuronal Networks (RNNs)

Recurrent Neural Networks (RNNs) are primarily used in natural language pro-
cessing and speech recognition tasks, as they are designed to handle sequential or
time-series data, event sequences, and natural language, enabling them to predict
future outcomes.

The architecture of RNNs incorporates internal feedback loops, allowing them to
learn sequential patterns and model temporal dependencies by forming a memory,
using information from previous inputs to influence current inputs and outputs, as
shown in Figure 2.1. They share parameters across layers and maintain consistent
weight parameters within each layer, which are updated through backpropagation
and gradient descent, supporting reinforcement learning [6].

6

State of Art

Figure 2.1: RNNs Architecture (Source:[7]).

Basic RNN architectures encounter difficulties stemming from vanishing or ex-
ploding gradients[5], which can greatly diminish or erase the influence of earlier
inputs[2]. Both problems are associated with the gradient’s magnitude, reflecting the
slope of the loss function [6].

Vanishing gradients occur when gradients become progressively smaller, eventu-
ally causing the weight updates to diminish to zero and halting the learning process.
Conversely, exploding gradients happen when gradients grow excessively large, lead-
ing to unstable models where weights may become undefined (NaN). A common
strategy to mitigate these problems is to reduce the number of hidden layers, thus
simplifying the model [5].

Additionally, these networks often demand long training times, face challenges
when handling large datasets, and become progressively more difficult to optimize as
the number of layers and parameters increases.

2.2.3 Distributed Representation

Distributed representations are of significant importance in the domain of Natural
Language Processing (NLP). These representations are characterized by the use
of continuous vectors in high-dimensional spaces to denote data, which may be
words or phrases. The concept of similarity and semantic meaning is captured by
allowing an entity to be represented by a pattern of values across multiple dimensions.

For instance, in Natural Language Processing (NLP) tasks, words with similar
meanings are represented by vectors located near each other within the embedding
space [2]. This proximity is not arbitrary but emerges from the patterns of contextual
usage learned during training. Word embeddings address the issue of sparsity inherent
in traditional text representation methods, such as one-hot encoding and bag-of-words
(BoW) models, while simultaneously preserving the semantic relationships between
words [8]. As a result, words that frequently occur in similar contexts within a corpus
are positioned closely in the vector space, facilitating more effective modeling of
linguistic structures.

7

State of Art

However, it is important to note that this approach is not without its challenges.
The requirement of large amounts of data to learn meaningful representations is a
significant challenge, and as such, the embeddings may not capture the true semantic
relationships if an insufficient amount of data is available. Furthermore, distributed
representations can require significant computational resources for learning, neces-
sitating substantial processing power and memory, particularly when dealing with
large datasets.

2.2.4 Autodecoders

Autoencoders function similarly to distributed representations, employing an
architectural framework that is also utilized in modern large language models (LLMs).
They consist of two primary components: an encoder and a decoder. A basic ar-
chitecture is illustrated Figure 2.2. The encoder compresses the input data into a
dense, abstract representation, positioning similar data points closer together within
the latent space. The decoder then reconstructs the original input from this com-
pressed form. Through this process, the network is encouraged to preserve essential
information in the latent space while filtering out irrelevant noise [2, 5].

Figure 2.2: Basic Autoencoders Architecture (Source:[9]).

However, training deep architectures can be computationally intensive. During
unsupervised learning, models may merely replicate input data rather than extract
meaningful features[5]. Furthermore, autoencoders may struggle to identify complex
relationships within structured data, potentially resulting in incomplete or inaccurate
representations.

8

State of Art

2.2.5 Generative Adversarial Neural Network (GAN)

Generative Adversarial Networks (GANs) are neural network architectures de-
signed to generate new data samples that closely resemble the original training
data. GANs consist of two main components: a generator and a discriminator, see
Figure 2.3. The generator produces new samples, such as images, video, or audio,
by learning the underlying distribution of the input data. The discriminator evaluates
these generated samples by comparing them to real data, attempting to distinguish
between authentic and synthetic inputs. Both networks are trained concurrently in a
non-cooperative zero-sum game, where improvements in one network come at the
expense of the other [2]. Training continues until the discriminator can no longer
reliably distinguish between real and generated samples.

Figure 2.3: GANs Basic Architecture (Source:[10]).

GANs are effective in producing highly realistic data, which can be utilized to aug-
ment machine learning training processes, often requiring minimal or no labeled input.
However, their training can be computationally demanding due to the prolonged
adversarial dynamics between the generator and the discriminator, and typically
requires large data sets to achieve satisfactory performance [5].

This work will be more in-depth in the area of image recognition, specifically in
the area of optical character recognition.

2.3 Optical Character Recognition

Optical Character Recognition (OCR) is a technology that transforms images
containing typed, handwritten, or machine-printed text into editable and machine-
readable text. These images or documents can be classified into two groups, depending
on the input mode: online and offline versions. Online recognition systems typically
refer to images captured directly from a digital pen or tablet during the writing
process. In contrast, offline recognition systems process text images or documents

9

State of Art

obtained from digital cameras or scanners. It is acknowledged that the images in
question may contain text produced by a machine, such as a printer or a typewriter,
or alternatively by hand [11].

OCR systems contain eight key components: (i) collection of input images, (ii)
input image preprocessing, (iii) text detection, (iv) character segmentation, (v) fea-
ture extraction, (vi) character recognition, (vii) handwriting recognition, and (viii)
post-processing.

Figure 2.4: OCR components.

(i) Collection of input images: In this step, the dataset is created. It consists
of acquiring handwritten or machine-printed documents and converting them
into digital form. This process is performed using electronic devices such as
digital cameras, scanners, telephones, or tablets to create the set of images.

In addition to the features and classifiers used, the dataset also plays a crucial
role in determining recognition accuracy. Suppose that the input characters
in the dataset are distorted, poorly written, or contain noise that cannot be
effectively removed by pre-processing techniques. In that case, even the most
advanced feature extraction or classification techniques will not be able to
achieve the desired level of accuracy [11].

10

State of Art

(ii) Input image pre-processing: Pre-processing is one of the most important
steps in OCR. It involves a series of techniques applied to ensure that the quality
of scanned document images is sufficient before the recognition phase begins.
These techniques may include converting images to grayscale, thresholding,
removing unwanted noise or artifacts, binarization, and deskewing, among
others. The goal is to enhance image quality to achieve higher accuracy during
the character detection phase. The specific techniques used in this work will
be explained in detail in Chapter 3.

(iii) Text area detection: The text detection phase involves identifying text regions
within images using machine learning models or edge detection techniques that
can locate text areas even in complex layouts [12]. This is achieved by separating
text from non-text elements such as graphs, backgrounds, and charts. This
step is performed prior to segmentation to ensure that only the text areas are
passed on to the subsequent processing stages.

(iv) Character segmentation: The segmentation process begins by dividing the
text into individual paragraphs. Each paragraph is then segmented into lines,
which are further broken down into words. These words are subsequently split
into individual characters, and finally, each character may be decomposed
into sub-characters for more granular analysis [11]. Segmentation techniques
are often based on methods such as line detection, word separation, and
advanced algorithms capable of distinguishing characters even in complex fonts
or handwriting [12].

(v) Feature extraction: Feature extraction phase aims to identify and isolate the
unique and distinguishing patterns of each character image, helping improve
recognition accuracy by reducing the amount of data needed[12, 11]. These
features can include lines, curves, corners, and pixel patterns that differentiate
one character from another, allowing even similar-looking characters, such as
“O” and “Q” or “1” and “I”, to be correctly recognized.

(vi) Character recognition: Character classification constitutes the final phase
in the OCR process. Following preprocessing, text area detection, and segmen-
tation, each isolated character is analyzed and matched against a repository of
reference patterns. Through this comparison, the system determines the most
appropriate character label, thereby finalizing the recognition process.

(vii) Postprocessing: This constitutes the final stage following the character
recognition phase. The primary objective of this function is to improve the
accuracy of predictions during the classification process, ensuring alignment
with the intended context and correcting any identified errors. Typically, this
post-processing stage involves spelling correction, grammatical correction, and
context-based adjustments to rectify misinterpretations made by the recognition
model [12]. For instance, it may include correcting visually similar characters,

11

State of Art

such as replacing "l" with "1" or "0" with "O", especially in cases where certain
fonts render these characters nearly identically. Consequently, additional
processing is necessary to refine and validate the predictions generated by the
model.

2.4 Convolutional Neural Network Architecture Overview

As explained in the previous section, a convolutional neuronal network (CNN) is
designed to mimic the human brain capabilities through the use of different layers
of interconnected neurons. The architecture of a typical CNN is composed of four
fundamental components: (a) a convolution layer, (b) a pooling layer, (c) an activation
function, and (d) a fully connected layer. Figure 2.5 depicts the organization of the
layers in CNN.

Figure 2.5: CNN layers architecture.

2.4.1 Convolutional Layer

It is composed of multiple learnable filters, also known as kernels, which are
applied to the data before its use. The model performs convolutional operations on
the input image. Each filter is characterized by its diminutive proportions, measured
in terms of width and height, and its ability to seamlessly accommodate the input
image. Within this framework, the filter performs the computation of dot products
between its assigned weights and the respective input pixels [13, 14]. It typically
follows a standardized numerical sequence, with filter sizes categorized as 3x3, 5x5,
or 7x7. The operation is conducted to encompass the entire extent of the input
volume (input image), and is subsequently followed by a nonlinear activation function
(sigmoid, tanh, ReLU etc.).

The third dimension of the filter is analogous to the number of channels in the
input. In the context of grayscale images, the depth value is set to 1. Conversely,
color images are characterized by 3 RGB (Red, Green, Blue) color channels. This

12

State of Art

process facilitates the identification of local patterns and features within the image.
The output of the convolutional layer is a set of feature maps, which represent the
presence of different features in the input image.

Finally, the output volume depends on three hyperparameters: depth, stride, and
padding [13].

• The depth of the output volume is indicative of the number of filters used in
the convolution operation. Each filter learns a distinct set of features from the
input, including edges, blobs, and colors.

• The stride determines how many steps the filter slides in the input. When the
stride is 1, the filters move one pixel at a time. When the stride is 2, the filters
jump two pixels at a time as the filter is slid. This produces a smaller spatial
output volume.

• Padding is used to influence the dimensions of the output in a convolution
operation. Without padding, applying a convolution typically results in a
smaller output, potentially discarding important data and details. To prevent
this, extra zeros are added around the borders of the input. There are two
frequently used padding methods: valid and same. ’Valid’ means no padding
is added, so the output is smaller, while ’same’ ensures the output has the
same dimensions as the input by adding the necessary padding.

2.4.2 Pooling Layer

This layer is employed after convolution layers to reduce the dimension of the
feature maps (also referred to as sub-sampling or down-sampling). The application
of the pooling operation to the input data is achieved by means of a filter that
slides over it in the pooling layer (max, min, avg). The two most common types of
pooling layers are max-pooling and average-pooling, where the maximum or average
values are taken, respectively, when performing the sliding. However, Max-pooling
is utilized more frequently than the average. Moreover, the hyperparameters of the
pooling layer comprise the filter size and strides. The latter quantity denotes the
number of pixels that the pooling window (or filter) shifts over the input feature
map during each operation. To illustrate this, consider a scenario in which a stride
of two pixels has been defined. In such a case, the pooling window will progress two
units at a time after each operation [14], as illustrated in Figure 2.6. The pooling
layer does not have parameters that can be learned.

2.4.3 Activation Function

In neural network architectures, each layer computes its output by performing
a linear transformation on the output of the preceding layer. In the absence of

13

State of Art

Figure 2.6: Max-Pooling Layer

any non-linear modification, this linear processing is propagated through successive
layers, limiting the representational capacity of the model. However, introducing
an activation function adds non-linearity to the model. This enables the network
to approximate complex nonlinear functions, significantly enhancing its capacity
to model diverse real-world patterns and relationships. An activation function is a
mathematical function applied to the output of a filter. The most commonly used
activation functions include the following:

2.4.4 Sigmoid

The sigmoid activation function maps input values to an output range between 0
and 1, making it suitable for tasks such as normalizing neuron outputs or modeling
probabilistic predictions. It is particularly useful in binary classification problems,
where the output can be interpreted as a probability [15, 16]. The mathematical
formulation of the sigmoid function is given by:

f(x) = 1
1 + e−x

(2.1)

Despite its usefulness, the sigmoid activation function presents certain limitations.
When a neuron’s output approaches the extremes of 0 or 1, the derivative of the
sigmoid function becomes very small [15]. As a result, during backpropagation,
the gradients associated with these neurons tend to vanish, leading to minimal or
no weight updates. This effect slows down learning and can propagate backward
through the network, causing the gradients of earlier layers to diminish significantly,
a phenomenon known as the vanishing gradient problem.

14

State of Art

2.4.5 Tanh

The hyperbolic tangent (tanh) activation function transforms the input values
into a range between -1 and 1, effectively centering the data and often leading to
improved convergence during training compared to the sigmoid function, solving the
problem of sigmoid functions not centering the output at 0 [15]. However, when the
input values are very large or very small, the output of the tanh function saturates,
resulting in small gradients. This saturation effect can hinder effective weight updates
during backpropagation, contributing to the problem of vanishing gradients.

f(x) = 2
1 + e−2x

− 1 (2.2)

2.4.6 Rectifier Linear Unit (ReLU)

ReLU is one of the most widely used activation functions. It is a segmented linear
function, specifically a ramp function, represented by the following equation:

f(x) = max(0, x) (2.3)

ReLU addresses several shortcomings of the sigmoid and tanh activation functions.
Due to its piecewise-linear nature, ReLU is computationally efficient and faster to
evaluate than its nonlinear counterparts. For positive input values, its derivative is
equal to 1, which helps alleviate the vanishing gradient problem and facilitates faster
convergence during gradient descent optimization [15].

However, it is important to note that this approach may be susceptible to the
Dead ReLU problem. In essence, this problem occurs when the input is negative,
resulting in a gradient that is precisely zero. Consequently, ReLU neurons are more
prone to "dying" during the training process.

15

State of Art

2.4.7 Softmax

The softmax function is a common activation function used in multi-class clas-
sification tasks. It is characterized by the transformation of the output scores into
normalized probability distributions over multiple classes. The calculation of proba-
bilities is achieved through the compression of the values of a real vector of length
K between 0 and 1. To validate the probability distribution, it is necessary that
the total sum of vector values is equal to 1. The outputs of the activation function
are indicative of the estimated likelihood that the input belongs to each of the K
categories. Higher values suggest a stronger confidence (probability) in the associated
class [15]. This is characteristic of a K-class classification problem. The softmax
function is defined by the following equation:

Softmax(xi) = exiqK
j=1 exj

for i = 1, . . . , K

(2.4)

where xi is the i-th element of the input vector x, and K is the total number of
classes.

Moreover, a notable constraint of softmax functions emerges in scenarios where
the input to the activation function attains a substantially negative value, leading to
a gradient that approaches zero. Consequently, the corresponding weights receive
minimal to no updates during the backpropagation process. The phenomenon of
neuronal activation gives rise to neurons that remain inactive over time. These
neurons are commonly referred to as "dead" neurons, and they fail to contribute to
learning, which in turn affects the model’s performance.

2.4.8 Fully-Connected Layer or Dense Layer

A fully connected layer is generally located at the end of the network for classifica-
tion. Each neuron belonging to the fully connected layer is successively connected to
all neurons and their preceding layers. It is customary for a CNN to process the input
to generate multiple feature maps (after several convolution and pooling operations),
which are then flattened into a single vector. The vector is then passed through one
or more fully connected layers, which in turn transform spatial feature maps into
class probabilities, and finally directs it to the output layer for classification. [13, 15].

2.4.9 Regularization

CNNs are typically used for image classification tasks, where overfitting is a
significant concern. Overfitting occurs when the model generalizes or represents well

16

State of Art

during training but performs poorly with new, unseen data in the test set. This
occurs when the model has been intensively trained using all available information,
but cannot generalize well with new information [17, 16]. This is where regularization
techniques play a key role in the model, as they prevent overfitting during the training
phase. The idea behind regularization is to increase the variability of the data at
different stages of the CNN.

The regularization techniques are a set of algorithms that aim to reduce the error
on data that does not belong to the training set. A prevalent regularization technique
that is frequently employed in CNNs is Dropout.

2.4.10 Dropout

Dropout is a technique that facilitates regularization in the network by randomly
removing some neurons or connections with a predetermined probability. This im-
proves generalization by forcing the entire system to learn more features [15, 17].
The stochastic omission of specific connections or units leads to the formation of
multiple sparse network architectures, from which a single representative model with
reduced weights is selected. Figure 2.7 illustrates the functionality of this method.

Figure 2.7: Comparison Between Fully Connected Layers and Dropout Layers

2.4.11 Cross Entropy Loss-Function

The loss function is an effective method to evaluate the divergence between the
model’s predicted outputs and the corresponding true values. This mechanism is of
particular relevance in multi-class classification tasks, where class labels are required
to be transformed into one-hot encoded vectors to facilitate comparison. Within this
paradigm, the cross-entropy function calculates the loss for each class individually
and subsequently adds them together to compute the overall loss. It quantifies the
dissimilarity by the application of penalties to predictions that deviate from the true
labels, thereby guiding the optimization process during model training. The equation

17

State of Art

of the cross-entropy function is presented in 2.5.

L = − 1
N

NØ
i=1

yi log(xi) (2.5)

N represents the total number of data samples, in this case, circuit images. yi is
the true probability of class i, and xi is the predicted probability of class i.

2.5 Image Classification

In the domain of computer vision, image classification is widely regarded as one
of the most challenging tasks. The objective is to differentiate between object classes,
including but not limited to animals, vehicles, and people, based on the features
presented in the images [15]. To perform image classification, it is necessary to select
a classification model that is suited to the specific characteristics and requirements
of the specified task.

The selection of a reference model for the character annotation recognition com-
ponent of this thesis was largely based on the findings of Rizky (2023) [18], who
conducted a comparative study of pre-trained CNN architectures for text recogni-
tion in images. The experiments demonstrated that applying transfer learning to
standard CNN backbone architectures (e.g., VGG-16, ResNet18, DenseNet121, etc)
and combining it with appropriate image augmentations (rotations, scaling, blurring)
produces high accuracy, with VGG16 being the model that achieved high accuracy
on the test set with 98.16%.

Since part of the task of this research work is the recognition of numerical and
symbolic labels in circuit diagrams, it shares many characteristics with the character
recognition scenario in [18] (small symbols, variable fonts, possible noise or distor-
tions), and the same architectural options are promising. Therefore, it was decided
to adopt VGG-16 as the base model, using transfer learning from ImageNet weights
and employing some analogous augmentation strategies to make the model robust
to variations in the quality of circuit annotation images. This choice is justified not
only by the empirical performance described in their work, but also by the fact that
their methodology addresses some of the challenges it is expected, such as different
character sizes, rotations, variable fonts, and noise.

The subsequent section will provide a detailed exposition of the selected model
and its architecture.

18

State of Art

2.5.1 VGGNet Model

The VGG model is a convolutional neural network architecture developed by the
Visual Geometry Group at the University of Oxford. The model was trained on the
ImageNet dataset, which includes millions of annotated images across a wide range
of object categories. This makes it well-suited to large-scale image recognition tasks.
VGG-16 is distinguished by its simple and uniform architecture, a feature that has
been identified as a contributing factor to its notable performance in the ImageNet
Large Scale Visual Recognition Challenge (ILSVRC) 2014. Despite its architectural
simplicity, the model contains approximately 138 million parameters, thereby demon-
strating significant representational capacity and computational demand.

Figure 2.8: VGG16 Model’s Architecture (Source: [19])

The architecture of the model consists of 13 convolutional layers with 3x3 filters,
a stride of 1, and the same padding, followed by 3 fully connected (dense) layers.
The final dense layer is paired with a Softmax activation function for classification.
Furthermore, the network incorporates five max-pooling layers, which serve to pro-
gressively reduce the spatial dimensions of feature maps. It is important to note that,
although the model comprises 21 layers in total when accounting for all operations,
as shown in Figure 2.8, only the 16 convolutional and dense layers possess trainable
weights and are considered the weight-bearing components of the network.

Furthermore, there are OCR tools that facilitate the translation of images into
LaTeX format. One of the most popular of these is called Pix2Latex. This OCR
tool performs a similar task to that which is to be implemented in this work. The
application receives an image containing a mathematical equation and translates it
into its LaTeX representation.

In this thesis, the proposed method (CNN along with a postprocessing function)
will be evaluated by means of a comparative analysis, in which the performance of the
method is measured and contrasted with that of Pix2Tex. In the following section, an
exposition will be made of the architecture and functionality of the aforementioned
tool.

19

State of Art

2.5.2 Pix2Tex

Pix2Tex is an open-source model developed by Lukas Blecher. It was designed to
convert mathematical images into LaTeX markup. It employs an encoder-decoder
framework, utilizing a scalable coarse-to-fine attention mechanism to generate presen-
tational markup. The encoder typically consists of a Convolutional Neural Network
(CNN), often based on a ResNet architecture, which extracts visual features from
input images. These extracted features are then passed to a decoder, which is gener-
ally implemented using either Transformer or LSTM architectures, to sequentially
predict LaTeX tokens. The entire process is illustrated in Figure 2.9.

