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Abstract

Digital transformation in recent years has fostered the adoption of interconnected tech-
nologies, such as scalable cloud services, the pervasive Internet of Things, and artificial
intelligence, altering the approach organizations take to their routine operations. While
these advancements bring benefits, they also expand the attack surface, exposing organiza-
tions to more frequent and sophisticated cybersecurity threats. Attackers leverage emerging
technologies to orchestrate targeted campaigns, highlighting the need for automated and
standardized Incident Response processes. Despite efforts to improve automation, the
diversity of attack types and environments, spanning traditional information technology,
cloud platforms, and industrial control systems, makes one-size-fits-all solutions impractical.
There is thus a growing need to abstract response procedures from specific technologies
and encode them for interoperability without constant manual adaptation. Standardized
formats for representing incident response actions facilitate automation, integration, and
transformation of heterogeneous procedures into homogeneous playbooks. Such an ap-
proach would enable teams to focus on strategic decision-making while routine actions
are handled automatically, reducing response times. This thesis presents a framework for
procedural and automated remediation based on security playbooks, designed within the
Security Orchestration, Automation, and Response (SOAR) paradigm. This approach
also enables the subsequent sharing of remediation strategies, similarly to Cyber Threat
Intelligence (CTI). The proposed tool maps alerts to corrective actions defined in struc-
tured playbooks and translates them into executable instances, preserving complex logical
structures such as conditions, loops, and parallel actions. A novelty of this work is the
design and implementation of a security automation framework tailored for modern cloud-
native environments, such as Kubernetes clusters, in addition to traditional on-premises
infrastructure.
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Chapter 1

Introduction

In an increasingly interconnected digital world, the ability to respond effectively to
cybersecurity incidents is a crucial requirement for ensuring the resilience and continuity
of modern infrastructures. From enterprise environments to governmental institutions,
the frequency and severity of cyberattacks have escalated, placing enormous pressure on
security teams and traditional defense mechanisms. Advanced persistent threats, zero-day
vulnerabilities, and large-scale ransomware campaigns illustrate the complexity and impact
of modern cyber incidents, often overwhelming manual remediation processes. Risks
stem not only from malicious attacks but also from accidents, misconfigurations, and the
increasing complexity of interdependent infrastructures. In this evolving threat landscape,
the discipline of incident response has gained strategic importance. Timely detection,
containment, and remediation are not only essential for limiting damage but also for
restoring trust and operational capacity. However, conventional incident response methods
are increasingly challenged by the scale, speed, and sophistication of attacks. Manual
procedures are often time-consuming and prone to errors, leading to delayed reactions and
increased exposure. To address these challenges, automation has emerged as a key enabler
in designing scalable and efficient incident response frameworks. Automated incident
response systems aim to minimize human intervention in repetitive and well-defined
tasks, enabling security teams to concentrate on complex decision-making. By integrating
detection mechanisms, predefined remediation workflows, and contextual analysis, such
systems can significantly enhance the effectiveness and speed of the response process.

1.1 Motivation and Research Drivers

In today’s digital landscape, organizations are facing a constant increase in the frequency,
complexity, and impact of cyber threats. These threats range from sophisticated attack
campaigns, including Advanced Persistent Threat (APT), to targeted ransomware and
multi-stage intrusions. Such attacks demand rapid and structured response mechanisms.

Traditional Incident Response (IR) processes heavily rely on human expertise and pre-
defined procedures. However, this model has become insufficient in dynamic environments
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where speed and scalability are critical. Moreover, incident response is often perceived as
an additional burden for security personnel, such as Security Operations Centre (SOC)
analysts, who are already responsible for a wide range of operational tasks.

Security Orchestration, Automation, and Response (SOAR) platforms have emerged as
a strategic approach to tackle these challenges by automating IR tasks. Nevertheless, the
effectiveness of these systems depends on the availability of actionable information, the
ability to accurately map threats to corresponding response actions, and the integration
across heterogeneous Information Technology (IT) environments. Several studies empha-
size the importance of refining the selection, adaptation, and execution of remediation
procedures in response to complex incidents [1].

The motivation behind this thesis stems from the growing need to support incident
response teams with a reliable and automated tool that reduces manual workload and
response latency. The proposed solution aims to automate key response activities, such
as isolating affected systems, blocking malicious IP addresses, or activating containment
workflows, depending on the nature of the incident.

Recent research also emphasizes the importance of contextual awareness [2], threat
intelligence integration, and orchestration flexibility to enhance cyber resilience.

The main challenges addressed in this work include:

o Consistent threat-to-remediation mapping, ensuring coherent alignment be-
tween detected threats and defensive actions.

o Automation of remediation procedures with a focus on scalability and extensi-
bility, enabling integration with heterogeneous environments;

o Design for usability and orchestration, creating a tool aligned with common
practical strategies in incident response while supporting customization;

1.2 Objectives

This thesis aims to design a tool that supports end-to-end incident response, from alert
reception to the execution of remediation actions. The tool automates the transforma-
tion of diverse procedures into standardized, executable playbooks, improving efficiency,
consistency, and operational readiness.

Abstraction and automation enable the system to scale across various environments,
including cloud infrastructures, while compatibility with standards such as Collaborative
Automated Course of Action Operations (CACAO) facilitates seamless integration and
interoperability. In addition to executing response actions, the tool provides reporting
capabilities to document and analyze incident handling, supporting accountability and
continuous improvement.

By addressing these challenges, this work contributes to the advancement of automated
incident response solutions, aiming to enhance both the efficiency and reliability of security
operations while minimizing operational constraints.
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1.3 Thesis Outline

The remainder of this thesis is organized as follows.

Chapter 2 presents the current scenario of incident response and the relevant standards,
providing the foundation for the research described in subsequent chapters.

Chapter 3 reviews related works, beginning with the original tool from which this thesis
was developed and then discussing other tools compliant with the standards, highlighting
solutions that inspired new approaches in the development of the framework.

Chapter 4 positions the proposed framework within the broader context of incident
response and identifies the current challenges it aims to address.

Chapter 5 details the design of the tool, including the libraries used, the class structure,
and the overall architectural design.

Chapter 6 focuses on the implementation of the proposed solutions, providing a detailed
account of how the design choices were realized.

Chapter 7 discusses the validation of the framework, describing the real-world scenarios
used for testing and the actions executed during these tests.

Chapter 8 presents conclusions and possible future work related to this project.
Appendix A offers a user guide for running and interacting with the tool.

Appendix B provides a technical guide for developers who wish to extend or better
understand its inner workings.



Chapter 2
Background

This chapter introduces the evolving landscape of incident response, from the foundational
principles outlined by European Union Agency for Cybersecurity (ENISA) to the modern
SOCs. It explores how organizations address incidents across traditional and modern
infrastructures, including Industrial Control Systems (ICSs) and Software-Defined Net-
working (SDN) environments, where automation becomes increasingly essential. In this
context, the use of structured response mechanisms, such as playbooks, is discussed, with a
particular focus on standardized formats, which will be examined in detail in the following
sections.

2.1 Introduction to Incident Response: From Critical
Infrastructure to SOC Operations

Modern society relies deeply on communication networks and information systems. As
such, ensuring the security and continuous operation of these systems has become a priority
for maintaining economic stability, delivering public services, and promoting societal
well-being.

In response to these challenges, the European Union established the ENISA. The
mission of ENISA is to enhance network and information security in the Member States,
support the development of Computer Emergency Response Teams (CERTS), also known
as Computer Security Incident Response Teams (CSIRTS), and cultivate a security-aware
ecosystem that benefits citizens, enterprises, and public institutions.

2.1.1 Role of CERTs/CSIRTs in Incident Response

Central to the EU’s incident response framework are both national and organizational
teams, commonly referred to as CERTs or CSIRTs. These terms are generally used
interchangeably [3] to indicate specialized units dedicated to managing cybersecurity
incidents. National teams often serve as reference points for governments and critical
sectors, while organizational teams are established within companies or institutions to
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protect their own infrastructures. Together, they represent the first line of defence for
critical information systems.

Their activities encompass the entire incident lifecycle, from detection and triage
to response coordination, provision of mitigation guidance, post-incident analysis, and
promotion of security awareness within their constituency. The notion of constituency
is fundamental in incident management, as it defines the scope of responsibility of each
team, such as a set of IP ranges, domains, autonomous systems, or the members of a
specific organization. Once this constituency is established, CERTs/CSIRTs are expected
to engage actively with it through security announcements, early threat alerts, and
participation in trusted communities, thereby fostering awareness, timely reporting, and
effective collaboration during crises.

ENISA guidance highlights the importance of clearly defined and coordinated con-
stituencies [3], even when overlaps occur. Each incident response organization should
clearly define its mandate, specify the types of incidents it handles, and outline the ex-
pectations it has of its stakeholders, thereby reducing ambiguity and ensuring efficient
cooperation.

2.2 Incident Response Process According to ENISA

The ENISA outlines a structured approach to incident response, which includes several
key phases (Figure 2.1).

2.2.1 Incident Report

The incident response process begins when the CERT receives a report about a potential
security incident. This report can be submitted through various communication channels,
including e-mail, phone, fax, postal mail, walk-in reports, or web forms. In practice, e-mail
is the most common and preferred method, particularly because it can be easily integrated
with automated incident handling systems.

2.2.2 Registration

Once received, the incident is formally registered in the incident handling system. Each
incident is assigned a unique identifier, typically following a format such as [CERT-NAME#
report_number], to facilitate tracking and future reference. If the new report is related
to a previously registered incident, it may be linked or merged accordingly.

2.2.3 Triage

The triage phase involves determining the priority and urgency of the incident. It consists
of three sub-phases:

o Verification: Confirming that the reported issue is indeed a legitimate incident.
o Initial Classification: Identifying the type and severity of the incident.

5
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o Assignment: Allocating the incident to an appropriate team or individual for further
handling.

2.2.4 Incident Resolution

Following triage, the resolution phase begins. This phase is typically the most time-
consuming and includes several iterative steps:

e Data analysis.

¢ Researching possible solutions.
o Proposing actions.

» Executing actions.

« Eradication of the threat and recovery of affected systems.

2.2.5 Incident Closure

Once resolution is achieved, the incident is formally closed. Best practices recommend
performing a final verification, documenting the incident thoroughly, and, optionally,
obtaining feedback from the stakeholders involved.

2.2.6 Post-analysis

After closure, a post-analysis phase is conducted to reflect on the incident and the response
process. This phase is typically done after some time has passed, allowing the team to
revisit the incident with a fresh perspective. The aim is to identify lessons learned, improve
procedures, and enhance overall readiness for future incidents.

2.3 From CERTSs to Security Operations Centres

As the volume and complexity of cyber threats continue to increase, organizations have
moved beyond national CERTs and CSIRTs structures by establishing internal SOCs.
While traditional CERTs emphasizes coordination and external communication, SOCs acts
as a centralized, real-time operational unit within organizations.

Modern SOCs build upon the foundational principles introduced in CERTs frameworks,
such as constituency awareness, structured workflows, triage, and escalation, and enhance
them through the integration of automated tools, real-time telemetry, and tailored response
strategies.

Although incident detection typically falls outside the scope of incident management, it
is essential to note that the contemporary incident response process in SOC environments
begins immediately after detection. The process can be broadly divided into four key
phases: detection, triage, analysis, and response.
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Incident Management Incident Handling

Figure 2.1: Incident management and incident handling.[3]

During the triage phase, reported incidents are initially verified to eliminate false
positives, such as spam or irrelevant alerts. Verified incidents are then classified according
to internal taxonomies and prioritized based on severity and impact. Finally, they are
assigned to specific teams or analysts for further handling.

SOCs serve as the nerve center for proactive cyber defence and incident response. SOC
teams are responsible for continuous monitoring, triage, investigation, containment, and
coordinated response to security incidents. Analysts ranging from junior Level 1 triage staff
to senior threat hunters and incident responders work alongside escalation managers and
threat intelligence operators. Modern SOCs centralize telemetry from Security Information
and Event Management (SIEM), Intrusion Detection Systems (IDSs)/Intrusion Prevention
Systems (IPSs), endpoint detection tools, threat intelligence feeds, and orchestration
platforms, ensuring that incidents can be detected, contextualized, and managed efficiently.

While SOCs started as reactive monitoring units, they are now critical for maintaining
organizational resilience by reducing response times, enforcing consistent playbooks, and
enabling internal and external collaboration. Automation and standardized procedures
help avoid fragmented workflows and ensure clarity in roles and responsibilities during an
incident response cycle.
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2.4 Evolution of SOCs: From SOC 1.0 to SOC 3.0

The SOC teams have evolved through three distinct generations, each driven by the need
for greater efficiency, accuracy, and scalability in threat detection and response [4].

2.4.1 SOC 1.0: Manual Operations and Low Scalability

Early SOCs (SOC 1.0) were entirely manual. Alert triage, investigation, and response relied
on human analysts interpreting static SIEM rules and correlating data from disparate
sources. Detection was reactive based on known signatures, which led to many false
positives, slow incident response, and overwhelmed analysts. Scalability was limited,
response times were slow, and the risk of missed or delayed incidents was high.

2.4.2 SOC 2.0: Partial Automation with SOAR and XDR

In response to growing alert volume and complexity, SOCs 2.0 integrated SOAR and
Extended Detection and Response (XDR). This enabled:

« Automatic alert enrichment via threat intelligence feeds;
e Improved event correlation across multiple data sources;

o Playbook-driven automation: for example, blocking IPs or disabling compromised
credentials, while final decisions still require human approval.

It reduced manual workload and improved consistency.

2.4.3 SOC 3.0: Al-Powered Detection, Investigation and Re-
sponse

SOC 3.0 marks a radical transformation: the integration of artificial intelligence (AI) into
detection, triage, investigation and response. Key innovations include:

¢ Al-based adaptive detection: machine learning models continuously analyze and
refine detection rules to identify emerging threats with lower false positive rates;

o Automated investigation: Al correlates events from multiple sources in real time,
enabling junior analysts to handle cases that previously required senior experts;

o Contextual response automation: Al assesses the context of incidents and
recommends—or even executes—mitigation steps, significantly reducing time-to-
response while preserving decision quality;

o Distributed data lakes and cost optimization: rather than relying on a single
SIEM, SOC 3.0 leverages distributed storage and on-demand querying to scale and
reduce operational costs.



Background

Table 2.1: SOC evolution

Feature SOC 1.0

SOC 2.0

SOC 3.0

Alert triage Manual

Detection Static STEM rules

Investigation Manual

Response Manual  Standard
Operating  Proce-
dures

Data storage Centralized SIEM
only

Team structure  Tiered pyramid

Enrichment + par-
tial automation
XDR-enabled corre-
lation

Guided by enrich-
ment but human-led
Playbook execution
with human over-
sight

SIEM + siloed stor-
age

Still tiered, less over-
load

Al-driven classifica-
tion

Adaptive ML-driven
detection
Automated
dive via Al
Context aware Al
suggestions and au-
tonomous actions
Distributed data
lakes with on-
demand queries
Flattened, role based
specialization

deep-

2.4.4 Recommender Systems in SOCs: A Tiered Approach

Recent research highlights the increasing relevance of recommender systems in enhancing
decision-making within SOCs. In particular, the work titled SoK: Applications and Chal-
lenges of Using Recommender Systems in Cybersecurity Incident Handling and Response [5]
presents a comprehensive systematic review (SoK) on the applications and challenges of
recommender systems in the handling and response of cybersecurity incidents.

