o’ %\g \“

\4" L)
y B _A(AJ Politecnico
\.llllllmn fAn mllllllll il dl Torlno

\\ 1859 g@
‘\ =g ‘4“

POLITECNICO DI TORINO

Master’s Degree Course in Computer Engineering

Master’s Degree Thesis

Modular Sign Language synthesis
using high fidelity 3D avatars

Supervisors Candidate

Prof. Andrea BOTTINO Claudio Giuseppe MESSINA
Roberto IACOVIELLO

Alberto CIPRIAN
Davide ZAPPIA

OCTOBER 2025

Acknowledgements

Vorrei ringraziare tutte le persone che mi sono state accanto durante il mio
percorso universitario. Se sono arrivato a questo punto € indubbiamente anche
grazie al loro immenso supporto.

Innanzitutto ringrazio il Prof. Andrea Bottino, Roberto Iacoviello, Alberto
Ciprian e Davide Zappia per avermi guidato nella realizzazione di questa tesi e
per la loro disponibilita nel condividere con me le loro conoscenze.

Il grazie piu grande va sicuramente ai miei genitori, mia sorella e tutta la mia
famiglia, che mi hanno sostenuto e incoraggiato fin dal primo giorno, spingendomi
a superare i miei limiti.

Un sentito ringraziamento va ai miei amici, vicini e lontani, con cui ho
condiviso momenti indimenticabili e che sono sempre stati capaci di strapparmi
un sorriso o darmi preziosi consigli.

Un grazie di cuore alla mia fidanzata, Ana, che con il suo affetto e riuscita a
motivarmi e ha creduto in me anche quando io non ne ero in grado.

Infine ringrazio Carmen Marino, Andrea Del Principe e il resto del CRITS,
I'ISISS A. Magarotto e tutti i segnanti che hanno contribuito e partecipato alle
attivita svolte durante questa tesi.

II

Abstract

Sign language is the primary means of communication for the Deaf and Hard
of Hearing (DHH) community. As the production of digital media grows, rely-
ing solely on human interpreters is not always feasible, creating the need for
automated, scalable solutions. Signing avatars offer a promising approach, but
present significant challenges due to the linguistic and expressive complexity
of sign languages. This thesis presents a prototype system that dynamically
generates Italian Sign Language (LIS) sentences on a MetaHuman 3D avatar
by smoothly blending individual signs recorded through motion capture. The
system was developed at the Rai Centre for Research, Technological Innovation
and Experimentation (CRITS), extending their existing platform for generating
fixed sentences. My contribution enables users to construct custom sentences
from a dictionary of signs that can be easily expanded, producing output evalu-
ated as natural and intelligible by certified signers and DHH users. The work
demonstrates the feasibility of modular sign synthesis using high-fidelity avatars,
and outlines future directions including automatic text-to-gloss translation and
the integration of non-manual features, paving the way toward an accessible,
on-demand sign language translation system.

IT1

Contents

[Acknowledgements|

[List of Figures|

(Introduction|

(I __State of the artl

(1.1 Challenges of Sign Language synthesis|

(1.2 End-to-end synthesis systems|

(1.3 Recent technical improvements|

(1.4 Impact of DHH people involvement|

2 Method

[2.1 Recording signs with mocap|

[2.2 Animating a MetaHuman in Unreal

2.3 Animation blending|o

[2.3.1 First experiments|
[2.3.2 MetaHuman blueprint changes/.
[2.3.3 Animation blueprint and state machine
.34 User interfacel L.
[2.3.5 Creating the sign dictionary|
[2.3.6 Generating video output for evaluation|
B_Results]
B.I First observations oo
[3.2 Evaluation survey|o
4 Conclusionl
M1 Conclusionl.
4.2 Future worksl

ii

vi

- O Ul R

10
10
14
16
16
17
19
25
26
27

29
29
31

[Bibliography|

37

List of Figures

1.1 Sign Language Animator’s user interface [25]| 5
1.2 JSL Motion Editing Tool features 23|[. 6
1.3 The three signers used in the study |18[|. 7
1.4 Culturally adapted avatar used in the study [17]| 8
1.5 Comparison between different signers in online survey 9| 8
2.1 Xsens MVN Animate user interfacel 11
[2.2 Calibration of suit in N-pose| 11
[2.3 Steps for glove calibration|o 12
2.4 Recording setupinusel 12
[2.5 Plate with phone holder| 13
2.6 Rokoko Headrig [13]| 13
[2.7 Metahumans created for the RAI-LIS project|. 14
2.8 MVN skeleton in N-pose and T-pose| 14
[2.9 Sequencer timeline with the body and face animation synced| . . 15
[2.10 First manual blending attempt in the sequencer timeline] 16
[2.11 MetaHumanBase class variables| 17
[2.12 PlayNext Animation function from the MetaHumanBase blueprint| 18
[2.13 InitPlay function from the MetaHumanBase blueprint|. 18
[2.14 Assigning an Animation Blueprint asset to a Skeletal Mesh| . . . 19
[2.15 Animation Blueprint variables| 20
[2.16 Event Blueprint Initialize Animation response] 20
[2.17 Event Blueprint Update Animation response| 21
[2.18 AnimDone Anim Notify in an Animation Sequence] 21
[2.19 Anim Notify AnimDone response] 22
[2.20 State machine diagram| o 0oL 23
[2.21 PlayA state logic] 23
[2.22 Idle to PlayA transition conditions| 24
[2.23 PlayA to PlayB transition conditions| 24
[2.24 PlayA to ldle transition conditions| 24
[2.25 User interface showing the available and queued signs| 25
[2.26 N-pose as resting position between signsf 26

VI

[2.27 Resting position with the hands closer to the signing space| . . . 27

[2.28 Capturing the blended animations with the Take Recorder| . . . 28
[3.1 Web app for the old RAI signing system| 30
[3.2 Comparison of the old and new signing avatars|. 30
[3.3 Survey results for intelligibility|. 32
[3.4 Survey results for fidelity|o 32
[3.5 Survey results for transition smoothness| 33
[3.6 Survey results for naturalness| L. 33
[3.7 Survey results for overall quality|. 34
[3.8 Survey results for acceptability and usability] 34

VII

Introduction

Motivation

Sign languages are the main mode of communication for Deaf and Hard of Hearing
(DHH) people, who constitute about 5% of the world’s population according
to the World Health Organization [14]. These languages are not derived from
spoken languages: they evolved independently, with their own grammatical
structures, lexicons, and cultural nuances. Many of them, including Italian Sign
Language (LIS) [16] are recognized as fully fledged natural languages, not a mere
visual translation of a particular spoken language. For many DHH individuals,
sign language is therefore not only a communication tool but also a core part of
their cultural identity. Despite the growing recognition of the importance of sign
languages for inclusion, accessibility in digital media remains limited. Subtitles
are still the most widespread form of support, but they cannot replace the
richness and immediacy of sign language. Subtitles require literacy in the spoken
language, do not convey the same rhythm or emphasis, and cannot capture the
visual-spatial grammar of signing. As a result, subtitles often leave DHH viewers
at a disadvantage when engaging with audiovisual content, especially when it is
fast-paced, informal, or linguistically complex. Signed content created by human
interpreters represents the most faithful solution, but it is costly and difficult to
scale. Producing signed versions of large volumes of online video or broadcast
material requires significant human resources, which are often unavailable. The
scarcity of qualified signers further exacerbates this problem. These limitations
highlight the need for automated approaches that can complement and extend
human signing. Signing avatars emerge as a promising alternative. They can
generate signed content on demand, work in real time, and maintain consistency
across different contexts. Compared to human interpreters, avatars are infinitely
scalable and can be customized in appearance, signing style, and can easily be
integrated with digital platforms. At the same time, avatars face significant
challenges: sign languages rely not only on hand shapes and movements, but
also on facial expressions, gaze, body posture, and timing. Replicating these
features convincingly is technically complex, and any deficiency can reduce