The primary function of the encoder is to identify and represent the visual charac-
ters present in the input image as a set of feature embeddings. These embeddings are
subsequently processed by the decoder to produce the corresponding LaTeX represen-
tation. Depending on the modeling approach, sequence prediction or classification,
the training process may use either cross-entropy loss or Connectionist Temporal
Classification (CTC) loss.

Figure 2.9: Pix2Tex process.

According to the documentation [20], the model performs better with low-
resolution images. This is why another neural network model was implemented
in the preprocessing phase to adapt the input images to an optimal resolution. This
model automatically resizes custom images to resemble the training data as closely
as possible, increasing the performance of images found in the wild. However, this
does not guarantee success in all cases.

As discussed in this chapter, there are numerous architectures in the domain

20

State of Art

of deep learning, each meticulously designed to fulfill a specific function. In the
context of image recognition, CNNs represent a prominent class of algorithms that
is extensively employed in contemporary OCR tools. A CNN is composed of a
sequence of interconnected layers, whose structure and parameters play a crucial role
in determining the model’s performance during training. Furthermore, the efficacy of
a convolutional model depends to a significant level on the dataset employed during
the training process, as the model learns patterns from the samples comprised in it.
The subsequent section will provide a detailed exposition on the generation of images
that will be utilized for the CNN implemented in this thesis.

21

Chapter 3

Dataset Generation

The objective of this study is to propose a method capable of identifying machine-
printed characters, with special attention to digitized or printed text. To achieve
this, a selected CNN model will be trained on a comprehensive dataset comprising
character images that exhibit a wide range of typographical variations, including
differences in font style, size, aspect ratio, and image quality. In order to enhance
the model’s generalization capability across diverse printed-text representations.

A well-curated dataset can enable a relatively simple model to outperform a more
complex one trained on poor-quality data. Recognition performance is influenced not
only by the feature extraction and classification methods used but also by the quality
and size of the training data. Factors such as dataset size, font styles, background
variability, color, and contrast play a significant role in building a robust and general-
izable dataset, and they will be taken into account during the dataset creation process.

This chapter focuses on the creation of a dataset composed of images containing
alphabetic and numeric characters, mathematical symbols, and selected Greek letters,
specifically tailored for applications in electronic circuit design.

22

Dataset Generation

3.1 Dataset Generation

The generation of a suitable set of images constitutes a significant challenge,
given the requirement of neural models for large volumes of data, whether typed or
handwritten, paired with accurate ground-truth labels for optimal performance. The
manual production of these labels is a costly and time-consuming process.

To facilitate effective model training, it is essential that each generated image is
accurately associated with a corresponding label denoting its class. To address this
requirement, the process of image generation and label assignment was automated
through the development and implementation of a dedicated algorithm in MATLAB.
This automation is designed to ensure consistency, efficiency, and scalability in the
creation of a labeled dataset suitable for training and validating of the recognition
model. The algorithm is presented in the following section.

3.1.1 Character Generation Algorithm

The script automates the generation of images in PNG format, employing LaTeX
rendering to depict characters or mathematical symbols. The character representation
can be specified as standard text symbols or mathematical expressions. The fonts
employed for this purpose are typically classified within a particular font-family,
such as "Mathpazo", "Fourier", "Unicode-Math", "Euler", "Times New Roman", or
"Palatino", thereby ensuring a greater diversity of samples.

The subsequent stage of the process is to define the list of characters to be created.
The function will then iterate through each element until it generates a separate
LaTeX file containing that symbol, and then compile it into a PDF using the specified
LaTeX compiler. LaTeX provides three distinct approaches to document compilation:
pdflatex, Xelatex, and lualatex. To satisfy the requirements of this feature, Xelatex
was selected based on its ability to compile characters from the majority of the
selected fonts. Finally, the resulting PDF format is converted to a PNG image.

This Algorithm 1 is a particularly effective tool for creating a visual dictionary
or a dataset of symbols rendered in LaTeX using different fonts. The characters
that comprise the dataset are upper and lower case letters of the alphabet, numerals,
fundamental mathematical symbols, and a selection of Greek letters, in both lower-
and uppercase, that can be utilized as variables within certain electronic circuits.

Similarly, given that the majority of the font families utilized in Algorithm
1 yielded analogous visually font styles for the Greek letters, it was imperative to
explore alternative fonts capable of offering greater variability in character generation.
Consequently, the generation of selected Greek letters was facilitated through the
utilization of LaTeX Equation Editor available in Sciweavers [21], an open-source,

23

Dataset Generation

Algorithm 1 Generate Symbol Images from LaTeX
1: Input: math_mode, font_name, compiler_type
2: Output: PNG images of LaTeX-rendered symbols
3: Set character_list depending on math_mode
4: Initialize math_dict and filename_dict maps
5: Define output directory and ensure it exists
6: for all symbol in character_list do
7: if symbol ∈ math_dict then
8: filename ← filename_dict[symbol]
9: latex_symbol ← math_dict[symbol]

10: else
11: filename ← infer name from symbol
12: latex_symbol ← symbol
13: end if
14: end for
15: if math_mode is False then
16: Generate a standalone LaTeX file with symbol
17: else
18: Generate LaTeX math file with latex_symbol
19: end if
20: Compile using selected compiler_type
21: Convert PDF to PNG
22: Clean auxiliary files
23:

online tool that furnishes a compendium of fonts endowed with mathematical func-
tionality, different sizes, colors, and supports several file formats. The total number
of new images generated with this tool for each Greek letter was 14.

Pattern matching studies show that recognition performance is not only influenced
by the choice of features and classification algorithms, but also by the quality and
quantity of the training data.

To develop a robust character recognition dataset, it is essential to include a
substantial number of character images that encompass a diverse range of font
styles, deformations, and typographic variations, such as italic, bold, and regular
forms. Ensuring that the model can effectively distinguish between these stylistic
differences is critical for accurate and efficient character identification within images.
However, manually generating approximately 100,000 images along with their labels
is a time and resource-intensive process. To address this, the present work utilizes
the Chars74K-Fonts dataset to streamline the image generation process.

3.1.2 Chars74K-Fonts Dataset

This open-source dataset [22] contains 62,992 character images categorized into
62 classes, representing alphanumeric characters (0-9, a-z, A-Z) of which 10,160 are
digit samples and 26,416 samples each for uppercase and lowercase. Each image

24

Dataset Generation

has a resolution of 128x128 pixels and contains a character rendered in black using
computer-generated fonts on a white background. The data set includes four distinct
typographic variations that represent different combinations of regular, bold, and
italic font styles. The dataset has 7705 natural character images, 3401 hand-drawn
characters using PC, and 62,992 computer-synthesized fonts. Figure 3.1, show some
character examples used in the dataset

Figure 3.1: Samples from Char74K-Font Dataset.

3.1.3 Data Augmentation

Data augmentation is a technique that is both efficient and cost-effective for
increasing the size of a dataset. Recent research [23, 24] has demonstrated that
augmented data can replicate the essential characteristics of real-world data. This
method is widely used to enhance the diversity of training data, thereby improving
the model’s ability to distinguish features across varying scenarios. As a result, it
enables the acquisition of more robust feature representations with unseen data,
which ultimately contributes to improved system performance on new tasks.

Therefore, to increase the variability in the image set, the following transforma-
tions were applied to the preexisting data set using the Albumentations library:
geometric transformations, color space adjustment, noise injections to emulate real-
world scenarios, pixelation, and other techniques. A duplicate image was generated
for each input image along with its label, as shown in Figure 3.2. Consequently,
the image and the duplicate will be fed into the neural network.

25

Dataset Generation

3.1.4 Geometric Transformations

• Rotation: Assists the model in recognizing characters that may appear slightly
slanted due to camera misalignment, writing slant, or document skew. Improves
rotational invariance and generalizes better to non-ideal input.

To introduce a rotation effect during the image augmentation process, the
predefined function "ShiftScaleRotate" within the Albumentations library
was employed. The parameter shift_limit was set to 0.0625 (i.e., 6.25%)
to control horizontal and vertical translations, representing a fraction of the
images height and width. To simulate rotational variance, a maximum rotation
angle of 45◦ was applied, resulting in a tilting effect that mimics changes in
camera perspective or object orientation. The transformation was configured
to be applied with a probability of 100% (p=1.0), while all other parameters
were maintained at their default values. As a result, Figure 3.2 illustrates the
visual changes introduced by this augmentation.

Figure 3.2: Rotation applied to the images.

• Tilt: Simulates oblique angles and perspective distortions, which are common
in natural scene text, on walls, or signs. This improves the model’s ability to
interpret characters when viewed from slanted viewpoints. The tilt function was
established with a factor of 0.2 (i.e. 20%) in order to guarantee a noticeable but
subtle effect, achieved by shearing the image horizontally in proportion to its
vertical position. As depicted in Figure 3.3 , a comparison is drawn between
the original image and the transformed image, highlighting the alterations
made during the transformation process.

Figure 3.3: Tilted transformation applied to the images.

26

Dataset Generation

3.1.5 Color Space Adjustments

• Brightness: Improves the models robustness to varying lighting conditions
by encouraging it to focus on shape rather than intensity, making it effective
on underexposed and overexposed images. The RandomBrightnessContrast
function was used in this context with its default parameters, introducing
random variations in brightness and contrast within a range of ±20%. This
means that some images may appear brighter or darker, while others may
exhibit increased or reduced contrast. These variations help to create a more
diverse and robust data set.

Figure 3.4: Brightness transformation applied to the images.

• Hue-saturation: Simulates color variations due to different backgrounds, light-
ing, or scanning artifacts. Allows the model to differentiate between characters
that may be printed in different colors or placed on colored backgrounds. The
default parameters were used for the HueSaturationValue function to create
several images with different shades of colors, thus preventing overfitting to
the exact hues and saturation of the training set. The resulting augmentation
is shown in Figure 3.5.

Figure 3.5: Hue-Saturation applied to the images.

3.1.6 Noise Injections

• Gaussian Noise: This process assists in the modeling of generalization by
guiding it to prioritize essential structural patterns over individual pixel varia-
tions. This approach emulates real-world imperfections, including sensor noise,
substandard images, and compression artifacts.

27

Dataset Generation

Gaussian noise is a statistical noise model that follows a normal distribution. It
is frequently employed to simulate real sensor noise in image data. The normal
distribution is defined by two parameters: the mean value of the noise (µ),
which is 0, and the standard deviation (σ), which controls the dispersion of
the noise values with respect to the mean. The standard deviation was set to
25, which resulted in a brightness fluctuation that was neither systematic nor
regular, see augmentation is shown in Figure 3.6, but rather exhibited a more
erratic and fluctuating pattern.

Figure 3.6: Noise transformation applied to the images.

3.1.7 Pixelation

• Pixelation: This technique degrades the resolution of the image by downscal-
ing it and then scaling it back up to its original size, creating a "pixelated"
effect. Increase the model’s robustness to varying image quality. In this func-
tion, a pixelation factor of 10 was applied, yielding images characterized by
moderately sized, blocklike artifacts that simulate reduced resolution, as shown
in Figure 3.7.

Figure 3.7: Brightness transformation applied to the images.

3.1.8 Other Techniques

• Blurring: Mimics motion blur or out-of-focus captures to encourage the model
to learn the basic shapes of characters rather than relying on sharp edges or
contours. The blur augmentation was implemented using the Albumentations

28

Dataset Generation

librarys Blur transform with a 7x7 kernel. The size of the kernel determines
the extent of the neighborhood around each pixel that is used in the averaging
process during image blurring. This choice of kernel size attenuates fine image
details and produces a pronounced softening effect, as can be observed in
Figure 3.8, thereby simulating a realistic sensor in the training data.

Figure 3.8: Blurring transformations applied to the images.

• Distortion: Applies perspective distortions to images to improve the robustness
of the model to irregular deformations in character shapes. ElasticDeformation
was applied using an initial global affine perturbation of magnitude 50, which
introduced modest random translations, rotations, shears, or scaling of up to
ś50 pixels or degrees, thereby creating coarse positional ’jitter’. Subsequently, a
smooth displacement field was generated by sampling random x- and y-offsets
and convolving them with a Gaussian filter with a standard deviation (σ) of 50.
Due to the large σ, the resulting displacement field changes gradually across the
image. Finally, the smoothed offsets were scaled by a factor of 1 (α), producing
maximum per-pixel shifts of approximately 1 to 2 pixels over broad regions
and creating gentle bulging distortions illustrated in Figure 3.9.

Figure 3.9: Distortion transformation applied to the images.

The final dataset comprises 94,381 images distributed across 258 classes, with
resolutions ranging from 70x70 pixels to 128x128 pixels.

29

Chapter 4

Model Generation and
Evaluation

Subsequent to the generation of the dataset, the next step is to define the
Convolutional neural network model and the training process for the character
recognition task. This chapter provides a detailed exposition of the preprocessing
techniques that were applied to the images in the dataset. In addition, it describes
the different tests that were performed using ’transfer learning’ for the VGG16 model
and a customized CNN model. These tests aimed to select the final model to be
used during the inference phase. Finally, the Python libraries utilized will also be
delineated in this chapter.

30

Model Generation and Evaluation

4.0.1 Packages

Before providing a detailed explanation of the functions incorporated within the
script that constitute the final model and the training process, it is necessary to
establish an overview of the libraries utilized in the implementation process.

TensorFlow was the principal software utilized in the development of this par-
ticular work. It is an open-source library focusing on the development of machine
learning and artificial intelligence algorithms. TF was designed as a comprehensive
framework, making it possible to construct convolutional neural networks (CNNs) at
all levels, from the most basic to the use of pretrained models. Its main objective
is to support the training and prediction of machine learning models and facilitate
other data processing tasks.

Keras is a TensorFlow application programming interface (API) that simplifies
and optimizes the development of neural network architectures and training processes.
It provides a set of functions for the specification of hyperparameters, such as the
learning rate, batch size, and number of epochs, as well as for the layer definition
when developing the model workflow [25]. In addition, it supports both recurrent
neural networks (RNN) and convolutional neural networks (CNN), making it suitable
for a variety of deep learning applications.

Scikit-Learn is an open-source Python library offering a broad selection of tools
for both supervised and unsupervised learning. Its core features include algorithms
for classification, regression, and clustering, as well as techniques for dimensionality
reduction. The library also provides various methods for model selection and perfor-
mance evaluation, along with essential utilities for data preprocessing. The version
employed was 3.10.

Imageio is a Python library that allows processing and interpreting images in
different formats.

OpenCV2 is a freely available software library developed for computer vision
and machine learning tasks, including image and video processing, object detection,
and text recognition. The software offers a comprehensive range of functionalities
that facilitate the manipulation of images and videos.

31

Model Generation and Evaluation

4.1 Script Description

4.1.1 Loading Dataset Function

The script begins with the function load_dataset described in Algortihm 2,
generates two primary lists: X and Y, representing the images and their correspond-
ing labels, respectively. Each element in the Y list indicates the class to which
the associated image in X belongs. The X list contains a total of 94.381 samples,
each of which undergoes a series of preprocessing techniques aimed at enhancing
image quality. These techniques are applied to improve the overall efficiency and
generalization ability of the machine learning model used in the subsequent stages.
A detailed explanation of these preprocessing methods is provided in the following
section.

Regarding the Y list, which contains the categorical class labels for each image,
a One-Hot encoding approach is used to convert these categorical values into a
numerical format. This step is crucial because most machine learning algorithms
require numerical input for training and prediction and cannot directly process
categorical data, such as text labels. One-Hot encoding is a standard solution to
this limitation and ensures that the data set is compatible with a wide range of ML
models.

Algorithm 2 Load Dataset and Pre-process Images
1: function Load_DataSet(path_dataset, target_size)
2: Initialize empty lists X, y
3: classes ← sorted list of folders in path_dataset, each folder represent a class
4: class_to_index ← map each class name to a unique index
5: for all class in classes do
6: folder_path ← path to class folder
7: for all image in class folder do
8: img_path ← full path to image
9: image ← read image as grayscale

10: Preprocessed Image ← preprocessing_cnn(image, target_size)
11: Append preprocessed image to X
12: Append class_to_index[class] to y
13: end for
14: end for
15: X ← concatenate X to stack arrays vertically in a list.
16: y ← convert y to numpy array.
17: y_onehot← Apply One-hot Encode(y, depth=number of classes).
18: return X, y_onehot, y, classes, class_to_index
19: end function

4.1.2 One-Hot Encoder

To facilitate a deeper understanding of the mechanisms underlying encoding, the
following example is presented. The categorization of characters is achieved through

32

Model Generation and Evaluation

the utilization of a list comprising the respective names of each character, such as ‘A’,
‘a_lowercase’, ‘B’, ‘b_lowercase’, ‘alpha’, ‘beta’, ‘sigma’, ‘minus’, ‘plus’,
and so forth. The classes mentioned above are encoded using the One-Hot method,
whereby an explicit binary value is assigned to each category. As demonstrated in
Table 4.1, this pattern guarantees that each categorical value has its own array of
binary values 1 or 0, facilitating its integration into machine learning models.

Table 4.1: One-Hot Encoding of some characters used in the Dataset.

Character One-Hot Encoding
A [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
B [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
C [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

a_lowercase [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]
b_lowercase [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0]
c_lowercase [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0]

α [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0]
β [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]
λ [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0]

minus [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]
sum [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0]
point [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0]
other [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]

... ...

4.2 Pre-processing Techniques applied to the Images

The application of specific pre-processing techniques is a key component to en-
hance the image quality. Given that the dataset under consideration is composed of
typed-text characters, in which the majority of cases contain a white background,
whilst other cases exhibit a contrasting, saturated color background or different
sizes. The importance of standardizing the input images that will subsequently
feed the CNN model cannot be underestimated, as it influences the models ability
to consistently extract and learn discriminative features from each character, thus
enhancing its generalization performance. The preprocessing function that has been
implemented is presented in Algorithm 3.

The following list details the processing techniques applied to the images:

4.2.1 Resizing

The process of resizing images is a fundamental step in ensuring consistency
and uniformity in the dimensions of all input data. This is a prerequisite for the
effective functioning of machine learning algorithms. The OpenCV resize() method
was implemented for the modification of image dimensions, by using interpolation

33

Model Generation and Evaluation

INTER_AREA, which is particularly effective in the context of downsizing images. The
input size specified for the images was 64x64 pixels.

4.2.2 Normalization

In the context of the VGG16 model, the process of normalization is integrated
within the Keras applications for the model (keras.applications.vgg16). The spe-
cific method is designated as preprocess_input , essentially involves the subtraction
of the mean pixel value of each color channel BGR (Blue, Green, Red) derived during
the training set of the ImageNet dataset, from the respective channels of each input
image. Therefore, the resulting pixel distribution is centered around zero or within the
range of 0 and 1. Facilitating convergence and consistency during the training process.

Algorithm 3 Preprocessing an image for CNN input
Require: Image, Target size
Ensure: preprocessed image is ready for CNN input

1: if Image has only two dimensions (grayscale) then
2: Convert image to 3-channel RGB by duplicating values
3: end if
4: Resize image to the target size using interpolation.
5: Apply VGG preprocessing to the resized image.
6: Convert pixel values to type float32
7: Expand dimensions so shape changes from (H, W, 3) to (1, H, W, 3).
8: return Preprocessed image

4.3 Pre-processing Techniques applied to the Bounding
Boxes for Detection

To detect the bounding boxes successfully, it was also necessary to apply some
pre-processing techniques. These techniques enhance the performance of the method
findcontours , which is an OpenCV function used to identify the contours around
an object in an image more effectively, thereby minimizing the influence of noise
and artifacts that could compromise image resolution. The preprocessing steps
implemented to improve bounding box detection are outlined in Algorithm 4 and
explained in the following sections.

4.3.1 Greyscale

Converting images to grayscale is a crucial pre-processing step that ensures uni-
formity in the color scale across the dataset. This standardization not only facilitates
more consistent feature extraction but also reduces computational complexity by
limiting the image data to a single channel. The cvtColor function from the
OpenCV library was employed to perform the RGB-to-grayscale conversion.

34

Model Generation and Evaluation

4.3.2 Gaussian Blur

Blurring is a technique used to reduce unwanted noise in images by minimiz-
ing fine details. In this study, a Gaussian blur method was applied using a 5Œ5
convolution kernel present in the OpenCV library. This kernel size offers a balance
between noise suppression and edge preservation. For instance, smaller kernels,
such as 3x3, are capable of providing a lighter smoothing effect. Whilst the em-
ployment of larger kernels enhances clarity by reducing the blurring of the image.
However, there is a risk that this will obscure fine details and merge closely positioned
contours. Since there may be potential variations in lighting conditions in some
images of the dataset, a moderately sized kernel (5x5) was selected, see Figure 4.1.
It is effective for substantial noise reduction while retaining essential edge information.

Figure 4.1: Gaussian Blurred Image.

4.3.3 Thresholding-Base Image

The subsequent technique applied to the images was binary thresholding with
inversion. A threshold value of 156 was selected for the detection. The operation
converts all pixel intensities falling below the threshold to black (i.e., the minimum
pixel value of 0) and those falling above the threshold to white (i.e., the maximum
pixel value of 255). This effectively inverts the image colour. This method established
a boundary between the elements that make up the foreground and those comprising
the background by rendering the former dark against the latter, which were rendered
bright, as illustrated in Figure 4.2. This facilitates more accurate contour detection.
The threshold method presented in OpenCV was implemented for this purpose.

