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Abstract

For the better understanding of what happens during a visual experiment, the pos-
sibility of recording the experiment itself and watching it again at a later time is cru-
cial. While for many cases achieving this is just a matter of recording the event with
a camerg, some complex situations require more attention. One such case is when
the nature of the experiments is to understand 3D datag, where a 2D video would not
carry the necessary information.

This thesis aims at recording 3D trajectories of small bubbles moving in the air. This
is achieved by combining the information provided by a set of synchronized cam-
eras, observing the experiment. The source videos capture the same scene from dif-
ferent positions, which are known thanks to an initial calibration process. The special-
purpose cameras are able to provide binary frames, highlighting the bubbles in white,
on top of a black background. The proposed solution starts by transforming each
frame into alist of 2D coordinates, describing where the center of each bubble is within
the image. For each time instant, the different points of view are then leveraged to re-
project the coordinates into the 3D space, creating a cloud of 3D points. Subsequently,
the intrinsic sequential nature of the video is made explicit: reconstructed bubbles of
consecutive frames are joined together, to form trajectories. Finally, the obtained 3D
reconstruction needs to be displayed on a 2D monitor: different techniques are ex-
ploited to make this visualization as intuitive and understandable as possible.

This thesis illustrates all the approaches evaluated for each step, and which ones
are eventually chosen thanks to their speed and quality performance. The final solu-
tion is a pipeline that can process in real-time the experimental setup, displaying the
reconstructed trajectories only a few seconds after the image capture.
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Chapter1

Introduction

1.1 Particle tracking

Thanks to the existence of the Earth’'s atmosphere, we live in an enormous fish bowl,
filled to the brim with air. In our everyday life, we constantly perceive this mass of
air: for instance we breathe it, we are subjected to the atmospheric pressure, we see
insects flying through it, as if they were swimming.

Sometimes we can perceive that this giant mass is moving, for example when there
is a slight breeze blowing on us. This may lead curious people to desire to understand
deeply how and why this movement happens.

Since air is transparent, we cannot base our research on observing it. The tactile
feelings are not enough, either, since we are only able to perceive movements of a
certain strength. We can however leverage our good vision to observe small particles
floating in the air: they move with the surrounding, but unlike the air, we can see them.

Directly observing the particles can be a starting point to understand the air move-
ment. However, this method lacks the possibility to “pause” the time to reflect, and the
possibility to rollback the observation to check what has just happened. The most
common solution to this problem is to record the observation with cameras, to be
able to pause and re-watch the footage. However, a simple 2D recording cannot
encode the essential information about depth: for these applications, it is therefore
crucial to capture the experiment in a way that allows to reconstruct the trajectories
in full 3D.

While being easy for the human brain, the task of recreating a 3D scene from some
2D views is not trivial for an algorithm. In my thesis, | had to try to accomplish it with
good quality, with very stringent requirements about computation time.

1



Introduction

1.2 Goals

1.2.1 Project objectives

Not long after the COVID-19 pandemic started, people realized that the disease could
spread by means of water droplets suspended in the air. This lead many research
groups in the fluid dynamics domain to investigate how air would move inside a room,
carrying such droplets (some examples: [1][2]).

The overall project that includes my thesis is a research topic on this momentum.
The final goal is to understand the common patterns that air follows when moving —
while apparently being still — in a room. To understand this, an experimental setup
was created in a small room. In a corner of the chamber there was a machine [3]
able to create bubbles, similar in concept to the soap bubbles that children use to
play (figure 11). By observing the movement of these bubbles, the movement of the
air would then be inferred.

Since the bubbles need to move in the same way of the surrounding air, a way to
cancel out all the other forces is required. The surface and filling material for the bulb-
bles therefore need to be carefully chosen, in order to have an overall weight density
of the bubble similar to the air density. This allows the buoyancy force to compensate
almost exactly the gravity force, leaving only the force of the surrounding air to move
the bubble.

The experiments are conducted in two steps. First, some bubbles are created:
when there are enough, the machine is stopped, to avoid air currents caused by the
machine itself. Then, a small amount of time is waited, to allow the bubbles to lose
their initial speed, and to settle in the room air movement. After this this short period,
the observation starts. Due to this composed procedure, the “bubble material” would
be required to create long-lasting bubbles, whose average lifetime is at least 5 min-
utes.

On top of that, soap bubbles are too big for the purpose: there is a high chance
that a bubble in front occludes another bubble in the back, reducing the quality of the
observation. For this reason, the “soap” must be a material that creates bubbles with
a maximum diameter of some millimeters.

From all these considerations, the bubbles were created with a coating made of a
proprietary substance created by Sage Action [4], filled with helium.

2



Introduction

Figure 1.1: The experimental setup: the machine in the corner of the room is creating
some small bubbles that fill the space

1.2.2 Company objectives
The cameras

SMA-RTY France [5], the company where | did my internship, has as core business
the selling of special-purpose, FPGA-driven cameras. As such, one of the two tasks
contracted to them by the research group was the construction of a specific camera
for this purpose: this task was tackled by their internal team of embedded developers.
In the final setup, 3 or 4 cameras were used in a stereoscopic arrangement, as shown
in figure 1.2.

Reconstruction algorithm acceleration

The research group internally developed a MATLAB tool for analyzing the video footage
from an arrangement of 3 cameras, but the processing speed was extremely slow. As
such, they contracted SMA-RTY to create an accelerated version, either by improving
the original one, or by creating a totally new script, in whichever programming lan-
guage was best. The objective of the acceleration was to have a real-time software,
that would be able to process the videos live, with an allowance of some seconds of
jitter. That is, a delay between capturing the frame and outputting the reconstruction
was acceptable, as long as it did not increase over time.

3



Introduction

Figure 1.2: A tripod with 3 SMA-RTY cameras in a stereoscopic arrangement

SMA-RTY internally started working on this, with a different solution that acceler-
ated the processing to 19 FPS. This script was already orders of magnitude faster than
the original one, but the obtained speed was still less than the target. On top of this,
this proposed solution was working with ToF (Time of Flight) cameras to perform the
depth estimation, thus avoiding the expensive 3D reconstruction methods. However,
the project required visible cameras, therefore this idea had to be discarded.

1.2.3 Thesis objectives

| was assigned by the SMA-RTY team the task of accelerating the MATLAB script for
processing the videos. Originally, the vision was to exploit my CUDA skills to leverage
the parallelization of GPUs. However, as the body of this thesis will make clear, there
was not so much parallelization that could be done. Instead of focusing on “better”
hardware architectures, the best course of action was indeed to optimize the various
software steps.

Therefore, the objective of my thesis became the recreation of the full pipeline, from
image capturing to 3d markers rendering. The main constraint of the result would be
the speed, 24 FPS were required at steady-state, while the output quality should be as
good as possible.



Introduction

1.3 Structure of the thesis

This thesis is structured as follows:

Chapter 2 provides theoretical knowledge about camera calibration, the technique
of stereoscopy and image moments, and illustrates the main programming lan-
guages, libraries and tools used in the thesis work;

Chapter 3 describes the hardware where the solutions were compared and tested,
as well as the cameras providing the images;

Chapter 4 explains the steps in which the particle tracking pipeline is commonly split;

Chapter 5 deeply analyses the requirements, the alternatives and the final imple-
mentation for the Locate step of the algorithm;

Chapter 6 performs a similar analysis for the 2D Link step;
Chapter 7 examines in a similar way the approaches for 3D Matching;

Chapter 8 describes the 3D alternatives for the Link step, in contrast to the 2D ap-
proaches explained in chapter 6;

Chapter 9 illustrates the two visualizers that were developed to interactively see the
reconstructed trajectories;

Chapter 10 explains how the steps described in the previous chapters are joined to-
gether in a single pipeling;

Chapter 11 evaluates the quality and speed of the final solution;

Chapter12 draws the final conclusions from the thesis, and hints at possible future
improvements.



Chapter 2

Background knowledge

2.1 Camera calibration

Camera calibration is the process of estimating the parameters of a vision system.
Three types of calibration parameters exist: distortion, intrinsics and extrinsics.

2.1.1 Distortion [6]
What is distortion

A camera lens can introduce two types of distortion: radial and tangential. Radial
distortion makes straight lines appear curved in the image, while tangential distortion
can make some image parts look closer than they are. Figure 2.1 provides a graphical
example of both distortion problems.

originalimage radial distortion tangential distortion

Figure 2.1: How radial and tangential distortion affect an image
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Mathematical definition

Given an undistorted point P =

"T] (at distance r from the center of the image), a
Yy

radial distortion will transform it into
Puist = (14 k1r® + kor* + kgr®) - [xl
Y
while a tangential distortion would transform it into

Pdist =

T+ [2p1xy + pa- (1"2 + 2952)]
y+ [2p2zy + pr- (r? 4 2¢7)]

As such, the full distortion can be described with the vector [kl ko p1 pe k;g}.

How to calibrate the parameters

The estimation of the distortion parameters (among with other parameters) can be
computed using OpenCV's calibrateCamera function. It requires data extracted from
multiple calibration frames, each one with a set of coplanar points. Each frame must
provide the list of pixel coordinates of the points detected in the image. On top of that,
each point must be labeled with a coordinate system local to the plane where the
points lay: an example can be a row/column index for a grid-like pattern.

Common calibration patterns are dots (figure 2.2.a) or the corners of a chessboard
(figure 2.2.b). Often, to help the detection of the chessboard corners, ArUco [7] markers
are added in the white cells (figure 2.2.c). This combination of ehessboard and ArUco
markers is called ChArUco.

(b)

Figure 2.2: Calibration planes: (a) dots, (b) chessboard, (¢c) ChArUco
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How to remove distortion

Using OpenCV's undistort function, it is possible to remove the lens distortion. The result
is the image as it would be taken by an ideal camera setup.

2.1.2 Intrinsic parameters [8]
What are intrinsic parameters

The intrinsic parameters describe how the lens and sensor alter the image captured
by a single camera. Using these parameters, it is possible to remove all this distortion,
transforming the image into a common frame of reference. These transforms allow to
obtain the same image when two different cameras, with different optics, photograph
the same scene.

Mathematical definition

Consider a simple scene, with a camera observing a point. Define a frame of refer-

T
ence centered in the camera. The point can be described as R = [Pm P, PZ} . The
camera will project the point onto the image plane, at the homogeneous coordinate

R = {P; P, 1} . Itis possible to show that P’ can be written as P transformed by a
matrix K, called intrinsic matrix: P’ = K.P.
In particular, K is in the form:

where:
« f. and f, are the focal lengths in pixels of the optic system. They may differ along
the horizontal and vertical direction;
+ s is the skew, that can be caused by the digitization process;

« 2o and yy are the coordinates of the pixel where the center of projection of the
camera stands.

How to calibrate the parameters

The full intrinsic matrix is estimated by the same 0pencV function that evaluates the
distortion coefficients.
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How to remove intrinsic parameters

Using OpenCV's undistort function, it is possible to remove also the intrinsic parameters.
The result is the image as it would be taken by a camera with K=I5. This enables to
compare pixel-wise images captured with different optic and sensor arrangements.