1

Introduction

the intelligibility or acceptance of the generated signing. Research on signing
avatars is growing and spans several directions. Some works propose end-to-end
synthesis systems capable of producing entire signed sentences directly from
textual or gloss input [25] [19] [12]. Other studies address specific technical
components, such as refining motion editing techniques to smooth transitions
between signs 23], improving facial animation to capture non-manual markers
[24], or building synthetic datasets to facilitate large-scale training |5]. A parallel
line of research investigates how the DHH community perceives these avatars: for
instance, whether they are culturally appropriate, understandable, or acceptable
in everyday use [18] |17]. Studies also highlight the importance of involving
DHH individuals directly in the design and evaluation process, both to improve
technical quality and to ensure that systems meet real needs [9] [6]. These
contributions have significantly advanced the field, but important gaps remain.
In particular, most systems rely on large pre-defined corpora of signed sentences
or on direct text-to-sign translation pipelines. This limits flexibility: users
cannot easily compose new sentences outside the predefined data, and system
updates require expensive new recordings. There is still limited research into
modular, dictionary-based approaches where individual sign animations can
be dynamically combined to generate arbitrary sentences. Such systems could
provide greater scalability, reusability, and adaptability to different contexts.
The challenge, however, is to ensure that the output remains natural enough
to be intelligible and acceptable to DHH users, despite being assembled from
smaller units. It is therefore essential to further develop research in modular
synthesis to create tools that can both broaden accessibility of digital content and
enable smoother communication between DHH individuals and hearing people
who do not know sign language.

Methodology and Structure

The objective of this thesis is to demonstrate the feasibility of a modular sign
synthesis system, and to explore the factors that may support or hinder the
acceptance of its output by DHH individuals. The work is situated in the
context of Italian Sign Language (LIS), but the methodology is general enough
to be adapted to other signed languages. To this end, a small dictionary
of LIS signs was recorded using a motion capture suit with the help of a
certified signer. In addition, a full sentence was recorded in a single take. This
dual dataset enabled a direct comparison between two approaches: animating
the sentence on a 3D avatar using the single-take recording, and dynamically
reconstructing the same sentence by blending together the individual signs from
the dictionary. The comparison allowed an evaluation of whether the modular

2

Introduction

system can approximate the naturalness and intelligibility of continuous recorded
signing. The prototype was implemented using a MetaHuman 3D avatar in
Unreal Engine, chosen for its high-quality rigging and expressive potential. The
system allows users to construct custom sentences by selecting items from a
dictionary, and automatically blends the selected animations to produce fluid
signing output. FEvaluation was conducted with both certified signers and
DHH individuals, who provided feedback on intelligibility, smoothness, and
overall acceptability of the avatar’s performance. The remainder of this thesis
is organized as follows: Chapter 1 surveys the current research landscape and
technologies in sign language synthesis, highlighting strengths, limitations, and
gaps. Chapter 2 describes the methodology used to record, process, and blend
sign animations, and details the design and implementation of the prototype
system. Chapter 3 presents the results of comparative testing and discusses
feedback from experts and DHH participants. Chapter 4 concludes the thesis,
summarizing contributions and proposing directions for future work, such as
automatic text-to-gloss translation and the integration of more advanced non-
manual features.

Chapter 1

State of the art

1.1 Challenges of Sign Language synthesis

Sign languages are visual languages that use multiple channels in parallel to
convey information, which can be broadly categorized in manual features (hand
shape and movement) and non-manual features (facial expression, gaze, mouthing,
body posture). They differ significantly from written and spoken languages as
they evolved separately and have their own grammatical structures and lexicon.
Many of their characteristics pose a major challenge for the automated processing
of signed content, as detailed by Cooper, Holt and Bowden [7]:

Multimodality: the use of different communication channels at the same
time.

Spatial grammar: the signed space is often used to "place" subjects to
reference later. Directional verbs such as "give" or "phone" differ depending
on who is the subject and the object. Positional signs such as "bruise" or
"tattoo" act on specific parts of the body.

Non-manual features: even micro expressions are key in determining the
sign’s meaning, for example some signs only differ by lip shape.

Sign variation: instead of using two signs for "run quickly" the sign for
'run" would be sped up. Iconicity also means that signs imitating the thing
they represent can be altered to better conform to the specific one which is
referred to.

These are just a subset of the features of sign languages, but they already
highlight how complex and structurally different from written languages they

are.

Another major problem is the lack of a widespread standardized encoding

4

State of the art

for signs, which paired with the scarcity of annotated sign content makes the
use of machine learning approaches difficult. Despite all of this, the field has
progressed significantly in the years, making communication more and more
accessible for DHH people.

1.2 End-to-end synthesis systems

Several attempts to build translation systems from written language or gloss
to sign language have been made. The work of Younes and Noussaima [25]
showcases a web app where content can be created in four different sign languages.
It is based on the Dicta-Sign dataset, a corpus of British, German, Greek and
French sign language covering European travel, annotated in HamNoSys [8]. This
was converted to SiGML notation thanks to the HamNoSys2SiGML open-source
tool, facilitating integration with the JASigning animation system [15]. This
tool is capable of generating single signs animations or constructed sentences,
and also features idle animations. The avatar can also be rotated or zoomed to
better examine the signs. Its user interface can be seen in Figure . Despite
its flexibility with four languages and the ability to construct custom sentences
directly on a web app, the avatar lacks expressiveness and when switching
between signs in a sentence the animation abruptly cuts to the neutral position,
interrupting the signing flow.

Sign Language Animator

Figure 1.1. Sign Language Animator’s user interface |25

Another study by Gibet and Marteau [12] uses a novel hybrid approach,
combining classic procedural synthesis with data-driven synthesis based on
motion capture data. It also models the sign language aspects of spatiality and
iconicity, allowing the generation of more inflected and spatially varied signs.

Finally, the work of Ribeiro, Dias, Faria and Romero [19] is also based on

5)

State of the art

motion capture. The mobile application is developed in Unity, and uses a state
machine with an idle state and two alternating sign states in which glosses are
cycled. To smooth the transitions the animations get overlapped and interpolated.
This gave promising results which could be improved by refining accuracy and
expressivity.

1.3 Recent technical improvements

Research has also focused on more specific aspects of sign language synthesis,
trying to improve different parts of the pipeline. Uchida, Nakatani et al.
developed a motion editing tool that reduces the error rate in understanding
Japanese Sign Language by adjusting the animations and integrating some of
its grammatical elements (Figure . The tool is built in Unity, attaching to
their preexisting motion blending pipeline. It allows the grouping of signs by
manipulating their speed and blend span, which gives a more natural rhythm
and clarifies sentence structure. It can also insert head nods while holding the
hand position or pointing while holding the non-dominant hand.

Span between sign words and playback speed

7 Grouping
words editing,
AR MOIST AIM AIR MOIST AIM

Motion blending span and playback speed are fixed. Adjusted for faster speeds and
shorter blending spans.

Nodding
Q Nodding
editing
;c\f_,A
RAIN Nodding Nodding with RAIN
Nodding is connected with normal words sequentially. (Hold the hand position)
Pointing
» - Pointing
‘3 editing
OKINAWA Pointing

Pointing with OKINAWA
Pointing is connected with normal words sequentially. (Hold the non-dominant hand position)

Figure 1.2. JSL Motion Editing Tool features

A study by Wolfe et al. remarks how important facial features are in
conveying both linguistic and paralinguistic information, and explores three
themes that influence the current technology. Linguistic discovery, defining the
facial activity that an avatar must carry out; Computer Generated Imagery (CGI),
the foundation to build realistic avatars; and Sign Language Representation
Systems, determining the fidelity of timing of facial co-occurrences.