4.3.4 Denoising Image

The next technique applied was non-local means denoising using the OpenCV
function fastNlMeansDenoising . This method only works with grayscale images
and retains the edge details and contours of each image after applying thresholding
while filtering out residual noise, as shown in Figure 4.3.

35

Model Generation and Evaluation

Figure 4.2: Thresholding-Base Image.

The method was configured with the following parameters: a filter strength
(h) of 30. Medium to high filter values remove noise and small artifacts from previous
processes; however, excessively high values (h > 30) may result in the removal of
too many details, which is why a moderate value was chosen. Conversely, imple-
menting a larger template window facilitates the identification of analogous pixel
neighborhoods, thereby enhancing denoising quality. The value set in this field was 7.
Concurrently, a reduced search window of 21 was selected for this task to improve
computational efficiency without compromising denoising performance, as the noise
pattern is relatively uniform across the image. For convention, it is recommended
that the template window and the search windows should have odd numerical values.

These parameters ensure a robust balance between noise suppression and struc-
tural preservation, enabling a more reliable contour extraction in subsequent stages.

Figure 4.3: Denoised Image.

Algorithm 4 Preprocessing for bounding boxes detection
Require: Image, kernel_size(5, 5)
Ensure: Denoised binary image is ready for prediction.

1: Convert the input image from RGB to grayscale.
2: Apply a Gaussian blur with the given kernel size to reduce noise.
3: Apply binary inverse thresholding with a threshold default value of 156.

Resulting in a binary image where black represents the background, and the
white pixels the character.

4: Apply Non-Local Means Denoising to the binary image.
5: return Image preprocessed for BB detection

36

Model Generation and Evaluation

4.4 Model Development and Experimental Progression

To develop a robust model for character detection in typed images, several
architectures and training strategies were explored. The following section delineates
the experimental process, highlighting key decisions, and discusses the performance
and limitations of each approach.

4.4.1 Initial Experiments

Subsequent to defining the dataset comprising all possible classes, the next step
was to define the Convolutional Neural Networks utilized for character detection.
Numerous models are available for image recognition, with deep-learning CNN demon-
strating the highest level of performance among other classifiers for this character
recognition task. In this work, a model for detecting text annotations in a circuit
will be proposed.

As a first approach, a transfer learning technique was employed, which involves
reusing a pre-trained model to address a new problem. This method leverages the
knowledge acquired from a prior task with a large dataset to improve generalization
in a different task with limited data. Instead of learning entirely from scratch, the
model builds upon previously learned patterns and representations, allowing it to
adapt more efficiently and effectively to the new context.

For these initial experiments, the dataset used contained only the main charac-
ters (the alphabet, the digits 09, some mathematical symbols, and Greek letters),
equivalent to 79,452 samples with 91 classes. Of these, 64% of the dataset (50,848
samples) was used for training; 16% (12,713 samples) was allocated for validation;
and the remaining 20% (15,891 samples) was reserved for testing.

The architectural model and training configuration utilized are outlined in the
following section.

4.4.2 VGG-16 model

The VGG16 model, a convolutional neural network (CNN) pre-trained on the
ImageNet dataset, was used for character detection in this study. As outlined in
Section 2.5.1, the model comprises 16 layers with a learnable set of parameters. In
the initial experiments, the first 12 layers (for attempt 1) and 6 layers (for attempt 2)
of the VGG16 model were kept fixed. These early layers primarily extract low-level,
generic features such as edges, textures, and simple geometric patterns. Freezing
them helps preserve foundational feature extraction capabilities that are typically
transferable across different image datasets. Additionally, this approach reduces
the number of trainable parameters, thereby accelerating the training process and
mitigating the risk of overfitting.

37

Model Generation and Evaluation

Enabling only the deeper layers, particularly the fully connected layers, to remain
trainable means that the model can focus on learning task-specific representations.
To further reduce the risk of overfitting, a dropout regularization technique is applied
after each dense layer with a rate of 0.25. The dropout randomly deactivates a
proportion of neurons during training to encourage the network to develop more
robust and generalized feature representations.

Finally, the output layer is implemented with a softmax activation function. This
function converts the raw network output into a probability distribution for the
potential classes, allowing the model to make probabilistic predictions for multi-class
classification tasks.

The final architectural structure applied in this first approach is summarized as
follows.

4.4.3 APROACH 1: VGG16 with 12 Frozen Layers

12 Pretrained Layers
Conv4_3: 512 filters, 3x3 kernel, ReLU activation.

Max Pooling (Pool4): 2x2 pool size, stride 2.
Conv5_1: 512 filters, 3x3 kernel, ReLU activation.
Conv5_2: 512 filters, 3x3 kernel, ReLU activation.
Conv5_3: 512 filters, 3x3 kernel, ReLU activation.

Max Pooling (Pool5): 2x2 pool size, stride 2.

Flatten
Dense (256): 256 units, ReLU activation. Dropout (0.25)

Dense (number_classes): number_classes units, Softmax activation.

4.4.4 APPROACH 2: VGG16 with 6 Frozen Layers

6 Pretrained Layers

Conv3_1: 256 filters, 3x3 kernel, ReLU activation.
Conv3_2: 256 filters, 3x3 kernel, ReLU activation.
Conv3_3: 256 filters, 3x3 kernel, ReLU activation.

Max Pooling (Pool3): 2x2 pool size, stride 2.

Conv4_1: 512 filters, 3x3 kernel, ReLU activation.
Conv4_2: 512 filters, 3x3 kernel, ReLU activation.
Conv4_3: 512 filters, 3x3 kernel, ReLU activation.

Max Pooling (Pool4): 2x2 pool size, stride 2.

Max Pooling: 2x2 pool size, stride 2
Conv5_1: 256 filters, 3x3 kernel, ReLU activation.
Conv5_2: 256 filters, 3x3 kernel, ReLU activation.

38

Model Generation and Evaluation

Conv5_3: 91 filters, 3x3 kernel, RELU activation
Flatten

Dense (256): 256 units, ReLU activation. Dropout (0.25)
Dense (256): 256 units, ReLU activation. Dropout (0.25)

Dense (number_classes): (Number of classes) units, Softmax activation.

4.4.5 Customized CNN

A tailored deep convolutional neural network architecture was created using Keras
Sequential stacking, a method utilized by well-established models to add layers
one after the other in a linear fashion, where the output of one is the input to the
next. The initial block of convolutional layers was selected to extract fundamental
visual features such as edges, lines, and textures, applying 128 filters. In the sub-
sequent block, the number of filters was increased to 256, enabling the network to
learn more complex representations, including corners and motifs, by integrating
lower-level features. The final convolutional block was configured with 512 filters. It
was designed to capture high-level abstract representations that may correspond to
components, such as object or character structures. The structural architecture of
this tailored CNN was inspired by the predefined VGG16 model, as illustrated in
Figure 4.4.

Subsequent to the convolutional blocks, a flatten layer was incorporated to con-
vert the 3D output of the max pooling layer into a 1D output. Two dense layers
(fully connected layers) with sizes of 512 units and 1024 units were added, using the
activation function ‘RELU’. Likewise, to prevent overfitting, a dropout layer was
incorporated between each fully connected layer as a regularization technique. The
ultimate classification layer incorporates the ‘Softmax’ activation function, with the
output size being equivalent to the number of classes in the data.

Figure 4.4: Customized CNN architecture.

Before being processed by the model, all input images were resized to a standard-
ized resolution of 64x64 pixels to ensure consistency in input dimensions.

The structural configuration of this model is presented in the following Sec-

39

Model Generation and Evaluation

tion 4.4.6.

4.4.6 Customized CNN Layers

Conv1_1: 128 filters, 3x3 kernel, ReLU activation, padding = “same”
Conv1_2: 128 filters, 3x3 kernel, ReLU activation, padding = “same”

Max Pooling: 2x2 pool size

Conv2_1: 256 filters, 3x3 kernel, ReLU activation, padding = “same”
Conv2_2: 256 filters, 3x3 kernel, ReLU activation, padding = “same”
Conv2_3: 256 filters, 3x3 kernel, ReLU activation, padding = “same”

Max Pooling: 2x2 pool size

Conv3_1: 512 filters, 3x3 kernel, ReLU activation, padding = “same”
Conv3_2: 512 filters, 3x3 kernel, ReLU activation, padding = “same”
Conv3_3: 512 filters, 3x3 kernel, ReLU activation, padding = “same”

Max Pooling: 2x2 pool size

Flatten
Dense Layer (FC1): 512 units, ReLU activation, Dropout: 0.25
Dense Layer (FC2): 1024 units, ReLU activation, Dropout: 0.25

Output Layer (output): (Number of classes) units, Softmax activation.

For the initial experiments, the three models were compiled using the Adam
(Adaptive Moment Estimation) optimizer by default. This optimizer is renowned for
its capacity to adapt the learning rate based on the average of the first and second
moments of the gradients[26], often resulting in more rapid and stable convergence.
Therefore, the learning rate was set to 1e−3 for the customized CNN and to 1e−5 for
the VGG16 model with six and 12 frozen layers.

The loss function chosen was Categorical Cross-Entropy, which is widely used
in multi-class classification tasks. The difference between the predicted probability
distribution and the true one-hot encoded distribution is computed by this loss
function. As each image in the dataset belongs to a unique class, the aim is to
minimize the loss, ensuring the predicted probabilities closely align with the actual
labels. Likewise, performance was evaluated using Accuracy metric, which measures
the proportion of correctly classified samples in each epoch.

The training dataset comprised 50,848 samples (64%), which were utilized across
three distinct models: a customized CNN, the VGG16 model with 6 frozen layers,
and the VGG16 model with 12 frozen layers. The validation set consisted of 12,713
(16%) samples, while the test set included 15,891 samples (20%).

40

Model Generation and Evaluation

4.5 Training Function

The train_cnn_model function was designed to train a CNN using a given dataset
of input images and their corresponding class labels. It has two purposes:

• First, it prepares the dataset by converting it into the correct numerical format
and partitioning it into training, validation, and test subsets.

• Second, it initializes the CNN model with the correct input and output dimen-
sions.

Initially, the input data corresponding to the images, denoted by X, and the labels
(y_onehot and y_index) are converted into NumPy arrays with the correct data
types, step 1 in Algorithm 5. The feature matrix X and one-hot encoded labels
y_onehot are both cast to “float32” to guarantee compatibility with the categorical
cross-entropy loss function. Likewise, to preserve the distribution of classes during
the process of stratified sampling, the class indices (y_index) are converted to “int32”.

In the subsequent stage of the procedure, the dataset is divided into three subsets
by means of a two-stage stratified splitting procedure (step 2 in Algorithm 5). In
the initial phase, 20% of the data is designated as a test set, thereby ensuring that the
class distribution in the test subset matches that of the original dataset. The remain-
ing 80% is stored as a temporary subset. In the subsequent phase, this provisional
subset is subjected to further segmentation, with 64% of the total dataset allocated to
the training set and 16% to the validation set. This process employs stratification to
ensure the preservation of balanced class distributions. The resultant data is divided
into three partitions: 64% for training, 16% for validation, and 20% for
testing. This configuration is a common practice in machine learning, as it facilitates
both the optimization of models and the evaluation of performance in an unbiased way.

Following the division of the data, the model is initialized. Multiple monitoring
and optimization strategies are configured to track the process, such as EpochLogger,
which systematically saves the metrics (train and validation accuracy and loss) at an
epoch level, step 4 in Algorithm 5.

Training is then executed using the ‘fit’ method (step 5 in Algorithm 5). In
accordance with this method, certain hyperparameters were established, including
the batch size, which was set to the typical value of 32, and the number of epochs, set
at 50. In machine learning, batch size refers to the number of training samples that
the model processes to calculate predictions. These predictions are then compared
with the true labels, where the error (loss) is calculated. This process continues until
all the samples in the training set have been used, marking the completion of one
epoch.

41

Model Generation and Evaluation

Similarly, the ‘shuffled’ option was enabled in the ‘fit’ method in each epoch to
enhance generalization, and the validation set was employed to monitor the model’s
progress in each epoch. The training process was stopped after the validation accu-
racy metric did not improve after five epochs. The model is then saved for future
use and reproducibility.

The implementation of this function was conducted for all model architectures
proposed in Sections 4.4.3, 4.4.4, 4.4.5.

Algorithm 5 Train a CNN model function train_cnn()
Require: Feature data X, One-hot labels y_onehot, Class indices y_index, Map-

ping dictionary class_to_index, Optional parameters: batch_size, epochs
Ensure: Trained CNN model saved to disk.

1: Step 1: Convert input data to correct types
2: X ← float32 NumPy array.
3: y_onehot← float32 NumPy array.
4: y_index← int32 NumPy array.
5: Step 2: Split data into Train, Validation, and Test sets
6: Split X and y_onehot into 80% Training+Validation and 20% Test (stratified

by y_index)
7: Split Training+Validation into Training (64%) and Validation (16%) sets.
8: Step 3: Create CNN model
9: cnn_model(input_shape, number of classes)

10: Print model summary.
11: Step 4: Setup logging and callbacks
12: Initialize training log file.
13: Create custom callback for per-epoch logging.
14: Step 5: Train the model
15: Call model.fit() with:
16: Training data (X_train, y_train)
17: Validation data (X_val, y_val)
18: Batch size, epochs, callbacks, verbose=2, shuffle=True.
19: Step 6: Save trained model
20: Save model to model_save_path

4.6 Results of First Models Experiments

The comparative results of the three models, Customized CNN, 12 Layer Frozen,
and 6 Layer Frozen, are illustrated in Table 4.2, demonstrating notable differences
in performance across the training, validation, and test phases.

The 6 Layer Frozen model exhibited superior performance in terms of overall
generalization, attaining the lowest test loss (0.0814) and the highest test accuracy
(0.9732), while exhibiting the fewest total errors (426) and unique errors (62). In
contrast, the 12-layer frozen model demonstrates the poorest performance, exhibiting

42

Model Generation and Evaluation

Table 4.2: Comparison results of CNN, 12 Layer Frozen, and 6 Layer Frozen
Models during Testing phase.

Metric Customized CNN 12 Layer Frozen 6 Layer Frozen
Train Loss 0.0341 0.0748 0.0288

Train Accuracy 0.9864 0.9718 0.9879
Validation Loss 0.0842 0.1132 0.0668

Validation Accuracy 0.9707 0.9633 0.9781
Test Loss 0.0929 0.1175 0.0814

Test Accuracy 0.9682 0.9600 0.9732
Total Errors 506 635 426

Unique Errors 104 122 62

the highest test loss (0.1175), the lowest test accuracy (0.9600), and the greatest
number of errors and unique errors. Although the customized CNN model achieves
robust results, with a test accuracy of 0.9682 and moderate error counts (506 in
total, 104 of which are unique), it is marginally outperformed by the 6-layer frozen
configuration. This suggests that partial fine-tuning (freezing only six layers) provides
a favorable balance between transfer learning and model adaptability.

Table 4.2 also reports the number of unique classification errors made by the
model, referring to distinct types of misclassifications observed during the testing
phase. The total error count reflects the frequency with which each misclassifications
occurred. For example, if the character ÍlÍ or ÍOÍ was incorrectly classified as Í1Í or
Í0Í on multiple occasions, each instance contributes to the total error count, the total
errors out of 15.891 test images. In contrast, the uniqueerror count captures only
the presence of a particular type of mis-classification (i.e., how frequent a class was
incorrectly classified), regardless of the number of times it occurred.

Since the results achieved by the proposed CNN were robust and comparable
to those obtained with the pre-trained VGG16 model using six frozen layers, this
suggests that the application of fine-tuning techniques, such as early stopping and
learning rate annealing, may further improve generalization in custom models and
potentially yield superior performance. Accordingly, the following section describes
the fine-tuning strategies applied to the customized CNN.

43

Model Generation and Evaluation

4.7 Model Fine-Tuning the Customized CNN

To refine the proposed Convolutional Neural Network (CNN) model and mitigate
excessive overfitting during training, several fine-tuning techniques were implemented
in the training method described in the Section 4.5. These strategies also con-
tributed to improving the model’s overall accuracy. The applied methods were
employing Keras callbacks, and they are presented below:

1. Learning Rate Adjustment: This parameter controls the step size at which
the model recalibrates its weights during the training phase. The correct selection of
this parameter is therefore essential to avoid unstable training or the convergence
to sub-optimal solutions. In the initial experiment, a learning rate of 1× 10−3 was
employed during the training stage. This value could be high for a customized neural
network, since it exhibited early overfitting in comparison with the VGG16 model.
In order to address this issue during the fine-tuning process of the model, a lower
learning rate of 10 was adopted, with the objective of achieving a more gradual and
stable convergence.

2. Early Stopping: Early stopping is a regularization technique that is used to
prevent overfitting by terminating the training process once the model’s performance
on a validation set has stopped improving. Typically the selected metric corresponds
to validation loss. If there is no improvement over a specified number of consecutive
epochs (patience parameter) training process ends, and the model weights corre-
sponding to the lowest validation loss are automatically recovered. In this case, for
the customized CNN a patience value of five epochs was implemented.

3. ReduceLROnPlateau: This method serves as a model optimization by
reducing the learning rate when performance improvements stall, thus minimizing
the risk of overfitting. By applying a controlled reduction, the model performs more
refined updates of the weights, improving its convergence as the training progresses.
Particularly, the learning rate was adjusted based on the validation loss metric. If
this metric stops improving for 3 consecutive epochs, the learning rate is halved, with
a predefined minimum threshold of 1× 10−6.

4. Model Check Point: The ModelCheckpoint method is used to preserve the
most optimal version of the model achieved throughout the training process. The
selection is determined based on a specified evaluation metric, such as validation
loss or validation accuracy. The model whose weights demonstrate the most optimal
performance according to the selected metric is then saved. Adopting this technique
will increase the likelihood of achieving superior predictive accuracy during the testing
phase.

5. Increasing dataset: A new set of images was incorporated into the existing

44

Model Generation and Evaluation

dataset for this new experiment with the fine-tune model. The total number of
samples used was 94,381. Images generated comprised subscripts and superscripts,
particularly in instances involving resistors. capacitors, inductors, and voltages
(R1, C2, L5, etc). Images found on the internet were also incorporated for a more
robust dataset.

4.7.1 Results obtained after Model Fine-Tuning

This section presents the results obtained from applying the aforementioned
model refinement techniques.

Table 4.3: Performance comparison between the VGG16 model with 6 frozen layers
(baseline) and the fine-tuned customized CNN.

Metric VGG16 (6 Frozen Layers) Customized CNN
Train Loss 0.0114 0.0118
Train Accuracy 0.9949 0.9954
Validation Loss 0.0387 0.0424
Validation Accuracy 0.9877 0.9880
Test Loss 0.0399 0.0404
Test Accuracy 0.9887 0.9886
Total Errors 258 256
Unique Errors 70 65

As demonstrated in Table 4.3, the implementation of fine-tuning techniques on
the previous model led to substantial improvements in accuracy across all training,
validation, and testing scenarios. This was accompanied by a significant decrease
in loss at each stage. These observations suggest improvements in training, general-
ization, and robustness. Furthermore, the customized CNN fine-tuned resulted in a
significant reduction in classification errors, both in total and in uniquely misclassi-
fied samples, in comparison to the one observed in the prior experiment (Section 4.3).

The findings indicate that the architecture and training strategy employed in
the CNN customized fine-tuning process were more effective in capturing the un-
derlying structure of the data, including variations in font and style. Consequently,
this approach yields predictions that are more reliable and generalizable than those
obtained from experiments performed as a starting point.

4.7.2 Comparison with the baseline model

Furthermore, the results obtained with the pre-trained model and the customized
CNN fine-tuned under the same conditions outperformed VGG16 with 6 frozen layers
across most evaluation metrics; the performance margin between the two is relatively
small. Since VGG16 is used as the baseline model to evaluate the performance of the
proposed model, the results highlight a positive generalization for the fine-tuned CNN.

45

Model Generation and Evaluation

Similarly, as shown in Table 4.3, a slight discrepancy was observed in the vali-
dation test, with results of 98.8% and 98.7% for the customized CNN and VGG16
models, respectively. Both models demonstrated high effectiveness when evaluated
on unseen data, indicating their ability to predict with new information. Likewise, it
achieved a test accuracy of 98.86% (customized CNN) compared to 98.87% for the
pre-trained VGG16.

These differences, although measurable, are minor when the advantages of custom
architecture are taken into account. Having greater control over parameter settings
and applying a lightweight model can be beneficial to the task. In practical terms,
these discrepancies are within the range of run-to-run variability for models of this
size, especially when considering stochastic factors (initialization, batch sorting,
data augmentation, etc.). Similarly, the test loss of the customized CNN showed
small discrepancies, 0.0404 vs. 0.0399 corresponding to the VGG16 model, and the
error count differed slightly, with only 2 more total errors and 5 more unique errors
(258 vs. 256). Therefore, they are within the expected variability of deeplearning runs.