2.1.3 Extrinsic parameters
What are extrinsic parameters

The extrinsic parameters describe position and orientation of a camera with respect to
a specific frame of reference. Usually they are not computed when a single camera
is present, since it is convenient to assume as frame of reference the position and
orientation of the camera. With multiple cameras, usually one of them is chosen as
"main”, and it acts as the frame of reference for the other cameras. In this frame
of reference it is therefore crucial to understand position and orientation of all the
cameras.

Considering camera A as main, the extrinsic parameters of another camera B can
be expressed in three different ways:

« rotation matrix 2 and translation vector ¢: R describes how to rotate A to be in
the same orientation as B (equivalently, how B is rotated in A’s frame of refer-
ence); tis the versor in B's frame of reference towards the origin (equivalently, B
is located in —Rt in the main frame of reference);

+ essential matrix £. Assuming Py = [zA Yya 1} and Pp = [1:3 yB 1} are the
undistorted projections of a point P on the two cameras, E is a matrix such that
P - E-PY =0, Ecan also be computed as E = [t]x R, where [t] is the matrix
representation of the cross product of ¢

- fundamental matrix F: the definition is the same as E's, but using the points
with K still applied (only the distortion has to be removed). If the two cameras
have intrinsic matrices K4 and Kp, F can be computed as F = (Kgl)T -E-KZL.

How to calibrate the parameters

The extrinsic calibration can be obtained from the same data as the intrinsic calibra-
tion, provided that the cameras took a picture of the exact same scene (which likely
implies that the pictures must be taken at the exact same time instant). The calibra-
tion points detected on both images can be processed by:

* OpenCV's recoverPose function to obtain R and ¢;
+ OpenCV's findEssentialMat function to obtain E;
9
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 OpenCV's findFundamentalMat function to obtain F.

How to remove extrinsic parameters

Non-null extrinsic parameters mean that the two images are fundamentally different,
therefore it is not possible to remove these parameters. Instead, these parameters
are essential for reconstructing the 3D scene using stereoscopy.

Definition up to a scale factor

If everything (objects in the picture, distances between objects and pixel size and fo-
cal length of the cameras) is scaled by a factor &, then the resulting images do not
change. For this reason, the extrinsic parameters can only be defined up to a scale
factor. Most importantly, this affects ¢ it cannot be the vector of the displacement,
since the distance is unknown, but it is only the versor of the direction of the displace-
ment.

This makes the reconstruction (stereoscopy) use an arbitrary unit of measurement,
which corresponds to the distance between the cameras. This must be taken into ac-
count particularly if there are more than 2 cameras: each camera will have a different
distance from the main one, thus having different units of measurement. The prolb-
lem can be solved by computing the scaling factor between the units such that the
reconstructed calibration points have coherent distance between the different cam-
era couples. To have a realistic measurement unit, it is also possible to impose this
scaling factor in a way that the distance between the reconstructed points is coherent
with the real one.
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2.2 Stereoscopy

Our brain is able to understand depth by leveraging the fact that we have two eyes in
slightly different positions. This mechanism is called stereoscopy, and it can be used
by a computer vision system, provided that it has two or more cameras.

Figure 2.3: Reprojecting a point from 2D to 3D: it could be anywhere on a specific line

2.2.1 Depth estimation

Consider a camera A, with center of projection C4 and image plane w4 (left in fig-
ure 2.3). Ifa 3D point Pis seen by the camera, in theimage plane it willbe P4 = m4NPCa.
From a single cameraq, it is impossible to reconstruct P from Py4: there would be in-
finitely many possible Ps, all the points that lie on the extension of P4Ca.

If another camera B is available (right in figure 2.3), and the same point P is pro-
jected as Pg, then a new information is added: that P will lie on the extension of PgCp.
By intersecting these lines, it is ideally possible to reconstruct the original 3D position
of P.

In order to do so, the relative position of the cameras needs to be known: all cal-
ibration parameters are required. In particular, the function triangulatePoints from
OpenCV is able to reconstruct the 3D positions given the 2D matched observations, the
intrinsic and distortion parameters of the two cameras, and the extrinsic matrix of the
couple.
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2.2.2 Epilines

As stated before, the point P4 could correspond to a full line of 3D points. When seen
by camera B (with a different point of view), this line translates to a 2D line in 7 (red
in figure 2.3). This line is called epiline.

Different points P4 will correspond to different epilines, which however all pass by
the epipoint e¢;. The epipoint is defined as eg = 715 N CaCp.

Computing the epiline equation

As explained in the previous section, the essential matrix £ is such that P - E- P =0,
which is called the epipolar constraint. If P is a generic point on the image, it can be
described as Pg = {:c Yy 1}. The result of E - P is a 3 x 1 vector, that can be written

T
without loss of generality as {a b c} . When all this knowledge is substituted into the
epipolar constraint, we obtain the following:

[z Y 1}~E~PZ;:O

a
[xyl]-b:O
c

ax+by+c=0

which is the equation of the epiline in B's frame.

2.2.3 3D matching

For estimating the depth, triangulatePoints Nneeds matched point. That is, the i—th
point provided by camera A and the i—th point provided by camera B must be the two
projections of the same 3D point. To perform this matching, traditional stereoscopy
follows this procedure:

1. Choose a point in the main image;

2. Compute the equation of the corresponding epiline;
3. Consider a patch around the original point;
4

. For each point on the epiline (in the second image), compute the similarity of a
patch centered in that point with the original patch;

o

Select the most similar point as the match;

6. Compute the 3D coordinate of the point from the obtained match.

12
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2.3 Image moments

In mathematics, a moment is a quantitative measurement related to a function'’s
graph. In particular, the moment of index n of the function f(z) is defined as [ 2" f(z)dz.
The same underlying concept can be adapted to images, with some modifications to
adapt to the two, discrete dimensions.

Given a grayscale image of size NxM, name I(z,y) the intensity of its pixels. Then,
the raw moment of index (p+¢) can be computed as:

N—-1M-1
My = Z Z aPy?-I(z,y)
z=0 y=0

These moments are able to describe some features of the image. In particular, for our
purpose we consider the moments of index 0 and 1:

« My is the sum of the gray level of the image. For binary images, it coincides with
the areq;

« Mo is a measure of how far to the right the illuminated pixels are positioned. If
the total area is taken into account, the = coordinate of the centroid of the image
is available: T = Mio/ny;

« Similarly, 7 = Mo1/a,, is the y coordinate of the centroid of the image.



Background knowledge

2.4 Programming languages and libraries

The particle tracking software developed in the scope of this thesis is fully written in
Python. This choice was made considering many reasons, including:

« the extensive quantity of optimized libraries for accomplishing many sub tasks
(e.g. NumPy);

« the simplicity of the syntax, leading to fast development and testing;

« the presence of many existing approaches to the problem in this language;

« the possibility to run GPU kernels.

Initially, there were discussions about testing the different ideas in Python for develop-
ment speed, to then translate the code into C++, to leverage its faster execution speed.
At the end, the speed of the Python implementation resulted to be good enough, so
it was kept as the final version, without rewriting. On top of that, the program relied
heavily on advanced NumPy features: a C++ porting would require equivalent manual
implementations, thus losing the intrinsic optimizations.

The following chapters briefly describe the libraries used in the project.

2.4.1 NumPy, SciPy, CuPy

NumPy [9] and sciPy [10] are the classical optimized libraries used for mathematical
computations. cuPy [11] is an alternative to SciPy, that makes use of a GPU to parallelize
and accelerate even more the functions it implements.

2.4.2 OpenCV

OpencV [12] is the most common library used for image handling and computer vision
tasks.

2.4.3 Numba

Numba [13] is a Just-In-Time compiler for Python: it enables to compile the code instead
of interpreting it, improving on Python's infamous slow speed. On top of this, it enables
to write Python kernels that can be compiled into CUDA code, enabling to fully exploit
the GPU at the programmer’s discretion.

2.4.4 Open3D

Open3D [14] is an open-source library to support the visualization of 3D data.
14
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2.4.5 Other libraries

The libraries trackpy [15], MyPTV [16], TracTrac [17], as well as the MATLAB tool 4d-ptv [18],
are different existing solutions for attempting the task. A better analysis follows in the
chapters where all the steps are examined.

The library PyTorch [19], one of the main pillars of machine learning in Python, is also
used in some of the attempts at finding the best solution.



Background knowledge

2.5 Unity

Unity [20] is a Game Engine, a software designed to help developers creating inter-
active applications — including, but not limited to, games. Unity natively supports the
rendering of 3D geometries in real-time, while reacting to the user's inputs. These char-
acteristics made Unity the perfect tool to create a visualizer for the reconstructed 3D
data.



Chapter 3

Experimental setup

During development, everything was tested on a Jetson Orin Nano, while a final bench-
marking was also done on a Jetson AGX Xavier. Both platform were connected to a
set of 3 or 4 custom-built cameras. A schematic of the full hardware setup can be
seen in figure 3.1.

3.1 Jetson Orin Nano

The Jetson Orin Nano [21] is a compact but powerful system developed by NVIDIA. It is
powered by a 6-core Arm® Cortex®-A78AE v8.2 64-bit CPU. It provides an 8GB, LPDDR5
RAM, and accepts an SD card and an external NVMe as mass storage. It also features
a NVIDIA GPU with Ampere architecture, that offers 1024 CUDA cores and 32 tensor
cores. The power consumption can oscillate between 7 and 25W: during our tests, it
was always set to maximize performance.

3.2 Jetson AGX Xavier

The Jetson AGX Xavier [22] is another embedded chip developed by NVIDIA. The Xavier
generation means that this chip is older than the Orin, while the AGX family means that
it is on the most powerful side of its generation.

The Jetson AGX Xavier is a system powered by a 8-core Carmel ARM CPU. It provides
a 16GB, LPDDR4 RAM, and accepts an SD card and an external NVMe as mass storage.
Its GPU is a NVIDIA chip with Volta architecture, with 512 CUDA cores and 64 tensor cores.
As for the Orin, the power consumption was set to maximize performance during our
tests.

17
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3.3 Cameras

The cameras in use are custom-made, global shutter cameras, with a 960x960 sen-
sor that provides 16 bits per pixel. Their maximum frame rate is 30 FPS, but the full
resolution limits it at 24 FPS for data transfer speed. Each camera is equipped with an
FPGA module, that performs a background subtraction and a binarization, providing
as output binary images, with white bubbles over a black background. The connec-
tion between each camera and the processing element is realized following the MIPI
protocol, which also enables to have synchronization among the frames captured by
the different cameras.