6

State of the art

Barros et al. developed a large scale synthetic dataset for sign language
with expressive signers. It includes additional ground truth data such as depth
and normal maps, rendered models, segmentation masks and 2D /3D body joints.
They also introduce a transformer-based GAN for realistic sign image synthesis.
Together, they bridge the gap between real-world SL data scarcity and the high
data needs of deep learning algorithms, offering a scalable path toward better
SL production and accessibility tools.

1.4 Impact of DHH people involvement

Some recent studies have highlighted how important it is to involve DHH people
more in the research and development of Sign Language processing technologies.
Quandt et al. [18] ran a survey comparing three methods for signing: a live
human signer, an avatar with computer-synthesized (CS) animation and an
avatar with high fidelity motion capture (Figure . The results showed the
mocap avatar was rated much more positively than the CS one, and that the
signers who acquire sign language later in life are more accepting of and likely
to have positive impressions of signing avatars. These findings suggest that the
appearance and movement quality of an avatar are important for its acceptance.

Motion capture avatar

Figure 1.3. The three signers used in the study

The work of Othman et al. explored the acceptance of a culturally

adapted avatar among DHH individuals in Qatar (Figure . While the results
were generally positive, the participants viewed the signing avatar more as a tool
to enhance accessibility than a substitute for human interpreters.

7

State of the art

Figure 1.4. Culturally adapted avatar used in the study [17]

The research of Dimou et al. [9] proposes a methodology to involve the signers’
community in the process of signing avatar development, via online surveys that
allow the rating of various aspects of the synthetic signs (Figure [1.5]).

T - S

i g o Vi IRV}

,,,,,

Tipa, BaBoAGYNE M

§ N

Figure 1.5. Comparison between different signers in online survey [9]

Finally, the study from Bragg et al. [6] summarizes the result of a three-
day interdisciplinary workshop on sign language recognition, generation and
translation. The focus is on the current state of Sign Language processing,
the biggest challenges facing the field, and the possible calls to action. The
identified calls to action are a greater involvement of Deaf team members, focus
on real-world applications, developing Ul guidelines for sign language systems,
creating larger public video datasets, standardizing the annotation system and

developing software for annotation support.
Overall, these studies highlight that technical advances alone are insufficient:

8

State of the art

the meaningful involvement of DHH communities is essential for ensuring both
usability and acceptance of sign synthesis systems.

None of these approaches is based on a modular sign synthesis that allows users
to construct custom sentences from an easily expandable dictionary, seamlessly
blending individual signs and producing output that is evaluated as natural and
understandable by certified interpreters and DHH users thanks to high-fidelity
avatars.

Chapter 2

Method

2.1 Recording signs with mocap

Motion capture, often shortened as "mocap" is the process of recording the
movement of people or objects in a computer system with high precision. The
captured information can then be mapped to a 3D model and used to animate it
with CGI. The acquisition can be done in many ways, ranging from generic camera
sensors paired with Al models to dedicated tracking suits with sophisticated
sensors and it’s widely used in cinema, video games, VR and robotics.

This technology is a good fit for recording sign language, due to the high sam-
pling resolution and relative ease of use. In fact most modern setups have enough
accuracy to properly reproduce the signs with naturalness and expressiveness,
without being too uncomfortable for the signer.

The Rai Centre for Research, Technological Innovation and Experimentation
(CRITS) has an Xsens commercial tracking suit, made up of unobtrusive inertial
and magnetic sensors combined with advanced algorithms and biomechanical
models [20]. Unlike camera-only approaches, this system provides reliable
tracking even without a controlled studio environment. A pair of MANUS gloves
is also used for enhanced hand and finger tracking accuracy, which is essential in
the case of sign language. The setup is completed by an iPhone, which records
the facial features. The gloves and suit are connected to a computer via dedicated
wireless antennas, and managed through a proprietary Xsens software called
"MVN Animate" (Figure . The facial features are recorded directly in Unreal
Engine, thanks to the "Live Link" plugin which allows to stream the data from
the iPhone’s TrueDepth infrared sensor. The sampling rates are 60 FPS for the
body and 24 FPS for the face.

10

Method

Figure 2.1. Xsens MVN Animate user interface

The first step when setting up the system is taking some measurements of the
signer. This only needs to be done once, as this data can be stored for later use.
The sensors can drift over time and electromagnetic interference can introduce
noise, so the calibration process is essential to ensure precise acquisition results.
First the signer must stand in N-pose, with the arms straight along the sides
(Figure or in T-pose, with the arms stretched horizontally. Then they must
slowly walk in a circle so that all sensors are moving.

Figure 2.2. Calibration of suit in N-pose

Next, the gloves are calibrated by holding one hand still on a flat surface with
the palm down, then repeatedly closing and opening the fingers, forming a fist
(Figure . All of this is then repeated for the other hand.

11

Method

Figure 2.3. Steps for glove calibration

The entire calibration process takes about 2 minutes, and can be repeated
between takes if necessary. The software itself notifies the user if the sensor
precision degrades. To begin the actual acquisition two separate recordings must
be started at the same time: one on the Xsens MVN software for the body, and
another one in Unreal for the face (Figure . The body animation is saved
in a custom format, but it can be seamlessly converted in .fbx to import it in
Unreal.

Figure 2.4. Recording setup in use

12

Method

During the recording of the signs some issues came to light. Although non-
critical, they introduced delays due to the needed manual intervention, and
ignoring them would have impacted the final quality of the animations.

Initially the iPhone was held in place by a chest plate with shoulder straps,
which had a protruding stick with a phone holder (Figure . This was
impractical for several reasons: the stick was too low, occupying the signing
space and making performing some signs difficult or impossible; this also made the
avatar eyes look above where they should, and because the phone was attached
to the chest it was not always perfectly lined up with the head, introducing
errors in the tracking. This problem was solved by using a Rokoko Headrig, a
lightweight head mount for phones specifically made for motion capture (Figure
2.6). Thanks to this helmet the face tracking became much more accurate
and comfortable for the signer, although some breaks were still needed during
capturing sessions.

Figure 2.5. Plate with phone holder Figure 2.6. Rokoko Headrig

Another problem was the sensitivity to electromagnetic interference. The
CRITS laboratory where the recordings were conducted contains lots of network-
ing equipment, in particular a wireless access point. This sometimes would cause
errors in the communication between the suit’s sensors and the radio receiver.
The gloves especially suffered from this. For technical reasons the access points
could not be moved from near the recording PC, but placing the radio receiver
as far as possible from it and closer to the signer at least mitigated the issue.
A few times the sensors would drift significantly. The solution in this case was
repeating the calibration process between takes, to keep the inaccuracy as low
as possible. Using the T-pose for calibration also seemed to improve the results.

13

Method

2.2 Animating a MetaHuman in Unreal

MetaHumans are high-fidelity 3D avatars that combine realism, customization,
and advanced rigging. As part of the Epic Games ecosystem, they integrate
seamlessly with Unreal Engine (Figure . After choosing or creating your own
MetaHuman in the MetaHuman creator web app, it can be imported into Unreal
Engine from the Quixel Bridge window and then added to the scene.