A key benefit of customized CNN is its architectural flexibility and reduced
computational complexity in contrast to VGG16, which is a deep and resource-
intensive model with more than 138 million parameters (even after six frozen layers,
the number of pretrained parameters would be &60 M). The customized CNN was
designed with a more compact structure, tailored specifically to the characteristics
of the dataset, such as character recognition in varying fonts and styles, and has 25
million parameters. This enhancement in efficiency is particularly pronounced in
environments characterized by limited computational resources.

This finding indicates that the fine-tuning techniques were sufficiently effective to
optimize a lightweight model to a point that its performance is almost equivalent
to that of a much deeper and pre-trained architecture. This was therefore the final
model selected for making predictions about the characters in the subsequent stages.
In addition, the optimized model was saved in the *.h5 format to preserve its weights
and parameters learned during the training phase, facilitating straightforward loading
and deployment in other instances.

4.7.3 Weakness of the customized CNN

Certain errors were identified during the testing phase. These errors are primarily
attributable to visually similar characters with which the model occasionally experi-
ences difficulty in distinguishing.

The Snippet 4.1 provides an illustration of the 10 classes in which the model
generated the most classification errors, along with the frequency with which these

46

Model Generation and Evaluation

errors occurred during the testing phase.

Listing 4.1: Most Frequent Recognition Errors.
1 # Predicted Label vs True Labels (Unique Errors)
2 --
3 1. Predicted : 0_zero True: O | Count: 84
4 2. Predicted : O True: 0_zero | Count: 44
5 3. Predicted : I True: l_lower | Count: 33
6 4. Predicted : l_lower True: 1 | Count: 14
7 5. Predicted : l_lower True: I | Count: 13
8 6. Predicted : 1 True: l_lower | Count: 10
9 7. Predicted : U True: u_lower | Count: 5

10 8. Predicted : k_lower True: K | Count: 5
11 9. Predicted : Y True: y_lower | Count: 4
12 10. Predicted : p_lower True: P | Count: 4
13 --

47

Chapter 5

Main Function

The main function is responsible for synthesizing all the steps necessary to imple-
ment the prediction of the annotations. In essence, it is the function employed for
the reproducibility of the algorithm developed in this study.

The following steps constitute the primary function:

1. Load the CNN model.

2. Load the class labels list.

3. Execute the prediction phase for the character detection.

4. Execute the post-processing function to assign the meaning and label form to
the characters predicted.

5. Convert the final label string into LaTeX format.

6. Log results obtained.

7. Return the final result.

48

Main Function

5.1 Calling the main functions

The main function designated as cnn_detection() receives as input the image
to be recognized and essentially executes the character detection and post-processing
functions. The resulting string is then transferred to a method that converts the
post-processed predictions into LaTeX format. These results are saved in a text file
for subsequent analysis.

The returned output of this function is the formatted string representing the label
of the circuit. Algorithm 6 provides a comprehensive overview of the procedure
implemented in this function. All these steps will be explained in detail in the
following sections.

Algorithm 6 Main function call cnn_detection()
Require: Image path img_path
Ensure: Predicted text in LaTeX format

1: STEP 1: Load CNN model
Load the trained CNN model from the specified path.

2: STEP 2: Load class labels
Read class names from the class labels file into a list.

3: STEP 3: Prediction Phase (predict_characters())
Pass the input image to the CNN model to obtain the character predictions,
bounding boxes coordinates and confidence scores.

4: STEP 4: Post-process function (post_processing())
Refine the predicted text via post-processing.

5: STEP 5: Convert to LaTeX
Transform the refined predictions into LaTeX-formatted text.

6: STEP 6: Log results
Save prediction logs including confidence scores and processing time.

7: STEP 7: Return final output
Return the final LaTeX-formatted text.

5.2 STEP 1: Load CNN model

In this step, the Convolutional model that will be used for prediction is loaded.
In this instance, the model to be employed is the one defined before in Section 4,
corresponding to the customized CNN.

5.3 STEP 2: Load class labels

Consequently, in this step, the labels of the classes employed in the dataset were
loaded. In order to ensure reproducibility, it is recommended that the class labels
be saved in a *.txt file. This will allow them to be loaded on any other computer
without the need for the original dataset.

49

Main Function

5.4 STEP 3: Prediction Phase (predict_characters())

5.4.1 Algorithm

This function aims to execute the inference (prediction) phase using the annota-
tions received by the circuit. It receives as input the following parameters:

• Image path,

• A list with the labels of the classes that have been defined in the model.

• The CNN model.

The output of this function corresponds to three *txt file that contain: the model-
predicted characters, the prediction time, and the confidence level of the inference.
Examples of these file are presented in Snippet 6.19, Snippet 6.20, Snippet 5.4.

STEP 1: Loading Image

The method is initiated by loading the input image. An example of a possible
input annotation image is shown in Figure 5.1.

Figure 5.1: Input annotation image example.

STEP 2: Pre-processing image for contour detection

Subsequently, the image is passed to the preprocessing function for bounding
boxes, to prepare it for the contour detection method. The latter must match the
pre-processing steps employed during model training. This is due to fact that the
model has been trained on pre-processed image data. Discrepancies between training
data and inference preprocessing have the potential to compromise the integrity of
the pipeline, resulting in a distribution shift, therefore, affecting the final predictions.
The preprocessing steps applied are already described in Section 4.3. Figure 5.2
depicts an example of an image after preprocessing steps.

Figure 5.2: Preprocessed image example.

50

Main Function

STEP 3: Detecting Contours and sort contours from left to right.

Following this, contour detection is applied to the preprocessed image. This
technique is employed to identify the candidate character region within the image
by delineating a contour around it, as illustrated in Figure 5.3. The method was
implemented using the openCV function cv2.Findcontours(), which is designed to
detect all points having the same color and intensity, and return them as a contour,
the threshold value was set to 156. These, in turn, are the representations of the
shapes present in the image.

Figure 5.3: Output of cv2.Findcontours method.

Subsequently, the contours are sorted from left-to-right and top-to-bottom in
order to maintain consistent spatial order. This preserve natural reading sequence in
the image.

STEP 4: Bounding boxing (BB) generation.

On the other hand, the creation of the bounding boxes involved the implemen-
tation of a for loop, which was apply to systematically iterate through the list of
contours that had been previously identified. The cv2.boundingRect() method,
available in the OpenCV library, was applied in order to generate the rectangle
around the shape of the identified object, see Figure 5.4. The function returns a
lists of coordinates of the detected bounding boxes in the following format: The coor-
dinates are specified as [x_min, y_min, x_max, y_max] . Where [x_min, y_min]
represent the top-left-corner of a box and [x_max, y_max] the bottom-right-corner.

Figure 5.4: Bounding boxes generated.

STEP 5: Character Prediction

The final stage involves predicting the character contained within each bounding
box. Another for loop was apply to iterate through the list of bounding boxes

51

Main Function

detected in the previous step. To ensure that the extracted region adequately encom-
passes the character, a padding margin is applied around each bounding box. This
was performed by modifying the BB coordinates accordingly.

The character was then subjected to cropping from the image using the BB
coordinates. The extracted segments were passed to the preprocessing function for
the input images to prepare it for the prediction phase. Once again, the function
utilized for this scope, must be the same used during the training of the model. This
was defined in Section 4.2.

Following preprocessing, the processed image segments are passed through the
CNN model loaded before, using the predict() method for inference. The out-
put of this stage are then saved in a *.txt file for analysis to be performed later.
Figure 5.5 shows a representation of the original image with the predicted characters.

Figure 5.5: Final prediction.

STEP 6: Save results

The results comprise the predicted characters, together with the coordinates of
the bounding boxes and the corresponding confidence levels. Snippet 5.1 show the
raw predictions obtained after character detection.

Snippet 5.1: Raw predictions output.
1 [((’8’, 0.28) , (2, 0, 13, 40)),
2 ((’.’, 1.0) , (15, 19, 13, 26)),
3 ((’8’, 1.0) , (32, 19, 13, 26)),
4 ((’m’, 1.0) , (62, 1, 22, 36)),
5 ((’H’, 1.0) , (98, 10, 23, 27))]

Algorithm 7 also provided a comprehensive overview of the steps involved in
the prediction phase.

52

Main Function

Algorithm 7 Character Prediction from Image (predict_characters())
STEP 1: Load image
STEP 2: Pre-process image for contour detection
STEP 3: Detect contours and sort bounding boxes from left to right
STEP 4: Generate bounding boxes
STEP 5: Prediction of Characters

for each box in bounding_boxes do
Apply padding and crop character region
Pre-process the cropped image for CNN input
Predict character using the trained model
Extract predicted label string and confidence
Store prediction with bounding box coordinates

return List of predicted characters, prediction time, and confidence scores

5.5 STEP 4: Post-process function post-processing()

In Chapter 6, comprehensive details on the post-processing function will be
provided. This method essentially retrieves the predictions generated by the pre-
dict_characters() function and processes them in a way that ensures the resulting
output aligns with the specified annotation label format. The function’s output is a
string containing the annotation.

5.6 STEP 5: Convert to LaTeX format

The outcomes of the post-processing method occasionally yield a sequence of char-
acters that does not align with the LaTeX cleaner format. In this research project, the
notations recognized by the CNN + post-processing function and Pix2Tex methods
must be written in a format compatible with LaTeX format, as these predictions will
later be used to compare the two methods.

For this reason, the convert_to_latex() function was developed. This function
receives the post-processed predicted tokens (character string) as an input parameter
and converts them to LaTeX format. It identifies numerical expressions, fractional
values, Greek letters, electrical units, and scientific notation, and reformat them
in order to produce correct cleaner LaTeX syntax. The ’re’ library in Python was
implemented to generate the regular expression required to identify and extract
specific structures within a text string.

For instance, when processing a label such as "alpha_{1}i_{22}", a correspond-
ing regular expression is then constructed to identify this specific pattern of characters.
If a match is found, the function automatically replaces the Greek word with its
LaTeX equivalent, denoted by "\alpha", thus ensuring that the label is correctly

53

Main Function

formatted as "\alpha_{1}i_{22}" in the final output. The same logic was applied
to the rest of the cases mentioned before.

In this transformation, mathematical commands and markups associated with
the LaTeX format are not included. The final result must exclusively maintain the
structure of LaTeX expression, incorporating elements such as subscripts, super-
scripts, and fractional formats.

Finally, the resulting data is stored in a text file. Snippet 5.2 depicts the
resulting output after applying the conversion.

Snippet 5.2: Example of reformatting performed.
1 Input Output
2 67 Omega -> 67 \Omega
3 alpha_ {1} i_ {22} -> \ alpha_ {1} i_ {22}
4 phi_ {3} i_ {5} -> \Phi_ {3} i_ {5}
5 3/4 V_ {2} -> \frac {3}{4} V_ {2}
6 90.10^{ -3} i_ {6} -> 90\ cdot10 ^{ -3} i_ {6}

An example of the resulting final predictions, following post-processing and
conversion to a LaTeX-like syntax, is presented in Snippet 5.3.

Snippet 5.3: Post-processed predictions after LaTex conversion.
1 (5)
2 \frac {3}{2} A
3 8.8 mH
4 (1)
5 (3)
6 \frac {6}{17} A
7 \frac {20}{17} H
8 (0)
9 (6)

10 \frac {5}{18} V
11 \frac {5}{4}\ Omega
12 13\ Omega
13 V_ {9}
14 i_ {9}
15 6.3V
16 41mH
17 37\ Omega
18 7.3 mH

5.7 STEP 6: Log results

After converting the predicted label into the standard LaTeX format, the infor-
mation is saved in a text file for control information purposes. The content of this

54

Main Function

file corresponds to the following elements and they are depicted in Snippet 5.4:

• the list of predicted characters resulting from the prediction_characters()
function;

• the predicted label after post-processing; and

• the time taken for the entire prediction process, which is the sum of the
prediction time and the post-processing time.

Snippet 5.4: List of predicted characters
1 Initial_prediction :[((’(’, 1.0) , (2, 4, 21, 85)), ((’5’,

1.0) , (32, 11, 34, 58)), ((’)’, 1.0) , (75, 4, 21, 85))]
2 After postprocessing :(5)
3 Time after pp: 0.31528615951538086 seconds
4

5 Initial_prediction :[((’-’, 0.83) , (3, 46, 33, 6)), ((’2’,
1.0) , (6, 61, 26, 40)), ((’3’, 1.0) , (7, 0, 25, 40)), ((
’A’, 1.0) , (59, 11, 50, 61))]

6 After postprocessing :\ frac {3}{2} A
7 Time after pp: 0.46279072761535645 seconds
8

9 Initial_prediction :[((’(’, 1.0) , (2, 4, 21, 86)), ((’1’,
1.0) , (35, 10, 29, 59)), ((’)’, 1.0) , (75, 4, 20, 86))]

10 After postprocessing :(1)
11 Time after pp: 0.3351309299468994 seconds
12

13 Initial_prediction :[((’(’, 1.0) , (3, 4, 21, 85)), ((’3’,
1.0) , (32, 10, 35, 60)), ((’)’, 1.0) , (76, 4, 21, 85))]

14 After postprocessing :(3)
15 Time after pp: 0.35938501358032227 seconds
16

17 Initial_prediction :[((’-’, 0.82) , (4, 50, 61, 5)), ((’1’,
1.0) , (8, 65, 23, 39)), ((’6’, 1.0) , (21, 2, 25, 40)),
((’7’, 1.0) , (36, 65, 27, 39)), ((’A’, 1.0) , (88, 15,
51, 59))]

18 After postprocessing :\ frac {6}{17} A
19 Time after pp: 0.5673356056213379 seconds
20

21 Initial_prediction :[((’6’, 1.0) , (1, 2, 35, 60)), ((’omega ’
, 1.0) , (56, 0, 55, 62))]

22 After postprocessing :6\ Omega
23 Time after pp: 0.24060463905334473 seconds
24

25 Initial_prediction :[((’5’, 1.0) , (0, 6, 34, 59)), ((’.’,
1.0) , (46, 55, 7, 8)), ((’8’, 1.0) , (65, 5, 34, 60)), ((
’V’, 1.0) , (119 , 3, 51, 60))]

26 After postprocessing :5.8V

55

Main Function

27 Time after pp: 0.0001556873321533203 seconds
28

29 Initial_prediction :[((’5’, 1.0) , (0, 8, 35, 58)), ((’.’,
1.0) , (47, 56, 7, 8)), ((’4’, 1.0) , (63, 7, 39, 57)), ((
’m’, 0.93) , (124 , 25, 53, 39)), ((’A’, 1.0) , (186 , 4,
50, 61))]

30 After postprocessing :5.4 mA
31 Time after pp: 0.00020241737365722656 seconds

5.8 STEP 7: Return final output

The function cnn_detection() returns the final predicted label string of the
annotated image. For instance, in the case of the example illustrated in STEP 3, the
final output string would be 8.8mH.

This function is of vital importance when considering applying this application to
other projects. In essence, it is the function that is utilized to make predictions using
the CNN model trained in this study and the developed post-processing function.

56

Chapter 6

Post-Processing Function

This chapter delineates the functions associated with post-processing applied to
the characters predicted by the Convolutional model. The CNN model generates
a list of raw character predictions extracted directly from the annotation image
received. These predictions must be verified and adjusted if any errors occurred
during the recognition phase.

Post-processing involves the refinement of preliminary model results through the
adjustment of specific pre-processing parameters, with the objective of enhancing
prediction accuracy. The CNN model is employed to formulate a new prediction,
with the parameters being adjusted accordingly. As a result, the new prediction
generated may be the same as the previous one or show a character that had not
been correctly identified during the first prediction. In the final stage of the process,
the function assigns the context to the label according to the characters that were
previously predicted.

57

Post-Processing Function

6.1 Post-Processing Function

6.1.1 Overview

The post_processing() function has been developed to refine the raw predic-
tions generated by the CNN model for circuit-related labels (such as voltages, currents,
resistances, and component identifiers). The predict_characters() (Section 5.4)
method generates an initial list of predicted characters that often exhibit misclas-
sifications arising during the prediction process, since the model is susceptible to
misclassifications for visually similar characters.

This function applies a set of rule-based conditions to correct these issues and
produce context-format labels. On the other hand, the function also stores the
processed results in a *.txt file. In order to obtain a comprehensive overview of the
post-processing function, the Algorithm 8 delineates the primary steps involved in
the detection and creation of each circuit label.

The summary of these steps is illustrated in Algorithm 8.

Algorithm 8 Post-Processing of CNN Predictions (post_processing())
STEP 1: Load the input image from img_path

Extract predicted characters from the initial predicted list (first character,
last character, and if available, second and third)

Initialize merged_text← ∅
STEP 2: Evaluate predictions against predefined conditions C1, C2, . . . , C21

for i = 1 to Cn:
if predictions satisfy condition Ci:

Apply correction rules for Ci

Optionally re-run character recognition on bounding boxes
Merge corrected characters into merged_text

If no condition is satisfied: re-predict characters directly from bounding
boxes and merge into merged_text

STEP 3: Post-process the image using pp_prediction_cases()
Save annotated image

STEP 4: Consolidate the Bounding boxes into a single one, after postprocessing of
the characters predicted initially.
STEP 5: Log refined label into output *.txt file.

Log confidence scores into confidence file.
Compute post-processing time prediction_pp_time .

return (merged_text, prediction_pp_time)

58

Post-Processing Function

6.2 Processing Steps

The subsequent section will provide a comprehensive explanation of the function.

6.3 STEP 1: Inputs of the Post-Processing method

• predictions: The initial list of characters predicted by CNN in the prediction
method. Each element is a tuple that contains the predicted character and its
corresponding bounding box.

• img_path: Path to the image labels.

• model: The CNN model used for character recognition.

• classes: The set of possible output classes (characters) the model can predict.

6.4 STEP 2: Logical Conditions Applied to Predictions

In this step, all the conditions were defined. Each condition was designed to
determine a specific labeling pattern based on the list of predicted characters. Es-
sentially, a set of conditions are evaluated to establish whether the characters on
the list satisfy the patterns outlined in these conditions. Examples of these patterns
include dependent sources written with subscripts, scientific notation or superscripts,
values with decimal numbers, symbolic values, circuit units, and misclassified symbols.

Table 6.1: Electronic Circuit Symbols with Meaning, Units, and Examples

Symbol Meaning Unit Notes Example
V Voltage source V Independent source V4 = 12 V
v Voltage source V Dependent source v = β3v4
R Resistor Ω Passive element R = 1 kΩ
C Capacitor F Passive element C = 10 µF
L Inductor H Passive element L = 5 mH
A Current A Independent current source I4 = 2 A
i Current A Dependent source i = 3I4
P Power W Power delivered/consumed P = V I
S Switch — Switching element -
E Voltage source V Independent source E = 5 V
F Faraday F Capacitor unit -
H Inductance H Inductor unit -
Ω Resistance Ω Resistor unit -
G Conductance S Reciprocal of resistance G = 1/R

In order to facilitate a better understanding of the subject, the conditions were
created with the understanding that the numerical values, alphabetical letters, and
Greek letters found in the annotations or labels of an electrical circuit possess a

59

Post-Processing Function

meaning depending on the manner in which they are presented. Table 6.1 provides
a comprehensive overview of the respective meanings of each letter within the context
of an electronic circuit.

Explanation of make_new_prediction() Function

Prior to the description of the conditions, it is necessary to explain the method
that will be used in the following steps. This function performs the same actions as
the function detailed in Section 5.4 (predict_characters()). The sole discrepancy
between the two lies in the input parameters that the former is capable of receiving.

The purpose of this function is to fine-tuning the preprocessing of BBs phase,
to facilitate the simplification of the inference method, thereby allowing certain
parameters to be modified simply by passing them as hyper-parameters when the
function is invoked.

The new input parameters aggregated are the following:

• order: Case variable refers to two possible ways to sort the BB when using
cv2.findContour() method during the inference. So that it facilitates read
the sequence during the post-processing.

– For order=0: The BB will be sorted from left-to-right and top-to-bottom.

– For order=1: The BB will be sorted from top-right to button-left.

• var: The purpose of this variable is to finetune the parameters of the pre-
processing of the bounding boxes stage, with a view to facilitating the character
detection. The parameter is associated with the image binary cv2.threshold()
technique applied during the preprocessing of BB steps (see section 4.3.3). The
possible values for thresholding parameters are:

– var=1 →keep the threshold in 158 (default, using during first prediction
in predicted_characters()).

– var=2 →reduce the threshold to 130, for a smooth definition in the
characters, it makes the edges less stark.

• pad: Allow the modification of the quantity of padding added during the
generation of BB.

The modification of certain parameters in order to detect the Bounding Boxes
technique has been shown to facilitate the identification of the contours surrounding
the characters, thus ensuring the generation of the Bounding Boxes in an optimal
manner. It is imperative to emphasize that this step was incorporated for the purpose
of fine-tuning the post-processing. Improves bounding box quality; doesnt alter

60

Post-Processing Function

CNNs learned features.

6.4.1 CONDITIONS

The conditions were structured into a series of rules based on input predictions.
The following segment will provide an explanation of the most relevant conditions
established in the postprocessing function to illustrate the logic behind this rules,
with the presentation of a corresponding example.

CONDITION 1: Component annotations including numerical subscripts.