Jetson Orin Nano /
Jetson AGX Xavier

Multicore CPU

Figure 3.1: Schematic of the hardware setup



Chapter 4

Basic particle tracking pipeline

Commonly, the particle tracking pipeline is split into the following sub tasks:

1. Locate: considering each frame of each camera separately, find the pixel coor-
dinates of all the bubbles in the image;

2. Link: consider two consecutive time instants. For each bubble in the first frame,
link it to where it moved in the next frame, to form trajectories (called tracklets).
This step must take into account the fact that bubbles may appear or disappear;

3. 3D Matching: consider simultaneous frames of the different cameras. For each
bubble in one camera, find which is, if any, the corresponding bubble in the other
cameras. This information is then used to reconstruct the 3D position of the bub-
bles;

4. Visualization: display in a suitable way the reconstructed 3D scene on a 2D
screen.

In literature, some approaches follow the order 1-2-3-4 (blue in figure 4.1), performing
a camera-wise Link. Some other libraries chose to invert 2 and 3, obtaining a 1-3-2-4
order (orange in figure 4.1). This anticipates the 3D reconstruction before the Link, thus
performing a single Link operation on 3D coordinates, obtaining 3D tracklets.

In the next paragraphs, each step will be analyzed separately. For each step, all
solutions found in literature will be compared both among themselves, and with the
ones developed within the scope of this thesis, to find the overall best one.



Basic particle tracking pipeline

LOCATE VISUALIZE

Figure 4.1: The two different orders in which the pipeline can be executed
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Chapter 5

The Locate step

The task of the Locate step consists in extracting the positions of the bubbles in pixel
coordinates, independently for each frame of each camera.

5.1 Requirements

5.1.1 Input

The Locate step receives as input the videos captured by the cameras, frame by
frame. The images are pre-processed by an FPGA included in the cameras: the back-
ground is removed, and the resulting image is binarized with a threshold, to have dis-
tinct white bubbles over a black background. Figure 5.1 depicts an example input
frame.

5.1.2 Output

The output of the Locate step is a couple of numpy arrays. An array called positions
describes the coordinates of each bubble present in a frame. Itis a four-dimensional,
floating-point array, where positions [C] [F] [B] describes the B-th bubble of the F-th
frame of camera C, in the form of an (x, y[, areal) tuple. Bubbles are ordered in a
random, arbitrary way for each frame: there is no correlation between two bubbles
with the same B but different ¢ and/or F.

Due to numpy limitations, the array is pre-allocated of a fixed size: while the num-
ber of cameras is fixed, an upper limit on the number of frames and bubbles must
be decided before execution. Knowing which frame indices contain meaningful data
is trivial, since the experiment time is choosable by the user. The number of bubbles
found within a frame, however, is not known, mostly because it is not stable over time.
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The Locate step

For this reason, a second array was introduced: numTracers is a two-dimensional, in-
teger array. numTracers[C] [F] carries the information of how many tracers are valid
inside the F-th frame of camera C. The coordinates of the valid tracers will therefore
be positions[C] [F] [:numTracers[C] [F]].

Figure 5.1: An example of frame returned by the cameras

5.1.3 Speed

When used on a setup of N cameras with frame rate f each, the Locate step would
receive N-f independent frames each second. To respect the real-time constraint,
the Locate step would therefore need to operate at a minimum of N-f FPS.

When the analysis was performed on the Locate step, the plan was to have 3 cam-
eras working at 30 FPS, requiring a 90 FPS Locate step. Later, the cameras turned out
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The Locate step

to be slower, at 24 FPS, but there were 4: the final Locate implementation was able to
manage also these 96 FPS.

5.1.4 Quality

Ideally, all tracers should be detected, since errors in the locating process would prop-
agate to future steps:

- False positives: the 3D Matching phase will have more candidates, leading to
possible wrong reconstructions: the 3D Matching can both choose the correct
bubble, or the one added by the error (or another real one);

- False negatives: the same bubble in another frame will not have the correct
match, leading to certain wrong reconstructions.

As such, it is better to overpredict (false positives) than to miss bubbles.

Itis however to be noted that the mostimportant requirement is the speed: a worse
implementation which is speedwise above target should be preferred to a better im-
plementation that does not meet speed requirements.

5.2 State of the art

When searching on the Internet for existing solutions to perform the Locate task, the
following approaches were found:

- The Trackpy [15] Python library (evaluated in section 5.3.1);

« The MyPTV [16] Python library (evaluated in section 5.3.5);

« The TracTrac [17] Python program (evaluated in section 5.3.8);

« The 4d-ptv [18] MATLAB script (evaluated in section 5.3.11).
In the aim of finding the best approach, the listed algorithms were evaluated in the
same way as novel algorithmic ideas. In some cases, potential weaknesses in the
algorithm were found: some of the new approaches developed within this thesis are

therefore evolutions of these algorithms. For this reason, their description and evalu-
ation is in the following chapters.

5.3 Approaches

The following sections describe the many different approaches evaluated for the Lo-
cate step. Their speed and quality is compared on a common 1-camera, 100-frame
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sequence. Each approach reports an example frame: it is the result of performing the
Locate on figure 5.2, which itself is a portion of the frame in figure 5.1.

Figure 5.2: The portion of figure 5.1 used to display the locate result
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5.3.1 Trackpy

Trackpy [15] is a particle tracking library developed by Soft Matter. Its Locate function
performs the task required, if an extra output format transformation step is applied.

Algorithm

As described in the documentation, the Locate function implements the following al-
gorithm:
1. Pre-process the image by performing a band pass and a threshold.

2. Locate all peaks of brightness, characterize the neighborhoods of the peaks and
take only those with given total brightness (“mass”).

3. Refine the positions of each peak.

Evaluation

As displayed in figure 5.3, the algorithnm performed well on quality, finding about 85%
of the tracers, but with some strange offset in the positions. The speed was however
extremely low, at just 3 FPS.

Figure 5.3: Trackpy's result
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5.3.2 Trackpy (CuPy)

When profiling the Trackpy code, the functions fourier_gaussian, uniform_filterid and
correlateld from SciPy took a considerable amount of time. For this reason, Trackpy's
code was altered to use the CuPy library instead of SciPy for these operations. This
aimed to exploit the GPU for faster computation.

Algorithm

The algorithm is the same as Trackpy's, with some extra steps required to transfer the
various arrays to/from GPU memory. These transfers were reduced to the minimum,
to reduce the overhead as much as possible.

Evaluation

Figure 5.4 shows the result, which for unknown reasons is different than Trackpy’s: it lost
the offset problem, but the percentage of identified bubbles reduced to 79%. Speed-
wise, the algorithm is slightly faster, running at 7 FPS: still extremely far from the target.

Figure 5.4: Trackpy with CuPy’s result
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5.3.3 CNN

The task of finding the coordinates of the bubbles can be read as for each pixel, check
if it is the center of a bubble. The task of looking for the same thing across all pixels
of an image is the foundation of image convolution and convolutional layers in neu-
ral network. As such, a SAME CONV neural layer was proposed, with a kernel size big
enough for containing a full bubble. The CNN would transform the input image into a
binary image, where “on” pixels would represent bubble centers.

Algorithm

« Initially, the single-layer CNN evaluates the image, to find centroids of the bulb-
bles;

« At a second stage, a loop would collect all the “on” pixels of the image into a list
of coordinates.

Evaluation

Initially, only a feasibility study was performed: the CNN was trained with just a single
epoch of 8 images, to evaluate if the inference speed was good enough to justify a
longer training. The result shown in figure 5.5 is promising for the little training per-
formed, but it clearly needs more refinement.

Most importantly, the speed was much greater than the previous ones, at 55 FPS,
but still far from the target. As such, further approaches were evaluated before per-
forming a deeper training, to investigate if a greater speed was achievable.

Figure 5.5: The CNN's result
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5.3.4 Torch.unfold concept

The unfold function from PyTorch takes an image, and breaks it into either disjoint or
partially overlapping tiles. The idea is to use a divide and conquer approach, where
the full image is split into smaller images, hopefully making it faster.

Algorithm
The overall algorithm divides the image into patches, to then process each one sep-
arately. Different tile sizes were compared, to find the best, if any.

Evaluation

As visible in table 5.1, having smaller patches increases the time required to perform
the overall Locate. This is likely due to the overlap between patches. The overlap is
however necessary, to avoid bubbles split across patches to be considered as sepa-
rate.

Patch size [px] 501x501 101x101 51x 5l 25x25 15%15 111

Time [s] 157 3.90 7.02 18.22 49.65 96.59

Table 5.1: Time required to process 1 frame with different patch sizes
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5.3.5 MyPTV

MyPTV [16] is a Python library developed by Ron Shnapp for 3D particle tracking. Its
segmentation command performs the task of the Locate step.

Algorithm

MyPTV has two different algorithms to perform the Locate step, “Labeling” and “Dila-
tion”. The best speed was obtained with “Labeling”, that is composed by this sequence
of steps:

1. Choose all pixels whose gray value is higher than a given threshold;

2. Pixels that are touching each other are considered to be “blobs” and grouped
together;

3. For each blob, the center of mass, the bounding box size and the mass are com-
puted.

Evaluation

The output quality is very good, at about 98% of bubbles correctly identified, as visible
in figure 5.6. When concerning the speed, the library achieves 30 FPS, which is better
than other approaches, but still only a third of the target speed.

Figure 5.6: MyPTV's result
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5.3.6 GPU algorithm

This is a custom approach, aimed at maximizing parallelization on GPU.

Algorithm

The algorithm analyzes each pixel in GPU, to then collect the results with a CPU portion:

1. For each possible radius r between 1 and a parameter MAX_RADIUS, execute a GPU
kernel for each image pixel. The kernel operates the following:

(a) Using Bresenham'’s rasterization algorithm, find the list of points that com-
g g P
pose the circle of radius r around the pixel of the thread;

(b) Find the fraction of “on” pixels among these, and use it as a pixel “score”;
(c) Decideif the pixel can be a bubble or not, based on the following conditions:
« If within MAX_RADIUS there is already a bubble, this cannot be another one

(to avoid finding the same bubble twice);

« If the pixel has 100% score, and the surrounding pixels have a lower score,
then the pixel is considered to be a bubble;

« If this pixel was already marked as bubble in a previous iteration, leave
itasitis;

« If none of the previous conditions hold, and r is not MAX_RADIUS, continue
to the next iteration;

« If ris MAX_RADIUS and the pixel is a local maximum, consider it as a bubble;

« Otherwise, the pixel is not a bubble.

2. In CPU, collect all the pixels marked as “bubble” into a common list.

Evaluation

While useful as a learning tool, this approach yielded poor results: speed was just
reaching 15 FPS, and only 43% of the bubbles were identified, as visible in figure 5.7.
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Figure 5.7: GPU algorithm’s result
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5.3.7 Iterative concept

All the approaches generally consider each frame to be independent, not related to
the other ones. This is sometimes required, since for the first processed frame no
information is available. However, since bubbles do not move much between frames,
for subsequent frames an algorithm can reduce the searching window around where
the bubbles could potentially be. This knowledge can reduce the searching space for
these following frames.