The authors introduce a structured four-tier model of SOC responsibilities, designed
to reflect the internal hierarchy and functional granularity typical of modern security

operations (Figure 2.2):

« Tier 1 (Operational): responsible for initial triage and execution of predefined
response playbooks. This tier is characterized by time-sensitive, rule-driven tasks
that benefit from automation and pattern-based decision support.

o Tier 2 (Analytical): conducts deeper investigations and correlates data with
threat intelligence sources. This layer focuses on understanding incident scope and

identifying Indicator of Compromises (IoCs) across systems.

« Tier 3 (Strategic): tasked with advanced threat hunting, managing complex or
persistent incidents, and conducting proactive forensic analysis.

« Tier 4 (Governance): oversees SOC performance, ensures compliance with audit
and escalation procedures, and manages long-term operational metrics.

For each tier, the paper outlines specific recommender system capabilities aligned with

operational needs:
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CRﬁcommcndcr Systems in Incident Managcment)

Tier 1 - Triage

Triage [59-61] | Analysis recommendation [10, 24, 41, 56] ‘ CTI recommendation [15, 45]

(Txer 2 - Analysis and Response ) (Tiﬂ 3 - Intelligence and Prevention ) CT)Er 4 - Management )

Defense and investment
planning [2, 18]

Playbook selection [30] | Response selection [32, 51, 55] ‘ Attack prediction [48, 49] |
]

Alert filtering [7, 8, 14] | Vulnerability management [23, 29] ‘ Predictive blacklisting [52, 53

Figure 2.2: Taxonomy of recommender systems in cybersecurity [5].

o Tier 1: Suggests appropriate playbooks based on event features, time-of-day patterns,
and past incident data using collaborative filtering or rule-based inference.

o Tier 2: Ranks candidate root causes and correlates alerts with historical attack
patterns or threat intelligence feeds, employing probabilistic models or graph-based
similarity.

o Tier 3: Generates hypotheses for threat hunting campaigns by identifying outlier
behaviors or weak signal correlations.

o Tier 4: Provides dashboards for strategic decision support, summarizing incident
trends, analyst performance, and system response times using aggregated historical
data and visual analytics.

Moreover, the authors emphasize the technical challenges involved in implementing
these systems, including:

o Data sparsity and labeling issues, especially in early-stage triage.

o FEvaluation complezity, due to the absence of standardized performance metrics
tailored to cyber incident handling.

o Human-in-the-loop design, where analyst feedback must be incorporated in real-time.

2.5 Industrial Control Systems versus Cloud-Native
Environments

This section contrasts two critical operational domains: traditional ICSs and modern
cloud-native/SDN environments (such as Kubernetes and multi-cluster orchestration).
They will be analyzed in terms of distinct constraints, threat models, and appropriate
remediation strategies.
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2.5.1 Industrial Control Systems (ICS): Architecture, Security,
and Challenges

ICSs are specialized architectures designed to monitor and control physical industrial
processes such as energy production, water treatment, chemical manufacturing, and trans-
portation. ICS is a broad term encompassing Supervisory Control and Data Acquisition
(SCADA) systems, Distributed Control System (DCS), and Programmable Logic Controller
(PLC), each tailored for different layers of industrial process automation [6].

An ICS typically includes a combination of electrical, mechanical, and digital com-
ponents working together to achieve specific industrial objectives. Control logic can be
automated or manual, and systems can operate in either open-loop or closed-loop configura-
tions. Human Machine Interfaces (HMIs), sensors, actuators, and network communication
protocols enable real-time monitoring, diagnostics, and process control.

Historically, ICS environments were air-gapped and operated on proprietary hardware
and protocols, with little resemblance to conventional I'T networks. However, in recent
years, low-cost Ethernet and IP-based components have been widely adopted to improve
interoperability and remote access. This convergence between I'T and Operational Tech-
nology (OT) has increased the exposure of ICS to cyber threats, leading to a growing need
for cybersecurity frameworks tailored explicitly to these environments [6].

Unlike traditional I'T systems, ICSs have unique operational constraints:

« Safety and availability take precedence over confidentiality. System downtime
may endanger human lives, damage equipment, or disrupt critical infrastructure.

« Legacy components and proprietary protocols are still widely used, often
without active vendor support.

« Patching is constrained by real-time availability requirements and the potential
risks introduced by system changes.

These constraints impose significant limitations on the application of conventional
IT security solutions to ICSs. For example, antivirus software, frequent patching, and
aggressive scanning may not be feasible due to the risk of service interruption. ICS security
requires solutions that respect operational continuity, deterministic timing, and process
safety.

Modern approaches to vulnerability management.

ICS/OT systems are governed by strict uptime requirements, making traditional patch
management impractical. Alternative mitigation techniques [7], such as firewall reconfigura-
tion or VPN segmentation, are often needed. The authors propose an automation pipeline
that converts standardized Common Security Advisory Framework (CSAF) advisories into

CACAOQO playbooks.

In their proof of concept, 79 CACAO-compliant playbooks were generated, covering
485 remediation steps. These playbooks enable repeatable and systematic vulnerability
responses without requiring direct system modification—essential in ICS environments

11



Background

where unplanned downtime is unacceptable. Such strategies are key to enabling SOCs to
handle vulnerabilities in a structured and non-invasive manner, while ensuring process
continuity and operational safety.

2.5.2 Cloud-Native/SDN Environments: Dynamic Infrastruc-
ture and Policy Automation

The growing adoption of SDN and cloud-native paradigms, such as container orchestration
platforms (e.g., Kubernetes), has introduced a new layer of complexity for network security
management. These environments are inherently dynamic: workloads are often ephemeral,
distributed across namespaces, and interconnected through virtual networks.

In Kubernetes-based infrastructures, for example, security policies must regulate traffic
between pods, services, and external endpoints. The fine-grained control required at
this level is difficult to maintain manually, as policy definitions can become inconsistent
or conflict-prone across namespaces. Manual authoring of network policies is not only
error-prone but also fails to scale with the increasing velocity and complexity of deployment
pipelines.

Recent automation platforms such as ARMO, and approaches leveraging extended
Berkeley Packet Filter (eBPF), have emerged to address this challenge. These tools monitor
real-time runtime behavior and automatically infer Kubernetes Network Policies based
on observed communications and workload profiles. These platforms reduce the human
burden and increase policy accuracy by reflecting actual behavior, rather than intended
behavior.

In parallel, research in SDN environments—such as SDN Unified Policy Configuration
(SUPC) and Zero Trust Software-Defined Networking (ZT-SDN)—has explored high-level
policy abstraction and translation into enforceable flow rules. These systems aim to resolve
policy conflicts, enforce compliance, and support secure service function chaining across
multi-domain networks.

The key principles underpinning these frameworks are:

 Intent-based policies: Abstracting security goals at a high level (e.g., "App A must
not talk to App B") and translating them into concrete flow rules or firewall entries.

e Conflict detection and resolution: Using formal verification or graph-based
models to ensure that dynamically generated policies do not introduce security gaps
or contradictions.

o Integration with orchestration tools: Enabling continuous security enforcement
that evolves with infrastructure changes (e.g., pod rescheduling, auto-scaling).

Cilium vs. KubeArmor

A further dimension of cloud-native security is the ability not only to generate policies
automatically but also to enforce remediation actions in real-time. Automation of re-
sponses ensures that security controls continually adapt to the evolving runtime context of
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workloads, thereby reducing the time it takes to react to suspicious or malicious events.

Two representative approaches in this area are Cilium and KubeArmor, which
complement each other by targeting different enforcement layers:

 Cilium operates primarily at the network layer, providing L.3/L4/L7 enforcement
through eBPF. It integrates seamlessly with Kubernetes as a Container Network
Interface (CNI), enabling identity-aware filtering, fine-grained network policies, and
service-mesh-level features such as load balancing and observability.

« KubeArmor instead focuses on runtime system-level protection, restricting file
access, process execution, and kernel capabilities within pods. This element enables
the blocking of unauthorized internal behaviors, even when network policies alone
would be insufficient.

Together, these frameworks illustrate how automated responses in cloud-native en-
vironments can span multiple layers, from controlling network flows across services to
constraining low-level process activity within containers. Such capabilities bring remedia-
tion closer to the runtime itself, making enforcement both fine-grained and adaptive.

2.6 Security Orchestration Automation and Response

SOAR represents a unified platform that enables SOCs teams to centralize security
tool integration, automate routine tasks, and orchestrate coordinated incident response
workflows. SOAR helps security operations deal with alert overload, tool sprawl, and staff
constraints by streamlining investigation and response from a single console [8].

2.6.1 Core Capabilities

o Security Orchestration: SOAR platforms integrate diverse security tools (SIEM,
Endpoint Detection and Response (EDR), threat intelligence feeds, sandboxing,
firewalls, etc.) via APIs and prebuilt connectors, allowing for coordinated workflows
across tools.

e Security Automation: The system automates repetitive tasks such as alert en-
richment, ticket generation, response actions (e.g., isolating endpoints via Network
Detection and Response (NDR), triggering antivirus scans), and playbook execution,
significantly reducing manual workload.

¢ Incident Response Management: SOAR acts as a centralized IR console where
analysts correlate alerts, filter out false positives, prioritize incidents, and invoke
appropriate playbooks— all within one dashboard.

2.6.2 Benefits for Efficiency

IBM highlights several major advantages:
13
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o Accelerated response times—by enriching alerts and executing dynamic playbooks,
specific clients achieved up to an 85% reduction in incident response time.

« Resource optimization—SOAR relieves analysts from routine triage, enabling
them to focus on complex investigation and threat hunting.

« Consistency and centralized orchestration — a unified hub ensures standardized
workflows, clearer audit trails, and coordinated team actions.

2.6.3 Architectural Considerations

Modern SOAR platforms support flexible deployment—on-premises, cloud, or hybrid—to
adapt to evolving security infrastructure. Open architectures and standards-based inte-
grations maximize compatibility with existing tools, reduce vendor lock-in, and support
centralized case management and collaboration across teams.

2.6.4 Auditability and Access Control

SOAR platforms maintain detailed audit logs to track every action and configuration
change. This platform enhances forensic capability and supports compliance, as analysts
can reconstruct workflows and identify misconfigurations or failures.

Attribute-Based Access Control (ABAC) enables granular, context-aware permission
models—policies can restrict playbook execution or elevated privileges based on user
attributes, time, or role, implementing least-privilege security without inhibiting workflow
flexibility.

2.6.5 Case Study and Cross-Environment Comparison

A recent evaluation [9] integrating Splunk Enterprise SIEM with SOAR in an on-premises,
sandboxed architecture demonstrated clear improvements in security posture, including
more effective alert triage, faster automation-driven responses, and overall reduction in
analyst burden.

2.6.6 Applicability to ICS/OT vs. SDN/Cloud Environments

In ICS/OT environments, where availability, safety, and process continuity are paramount,
SOAR playbooks must be carefully designed to prevent unintended disruptions. Automation
is valuable but must be constrained and paired with heightened human oversight. Alert
enrichment from industrial sensors and controlled orchestration of incident response help
SOCs manage OT incidents more reliably.

Conversely, in SDN or cloud-native environments, programmability and elasticity
provide greater flexibility. Here, SOAR can automate responses aggressively—e.g., auto-
scaling environments, isolating compromised workloads, or deploying rapid policy changes
across infrastructure—and integrate with continuous deployment pipelines.
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The Splunk SIEM/SOAR [9] study underscores this contrast: while hybrid STEM/SOAR
deployments in traditional IT allowed improved incident response workflows, adapting
these workflows for ICSs requires specialized data sources and conservative response logic.

To address this, organizations increasingly rely on structured and automated procedures
known as playbooks, which define predefined sequences of actions to enforce or remediate
policies consistently across environments. Playbooks play a crucial role in streamlining
operations and reducing the potential for human error, especially in dynamic infrastructures
like Kubernetes. This thesis will examine cloud/SDN useful playbooks in detail, highlighting
their structure, operational semantics, and their integration within automated policy
enforcement workflows.

2.7 The Role of Cyber Threat Intelligence and Play-
books in Incident Response

Cyber Threat Intelligence (CTI) is a foundational element of modern security operations,
informing decisions from detection through remediation. Schlette et al. [10] examine how
CTI data models support the IR lifecycle. Their study defines 18 core IR concepts—such
as observables, indicators, Tactics, Techniques, and Procedures (TTP), response actions,
and threat actors—and evaluates six prominent incident-response—focused formats across
criteria including expressiveness, interoperability, and machine-readability.

A key finding is that all formats consistently emphasize the Action concept, reflecting
the inherently action-oriented nature of incident response. However, no single format
covers all concepts comprehensively. In practice, organizations often combine multiple CTI
formats or frameworks to adequately address diverse operational use cases.

Beyond CTlI-specific formats, the study also surveys several IR standards and frame-
works. Among those discussed are CACAOQO, Collaborative Open Playbook Standard
(COPS), Integrated Adaptive Cyber Defense (IACD), and Open Command and Control
(OPENC?2). The following subsections summarize visual results extracted from Schlette et
al’s comparative analysis.

2.7.1 Focal Points of Use Case Scenarios

The figure Focal Points of Use Case Scenarios illustrates how different use cases prioritize
specific IR concepts. In the automation scenario, all structural concepts are mandatory:
detailed workflow specifications, explicit actuator modeling, precise action descriptions, and
integration of CTT artifacts. Technical requirements (machine-readability, standardized
serialization) and authorization are also emphasized. In contrast, the sharing use case
prioritizes confidentiality, sensitivity markings, playbook aggregability, and versioning.
These results demonstrate that operational context significantly influences which concepts
are most critical: automation stresses process detail and technical integration, whereas
sharing highlights privacy and semantic clarity.
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Table 2.2: Focal Points of evaluated metrics in use cases [10].

Concept \ Use Case  Automation Sharing Reporting

Aggregability o ++ +
Categorization o + 44
Granularity + + o
Versioning o ++ o
Referencing + + +
Extensibility o + 44
Readability +4+ + 44
Unambiguous Semantics + ++ +
Workflow ++ ++ +
Actuator ++ o o
Action ++ ++ ++
Artifact ++ 4 o
Community + . o
Application 4+ 4 o
Serialization ++ ++ o
Confidentiality o ++ +
Authorization 4+ o o
Prioritization + + o

Legend: o less relevant  + supporting ++ mandatory

2.7.2 Structural Concept Implementation

The figure Comparison of Structural Concept Implementation shows that all evaluated
formats strongly support the Action concept, which is expected since IR fundamentally
involves executing response measures. Coverage gaps, however, are evident: CACAQO pro-
vides only a weak artifact/CTI-integration element (lacking a dedicated Artifact concept),
COPS has no explicit Actuator concept (depending instead on external services), and
TACD specifies neither actuator nor artifact.