Condition 1 has been specifically designed to detect annotations containing nu-
meric prefixes only for voltages, currents, capacitors, resistors, or inductors. This
notation is typically used in dependent sources. The label considering in this con-
dition includes only integer numbers in the numeric part of the label, such as: 3V7,
3R5, 112i13, 23C2.

The following conditions must be met for the instruction to be executed:

• The first character of the predicted list must be a digit or the letter
"I".
This ensures that the expression begins with a numeric value (e.g., 3, 112, etc.)
or with the letter I in case of misclassifications of visually similar characters,
such as: digit ’1’ erroneously classified as lower case letter ’l’

• The last character of the predicted list is also a digit.
This condition enforces that the last predicted character in the list ends with a
numerical value.

• The prediction list must contain at least one character from the
predefined set of valid variable electric symbols.

V = {V, R, C, L, I, i, B, u, U}

– V : voltage,

– R: resistance,

– C: capacitance,

– L: inductance,

– I: current,

– B: for misclassified ’3’,

– u, U : commonly misclassified voltage sources.

• The prediction list must exclude invalid characters, specifically hy-
phens (−), decimal points (.), or the letter m character.

61

Post-Processing Function

Since none of those symbols are within the expected case to be handled in this
condition, they are explicitly filtered out. This case handles only integer values
for the numeric part. For the decimal numbers case, another condition was
defined to handle this pattern.

For a better understanding, consider the predicted list illustrated in Snippet 6.1.
The following list of predictions corresponds to the image Figure 6.1, where the
characters in the list are in accordance with the rules presented in Condition 1, given
that all the preceding criteria have been met.

Snippet 6.1: Example when the condition 1 is met.
1 [((‘1 ’, (1, 2, 20, 36)), ((‘V’, (34, 1, 24, 39))
2 ((‘1 ’, (45, 1, 28, 42)), ((‘0 ’, (50, 1, 32, 45))]

Figure 6.1: Image that generated the previous predictions.

Once the aforementioned conditions are satisfied, an additional inference step
is performed to correct previously detected errors. This refinement is implemented
through the make_new_prediction() method, with adjusted parameters:

Snippet 6.2: New prediction function with hyperparameter.
1 new_pred = make_new_prediction (model , classes , image ,

predictions , order=0, var=1, pad=1)

• var = 1 → modifies the fixed thresholding level in cv2.threshold during
the preprocessing of bounding boxes to improve the object detection.

• pad = 1 → reduces the padding around bounding boxes (default value is
2), thereby improving character recognition accuracy by minimizing excess
background.

The new prediction generates a new list of predicted characters, which may
match the first prediction or may reveal a new character that had previously
been misclassified or omitted. This new prediction is then passed to the func-
tion pp_prediction_cases() responsible for organizing the predicted characters
according to the context defined for that case.

If the new prediction contains a decimal point (.), the pp_prediction_cases()
method processes the prediction list with the case set for case=5; otherwise, the

62

Post-Processing Function

predictions are processed with the case set in case=1 (subscription cases). The
results of this function are detailed in Section 6.5.

CONDITION 2: Handle labels with scientific notation (passive compo-
nents and dependent sources).

The purpose of this condition was to detect labels containing power expressions
or scientific notation. The following label examples are pertinent to this specific case:
13.10−3 i6 or 4.103H. In order for this to be achieved, the following conditions
must be satisfied:

• Both the first and last characters of the prediction list must be digits.
This approach facilitates the expeditious identification of dependent sources,
i.e., those containing subscripts.

• At least one character in the list corresponds to a recognized electric
symbol, including I, i, L, l, 7, ., V, F, A, R, or H, Omega,. Letters ’L’ and
’l’ are included to take into account the misclassifications due to similar visual
characters.

• The prediction contains a sequence indicative of a superscript, such
as .10, .10-, m.10-, or m10-.

The following example illustrates a prediction list that satisfied condition 2.

Figure 6.2: Images that generated the following list of predictions.

Snippet 6.3: Example when the condition 2 is met.
1 [(’9’, (0, 7, 21, 37)),
2 (’0’, (24, 7, 22, 37)),
3 (’.’, (59, 24, 12, 11)),
4 (’1’, (85, 7, 20, 37)),
5 (’0’, (108, 7, 23, 37)),
6 (’-’, (135, 14, 23, 4)),
7 (’3’, (160, 1, 17, 25)),
8 (’l’, (190, 18, 10, 27)),
9 (’.’, (194, 5, 11, 10)),

10 (’6’, (200, 26, 15, 25))]

Once the condition is satisfied, the prediction list is processed with pp_pre-
diction_cases() function, using the hyperparameter case=4 to handle superscript-
related formatting for passive components and those containing dependent sources.

63

Post-Processing Function

An example of this condition is provided in Section 6.5.4.

CONDITION 3: Labels containing rational values.

This condition is intended to identify annotations that contain rational numbers,
such as 12

25H or 3
5I5. The initial prediction list must satisfy the following criteria to

execute this condition:

• The first character belongs to the set {., -}. The point (.) symbol has
been included in order to handle a possible misclassification of a hyphen symbol
that occurred in the initial prediction.

• At least one subsequent character in the prediction list corresponds
to a valid symbol from the set {i, l, L, v, omega, I, V, C, H, A, E, F, G,
S, P}.

Snippet 6.4 illustrates an exemplar of the array of predictions that align with
the aforementioned rules. These predictions are generated from the Figure 6.3.

Snippet 6.4: Example when the condition 3 is met.
1

2 [(9, (22, 1, 25, 39)),
3 (., (104, 14, 8, 8)),
4 (I, (93, 34, 14, 39)),
5 (1, (111, 47, 22, 38)),
6 (., (3, 49, 63, 4)),
7 (1, (9, 64, 22, 37)),
8 (7, (37, 64, 25, 38))]

Figure 6.3: Image that generated the previous predictions.

When these conditions are satisfied, a new prediction is performed to verify that
the characters are correctly classified, using the function presented in the Snippet
6.5.

Snippet 6.5: New prediction function with hyperparameter.
1 make_new_prediction (model , classes , image , predictions ,

order=1, var=2)

In this procedure, the parameter order=1 specifies the order in which the bound-
ing boxes are ordered. For instance, if the image contains the label 2/3 F , the

64

Post-Processing Function

first prediction yields the sequence -23F, since the bounding boxes are sorted from
left-to-right to top-to-bottom. By repeating the prediction with a different bounding
box order (top-to-right to bottom-left), the classification sequence changes to
2F-3. This adjustment is performed to facilitate the subsequent post-processing step,
where the correct meaning of the label can be assigned more reliably.

The parameter var=2 acts as a hyperparameter that controls the thresholding
used during pre-processing of bounding boxes. In this case, the threshold is slightly
reduced (130) compared to its default value (158), which allows the method to
generalize better and improve the accuracy of character classification, particularly in
challenging or noisy cases.

Finally, the new prediction is passed to the pp_prediction_cases(..., case=7)
function. In this case, the hyperparameter case=7 triggers the execution of an ad-
ditional method, pattern_detection(), which is further detailed in the Section
6.5.5. Basically, this method arranges the identified characters according to their
correct fractional order and corresponding electrical component type (dependent
sources or passive components). Likewise, the original first prediction was also
passed to the pp_prediction_cases function to help maintain semantic formatting
consistency.

CONDITION 4: Symbolic values for dependent sources (part I)

This condition refers to instances where labels contain subscripts with symbolic
values, typically written with Greek or alphabetic letters for dependent voltages and
current sources, such as µ3V7 or β2i20, r2i20. Please note that, in this particular
instance, the symbolic values (β, α, φ) consist exclusively of a single digit as a
subscript. The situation in which the subscript comprises multiple digits is addressed
in Condition 5.

Formally, this condition is satisfied when the characters in the prediction list
meet the following conditions:

• The first character is in the Greek dictionary. This dictionary contains
the Greek letter names, for instance: mu, rho, alpha, etc.

• The last character is a digit or alphabet letter.
Corresponding to the subscript cases.

• At least one of the predicted characters belongs to the set
V, I, i, g, r, µ, β, L, l, U, u.
Some letters are included to manage possible misclassifications due to similar
visual characters, such as ‘u’ instead of ‘v’, ‘l’ instead of ‘I’, etc. This set

65

Post-Processing Function

comprises more Greek letter characters; however, for the purposes of simplicity
in explanation, the set shown contains only two (‘β’, ‘µ’).

• None of the predicted characters is a minus sign or hyphen (-).
Filtering out the hyphens avoids including fractional numbers, since these
symbols are typically encountered in the prediction lists of the cases that
contain those numeric values.

For better understanding, consider the following examples of prediction lists that
satisfied this condition.

Snippet 6.6: Example when the condition 4 is met.
1 [(’beta ’, (7, 30, 58, 49)),
2 (’4’, (74, 47, 31, 47)),
3 (’I’, (119, 30, 18, 49)),
4 (’.’, (133, 8, 8, 8)),
5 (’1’, (137, 48, 31, 45)),
6 (’0’, (174, 48, 31, 45))]

Figure 6.4: Image that generated the previous predictions.

Once the rules are satisfied, the prediction list of characters is passed to the func-
tion pp_prediction_cases(..., case=9) that will assign the context of the label
based on the characters detected. In this method, the case indicated was (case=9),
which ensures that subscripts are properly aligned and consistently formatted with
respect to their base symbols (Greek or alphabetic letters). The Section 6.5.7
delineates the operational dynamics of this case.

CONDITION 5: Symbolic values for dependent sources (part II)

The logic of Condition 4 is extended in this new rule. For this case, it is intended
to match the labels whose symbolic values contain more than one digit as subscripts,
such as cases involving multiple numerical subscripts (e.g., α56 or β45i20). Formally,
this condition is satisfied when:

• The first character is not a digit.

• The second and third characters on the prediction list are digits.
Ensures the numerical subscripts.

• The last character is also a digit.

66

Post-Processing Function

• Length of the predicted list is greater than 2 digits.

• At least one of the predicted characters belongs to the set {V, I, i, g, r, µ, β, L, l, A}.
This list can be modified to include additional characters for the symbolic values
if necessary. It is intended to encompass the most likely cases.

• None of the predicted characters is a minus sign (-).

To facilitate a more profound comprehension of this matter, it is useful to consider
the following example of prediction lists that satisfied this condition.

Snippet 6.7: Example when the condition 5 is met.
1 [(’alpha ’, (7, 30, 58, 49)),
2 (’3’, (74, 47, 31, 47)),
3 (’3’, (109, 47, 31, 47)),
4 (’I’, (150, 30, 18, 49)),
5 (’.’, (164, 8, 8, 8)),
6 (’2’, (168, 48, 31, 45) ,)
7 (’2’, (205, 48, 31, 45))]

Figure 6.5: Image that generated the previous predictions.

When this condition is satisfied, a new prediction is carried out by passing the
image to make_new_prediction(..., order_contours=1) function.

Snippet 6.8: New prediction function with hyperparameter.
1 new_pred = make_new_prediction (model , classes , image ,

predictions , order_contours =1)

In this step, the order_contour was set to 1, which resulted in the sorting of the
bounding boxes from top-right to bottom-left during the cv2.findcontours method.
Thereby refining the new prediction. Consequently, the new prediction list is passed
to the function pp_prediction_cases() with hyperparameter values that depend
on the first recognized character on the list.

DEFAULT CONDITION: General Case Handling

When none of the defined conditions are satisfied, the framework falls back to
the default processing strategy. In this instance, all detected characters are merged
without the application of any specialized rules or constraints. The merging process is
executed via the pp_prediction_cases() function, which serves to consolidate the
predictions into a unified textual representation, merging the predicted character with

67

Post-Processing Function

the default settings. This default pathway is designed to ensure that even unclassified
or unforeseen patterns are handled in a consistent manner, thereby preserving the
interpretability of the recognition system.

Furthermore, the default condition was established with the aim of integrating
the expression identified during the models initial prediction. This condition also
plays a critical role in assessing whether additional conditions need to be defined or
whether existing ones require a revision.

68

Post-Processing Function

6.5 STEP 3: Post-processing Prediction Cases Method

The function pp_prediction_cases() acts as the core of the post-processing
stage in the recognition pipeline. Its purpose is to refine raw predictions or the
new prediction generated by the CNN-based model by enforcing domain-specific
formatting rules, correcting systematic OCR errors, and ensuring consistency with
physical notation in electrical engineering contexts.

The application of these rules is guided by the hyperparameter known as case.
However, prior to a detailed examination of the rule-based cases, the inputs parameter
of this method will be explained in detail.

6.5.1 Inputs:

The method receives the following parameters:

• data: List of predicted characters with associated bounding boxes.

• image: Input image containing the label expression.

• threshold_ratio: Scaling factor used to compute the margin around bounding
boxes (default: 0.09).

• case: Control hyperparameter that determines which post-processing rule set
to apply (linked to the conditions defined earlier).

• old_prediction: Optional string representing the first merged prediction (used
for comparison in ambiguous cases).

• bbox: Optional bounding box information for refining special symbols (e.g.,
distinguishing between uppercase and lowercase v).

6.5.2 Algorithm

The function operates in three main stages:

STEP 1: Initialization

Once one of the conditions defined in the previous chapter is satisfied, the char-
acters within the prediction list passed to the pp_processing_cases() function are
concatenated into a raw merged string (merged_text) as illustrated in the Snip-
pet 6.9. Additionally, a dynamic threshold (measured in pixels) is calculated based
on the image dimensions. This threshold is subsequently used in STEP 3 to expand
the bounding box dimensions.

69

Post-Processing Function

Snippet 6.9: Example of the characters merged from the list of predictions.
1 Prediction list: [(‘1’, (1, 2, 20, 36)) ,(‘V’, (34, 1, 24, 3

9)) ,(‘1’, (45, 1, 28, 42)) ,(‘0’, (50, 1, 32, 45))]
2 merged_text = ‘1V10’

STEP 2: Rule-based Normalization

Depending on the value of case, different regular expression patterns are applied
to restructure the prediction into a compatible context format. In this section, some
examples of the cases defined will be explained:

6.5.3 case = 1: SIMPLE SUBSCRIPTS SUCH AS 8I2 OR 3VA

When the hyperparameter case is set to 1, the function specifically handles
simple subscript expressions, where the detected string structure corresponds to cases
such as:

2IA (a number followed by a variable with a letter subscript) or
2V12 (a number followed by a variable with a numeric subscript).

• Pattern Matching
Pattern matching was conducted using Pythons re module, which provides
functionality for working with regular expressions. This module enables the
identification of specific patterns within text and supports the extraction of
matched groups. To illustrate this process more clearly, the regular expression
employed in this case was as follows:

Snippet 6.10: Regular expression pattern for voltages and currents.
1 pattern = r"(\d+) ([VvIilL]) \.?(\ d+|[a-zA -Z]+)$"
2 match_str = re.match (pattern , merged_text)

This pattern in Snippet 6.10 decomposes the string into three groups:

1. (\d+) →number Match one or more digits (the base number, e.g., 2),

2. ([VvIilL]) →component Match a single character that may represent
voltage/current symbols (V, v, I, i) or possible misclassifications of I as
l/L,

3. (\d+|[a-zA-Z]+) →subscript Match either a sequence of digits or al-
phabetic characters (the intended subscript).

• Standardization
If the merged string is matched with the predefined pattern, the correction of
some misreading characters is performed. For instance, if the detected letter is
misclassified as l or L, it is reassigned to i (to correct OCR misclassifications

70

Post-Processing Function

of visually similar letters such as "l" and "i"). In this way, it handles the
inconsistency. Additionally, the letter is normalized to lowercase, ensuring
consistency and standardization in the type of circuit label before adding the
subscript.

To provide a clearer picture of the procedure, the following example of a typical
dependent voltage source label is provided:

Figure 6.6: Dependent voltage source with Subscript format label.

After passing through the post-processing function, the predicted character list
is merged into a single string like the following:

predicted_list = ((‘1’), (1, 2, 20, 36)),((‘V’), (34, 1, 24,
39)),((‘1’), (45, 1, 28, 42)),((‘0’), (50, 1, 32, 45))

processed_label = 1V10

In the current example, the string constitutes an unformatted sequence of
characters. The pp_prediction_cases() method plays a crucial role in this
context by assigning the appropriate semantic expression to the label, based
on the specification of the case parameter. It is noteworthy that the resulting
expressions are constructed in accordance with standardized labeling conven-
tions commonly used in the representation of electrical circuits.

• Reconstruction
After applying the regular expression depicted in Snippet 6.10, the corrected
expression is then reconstructed in an equation style format. Since the case=1
handles subscripts with one or more numeric or alphabetic characters, the final
text label will be organized with the following form:

processed_label = {number}{component}_{subscript}
processed_label = 1V10

As shown in Figure 6.7.

It is important to note that, in this case, the equation format used is consistent
with the LaTeX format. However, it should be noted that not all cases defined in this
section will conform to this format, since, following the assignment of the context to

71

Post-Processing Function

Figure 6.7: Dependent voltage source after postprocessing.

the label, the expected string will be passed to a function that will convert the entire
expression into a correct LaTeX cleaner format.

6.5.4 case = 4: SCIENTIFIC NOTATION WITH SUPERSCRIPTS

When the hyperparameter case is set to 4, the function processes expressions
involving superscripts, such as scientific notation or exponential scaling, which are
frequently used in electrical variables, such as 2.10−3VA, 18.10−6F . This case is
addressed similarly to the previous condition.

In the superscript case, two possible label formats are identified. The first type
contains dependent sources, such as V1, I4. The second type represents the passive
components, for example, with numerical values and their component units, such as
V, Ω, A, F, H.

TYPE 1: Dependent Sources (Numerical values using scientific notation).

Following the same line, consider the example described in Condition 2, where
the predicted list is given by the following list:

predicted_list = [(’9’, (0, 7, 21, 37)),
(’0’, (24, 7, 22, 37)),
(’.’, (59, 24, 12, 11)),
(’1’, (85, 7, 20, 37)),
(’0’, (108, 7, 23, 37)),
(’-’, (135, 14, 23, 4)),
(’3’, (160, 1, 17, 25)),
(’l’, (190, 18, 10, 27)),
(’.’, (194, 5, 11, 10)),

(’6’, (200, 26, 15, 25))]
merged_text = 90.10-3l.6

• Pattern Matching
The regular expression to match this pattern of prediction is illustrated in
Snippet 6.11:

72

Post-Processing Function

Snippet 6.11: Regular expression pattern of a dependent source.
1 pattern = r’^(\d +(?:\.\ d+) ?) ([- ,+]) (\d+) ([iIlLvVRM (]|

lm_lower)\.(\d+|[A-Za -z])$’
2 match_str = re.match (pattern , merged_text)

This pattern decomposes the detected string into:

1. (\d+(?:.\d+)?) →main_number The main number can be an integer or
decimal, e.g., 9 or 9.10).

2. ([-,+]) →sign Capture the sign of the exponent, either - or +.

3. (\d+) →exponent Captures the exponent itself (e.g., 3 in 10−3, 103).

4. ([iIlLvVR(]|lm_lower) →component Captures a single character or
token indicating the variable (common OCR confusions are normalized,
e.g., I, l, L, i, (, or the placeholder lm_lower).

5. (\d+|[A-Za-z])→subscript The subscript attached to the variable can
be numerical or alphabetic (e.g., A or 8).

• Standardization
Once the pattern of the merged text has been matched, any character belong-
ing to the set (l., L., (., lm) is normalized to the lowercase letter i to
standardize the notation and mitigate inconsistencies arising from visual or clas-
sification ambiguities, particularly those involving the uppercase and lowercase
of letter ‘I’, (when the stem of the ’i’ is detected as ‘l’ or ‘(’). Similarly, if the
detected letter is ‘V’, it is replaced with lowercase ‘v’ to maintain the notation.

• Reconstruction and Result
Finally, Figure 6.8 illustrates an example of how the matched string is

reconstructed with the LaTeX expression as:

merged_text = main_number{sign exponent}component{subscript}

Input: 2.10-3VA → Processed Output: 2.10ˆ{−3}vA

Input: 90.10-3l.6 → Processed Output: 90.10ˆ{−3}i6

Figure 6.8: Dependent source with superscript values.

73

Post-Processing Function

The final result of the string will then be reformatted with a cleaner LaTeX text
style.

TYPE 2: Passive Component (Numerical values using scientific notation without
subscript)

The second case involves numerical values that contain superscripts but not
subscripts in the units. The following section will present the pattern used to identify
these cases.

• Pattern Matching
The regular expression is:

Snippet 6.12: Regular expression for numeric labels with superscipts.
1 pattern = r’^(\d +(?:\.\ d+) ?) ([- ,+]?) (\d+) ([vVRHAFS])$’
2 match_str = re.match (pattern , merged_text)

Snippet 6.12 shows the pattern that captures strings that contain the following
structure:

1. (\d+(?:.\d+)?) → numeric_value the main number may be expressed
as a decimal or an integer.

2. ([-,+]?) → sign Optionally captures the sign of the exponent.

3. (\d+) → exponent Captures the exponent number.

4. ([vVRHAFS]) → unit the associated component unit (e.g., V, R, H, A, F,
S).