While the idea of searching in smaller patches may seem silly due to the results
discussedin section 5.3.4, here the situation is different. Instead of searching in smaller,
but meaningless and overlapping regions, this concept uses meaningful and more
sparse patches.

Algorithm

The algorithm stores position, velocity and acceleration of the previously found bub-
bles into a list. Velocity and acceleration are computed from the last and last two
positions, respectively. If such information is not available, the values are considered
to be 0.

The different frames are processed differently, based on their index:

1. First frame:

(a) Perform a full frame Locate;
(b) Add all the bubbles into the (previously empty) list.

2. All other frames:

(a) Consider the bubbles currently in the list;

(b) Estimate their future position based on the current velocity and acceleration;
(c) In a patch around the predicted position, perform a Locate;

(d) If the bubble is found, update its trajectory;
)

(e Otherwiseg, if a bubble is lost for some frames, remove it from the list.
3. Every N frames:

(a) Update the existing bubbles according to step 2;

(b) Perform a full frame Locate, to find potential bubbles that appeared in the
last N frames;

(c) Add to the list the bubbles that were found by this full frame Locate, and are
not yet present in the list.
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This concept is a "meta-algoritnm?”, in the sense that it relies on another Locate al-
gorithm as a backend. For the evaluation, multiple underlying algorithm were chosen
as backend.

Evaluation

Both the quality and the speed of the meta-algorithm were worse than the original al-
gorithms. For example, when using the Hough algorithm (see section 5.3.9), the quality
was reduced from 84% to 43% (figure 5.8), and the speed from 55 to 15 FPS.

This meant that the divide and conquer approach was not advantageous, even if
the tiles were meaningful.

Figure 5.8: Iterative concept with Hough backend’s result

33



The Locate step

5.3.8 TracTrac

TracTrac [17] is a fast Python software written by Joris Heyman, to track generic moving
objects.

Algorithm

The detection is performed by means of DoG and LoG filters, together with Shi-Tomasi
corner detection. Then, a sub-pixel refinement is applied.

Evaluation

The only output obtained from the script was an image like figure 5.9 for each frame.
No numeric coordinate could be extracted from the execution, nor it was possible to
understand the bubbles’ positions from the output. On top of that, the speed was
also extremely low (1 FPS), despite selling as “very fast software, that can track 10 000
particles per second”.

=
~

Velocity [px/fr

1000

Detection threshold (peak_th)

I —
100 —0.106-0.075-0.056-0.0250.000 0.025 0.050 0.075 0.100
Frames Object intensities

Figure 5.9: TracTrac's result
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5.3.9 Hough transform

The Hough transform [23] is a technique commonly used in computer vision to find
specific patterns, such as lines of circles. Here, a circular Hough transform is used to
identify bubbles, which have a mostly circular shape. The implementation used is the
function HoughCircles provided by OpenCV.

Algorithm
The Hough transform operates the following algorithm:

1. Use the Canny filter to identify the edges within the image;
2. For each pixel of this resulting image:
(a) For growing radii r, compute the percentage p, of the pixels that are “on”
within the ones at distance r from the considered pixel;
(b) Take note of P = max(p,) and R = argmaz(p,) for the pixel;
(c) Filter out pixels whose P is lower than a chosen threshold (no meaningful
circle is found around them);
3. Perform non-max suppression on the values of P of all pixels;

4. Consider all the remaining pixels as bubbles, of corresponding radius R.

Evaluation

Figure 5.10 shows the results of the algorithm: about 84% of the bubbles were found,
at a speed of 55 FPS.

Figure 5.10: Hough's result
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5.3.10 GPUHough

The Hough algorithm operates iterating over all pixels of an image. As such, a new
approach was developed, where this loop is replaced by a parallel GPU kernel call.

Algorithm

The general algoritnm is the same as presented in 5.3.9, with all steps executed in GPU.
In particular:

« Step 1is performed by a kernel, with synchronization after it;

« Step 2 is executed by a separate kernel, with synchronization after;

+ Steps 3 and 4 are run by a unigue kernel, that executes non-max suppression on
its own pixel, and if it not suppressed, uses atomic methods to add the pixel as
coordinate center.

On top of the pixels of each frame, also the frames themselves were processed in
parallel.

Evaluation

The performance of this approach is worse than the CPU Hough transform, both in
quality and speed: the algorithm only identifies about 65% of the bubbles (as visible
in figure 5.11), running at 17 FPS.

Figure 5.11: GPU Hough's result
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5.3.11 4d-ptv

4d-ptv [18] is a MATLAB software for doing 4D Particle Tracking Velocimetry. In partic-
ular, the CenterFinding2D computes the same information as required by the Locate
step.

Algorithm
1. Find candidate bubbles by finding local maxima, comparing each pixel with its
8 neighbors;
2. Refine the positions to sub-pixel accuracies;

3. Filter out non-gaussian bubbles.

Evaluation

Figure 512 shows that this approach has terrible (about 7%) accuracy. On top of that,
speed is sub-optimal (40 FPS), and the script requires a non-standard calibration pro-
cess.

Figure 5.12: 4d-ptv’'s result

37



The Locate step

5.3.12 Image moments

Thanks to the preprocessing done by FPGA, the Locate task is equivalent to finding
homogeneous regions of white pixels on top of a black background. This task is imple-
mented by the function FindContours [24] from OpencCV, that finds a rectangular bound-
ing box around pixels with the same intensity. The precise coordinates of the bubble
can be found by computing the centroid of each bounding box, using image mo-
ments (described in section 2.3).

Algorithm

1. Through OpenCV's FindContours, find all the bubbles for a given frame;

2. For each region in the output:

(a) Compute the image moments with OpenCV's moments function;
(b) Use the moments of order 0 and 1to compute the centroids;

(c) Add the coordinates to the output list.

Evaluation

As visible in figure 5.13, the result quality is almost perfect, finding about 99% of bubbles.
The speed of 67 FPS is extremely good as well, while still being lower than the target.

Figure 5.13: Image moments’ result
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5.3.13 GPU moments

From the previous approach, it was noticed that computing the moments on the dif-
ferent bubbles was a highly parallelizable task. In fact, the same moments function was
called for each bubble found by FindContours.

On top of that, the moments function used to compute moments up to order 3 (for a
total of 24 moments), while only moments of order 0 and 1 were used. As such, a tai-
lored, GPU implementation was created to compute the centroids of the bubbles. The
resulting implementation was also extended to process contours of multiple cameras
at the same time, as well as considering more frames of the same camera in a batch.

Algorithm

1. Through OpenCV's FindContours, find all the bubbles for a given frame;

2. Find the largest contour among them (this allows all GPU threads to work on
the same data size, to avoid divergence: smaller contours are 0-padded to this
common size);

3. For each contour found, a GPU thread runs the following kernel:

(a) Iterate over all pixels, accumulating Mgo, Mo, and My;
(b) Use the moments to compute the centroids;

(c) Add the coordinates to the output list.

Evaluation

Since the algorithm is the exact porting of the corresponding CPU algorithm to GPU,
the output is the same (figure 513, 99% of bubbles found).

For the speed evaluation, some tests were conducted to find the best, if any, batch
size. Figure 5.4 compares the speed of the CPU algorithm to the speed of the GPU
algorithm, with respect to the total number of frames the GPU algorithm processes
together. In particular, this number corresponds to the product between the number
of cameras and the batch size per camera. It is visible that the GPU algorithnm is faster,
provided that at least 5 frames are processed concurrently, while reaching plateau
performance when 10 frames are considered at each iteration. For the final evaluation,
we chose a batch size of 20 per cameraq, leading to 80 frames processed at the same
time by the GPU.

While increasing this batch size adds a delay on the output, this delay only pro-
duces a one-time latency, not accumulating over time. This is acceptable according
to the project requirements, which allow for some processing latency, while requiring
real-time regime speed.
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The maximum speed achieved for this approach was 73 FPS, making this the fastest
approach among all, but still not fully reaching the real-time target.
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Figure 5.14: Comparing speed between CPU and GPU Image Moments algorithms
with respect to number of frames processed
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5.4 Final choice

All the previously described approaches were compared among each other and with
the target speed. As visible in figure 5.15, none of the approaches was able to reach
the target 90 FPS. Since no other approach or idea was available, the fastest algorithm
(GPU moments, described in section 5.313) was chosen. Incidentally, the selected al-
gorithm was also one of the best in terms of output quality.

Speed [FPS]
Tractrac  |m
Iterative idea*  jmm
Trackpy jmem
Trackpy (CuPy)* s
GPU algorithm*
GPU Hough*
myptv
4d-ptv
CNN*
Hough transform
Image moments*
GPU moments*
TARGET
0 10 20 30 40 50 60 70 80 90 100

Figure 5.15: Performance evaluation of different approaches for the Locate step

To compare the different approaches with each other, some modifications were
required to ensure consistency, for simpler comparison. After choosing the final algo-
rithm, it was implemented again from scratch, in order to make it as fast as possible,
with no overhead. This resulted in a valuable speedup, which enabled the algorithm
to execute at 102 FPS, faster than the target speed, as visible in figure 5.16.

Speed [FPS]

: . L | | |

Comparison impl.

TARGET

Clean sheet impl.
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Figure 5.16: Computation speed of the chosen Locate algorithm before and after
the re-implementation, compared with the target speed
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Chapter 6

The 2D Link step

The Link step aims to link together consecutive time instants, by joining the coordinates
of each individual bubble across the various time instants it is seen. The result is a
series of trajectories, or tracklets. Specifically, the 2D version of the Link step operates
on 2D coordinates, producing 2D tracklets.

6.1 Requirements

6.1.1 Input

The input to the Link step coincides with the output of the previous step. If the pipeline is
using 2D Link, the full pipeline under exam is Locate - Link - 3D Matching - Visualization.
This means that the input to this step is the output of the Locate step, as described in
section 5.1.2.

6.1.2 Output

The coordinates of the particles in the tracklets follow the same format as the Locate
output. A four-dimensional positions array describes the (x, y) coordinates of the
bubbles inside positions[C] [F]1[B], C, F and B being the cameraq, frame and bubble
indices, respectively. The difference with the Locate format is that values of B are
scoped across the whole acquisition, not limited to the single frame. This means that
all values with the same C and B will represent the same real bubble across the dif-
ferent frames.

With this representation, valid bubbles are not clustered at the smallest values of
B: for example, bubble B=0 may disappear after some frames, leaving the rest of
its tracklet to contain invalid positions. As such, the numTracers array is not anymore
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enough to describe the valid positions. Instead, a different array is used: validTracers
is a three-dimensional, boolean array. validTracers[C] [F] [B] contains the informa-
tion of whether the bubble B of camera C was detected at frame F. False values
indicate that, at a specific frame, the bubble was either not found yet, or already lost,
or the overall number of bubbles traced by camera C was lower than B.

6.1.3 Speed

As for the Locate step, each second the 2D Link has to process the bubbles from N-f
frames, where N is the number of cameras and f is their frame rate. As such, the
required speed for this step is the same 90 FPS that is required by the Locate step.