Table 2.3: Comparison of Structural Concept Implementation [10].

Format Workflow Actuator Action Artifact

CACAO v v v X
COPS v X v v
IACD v X v v
OpenC2 X v v v
RE&CT v X v X
RECAST X X v X
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2.7.3 Technological Concept Implementation

The figure Comparison of Technological Concept Implementation compares the ability of
different formats to model governance-related aspects such as confidentiality, authorization,
and prioritization, together with the inclusion of an explicit security model. Among the
evaluated approaches, CACAO is the only one that integrates all three properties and
embeds security as a first-class concern. Requirements for the Expression of Cybersecurity
Techniques (RE&CT) also provides confidentiality and authorization with an included
security layer, but lacks explicit prioritization. Other formats, such as COPS, IACD,
OPENC?2 and Resilient Event Conditions Action System against Threats (RECAST), cover
these dimensions only partially or omit them entirely, requiring external mechanisms to
enforce governance. This highlights CACAQ ’s relative maturity, since governance features
are essential in IR for ensuring controlled automation.

Table 2.4: Comparison of Technological Concept Implementation [10].

Format  Confidentiality Authorization Prioritization Security

CACAO v v v included
COPS X X X excluded
IACD X v X excluded
OpenC2 X X X excluded
RE&CT v v v included
RECAST X v X excluded

2.7.4 Specification, Literature, and Status

The figure Comparison of Specification, Literature and Status reports on the documentation
and maturity of each format. CACAOQO is noted to have limited academic literature and
few example implementations. COPS ’s specification is sparse and the format is essentially
inactive. IACD provides a moderately detailed playbook specification, albeit with narrow
scope. Both RE&CT and RECAST perform poorly: RE&CT lacks formal schemas or
structured documentation, while RECAST has been briefly described in a single paper
and is no longer active.
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Table 2.5: Comparison of Specification, Literature and Status [10].

Format  Specification (Detail) Literature Status

CACAO [37] (high) limited active
COPS [38] (low) limited inactive
IACD [39] (medium) available active
OpenC2 [40], [117], [118] (high) available active
RE&CT [41] (low) none active
RECAST [42] (low) none inactive

2.8 Purpose and Structure of CACAO

The CACAOQO model is an open standard developed by the Organization for the Advance-
ment of Structured Information Standards (OASIS) consortium with the goal of defining
an interoperable format for representing security playbooks [11].

The primary purpose of CACAQ is to facilitate the sharing and automation of responses
to cybersecurity incidents through a structured, human-readable, and platform-agnostic
representation. This enables greater consistency in the execution of security actions and
easier integration between heterogeneous tools and teams.

CACAOQO supports the modeling of playbooks that include a series of executable steps,
each of which can represent an automated action, a human decision, a logical condition, or
a branching point in the flow. The structure of a CACAO playbook (Figure 2.3) includes
several main elements:

e« Metadata: descriptive information such as the name, version, author, and description
of the playbook.

« Playbook Workflow: the execution flow composed of interconnected nodes (work-
flow steps) that define the order and conditions of execution.

« Playbook Actions: specific actions to be executed, which may include commands,
APT calls, or interactions with external systems.

« Data Markings and Extensions: mechanisms for managing the sensitivity of
information and extending the standard.

2.8.1 Types of Workflow Steps in CACAO

The CACAO playbook model defines several types of workflow steps to represent the flow
of execution and decision-making within a playbook. Each step defines a specific behavior,
and together they allow for both linear and complex branching logic in response workflows.

The main types of steps are:
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Figure 2.3: CACAO structure [11].

Action Step: represents an executable action, such as invoking an Application
Programming Interface (API) or interacting with an external system. It is the most
important type and forms the core of playbooks.

If Condition Step: introduces conditional branching based on a condition. It
evaluates a condition and directs the workflow to different paths depending on
whether the condition is true or false. Useful for implementing decision logic in
response scenarios.

While Condition Step: similar to a programming construct, it repeatedly executes
a set of child steps as long as the defined condition holds true.

Parallel Step: enables the concurrent execution of multiple child steps. It is partic-
ularly useful when independent actions can be performed simultaneously, improving
overall response efficiency and reducing execution time.

Switch Step: allows for multi-branch conditional logic based on a specified expression.
It is functionally similar to a switch-case statement in traditional programming.

These step types, when combined, allow CACAO playbooks to describe not only linear

sequences but also complex, dynamic workflows capable of adapting to varying incident
conditions.

STIX Pattern Matching

Structured Threat Information Expression (STIX) is a standardized language developed
by OASIS for representing cyber threat and observable information in a structured and
machine-readable format [12]. Within the STIX 2.1 specification, the pattern object type
is used to define observable conditions that indicate suspicious or malicious activity, using
a dedicated query language known as the STIX Patterning Language (SPL).
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In the context of CACAO playbooks, STIX patterns are primarily employed within
conditional steps, such as if-step or while steps, to express decision logic based on the
presence of indicators of compromise IoC or specific threat behaviors observed in the
environment. These conditions allow a playbook to adapt its execution path based on
contextual threat data.

2.8.2 Agents and Targets in CACAO

In a CACAO playbook, each executable action is associated with two fundamental com-
ponents: an agent, which performs the action, and a target, which is the entity upon
which the action is executed. This abstraction provides a flexible mechanism to decouple
the definition of an operation from the specific actors involved, enabling reusable and
context-sensitive playbook logic. Agents and targets are represented as entries in dedicated
dictionaries, where each entry maps an identifier to an agent-target object. These objects
share a set of common properties as defined in the standard, and they support a wide
range of types and configurations [11].

Agents

An agent is the entity responsible for executing a command. Agents may operate automat-
ically, such as a firewall rule engine or an orchestration platform, or manually, when an
action requires human intervention. The agent type vocabulary includes various categories,
such as:

o Security devices (e.g. firewalls, intrusion prevention systems);
o Networking infrastructure (e.g. routers, switches);
o Threat intelligence platforms;

e Human operators;

Agents can be dynamically configured using variable substitution. Instead of hardcoding
values such as names or Internet Protocol (IP) addresses, variables can be used to inject
runtime information into the agent configuration, making the playbook more adaptable.

Target

Targets are the recipients of the actions defined in a playbook step. Much like agents,
targets can be systems, services, or individuals, and they are defined using the same
structural model. Common examples include:

[P addresses, domains, and Media Access Control (MAC) addresses;
o Uniform Resource Locator (URL)s or endpoints exposed by external systems;

« User accounts or identities (UID);
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Each target may include metadata describing its nature and location, and it may also
leverage variable substitution for runtime customization. Workflow steps that perform
actions typically reference both an agent and a target by their identifiers. This mapping
allows for clear traceability of who performs what operation and on which object.

2.8.3 Data Markings and Signature Support in CACAO

The CACAO 2.0 standard provides robust mechanisms for ensuring the confidentiality,
integrity, and trustworthiness of playbook content. These mechanisms are essential for
enabling secure sharing, ensuring compliance with data handling policies, and validating
the origin and authenticity of shared artifacts.

Data Markings

Data markings in CACAO playbooks allow producers to specify handling instructions
and sensitivity levels for individual elements or entire playbooks. For example, playbooks
may be shared with the restriction that they must not be re-shared or that they must
be encrypted at rest. These markings are defined using the marking-definition object,
which supports both predefined and custom marking structures.

Markings are applied to specific objects using the object_marking refs field, which
references one or more marking-definition objects. Markings enable fine-grained control
over how different parts of a playbook must be handled or shared.

Digital Signature Support

The CACAO v2.0 standard provides a standardized structure for digitally signing playbooks
through the optional signature object [11]. This object allows producers to assert the
authenticity and integrity of a playbook by attaching a digital signature using recognized
cryptographic algorithms. This signature mechanism is designed to support external
validation of playbook content, enhancing trust and traceability in automated security
workflows. Multiple signature objects may be included in a playbook to support layered
trust models (e.g., organization-level and individual author signatures).

2.9 MITRE ATT&CK Framework

One of the most widely adopted standards in the cybersecurity community is the MITRE
Adversarial Tactics, Techniques, and Common Knowledge (MITRE ATT&CK) frame-
work [13]. ATT&CK is a structured knowledge base that catalogues adversarial behaviours
observed in real-world intrusions. It organizes malicious activities into a matrix of tactics,
representing the adversary’s technical objectives (such as persistence, privilege escalation,
or lateral movement), and techniques, which describe the specific ways in which these ob-
jectives can be achieved (e.g., creating a new service for persistence or exploiting credential
dumping for privilege escalation). Each technique is further enriched with information
about mitigations, detection opportunities, and references to documented threat reports.
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The value of ATT&CK lies in providing a common vocabulary and taxonomy to describe
and reason about attacker behaviour. It enables defenders, vendors, and researchers to
align on a shared language when discussing threats, designing detections, or evaluating
coverage. By abstracting from specific malware or tools, ATT&CK captures adversarial
intent in a reusable form, which makes it suitable both for high-level threat modelling and
for operational tasks such as IR.
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Chapter 3

Related Works

This chapter presents the main works, technologies, and standards that provide the
foundation and context for the development of the tool introduced in this thesis. The
discussion begins with the Palantir Incident Response Tool, which served as the starting
point for this work, before examining additional components, such as the iptables engine,
which supports remediation capabilities.

A substantial part of the chapter is dedicated to the CACAO standard, which plays
a central role in shaping the design of the proposed tool and ensuring compliance with
widely recognized models for playbook-based automation.

3.1 Palantir Incident Response Tool

The Palantir project [14, 15] included an automated incident-response engine, called the
Recommendation and Remediation (RR) component, which processed security alerts and
executed predefined remediation playbooks. When an alert is received, the RR tool first
classifies the threat (e.g., botnet, brute-force attack) and uses a priority table to select an
appropriate course of action. This action is encoded as a high-level “recipe” or playbook in
a custom policy language. The system generates a file (with a Recovery file format (REC)
extension) containing the chosen playbook, then invokes a grammar-based interpreter to
execute it. In other words, the RR engine translates the abstract recipe into concrete
commands that reconfigure the network or services. These commands may modify the
virtual service graph (for example, by deploying or adjusting virtual firewall/Virtual
Network Function (VNF) nodes) or issue low-level device instructions (such as adding
or removing iptables rules) to contain the threat. Throughout this process, the system
updates a dashboard to inform the operator of detection and remediation events.

For the actual enforcement of remediation actions, the RR component relies on an
orchestration layer. Once a recipe has been parsed and mapped to concrete commands,
the tool interacts with the Management and Orchestration (MANO) API to deploy new
security capabilities (e.g. intrusion detection nodes, honeypots, or filtering firewalls) and
to reconfigure existing ones.
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3.1.1 Inherited Components from the Palantir Tool

Although the core logic of the incident-response engine has been significantly revised in
this work, several key components of the original Palantir RR tool have been preserved and
adapted. The main contribution of this thesis is the definition of an executable instance of
a playbook that can represent a remediation procedure, designed to be compliant with the
CACAOQ standard and enriched with cloud-specific functionalities. Nevertheless, continuity
with the original implementation was maintained in the following aspects:

+ Recipe Compatibility. The system still accepts remediation instructions encoded
in REC files and interprets them using the original grammar.tx. However, while the
grammar remains unchanged, the internal logic that maps recipes into executable
playbook instances has been redefined to comply with the CACAO model and to
support different remediation actions.

e Service Graph. The service graph abstraction, used to represent the infrastructure
and the relations among nodes, has been largely preserved. Although the configuration
of nodes has been revised to reflect new deployment scenarios, the graph operations
(e.g., insertion, removal, and reconfiguration of security functions) follow the same
logic as in the Palantir tool.

¢ Alert-to-Response Mapping. The strategy for linking incoming alerts to reme-
diation procedures has evolved. In this work, the remediation process primarily
relies on the MITRE ATT&CK/MITRE Defensive Engagement Framework (MITRE
DEFEND) knowledge bases to identify the most suitable response. However, if an
alert does not include a MITRE technique identifier and only specifies a more general
threat category, the original mapping logic from the Palantir tool is reused. This
approach ensures backward compatibility of alerts and provides a fallback mechanism
for less-structured alerts.

3.2 Formal model of capabilities of Network Security
Functions

A relevant component employed in this thesis is the IP Tables Firewall (iptables) engine,
developed at Politecnico di Torino. This work [16] presents a formal capability-based model
for automatically generating firewall rules from abstract security policies. The goal is to
bridge the gap between high-level policy specification and low-level enforcement, reducing
the dependency on vendor-specific configuration languages.

At the core of the engine lies the concept of security capabilities, which formally describe
what a Network Security Function (NSF) can do in terms of traffic selection and actions.
Capabilities are organized in six categories:

« Conditions to select the traffic of interest (e.g., IP addresses, ports, protocols).

« Actions that can be applied to that traffic (e.g., accept, deny, encrypt).
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o Events that may trigger rule evaluation.

o Condition clauses that specify whether rules require conjunctive or disjunctive match-
ing.

o Resolution strategies for handling multiple matching rules.

o Default actions when no rule applies.

From a technical perspective, the engine adopts a model-driven approach. An abstract
configuration language is automatically generated from the description of an NSF’s ca-
pabilities. Then, using an adapter pattern, these abstract configurations are translated
into the concrete syntax of the target NSF. For iptables, this means that each abstract
capability is associated with the corresponding low-level option through an adapter. For
instance, the abstract capability “SourcePortCondition” is translated into the concrete
option -sport, while “AppendRuleCapability” becomes the -A flag used to add a rule to
a chain. The adapter also encodes the dependencies among the options and provides the
syntactic rules required to construct valid firewall commands.

An important role is played by Extensible Markup Language (XML), which is used
to represent the capability model and its instantiations. Capabilities, abstract languages,
and translation rules are expressed through XML Schema definitions, enabling the use of
standard XML tools for validation and manipulation.

The validation of the engine on iptables showed that abstract policies, expressed using
the generated language, can be consistently and correctly translated into working firewall
rules. In practice, an abstract rule such as “accept TCP traffic from port 80 to subnet
192.168.1.0/24” is automatically converted into the command:

iptables -A FORWARD -p tcp --sport 80 -d 192.168.1.0/24 -j ACCEPT

3.3 CACAO-Compliant Tools as References

This section describes the CACAO-compliant tools employed during the development
process, with a focus on their functionalities and roles in the implementation and validation
phases.

3.3.1 SOARCA

Security Orchestrator for Advanced Response to Cyber Attacks (SOARCA) is an open-
source security orchestration platform designed to ingest, validate, and execute CACAOQO
v2.0 playbooks via a JSON API [17]. SOARCA provides a fully CACAO-compliant
execution engine aimed at experimental use cases and the orchestration of automated
remediation in security operations.