Figure 2.7. Metahumans created for the RAI-LIS project

Before importing the actual animations, a character with the same bone
hierarchy and names as the MVN skeleton should be added to the Unreal project.
This MVN Puppet (Figure can be downloaded from the Xsens knowledge
base, which includes a tutorial that explains in greater detail this procedure .
The recorded body animations can be imported by just dragging them into the
content browser. In the prompt window, the aforementioned MVN Puppet must
be selected as the skeleton.

Figure 2.8. MVN skeleton in N-pose and T-pose

14

Method

The MVN and MetaHuman skeletons differ in proportions and naming con-
ventions, so direct playback would not align properly without retargeting. Retar-
geting is a process that maps animations from their original skeleton to another
with a different structure. It can be a long manual process, but luckily from
Unreal Engine 5.4 onward it can be done automatically [4]. A retarget asset
can be generated and reused for the retargeting of subsequent animations that
share the same source and destination skeletons. The retargeted animations can
also be trimmed or adjusted by applying additive bone transformations in the
Animation Sequence editor if needed, or directly in the Level Sequence later by
baking it and adding a control rig with an additive track.

To reproduce the recorded animations on the MetaHuman a new Level
Sequence must be created, and our character must be added to it. MetaHumans
normally come with two control rig tracks for body and face live capture and
manual editing. Since in this case the motion comes from pre-recorded animations,
these default rigs must be removed to avoid conflicts, and replaced with animation
tracks pointing to the imported MVN body clip and the face recording that was
already in the project. The tracks must be synced manually to remove the offset
between them, since the face capture is started after the body one (Figure .
Once everything is setup this way, playing the level will start the animation and
renders can also be done to create a video output.

[<A 4P >H G oooo

Figure 2.9. Sequencer timeline with the body and face animation synced

However, this pipeline only works for single-take recordings. If a mistake
occurs or new signs are needed, the whole sequence must be re-recorded. To
overcome this limitation, the next section explores how individual sign animations
can be blended to form sentences dynamically.

15

Method

2.3 Animation blending

2.3.1 First experiments

The first step before building an entire modular system was assessing if just
blending two animations would produce a smooth transition between them. To
this end a simple Level Sequence was created as described in the previous section,
but a second animation was also added to the timeline, overlapping for a few
frames with the first one (Figure[2.10). This allowed a quick test of the blending
capabilities of the Unreal animation system. After tweaking the interpolation
length a bit the output seemed smooth enough. Although the result was good,
this method still required a lot of manual setup: for every sentence variation a
timeline must be built ad-hoc, positioning and syncing all the tracks by hand.
This makes the solution time consuming and definitely not scalable.

[< d4A P DP>P |G o000

Figure 2.10. First manual blending attempt in the sequencer timeline

Another test was done with an Animation Montage asset, which seemed
promising as it allows to define custom transitions between set animations, but
it turned out even worse than the sequencer as it did not do any blending so the
switch between signs was an abrupt cut.

Finally I opted for a state machine approach, as it offered a dynamic and
scalable way to smoothly transition between signs: this method automatically
blends the animation playing in a state with the one playing in the next, and
the animations for each state can be set even at runtime. These features make
it the perfect candidate to create a modular system that allows the dynamic
production of full sign sentences composed from a dictionary of single signs.

At the core of this implementation there are two complementary states (A
and B), which have the same internal logic: when one state gets near the end
of its animation’s playback, it sets the animation for the other state picking
the next one from the animation queue and then triggers the transition. The
process is repeated until the queue is emptied. This solution, although simple in
concept required a lot of changes to the existing setup for it to work, which will

16

Method

be detailed in the next sections.

2.3.2 MetaHuman blueprint changes

By default the MetaHuman blueprints have Actor as their parent class. "An
Actor is any object that can be placed into a level, such as a Camera, static mesh,
or player start location. Actors support 3D transformations such as translation,
rotation, and scaling. They can be created (spawned) and destroyed through
gameplay code (C++ or Blueprints)." [1] To allow using different MetaHumans
while avoiding code duplication and keeping the logic centralized, a custom
MetaHumanBase blueprint was created. This class inherits from Actor and
contains the control functions for the playback, and all the related variables.
To extend any MetaHuman character with these new functionalities all that is
needed is changing their parent class to the custom MetaHumanBase.

VARIABLES

Components

Anirnd
bHasMextAnim
AnimQueue
MNextindex
AnimB

bFromé_ToB

Figure 2.11. MetaHumanBase class variables

The variables, as can be seen in the figure are

o AnimA/AnimB: references to the current Animation Sequence (the anima-
tion itself) to be played for each respective slot

o AnimQueue: Animation Sequence array storing all the signs that will be
played continuously

o FromA_ToB: boolean keeping track of which state is active and which one
needs to be set

o HasNextAnim: boolean to check if the queue is empty

o NextIndex: integer to keep track of the progress in the queue

17

Method

Variables with the open eye icon are exposed, meaning they can be read
from other classes too. This is fundamental for the correct functioning of the
Animation Blueprint, which has local copies of these variable and updates them
every frame. This separation between the MetaHumanBase and the Animation
Blueprint is deliberate. The MetaHumanBase handles the high-level control
logic (deciding which animation to play next, managing the queue, and updating
the state flags). The Animation Blueprint on the other hand is only focused
on executing those instructions: blending, transitioning, and rendering the
animations. By keeping these responsibilities apart, the system remains modular,
easier to debug and adaptable to different input sources.

[PlayNextAnimation

Next Index @ ———@

® [addpn @

Figure 2.12. PlayNextAnimation function from the MetaHumanBase blueprint

The core of the MetaHumanBase blueprint is the PlayNext Animation function
(shown in Figure [2.12). First it checks that there is still an animation in the
queue and updates HasNextAnim. If there is one it gets assigned to the AnimA
or AnimB slot depending on the FromA ToB flag, which then gets negated to
update it for the next iteration. Finally the index counter gets incremented.
This function is essential as it manages all the variables responsible for triggering
and determining the conditions of the state transitions.

—

[initPlay /
C e
~- >

A\ll
,/—
e =

Anim B
e ——

Anim Input List CI EhR

Anim Queue

Figure 2.13. InitPlay function from the MetaHumanBase blueprint

18

Method

The other function is InitPlay (Figure [2.13)), which simply resets all the
variables, sets the AnimQueue from the Animation Sequence array it receives as
a parameter and calls PlayNextAnimation. The purpose of this function is to
start the actual animation playback once the signs have been chosen.

This design makes the system reusable and keeps the animation control logic
centralized, allowing different MetaHumans to be used interchangeably and the
output to be customized for different contexts.

2.3.3 Animation blueprint and state machine

"Animation Blueprints are specialized Blueprints that control the animation of
a Skeletal Mesh during simulation or gameplay. Graphs are edited inside of
the Animation Blueprint Editor, where you can blend animation, control the
bones of a Skeleton, or create logic that will define the final animation pose for
a Skeletal Mesh to use per frame." [2]

This blueprint manages the actual animations of our MetaHuman characters.
After creating the Animation Blueprint asset, it must be assigned to the Skeletal
Mesh on the MetaHuman blueprint, by setting the animation mode on the Body
component to "Use Animation Blueprint" and then setting the Anim Class to
the Animation Blueprint asset that was just created, as seen in Figure [2.14]

Figure 2.14. Assigning an Animation Blueprint asset to a Skeletal Mesh

The Animation Blueprint contains two main components: the EventGraph,
which responds to specific events to manage animation variables and timing,
and the AnimGraph, which contains the state machine definition. It also has a
reference to the MetaHumanBase blueprint of the character it’s assigned to, and
local copies of the exposed variables of the MetaHuman (Figure [2.15).