6.1.4 Quality

The overall quality of an algorithm can be estimated by combining manual obser-
vation with the number of resulting tracklets found. For the manual observation, the
input video was overlay-ed with a tail composed of points and segments, describing
the last few frames of trajectory. Figures 6.1 and 6.4 are examples of frames used for
manual observation: the single links are quite small, it is hard to see them individually,
it's much easier to consider the general view.

Possible situations of reconstructed links are:

« Link correctly detected: the number of total tracklets does not change from the
previous frame, and the link is coherent with the rest of the trajectory;

« Link not detected: visually, it's hard to notice the missing link; however, this splits
the tracklet into two pieces, increasing the number of tracklets by J;

« Wrong link detected: the number of tracklets remains the same, while an incon-
sistent movement is visible by eye.

As such, a good reconstruction is one with few tracklets and a coherent visual repre-
sentation.

6.2 State of the art

For the Link step, online research was less successful: no new approach was found,
and only some of the libraries found for the Locate step were also performing the
task:

« Section 6.3.] explores the Trackpy [15] Python library;

- Section 6.3.2 explores the MyPTV [16] Python library.
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As for the Link step, they are described and evaluated in the following chapters.

6.3 Approaches

The following sections describe the different approaches evaluated for the 2D Link
step. They are evaluated on a 201-frames video [25], whose frames look like figure 5.1.
For the different approaches, a crop of a sample frame is reported as per the Lo-
cate approaches (section 5.3), with the tail of the tracklet. Full videos are available on
YouTube, following the links in the corresponding citations.
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6.3.1 Trackpy

The 1ink function from the Trackpy [15] library is able to perform the Link task both in
2D and in 3D.

Originally, it required the located positions to be inside a Pandas Dataframe, and it
used to convert it into a NumPy array. However, since our data was already inside a
NumPy array with the same format, the library was altered to avoid this useless conver-
sion, thus saving time.

Algorithm

The Trackpy library implements the Crocker-Grier linking algorithm [26].

Evaluation

For a single cameraq, the linking speed was 40 FPS. If different cameras were analyzed
in parallel processes, 3 cameras could be processed at an overall speed of 120 FPS.

The quality was good at a visual inspection (see figure 6.1 or the full video [27]), and
the total number of tracklets was around 6500.

Figure 6.1: A frame from the Trackpy 2D Link result, full video available at [27]

45



The 2D Link step

6.3.2 MyPTV

MyPTV [16] implements 2D Link with the 2D_tracking command.

Algorithm

The library implements the “best estimate method” described by Ouellette-Xu [28]: a
nearest neighbor initial guess, followed by 4-frame tracking for the following frames.

Evaluation

The speed of this approach, lower than 1 FPS, was unacceptable: as such, the quality
was not even evaluated.

46



The 2D Link step

6.3.3 Kalman CPU

The iterative concept for the Locate approach (described in section 5.3.7) was using
the trajectories to predict the future position of each bubble. As such, it was already
performing the 2D Link task. For this reason, a modified version was considered as a
novel 2D Link approach.

Algorithm

The algorithm starts with an empty list of previously found bubbles. It then loops over
these steps, for each frame in the video:

1. Store the positions of the located bubbles in a suitable data structure. Based on
the settings, a basic coordinate list or a 2D binary tree could be used;
2. For each bubble in the “previous bubbles” list:
(a) Compute its velocity and acceleration from the last trajectory points, if avail-
able;
(b) Compute a predicted position;
(c) Find the candidate bubbles in the next frame:

« If the binary tree was used as representation, consider all bubbles within
a delta from the predicted position;

« If the bubbles list was used as representation, consider all bubbles;

(d) Among the candidates, chose the closest one (in terms of Manhattan dis-
tance) to the predicted position;

(e) Check that the distance of the match is reasonable:

« Ifitis, link the two bubbles, and mark the chosen one as linked;

« If it is not, consider the bubble lost for this frame. If the bubble is lost for
multiple consecutive frames, it is removed from the list;

3. Add all unlinked bubbles to the list, as new tracklets.

The 2D binary tree was added to reduce the amount of possible matches, by splitting
the coordinates into 4 bins for every node layer, storing the bins as Python lists. To
obtain the bubbles within a delta from the predicted position, the tree would consider
all bins that (at least partially) satisfied the condition.

Evaluation

Considering the tree choice, it was possible to choose between:
47



The 2D Link step

* no tree at all: as stated in the algorithm overview, the original NumPy array of
bubbles was used as set of candidates;

« tree with O layers: no split was performed, therefore the original NumPy array was
simply translated into a Python list. The distance computation is the same as with
no tree, with added overhead of creating and accessing the Python list instead
of the NumPy array.

« tree with maximum number of layers: each leaf bin represents a single pixel of
the original image, therefore will contain either 1 or 0 bubbles. The number of lay-
ers is [log2(P)], where P is the side, in pixels, of the captured image. In our case,
P=960, prompting to choose 9 layers. This option has the most fine-grained way
to choose the bubbles at a specific distance. It however adds the most over-
head related both to constructing a bigger tree, and traversing multiple paths to
construct the set of bubbles to be evaluated.

« tree with intermediate number of layers: this is a compromise between efficiency
in building and using the tree, and reducing the number of distances to compute.

These different approaches are compared in figure 6.2: when considering the tree, the
best choice is a compromise between granularity and tree complexity. However, the
overhead of building the tree does still not match the performance without it, thanks
to the extreme optimization of the NumPy library. As such, the version with no tree was
the chosen one.

Speed [FPS]

no tree
Olayers s

1layer
2 layers
3layers
4 layers
5 layers
6 layers
7 layers
8layers  |mm—
Slayers m

0 2 4 6 8 10 12 14 16

Figure 6.2: Comparing speeds for different tree sizes in the Kalman CPU 2D Link
approach

As visible in figure 6.2, the overall speed is limited to about 14 FPS, much slower than
Trackpy. On top of that, the result is also slightly worse: while it looks good at visual
inspection (see figure 6.3), the total number of traces is higher than Trackpy, at about
8400 tracklets found.
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Figure 6.3: A frame from the Kalman CPU 2D Link result, full video available at [29]
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6.3.4 Kalman GPU

The Kalman CPU approach performs the same operation over all the bubbles of all
the images. A GPU implementation was therefore evaluated, to test its potential par-
allelization.

Algorithm

The algorithm is the same as the previous approach, with step 2 transformed into a
GPU kernel. This kernel processes all bubbles of allimages captured at the same time
instant.

Evaluation

The speed is quite faster than the Kalman CPU approach, but still considerably slower
than Trackpy, standing at 68 FPS. The quality is however worse: the number of track-
lets increased to about 8900, and a visual inspection found some inconsistencies (in
figure 6.4, two tracklets in the middle include an unreasonable jump).

Figure 6.4: A frame from the Kalman GPU 2D Link result, full video available at [30]
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6.4 Final choice

Figure 6.5 compares the speeds of the various 2D Link approaches: Trackpy is the
only one with an adequate speed. On top of that, it is also the approach with the best
overall quality. As such, if the pipeline is traversed in the Locate - Link - 3D Matching -
Visualization order, the Link step will use the Trackpy implementation.

Speed [FPS]

MyPTV
Kalman CPU  jesss—

Kalman GPU
TARGET
Trackpy

0 20 40 60 80 100 120

Figure 6.5: Comparing the speeds of the different 2D Link approaches
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Chapter?7

The 3D Matching step

The 3D Matching step has the objective of leveraging the different camera views to
estimate the depth (and, consequently, the 3D coordinates) of the bubbles. The depth
estimation is done with the technique of stereoscopy (explained in section 22). In
particular, the 3D Matching step needs to match the same bubble across different
cameras, to then call OpenCV's triangulatePoints function for reconstructing the 3D
positions.

7.1 Requirements

7.1.1 Input

Depending on the pipeline order, the input to the 3D Matching step can be either the
output of the Locate step or the 2D Link step. In both cases, the input is composed of
two arrays:

- the array of the coordinates positions[c] [F] [B] (described in sections 5.1.2 and
6.1.2), which has the same format in both cases;

- the representation of valid coordinates, which varies based on the previous step:
Locate has a numTracers [C] [F], as explained in section 5.1.2, while 2D Link uses a
larger validTracers[C] [F] [B], described in section 6.1.2.

In both cases, the 3D Matching operates on the coordinates of the valid 2D coordi-
nates: an initial step extracts such coordinates from the positions array, leveraging
the other array in the correct way. After that, the 3D Matching can be executed without
caring about the source of the data.
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7.1.2 Output

The 3D Matching step’s output consists in a couple of arrays, similar to the output of
the 2D Link (described in section 6.1.2).

The 3D coordinates of the bubbles are stored in a three-dimensional, floating-point
array called positions. positions[F] [B] contains the coordinates of the B-th bubble
in the F-th time instant, as a tuple (x, y, z). The camera index disappeared, since
this step combines the information from all cameras into a single, 3D description of
the bubbles.

To represent the valid bubbles, a three-dimensional, boolean validTracers array is
used. validTracers [F] [B] marks whether positions[F] [B] contains a valid position or
not. Similarly to the positions array, the passage from 2D to 3D removes the dimension
of the camera index.

Depending on the source of data, this step can either produce plain 3D coordinates,
or 3D tracklets. If the input is the Locate step, then the bubble coordinates will be all
grouped towards smaller Bs, and there will be no correlation between bubbles with
the same index in consecutive frames. Instead, if the input is the 2D Link step, the
distribution of real coordinates within the B dimension of the arrays will be less regular,
due to the added constraint that “same value for B implies same real bubble”.

7.1.3 Speed

To respect the real time constraint, the 3D Matching step should operate at 30 FPS.

7.1.4 Quality

The matching algorithms start from a bubble in one “main” camerag, and try to find
the matching bubble on the other cameras. Such attempt can have three outcomes:

« correct match: the bubble is matched to the correct one in the other camera.
This is the ideal case, since it would lead to a correct 3D reconstruction;

+ missing match: the original bubble is not matched to another one. Since the
setup is composed by more than 2 cameras, a missed match is not too terrible,
since it is still possible that the matches in the other cameras are correct, to have
a correct 3D reconstruction;

« wrong match: the bubble is matched to a wrong one. This leads to certain re-
construction errors, since the triangulatePoints function will have either wrong
or incoherent information.
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The ideal matching algoritnm is therefore one that produces correct matches for all
bubbles, but if it's not possible, it's better to have missing matches rather than wrong
matches.

7.2 State of the art

For the 3D Matching, no existing solution was found when looking on the Internet: the
matching is usually done on full images, not on single sets of coordinates. The only
starting point available for this step was the original tool developed by the research
group, the objective of the acceleration. In particular, it allows to choose between an
epiline-only approach (examined in section 7.3.2) and a brute force algorithm (eval-
uated in section 7.3.6).