From a technical perspective, SOARCA acts as an intermediary layer between CACAO
playbooks and the execution environment. Once a playbook is submitted, the system
parses the JavaScript Object Notation (JSON) representation, validates its schema against

25



Related Works

CACAO O specifications, and instantiates the corresponding remediation classes. Each
playbook step is then mapped to an actionable task, which is dispatched to the appropriate
connector or protocol handler e.g., Secure Shell (SSH) for host-level actions, HyperText
Transfer Protocol (HTTP) for API calls, or Message Queuing Telemetry Transport (MQTT)
for Internet of Things (IoT) oriented responses. The orchestration logic ensures that
conditional flows, dependencies, defined in CACAQ are respected during runtime.

During the initial stages of the project, SOARCA was examined to understand the
instantiation process of remediation classes from JSON-formatted CACAO playbooks. The
examples available in the official repository were used as a practical reference to analyze
how different step types are structured and integrated into the overall playbook workflow.
This analysis was particularly valuable given that the examples provided in the official
CACAO documentation are often partial.

3.3.2 CACAO Roaster

CACAO Roaster is a web-based application maintained by the Open Cybersecurity
Alliance (OCA) for the creation, validation, visualization, and execution of CACAO v2.0
playbooks [18]. It provides a user-friendly, no-code interface that supports both manual
design, with drag-and-drop, and schema validation of playbooks in accordance with the
OASIS CACAO specification.

From a technical standpoint, CACAO Roaster abstracts the complexity of the CACAO
JSON schema into a graphical editing environment, where each playbook element (such as
actions, conditions) can be instantiated and connected visually. Behind the interface, the
tool automatically generates a standards-compliant JSON representation, ensuring that
the resulting playbooks can be directly interpreted by execution engines such as SOARCA.
In addition to design and visualization, Roaster integrates validation routines that check
playbooks against the official CACAO schema, highlighting structural inconsistencies or
missing fields before deployment.

During the development process, CACAO Roaster was extensively utilized for the
validation of playbooks generated by the tool described in this thesis. It proved valuable
for verifying schema correctness, reviewing workflow structure, and testing conformance
with CACAO specifications. Its integration capabilities and graphical representation helped
ensure that the generated playbooks were both syntactically correct and operationally
valid.
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Chapter 4

Problem Statement

This chapter outlines some of the key challenges that remain unsolved in the current
landscape of incident response automation, which this thesis seeks to address. Specifically,
it highlights the limitations of the CACAO standard in covering dynamic scenarios, as
well as the lack of mechanisms for sharing concrete remediation executions. Finally, it
discusses the lack of a dedicated Kubernetes remediator, despite the growing adoption of
containerized and cloud-native infrastructures.

4.1 Limitations of the CACAQO Standard

As mentioned above, CACAQ offers a rich set of workflow constructs — including sequential
steps, parallel branches, conditionals, and while-loops — that give organizations flexibility
in encoding complex response logic. Despite CACAQ’s features, existing implementations
reveal gaps in some scenarios.

CACAOQ’s standard syntax enforces certain constraints that limit expressiveness in
dynamic playbooks. Conditions in CACAOQO are typically specified as STIX pattern strings,
meaning they compare constant fields against constant values. However, there is no native
mechanism for conditions that bind to outputs of earlier steps (such as binding a variable
from a previous action into the next condition). As a result, any branching logic that
depends on runtime data must be handled outside the standard playbook flow or via
custom extensions.

Similarly, looping constructs in CACAQ are limited. The specification lists only while-
loops as the repetition primitive. No explicit syntax exists for iterating over all elements in
a list or collection. Thus, use cases such as “apply this remediation to each container/pod
found” cannot be expressed directly. In practice, this means CACAO playbooks lack
support for “foreach” or output-based loops and require workarounds.
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4.2 Playbook Sharing and Execution Data

In many cybersecurity communities, sharing knowledge is crucial. Standards like STIX
or Trusted Automated eXchange of Indicator Information (TAXII) enable sharing threat
intelligence (indicators, TTP, etc.). For example, CACAO playbooks can be linked to
STIX CourseOfAction objects or use CTI within conditions. However, the state of sharing
today focuses on distributing playbook definitions or recommended actions, not the details
of what happened during execution.

Interoperable security playbooks should be part of structured information sharing [19].
This approach standardizes the format of playbooks for exchange. What it does not
capture, however, is the actual runtime data from executing those playbooks. In other
words, there is no standard way to share a playbook with its execution transcript: the
inputs given to each function and the outputs produced. Such enriched playbooks would be
very useful — akin to sharing not just a recipe, but the actual results and data from cooking
it. Notably, CACAQ’s schema allows parameters to be marked as internal (computed
during execution) versus external, and it is extensible, which could support the inclusion
of execution-state data in the future.

4.3 Kubernetes and Remediation Tools

Container orchestration platforms, such as Kubernetes, are now ubiquitous in production
infrastructure. Nearly all large organizations have adopted Kubernetes, and its use
continues to climb. Despite this prevalence, existing incident response frameworks rarely
provide out-of-the-box Kubernetes-specific remediation. In the context of CACAOQO, there
is no widely adopted execution engine that specializes in Kubernetes actions. In other
words, a “playbook-driven remediator” for Kubernetes (to automatically apply playbook
steps to pods, network policies, services, etc.) is essentially lacking.

4.3.1 Identified Gap

From the discussion above, several functionalities are missing in the current incident
response landscape. This thesis aims to address the following gaps, outlined in the list
below.

¢ End-to-end automation pipeline: A workflow that ingests enriched security alerts
and produces executable actions tailored to a specific environment.

« Dynamic instance generation: Support for playbooks where inputs (variables or
targets) are computed at run time, rather than being statically defined.

¢ Round-trip transformation: The ability to translate executed flows back into
CACAO format. For example, once a custom automation (possibly coded outside
CACAO) has been executed, it should be possible to export the actual action sequence
and data back into a valid CACAO playbook for documentation or sharing.
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¢ Cross-environment execution: A remediation backend capable of operating
seamlessly across cloud-native platforms (e.g., Kubernetes APIs, Cilium policies)
and traditional infrastructures (e.g., iptables, on-prem devices, graph-based network
models).

« Rich control flow at runtime: Full support in the execution engine for advanced
logic such as dynamic condition evaluation on action outputs, branching on results,
parallel execution of steps, and non-trivial loops (e.g., foreach over variable-length
lists).
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Chapter 5

Design

5.1 Design Objectives

The primary goal of the proposed tool is to support and automate incident response
activities by providing a flexible and extensible framework for the execution of defensive
actions. The cornerstone of the design is the implementation of a Python class capable of
representing an executable instance of a playbook. This abstraction allows the system to
manage the lifecycle of a defensive action from its selection to its execution and, optionally,
its generation in standardized formats. As shown in Figure 5.1, the main components and
processes that constitute the tool are presented below.

o Alert-to-Recipe Mapping: Given an incoming security alert, the tool must identify
and map it to the most appropriate defensive recipe (e.g., a .rec file or a CACAO
playbook) to ensure an effective and timely response.

« Recipe Parsing and Instantiation: The tool must be able to parse an input
recipe, regardless of whether it is defined in a proprietary format (.rec) or follows
the CACAO standard, and convert it into an executable Python object instance.

« Playbook Execution: Once instantiated, the playbook instance must be executable,
orchestrating the defined defensive actions according to the prescribed logic and
conditions.

« CACAO Playbook Generation: The tool should also provide the capability to
generate a valid CACAO-compliant playbook starting from an executable instance,
enabling interoperability with other incident response platforms.

5.2 Formats Used in the Tool

The tool developed as part of this thesis integrates and supports multiple data representation
formats, each chosen for its suitability to a specific aspect of the security automation
workflow. The most relevant formats are JSON, YAML Ain’t Markup Language (YAML).
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Figure 5.1: PB-rem scheme

5.2.1 JSON

JSON is the core format used for handling both the representation of playbooks and the
management of alerts. Within the tool, CACAQO playbooks are instantiated and executed in
JSON format, ensuring compatibility with the standard defined by the CACAO specification.
[11].

In addition to generating executable instances from CACAO playbooks, the tool also
supports the reverse process: transforming an arbitrary executable playbook (not initially
conforming to CACAO) into a valid CACAO representation. This bidirectional capability
allows for flexible integration and standardization.

Furthermore, alerts received and processed by the tool are internally represented using
JSON objects (Python dictionaries), providing a lightweight and efficient structure for
communication between system components.
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5.2.2 YAML

YAML is used primarily in the context of cloud security policies. The tool supports the
generation of policy definitions in YAML through the use of templates. Specifically, it
integrates with two policy enforcement frameworks: KubeArmor and Cilium.

In both cases, the tool fills predefined YAML templates with the relevant security data
discovered during analysis. These YAML files are then applied to enforce runtime security
at the Kubernetes level, enabling isolation or remediation actions.

5.3 Tool components

In this section, we will list the high-level structures implemented for the features just
shown.

5.3.1 Ingestion Layer

The Ingestion Layer is responsible for receiving incoming alerts and extracting the in-
formation required for further processing. A key design choice is to map each enriched
alert to a standardized data structure based on its threat_category. This mapping is
defined in a global scope through a JSON configuration file, which serves as a reference for
identifying and normalizing the relevant fields for each category.

The configuration file follows the structure shown below:

"name_threat_category": {
"mandatory_field": {},
"context_info": {},
"optional fields": {}

The entries in the configuration file are defined as follows:

« mandatory_ field: Contains the essential fields required to execute any remediation
action for an alert belonging to the given threat_category. Examples include the
IP address of an impacted host or the address of an attacker host. These fields are
considered mandatory for the remediation process to proceed.

o context__info: Specifies the additional information needed to perform the reme-
diation in the given context. For example, in a cloud environment, it may include
cluster certificates or API credentials necessary to apply defensive actions.

o optional_ fields: Lists fields that are not common to all alerts of the given
threat_category, but can be required to execute the remediation process for certain
alerts within that category. Examples include the infected node in a cluster for
node-level alerts or the specific pod name for pod-level alerts.
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It is essential to note that this configuration file associates a threat_category with
a class of alerts that share the same remediation requirements, so it does not describe a
specific alert instance.

5.3.2 Alert-to-Defensive Action Mapping

The mapping of an alert to the corresponding defensive actions is performed according to
one of two strategies, depending on the information available in the alert.

Mapping by MITRE Code

When the alert contains a mitre_code entry, the mapping process (Figure 5.2) follows a
multi-step resolution path based on four JSON configuration files:

1. MITRE ATT&CK Techniques Repository:

{
"id": "mitre_code",
I|namell : nn
"description": "",
"defensiveCategories": []
}

This file links each mitre_code to one or more defensiveCategories.

2. Defensive Categories Repository:

{
||name n : nn s
"defensiveTechniques": []

Each defensiveCategory is associated with a set of defensiveTechniques.

3. Defensive Techniques Repository:

{
||namell : nn
"description": "",
"defensiveActions": []
}

Each defensiveTechnique leads to one or more defensiveActions.
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4. Defensive Actions Repository:

{
"id": "DA_id",
"description": "",
"playbook_name": "",
"playbook_type": "",
"RequiredParameters": []
X

This file contains the executable playbook associated with a given defensive action.
The playbook_type field specifies whether the playbook is in CACAO format or
a recipe.rec. The RequiredParameters list specifies the parameters that must be
present in the global_scope for the defensive action to be executed successfully.
This entry is useful in case one of the optional parameters is needed to execute that
specific remediation.

Mapping by Threat Label

If the alert does not contain a mitre_code, the mapping is performed using the threat-label
field. In this case, recipes are associated with each threat_category and threat_label
according to a priority-based mechanism, defined in the threat. json file:

"threatsrepository": {
"threat_category": {
"threat label": {
"recipes": [
{ "recipeName": "", "priority": ,"impact": },

Each recipe entry contains:

e recipeName: the identifier of the recipe to execute,

e priority: a numeric value used to rank recipes when multiple are available,
o impact: a numeric estimated impact score of the recipe.

The priority value ensures that, in cases where multiple recipes are applicable, the
system consistently selects the most appropriate defensive action for the given threat.

34



Design

© AttackTechnique

o id: mitre_code

o name: String

o description: String

o defensiveCategories: List<DefensiveCategory=>

countered by

@ DefensiveCategory

o name: String
o defensiveTechniques: List<DefensiveTechniques=>

composed of

@ DefensiveTechnigue

o name: 5tring
o description: String
o defensiveActions: List<DefensiveAction>

implemented with

*

@ DefensiveAction

o id: String

o description: String

o playbook_name: String

o playbook_type: String

o required parameters: String

o parameters: List<String= {optional} 'all parameters that can be passed to execute the action’

1
enforced by

*

© Playbook
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5.4 Playbook Class Design

One of the most critical components of the system is the Playbook class. This section
focuses on its design principles without delving into low-level implementation details. The
Playbook class encapsulates all the data and logic required to orchestrate the execution of
defensive actions in a structured and modular way.

5.4.1 Core Attributes

The Playbook class maintains a set of parameters that are essential for execution, including:

o An instance of the Executor class, which is responsible for managing and executing
the actions defined in the playbook.

o A graph representation of the execution nodes, modelling the relationships between
steps.

e The global_scope, which stores contextual and operational data required for execu-
tion.

o A list of Step objects representing the ordered execution flow.

5.4.2 Step Abstraction

Each step is represented by an abstract Step class, which is inherited by more specific step
types, such as:

e ActionStep

e LoopStep

e ConditionStep

e ParallelStep

All step types share two fundamental attributes:

1. A human-readable name.

2. A Universally Unique Identifier (UIID)-based identifier, serving two purposes:

o Identifying the step in error or debug messages.
o Linking steps during CACAO playbook generation from the executable instance.
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Figure 5.3: Graphviz playbook structure

5.4.3 Key Methods

Most step types also share a common set of methods. The most relevant is execute, which
defines the behaviour of the step at runtime. In certain cases, such as when processing
graph structures, a method execute_graph may also be provided.

The add_step method is used within the Playbook class to extend the execution flow by
adding new steps. Additionally, it is also employed by specific step instances, particularly
for non-action steps, where it enables the definition of their internal execution logic. In
these cases, the method is used to:

e Define the true and false branches in conditional steps.
o Specify the parallel execution branches in a ParallelStep.

o Attach the sequence of actions to be repeated within a LoopStep.

5.4.4 Class Structure Representation

The Graphviz diagram (Figure 5.3) illustrates the structural relationships of the Playbook
object and its associated step types:

5.5 Condition design

This section will discuss solutions designed to handle conditions (useful for both loops and
conditional structures) in remediation.

5.5.1 Condition Handling

As a design choice, the tool supports three distinct types of conditions, each serving a
specific purpose in the execution flow.

Firstly, to ensure CACAO compliance, the tool is capable of interpreting STIX patterns
directly, allowing standardised conditional logic as defined in the CACAOQO specification.
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Secondly, the tool supports the condition syntax used in .rec files. These are of the
form:

if [not] variable name

In this case, the condition evaluates whether the value of the given variable, retrieved
from the global_scope, is considered true. The optional not keyword allows the logical
negation of the condition.