• Standardization
After matching the structure, the standardization of the labels is implemented
in accordance with the following structure.

merged_text = numeric_value {sign} {exponential} unit

An example of this case is presented:
Input: 8.10-3H → Processed Output: 8.10−3H

6.5.5 case = 7: LABELS CONTAINING FRACTIONAL VALUES

The present case addresses the systematic identification and interpretation of
fractional numerical labels in electrical circuits, particularly those that incorporate
explicit units such as volts (V), amperes (A), farads (F), resistors (R), and others.

74

Post-Processing Function

A method, titled pattern_detection() , has been developed to facilitate the post-
processing of such labels. The method is structured into four principal analytical
sections, each targeting a specific subset of the labeling patterns observed in circuit
schematics. To comprehend the underlying logic of this function, please refer to the
Appendix A.1, where the pseudo code is outlined.

The initial two sections of the pattern_detection() function are dedicated to
the detection of controlled (dependent) sources, wherein the labeled values represent
voltages or currents expressed as fractional multiples of other circuit variables. For
instance, expressions such as 1

2v1, 5
8 i2 are commonly used to denote voltage- or

current-controlled sources. These elements are indicative of active components whose
outputs are linearly dependent on a voltage or current present elsewhere in the
circuit. These format corresponds to the standard forms of voltage-controlled volt-
age sources (VCVS), current-controlled voltage sources (CCVS), voltage-controlled
current sources (VCCS), or current-controlled current sources (CCCS).

Whilst the third and fourth sections of the pattern_detection() method focus
on fractional values associated with passive circuit elements, wherein the fractional
number is paired with a unit (H,F,V,A) which is indicative of a component property.
Examples of this include 14

11F , which corresponds to a capacitor, or 7
4A, which may

represent either the rated current of a passive element or a measured value in the
circuit context.

To differentiate between these cases, the pattern_detection() method employs
regular expression (regex) matching for fractional patterns in conjunction with unit
detection and contextual symbol analysis, similar to the previous cases explained.
In this section, only 2 cases of this method will be explained to illustrate the idea.
Those are dependent current sources (numerical values of current sources with a
subscript) and a passive circuit element (numerical label with units).

In order to correctly identify the fractions, two predictions performed by the
model were utilized. The first of these corresponds to the initial prediction (first
prediction), with the standard preprocessing for bounding boxes employed for all the
labels. The second corresponds to the new prediction performed in Condition 3
(6.4.1), where some preprocessing parameters for BB detection were adjusted, to
reorganize the order of the predicted characters to facilitate the organization further
in this section.

Example 1: Dependent Current Sources Case in pattern_detection()

• Regex for Fraction Detection
The core regular expression defined for the dependent current sources case is
presented in the Snippet 6.13. This regex used to match the merged charac-

75

Post-Processing Function

ters of the new prediction list (second prediction) performed in Condition 3
(6.4.1):

Snippet 6.13: Regular expression example for the current dependent source.
1 match = re.match (r’^(\d +(?:\.\ d+) ?) [.]?([lLiI1]) (\d+)

[. -](\d+)$’, merge_text)
2 numerator , token , subscript , denominator = match . groups

()

This pattern in snippet 6.13 is broken down as follows:

1. (\d+(?:\.\d+)?) → numerator Captures the numerator of the fraction
(integer or decimal).

2. [.]? → Optionally, it matches a literal dot, which indicates the dot on
the lowercase "i", since OCR for cases with fractions detects characters
from top-left to bottom-right order.

3. ([lLiI1])→ component Matches possible misclassifications of the current
symbol (i), which could appear as lowercase L, uppercase I, or even digit
1.

4. (\d+) → subscript Captures the subscript of the current.

5. [.-] → division sign Matches either a dot or a hyphen, both of which
are common OCR substitutions for the fraction separator /.

6. (\d+) → denominator Captures the denominator of the fraction.

• Reconstruction of the Expression

The reconstruction of the standardized string is achieved through the expression
of a dependent source. Preventing OCR errors from propagating into the final
structured output.

Snippet 6.14: Standard form for the fractional cases.
1 label = "{ numerator }/{ denominator }i_{ subscript }"

This guarantees the fraction structure is preserved. The current variable is
always written with letter “i” standardized, even if OCR misread it as “l, L, or 1”.

To further clarify the proposed procedure, consider the following example.
Assume that the merged string generated in accordance with the predicted list
of characters of Condition 3 (6.4.1) is given by

predicted_list = [(’9’, (22, 1, 25, 39)),
(’.’, (104, 14, 8, 8)),

76

Post-Processing Function

(’I’, (93, 34, 14, 39)),
(’1’, (111, 47, 22, 38)),

(’.’, (3, 49, 63, 4)),
(’1’, (9, 64, 22, 37)),

(’7’, (37, 64, 25, 38))]
merged_text = 9.I1-17.

When applying the regular expression presented in Snippet 6.15, the resulting
matching groups can be directly associated with the variables of interest, since
each group was correctly matched:

numerator = 9,

token = .I,

subscript = 1,

denominator = 17.

Based on this decomposition, it was possible to reconstruct the standardized
form of the label, within the context of the current controlled source, obtaining
the string in Figure 6.9. These strings will be converted into LaTeX syntax
in a further stage of the post_processing() function:

9/17i1

Figure 6.9: Controlling variable with fractional value.

• Normalization using First Predictions
To ensure consistency with original model outputs (first prediction), an addi-
tional regular expression is performed on the old_prediction string:

Snippet 6.15: Regular expression example original model prediction.
1 match_old = re. search (r’(?:[. -]) ?(i_ \{[\dA -Za -z]+\}| I_

\{[\dA -Za -z]+\}|[\ dA -Za -z]+)$’, old_prediction)

The initial prediction made by the model, designated as old_prediction, is
utilized in this method to rectify potential truncation or splitting errors. The
purpose of this procedure is to verify whether the preceding prediction included
a correctly formatted subscript, such as i10 or I23.

77

Post-Processing Function

In this context, when a match is identified, the subscript from the preceding
prediction is utilized to correct potential truncations introduced during the
optical character recognition (OCR) process. This mechanism is particularly
relevant in scenarios where subscripts are inadvertently split into separate
tokens. For example, consider the case in which the variable i10 is misrecog-
nized by the model as two discrete tokens: i1 and 0. In such instances, the
denominator of a fractional expression may be incorrectly interpreted as a con-
tinuation of the subscript, thereby leading to semantic ambiguity. To mitigate
this, the method applies a rectification process wherein the isolated token is
reattached to its corresponding subscript, resulting in the corrected form i10.
This ensures a clear distinction between subscripts and numerical denominators,
thereby preserving the syntactic and semantic integrity of circuit element labels.

In a similar manner, in contexts involving other cases in the pattern_detec-
tion() function, such as voltage-dependent sources, or cases including passive
component with unit of voltage, capacitor, inductor, or resistors with fractional
expressions, the same logic as in the preceding example was implemented,
utilizing regular expressions from the Python re library.

Example 2: Passive Circuit Elements with fractional values case in
pattern_detection()

An additional example is presented for the passive circuit element with fractional
values.

Snippet 6.16: Regular expression example of first model prediction.
1 match = re.match (r’^(\d+) ([CHLAEFGSP | -]+) [. -](\d+)$’,

merge_text)
2 numerator , unit , denominator = match . groups ()

Snippet 6.16 illustrates the regular expression used to match the complete
merged string obtained from the prediction lists of characters in Condi-
tion 3(6.4.1) against the predefined pattern. This can be found in the
fourth section of Appendix A.1 procedure, which encompasses the cases
corresponding to passive circuit elements. The following is a breakdown of the
aforementioned regular expression:

1. (\d+) → numerator Captures one or more digits at the beginning of the
string.

2. ([CHLAEFGSP|-]+) → unit Matches one or more characters from the set
{C, H, L, A, E, F, G, S, P, |, -}. This group is captured as the symbol, which

78

Post-Processing Function

denotes the physical unit or element. Examples include: A (Ampere), L
(Inductance), H (Henry), F (Farad), etc.

3. [.-]→ division symbol Matches either a dot (.) or a hyphen (-), which
serves as the separator. This marker plays the role of a division operator
(analogous to writing a fraction, e.g., 20/7).

4. (\d+) → denominator Captures one or more digits.

Reconstruction

Snippet 6.17: Standard form for passive component with fractional cases.
1 label = "{ numerator }/{ denominator }{ unit}"

Suppose the predicted merged string is given by:

predicted_list = [(’1’, (10, 4, 22, 38)),
(’4’, (37, 5, 28, 37)),
(’H’, (96, 15, 43, 60)),
(’-’, (5, 51, 62, 6)),

(’1’, (10, 67, 22, 38)),
(’5’, (38, 68, 24, 38))]

merged_string = 14H-15

After applying the regular expression, the matching groups assign the corre-
sponding values to each variable as follows:

numerator = 14,

unit = H,

denominator = 15.

Once each group is identified, the function to detect the correct order is
applied by sending the characters matched in each group (denominator and
numerator) to the controlling_order() function, see Section 6.5.6. This
verifies the sequence of characters in the correct order, together with the
standardized representation outlined in Snippet 6.17, yields the following
final label expression:

14/15H

Figure 6.10: Passive Circuit Elements with fractional values.

79

Post-Processing Function

6.5.6 CONTROL CHARACTER ORDER METHOD

The function controlling_order() has been designed to reconstruct structured
numerical labels from a set of character-level predictions. Each prediction is denoted
by a tuple comprising a character and its associated bounding box coordinates, stored
in a list, e.g:

(Í5Í, (8, 3, 24, 38)), (ÍΩÍ, (62, 11, 53, 62)), (Í−Í, (4, 49, 33, 6)), (Í3Í, (8, 63, 25, 40))

The primary objective is to separate and order the characters belonging to the
numerator and denominator of a fractional annotation or label, ensuring that the
sequence of symbols is sorted according to their spatial position.

Initially, the function identifies specific separator symbols (a dot or a hyphen)
as tokens within the predictions list, and utilizes the vertical coordinate of their
bounding boxes as a threshold to differentiate between the numerator and denomi-
nator regions. Given that this symbol is always located in the middle of the image
containing the fractional value. Predictions that are located above this threshold are
considered numerator candidates, whereas those that are located below or equal to
the threshold are treated as denominator candidates.

To extract the characters of interest, the auxiliary function extract_sequence()
is defined. This function sorts the predictions by their horizontal coordinate and
iteratively selects characters that match the expected sequence (numerator or denom-
inator). In this way, only characters consistent with the target string are retained,
and their left-to-right order is preserved.

The procedure then constructs the numerator by means of concatenating the
characters extracted from the upper region or upper bounding boxes. To avoid the
reuse of characters, the indices of the selected characters are removed from the list of
predictions. Consequently, the denominator is assembled from the lower region in an
analogous manner.

The function returns two strings: the numerator and denominator, in a left-to-
right order that has been standardized. The outputs of this process provide a robust
reconstruction of the intended fractional label from the raw prediction data, thereby
ensuring that both the spatial layout (above/below the separator) and the sequence
order (left-to-right) are respected.

80

Post-Processing Function

6.5.7 case = 9: DEALING WITH SYMBOLIC VALUES FOR DE-
PENDENT SOURCES

Finally, in the context of mathematics, Greek letters are conventionally employed
to denote quantities, units, or variables. In the context of electronic circuits, these
quantities, denoted by Greek letters, are symbolic variables whose values are deter-
mined by other circuit elements.

This case accounts for two possible scenarios that may arise when the prediction
generated by the model is evaluated under Condition 4.

First Scenario:

The first situation occurs when the prediction misclassifies the digit ’1’ as the
letter ’L’ or ’l’, triggering the rules established in Condition 4. For instance, consider
the following merged string:

Predicted string = lll.5

However, the predicted string in the given example corresponds to a misrecog-
nition of the numerical values of the expression. These were interpreted as the
characters ”l’, ’L”, instead of ’11’. That is the reason why Condition 4 is triggered
when the expression includes either two consecutive alphabetic characters or one
Greek letter. It is imperative that these potential misclassifications, which are a
result of visual similarity between the characters, are addressed within the context of
the case.

In this context, a special case was created to handle situations that correspond
to numeric values with dependent currents and voltages. The regular expression
re.match() was employed to ensure that the characters are arranged in the correct
sequence. During the regular expression corresponding to the ’number’ field, any
numeric values that were not correctly detected by the model are replaced with
the correct number. For instance, the letter “l" or “L" is assigned to the number “1".

The construction of the final label format follows the same procedure as the
previously described cases. An illustrative example of this transformation is given
below:

Predicted string = lll.5 → Final Label = 11i5

number = ll,

letter = l.,

subscript = 5.

81

Post-Processing Function

Second Scenario:

The second case is intended for expressions that contain symbolic values, such as
Greek letters and alphabetical variables. These annotations are typically rendered
using subscript notation to represent dependent sources. In order to ensure the correct
organization of the predicted characters, the function ‘symbolic_detection()’ was
created.

This method distinguishes among the possible types of labels in this case: those
consisting exclusively of Greek letters, those combining Greek and alphabetic charac-
ters with subscripts, and those composed solely of alphabetic variables with subscripts.

For annotations containing Greek and alphabetic letters, the following rules are
applied:

• If the predicted string begins with the name of a Greek letter (e.g., mu, alpha,
beta, etc.), this prefix is extracted from the string.

• The remaining elements of the string are then compared against the regular
expression, which is outlined in Snippet 6.18:

Figure 6.11: Dependent sources with symbolic values.

Example 1

merged text = beta4i10
Greek letter extracted = beta

remaining part = 4i10

Example 2

merged text = mu2v7
Greek letter extracted = mu

remaining part = 2v7

Snippet 6.18: Regular expression to match with the rest of the string.
1 match = re.match (r’([a-zA -Z0-9]+) ([vViIlLuU 1 ,]) \.?([a-zA -Z0

-9]+) ’, remaining_part)
2 subscript_symbool , component , subscript_component = match .

groups ()}

1. ([a-zA-Z0-9]+)→ subscript of symbolic letter. It is important to note
that this corresponds to the number or letter following the Greek symbol, and
that it captures the character or digit of the subscript.

82

Post-Processing Function

2. ([vViIlLuU1,]).? → component This expression captures the possible electri-
cal components associated with the annotation, specifically voltages or currents,
which are typically the dependent sources.

3. ([a-zA-Z0-9]+) → subscript of alphabetic letter. Captures the sub-
script associated to the electrical component, with one or more digits.

If a match is found, two possible scenarios may occur:

Example 1

geek letter = beta

subscript_symbol = 4
component = i

subscript = 10.

Example 2

geek letter = mu

subscript_symbol = 2
component = v

subscript = 7.

Figure 6.12: Dependent sources with symbolic values.

In instances where the annotation initiates with an alphabetic letter, the same
aforementioned procedure is implemented. Initially, the first character of the sequence
is extracted, after which the residual sequence is then compared against the regular ex-
pression in order to identify the values of each element that constitute the label. These
characters are subsequently arranged into the designated label format. It should be
noted that two scenarios are distinguished in this case: those containing a dependent
source and those representing a single quantity. The final outcome is illustrated below.

Example 3

subscript_symbol = vartheta,

subscript = 2.

Figure 6.13: Dependent sources with symbolic values.

83

Post-Processing Function

6.6 STEP 4: Bounding Box Consolidation

After reconstructing the predicted characters into a standardized label format,
the bounding boxes are merged by identifying the outermost boxes and combining
them into a single bounding box that encompasses the entire annotation elements.
This procedure ensures a consistent and accurate representation of the bounding
box for enclosing the formatted prediction within the image, as shown in the figures
presented before 6.12,6.9,6.8.

6.7 STEP 5: Outputs of Post-Processing phase

In addition, the prediction strings resulting from the pp_processing_cases()
are stored in a text file as output. This file contains the predicted labels after
assigning them a circuit context meaning in the post-processing phase Snippet 6.19.
These results serves to monitor the predictions.

Snippet 6.19: Examples of results without converting to LateX cleaner format.
1 (5)
2 3/2A
3 (2)
4 (1)
5 (3)
6 6/17A
7 20/17H
8 8/5H
9 (0)

10 (6)
11 8/7A
12 5/18V
13 3/4V
14 11/6V
15 5/4omega
16 13omega
17 V_{9}

Another *.txt file was also saved, including the confidence levels associated with
each raw prediction as shown in Snippet 6.20.

Snippet 6.20: Raw predictions with their confidence level
1 (5), confidence :1.00
2 3/2A, confidence :0.83
3 (2), confidence :1.00
4 (1), confidence :1.00
5 (3), confidence :1.00
6 6/17A, confidence :0.82

84

Post-Processing Function

7 20/17H, confidence :0.80
8 8/5H, confidence :0.70
9 (0), confidence :0.88

10 (6), confidence :1.00
11 8/7A, confidence :0.81
12 5/18V, confidence :0.98
13 3/4V, confidence :0.82
14 11/6V, confidence :0.87
15 5/4omega , confidence :0.73
16 13omega , confidence :1.00

6.8 Weakness and Possible Improvements

The post-processing stage was designed based on the most common conventions
for representing annotations in electronic circuits. As specific rules must be satisfied
in order to reorganize the predicted characters correctly, this approach may not
encompass all possible annotation cases. Consequently, if the final label generated
by the application does not match the expected label despite the characters being
predicted correctly, it is recommended that a new condition is defined for that
specific case. If necessary, an additional case should also be incorporated into the
pp_prediction_case() function.

It is important to note that the first prediction produced by the model determines
which condition will be applied during post-processing. At this stage, an additional
prediction can be made by adjusting the pre-processing parameters for the bounding
boxes and making a new prediction. This ensures that each character or symbol is
reliably detected. The post-processing function can then be applied by specifying
a new condition or reusing an existing one. However, it is essential to verify that
the newly defined condition does not overlap with any of the previously established
cases.

85

Chapter 7

Testing Customized CNN Model
vs Pix2tex

In accordance with the definition of the customized CNN model and the re-
spective post-processing function, the subsequent step is to conduct a series of
tests for the purpose of comparing the predictions generated by the Pix2Tex library
and the predictions performed by the customized CNN with the post-processing stage.

Prior to the comparison, it was necessary to delineate an overview of the ap-
plication utilized for the development of the electrical circuits recognition system.
This comprises a concise description of the functions developed in a preceding study
that were employed during the tests conducted. In a similar manner, this chapter
delineates the methodology employed for the extraction of information and the
management of errors.

86

Testing Customized CNN Model vs Pix2tex

7.1 Intelligence System Description

This work emerged from the necessity to adjust the predictions made by a pre-
defined OCR tool called ‘Pytesseract’, which encountered difficulties in correctly
detecting the annotations of an electronic circuit generated by the intelligent system
developed in Cusano Michele’s research thesis (2024). This intelligent system has
been designed to detect all the components of a given electronic circuit image and
extract the relevant information to solve the circuit. It is capable of recognizing
nodes, components, the orientation of sources, text annotations, label components,
topologies, and bridges, among other elements that may be present. For further
details, refer to [27].

Similarly, all data collected from the circuit is stored in text files for future utiliza-
tion. The final phase of image recognition is the process of graphic reconstruction. To
this end, a versatile data structure was created for deployment through the MATLAB
environment. The intelligent system was developed in Python; however, to regenerate
the image once the detections were made, the information had to be transferred to
MATLAB.

In order to accomplish this, two structures were required: the first, designated as
G, comprises a simplified description of the circuit to be generated, incorporating
rudimentary information regarding the nodes, corners, and components; and the
second, Gdraw, encompasses all the information about annotations, nodes, and edge
coordinates, in addition to the bounding box of the entire circuit. These structures
were utilized to establish a comparison between the original circuit and the circuit
detected following the recognition task. The algorithm created for this purpose is
described in Chapter 8 of the research thesis [27].

From this point, it was possible to perform the comparison between the predictions
made by both methods, Pix2Tex and Customized CNN.

7.1.1 Modification of predefined Annotation function

Initially, the script ‘annotations_ID.py’ developed by Cusano (2024) for the
circuit annotations step was modified in this step. In this script, each annotation
found in the circuit is extracted using the bounding boxes around the annotations.
The resulting images are then saved in a directory associated with the generated
circuit, following the standard format ‘C_n_nodes_b_elements_yymmdd_hh:mm:ss’.
In this format, ‘n’ and ‘b’ are numbers configured during the creation of the circuit
image, and they determine the maximum number of nodes and components that
can be generated. In a similar fashion, the data pertaining to the evaluated circuit,
including but not limited to the number of nodes, components, coordinates, and
bounding boxes, JSON file structures of the circuits, is also stored in this folder.

87

Testing Customized CNN Model vs Pix2tex

Subsequent to the saving of the annotation images, the character recognition
phase is initiated. For this thesis, the ‘detect_annotations_with_contours()’
function of the ‘annotations_ID.py’ script was adapted to incorporate the char-
acter detection using both methods, one using the Pix2Tex library and the other
using the customized CNN model with the post-processing step developed in this work.

The results obtained were then saved in a text file containing the detected strings
along with their bounding boxes coordinates, following the standardized format
text x y w h , as shown in Snippet 7.1.