When exploring the Trackpy [15] documentation, the phrase “Trackpy is a Python
package for particle tracking in 2D, 3D” may lead to think that Trackpy also performs
the 3D Matching task. Contrarily, this means that Trackpy is able to perform tracking
with 3D data in input, collected for instance using the confocal microscopy technique.
As such, it is not a useful approach for this step.

7.3 Approaches

The following chapters describe the different approaches explored for the 3D Match-
ing step The evaluation was performed separately for speed and quality, with the
speed measured on the same dataset as the 2D Link step. For the quality, it was not
possible to have a ground truth containing the correct match between two cameras,
neither with a real dataset nor with a synthetic one. As such, a manual classification
of correct/missed/wrong matches was done. As visible in figure 7., the displacement
between the view of two cameras is mostly constant: checking this consistency allows
a human eye to evaluate the correctness of a match.

The qualitative evaluation was performed using two Blender-generated datasets,
composed by a single frame, with respectively 30 and 100 bubbles. An attempt was
done with more bubbles, but the image was too crowded to identify correct or wrong
matches.
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Figure 7.1: An example of 3D Matching: the bubbles seen by the main (white)
camerag, matched to the corresponding bubbles seen from the other two (red,
green) cameras
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7.3.1 Long trajectory

The research group that commissioned this thesis was working in parallel on a way
to estimate calibration data without the need of a calibration process. Instead, the
model developed tried to perform a 3D Matching (without knowledge of the epilines),
to infer the calibration data from it. Since this task was in common among the two
projects, their solution was also considered and evaluated for the scope our purpose.

Algorithm

The solution uses a Deep Learning model, Lightglue [31], to match long trajectories
seen from different cameras. In particular, the model performed the match on a spe-
cific frame by looking at the 200-frames-long trajectories that started in the frame
itself.

Evaluation

While this approach was useful in the complex situation of auto-calibration, for our
task it was too computationally intensive. Indeed, the maximum speed obtainable
with this approach was 3 FPS, too far from the target 30 FPS.
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7.3.2 Closest to epiline

As described in section 2.2.2, a specific point in a camera will be seen on a specific
epiline on another camera.

In traditional stereoscopy, the epiline is a set of discrete pixels, while in our case
it's a continuous line of floating-point values. On top of that, the many pixels of each
bubble in the image get compressed into a single point, without size. Due to these
two factors, it is impossible to have a bubble perfectly on top of the epiline: instead,
the match is selected as the closest bubble to the epiling, provided that the distance
is under a reasonable threshold.

This is one of the approaches originally used in the MATLAB script provided by the
research group. It was considered as a candidate algorithm, and as such it was re-
implemented in Python for easier comparison.

Algorithm

Chosen a "main” camerag, the algorithm processes each other camera with the fol-
lowing steps:

1. For each bubble in the main camera:

(a) Compute the coefficients q, b and ¢ of the epiline az + by + ¢=0;

(b) Compute the distance (with a scale factor) of all bubbles (z;,y;) in the side
camera from the epiline: d; = ax; + by; + ¢
(c) select as candidate match the bubble with d = min;(d;);

(d) Compare d with the reasonability threshold T

- If d < T, consider the bubble as a valid match;
« Otherwise, consider the original bubble as unmatched.

Evaluation

The algoritnm had excellent speed, running at 300 FPS, which is 10x faster than the re-
quirements. While the quality looked quite good with the smaller dataset (with 28/0/2
correct/missed/wrong matches), the performance was much worse with more bub-
bles (51/4/45). As such, there was space for improvement, trading some of the use-
less speed with better quality. In fact, a possible improvement could be to have some
more data to describe the bubbles: the match could be chosen as the bubble with
the most similar description, among those close to the epiline.
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7.3.3 Epilines + median correction

As previously stated, the offset between two camera views of the same bubble is con-
sistent across all the bubbles in the scene. This fact is used in this approach to find
and potentially correct mistakes. Originally, the average displacement was hypothe-
sized to be a good comparison term for detecting errors, but it would be very sensitive
to errors. Instead, the median displacement is used, since the number of errors in one
direction is estimated to cancel out the number of errors in the opposite direction:
this leaves the correct displacements towards the center range. The median used is
a vector whose components are the medians of the displacement components. As
an example, displacements of (10,1), (11,0) and (-3,—1) would generate a median
displacement of (10,0) = (med(10,11, —3), med(1,0, —1)).

Algorithm
For non-main camera is processed with the following steps:
1. For each bubble in the main frame:

(a) Compute the coefficients q, b and ¢ of the epiline az + by + ¢=0;

(b) Compute the distance (with a scale factor) of all bubbles (z;,y;) in the side
camera from the epiline: d; = ax; + by; + ¢

(c) Select as candidate match the bubble with d = min,(d;);
(d) Compare d with the reasonability threshold T

- If d < T, consider the bubble as a valid (temporary) match;
« Otherwise, consider the original bubble as unmatched.

2. Compute the median of all the matches of the frame;

3. For each bubble in the main frame:

(a) Compute the displacement and compare it with the median:

« If both the difference in length and the angle between the vectors are
under specific thresholds, confirm the match, and continue with the next
bubble;

« Otherwise, correct the match by performing the following steps;

(b) With a procedure similar to steps l.a to 1.d, find the N (parameter) bubbles
closest to the epiline;
(c) Among them, find the one whose displacement is the most similar to the
median displacement;
(d) Check the correctness of this new match:
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- If the bubble is further than the threshold T (step 1.d) from the epiline,
consider the match wrong and remove it;

- If the new displacement still does not satisfy the distance and angle from
the median, consider the match wrong and remove it;

« Otherwise, correct the previous match with this one.

Evaluation

Clearly, the introduction of the epilines check slowed down the algorithm, that can now
process 55 frames per second. However, the speed was traded with an improvement
on the quality: for the 30-bubbles dataset, the distribution of correct/missed/wrong
matches was 27/2/1, and 74/20/6 for the 100-bubbles dataset.
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7.3.4 Epilines + short trajectory

As discussed in section 7.3.2, it would be beneficial to have some more information
about the bubbles, more than just the position. While section 7.3.1 shows that evaluat-
ing many frames of the trajectory can lead to high computational cost, considering
just some frames of trajectory could be a good way to describe a bubble to facilitate
the matching.

Algorithm
Each camera is processed according to the following algorithm:
1. Compute the N-frames trajectory of all bubbles of both the main and the side

cameras, storing them as lists of relative offsets between consecutive positions;

2. For each bubble in the main camera:

(a) Compute the coefficients q, b and ¢ of the epiline az + by + ¢=0;

(b) Compute the distance (with a scale factor) of all bubbles (z;,y;) in the side
camera from the epiline: d; = ax; + by; + ¢

(c) Consider only the bubbles with d; < T, for a specific threshold T (if there are
none, leave the bubble unmatched);

(d) Compute the similarity between the bubble in the main camera and the
others, considering the trajectory values;

(e) select as match the bubble with highest similarity, provided that it has at
least a minimum value for that (if not, leave the bubble unmatched).
Evaluation

While working at acceptable speed (125 FPS), the quality of the result was not so great:
in the 30-bubbles dataset the number of correct/missed/wrong matches was 12/2/16,
and it was 62/8/30 for the 100-bubbles dataset.
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7.3.5 Epilines + KNN

Traditional stereoscopy finds the correct pixel on the epiline by comparing the patch
around the original pixels to patches around the epiline. This idea of “looking at the
neighborhood” was evolved to our case into a k-Nearest Neighbor search.

Algorithm
The algorithm processes each camera with the following steps:
1. Compute the kNN of all bubbles of both the main and the side cameras, storing

them as relative offsets from the bubble’s position;

2. For each bubble in the main camera:

(a) Compute the coefficients a, b and ¢ of the epiline az + by + ¢=0,

(b) Compute the distance (with a scale factor) of all bubbles (z;,y;) in the side
camera from the epiline: d; = ax; + by; + ¢

(c) Consider only the bubbles with d; < T, for a specific threshold T (if there are
none, leave the bubble unmotched);

(d) Compute the cosine similarity between the bubble in the main camera and
the others, considering the positions of the kNNs;

(e) select as match the bubble with highest cosine similarity, provided that it
has at least a minimum value for that (if not, leave the bubble unmatched).

Evaluation

Similarly to the previous approach, this algorithm has an acceptable speed (122 FPS),
but an extremely bad quality, with 2/28/0 correct/missed/wrong matches in the 30-
bubbles dataset, and 1/98/1in the 100-bubbles dataset.
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7.3.6 Brute force

This approach is one of the two implemented in the original MATLAB script: it leverages
the fact that more than two cameras are present, not only as a confirmation, but as
a knowledge-extracting method.

Given a bubble on the main camerq, it should be matched to a specific bubble on
the other two cameras. If the 3D position is reconstructed from the main and one side
cameraq, the result should be similar to the reconstruction done with the main and
the other side camera. On the other side, wrong matches would reconstruct totally
different 3D coordinates.

Algorithm
1. For each bubble in the main camera:
(a) Reconstruct the 3D position, matching it with all the bubbles on one non-
main camera. The result will be a set of 3D points (P;);
(b) Do the same, with the other non-main camera (to obtain a set P;);
(c) Find the points p € P; and p’ € P} whose distance is the smallest;
(d) Check their distance:

- Ifitis below a specific threshold, the two reconstructions are considered
to be the same bubble, hence the two matches are approved;

« Otherwise, the reconstructed bubbles are the closest plausible, but still
different bubbles, hence the match is considered missing.

Evaluation

This approach was not evaluated directly, since just limiting to the bubbles close to
the epiline could highly reduce its computational cost. This algorithm was therefore
only considered as starting idea for the approach described in the next paragraph.
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7.3.7 Epilines + brute force

Given the knowledge that the correct match is near the epiline, there is no need to
perform a brute force check on all the bubbles, as proposed in the previous approach.
Instead, it is enough to check the bubbles close to the epiline.

Algorithm
1. For each bubble in the main camera:

(a) Compute the distance d (with a scale factor) of all bubbles in each side
camera from the corresponding epiline;

(b) Consider only the bubbles with d < T, for a specific threshold T (if there are
none, leave the bubble unmatched);

(c) Reconstruct the 3D position, matching it with all the bubbles on one non-
main camera. The result will be a set of 3D points (P;);

(d) Do the same, with the other non-main camera (to obtain a set P;);
(e) Find the points p € P; and p’ € P} whose distance is the smallest;
(f) Check their distance:
- If itis below a specific threshold, the two reconstructions are considered

to be the same bubble, hence the two matches are approved;

« Otherwise, the reconstructed bubbles are the closest plausible, but still
different bubbles, hence the match is considered missing.

Evaluation

This approach yields excellent result, with no mistakes recorded. This is achieved
thanks to its requirement to have a “3-way confirmation” on the bubbles: when in
doubt, it prefers to leave the bubble unmatched. The qualitative results were 18/12/0
correct/missing/wrong matches on the 30-bubbles frame and 55/45/0 on the 100~
bubbles dataset. This however comes at a slight cost of speed, since this algorithm is
only able to reach 19 FPS.
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7.4 Final choice

Figure 7.2 compares speed and quality of the different approaches. Due to the real-
time constraint, the long trajectories and the brute force algorithms are discarded.
Among the remaining approaches, the median approach is the best one, hence it is
the selected one.