Finally, a custom condition format is provided to represent scenarios that cannot be
expressed using STIX patterns (as outlined in the Problem Statement). The format is as
follows:

"condition": {"lhs": varl, "op": operator, "rhs": var2_or_value}
Here:

o 1lhs (left-hand side) — the first operand, the name of a variable or referencing data
from the global_scope.

o rhs (right-hand side) — the second operand, which may be either a literal value or
the name of a variable in the global_scope.

e op — a dictionary entry mapping a string symbol to a Python operator from the
operator library:

An example of such a condition is:
"condition": {"lhs": "vulnerable pods[’length’]", "op": ">=", "rhs": 1}

This evaluates to true if the attribute length of the vulnerable_pods dictionary in the
global_scope is greater than or equal to 1.

The system also supports something like:

"condition": {"lhs": "vulnerable pods[’length’]",
Ilopll : ||>=ll s
"rhs": var(threshold)}

If the rhs value is not a hard-coded value, the tool attempts to retrieve a variable with
that name from the global_scope.

5.6 Execution Environments

Each of the classes above implements its own execute method, tailored to the specific
purpose of the class. While the detailed behaviour of these methods will be discussed in
the Implementation chapter, it is important to note here that they define the runtime
execution logic of the playbook and its individual steps.
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5.6.1 Cloud Environment

The cloud execution environment is tested using the Python Kubernetes API against a
Google Kubernetes Engine (GKE) cluster running the microservices-demo application.
In the figure 5.4 the configuration of the eleven microservices. The specifications and
deployment instructions for this cluster can be found in the official repository:

https://github.com/GoogleCloudPlatform/microservices-demo

An optional appendix will include a detailed guide on how to interface this cluster with
the developed tool.

Alongside the cluster, a configuration file named kubernetes_infrastructure. json
is maintained. This file is currently used to manually mark malicious pods for testing
purposes, but it is designed to support richer functionality in future iterations of the tool.

The file follows the structure shown below:

"pOdS"I [
{
"label": "frontend",
"networkProperties": {
"service": {
"protocol": "TCP",
"port": 8080
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},
"restrictions": {
"enforcement behavior": "",
"rules": []
}
},
"libraries": [
{
"name": "go",
"version": "1.23.4",
"vulnerabilities": [
{
"id": "CVE-2024-45336",
"cvss3.x": 6.1,
"description": ""
}
]
}
1,
"serviceDependencies": [
{
"label": "checkoutservice"
}
1,
"artifacts": [
{
"id". """,
"name": "",
"definition": "",
"d3fendCountermeasures": [],
"att&ckTechniques": []
}
]

This structure allows the definition of pods along with their network properties, de-
pendencies, libraries, and known vulnerabilities. In addition, it provides the ability to
annotate MITRE ATT&CK techniques and MITRE DEFEND countermeasures associated
with specific artifacts. While the current usage is limited to marking pods as malicious,
future enhancements could leverage this configuration for more advanced threat modelling
and automated defensive responses.
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Kubernetes agents

Within the current setup, cloud-related actions are supported either through direct Ku-
bernetes API interventions or by enforcing network policies via Cilium. While the tool
can also generate KubeArmor policies, these are not applied in enforcement mode. This
choice reflects the focus of the envisioned attack scenarios and corresponding playbooks,
which primarily target lower-level actions. Consequently, KubeArmor policies remain at
the stage of hypothesis and require manual validation before being deployed in production
environments.

5.6.2 On-Premises Environment

The On-Premises Environment relies on a graph-based network configuration model
implemented using the igraph library. In this model, each node of the graph represents a
possible network component, such as firewalls, hosts, servers, or switches. This approach
allows the simulation of complex network topologies and facilitates the testing of defensive
actions in a controlled environment.

A visual representation of the graph can be generated and plotted to verify network
properties or the placement of specific components. For example, the plot can confirm
that a firewall has been correctly positioned between an attacker node and a victim node,
as illustrated in the example below.

In addition to network topology simulation, this environment also supports a remediation
mechanism for firewall configuration. Specifically, the tool can generate and output
iptables rules by leveraging a Java ARchive (JAR)-based engine developed, as mentioned
above, by the Politecnico di Torino in previous years as part of a capability model. [16].
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Implementation

This chapter presents the practical implementation of the system described in the design
phase. While the previous chapter focused on the conceptual architecture and the logical
structure of the components, here we detail how these concepts were translated into
executable code and how they are deployed in real environments. The chapter covers the
mechanisms used to parse and map CACAO playbooks into executable playbook instances,
the concrete implementation of actions, and the end-to-end process from alert ingestion to
the execution of defensive measures. Differences between cloud and on-premises execution
environments are also discussed, together with the strategies adopted for error handling,
logging, and monitoring during runtime execution.

6.1 Creating the Executable Playbook from CACAO

The code responsible for creating the executable playbook instance from a CACAO playbook
is explicitly designed to avoid recursion. While a recursive approach can naturally reflect
the hierarchical structure of the conditional and looping constructs of the playbook class,
it does not reflect the cacao construct, which intentionally represents playbooks as a list
of steps. Instead, the implementation relies entirely on vectors and queues to maintain a
clear and controllable state during parsing.

At the heart of the process, a queue-like list (self.pb) is used to track the current
insertion point in the playbook structure. The last element of this list is always the
structure to which new steps will be added. Initially, this list contains only the newly
instantiated Playbook object to be populated.

When a construct such as a while loop is encountered, a corresponding While_loop
object is created and inserted into the list. From that point on, all subsequent steps will be
added to this while object via its add_step method (common to all step types). Parallel
to this operation, the on_completion UUID of the loop is stored in a dedicated list.

Subsequently, if a step with this UUID is reached, the algorithm will pop the last
element from the playbook stack and add the completed while block to the previous
structure, thus closing the scope of the loop without requiring explicit end markers.
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A similar approach is applied to if conditions and parallel constructs, each handled
via its own tracking lists (on_completion_if, on_completion_parallel, etc.). Each type
of construction has its own completion list because a step could be the end of an if, a while,
or a parallel step at the same time. This design choice ensures that the implementation
works even though the CACAO playbook does not explicitly include end steps for these
constructs, which is clearly not required by the official specification.

In summary, the algorithm processes the workflow sequentially, using:
« A primary stack (self.pb) to keep track of the current insertion context.
o Auxiliary completion lists to detect when a logical block should be closed.

o A unified add_step interface, shared by all construct types, to insert nested actions
consistently.

Listing 6.1: CACAO Playbook parser

self .pb.append(playbook)
for key, step in self.workflow.items():

if (f"{self.on_completion_parallel[-1]1}" in key):
self .update_parallel ()

if (f"{self.on_completion_parallel_final[-1]}" in key):
self .update_final_parallel ()

if (f"{self.on_completion_truel[-1]}" in key):
self .update_branch_true ()

if (f"{self.on_completion_if[-1]}" in key):
self .update_branch_false_and_add_step_if ()

if (f"{self.on_completion[-1]}" in key):
self.add_step_while ()

handler = self.handlers.get(step["type"])
if handler:
handler (step)
return playbook

Notes on Parallel Steps Parallel step handling follows similar stack-based logic, but
with additional considerations for managing multiple branches. When a parallel step
is detected, the implementation adds the same instance of the Parallel step class to
self.pb as many times as there are entries in the next_steps list. In parallel, the
self.on_completion_parallel list is extended with the corresponding UUIDs of the
on_completion handlers for each branch.

Subsequent actions for each branch are temporarily stored in the single branch_steps
attribute of the Parallel_step instance. When the end of a branch is reached, these
single_branch_steps are added to the branch list (branches) of the same Parallel_step
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instance. Finally, following the same stack unwinding process described for other con-
structs, the last entries in both self.pb and self.on_completion_parallel are popped,
effectively returning the flow to the previous execution context. Once the parallel step’s
on-completion is reached, the program behaves as described above, adding the last branch,
removing the final self.pb from the stack, and adding the playbook class to the last element
of self.pb.

Notes on Actions In the implemented system, playbook actions and remediation actions
are both mapped to an internal execution_function code. While this attribute is not
part of the official CACAO specification, it can be embedded in the step_extensions
field as allowed by the standard’s extensibility model. If such an execution_function is
present, the action is refined by invoking:

action.set _function identifier(execution function code)

6.2 Executable Playbook Generation in On-Premises
Environments

In the on-premises configuration, executable playbooks are generated starting from textual
recipe files (with .rec extension) written in a domain-specific language (DSL) specifically
designed for remediation procedures. The DSL grammar, defined in grammar . tx, describes
control structures (if /else conditions, iterate_on loops) and domain-specific remediation
actions (e.g., list_paths, add_firewall, shutdown). Each grammar rule (action or
control constructs) is bound to a corresponding Python class that implements the run
method.

The interpreter (textx_interpreter_playbook.Interpreter) loads the DSL meta-
model via textX from grammar.tx, parses the recipe, and constructs an in-memory model.
The model’s run method is then executed, receiving two inputs: the global scope (a shared
state containing variables and context) and an initially empty playbook instance.

Listing 6.2: Interpreter class

Q@dataclass
class Interpreter:

globalScope: object
playbookFile: str

def launch(self,playbook)->None:
playbook_mm = textx.metamodel_from_file("source/
recipe_interpreter/grammar.tx", classes=playbook_classes)
playbook_m = playbook_mm.model_from_file(self.playbookFile)
playbook_m.run(self.globalScope, playbook)

Each DSL element class encapsulates the logic required to map recipe instructions into
executable playbook steps. For example, the 1ist_paths instruction retrieves source and
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destination parameters from the scope, creates an Action object with the appropriate
type and parameters, and appends it to the playbook via playbook.add_step(). Control
flow constructs in the recipe determine the order and conditional execution of these steps.

A key aspect of this execution model (contrary to what was described before) is its
recursive nature: control constructs (if, iterate_on) do not directly insert primitive
actions into the main playbook, but instead execute their nested statements by invoking
their run methods in turn. For instance, an if statement creates a conditional node
(If_Condition) with separate branches for the true and false cases. Each branch is filled
by iterating over its statements, recursively calling run on each of them, so that nested
conditions or loops are naturally supported. Similarly, an iterate_on construct generates
an iteration node (Iteration_loop) and recursively executes its body statements for each
iteration element.

This design ensures that the control flow described in the recipe is faithfully reproduced
in the executable playbook, supporting arbitrary levels of nesting without additional
orchestration logic. Through this approach, the generation of the executable playbook
is entirely driven by the structure of the recipe: the interpreter processes the model
sequentially, invoking each element’s run method according to the recipe’s control flow.

6.3 From Executable Playbook to Actual Remediation

Once the executable playbook instance has been generated, its execution is performed
by invoking the execute method on its top-level steps. As in the last generation phase
described, the execution model is inherently recursive: control constructs do not directly
perform remediation actions, but rather invoke the execute method of the steps they
contain, propagating the execution flow through nested structures. This approach ensures
that the logical structure of the playbook whether it originates from a recipe or from a
CACAOQO compliant description is preserved and executed exactly as specified.

6.3.1 Execution of Actions

Primitive Action steps represent the atomic units of remediation. Each action is associated
with an execution_function identifier, which may be stored in the step_extensions
field for CACAO compliant playbooks. At runtime, this identifier determines the exact
remediation procedure to invoke. Once the corresponding function is selected, it is executed
with the parameters previously resolved from the playbook’s scope. This mechanism isolates
the high-level description of the remediation from the low-level execution logic, enabling
flexibility in mapping abstract steps to concrete procedures.

Listing 6.3: performing actions by first retrieving the function name

action_function = executor.FunctionMappings[f"{id_func}"]
action_function(executor, self.parameters, global_scope)
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6.3.2 Execution of Iterative Constructs

Iterative constructs execute their body steps repeatedly according to the type of loop
defined in the playbook. While the general principle—iterating over a collection and
invoking the contained steps is shared, the specific behavior and scope handling differ
between formats.

Iterations in Recipe-Based Playbooks

In recipe-based playbooks, the loop retrieves the array to iterate from the iteration
condition. Iterating on the array to support nested loops, the current element is appended
to a dedicated stack structure named iteration_element inside the global scope. This
stack-based approach ensures that each nesting level can independently access its own
iteration variable without overwriting values from outer loops. Then The execute method
is called for each step in the loop body. At the end of the internal loop the iteration
element is popped from the stack.

Listing 6.4: Executing recipes loop extracted function

for item in array_to_iterate:
global_scope["iteration_element"].append(item)
for el in self.steps:
el.execute (executor ,global_scope)
global_scope["iteration_element"].pop()

CACAO-Compliant Custom for Loops

In CACAO compliant custom for loops, the iteration array is obtained by reading a
variable and a specific field defined in the loop’s configuration. Unlike recipe-based loops,
iterating on the array the current element is stored directly in the global scope under a key
specified in the step_extensions, eliminating the need for a stack. Then the execute
method is called for each step in the loop body. This approach reduces complexity and
simplifies variable management for nested loops.

Listing 6.5: Executing custom loop extracted function

for element in array:
global_scope[f"{self.condition[’name_iteration_element’]}"]=
element
for el in self.steps:
el.execute (executor ,global_scope)
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CACAO-Compliant while Loops

The CACAO compliant while loop operates by repeatedly evaluating a condition defined
in the loop configuration. As long as the condition evaluates to true in the current global
scope, all steps in the loop body are executed in order. After each iteration, the condition is
re-evaluated, allowing for dynamic exit based on changes in the scope during execution. This
structure is especially suited for event-driven or state-dependent remediation procedures,
where loop termination depends on achieving a particular system state.

Listing 6.6: Executing CACAQO while loop extracted function

w N e

while self.condition.evaluate_condition(global_scope):
for el in self.steps:
el.execute (executor, global_scope)

AW N e

6.3.3 Conditional Execution: The If Step

The If step enables conditional branching within the execution flow. Its operation begins
with the evaluation of a logical condition against the current global_scope, which contains
the shared execution context.

If the condition evaluates to true, the step iterates sequentially over the set of actions
defined in the true branch, invoking the execute method of each nested step. Conversely,
if the condition evaluates to false, execution is redirected to the false branch, iterating over
and executing its corresponding steps. The approach also allows nesting of conditional
steps, enabling the representation of complex decision logic.

Listing 6.7: Executing If condition extracted function

if (self.condition.evaluate_condition(global_scope)):
for el in self.true_branch:
el.execute (executor, global_scope)
else:
for el in self.false_branch:

el.execute (executor, global_scope)

6.3.4 Concurrent Execution: The Parallel Step

The Parallel step facilitates concurrent execution of multiple independent branches. For
each branch, a dedicated execution thread is instantiated using Python’s threading library,
with the branch logic encapsulated in a dedicated method (execute_instance).

The execute method of the Parallel step performs the following sequence:
1. Iterates over all configured branches (next_steps).

2. For each branch, initializes a new thread whose target is the execute instance
method, passing both the execution context and the branch’s sequence of steps.

47




Implementation

3. Starts all threads, enabling parallel execution of the branches.

4. Waits for all threads to complete (join), ensuring that the parallel step does not
return control until every branch has finished execution.

Within execute_instance, the branch’s steps are executed sequentially, each invoking
its own execute method. This pattern allows multiple branches to progress in parallel,
while preserving the sequential order of operations within each individual branch.