19

Method

VARIABLES

R | | o e "
AN AN :-_:I;'I_ll_ll;'lll_.l;' e

bHasMextAnim

AnimB

bFromA_ToB

BP_Ref BP Meta Human

Figure 2.15. Animation Blueprint variables

"Events are nodes that are called from gameplay code to begin execution of an
individual network within the EventGraph. They enable Blueprints to perform
a series of actions in response to certain events that occur within the game, such
as when the game starts, when a level resets, or when a player takes damage.'
[10]

The first captured event in the EventGraph is the "Blueprint Initialize An-
imation". This makes it possible to obtain a reference to the owning Actor
of the Animation Blueprint, which in this case is the MetaHumanBase of the
MetaHuman Skeletal Mesh it’s assigned to. Storing this reference only once on
blueprint initialization makes the code lighter, as the MetaHumanBase blueprint
will be frequently accessed. This way only one call to GetOwningActor is needed,
and the MetaHumanBase blueprint can be accessed directly with minimum

overhead (Figure [2.16)).

<> Event Blueprint Initialize Animation “v.# Cast To BP_MetaHumanBase

ng Actor Object Cast Failed [»

As BP Meta Human Base
Target | self | Return Value

Figure 2.16. Event Blueprint Initialize Animation response

The "Blueprint Update Animation" event is called every frame, and it’s
used to update the local variables, reading the values from the exposed ones
in the MetaHumanBase blueprint (Figure [2.17)). This is essential to keep the

20

Method

MetaHumanBase’s control logic and the Animation Blueprint’s state machine
synchronized.

& Event Blueprint Update Animation ' 1s Valid '
| 2 P Exec Isvalid p =

Delta Time X Input Object Is Mot Valid >

Target Anim A

Target Anim B
Has Next Anim
Target Has Next Anim
SET

Target FromAto B EraTielIE

Figure 2.17. Event Blueprint Update Animation response

The last event is an "AnimDone" Animation Notify, a custom type of repeatable
events synchronized to Animation Sequences [3]. These were used to signal the
end of the sign inside the Animation Sequence. Once the custom notify is created
it can be added to the animations by right clicking on their Notify track, and
then it can be dragged to reposition it (Figure . This allows easy editing of
the signs’ timings in the dictionary at any moment without touching the rest of
the system.

® ciao X

- 000 |000(0) (P‘E‘r:-}

Notifies e

1 - L Animbon

Curves (0) -
@ 1,775 sec (frame 106)
Additive Layer Tracks

root

Attributes

MAd4OP PSR

Figure 2.18. AnimDone Anim Notify in an Animation Sequence

21

Method

When an AnimDone notify is launched, the Animation Blueprint calls the
PlayNext Animation function of the MetaHumanBase class, which advances the
queue and updates the control flags, triggering the state transition. (Figure
. For this reason, every Animation Sequence in the dictionary must include
the AnimDone notify, otherwise playback would stop at the current sign without
advancing.

&> AnimNotify_AnimDone 5 1s Valid T Print Text & Play Next Animation
P — PExec Isvalidip — B T ——_—_—

Input Object Is Mot Valid >

Figure 2.19. Anim Notify AnimDone response

"State Machines are modular systems you can build in Animation Blueprints
in order to define certain animations that can play, and when they are allowed to
play. Primarily, this type of system is used to correlate animations to movement
states on your characters, such as idling, walking, running, and jumping. With
State Machines, you will be able to create states, define animations to play in
those states, and create various types of transitions to control when to switch to
other states. This makes it easier to create complex animation blending without
having to use an overly complicated Anim Graph." [21]

The state machine itself is defined inside the AnimGraph, and consists of
three simple states (Figure : Idle, which plays a looping resting animation,
PlayA and PlayB which play the Animation Sequences referenced in the AnimA
and AnimB variables respectively (Figure 2.21).

22

Method

Figure 2.20. State machine diagram

. - —
Sequence Player Output Animation Pose

Seqguence 'ﬁ' —— 'ﬁ' Result

Figure 2.21. PlayA state logic

The conditions for transitioning between states are determined by the Has-
NextAnim and FromA ToB local booleans, and the state’s Animation Sequence
reference. Figures 2.22] 2.23] and [2.24] show the conditions of the PlayA state: in
particular, for the Idle to PlayA transition AnimA must not be a null reference,
HasNextAnim must be true and FromA_ToB must be false; for the PlayA to
PlayB transition FromA ToB and HasNextAnim must be true; for PlayA to
Idle HasNext Anim must be false. The ones for the PlayB state follow the same
logic but in a complementary way. In practice, this ensures that as long as a
next sign is available, the system alternates between PlayA and PlayB, while
returning to Idle when no sign is queued.

23

Method

AnimA

(Resuit

Can Enter Transition
Has Next Anim 1
Add pin ®

FromAto B NOT

Figure 2.22. Idle to PlayA transition conditions

FromA to B —_— Result
Can Enter Transition

Add pin (&)
Has Next Anim

Figure 2.23. PlayA to PlayB transition conditions

e ®

Result
Has Mext Anim

Can Enter Transition

Figure 2.24. PlayA to Idle transition conditions

As mentioned before, the state machine in the Animation Blueprints performs
automatic blending when transitioning between different states. This is essential
to have a smooth playback without abrupt cuts, but to achieve pleasant looking
transitions the right combination of blend curve and duration must be chosen.
After experimenting with different options, the Hermite-Cubic InOut curve with
a 0.5 second blend duration provided the most natural transitions between signs.
This curve avoids the robotic stiffness of linear blending while preventing the
overshoot of smoother but slower curves.

In summary, the Animation Blueprint functions as the execution layer of the
system, synchronizing with the MetaHumanBase blueprint and ensuring smooth
sign playback through its state machine and blending logic.

24

Method

2.3.4 User interface

At this point the system is functionally complete, but the InitPlay must be called
with a list of Animation Sequences for anything to happen. For testing and
developing purposes this was done from the BeginPlay Event response in the
Level Blueprint, which was launched when the level starts playing, and a static
array of preset animations was passed. But to easily select, queue and playback
different sign animations in real time a simple user interface was needed. This
would also give a better user experience that allows to appreciate the modularity
of this dictionary-based system.

Three different MetaHumans were placed on the level to showcase the pro-
totype’s flexibility. The UI consists of a list of buttons on the left side of the
screen, displaying the available signs. Clicking a button adds that sign to a
second list on the right, which shows the queued sequence of signs. Signs can
also be removed by clicking on them directly in the queue. Once the sentence is
complete, playback can be started with a button in the top-right corner. (Figure
2.25))

- ‘ Play Animation Sequence
% S i —
- - - =3

Ciao
., Centro

=y P *

Centro % o .« . ;, f’
Ricerca " y ;, Ricerca
Rai % A\ J ~ Rai
Benvenuti | Benvenuti

(VT

Figure 2.25. User interface showing the available and queued signs

This Ul was developed with Unreal Motion Graphics (UMG). The main
component, a Widget Blueprint, contains two List Views (one for the available
signs and one for the chosen signs), a button to initiate playback and a reference
to the MetaHumanBase targets. On initialization all the MetaHumans on the
level are added as targets, and the available signs list gets populated from a Data
Table containing display names and references for the Animation Sequences.
Adding and removing signs from the queue and starting the playback are handled
by simple click events.

The user interface was developed as a testing tool for this prototype. It is
not designed for direct use by DHH users, but rather to provide a convenient
way to interact with the animation system during development.

25

Method

2.3.5 Creating the sign dictionary

The beginning of this chapter illustrated the general procedure to record anima-
tions with a motion capture setup and reproduce them on a character in Unreal.
But to build the sign dictionary it is important to keep in consideration what
pose to use as starting and ending position for each sign, as this is a design
decision that will greatly influence the quality of the blending between them. For
this prototype two main batches of signs were recorded with a certified signer.
In the first batch, the N-pose was used as resting position as it appeared the

most natural (Figure [2.26]).

