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“Attraverso la finestra sbarrata, vedo un quadrato
di grano in un recinto, un cielo molto grande e
un albero di gelso. .. E ogni giorno, il sole colora
quel campo di sfumature diverse. Il mattino é
dorato, il mezzogiorno é bianco, la sera diventa
rame. Non posso uscire, ma questo piccolo angolo
contiene gia tutto un mondo.”

— Vincent Van Gogh, Lettera a Theo

“Quando ti viene data la possibilita di scegliere,

scegli sempre quello che ti fa tremare.”
— Haruki Murakami, Kafka sulla spiaggia
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Abstract

Smart contracts are immutable programs deployed on blockchain platforms to
enable decentralized applications and financial systems without intermediaries.
However, their immutability and public execution make them especially vulnerable
to security flaws, which can lead to irreversible significant financial losses.

A promising approach to improve security is the use of invariants, properties
that must always hold during contract execution. FLAMES (Fine-tuned Large
Language Model for Invariant Synthesis) is a tool that leverages fine-tuned large
language models to automatically generate security-relevant invariants for Solidity
smart contracts. Automatically generating and validating such invariants remains
a key challenge. This thesis evaluates FLAMES ability to synthesize and validate
security-relevant invariants for Solidity smart contracts. The goal is to determine
whether these invariants are both syntactically correct and semantically effective.
To this end, two automated evaluation pipelines were implemented. The first tests
whether smart contracts with injected invariants still compile successfully. The
second examines whether these invariants prevent real exploits while preserving
benign functionality.

Experimental results show that FLAMES20K and FLAMES100K achieved
high compilability rates and successfully patched known vulnerabilities. This
work bridges the gap between theoretical invariant generation and practical smart
contract security. By automating the validation of synthesized invariants, the pro-
posed framework supports the development of more secure and reliable blockchain
applications.
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Chapter 1

Introduction

Smart contracts are self-executing programs that enforce the terms of digital
agreements once predefined conditions are met. Originally conceptualized by Nick
Szabo in the 1990s [1], they were envisioned as tools for minimizing trust and
automating contract enforcement through precise code. In this way, they reduce
reliance on intermediaries and minimize the risk of human mistakes in processes [2].

With the emergence of blockchain platforms like Ethereum [3], Szabo’s vision
became technically feasible. Today, smart contracts underpin decentralized ap-
plications (dApps) such as decentralized finance (DeFi), token standards, and
on-chain governance. Their deployment on the blockchain ensures immutability
and transparency; once published, the code cannot be altered, and its logic executes
publicly and deterministically. While this fosters trustlessness, it also introduces
significant engineering and security challenges. Smart contracts are often written
in Solidity, where small bugs can lead to severe exploits which has been observed
before [4].

The high-value nature of smart contracts and their open execution environment
make them prime targets for attacks. Incidents such as the DAO hack in 2016 [5]
and multiple DeFi breaches have resulted in irreversible losses totaling millions of
dollars [6, 7, 8.

As decentralized applications continue to evolve and scale, ensuring the cor-
rectness and robustness of smart contracts becomes increasingly critical. These
programs are no longer isolated scripts but foundational components of a global
financial and computational infrastructure.

A common example is a crowdfunding platform. Instead of relying on an
intermediary to manage the funds, a smart contract can be programmed to auto-
matically collect contributions from backers. The rules are encoded in advance:
if the campaign reaches its funding goal within the specified deadline, the smart
contract releases the funds directly to the project creator; otherwise, it refunds the
contributions to the backers.



Introduction

1.1 Problem Statement

Smart contracts, once deployed to a blockchain network, are immutable and operate
autonomously. This immutability, while beneficial for transparency and trust,
also means that any vulnerabilities in the contract code become permanent and
exploitable. Even minor logic errors can have catastrophic financial consequences [9,
10, 6], and the adversarial nature of public blockchains exacerbates the risk.