Snippet 7.1: Resulting prediction for both cases.
1 (3) 0.311276 0.902540 0.028560 0.033132
2 0.1\ Omega 0.209708 0.102001 0.048270 0.023713
3 8mA 0.790695 0.817272 0.047466 0.023713
4 (0) 0.688992 0.351749 0.028560 0.033468
5 8.70\ Omega 0.557254 0.737723 0.048807 0.025059
6 2.6H 0.354519 0.262866 0.048270 0.024891
7 v_ {5} 0.412443 0.940128 0.019576 0.024218
8 0.46F 0.791164 0.437857 0.056718 0.024723
9 80 mF 0.500201 0.437857 0.056449 0.024723

10 i_ {13} 0.146621 0.581988 0.022660 0.027750

7.2 Comparison between Pix2Tex vs Customized CNN

In order to facilitate a comparison between the two methods, the baseline func-
tion ‘Comparison.m’ was employed. The script, originally introduced by Michele
Cusano in [27], was developed in the MATLAB programming environment for the
purpose of completing the image recognition cycle. The procedure was implemented
to automatically generate images of electrical circuits using the service AutoCircuits

[1], which is a web application equipped with a MATLAB back-end that can be used
programmatically to generate abstract circuit descriptions and the associated circuit
diagram.

Subsequent to the image generation, the image recognition algorithm is initiated
for the component and text identification, following the procedure outlined in the
preceding section. The process thus reaches its conclusion with the regeneration of
the circuit diagram based on the predictions obtained by the intelligent system that
has been designed.

The script in reference is responsible for executing the steps delineated in Algo-
rithm 9. The comparison was performed at six different levels, namely:

• checks the number of nodes

88

Testing Customized CNN Model vs Pix2tex

• checks the number of elements

• checks the distribution of node degrees

• checks the isomorphism of the graphs

• checks the isomorphism of the graphs and the preservation of edge labels

• checks the isomorphism of the graphs and the preservation of edge labels and
values.

However, given the scope of this investigation, the most relevant check is the
one relating to the values of the edge labels. If the values stored in the MATLAB
structure ‘G2’ (Pix2tex) or ‘G3’ (customized CNN) coincide with those in the original
structure, the prediction can be said to be correct. Conversely, if a discrepancy is
detected, an error has occurred, and it is marked in a log file created for this scope.

Algorithm 9 Comparison Workflow
Step 1: Circuit generation
Generate circuits automatically.
Step 2: Intelligent system execution
Execute the designed intelligent system for image recognition.
Step 3: Structure creation
Generate G and Gdraw structures from the JSON files generated.
Step 4: Structure comparison
Compare the original G MATLAB structure with the structure created from Pix2Tex
prediction and customized CNN prediction (G2 and G3).

7.3 Errors Detection

The process of error detection occurs concurrently with the execution of the
Comparison.m file. The creation of two text files is fundamental to the logging of
results. The first file, entitled ‘Log_file_execution.txt’, is used to record the in-
formation associated with the state of execution. The file contains the folder name of
the circuit created, along with the state after execution, as illustrated in Snippet 7.2.

In this context, five distinct states can be distinguished:

1. No erros occurred.

2. Strutcture G2 (Pix2tex) values differ from the original structure G, but structure
G3 (Customized CNN) values were correct.

3. Strutcture G3 (Customized CNN) values differ from the original structure G,
but structure G2 (Pix2tex) values were correct.

4. Both structures (G2 and G3) differed from the G structure.

89

Testing Customized CNN Model vs Pix2tex

5. Error during execution of the Python script.

Snippet 7.2: Log execution file.
1 C_6_nodes_7_elements_20250928_141621 .png: no errors occurred
2 C_6_nodes_7_elements_20250928_141730 .png: no errors occurred
3 C_6_nodes_7_elements_20250928_141831 .png: Python went wrong
4 C_6_nodes_7_elements_20250928_141940 .png: no errors occurred
5 C_6_nodes_7_elements_20250928_142044 .png: no errors occurred
6 C_6_nodes_7_elements_20250928_142202 .png: no errors occurred
7 C_6_nodes_7_elements_20250928_142306 .png: no errors occurred
8 ...
9 C_6_nodes_7_elements_20250928_180602 .png: both went wrong

10 C_6_nodes_7_elements_20250928_180719 .png: no errors occurred

In a similar manner, the second file, entitled ‘Errors.csv’, comprises a counter
for five distinct cases. This file contains two columns, one indicating the case and
the second with the counter, [number, counter] as shown in Snippet 7.3. The
cases delineated in this file are analogous to the previous one, with the incorporation
of two additional cases. The following list explains the meaning of each number.

1. Number of times the entire execution did not generate an error (circuits are
identical)

2. Number of times both MATLAB structures G2 and G3 were not identical to
the original structure G.

3. Number of times the MATLAB structure G3 (Customized CNN) was not
identical to the original one (circuits are not identical). While the structure G2

(Pix2tex) was identical to the original G.

4. Number of times the MATLAB structure G2 (Pix2tex) was not identical to the
original one (circuits are not identical). While the structure G3 (Customized
CNN) was identical to the original G.

5. Number of times the Python execution failed.

6. Number of times the script has been executed.

Snippet 7.3: Errors counter.
1 1 ,324
2 2,1
3 3,2
4 4,0
5 5,4
6 6 ,331

90

Testing Customized CNN Model vs Pix2tex

If any of the aforementioned errors occur during the execution of the comparison
‘Comparison.m’, the information pertaining to the circuit (images of the circuit,
annotations, the circuit, the circuit nodes, the JSON structure, and *.txt files
associated with component recognition and labels) is stored in a specific folder. This
process facilitates access to the errors produced, thereby enabling subsequent analysis.

Once the information was collected in these two files, Snippet 7.2 and Snip-
pet 7.3, a script was created to separate the directories containing errors according to
the categories mentioned above. Following the categorization of errors, an assessment
was conducted to determine the number of images that generated errors within a
circuit folder. For the purpose of comparison, the *.txt files (Snippet 7.1) for both
Pix2Tex and CNN method created during the recognition of the circuit annotations
(labels), were utilized. The predicted string labels for both methods were compared,
with any discrepancies recorded as an error. From this point onward, the image that
was misclassified can be more easily identified. It is important to clarify that, in
Snippet 7.1, each string label represents an annotation on the circuit image.

The results obtained after counting the number of images misclassified in the
circuits are saved in a *.txt file, as presented in Snippet 7.4

Snippet 7.4: Images misclassified per circuit.
1 Processing folder : pix2tex_went_wrong_cnn_no
2 Folder : C_6_nodes_9_elements_20250925_171741
3 Number of annotations : 26
4 Total errors : 1
5
6 Processing folder : cnn_went_wrong_pix2tex_no
7 Folder : C_6_nodes_9_elements_20250925_131348
8 Number of annotations : 30
9 Total errors : 1

10 Folder : C_6_nodes_9_elements_20250925_141446
11 Number of annotations : 27
12 Total errors : 1
13
14 Processing folder : Both_prediction_wrong
15 Folder : C_6_nodes_9_elements_20250925_125932
16 Number of annotations : 26
17 Total errors : 0
18 Folder : C_6_nodes_9_elements_20250925_142508
19 Number of annotations : 31
20 Total errors : 0
21
22 Processing folder : Python_errors
23 Folder : C_6_nodes_9_elements_20250925_120253
24 Number of annotations : 26
25 Total errors : 0

91

Testing Customized CNN Model vs Pix2tex

26 Folder : C_6_nodes_9_elements_20250925_125502
27 Number of annotations : 32
28 Total errors : 2
29 Folder : C_6_nodes_9_elements_20250925_140737
30 Number of annotations : 19
31 Total errors : 1

7.3.1 Process Pix2Tex output

The expression resulting from Pix2Tex is a mathematical LaTeX expression that
primarily consists of a series of characters and commands commonly utilized in
this format. In order to facilitate a comparison between Pix2Tex and the CNN +
post-processing function, it is necessary to employ a more elementary text format
for the predictions made, whilst preserving the structure of the expression, and the
mathematical commands and symbols that may be generated by this OCR tool.

The latex2text() function was developed for the purpose of extracting all
mathematical commands, characters, and superfluous spaces and font styles from the
raw Pix2Tex expression. It receives the predicted label string with the mathematical
LaTeX format, process the math string via regular expressions, and return a simplified,
standardized "text-like" version of it with the minimal markup. Some details of the
standardizations applied to clean expressions are mentioned below.

• Cleans LaTeX formatting:
Removes spacing commands like \;, \,, ~, and unnecessary spaces.
Deletes font/style commands (\mathbf, \mathit, \textbf, etc.).

• Standardizes key math structures:
Detects and protects:
Fractions cases (\frac{...}{...})
Subscripts cases (_{...})
Superscripts cases (^{...})

• Removes unnecessary braces and backslashes:
It deletes any extra {} outside the protected structures.
Removes unnecessary \left and \right. To ensure these structures are not
broken when braces are removed later.

• among others.

The following segment illustrates the functionality of the function:

Snippet 7.5: Example of transformation using the latex2text function
1 Input : \ mathbf {\ frac {11}{15}}~ v_ {6}
2 Output : \frac {11}{15} v_ {6}

92

Testing Customized CNN Model vs Pix2tex

7.3.2 Testing Configuration

The performance of the Pix2Tex and Customized CNN methods was evaluated
through three tests, which were executed simultaneously. The quantity of circuits
generated is dependent upon the time that is set for execution. For first test, a
duration of 90,000 seconds was established. For the second test, the execution time
was set at 80,000 seconds.

The following section will provide a presentation of the results.

93

Testing Customized CNN Model vs Pix2tex

7.4 RESULTS

7.4.1 Correct Detections

The following are illustrative examples of the circuits generated and correctly
recognized for each of the two methods: Pix2Tex and CNN.

A)

B)

C)

Figure 7.1: A) Original Circuit, B) Annotations predicted by Pi2Tex, C)
Annotations predicted by CNN

94

Testing Customized CNN Model vs Pix2tex

A)

B)

C)

Figure 7.2: A) Original Circuit, B) Annotations predicted by Pi2Tex, C)
Annotations predicted by CNN

95

Testing Customized CNN Model vs Pix2tex

A)

B)

C)

Figure 7.3: A) Original Circuit, B) Annotations predicted by Pi2Tex, C)
Annotations predicted by CNN

96

Testing Customized CNN Model vs Pix2tex

The three illustrations presented in Figures 7.1, 7.2, and 7.3 exemplify three
distinct instances of a correct execution. As demonstrated in the electrical circuit
diagram A), the numerical values assigned to the labels are consistent with the values
predicted by both Pix2Tex and the customized CNN methods B) and C), thereby
facilitating the reconstruction of the original image.

As previously stated, two tests were conducted in order to evaluate the recognition
performance of the two methods. During the execution of these tests, the majority of
the generated circuits demonstrated correctly classified annotations for both methods.
However, it should be noted that in certain instances, errors were generated and
classified into a single category. A comprehensive overview of the errors detected in
these tests is provided in the following section.

7.4.2 TEST 1

Total number of circuits Circuits without errors Circuits with errors
Total 1253 1190 63

% 100% 95.22% 4.78%

Table 7.1: Circuits statistics of Test 1.

The results obtained in Test 1 are displayed in Table 7.1. A total of 1253 circuits
were generated, of which 1190 corresponded to circuits that did not report errors
during execution, representing 95.22% of the generated diagrams. Meanwhile, 63
of the circuits, representing 4.78%, presented some of the errors classified into the
following four categories:

(i) Category 1: The annotation predictions made by Pix2Tex correspond to the
values of the original circuit. In contrast, the annotation prediction performed
by CNN did not correspond to the values of the original circuit.

(ii) Category 2: The annotation predictions made by CNN correspond to the
values of the original circuit. In contrast, the annotation prediction performed
by Pix2Tex did not correspond to the values of the original circuit.

(iii) Category 3: Both predictions did not match the values of the original circuit.

(iv) Category 4: Errors generated during execution of the Python script.

As illustrated in Table 7.2, the errors generated in Test 1 are classified into the
four categories aforementioned for the purpose of analysis. In Category 1, 6 errors
were identified in instances where the predictions derived from the customized CNN
were erroneous yet were accurately identified by Pix2Tex. Furthermore, column 3 of
Table 7.2 demonstrates the number of errors per annotation (label) of the circuit.
For instance, consider a circuit containing 21 annotations, with only one misclassified

97

Testing Customized CNN Model vs Pix2tex

image label; the error per images is 1/21.

Error category
Number of
Errors per
Category

Errors per
number of

images in the
circuit

Type of Errors

Category 1:
CNN structure was not
equal to the original G.
Pix2tex structure was
identical to the original
G.

6

1/21
1/18
1/26
1/26
1/23
1/28

• 4 Errors due to
image cropping.
• 2 Classification

error.

Category 2:
Pix2tex structure was
not equal to the original
G.
CNN structure was iden-
tical to the original G.

10

1/18
1/22
1/18
1/18
1/17
1/19
...

• 8 Classification
error.

• 2 Errors due to
the conversion to

LaTeX cleaner
format.

Category 3:
Both predictions were
wrong.
Both structures differed
from the original G.

17

2/23
1/20
1/18
1/23
0/25
1/14
2/19
2/25
1/18
1/21
...

• Overlapping
Labels.

• Errors due to
image cropping.

Category 4:
Python Errors

28 N/A

• Overlapping
Labels.

• Errors due to
image cropping.

Table 7.2: Summary of errors produced in Test 1.

In Category 2, 10 errors were identified, corresponding to incorrect detections
by Pix2Tex, yet these were correctly identified by the Customized CNN. Of the 10 cir-
cuits that exhibited an error during the identification process, only a single annotation
was misclassified with respect to the set of total labels allocated to that specific circuit.

98

Testing Customized CNN Model vs Pix2tex

Similarly, errors classified under Category 3 accounted for 17 cases. The mis-
classifications are attributed to the fact that some annotations were not correctly
identified during the process of label extraction by the Intelligent System, which
employed the YOLO library. During the annotation detection and cropping stage,
some bounding boxes extracted other nearby elements that affected label prediction.

Finally, Category 4 indicates errors generated during the execution of the Python
script. The intelligent system developed in [27] for the recognition of components,
nodes, annotations, and the extraction of circuit information contained an error
related to the libraries implemented for these tasks. Consequently, these represent
propagation errors that have the potential to influence the result.

Visual representations of these errors are presented in the section 7.5.

7.4.3 Percentage of error considering each method separately

• Category 1

Considering only the errors generated by CNN and assuming that those of
Pix2Tex are correct, the percentage of errors during the classification from
CNN is as follows.

Error per circuit using CNN = 30 + 17 + 10
1253 + 6 = 0.046 ≈ 4.52%

• Category 2

Similarly, considering only the errors generated by Pix2Tex and assuming that
those of CNN are correct, the percentage of errors during the classification
from Pix2Tex is as follows.

Error per circuit using P ix2Tex = 30 + 17 + 6
1253 + 10 = 0.053 ≈ 4.19%

Prior to the execution of Test 2, modifications were implemented in the processing
function latex2text(), which applies the conversion of Pix2TeX’s raw predictions
into a more refined, text-style format.

Some of these include: Adding a new regular expression to remove all commands
related to font style, such as ‘\mathbf’, ‘\mathit’, and ‘\textbf’, from the final
predicted expression. Converting similar visual characters, such as ’I’ misclassified
as ’l’, from the prediction. Additionally, some adjustments are required to clean up
expressions containing subscripts with commands such as ‘\textrm{...}’, which
were not considered during the first test.

99

Testing Customized CNN Model vs Pix2tex

In a similar manner, the postprocessing function of CNN was modified due to the
identification of a bug in the function during the initial test. It was observed that
one of the conditions incorporated a parameter that was not being updated during
execution. This resulted in the occurrence of errors during prediction.

100

Testing Customized CNN Model vs Pix2tex

7.4.4 TEST 2

Total number of circuits Circuits without errors Circuits with errors
Total 962 943 19

% 100% 98.1% 1.9%

Table 7.3: Circuits statistics of Test 2.

Error category
Number of
Errors per
Category

Errors per
number of

images in the
circuit

Type of Errors

Category 1:
CNN structure was not
equal to the original G.
Pix2tex structure was
identical to the original
G.

2
1/19
1/21

• 1 Errors due to
image cropping.

• 1 Classification
error.

Category 2:
Pix2tex structure was
not equal to the original
G.
CNN structure was iden-
tical to the original G.

1 1/21

• 1 Error due to
the conversion to

Latex cleaner
format.

Category 3:
Both predictions were
wrong.
Both structures differed
from the original G.

4

1/24
1/23
1/22
1/21

• Overlapping
Labels.

• Errors due to
image cropping.

Category 4:
Python Errors

12 N/A

• Overlapping
Labels.

• Errors due to
image cropping.

Table 7.4: Summary of errors produced in Test 2.

For the final experiment, the circuit generation time was increased. A total of
962 circuits were generated, of which 943 did not present any errors during execution
or during the recognition of the circuit annotations. The error rate was found to be
1.9%, with only 19 circuits experiencing at least one error in the categories mentioned
above, see Table 7.3.

As demonstrated in Table 7.4, a decrease in the number of errors produced in
each category was observed in comparison to the preceding tests. This is attributed to
the adjustments made between tests. The modification of post-processing functions in

101

Testing Customized CNN Model vs Pix2tex

the case of CNN, or the LaTeX conversion function in the case of Pix2Tex, facilitates
the rectification of potential future errors. In addition, the nature of the errors
observed in this study was comparable to those previously identified in Test 1.

7.4.5 Percentage of error considering each method separately

• Category 1

Considering only the errors generated by CNN and assuming that those of
Pix2Tex are correct, the percentage of errors during the classification from
CNN is as follows.

Error per circuit using CNN = 2 + 4 + 12
962 + 1 = 0.018 ≈ 1.86%

• Category 2

If we consider only the errors generated by the Pix2Tex and assume as correct
those of CNN, the percentage of error is the following.

Error per circuit using P ix2Tex = 1 + 4 + 12
962 + 2 = 0.017 ≈ 1.76%

7.5 Examples of Types of Errors Encountered

7.5.1 Category 1

A

102

Testing Customized CNN Model vs Pix2tex

B

C

D

Figure 7.4: Examples of Category 1 errors.

Table 7.5: Errors detailed for Category 1.

Type of Error
Error per

Annotation
Original

Annotation
Detected by

CNN
Detected by

Pix2Tex
Image

Due to a mis-
classifications.

1/30 4.8µF 48µF 4.8µF A

Due to the
image cropping

process.

1/21
1/18
1/30

8.2mF
0.4mV
1.1V13

38.2mF
).4mV
1.11V13

8.2mF
0.4mV
1.1V13

B
C
D

Table 7.5 provides a comprehensive overview of the errors identified in Category
1 during the experimental phase. As demonstrated in the table, only one image of
the annotations of a single circuit was found to contain an error, due to two factors:
character misclassifications or errors resulting from image cropping. Of the 2,000
circuit images that were assessed in the tests, a mere two errors were attributable
to misclassifications for the Customized CNN, as evidenced in Table 7.5. The

103

Testing Customized CNN Model vs Pix2tex

residual errors were associated with the cropping process that was employed during
the extraction of the annotations from the original circuit.

CNNs are more susceptible to misclassifications in the presence of any non-
standardized shapes that may be in the image, whether due to an error during
cropping of the annotation, clipping characters or overlapping labels. These erroneous
characters are not predefined in the dataset utilized for the training of the network.

104

Testing Customized CNN Model vs Pix2tex

7.5.2 Category 2

A

B

C

Figure 7.5: Examples of Category 2 errors.

105

Testing Customized CNN Model vs Pix2tex

Table 7.6: Errors detailed for Category 2.

Type of Error
Error per

Annotations
Original

Annotation
Detected by

CNN
Detected by

Pix2Tex
Image

Due to a mis-
classification

1/28
1/23
1/26

2
15V13

0.4A
0.2F

2
15V13

0.4A
0.2F

frac215V13

omicron.4A

omicron.2F

A
B
C

Errors pertaining to Category 2 are predominantly attributable to misclassifi-
cations or arise during the conversion of the predicted strings to LaTeX format, as
illustrated in Table 7.6. It has been observed that the function that converts the
raw strings predicted by Pix2Tex to LaTeX format occasionally generates incomplete
processing of the annotation string. These inconsistencies are the result of the
application of a regular expression in order to clean up the raw output produced by
Pix2Tex.

7.5.3 Category 3

A

B

Figure 7.6: Examples of Category 3 errors.

In instances where both models failed during the circuit annotation predictions,
i.e. in Category 3, the errors produced are primarily attributable to the annotation

106

Testing Customized CNN Model vs Pix2tex

extraction process. These errors are attributed to flaws in the Python YOLO library
itself, which occasionally experiences difficulties in accurately identifying the label
during detection when two labels are in close proximity to each other. This directly
impacts the prediction of annotations, as these are the images that both models
will subsequently evaluate. Figure 7.6 depicts some examples of errors due to this
category.

7.6 Recommendations for future works

The results demonstrated an optimal performance for the methods under evalua-
tion. Errors in Categories 1 and 2 can be rectified by modifying the relevant functions.
In the case of Pix2Tex, the function that converts the strings into text-style represen-
tations is applied subsequent to the prediction being produced. It is recommended
that this function be adjusted in order to minimize the number of errors. Similarly,
the adjustment of the post-processing function for the Customized CNN has been
demonstrated to assist in the reduction of misclassifications of annotations.