Figure 2.26. N-pose as resting position between signs

This first experiment revealed some limitations: sometimes weird effects were
produced during the transitions, as moving the arms all the way down the sides
took a significant amount of time and space. For this reason during the second
batch of recording a different resting position was used, with the hands clasped
in front of the chest (Figure . This significantly improved the smoothness of
the transitions, as the hands moved less and remained closer to the signing space.
Incidentally, this also made sense logically as the resting pose corresponded to
the sign for ending a period in LIS.

26

Method

Figure 2.27. Resting position with the hands closer to the signing space

To allow a direct comparison between continuous and modular playback, the
sentence "Ciao, benvenuti al centro ricerca RAL" was recorded both in a single
take and as individual signs. The latter recordings were then added to the
sign dictionary, making it possible to reconstruct the sentence by sequencing its
components. Some other signs were later added for further testing.

2.3.6 Generating video output for evaluation

To generate the signed clips needed for the evaluation survey the Take Recorder
was used. This tool allows capturing animation directly during gameplay, or from
live performances and other sources . After adding one of the MetaHumans
and a CineCameraActor as sources in the Take Recorder the level was played,
displaying the prototype’s Ul. Once the sentence was constructed, the take
recording was started and then the playback launched (Figure .

27

Method

Figure 2.28. Capturing the blended animations with the Take Recorder

This produced a Level Sequence with the MetaHuman and camera animation
tracks, which was then rendered with the Movie Render Queue. The output was
single image frames, which were then merged in a final video file with an external
program. The same procedure was then repeated with the single Animation
Sequence containing the one-take sentence to have a comparison baseline. The
resulting videos from the continuous recording and the reconstructed sentence
were later presented side-by-side in the survey to assess the intelligibility and
naturalness of the modular approach.

28

Chapter 3

Results

3.1 First observations

During one of the recording sessions the yet unfinished prototype was shown to
the certified signer. In this phase only the first batch of signs was available (the
ones with the N-pose neutral position) and the UI did not exist. Regardless, the
certified signer gave some very positive feedback, noting that the transitions were
smooth and natural-looking, and the individual signs were accurate enough to
correctly interpret their meaning. The signer also reported some jerkiness in the
beginning and end of the playback, which was promptly fixed by adjusting the
blending times. This early feedback, while anecdotal, was valuable in highlighting
both the strengths and weaknesses of the system from the perspective of a domain
expert.

Another quick evaluation was done by comparing the developed prototype
to the preexisting RAI system for signed content generation. This consists of a
web app with a dictionary of sign animations that can be composed and played

by an avatar (Figure [3.1)).
29

Results

BENVENUTO

P

€
v

Figure 3.1. Web app for the old RAI signing system

Several key improvements emerge when comparing the two systems. First of
all the avatar itself looks much more detailed and realistic, drastically reducing
the uncanny valley effect (Figure . This is also exacerbated by the fact that
the animations for the old system were created by hand. Besides making the
movements look rigid and robotic, this manual approach makes the system hardly
scalable despite it being modular too: the current dictionary is composed of
around a thousand signs, and building a similar sized database with the motion
capture approach would require significantly less time while providing natural
looking animations that fully capture the expressiveness of the signer.

Figure 3.2. Comparison of the old and new signing avatars

30

Results

3.2 Evaluation survey

To complement the preliminary observations, a formal evaluation was conducted
through a structured survey aimed at assessing both the base motion capture
setup and the effectiveness of the modular blending system.

The evaluation survey is comprised of two parallel sections: in the first
one a video of the LIS interpreter signing the full "Ciao, benvenuti al centro
ricerca RAL" sentence is shown, next to a video of the avatar reproducing the
same continuous animation. This gives us both an assessment of the quality
and accuracy of the mocap and avatar setup by themselves, and a baseline to
compare to the blending prototype to judge its efficacy.

In the second section there is a video of the LIS interpreter performing the
same signs individually, pausing and going back to the clasped hands neutral
pose between each of them and then next to it there is the video of the avatar
playing the sentence reconstructed from the individual signs. This section serves
to isolate the blending system’s contribution and highlight how well it works
and if it is a viable option.

Both sections feature a set of six Likert items with a rating from 1 (strongly
disagree) to 5 (strongly agree) to evaluate different parameters, and an optional
text field for further observations. The items are as follows:

e The signs produced by the avatar are easy to understand.

The avatar faithfully reproduces the signs shown by the interpreter.

The transitions between the avatar’s signs are smooth and fluid.

The movements of the avatar appear natural.

The overall visual quality of the avatar’s signs is adequate.

I would use or recommend this avatar in communication activities.

The survey was completed by 13 participants, including both certified LIS
signers and DHH people.

The intelligibility evaluation was generally positive, and it remained consistent
between the single take recording and the reconstructed sentence. (Figure
This was expected as it mainly depends on the recording setup and the avatar.
Most participants rated both versions above the neutral midpoint, confirming
that the mocap-driven animations convey meaning effectively even without
additional cues. The use of motion capture allowed recording of movements with
high spatial and time resolution, and the advanced rigging capabilities of the
MetaHumans allow to properly reproduce that.

31

Results

The signs produced by the avatar are easy to understand.

154% 0%

Strongly Disagree Disagree Neutral Agree Strongly Agree

® Single take ™ Composed sentence

Figure 3.3. Survey results for intelligibility

Fidelity results followed a similar trend, reflecting the same dependence on the
underlying mocap and rigging setup. Minor differences between the single-take
and reconstructed versions suggest that the blending system preserves most of
the signers motion characteristics. (Figure

The avatar faithfully reproduces the signs shown by the interpreter.

Strongly Disagree Disagree Neutral Agree Strongly Agree

® Single take ™ Composed sentence

Figure 3.4. Survey results for fidelity

Blending smoothness results were somewhat surprising: while in both cases
the majority of participants gave a positive score, I was expecting much higher
results for the single take playback since it doesn’t have any blended transition,
instead reproducing the sentence in full as originally signed by the interpreter.
These results indicate that the proposed blending approach is functional and
yields satisfactory transitions. (Figure

32

Results

The transitions between the avatar's signs are smooth and fluid.

154% | 15,4%

Strongly Disagree Disagree Neutral Agree Strongly Agree

® Single take ™ Composed sentence

Figure 3.5. Survey results for transition smoothness

The naturalness scores are also a bit unexpected, as they are mixed in both
cases, but get slightly better in the composed version instead of worse as I would

have thought. (Figure

The movements of the avatar appear natural.

Strongly Disagree Disagree Neutral Agree Strongly Agree

® Single take ™ Composed sentence

Figure 3.6. Survey results for naturalness

The overall visual quality was also positively rated, with minor differences
between the two versions. (Figure

33

Results

The overall visual quality of the avatar's signs is adequate.

0,0%
°
Strongly Disagree Disagree Neutral Agree Strongly Agree

® Single take ™ Composed sentence

Figure 3.7. Survey results for overall quality

Results for acceptability are mixed, but positive on average. In this case too
the composed sentence got slightly better scores. (Figure

| would use or recommend this avatar in communication activities.

Strongly Disagree Disagree Neutral Agree Strongly Agree

® Single take ™ Composed sentence

Figure 3.8. Survey results for acceptability and usability

The optional open questions gathered more useful insights from the partici-
pants. Many praised the intent and recognized the potential, but noted that it
needs more polishing, especially with regards to expressiveness. These comments
align with the broader observation that expressiveness, particularly through
non-manual features, remains the most prominent area for improvement.