Epilines only 300 FPS 28 /[0/2 ) / 4“/ 45
Epilines + median 55 FPS 27 [2/1 _ 74 [ 20/ 6
Epilines + KNN 122 FPS 2 /28/0 N [98/1
Epilines + short trajectory 125 FPS 1 / 2 /16 .62 /8 / 30
Epilines + “bruteforce” 3D 19 FPS 18 / 12‘/ 0 55 / 45 /0
Long trajectory 3 FPS - -

Figure 7.2: Comparing speed and quality of the various 3D Matching approaches
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Chapter 8

The 3D Link step

The Link step aims to link together consecutive time instants, by joining the coordinates
of each individual bubble across the various time instants it is seen. The result is a
series of trajectories, or tracklets. Specifically, the 3D version of the Link step operates
on 3D coordinates, producing 3D tracklets.

8.1 Requirements

8.1.1 Input

The data for this pipeline step comes from the output of the 3D Matching step, de-
scribed in section 7.1.2. The input is therefore composed of two arrays, positions and

validTracers.

8.1.2 Output

Similarly to the 2D Link step (whose output is described in section 6.1.2), the output
format is the same as the input, with the added constraint that equal bubble indices
across different frames imply same real-life bubble.

The output will be therefore composed of the three-dimensional, floating-point
positions[F] [B] array, with the (x, y, z) coordinates of bubble B at time F, and the
corresponding two-dimensional, boolean validity array validTracers.

8.1.3 Speed

Working directly on 3D data and not on the single cameras, the 3D Link only needs a
speed of 30 FPS, similar to the 3D Matching step.
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8.1.4 Quality

Similarly to the 2D Link step, the quality can be estimated by number of tracklets and
visual inspection.

8.2 State of the art

Similarly to the previous steps, further research did not find more tools for performing
the 3D Link task. Among the ones already found, only Trackpy [15] was able to perform
3D Link. Its algorithm and performance are evaluated in section 8.3.1.

8.3 Approaches

In the following sections, the two approaches to 3D Link are explained. They are evalu-
ated on the same 201-frames dataset used for the 2D Link step, preprocessed by the
3D Matching step.
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8.3.1 Trackpy

With minor modifications, it was possible to update the Trackpy 2D Link (described in
section 6.3.1) to perform 3D Link.

Algorithm

The Trackpy library implements the Crocker-Grier linking algorithm [26].

Evaluation

The speed is similar to the Trackpy 2D Link for one camera, at 38 FPS. However, most
of the tracklets were extremely short, resulting in about 9300 individual tracklet.
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8.3.2 Nearest neighbor

Moving from 2D space to 3D space, the bubbles are naturally much sparser. As such,
the 3D bubbles are far enough away from each other, that the nearest neighbor is
undoubtedly the correct link.

Algorithm
For each bubble in a time frame, the link towards the next frame is chosen as follow:

1. Among the 3D bubbles in the next frame, find the one closest to the current po-
sition.

2. Evaluate the distance d between the current and selected position with respect
to a threshold T

« If d > T, it's not plausible that the bubble has moved such distance in such
short time: the original bubble is likely lost, and the selected one is probably
a different bubble. As such, consider the tracklet to end at the current frame;

- If instead d < T, the movement is plausible, therefore the two bubbles are
linked.
Evaluation

The simplicity of this algorithm makes it extremely fast, with the potential to reach 5000
FPS. The main advantage is however the reconstruction quality: in the evaluation, only
about 4800 tracklets were created.
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The 3D Link step

8.4 Final choice

Differently from the other steps, all approaches of 3D Link had sufficient speed. As
such, the choice fell on the simple Nearest Neighbor, which had better quality.
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Chapter 9

The Visualization step

The goal of the Visualization step is to display the reconstructed 3D particles on a
2D screen, in the most understandable way. Since no adequate tool was found on
the Internet, the Unity renderer (explained in section 9.1) was initially developed as a
versatile, offline tool. After it was finished, an update to the requirements demanded
for a renderer able to display the reconstruction as it was being done: the Open3D
renderer (described in section 9.2) was then added as an online alternative.

9.1 Unity renderer

Displayed in figure 9.1, the Unity renderer is the first visualizer developed in the scope
of this thesis. It is an offline tool, meaning that it is able to show the data after the ac-
quisition is fully processed. The pipeline produces as output two .npz files, containing
the arrays positions and validTracers. These files can be directly loaded by the Unity
scene setup to display their content.

A custom loader was necessary to transform the arrays from the NumPy format into
C# arrays. Further modules are able to display such arrays in the 3d environment,
using simple primitives as backbone. In particular, the bubbles are represented by
spheres in the 3D environment, connected by small rods to display the linked trajec-
tories.

The time evolution of the bubbiles is visible with real time: the user is able to “play”
the scene for inspecting the general behavior. The user also has control over the time
speed, allowing to play back the experiment result in slow-motion, for better observing
the fast-moving bubbles. Alternatively, it is possible for the user to advance or go back
by a single frame at a time, allowing to better inspect what happened at the smallest
scale of time.

For better understanding the 3D position of the bubbles, the observer is able to
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The Visualization step

move around the simulation. In particular, the user controls a “floating camera” that
observes the scene from inside. It is possible both to rotate the camera around its
axes, and to move it. The movement is possible in the direction where the camera
is looking, and in the orthogonal, horizontal direction. This movement ability allows
the user to inspect the reconstruction from whichever angle they prefer. Figure 9.2
displays the way the user can move the visualization camera.

The simulation proposes some more controls to tailor the visualization to the needs
of the user. In particular, it is possible to customize at any time:

« How many frames of trailing trajectory to display: 0, N or all. This allows to con-
centrate on whatever is required at the moment: a specific time instant, a short-
term evolution, or the full history.

+ The size of the bubbles, that can be reduced up to make them disappear com-
pletely. This allows to either focus on the specific time instants where the frames
were captured, or on the overall time evolution without focusing on the specific
instants.

frame 37 of 99

D —

View full trace
True

Spaghetti length
L ————

Play/pause

space

Figure 9.1: An example of bubble visualization using the Unity visualizer. Full video
available at [32]
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The Visualization step

" \ ’ﬂ
SEa e -

Figure 9.2: To the left, the four directions in which the user can move the visualization
camera: (1) forward, (2) backwards, (3) left and (4) right, with respect of the current
“looking-at” direction. To the right, the ways it can turn: (a) horizontally or (b) up and
down

9.2 Open3D renderer

The Open3D renderer (a screenshot can be seen in figure 9.2) was later added, to
fulfill the requirements of an online renderer, meaning a renderer that would update
in real-time, adding the new bubbles as soon as they are processed.

This was added as a separate step in the pipeline, taking the data directly from the
last step.

The user movement is the same as in the Unity renderer (schema available in fig-
ure 9.2). It may however be slightly jumpy, since it's running on an embedded device,
which at the same time is executing the rest of the pipeline.

Differently from the Unity renderer, this one cannot use real time as representation
of reconstruction time: instead, a color gradient is used, with blue representing the
first and red the last time instants.

Another drawback of this visualizer is its volatile nature: displaying the data as soon
as it is computed, it is not possible to view back the result once the visualizer is closed.
In such cases, the Unity renderer can be used instead.

72



The Visualization step

Figure 9.3: An example of bubble visualization using the Open3D visualizer. Full video
available at [33]
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Chapter 10

The full pipeline

10.1 Pipeline order

As described in chapter 4 and in figure 4.1 (reported here as figure 10.1 for convenience),
the pipeline can be implemented either in the blue or in the orange order.

From the results of chapter 8, the 3D Link (in the orange order) was quite faster
than the 2D Link: a faster step implies less computation resources used, which leaves
more available for the most intensive tasks. The other benefit of the orange pipeline is
that the linking is performed in 3D, where more information are available. In particular,
it was noticed relatively often that the 3D Matching step would reconstruct bubbles
belonging to the same 2D tracklet at different depths, creating a sudden jump in the
3D trajectory, indicating an error. Instead, when the 3D Link was used, the results were
more coherent. As such, the orange order was chosen for the pipeline.

LOCATE LINK VISUALIZE

Figure 10.1: The two different orders in which the pipeline can be executed
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The full pipeline

10.2 Implementation

The pipeline is implemented on the operating system as a set of processes, to fully
use all the cores of the CPU. Simpler threads would not be equivalent, since all Python
threads are executed on the same CPU core. The communication among the pro-
cesses is realized by means of shared memory locations, where the input/output ar-
rays are stored in a shared way.

The different processes are organized as follows:

« the Locate step is performed by its own process, that:

- loads the images either from the cameras or from file;
— finds the bubbles using the findContours function;
- launches and waits for the GPU computation of the moments.

+ a process runs the 3D Matching step, that:

waits until new data is available from the Locate step;

computes the first guess of matching;

computes the median displacement;

refines the first guess with the computed medians;
= uses the matches to reconstruct 3D coordinates;

- the Link (3D Link) step is executed in another process, that:

- waits until new data is available from the 3D Matching step;
- performs the linking;

- if enabled, the Visualization step is run by a separate process, that:

= activates a new virtual environment, since Open3D requires A NumPy version
not compatible with the rest;

— runs the visualization script, that constantly checks for new values, displays
them and responds to the user input.

« if enabled, a final debug process constantly updates the output in the terminal,
writing the total number of frames processed by each step.

The different waits are realized as a loop that performs a 0.5s sleep until more data is
available.
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Chapter 1l

Results

1.1 Quality evaluation

The main source of errors in the full pipeline is the 3D Matching step, whose mistakes
are then passed on to the 3D Link step. The root cause to the 3D Matching errors is
the bubble density. In fact, if few bubbles are present in the scene, there will be only a
handful of candidates near the epiline. This makes it trivial to choose the correct one,
even with basic approaches. As the bubble density increases, however, the number
of candidates close to the epiline augments, too. With that, the 3D Matching task be-
comes harder and harder, reaching overwhelming levels also for a human at just 100
bubbles. With every matching error, the algorithm reconstructs some “random, iso-
lated bubbles” that not only are wrong by themselves, but also act as missing points
in the trajectory chain, splitting the full trajectory into three separate parts.

For measuring how good the algorithm behaves with different bubble densities,
some synthetic datasets were created in Blender, and used as input for the pipeline.
Such datasets were composed of 30 frames with the same format as the real ones:
960x 960 images, representing white bubbles over a black background. The datasets
were constructed to have a specific number of bubbles N, always visible by all the
three cameras observing the scene. All the bubbles rotate in a clockwise direction,
with the same tangential speed: this enables to avoid bubbles shadowing each other,
and creates a regular pattern that can be recognized by eye. Given the specifica-
tions of the dataset, ideally the algorithm should be able to reconstruct exactly N
30-frames-long trajectories: more trajectories are index of reconstruction errors.