The parallel execution model is particularly suited for scenarios where independent
tasks can be performed simultaneously, reducing total execution time and enabling better
resource utilization.

Listing 6.8: Executing Parallel step extracted function

def execute(self, executor, global_scope):
threads = []
for steps in self.next_steps:
thread = Thread(target=self.execute_instance, args=(executor
, global_scope, steps))
thread.start ()
threads.append (thread)

for t in threads:
t.join ()

def execute_instance(self, executor, global_scope, steps):
for el in steps:
el.execute (executor, global_scope)

6.3.5 Graph-Based Execution Support

In addition to the standard execute method, the If, Action, and Iteration_Loop classes
also support a graph-based execution mode through the execute_graph method.

For both If and Iteration_Loop steps, the control logic remains identical to that of
the standard execution flow, with the only difference being that, for their internal steps,
execute_graph is invoked instead of execute. This ensures that conditional and iterative
constructs can be seamlessly integrated into a graph-based execution environment without
altering their core decision or loop logic.

The Action step adopts a different strategy. In this case, there is no dedicated code
identifier for the action type; instead, the resolution is performed dynamically based on
the action’s name, using a similar dictionary-based lookup mechanism. This design choice
allows recipe authors to freely customize action names without requiring modifications to
the underlying grammar definition (grammar.tx) avoiding additional parameters or rigid
identifiers.
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6.4 Condition Evaluation

Conditions play a central role in controlling execution flow within both If and While
steps. As discussed in the previous chapter, the system supports three distinct types of
conditions:

» Recipe-defined conditions:Boolean checks declared directly in the recipe.rec
definition.

¢ Custom conditions:User-defined logical expressions with configurable operands
and operators.

o« STIX pattern conditions: CACAO compliant patterns evaluated using the
stix2matcher library.

In the following, each category is described in detail.

6.4.1 Recipe-defined Conditions

These conditions perform a simple boolean check on a variable stored in the global execution
scope. The evaluation process retrieves the variable value by name and compares its value
against the logical negation flag (value_not) defined in the condition. This mechanism
allows for expressions such as if not "variable", where the not keyword reverses the
boolean evaluation. The implementation return true if variable and value-not have two
discord value, false otherwise By design, the logic covers all four combinations of variable
value and negation flag.

Logic:
var = True, value_not = False --> condition is True
var = False, value_not = False --> condition is False
var = True, value_not = True --> condition is False
var = False, value_not = True --> condition is True

Listing 6.9: Recipe condition logic

return variable'!=self.condition[’value_not’]

6.4.2 Custom Conditions

Custom conditions provide a flexible mechanism for evaluating arbitrary logical expressions
defined within a recipe. A custom condition is composed of three main components:

o Left-hand side (LHS): An expression whose value will be retrieved or computed
from the current execution context.
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Operator: A symbolic comparator (e.g., ==, !'=, >) that maps to a specific Python
function.

Right-hand side (RHS): A literal value or another variable reference to compare
against the LHS.

The evaluation process follows three distinct steps:

1.

3.

Parsing and evaluating the LHS expression: The LHS is stored as a string.
At runtime, it is evaluated in a restricted environment to prevent access to unsafe
built-in functions or global variables.

Listing 6.10: Evaluating the left-hand side expression

lhs_value = eval(lhs_expr, {"__builtins__": {}}, global_scope)

If the expression references a variable not present in the global scope, the evaluation
fails gracefully with a handled exception.

. Parsing the RHS value: The RHS can represent either a hardcoded value or

a variable reference. If the RHS is not a string, it is treated as a constant and
returned unchanged. If it is a string, the parser checks whether it follows the special
format var(<variable-name>). When this format is detected, the <variable-name>
is extracted and looked up in the global scope dictionary. If the variable is not found,
an explicit error is raised to prevent silent failures. Otherwise, the resolved value is
returned. If the string does not match the var(...) syntax, it is treated as a hardcoded
literal.

Listing 6.11: Resolving the right-hand side value

if not isinstance(rhs, str):
return rhs

rhs = rhs.strip()

if rhs.startswith("var (") and rhs.endswith(")"):
var_name = rhs[4:-1].strip()
return eval(var_name, {"__builtins__": {}}, scope)

Applying the operator: Operators are stored in a predefined dictionary mapping
symbolic strings to Python callable functions from the operator module (or custom
comparators if needed). This design ensures that all comparisons are performed in a
controlled and consistent manner.

Listing 6.12: Operator mapping and comparison

1| OPERATORS = {
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2 "==": operator.eq,
"!=": operator.ne,

4 ">": operator.gt,
"<": operator.lt,
6 ">=": operator.ge,
7 "<=": operator.le,
8 "IN": lambda a, b: operator.contains(b, a)
o ¥

11| result = OPERATORS [op_symbol](lhs_value, rhs_value)

This architecture allows the system to support a wide range of logical expressions
without altering the recipe grammar. Furthermore, the separation between expression
parsing, variable resolution, and operator application makes the implementation easy to
extend.

Error handling plays a critical role: invalid expressions, missing variables, or unknown
operators are caught and logged without interrupting the execution flow, preventing a
single faulty condition from halting the recipe execution.

6.4.3 STIX Pattern Conditions

STIX pattern conditions allow CACAO compliant condition matching using structured
cyber threat intelligence patterns. The evaluation process begins by extracting the STIX
object name from the condition string. The corresponding object data is then retrieved
from the execution data set and encapsulated into an observed-data STIX object. Using
the stix2matcher library, the pattern is applied to determine whether the observed data
matches the specified condition. This mechanism enables advanced, standards-based
condition matching that integrates seamlessly with structured threat intelligence formats.

A STIX pattern condition is defined as a string containing a valid STIXpattern
(e.g., [file:hashes.’SHA-256’ = ’abcd1234...°]), which is evaluated against runtime-
collected data.

The evaluation process consists of four main steps:

1. Extracting the STIX object name: The first token of the pattern indicates the
STIX object type (e.g., file, ipv4-addr). This information is parsed to identify
which dataset entry should be retrieved from the execution context.

Listing 6.13: Extracting the STIX object name from the pattern

1| import re

simatch = re.match(r"\[(\w+):", pattern_str)
4/if not match:

raise ValueError ("Invalid STIX pattern")
6| object_name = match.group (1)
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. Retrieving the object data: The execution engine maintains a structured dataset

of observed values. Once the object name is identified, the corresponding data is
retrieved. If no data is found, the condition automatically evaluates to False.

Listing 6.14: Retrieving execution data for the STIX object

if object_name not in execution_data:
return False
object_data = execution_datal[object_name]

. Encapsulating data in an observed-data STIX object: To comply with STIX

specifications, the retrieved data is wrapped in an observed-data object before

pattern evaluation. This ensures compatibility with libraries expecting fully structured
STIX bundles.

Listing 6.15: Constructing a minimal observed-data object

observed_data = {
"type": "observed-data",
"id": f"observed-data--{uuid4 ()}",
"objects": {
"O": object_data
}

. Evaluating the pattern with stix2matcher: The stix2matcher library is used

to evaluate the provided pattern against the constructed observed-data object. This
library handles parsing, type checking, and logical evaluation of STIX patterns.

Listing 6.16: Evaluating the STIX pattern

from stix2matcher import match

3| try:

match_result = match(pattern_str, observed_data)
except Exception as e:

logger.error (f"STIX pattern evaluation failed: {el}")

return False

This design enables complex, standards-based condition matching without requiring

custom parsing logic for threat intelligence data. By relying on the STIX 2.1 specification
and the stix2matcher library, the implementation remains aligned with widely adopted
industry standards and is easily extensible to support new object types or pattern syntax
as they are introduced.
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Error handling ensures that malformed patterns, unsupported object types, or missing
execution data do not halt the recipe execution, but instead produce a controlled False
result with appropriate logging.

6.5 Generating a CACAO Playbook from an Exe-
cutable Instance

The process of generating a CACAO compliant playbook from an executable instance is
based on the orchestration of step definitions and their interconnections through unique
identifiers (UIID). This mechanism ensures that the final playbook preserves both the
logical flow and the conditional branching structure defined in the executable model.

The generation process starts with an initialization sequence:

Listing 6.17: Main generation loop for CACAO playbook steps

init_playbook_cacao(self, self.id_start)
add_start (self, self.id_start)

3l for el in self.steps:

el.add_step_playbook_cacao(self.cacao, PB_uuid())

;| add_end (self, self.id_end)

The add_step_playbook_cacao method is invoked recursively for each step in the
playbook. Since each step belongs to a specific class, the method implementation is
delegated to the corresponding class definition.

6.5.1 UUID Assignment Mechanism

At the core of the generation process is a consistent UIID assignment strategy. A dedicated
UIID handler is used to:

1. Assign the current UIID as the step’s id.
2. Generate a new UIID for the on_completion (or on_true/on_false) field.
3. Pass this updated UIID context to subsequent steps.

This mechanism is executed during classes creation, to prepare identifiers for logging
and error reporting during execution. For convenience, this process is also responsible for
generating all the IDs needed to represent that type of step in a Cocoa playbook, such
as on__completion, on_ true, on_ false, and next_ step. This streamlines the subsequent
process, as each step has all the information needed to generate its own step and, if
necessary, recur.

For example, the while construct assigns its IDs as follows:
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Listing 6.18: UUID assignment for a while loop

def add_cacao_IDs(self, pb_uuid):
0ld_uuid = pb_uuid.get_uuid()
pb_uuid.set_new_uuid ()
istance_id = {
"id": old_uuid,
"on_true": f"{pb_uuid.get_uuid(}",
}
for el in self.steps:
el.add_cacao_IDs (pb_uuid)
istance_id["on_completion"] = pb_uuid.get_uuid ()

6.5.2 Step Generation for Control Structures

Once the IDs have been assigned, add_step_playbook_cacao can directly produce the
step definition in CACAO format. For example, a for loop is represented as follows:

Listing 6.19: Generating CACAOQO representation for a while loop

def add_step_playbook_cacao(self,cacao,pb_uuid):
cacao.append ({
"id": f"while-condition--{self.cacao_id[’id’]}",
"type": "while-condition",
"condition": self.condition,
"on_true": f"{self.cacao_id[’on_true’]}",
"on_completion": f"{self.cacao_id[’on_completion’]}",
i)
for el in self.steps:
el.add_step_playbook_cacao (cacao,pb_uuid)

This recursive approach ensures that:
1. All nested steps are correctly expanded into CACAO format.
2. Execution flow links (on_true, on_completion, etc.) are preserved.

3. Conditional and iterative constructs retain their semantics in the final playbook.

6.5.3 Special Handling of End-Steps in Conditional and Parallel
Instructions

A particular consideration is required for the end-step logic in if and parallel instruc-
tions. In these cases, the notion of “end” does not simply mark the termination of the
overall playbook execution, but rather the end of a specific branch of execution. For if
statements, this refers to the end of the true-false branch, while in parallel steps it
refers to the completion of all concurrently executed branches. This distinction must be
explicitly addressed at the time of generating the CACAO playbook.
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In practice, each add_step_playbook_cacao method concludes by executing an in-
struction of the form:

pb_uuid.set_uuid(self.cacao_id["on_completion"])

This operation sets the current UIID to the value of the on_completion field, which
had already been assigned during the initial ID generation phase. As a consequence, for if
and parallel classes, after the recursive processing of nested steps, the on_completion
value from the last executed step becomes the UIID to be assigned to the corresponding
end-step.

At first glance, one might expect that overwriting the UIID in this way would compromise
the consistency of subsequent steps. However, it is important to note that each class
already retains all the necessary ID information for its own steps. Consequently, they no
longer depend on the pb_uuid instance for further ID generation, except for the specific
purpose of assigning the correct UIID to the end-step as described above.

Listing 6.20: Generating CACAQO parallel step

def add_step_playbook_cacao(self, cacao, pb_uuid):
id_on_completion = self.cacao_id["on_completion"]

# Add the main parallel step to the playbook
cacao.append ({
"id": f"parallel--{self.cacao_id[’id’]}",
"name": self.name,
"type": "parallel",
"next_steps": self.cacao_id["next_steps"],
"on_completion": id_on_completion

b

#iterate over each branch in next_steps
for branch_index, branch in enumerate(self.next_steps, start=1):
for step in branch:
step.add_step_playbook_cacao (cacao, pb_uuid)

0ld_uuid = pb_uuid.get_uuid ()
pb_uuid.set_new_uuid ()

# Add an ’end’ step for each branch
cacao.append ({
"id": f"end--{old_uuidl}",

lltypell : llend n
"name": f"end of branch number {branch_index} for
parallel_step:{self.cacao_id[’id’]}"

b

# Restore the UUID generator to point to the on_completion step
pb_uuid.set_uuid(id_on_completion)
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Chapter 7

Validation and Testing

This chapter presents the validation and testing activities carried out in two distinct
environments: on-premises and cloud.

For the on-premises setup, as previously discussed, it is inherited from the previous
tool set of recipe.rec files were used to perform various actions. These recipes will be
accompanied by the corresponding execution results, which include modifications to the
graph, generated iptables rules, or, in some cases, simple log messages.

In the cloud environment, validation relied on custom CACAO playbooks designed to
resemble realistic operational scenarios. The outcomes in this case include network policies
enforced with the Cilium CNI, modifications to the cluster nodes or pods, KubeArmor
policies, as well as log messages.

7.1 On-premises Validation

The validation in the on-premises environment was performed through a set of (inherited
from RR-tool) recipe.rec files, each designed to emulate different security scenarios.
These recipes range from simple actions, such as adding a filtering rule to a firewall, to
more advanced operations like deploying a honeypot. Furthermore, they also include more
complex scenarios, where additional firewalls are introduced (when necessary) and specific
filtering rules are enforced along all possible paths between an attacker and a victim.

In the following, are some representative recipes with their effects.

7.1.1 Filtering a Malicious IP

The following recipe demonstrates how a malicious IP can be filtered after ensuring that
all existing paths between a victim and an attacker are properly protected by firewalls. If
a firewall with level 4 filtering capabilities is already present along a path, a filtering
rule is simply added to it. Otherwise, a new firewall is inserted behind the impacted host,
and the corresponding filtering rule is applied to the newly created node.
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list_paths from impacted_host_ip to attacker
iterate_on path_list
find node of type ’firewall’ in iteration_element
with ’level_4 filtering’
if found
add_filtering rule rule_level 4 to found_node
else
add_firewall behind impacted_host_ip in iteration_element
with ’level_4 filtering’
add_filtering rule rule_level 4 to new_node
endif
end_iteration

The graphs before and after the execution of the recipe are shown (in case the remediation is
applied on a graph with interpret_graph) in figures 7.1 - 7.2, together with the generated
iptables rules, produced by providing the malicious IP as input, and the relevant log
messages displayed during the execution in Figure 7.3.

Similar considerations are made for the recipe called monitor-traffic.rec.

list_paths from impacted_host_ip to attacker

iterate_on path_list

find_node of type ’network _monitor’ in iteration_element

if not found

add_network_monitor behind impacted_host_ip in iteration_element
endif

end_iteration

In this case, a monitor-traffic node is added between the victim and the attacker. In figure
7.4 the graph obtained after execution.