Overall, the survey results indicate that the modular blending approach
achieves a level of intelligibility and naturalness comparable to continuous record-
ings, while maintaining flexibility and scalability. Although some respondents
noted limitations in expressiveness, the positive ratings across most criteria
confirm the viability of the system as a foundation for further development.

34

Chapter 4

Conclusion

4.1 Conclusion

Sign language synthesis remains a key challenge in making digital communication
more accessible to the Deaf and Hard of Hearing (DHH) community. This thesis
contributes to that ongoing effort by presenting a modular sign language synthesis
tool that enables the construction of custom sentences built from a dictionary of
pre-recorded signs, and their playback on a high-fidelity avatar.

After an overview of the current landscape in sign language synthesis, including
the challenges that make it a difficult technology to develop and adopt, the details
of the prototype and its implementation are described: the motion capture setup,
the recording process, the playback method are introduced first, as they serve
as the backbone for the blending system, which is the core of the work. Unlike
many existing systems that rely on predefined sentence animations or low-fidelity
models, this prototype demonstrates that modular blending of recorded signs
can achieve natural motion with relatively low complexity.

The prototype was then evaluated through a user survey. The results are
generally positive, showing that the prototype is successful in conveying meaning
while retaining naturalness. The blending system obtained a score of 53.9%
(strongly agree and agree) compared to the same percentage for continuous signals,
demonstrating the effectiveness of the solution implemented. Furthermore, the
overall visual quality score was 61.6% (strongly agree and agree), demonstrating
the high quality of the system implemented. Some testers noted there is still
a lack of expressiveness, which might be due to the missing facial animations.
These findings suggest that while intelligibility and fluidity can be achieved
through modular blending, perceived expressiveness remains tightly coupled to
non-manual cues, an area that warrants further exploration. Nevertheless, most
participants rated the output as useful for communication activities, and the

35

Conclusion

quality and acceptance rate could be further improved with targeted adjustments.

4.2

Future works

This work expanded the current RAI system for signed content generation,
making it more flexible and reducing the need to record entire sentences with an
interpreter every time. The system can be further improved with other additions,
notably:

Facial features: this is an essential part of sign language, adding them
would greatly enhance the expressiveness of the avatar and make it more
acceptable by DHH people.

Full translation pipeline: adding a translation layer from written or spoken
language to gloss would make this system not only useful for signed content
generation, but also for improved accessible communication in everyday
scenarios, eventually even in real time.

Dataset scaling: capturing a larger dictionary to improve linguistic coverage
and reduce repetition.

Sign Language grammar modeling: implementing sign modifiers or the
ability to combine different ones will dramatically improve the system’s
communicative potential without needing to record all sign variations and
combination.

Artificial Intelligence: exploring the use of large language models. With their
remarkable reasoning abilities and rich knowledge, they have revolutionized
many tasks, although their impact on sign language generation remains
limited due to its complexity and unique rules.

Ultimately, this project demonstrates that modular synthesis using motion-
captured signs can serve as a practical foundation for accessible and scalable
sign language technologies, contributing to the broader goal of inclusive digital
communication.

36

Bibliography

[1] Actors in Unreal Engine | Epic Developer Community — dev.epicgames.com.
https://dev.epicgames.com/documentation/en—-us/unreal-
engine/actors—in-unreal-engine.

2] Animation Blueprints in Unreal Engine | Epic Developer Community —
dev.epicgames.com. https://dev.epicgames.com/documentation/
en—-us/unreal-engine/animation-blueprints—-in-unreal+
engine.

3] Animation Notifies in Unreal Engine | Epic Developer Community —
dev.epicgames.com. https://dev.epicgames.com/documentatior/
en—us /unreal —engine /animation-—notifies—-in—-unreal +
engine.

[4] Auto Retargeting in Unreal Engine | Epic Developer Community — dev.epicgames.com.
https://dev.epicgames.com/documentation/en—-us/unreal-+
engine/auto-retargeting-in-unreal-engine.

[5] Jilliam M. Diaz Barros et al. “SynthSL: Expressive Humans for Sign
Language Image Synthesis.” In: 2024 IEFE 18th International Conference
on Automatic Face and Gesture Recognition (FG). 2024, pp. 1-10. DOIL:
10.1109/FG59268.2024.10582038.

[6] Danielle Bragg et al. “Sign Language Recognition, Generation, and Trans-
lation: An Interdisciplinary Perspective.” In: Proceedings of the 21st Inter-
national ACM SIGACCESS Conference on Computers and Accessibility.
ASSETS '19. Pittsburgh, PA, USA: Association for Computing Machinery,
2019, pp. 1631. 1SBN: 9781450366762. DO1:/[10.1145/3308561 .3353774.
URL: https://doi.org/10.1145/3308561.3353774.

[7] Helen Cooper, Brian Holt, and Richard Bowden. “Sign Language Recogni-
tion.” In: Visual Analysis of Humans: Looking at People. Ed. by Thomas
B. Moeslund et al. London: Springer London, 2011, pp. 539-562. ISBN:
978-0-85729-997-0. por: 10.1007/978-0-85729-997-0_27. URL:
https://doi.org/10.1007/978-0-85729-997-0_27.

37

https://dev.epicgames.com/documentation/en-us/unreal-engine/actors-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/actors-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/animation-blueprints-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/animation-blueprints-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/animation-blueprints-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/animation-notifies-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/animation-notifies-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/animation-notifies-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/auto-retargeting-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/auto-retargeting-in-unreal-engine
https://doi.org/10.1109/FG59268.2024.10582038
https://doi.org/10.1145/3308561.3353774
https://doi.org/10.1145/3308561.3353774
https://doi.org/10.1007/978-0-85729-997-0_27
https://doi.org/10.1007/978-0-85729-997-0_27

BIBLIOGRAPHY

[10]

[11]

[12]

Dicta-Sign Corpus — sign-lang.uni-hamburg.de. https://www.sign—
lang.uni-hamburg.de/lr/compendium/corpus/dictasign.
htmll.

Athanasialida Dimou et al. “What about synthetic signing? A methodol-
ogy for signer involvement in the development of avatar technology with
generative capacity.” In: Frontiers in Communication 7.798644 (2022). DOIL:
10.3389/fcomm.2022.798644. URL: https://doi.org/10/
3389/ fcomm.2022.798644.

FEvents in Unreal Engine | Epic Developer Community — dev.epicgames.com.
https://dev.epicgames.com/documentation/en—-us/unreal-
engine/events—-in-unreal-engine.

FBX import into Unreal Engine — base.movella.com. https://base.
movella.com/s/article/FBX-import—-into-Unreal-Engine?
language=en US.

Sylvie Gibet and Pierre-Francois Marteau. “A Text-To-SL Synthesis System
Using 3D Avatar Technology.” In: 2023 IEEE International Conference on
Acoustics, Speech, and Signal Processing Workshops (ICASSPW). 2023,
pp. 1-5.DO1: |[10.1109/ICASSPW59220.2023.10193734

Headrig - A professional head mount for face capture by Rokoko — rokoko.com.
https://www.rokoko.com/products/headrigl

Zambian Ministry of Health / Rachel Hapunda. Deafness and hearing loss
— who.int. https://www.who.int /news—room/fact —sheets/
detail/deatness—and-hearing—loss.

JASigning - Virtual Humans — vh.cmp.uea.ac.uk. https://vh.cmp.
uea.ac.uk/index.php/JASigning.