As previously stated, the main source of errors is the 3D Matching. Errors at this
stage position a bubble away from its correct location, splitting its trajectory in three
parts. In particular, for the 30-frames dataset, a single error at frame f would split
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the full trajectory into two shorter segments, with lengths f and 29 — f, plus a single-
frame tracklet, with only the erroneous bubble. As such, by analyzing the distribution
of trajectory lengths, it is possible to evaluate the quality of the reconstruction.
Experiments were conducted with four different datasets, respectively with 50, 100,
250 and 1000 bubbles each. Initially, the graph in figure 11.1 was created, with the most
intuitive content: the percentage of trajectories with length z, for every possible length
x. This visualization was however misleading: for example, the 50-bubbles dataset
had 29 full-length (30 fromes) trajectories, which is more than half. However, the cor-
responding point on the graph had a value of about 30%. The cause of this inconsis-
tency in the graph is the fact that splitting a theoretical trajectory into smaller ones
would increase the total number of trajectories, thus reducing all the percentages. In

other words, the correct reconstruction counts as 1, but a trajectory with an error in
the middle counts as 3.

Percentage of tracklets of a specific length

‘ —— 50 bubbles
50 4 100 bubbles
1 —— 250 bubbles
—s— 1000 bubbles
E 40 1
2
o
&
S 30
b=
e
(=]
=
£ 20
E
=
=
10 A
o Y- N §
T T T

T T
0 5 10 15 20 25 30
Trace length [frames]

Figure 11.1: The distribution of trajectory lengths for the different datasets with
varying number of bubbles: considering each trajectory as “one”

To make up for this error, a new graph was created, depicted in figure 11.2. It does
not compute the average over the number of trajectories, but over the number of
bubbles, which is not affected by the reconstruction quality. As such, the data points
in this new graph are weighted over the trajectory length. For example, a 1-long trajec-
tory would count as a “single unit”, while a 30-long trajectory has a value of “30 units”
for this computation. This enables to correctly showcase the overall quality of the re-
construction: in the 50-bubbles example considered before, now the value indicated
by the graph for complete trajectories is about 60%, coherent with the measure of 29
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fully reconstructed tracklets over the total 50 bubbles.

Number of bubbles associated to a trajectory of a specific length
60 -

—— 50 bubbles
100 bubbles

50 4 —— 250 bubbles

—s— 1000 bubbles

40

30 A

20 A

Number of bubbles [%]

10 A

0 5 10 15 20 25 30
Trace length [frames]

Figure 11.2: The distribution of trajectory lengths for the different datasets with
varying number of bubbles: considering trajectories weighted on their length

In the ideal scenario, both graphs should have a flat value of 0% for all trajectory
lengths, with a 100% spike at the value 30: whatever departs from this is index of errors.
While it may seem counterintuitive, higher values (not 30) do not necessarily imply
better results. Assume there is a reconstruction error in a tracklet: instead of having a
full, 30-frames trajectory, there will be 3, with lengths f, 1 and 29 — f, with f being the
wrongly reconstructed frame. By changing where the mistake was (f), the two peaks
in the graph will move, spacing from 1 and 29 for f=0, to 14 and 15 for f=14. There
would however not be a real effect on the quality of the data: there will always be
two coherent tracklets, separated by a missing point. As such, values smaller than
30 indicate the presence of errors, without correlation between quality and individual
lengths.

As visible in figure 11.2, in the first two datasets most of the tracklets cover the full
length, while the quality diminishes visibly with the other datasets. As such, the quality
is considered good with observations of up to 100 bubbles.
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1.2 Speed evaluation

11.2.1 Overall speed

The full pipeline took 42s to process a video composed of 1000 frames, thus resulting
in a speed of 38 FPS, higher than what was required. To avoid waiting times due to the
camera frame rate, these measurements were computed by using a video previously
captured and saved as set of frames on the disk.

11.2.2 Speed of the pipeline steps

As visible in figure 11.3, the process is 2.3x as fast as the initial SMA-RTY implementation,
which was already faster than the provided MATLAB script. Naturally, the last step to
complete is the last one of the pipeling, the Link: however, as the next sections will
show, the bottleneck is in the Locate step.

Locate
3D

Link
Previous

0 10 20 30 40 50 60 70

Figure 11.3: The time required (in seconds) by the different pipeline steps to process
a 1000-frames video

Locate step

As shown in figure 1.4, the Locate step was always fully operational, without ever hav-
ing to wait for data. This is obvious, since its input was already fully available at the
start of the execution. It must however be noted that, as visible in figure 1.3, the Lo-
cate step did not finish much earlier than the others, indicating that it does not have
a speed advantage over the other steps.

As visible in figure 1.4, the main bottleneck within this step is the time required for
loading the images from the HDD to the RAM, to start processing them.

Load images
Find blobs  jme—
Extract bubbles from blobs  |m—

0,00% 10,00% 20,00% 30,00% 40,00% 50,00% 60,00% 70,00% 80,00% 90,00%

Figure 11.4: Distribution of how the Locate step spent its execution time
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3D Matching step

The 3D Matching step, as visible in figure 1.5, requires to spend a small amount of time
waiting for the Locate data. This means that the 3D Matching step is not the bottleneck.
The waiting time is however not extensive, indicating that even small slowdowns may
make this step the bottleneck, affecting the whole pipeline performance.

Matching first guess
Computing medians  jmes
Refining the matching
3D reconstruction  |me— ‘ ‘ | ‘

Wait for locate data ’

0,00% 10,00% 20,00% 30,00% 40,00% 50,00% 60,00%

Figure 11.5: Distribution of how the 3D Matching step spent its execution time

Link step

Figure 1.6 shows that most of the time the Link step is idling, waiting for new inputs to
be processed. This indicates that it is far from being the bottleneck, and potentially
more complex algorithm could be used instead, if they provided better results.

Wait for 3D data | ! : | | | | | |
Link ] | ‘ | | | | |

0,00% 10,00% 20,00% 30,00% 40,00% 50,00% 60,00% 70,00% 80,00% 90,00% 100,00%

Figure 11.6: Distribution of how the Link step spent its execution time

11.2.3 Bottleneck evaluation

As highlighted by the previous sections, the Locate step is the current bottleneck of
the system. Figure 11.7 confirms this, by showing in a graphical way the timing of the
different steps: the various 3D Matching frames require to wait some time for the
previous Locate batches, and the Link frames are constantly waiting for the Locate
output.
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OO O -

Time -

Figure 11.7: Schema (not to scale) of how the different pipeline stages are executed
over time. The different rectangles indicate a batch of 20 frames per camera in the
Locate, and single frames in the other steps
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11.3 Resource usage

A further test was conducted to measure the CPU usage of the device running the
pipeline. GPU usage was not measured, since the value would spike to 100% as soon
as there was any task running on the GPU: the values would therefore not be indicative
of whether other computations could be performed at the same time. The CPU results
are shown in figure 11.8.

In the Jetson Orin Nano, all CPU cores spend the full processing time standing at
almost 100%, indicating that all resources of the device are devolved to the task. On
the Jetson AGX Xavier, the situation is slightly different: the most notable factis that the
bottleneck shifts from the Locate step to the 3D Matching, and the overall processing
speed is lower. This is visible in the graph as a sudden de-loading of the device: when
all steps are running, the full device is in use; after the Locate finishes processing all
the video, some cores reduce their usage. This may be an indication that, being a
more premium device, the Xavier is faster than the Orin at transferring data to the
RAM; however the fact of being older penalizes it on CPU computational speed.

CPU utilization CPU utilization

Usage [%]
3
Usage [%]
o
(=]

«— Cpul
—— Cpu2
—— Cpu3
—— Cpu 4
—— Cpus

0 10 20 0 0 50 60 0 10 20 30 40 S0 6 70 80
Time [s] Time [s]

(a) (b)

Figure 11.8: CPU usage per core, while running the pipeline on (a) the Jetson Orin
Nano and (b) the Jetson AGX Xavier
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Chapter 12

Conclusions

This thesis presents a complete and optimized pipeline for real-time 3D tracking of
bubbles moving in the air, enabling the reconstruction of their trajectories with high
accuracy and efficiency. The system was designed to meet stringent performance
requirements, achieving a steady-state processing rate of up to 38 frames per second
on embedded hardware platforms such as the Jetson Orin Nano. This performance
satisfies the real-time constraint set by the project, with only a few seconds of latency
between image capture and trajectory visualization.

The pipeline integrates multiple stages — bubble detection, 3D matching, trajectory
linking, and visualization — each carefully evaluated for speed and quality. Among the
various approaches tested, the final implementation consistently prioritized compu-
tational efficiency without compromising the fidelity of the reconstructed data.

Quality assessments using synthetic datasets revealed that the system performs
exceptionally well with up to 100 bubbles in the field of view. Beyond this threshold, re-
construction errors increase due to the complexity of matching in densely populated
scenes. Nevertheless, the modular design of the pipeline allows for future enhance-
ments, including more sophisticated matching algorithms and hardware improve-
ments.

In summary, this work successfully delivers a real-time solution for 3D particle track-
ing in the air, with potential applications in fluid dynamics research and airborne par-
ticle analysis. The pipeline stands as a solid foundation for further development and
adaptation to more demanding experimental setups.
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12.1 Future work

12.1.1 Improving the speed

While the speed is currently up to the requirements on the Jetson Orin Nano, an even
faster system could run on less powerful and cheaper devices. As discussed in sec-
tion 1.2, the main bottleneck for the speed is the loading of the images to the RAM
of the processing device. This could be improved using dedicated hardware, or by
spawning different processes to load the different images concurrently. For this last
proposal, a study on the specific final device should be done, to be able to choose
the right amount of processes. It would be crucial to balance the added parallelism
with the cost of context switching, in case there are not enough cores to execute all
the processes concurrently.

12.1.2 Improving the quality

Depending on the nature of the experiment, more than 100 bubbles may be required
for the complete understanding of the phenomenon under observation. In order to
increase the amount of bubbles reconstructed with good quality, the 3D Matching
step should be improved.

Since the “Epilines + brute force” approach is the one with the best results, and it
is not far from the target speed, some more experiments could be performed to try
to accelerate it to an acceptable speed. This would improve the result, by having a
better matching.

Another option would be to add more information to the data given to the 3D
Matching algorithm. An example would be if the bubbles could have different col-
ors: if, for example, half the real bubbles were yellow and half were blue, the matching
would only need to choose among half of the current candidates, the ones with the
same color. In general, adding an extra piece of information that splits the real bulb-
bles into N sets would on average enable to multiply by N the number of bubbles
that can be reconstructed with good quality. Another alternative to the color could
be the thermal information, if the temperature of the bubble changes during the time
it spends in the air. For both these ideas, however, a different hardware setup should
be constructed: RGB or thermal cameras would be required, and the images could
not be simply binary, but would need more information.
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