7.1.2 Deploying a Honeypot

The following recipe illustrates the deployment of a honeypot to the network. In this case,
the recipe iterates over the impacted nodes and attaches a honeypot configured with an
apache_vulnerability. This action is executed exclusively on the graph: it does not
generate filtering rules or logs, but instead results in structural changes to the network
topology representation.

iterate_on impacted_nodes
add_honeypot with ’apache_vulnerability’
end_iteration

The graph in the figure 7.5 illustrates the network after the recipe’s execution, high-
lighting the introduction of the honeypot node. The initial configuration can be found in
the image 7.1.
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Figure 7.1: Initial configuration

7.1.3 Moving Nodes into a Reconfiguration Network

The following recipe, named put_into_reconfiguration.rec, performs a structural
modification on the graph by moving the impacted nodes into a dedicated network called
reconfiguration net. This operation is intended to represent a reconfiguration step,
where compromised or impacted nodes are logically isolated from the main topology and
relocated into a separate environment for further analysis or remediation.

iterate_on impacted_nodes
move iteration_element to ’reconfiguration_net’
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Figure 7.2: Firewall added between victim and attacker

end_iteration

As this action is executed solely on the graph, the effects are visible as structural changes
in the topology. In the figure 7.6, the graph is shown after the execution of the recipe,
clearly illustrating the relocation of the "victim" node into the reconfiguration_net.
The initial configuration can be found in the image 7.1.
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:root:Searching for paths ...
:root:Found 1 paths
:root:Converted paths from node ids to node names
:root:Pruned equivalent paths, that is consider only paths with different nodes attached to the srcNode
:root:Searching for a node of firewall type in this path: ['victim', ‘'gateway', ‘'attacker'] ...
:root:No node of firewall type found in the path with capabilities requested: ['level_4 filtering']
:root:Adding a firewall node behind 192.168.1.67 ...
:root:Searching node behind victim
:root:Deleted edge between victim and gateway
:root:Added firewall node to graph
:root:Added an edge between victim and firewall4
:root:Added an edge between firewalld and gateway
[Rule #B8] Translated.
:Adding new rules to firewallsd ...
:Got reference to firewall4
:Added new level 4 rule to firewalld4: {'type': 'level_4 filtering', 'enforcingSecurityControl®': 'iptables®', 'rule
: 'iptables -I FORWARD 1 -j DROP -m comment --comment "PB_REM_GENERATED"', 'policy': {'level': 4, 'attacker': '87.236.215

.56', 'victimIP': '', 'c2serversIP': '', 'victimPort': '', 'c2serversPort': '', 'proto': '', ‘'action': ''}}

Figure 7.3: filter_ip_port.rec logs

7.2 Cloud Environment Testing

To validate the tool in a cloud environment, a series of CACAQO playbooks was developed
to test all the implemented functionalities. Among these, some representative playbooks
are presented in detail, together with a few examples of KubeArmor policies automatically
generated from the .rec files.

The results of their execution are reported, including relevant log messages and visual
representations of the cluster state. This approach highlights how the tool behaves not
only under controlled testing conditions but also when applied to settings that resemble
real-world environments.

7.2.1 Quarantine pod

The following example illustrates a CACAO playbook designed for cloud-native environ-
ments, with a focus on containerized workloads. Its objective is to quarantine potentially
compromised application pods while limiting their ability to spread malicious activity
across the cluster.

At a high level, the playbook executes the following workflow:
Input:Detected-suspicious-pod.

1. Retrieve all pods associated with the affected label.
2. If at least one pod is found:
(a) Block communication with known malicious IP addresses for the detected-pod
label matching pod.

(b) Deny egress traffic by applying a network policy that restricts outbound commu-
nication for pods with the label app: quarantined-frontend.

(c) For each affected pod:
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Figure 7.4: Added monitor-traffic

i. Update the pod’s labels (e.g., reassigning the app label to quarantined-
frontend) to reflect its quarantined state also in the system graph.

ii. Add tolerations for the label quarantined_ frontend to allow proper scheduling
of quarantined workloads.

(d) Apply a NoExecute taint on the nodes using a specified key, ensuring that only
pods with the matching toleration can remain scheduled on those nodes.

3. If no affected pods are found, generate an alert log entry.

This playbook exemplifies how structured remediation logic can be automated in a
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Figure 7.5: Adding honeypot

Kubernetes environment. By combining conditional execution with isolation mechanisms,
such as label updates, network restrictions, and node taints, it provides a systematic
method for containing compromised workloads.

Such an approach is particularly useful in scenarios where:

¢ Rapid containment of a suspected compromise is necessary to prevent lateral move-
ment within the cluster.

o Security teams need to enforce automated quarantine procedures without requiring
manual intervention.
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Figure 7.6: moving impacted node

¢ Cloud-native infrastructures with high workload turnover demand consistent and
repeatable remediation actions.

In the figure 7.7 the policies applied to the cluster are shown while in the figure 7.8 it
can be noted how the only pod in running state is the detected pod (in its old version),
the only one in fact with the label updated to quarantined_frontend
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C:\Users\SimoD>kubectl get ciliumnetworkpolicies -A
NAMESPACE  NAME AGE

default block-all-traffic 18d
default deny-egress-to-ip 8d

Figure 7.7: Applied policies

C:\Users\SimoD>kubectl get pods

NAME READY STATUS RESTARTS
cartservice—-696db49ueu-122f9 0/1 Pending
checkoutservice-7698c9f5dd-Uqgqud 0/1 Pending
currencyservice—847cdd6564-tbslq 0/1 Pending
emailservice-6d88759bcf-czm5z 0/1 Pending
frontend-79c5d694u4U-9qvdr 0/1 Pending
frontend-79c5d69444-w99qs 1/1 Running (7md7s ago)
loadgenerator-69b76b8db7-gu5rc 0/1 Pending
paymentservice-6fU495db55f-mjkgg 0/1 Pending

productcatalogservice-756U4lcc8f5-ck224  0/1 Pending
recommendationservice-5f9fbb6cUd-8rdgz 0/1 Pending
redis-cart-647b66fU7f-njvkc 0/1 Pending
shippingservice-6b98U8c59f-xg57h 0/1 Pending

C:\Users\SimoD>kubectl get pod frontend-79c5d694dU-w99qs ——show-labels

NAME READY  STATUS RESTARTS AGE LABELS

frontend-79c5d69444-w99qs 1/1 Running 1 (7m53s agoe) d4dé6h app=quarantined_frontend, pod-template-hash=79c5d694
44, skaffold.dev/run-id=6cau8125-1e3b-450c-aldf-2faa89c70608

Figure 7.8: Cluster setup after quarantine action is executed (only the quarantined pod
is in running state))

7.2.2 Deployment-level Remediation Playbook

This CACAO playbook targets the remediation of suspicious workloads at the deployment
level in a Kubernetes cluster. Its main goal is to promptly evict potentially compromised
pods and remove the higher-level deployment object that manages them, thus preventing
automatic re-creation of malicious or compromised containers.

At a high level, the workflow is defined as follows:

1. Extract the label from the suspicious pod and retrieve all pods associated with that
label.

2. For each affected pod:

(a) Retrieve and log pod metadata for auditing and forensic purposes.
(b) Evict the pod from the cluster.

3. Delete the corresponding deployment to ensure that no further replicas of the com-
promised application are scheduled.

This type of playbook is particularly useful in scenarios where a single workload has
been identified as compromised and is under the control of a higher-level deployment object.
Simply removing pods would not be sufficient, since Kubernetes automatically recreates
them to maintain the desired deployment state. By explicitly deleting the deployment after
evicting its pods, this playbook ensures that the entire application instance is dismantled
and cannot continue operating in a potentially harmful way.
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A realistic use case for this remediation strategy is the detection of a container running
a malicious image pulled from an untrusted registry.

In this case, the detected suspicious pod belongs to the frontend application, while
the deployment scheduled for deletion corresponds to the payment-service.

The metadata retrieved from the suspicious pod is the following:

’name’: ’frontend-79c5d69444-9qvdr’,
’namespace’: ’default’,
’labels’: {
’app’: ’frontend’,
’pod-template-hash’: ’79cbd69444’ ,
’skaffold.dev/run-id’: ’6ca48125-1e3b-450c-aldf-2faa89c70608’
3,
’annotations’: {
’sidecar.istio.io/rewriteAppHTTPProbers’: ’true’
3,
’owner_references’: [
{
’kind’: ’ReplicaSet’,
’name’: ’frontend-79c5d69444’ ,
’uid’: ’ddllea7e-592f-47cc-9379-1c58daa82e07’

Figure 7.9 shows that the payment-service pod has been fully deleted following the
deployment removal, while the frontend pod was correctly evicted and then automatically
recreated by the Google Application daemon. This behavior highlights how the eviction
only affects the individual pod instance, while the higher-level deployment controller
ensures that a replacement pod is immediately scheduled, resulting in a new pod identifier.

7.2.3 Node-level Remediation Playbook

This CACAO playbook targets remediation actions at the Kubernetes node level, with
the goal of temporarily isolating a node, assessing its workloads, and applying network
restrictions to pods that are deemed untrusted. The strategy is designed to limit potential
lateral movement and data exfiltration while keeping the node under controlled conditions.

At a high level, the workflow proceeds as follows: Input: a detected suspicious pod and
metadata about the node hosting it.

1. Apply a cordon operation on the node, preventing the scheduling of new pods onto
it.

65



Validation and Testing

C:\Users\SimoD>kubectl get pods
NAME STATUS RESTARTS
cartservice-696dbuodéu-122f9 Running
checkoutservice-7698c9+5dd-Uqqwd Running
currencyservice-847cdd656U-tbslq Running
emailservice-6d88759bcf-czm5z Running
frontend-79c5d6944U-9qvdr Running
loadgenerator-69b76b8db7—gl5rc Init:0/1
paymentservice-6fU495db55f-mjkgg Running
productcatalogservice-756Ul4cc8+5-ck224 Running
recommendationservice-5f9fbb6cld-8rdgz Running
redis—-cart-6U47b66FU7f-njvkc Running
shippingservice-6b98U8c59f-xg57h Running

[cNoNoNoNoNoNoNoNoNoNol

C:\Users\SimoD>kubectl get pods
NAME STATUS RESTARTS
cartservice-696dbuU9ueUd-122f9 Running
checkoutservice-7698c9+5dd-Uqqwd Running
currencyservice-847cdd656U-tbslq Running
emailservice-6d88759bcf-czm5z Running
frontend-79c5d69u4dd—gzwld Running
loadgenerator-69b76b8db7-gl5rc Running
productcatalogservice-756Ulcc8f5-ck224 Running
recommendationservice-5f9fbb6cld-8rdgz Running
redis—-cart-6U47b66FU7f-njvkc Running
shippingservice-6b98U8c59f-xg57h Running

(4m58s ago)

(4m58s ago)

[oNolENoNoNol Sl oNoNol

Figure 7.9: deplyoment deletion

2. Retrieve all pods sharing the label of the detected pod.
3. For each pod retrieved:

(a) Extract the pod specification.

(b) If the pod is marked as affected (i.e., the attribute trusted is not set to True),
apply network restrictions by denying egress traffic.

4. Finally, apply an uncordon operation to the node, restoring its scheduling capability.

This remediation strategy is useful in scenarios where a specific node is suspected of
hosting compromised workloads, yet a full node shutdown or drain would be too disruptive.
By cordoning the node first, the cluster prevents additional workloads from being scheduled
while security checks are carried out. The playbook then selectively applies containment
measures (e.g., blocking egress) to pods that are not explicitly trusted, thereby reducing
the attack surface without immediately disrupting benign workloads. To demonstrate the
effectiveness of the node-level remediation playbook, we provide an execution example.

In the figure 7.9, the node hosting the suspicious workload is successfully marked as
cordoned, ensuring that no new pods can be scheduled onto it during the inspection phase.
Subsequently, we retrieve the specification of the suspicious pod. The following metadata
corresponds to the frontend pod:
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C:\Users\SimoD>kubectl get nodes

NAME STATUS ROLES AGE  VERSION
minikube Ready,SchedulingDisabled control-plane 19d v1.32.0

Figure 7.10: cordoned minikube node

{
’name’: ’frontend-79c5d69444-gzwld’,
’namespace’: ’default’,
’containers’: {
’name’: ’server’,
’image’: ’frontend:cf3336a24884053da930cad7610b25fbc3516a867d7f9a
026e105e2b4celf06Db’,
’resources’: {
’limits?: {
’cpu’: ’200m’,
‘memory’: ’128Mi’
I
‘requests’: {
’cpu’: ’100m’,
‘memory’: ’64Mi’
3
I
’status’: ’approved’
b
b

In this environment, only the following test container images are considered approved:

approved_images = [
"gcr.io/my-project/frontend:latest",
"gcr.io/my-project/frontend:vi.2.3"

Since the running image does not match any entry in the approved list, the pod is
flagged as untrusted (i.e., the trusted parameter is set to False). As a result, a deny-all
network policy is applied to block all egress traffic from the pod.

Finally, a verification step is shown: by attaching an ephemeral pod to the frontend
workload and attempting to ping external IP addresses such as 1.1.1.1 and 8.8.8.8, it
is demonstrated that outbound traffic is indeed blocked (Figure 7.11). This confirms that
the remediation logic successfully enforces containment on unapproved workloads, while
the node itself can later be safely uncordoned to resume normal cluster operations.
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C:\Users\SimoD>kubectl debug -it frontend-79c5d69uul-gzwld --image=nicolaka/netshoot --target=server

Targeting container "server". If you don't see processes from this container it may be because the container runtime doesn't support this feature
Defaulting debug container name to debugger-krdwg.

If you don't see a command prompt, try pressing enter.

frontend-79c5d6944l-gzwld% ping 1.1.1.1

PING 1.1.1.1 (1.1.1.1) 56(84) bytes of data.

e

---1.1.1.1 ping statistics -—-

14 packets transmitted, © received, 100% packet loss, time 13308ms

frontend-79c5d6944l-gzwld% ping 8.8.8.8

PING 8.8.8.8 (8.8.8.8) 56(84) bytes of data.

=

--- 8.8.8.8 ping statistics ——-—

10 packets transmitted, © received, 100% packet loss, time 9205ms

frontend-79c5d6944l-gzwld%

Figure 7.11: applied deny all policy

7.3 KubeArmor Policy Support

As previously mentioned, the tool also provides limited support for the generation of
KubeArmor policies. In this section, a few representative policies are presented as examples.

It is important to note that, unlike other remediation mechanisms, the tool does not
support the direct enforcement of KubeArmor policies. Instead, the actual enforcement
layer has been delegated to Cilium, which is better suited for managing and enforcing
network-level rules.

Due to the intrinsic nature and scope of KubeArmor, not all remediation actions
described in the recipe-based approach can be implemented. Nevertheless, in order to
maintain conceptual continuity and to preserve opportunities for future development, an
effort has been made to express policies that resemble, as closely as possible, the SDN-like
behaviors described earlier.