107

Chapter 8

Conclusions

The motivation for this investigation stems from the necessity to rectify errors
that occur during the process of detecting annotations in an electrical circuit. The
intelligent system previously developed by a student utilized Pytesseract as an OCR
tool for label detection. However, the reliability of this model for detecting the
annotation was found to be deficient, with the model frequently generating erroneous
detections.

In this research project, a convolutional model was implemented for the detection
of characters comprising mathematical symbols, alphanumeric characters, and some
letters of the Greek alphabet. The neural network was trained with a dataset that
included images of these characters until the best accuracy was achieved. Subsequently,
a post-processing function was applied to assign a meaning to the characters predicted
by the CNN in order to standardize the format of annotations. A predefined Python
tool, Pix2Tex, was utilized to detect mathematical formulas in images and convert
them into text. In order to ascertain the most efficacious method for detecting circuit
annotations, both approaches were executed concurrently during the generation of
the circuit.

The preceding stages were successfully executed by an automated code capable of
generating and testing images of electrical circuits. The findings from both methods
demonstrated optimal performance in a series of tests conducted over a defined time
period. It is evident that errors were identified during the prediction process. While
these errors may not constitute the majority of the results obtained, they must
nevertheless be taken into consideration when contemplating future deployment of
the application.

Finally, it is important to mention that this application is a work in progress.
It is recommended that handwritten character images be incorporated into the
convolutional model, with the aim of creating a more robust model capable of
detecting and identifying circuit labels from handwritten images.

108

Appendix A

Additional Functions

A.1 Pseudo-code for pattern_detection() function

This method is used during the postprocessing function of annotations containing
fractional cases, comprising controlled sources or passive components.

Algorithm 10 Pattern Detection Function (Part 1)
Require: merge_text, old_prediction (optional), old_list (optional)

1: Initialize text = ""

2: —SECTION I: Currents (i, I) —
3: if pattern matches current fraction (e.g., 5.l8-3) then
4: Extract numerator, token, subscript, denominator
5: Refine values using old_prediction
6: Reorder components with controlling_order()
7: Format as $numerator/denominator i_{subscript}$
8: return formatted text
9: end if

10: if pattern matches misclassified ’i’ as ’,’ current (e.g., 4,7-5) then
11: Replace token (e.g., comma → I)
12: Reorder and return $numerator/denominator I_{subscript}$
13: end if
14: if pattern matches simplified form, when point is detected first that the stem of

the character ’i’ (e.g., 9.l-54) then
15: Parse and reorder controlling_order()
16: return formatted current expression
17: end if
18: if pattern includes subscript letter (e.g., 5.lA-3) then
19: Adjust subscript with old_prediction
20: Handle 14-case and reorder
21: return $numerator/denominator i_{A}$
22: end if

109

Additional Functions

Algorithm 11 Pattern Detection Function (Part 2)

1: — SECTION 2: Resistors (Ω) —
2: if pattern matches resistor (e.g., 16omega-17) then
3: Extract numerator and denominator
4: controlling_order()
5: return $numerator/denominator ω$
6: end if

7: —SECTION 3: Voltages (V, v, U) —
8: if pattern matches voltage fraction (e.g., 3V-20) then
9: Normalize voltage symbol

10: Handle missing or incorrect subscripts
11: Fix wrong digits (I/L/l 1)
12: Apply controlling_order() function.
13: return $numerator/denominator V_{subscript}$
14: end if

15: —SECTION 4: Other components (R, L, C, A, F, H, etc.) —
16: if pattern matches generic component (e.g., 20L-7) then
17: Extract component symbol
18: Apply controlling_order() correction and reorder.
19: return $numerator/denominator Letter$
20: end if

110

Bibliography

[1] Stefano Grivet-Talocia and Politecnico di Torino. autoCircuits: Automated
Generation of Circuit Problems. Accessed: 2025-10-09. 2018. url: https://
www.autocircuits.org/autocir_home.html (cit. on pp. 1, 88).

[2] Ayushi Chahal and Preeti Gulia. “Machine Learning and Deep Learning”. In:
International Journal of Innovative Technology and Exploring Engineering
(IJITEE) 8.12 (Oct. 2019), pp. 4910–4914. issn: 2278-3075. doi: 10.35940/
ijitee.L3550.1081219. url: https://www.ijitee.org/portfolio-item/
L35501081219/ (cit. on pp. 5, 7–9).

[3] Koosha Sharifani and Mahyar Amini. “Machine Learning and Deep Learning:
A Review of Methods and Applications”. In: World Information Technology
and Engineering Journal 10.07 (2023), pp. 3897–3904. url: https://ssrn.
com/abstract=4458723 (cit. on p. 5).

[4] Christian Janiesch, Patrick Zschech, and Kai Heinrich. “Machine learning
and deep learning”. In: Electronic Markets 31.3 (2021), pp. 685–695. doi:
10.1007/s12525-021-00475-2. url: https://doi.org/10.1007/s12525-
021-00475-2 (cit. on pp. 5, 6).

[5] IBM. What Is Deep Learning? https://www.ibm.com/think/topics/deep-
learning. Accessed: 2025-04-27. 2025 (cit. on pp. 6–9).

[6] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep Learning”. In: Nature
521.7553 (2015), pp. 436–444. doi: 10.1038/nature14539. url: https://www.
nature.com/articles/nature14539 (cit. on pp. 6, 7).

[7] Rana Sarker, H. M. Rasel, ABM Shafkat Hossain, and Md. Abu Saleh. Integrat-
ing Climate Change Variables in Relative Humidity Prediction with Multivariate
ARIMA and RNN Models. Preprint. 2023. url: https://www.researchgate.
net/publication/376089842_Integrating_Climate_Change_Variables_
in_Relative_Humidity_Prediction_with_Multivariate_ARIMA_and_RNN_
Models (cit. on p. 7).

[8] DeepAI. Distributed Representation. https://deepai.org/machine-learni
ng-glossary-and-terms/distributed-representation. Accessed: 2025-04-
28. 2025 (cit. on p. 7).

111

https://www.autocircuits.org/autocir_home.html
https://www.autocircuits.org/autocir_home.html
https://doi.org/10.35940/ijitee.L3550.1081219
https://doi.org/10.35940/ijitee.L3550.1081219
https://www.ijitee.org/portfolio-item/L35501081219/
https://www.ijitee.org/portfolio-item/L35501081219/
https://ssrn.com/abstract=4458723
https://ssrn.com/abstract=4458723
https://doi.org/10.1007/s12525-021-00475-2
https://doi.org/10.1007/s12525-021-00475-2
https://doi.org/10.1007/s12525-021-00475-2
https://www.ibm.com/think/topics/deep-learning
https://www.ibm.com/think/topics/deep-learning
https://doi.org/10.1038/nature14539
https://www.nature.com/articles/nature14539
https://www.nature.com/articles/nature14539
https://www.researchgate.net/publication/376089842_Integrating_Climate_Change_Variables_in_Relative_Humidity_Prediction_with_Multivariate_ARIMA_and_RNN_Models
https://www.researchgate.net/publication/376089842_Integrating_Climate_Change_Variables_in_Relative_Humidity_Prediction_with_Multivariate_ARIMA_and_RNN_Models
https://www.researchgate.net/publication/376089842_Integrating_Climate_Change_Variables_in_Relative_Humidity_Prediction_with_Multivariate_ARIMA_and_RNN_Models
https://www.researchgate.net/publication/376089842_Integrating_Climate_Change_Variables_in_Relative_Humidity_Prediction_with_Multivariate_ARIMA_and_RNN_Models
https://deepai.org/machine-learning-glossary-and-terms/distributed-representation
https://deepai.org/machine-learning-glossary-and-terms/distributed-representation

BIBLIOGRAPHY

[9] GeeksforGeeks. NumPy: Types of Autoencoders. Accessed: 2025-10-06. 2025.
url: https://www.geeksforgeeks.org/numpy/types-of-autoencoders/
(cit. on p. 8).

[10] Semiconductor Engineering. Generative Adversarial Network (GAN). Accessed:
2025-10-06. 2025. url: https://semiengineering.com/knowledge_centers/
artificial-intelligence/neural-networks/generative-adversarial-
network-gan/ (cit. on p. 9).

[11] A.R. Raut, A.S. Patil, and S.S. Patil. “Character Recognition using Machine
Learning and Deep Learning - A Survey”. In: 2020 International Conference on
Smart Electronics and Communication (ICOSEC). IEEE. 2020, pp. 645–650.
doi: 10.1109/ICOSEC49089.2020.9215282. url: https://ieeexplore.ieee.
org/document/9167649 (cit. on pp. 10, 11).

[12] Haisam Abdel Malak. 7 Components of OCR to Master. Accessed: 2025-04-25.
Feb. 2025. url: https://theecmconsultant.com/what-are-the-component
s-of-ocr/ (cit. on p. 11).

[13] Timea Bezdan and Neboja Baanin Dakula. “Convolutional Neural Network
Layers and Architectures”. In: Proceedings of Sinteza 2019 International
Scientific Conference on Information Technology and Data Related Research.
Belgrade, Serbia: Singidunum University, 2019, pp. 445–451. doi: 10.15308/
Sinteza-2019-445-451 (cit. on pp. 12, 13, 16).

[14] EITCA Academy. What are the main components of a convolutional neural
network (CNN) and how do they contribute to image recognition? https :
//eitca.org/artificial-intelligence/eitc-ai-dltf-deep-learning-
with-tensorflow/convolutional-neural-networks-in-tensorflow/co
nvolutional-neural-networks-basics/examination-review-convoluti
onal-neural-networks-basics/what-are-the-main-components-of-a-
convolutional-neural-network-cnn-and-how-do-they-contribute-to-
image-recognition/. Published by EITCA Academy, accessed October 14,
2025. Aug. 2023 (cit. on pp. 12, 13).

[15] Xia Zhao, Limin Wang, Yufei Zhang, Xuming Han, Muhammet Deveci, and Mi-
lan Parmar. “A Review of Convolutional Neural Networks in Computer Vision”.
In: Artificial Intelligence Review 57.4 (2024). Published online 23March2024,
p. 99. doi: 10.1007/s10462-024-10721-6. url: https://doi.org/10.1007/
s10462-024-10721-6 (cit. on pp. 14–18).

[16] Mohammad Mustafa Taye. “Theoretical Understanding of Convolutional Neural
Network: Concepts, Architectures, Applications, Future Directions”. In: Com-
putation 11.3 (2023). Open Access; EISSN 2079-3197, p. 52. doi: 10.3390/com
putation11030052. url: https://doi.org/10.3390/computation11030052
(cit. on pp. 14, 17).

112

https://www.geeksforgeeks.org/numpy/types-of-autoencoders/
https://semiengineering.com/knowledge_centers/artificial-intelligence/neural-networks/generative-adversarial-network-gan/
https://semiengineering.com/knowledge_centers/artificial-intelligence/neural-networks/generative-adversarial-network-gan/
https://semiengineering.com/knowledge_centers/artificial-intelligence/neural-networks/generative-adversarial-network-gan/
https://doi.org/10.1109/ICOSEC49089.2020.9215282
https://ieeexplore.ieee.org/document/9167649
https://ieeexplore.ieee.org/document/9167649
https://theecmconsultant.com/what-are-the-components-of-ocr/
https://theecmconsultant.com/what-are-the-components-of-ocr/
https://doi.org/10.15308/Sinteza-2019-445-451
https://doi.org/10.15308/Sinteza-2019-445-451
https://eitca.org/artificial-intelligence/eitc-ai-dltf-deep-learning-with-tensorflow/convolutional-neural-networks-in-tensorflow/convolutional-neural-networks-basics/examination-review-convolutional-neural-networks-basics/what-are-the-main-components-of-a-convolutional-neural-network-cnn-and-how-do-they-contribute-to-image-recognition/
https://eitca.org/artificial-intelligence/eitc-ai-dltf-deep-learning-with-tensorflow/convolutional-neural-networks-in-tensorflow/convolutional-neural-networks-basics/examination-review-convolutional-neural-networks-basics/what-are-the-main-components-of-a-convolutional-neural-network-cnn-and-how-do-they-contribute-to-image-recognition/
https://eitca.org/artificial-intelligence/eitc-ai-dltf-deep-learning-with-tensorflow/convolutional-neural-networks-in-tensorflow/convolutional-neural-networks-basics/examination-review-convolutional-neural-networks-basics/what-are-the-main-components-of-a-convolutional-neural-network-cnn-and-how-do-they-contribute-to-image-recognition/
https://eitca.org/artificial-intelligence/eitc-ai-dltf-deep-learning-with-tensorflow/convolutional-neural-networks-in-tensorflow/convolutional-neural-networks-basics/examination-review-convolutional-neural-networks-basics/what-are-the-main-components-of-a-convolutional-neural-network-cnn-and-how-do-they-contribute-to-image-recognition/
https://eitca.org/artificial-intelligence/eitc-ai-dltf-deep-learning-with-tensorflow/convolutional-neural-networks-in-tensorflow/convolutional-neural-networks-basics/examination-review-convolutional-neural-networks-basics/what-are-the-main-components-of-a-convolutional-neural-network-cnn-and-how-do-they-contribute-to-image-recognition/
https://eitca.org/artificial-intelligence/eitc-ai-dltf-deep-learning-with-tensorflow/convolutional-neural-networks-in-tensorflow/convolutional-neural-networks-basics/examination-review-convolutional-neural-networks-basics/what-are-the-main-components-of-a-convolutional-neural-network-cnn-and-how-do-they-contribute-to-image-recognition/
https://eitca.org/artificial-intelligence/eitc-ai-dltf-deep-learning-with-tensorflow/convolutional-neural-networks-in-tensorflow/convolutional-neural-networks-basics/examination-review-convolutional-neural-networks-basics/what-are-the-main-components-of-a-convolutional-neural-network-cnn-and-how-do-they-contribute-to-image-recognition/
https://doi.org/10.1007/s10462-024-10721-6
https://doi.org/10.1007/s10462-024-10721-6
https://doi.org/10.1007/s10462-024-10721-6
https://doi.org/10.3390/computation11030052
https://doi.org/10.3390/computation11030052
https://doi.org/10.3390/computation11030052

BIBLIOGRAPHY

[17] Claudio Filipi Gonçalves dos Santos and João Paulo Papa. Avoiding Overfitting:
A Survey on Regularization Methods for Convolutional Neural Networks. CoRR,
arXiv:2201.03299. 27 pages; CCBY4.0 license. Jan. 2022. url: https://arxiv.
org/abs/2201.03299 (cit. on p. 17).

[18] Muhammad Syahid Rizky, Dede Luthfi Cahya, and Aryo Pinandito Wibawa.
“Text recognition on images using pre-trained CNN”. In: arXiv preprint arXiv:2302.05105
(2023). url: https://arxiv.org/abs/2302.05105 (cit. on p. 18).

[19] Paras Varshney. VGGNet-16 architecture: A complete guide. Kaggle Notebook.
[Images]. 2020. url: https://www.kaggle.com/code/blurredmachine/
vggnet-16-architecture-a-complete-guide (cit. on p. 19).

[20] Lukas Blecher. pix2tex. https://pypi.org/project/pix2tex/. Accessed:
2025-08-07 (cit. on p. 20).

[21] Sciweavers. LaTeX equation editor. Accessed May 18, 2025. n.d. url: https:
//www.sciweavers.org/free-online-latex-equation-editor (cit. on
p. 23).

[22] T. E. de Campos, B. R. Babu, and M. Varma. “Character Recognition in
Natural Images”. In: Proceedings of the International Conference on Computer
Vision Theory and Applications (VISAPP). Lisbon, Portugal, 2009, pp. 273–280.
url: http://www.ee.surrey.ac.uk/CVSSP/demos/chars74k/ (cit. on p. 24).

[23] German Ros, Laura Sellart, Joanna Materzynska, David Vazquez, and Antonio
M Lopez. “The SYNTHIA Dataset: A Large Collection of Synthetic Images for
Semantic Segmentation of Urban Scenes”. In: arXiv preprint arXiv:1708.01566
(2017) (cit. on p. 25).

[24] Luis Perez and Jason Wang. “The effectiveness of data augmentation in image
classification using deep learning”. In: arXiv preprint arXiv:1712.04621 (2017)
(cit. on p. 25).

[25] TensorFlow. Keras: The high-level API for TensorFlow. https://www.te
nsorflow.org/guide/keras. Last updated June 8, 2023. Retrieved from
https://www.tensorflow.org/guide/keras. June 2023 (cit. on p. 31).

[26] Diederik P. Kingma and Jimmy Lei Ba. “Adam: A method for stochastic
optimization”. In: arXiv preprint arXiv:1412.6980 (2015). url: https://
arxiv.org/abs/1412.6980 (cit. on p. 40).

[27] Michele Cusano. “Circuits and graphs recognition using Artificial Intelligence
and Machine Learning techniques”. Relator: Stefano Grivet Talocia. Master’s
thesis. Turin, Italy: Politecnico di Torino, 2024. url: http://webthesis.
biblio.polito.it/id/eprint/31028 (cit. on pp. 87, 88, 99).

113

https://arxiv.org/abs/2201.03299
https://arxiv.org/abs/2201.03299
https://arxiv.org/abs/2302.05105
https://www.kaggle.com/code/blurredmachine/vggnet-16-architecture-a-complete-guide
https://www.kaggle.com/code/blurredmachine/vggnet-16-architecture-a-complete-guide
https://pypi.org/project/pix2tex/
https://www.sciweavers.org/free-online-latex-equation-editor
https://www.sciweavers.org/free-online-latex-equation-editor
http://www.ee.surrey.ac.uk/CVSSP/demos/chars74k/
https://www.tensorflow.org/guide/keras
https://www.tensorflow.org/guide/keras
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
http://webthesis.biblio.polito.it/id/eprint/31028
http://webthesis.biblio.polito.it/id/eprint/31028

	Introduction
	State of Art
	Machine Learning and Deep Learning
	Types of Deep Learning Architectures
	Convolutional Neuronal Networks (CNNs)
	Recurrent Neuronal Networks (RNNs)
	Distributed Representation
	Autodecoders
	Generative Adversarial Neural Network (GAN)

	Optical Character Recognition
	Convolutional Neural Network Architecture Overview
	Convolutional Layer
	Pooling Layer
	Activation Function
	Sigmoid
	Tanh
	Rectifier Linear Unit (ReLU)
	Softmax
	Fully-Connected Layer or Dense Layer
	Regularization
	Dropout
	Cross Entropy Loss-Function

	Image Classification
	VGGNet Model
	Pix2Tex

	Dataset Generation
	Dataset Generation
	Character Generation Algorithm
	Chars74K-Fonts Dataset
	Data Augmentation
	Geometric Transformations
	Color Space Adjustments
	Noise Injections
	Pixelation
	Other Techniques

	Model Generation and Evaluation
	Packages
	Script Description
	Loading Dataset Function
	One-Hot Encoder

	Pre-processing Techniques applied to the Images
	Resizing
	Normalization

	Pre-processing Techniques applied to the Bounding Boxes for Detection
	Greyscale
	Gaussian Blur
	Thresholding-Base Image
	Denoising Image

	Model Development and Experimental Progression
	Initial Experiments
	VGG-16 model
	APROACH 1: VGG16 with 12 Frozen Layers
	APPROACH 2: VGG16 with 6 Frozen Layers
	Customized CNN
	Customized CNN Layers

	Training Function
	Results of First Models Experiments
	Model Fine-Tuning the Customized CNN
	Results obtained after Model Fine-Tuning
	Comparison with the baseline model
	Weakness of the customized CNN

	Main Function
	Calling the main functions
	STEP 1: Load CNN model
	STEP 2: Load class labels
	STEP 3: Prediction Phase (predict_characters())
	Algorithm

	STEP 4: Post-process function post-processing()
	STEP 5: Convert to LaTeX format
	STEP 6: Log results
	STEP 7: Return final output

	Post-Processing Function
	Post-Processing Function
	Overview

	Processing Steps
	STEP 1: Inputs of the Post-Processing method
	STEP 2: Logical Conditions Applied to Predictions
	CONDITIONS

	STEP 3: Post-processing Prediction Cases Method
	Inputs:
	Algorithm
	case = 1: SIMPLE SUBSCRIPTS SUCH AS 8I2 OR 3VA
	case = 4: SCIENTIFIC NOTATION WITH SUPERSCRIPTS
	case = 7: LABELS CONTAINING FRACTIONAL VALUES
	CONTROL CHARACTER ORDER METHOD
	case = 9: DEALING WITH SYMBOLIC VALUES FOR DEPENDENT SOURCES

	STEP 4: Bounding Box Consolidation
	STEP 5: Outputs of Post-Processing phase
	Weakness and Possible Improvements

	Testing Customized CNN Model vs Pix2tex
	Intelligence System Description
	Modification of predefined Annotation function

	Comparison between Pix2Tex vs Customized CNN
	Errors Detection
	Process Pix2Tex output
	Testing Configuration

	RESULTS
	Correct Detections
	TEST 1
	Percentage of error considering each method separately
	TEST 2
	Percentage of error considering each method separately (1)

	Examples of Types of Errors Encountered
	Category 1
	Category 2
	Category 3

	Recommendations for future works

	Conclusions
	Additional Functions
	Pseudo-code for pattern_detection() function

	Bibliography