Misure per il riconoscimento della lingua dei segni italiana e ['inclusione

delle persone con disabilita’ uditiva. https://www.gazzettaufficiale.

it /atto/serie generale/caricaArticolo?art.versione=
l&art.idGruppo=5S&art.flagTipoArticolo=0&art.codiceRedazionale=
21A03181&art .1idArticolo=348art . 1idSottoArticolo=3&artl

Oo—zl&art.progressivo=0.

Achraf Othman et al. “The Acceptance of Culturally Adapted Signing
Avatars Among Deaf and Hard-of-Hearing Individuals.” In: IEFE Access
12 (2024), pp. 78624-78640. DOI1: [10.1109/ACCESS.2024.3407128.

38

https://www.sign-lang.uni-hamburg.de/lr/compendium/corpus/dictasign.html
https://www.sign-lang.uni-hamburg.de/lr/compendium/corpus/dictasign.html
https://www.sign-lang.uni-hamburg.de/lr/compendium/corpus/dictasign.html
https://doi.org/10.3389/fcomm.2022.798644
https://doi.org/10.3389/fcomm.2022.798644
https://doi.org/10.3389/fcomm.2022.798644
https://dev.epicgames.com/documentation/en-us/unreal-engine/events-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/events-in-unreal-engine
https://base.movella.com/s/article/FBX-import-into-Unreal-Engine?language=en_US
https://base.movella.com/s/article/FBX-import-into-Unreal-Engine?language=en_US
https://base.movella.com/s/article/FBX-import-into-Unreal-Engine?language=en_US
https://doi.org/10.1109/ICASSPW59220.2023.10193734
https://www.rokoko.com/products/headrig
https://www.who.int/news-room/fact-sheets/detail/deafness-and-hearing-loss
https://www.who.int/news-room/fact-sheets/detail/deafness-and-hearing-loss
https://vh.cmp.uea.ac.uk/index.php/JASigning
https://vh.cmp.uea.ac.uk/index.php/JASigning
https://www.gazzettaufficiale.it/atto/serie_generale/caricaArticolo?art.versione=1&art.idGruppo=5&art.flagTipoArticolo=0&art.codiceRedazionale=21A03181&art.idArticolo=34&art.idSottoArticolo=3&art.idSottoArticolo1=10&art.dataPubblicazioneGazzetta=2021-05-21&art.progressivo=0
https://www.gazzettaufficiale.it/atto/serie_generale/caricaArticolo?art.versione=1&art.idGruppo=5&art.flagTipoArticolo=0&art.codiceRedazionale=21A03181&art.idArticolo=34&art.idSottoArticolo=3&art.idSottoArticolo1=10&art.dataPubblicazioneGazzetta=2021-05-21&art.progressivo=0
https://www.gazzettaufficiale.it/atto/serie_generale/caricaArticolo?art.versione=1&art.idGruppo=5&art.flagTipoArticolo=0&art.codiceRedazionale=21A03181&art.idArticolo=34&art.idSottoArticolo=3&art.idSottoArticolo1=10&art.dataPubblicazioneGazzetta=2021-05-21&art.progressivo=0
https://www.gazzettaufficiale.it/atto/serie_generale/caricaArticolo?art.versione=1&art.idGruppo=5&art.flagTipoArticolo=0&art.codiceRedazionale=21A03181&art.idArticolo=34&art.idSottoArticolo=3&art.idSottoArticolo1=10&art.dataPubblicazioneGazzetta=2021-05-21&art.progressivo=0
https://www.gazzettaufficiale.it/atto/serie_generale/caricaArticolo?art.versione=1&art.idGruppo=5&art.flagTipoArticolo=0&art.codiceRedazionale=21A03181&art.idArticolo=34&art.idSottoArticolo=3&art.idSottoArticolo1=10&art.dataPubblicazioneGazzetta=2021-05-21&art.progressivo=0
https://www.gazzettaufficiale.it/atto/serie_generale/caricaArticolo?art.versione=1&art.idGruppo=5&art.flagTipoArticolo=0&art.codiceRedazionale=21A03181&art.idArticolo=34&art.idSottoArticolo=3&art.idSottoArticolo1=10&art.dataPubblicazioneGazzetta=2021-05-21&art.progressivo=0
https://doi.org/10.1109/ACCESS.2024.3407128

BIBLIOGRAPHY

[18]

Lorna C. Quandt et al. “Attitudes Toward Signing Avatars Vary Depending
on Hearing Status, Age of Signed Language Acquisition, and Avatar Type.”
In: Frontiers in Psychology 13 (2022). DOI: 10 .3389/ fpsyg.2022 .
130917/,

Bruno Ribeiro et al. “Capturing and Processing Sign Animations to a Por-
tuguese Sign Language 3D Avatar.” In: 2023 30th International Conference
on Systems, Signals and Image Processing (IWSSIP). 2023, pp. 1-5. DOI:
10.1109/IWSSIP58668.2023.10180233.

Martin Schepers, Matteo Giuberti, and G. Bellusci. Xsens MVN: Consistent
Tracking of Human Motion Using Inertial Sensing. Mar. 2018. DOI: 10 .
13140/RG.2.2.22099.07205

State Machines in Unreal Engine | Epic Developer Community — dev.epicgames.com.
https://dev.epicgames.com/documentation/en-us/unreal—+
engine/state-machines—-in-unreal-engine.

Take Recorder in Unreal Engine | Epic Developer Community — dev.epicgames.com.
https://dev.epicgames.com/documentation/en—-us/unreal-+
engine/take-recorder—-in—-unreal-engine.

Tsubasa Uchida et al. “Motion Editing Tool for Reproducing Grammat-
ical Elements of Japanese Sign Language Avatar Animation.” In: 2023
IEEE International Conference on Acoustics, Speech, and Signal Processing
Workshops (ICASSPW). 2023, pp. 1-5. DOI: [10.1109/ICASSPW59220.
202723, 101T931T98.

Rosalee Wolfe et al. “State of the Art and Future Challenges of the Portrayal
of Facial Nonmanual Signals by Signing Avatar.” In: July 2021, pp. 639-655.
ISBN: 978-3-030-78091-3. po1:[10.1007/978-3-030-78092-0_45.

Ouargani Younes and El Khattabi Noussaima. “Sign Language Animator: A
Platform for Multilingual Sign Language Synthesis.” In: 2024 International
Conference on Intelligent Systems and Computer Vision (ISCV). 2024,
pp- 1-8. DOI: |10.1109/ISCV60512.2024.10620089.

39

https://doi.org/10.3389/fpsyg.2022.730917
https://doi.org/10.3389/fpsyg.2022.730917
https://doi.org/10.1109/IWSSIP58668.2023.10180233
https://doi.org/10.13140/RG.2.2.22099.07205
https://doi.org/10.13140/RG.2.2.22099.07205
https://dev.epicgames.com/documentation/en-us/unreal-engine/state-machines-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/state-machines-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/take-recorder-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/take-recorder-in-unreal-engine
https://doi.org/10.1109/ICASSPW59220.2023.10193198
https://doi.org/10.1109/ICASSPW59220.2023.10193198
https://doi.org/10.1007/978-3-030-78092-0_45
https://doi.org/10.1109/ISCV60512.2024.10620089

	Acknowledgements
	List of Figures
	Introduction
	State of the art
	Challenges of Sign Language synthesis
	End-to-end synthesis systems
	Recent technical improvements
	Impact of DHH people involvement

	Method
	Recording signs with mocap
	Animating a MetaHuman in Unreal
	Animation blending
	First experiments
	MetaHuman blueprint changes
	Animation blueprint and state machine
	User interface
	Creating the sign dictionary
	Generating video output for evaluation

	Results
	First observations
	Evaluation survey

	Conclusion
	Conclusion
	Future works

	Bibliography