7.3.1 Isolation Policy with KubeArmor

When the remediation file (.rec) contains an action of type isolate and the selected
agent is container-security, the tool generates a corresponding KubeArmor policy.
This policy is instantiated from a predefined template, which is filled at runtime with the
contextual parameters of the execution environment, such as the namespace and the pod
label.

The generated policy is shown below:

apiVersion: security.kubearmor.com/v1
kind: KubeArmorPolicy
metadata:
name: deny-all-network
namespace: {{NAMESPACE}}
spec:
selector:
matchlLabels:
app: {{POD_LABEL}}
network:
matchProtocols:
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- protocol: TCP
- protocol: UDP
action: Block

This policy enforces a complete network isolation of the selected pod. Specifically, it
denies both Transmission Control Protocol (TCP) and User Datagram Protocol (UDP)
traffic, regardless of the direction or target, effectively isolating the pod from the rest of
the cluster and the external network.

Unlike the iptables-based approach used in other agents, KubeArmor policies do not
operate at the raw IP layer. Therefore, it is not possible to express fine-grained rules such
as DROP for specific IP addresses. Instead, the isolation is implemented at the process and
protocol level, providing a coarse-grained but effective mechanism to contain potentially
compromised workloads.

7.3.2 Network Monitoring Policy with KubeArmor

When the remediation file (.rec) contains an action of type add_network_monitor and the
selected agent is container-security, the tool generates a dedicated KubeArmor policy.
As in the previous case, this policy is instantiated from a template that is dynamically filled
at runtime with contextual parameters such as the namespace, pod label, and network
path.

The generated policy is the following:

apiVersion: security.kubearmor.com/v1
kind: KubeArmorPolicy
metadata:
name: network-monitor-policy
namespace: {{ NAMESPACE }}
spec:
severity: 5
message: "Monitoring TCP network activity on {{IMPACTED_NODE}}"
selector:
matchLabels:
app: {{POD_LABEL}}
network:
matchProtocols:
- protocol: TCP
fromSource:
- path: {{NETWORK_PATH}}
action: Audit

This policy does not block or restrict network traffic, but instead puts the specified pod
under monitoring. More precisely, it traces TCP connections initiated from the executable
defined in NETWORK_PATH, and logs these events in audit mode. This allows the operator
to observe network activity patterns without actively enforcing restrictions.
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7.3.3 Translation of Traffic Control Actions

Some actions present in the remediation recipes, such as allow _traffic or add_ filtering rule,
cannot be directly implemented in KubeArmor due to its process-centric design. Instead,
these actions are translated into policies that either allow or block network traffic originating
from specific executables.

For example, the following KubeArmor network specification: permits or denies TCP
traffic depending on the policy’s action field. In this way, process-level enforcement
simulates the effect of filtering traffic between nodes or applying firewall rules in the
SDN /recipe model, while remaining compatible with KubeArmor’s capabilities.

apiVersion: security.kubearmor.com/v1
kind: KubeArmorPolicy
metadata:
name: Allow TCP traffic from curl and python3
namespace: {{ NAMESPACE }}
spec:
selector:
matchlLabels:
app: {{ POD_LABEL}}
network:
matchProtocols:
- protocol: TCP
fromSource:
- path: /bin/curl
- path: /usr/bin/python3
action: Allow
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Chapter 8

Conclusion and Future Work

This thesis presented the design and development of a tool for automated incident response,
capable of translating alerts into executable actions. The main contributions of the work
were twofold: first, the definition of executable programmatic instances of playbooks
compliant with the CACAO standard, and second, the implementation of remediation
actions specifically tailored for kubernetes-based environments. The tool was validated in
realistic scenarios, demonstrating that it can effectively bridge the gap between the abstract
representation of response procedures and their practical execution on both cloud-native
and on-premises infrastructures.

From a practical perspective, the tool enables security teams to automate common
remediation tasks, such as node management, traffic filtering, and container-level oper-
ations, through structured playbooks. The validation confirmed its ability to execute
complete workflows correctly, ensuring that remediation can be applied consistently and
reproducibly. By abstracting playbook definitions into executable instances, the tool
supports interoperability and fosters the adoption of standardized approaches to incident
response.

Nevertheless, some limitations emerged during the development. The process of mapping
from alerts to appropriate corrective actions is based on static information. In addition,
support for Kubearmor security policies is currently partial, limiting the range of possible
remediation strategies. Addressing these aspects would further strengthen the robustness
and adaptability of the proposed solution.

Future work will focus primarily on refining the alert-to-remediation mapping pro-
cess, potentially incorporating artificial intelligence techniques to improve accuracy and
adaptability. Another important direction is the extension of supported actions, both
through native python APIs and the integration of additional enforcement mechanisms. In
particular, extending the current capabilities with advanced Cilium policies and supporting
runtime protection frameworks such as Kubearmor will broaden the scope of applicable
use cases.
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This chapter provides a practical guide for running the developed tool. The chosen
setup ensures reproducibility of the execution environment and simplifies dependency
management. The tool has been tested on Window host, but it is advised to rely on
the Docker-based workflow to avoid compatibility issues. Before running the tool, a few
prerequisites are required. In particular, the system requires a working Docker installation
(the Docker Engine is required, Docker Desktop is recommended) to run the containerized
development environment.

A.1 Deployment options
The repository provides two different approaches to run the tool:

» Development environment (Devcontainer): Defined by the Dockerfile.dev,
which is based on mcr.microsoft.com/devcontainers/python:1-3.13 and extends
it by installing all the required system and Python dependencies.

e Compiled image: Defined by the Dockerfile.prod_compiled, which builds a
self-contained executable version of the tool. This option is meant for running the
tool without the need for the development environment.

A.1.1 Steps (Devcontainer)
1. Clone the source repository from GitHub onto the host machine.
2. Open the repository folder with Visual Studio Code.

3. When prompted, reopen the project in the devcontainer environment.

IS

. Wait for the Docker image to be built and the development container to start.

5. Once inside the container, the tool can be executed with:
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python3 source/pb_rem.py ./tests/[folder_name]

A.1.2 Steps (Compiled image)

In addition, the repository also contains a Dockerfile.prod_compiled which allows
building and running a compiled version of the tool. To use it:

1. Navigate to the project directory.

2. Build the image with:

docker build -f Dockerfile.prod_compiled -t pb_rem:latest .

3. Run the container with:

docker run --rm pb_rem:latest ./tests/[folder_ name]

A.2 Native deployment (optional)

Although not recommended, the tool can also be executed natively on a host machine. In
this case it is required to manually install:

e Python > 3.13,
« Java Runtime Environment (OpenJDK 17),

o all Python dependencies listed in requirements.txt.

A Python virtual environment (venv) is highly suggested to avoid conflicts. After installa-
tion, the tool can be run from the project root as:

python3 source/pb_rem.py ./tests/[folder_name]

A.3 Cluster connection

If the user want to use cloud feature, the tool requires access to a Kubernetes cluster.
The connection is handled through certificates mounted inside the devcontainer. This is
achieved with the following lines inside the devcontainer. json file:

"mounts": [
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"source=C:/Users/${env:USERNAME}/.minikube/ca.crt,target=/workspaces
/playbook-driven-remediator/config/k8s/ca.crt,type=bind, consistency=
cached",
"source=C:/Users/${env:USERNAME}/ . minikube/profiles/minikube/client.
crt,target=/workspaces/playbook-driven-remediator/config/k8s/client.
crt,type=bind, consistency=cached",
"source=C:/Users/${env:USERNAME}/ . minikube/profiles/minikube/client.
key,target=/workspaces/playbook-driven-remediator/config/k8s/client.
key ,type=bind,consistency=cached"

If correctly configured, the tool will automatically authenticate to the cluster and the
user has only to insert port number in the file source/settings.py

A.3.1 Manual connection between cluster and Kubernetes API

If the automatic procedure does not work, this manual fix could be tried:

Open the file source/helpers/kb_auth.py, uncomment the first implementation of
get_certificate function and set manually certificates (ca.crt, client.crt, client.key) of
the cluster API server in the folder source/helpers/kubernetes-certificates. The
correct configuration can be retrieved with:

kubectl config view

For reproducibility, a detailed step-by-step guide describing how to deploy the Kubernetes
cluster used throughout this thesis is included in the project repository.
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This chapter provides guidelines for developers who wish to extend or modify the framework.

B.1 Alerts and Threat Intelligence Updates

The entry point of the framework is represented by the alerts. Alerts can be freely added
by developers, provided that they are organized in a dictionary-based structure.

When new alert types are introduced, it is necessary to update the threat intelligence
mappings. In particular:

o If the alert corresponds to a new MITRE ATT&CK technique, the following files must
be updated to ensure the correct mapping from MITRE code to CACAO playbook:

— attack_techniques. json

— defensive_categories.json
— defensive_technique. json
— defensive_action. json

o If the alert instead introduces new threat labels, these should be added or updated
in the threats. json file.

For new threat categories, it will then be necessary to update the rem_ info.json file with
the useful information to map the alert in the global scope. For the integration of new
CACAO playbooks, the requirement is that the playbook is fully CACAO compliant.
Furthermore, when adding new actions, a step_extension must be provided in order to
declare additional parameters and execution logic if the action is not already implemented.
A typical extension follows the structure:

"step_extensions": {
"extension-definition--uuid": {
"x_execution_function": "id_func",
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"name": "name_action_func",
"description": "description of the action func"
}
}

Finally, when developers want to extend the system with new recipes, these must
comply with the grammar specified in the grammar.tx file, ensuring full compatibility
with the recipe interpreter.

B.2 Extending KubeArmor and Cilium Policies

The framework provides support for the generation of KubeArmor and Cilium policies by
leveraging a templating mechanism. Policies are defined using a YAML-based representation,
and parametrization is achieved through the use of the Jinja2 templating engine.

In practice, a policy template is defined with placeholders (e.g., {{NAMESPACE}},
{{POD_LABEL}}, or {{NETWORK_PATH}}) that are dynamically filled at runtime.

The filling process is performed programmatically using the Python jinja2.Template
class. At runtime, the developer passes a set of parameters that replace the placeholders
inside the policy template, producing a complete and valid YAML specification ready to
be applied to the Kubernetes cluster.

B.3 Graph-Based Logical Modifications

The tool supports logical modifications not only at the enforcement level (e.g., network
policies), but also directly on the graph representation of the system. This approach
allows developers to model and apply transformations on the topology itself, ensuring a
higher-level view of the interactions between nodes and services.

B.3.1 On-premises Service Graph

In the on-premises scenario, logical modifications are handled in the service_graph.py
module. This file defines both the configuration of the network topology (including the
types of nodes and their interconnections) and the set of low-level actions that can be
applied to the graph. Examples of such actions include moving a node, adding or removing
a firewall, or altering the connectivity between two components.

B.3.2 Kubernetes Cluster Representation

For the Kubernetes-based environment, a consistency with the service graph abstraction
is maintained. Instead of a dynamic graph structure, the equivalent representation is
provided by a JSON file. This file lists the pods in the cluster, along with their network
properties, restrictions, dependencies, libraries, and potential artifacts related to security
frameworks (e.g., ATT&CK techniques or D3FEND countermeasures).
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The JSON abstraction allows reasoning about pod-level dependencies and potential
security implications. The graph-like abstraction is primarily used for consistency and
potential extensions, while the majority of security actions are enforced directly on the
cluster.

B.4 Extending actions

The executor is organized into three main modules:

o executor.py: the main entry point of the executor, which coordinates the execution
of actions and must be updated whenever a new action is implemented;

o actions_cloud.py: contains the list of cloud-related actions, which are executed
on a Kubernetes cluster and often involve generating and applying security cilium
policies

e on_premises_actions.py: contains the list of on-premises actions, which are typ-
ically derived from the .rec files. These actions may include the generation of
KubeArmor policies, even though their enforcement is not directly supported.

For each new action, developers are required to:

1. Implement the action in the appropriate module actions-cloud.py or on-premises-
actions.py;

2. Update executor.py by adding the corresponding method call;

3. If the action belongs to a new CACAOQO playbook, assign it the unique identifier setted
in the CACAO playbook.

The cloud actions follow a common template, which ensures consistency across the
codebase. This template includes parameter extraction, Kubernetes API interaction,
optional policy generation from templates, and safe update of the global execution scope.

Listing B.1: Action_kubernetes template

def new_action(self, parameters, global_scope):

nun

action description
nmnn

logger .debug("executing new action")

parameters = fill_from_context_value (parameters, global_scope)
out_key = next(key for key, value in parameters.items ()
if isinstance(value, dict) and value.get("out") is
True)
with self.global_lock:
global_scope[f"{out_key}"] = {"type": ""}

global_scope[f"{out_key}"]["cacao_id"] = global_scope.get(
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"cacao_identifier", "unknown")

parameters_list = list(parameters.values())
first_parameter= parameters_list [0]
second_parameter= parameters_list [1]

kubernetes_api = get_kubernetes_api("type_of_api_needed")
#if a policy is needed
template = self.cilium_templates.get("new_function_template")
if template is None:
logger . .warning ("new_function_template not found.")

return
params = {
"parameter_template_1": first_parameter_passed,
"parameter_template_2": second_parameter_passed
}
policy_yaml = generate_policy(template, **params)

logger.info(f"Generated Policy YAML:\n{policy_yaml}")

try:
policy_dict = yaml.safe_load(policy_yaml)
kubernetes_api.create_namespaced_custom_object (
group=" n s

version=

body=policy_dict
)
logger.info(f"Policy applied successfully")
with self.global_lock:
global_scope[f"{out_key}"]["result_field"]

#if a policy is not needed
try:
result=calling_kubernetes_api (parameters)
with self.global_lock:
global_scope[f"{out_key}"]["result_field"] = result

except client.exceptions.ApiException as e:
logger.error (f"Error API Kubernetes: {e.status} - {e.body}")
with self.global_lock:
global_scope[f"{out_key}"]["result_field"] = "error with new
function"

update_output_parameters (parameters, out_key, global_scopel[f"{
out_keyl}"1)

On-premises actions also follow a common pattern, ensuring consistency across the
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entire code base. This pattern includes how parameters are extracted, agent separation
(e.g., container or network security), and how service_graph or iptables_rule generator
calls are handled.

Listing B.2: action on_ premises template

def new_action(self, parameters, global_scope):
nun

action description

nun

first_parameter = parameters["name_parameter_1"]
second_parameter = parameters["name_parameter_2"]
if self.agent == ’container-security’:
template = self.kubearmor_templates.get ("kubearmor_template.yaml
")
if template is not None:
params = {
"paraml": first_parameter,
"param2": second_parameter
3
policy_yaml = generate_policy(template, **params)

print (policy_yaml)

elif self.agent == ’network-security’:
rule = parameters.get("name_parameter_rule", "iptables ...")
if rule["level"] == 4:
generated_rule = self.iptables_gen.generateRule ("

level_4_filtering", rule)
print (generated_rule)

try:

self .graph.move (parameters)
except Exception as ex:

raise ex

else:
logger.error ("agent not valid")
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