To address these risks, one promising direction involves the use of invariants [11].
They are properties of the contract state that must always hold true [12, 13].
For example, an invariant might specify that the total balance in a vault must
never decrease outside of an authorized withdrawal function. If such invariants are
enforced at runtime by the injection of require/assert statements directly into the
contract’s Solidity code, malicious transactions that violate them can be reverted
automatically, neutralizing potential exploits.

Recent research has explored automated invariant synthesis, particularly through
dynamic analysis techniques that extract candidate invariants from historical trans-
action data [14, 15]. While such methods are effective in capturing behavioral
patterns, they often lack semantic rigor and generalizability, limiting their applica-
bility to unseen or adversarial scenarios [11, 16].

Moreover, empirical studies [17] highlight recurring classes of vulnerabilities in
deployed contracts and suggest that ad hoc fixes or manual auditing are insufficient.
These findings underscore the need for automated, scalable mechanisms that can
generate, verify, and integrate security-critical invariants directly into smart contract
code.

Despite ongoing progress, the literature lacks a comprehensive and empirically
validated framework for the end-to-end use of invariants in real-world smart con-
tracts. This thesis addresses this gap by proposing a framework for the validation
of automatically-synthesized invariants in Solidity smart contracts.

1.2 Purpose and Goals

The purpose of this thesis is to validate automatically synthesized invariants
and develop a comprehensive automated evaluation framework for assessing the
FLAMES tool. FLAMES is a tool that utilizes fine-tuned large language models
to automatically produce security invariants for Solidity smart contracts. By
analyzing contract code and predicting necessary safety checks, FLAMES assists
in preventing common vulnerabilities such as overflows, unauthorized transfers, or
state inconsistencies. This evaluation framework is specifically designed to test
whether the generated invariants are both syntactically correct and semantically
effective when applied to real-world vulnerable contracts.
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1.3 — Research Questions

This research aims to bridge the gap between theoretical vulnerability detection
and practical application in deployed smart contracts. The work provides empirical
evidence of FLAMES’s ability to generate invariants that compile successfully and
mitigate known security issues, offering a systematic approach to improving smart
contract reliability.

1.3 Research Questions

RQ1-Compilability To what extent do invariants synthesised by FLAMES
preserve the ability of existing smart contracts to compile?

RQ2—-Security Do FLAMES invariants prevent known exploits without altering
benign behaviour?

1.4 Research Methodology

This thesis adopted a positivist philosophical stance, emphasizing objective mea-
surement and empirical observation as the foundation for knowledge generation [18].
The research employed an applied, iterative methodology [18], where automated
evaluation pipelines were systematically developed, tested, and refined through
multiple cycles. Two distinct automated pipelines were developed. Each pipeline
was designed to address a specific research question:

RQ1 Pipeline: focuses on evaluating the syntactic correctness of generated
invariants. It verifies that the generated invariants can be successfully compiled
and integrated into existing smart contracts without introducing compilation
errors.

RQ2 Pipeline: assesses the semantic effectiveness of the generated invari-
ants. It measures their practical utility in patching known vulnerabilities and
evaluates whether the invariants change the contract’s behavior.

The overall reasoning process was inductive. Theoretical insights and general-
izations emerged from patterns identified in the empirical data generated by the
automated pipelines [18].

1.5 Structure of the thesis

Chapter 2 provides the theoretical foundations relevant to the topics addressed
in this thesis. Chapter 3 offers a comprehensive review of the existing literature.
The experimental methodology and rationale behind key decisions are detailed
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Introduction

in Chapter 4. Chapter 5 shows the experimental findings accompanied by a
thorough analysis. Chapter 6 presents a discussion of the limitations and the
multi-dimensional trade-off between robustness, accuracy, and the human effort
required to review the output. Finally, Chapter 7 summarizes the work, suggests
directions for future research, and offers reflections on the impact of this study.



Chapter 2

Background

This chapter provides the knowledge necessary to understand the research presented
in this thesis. We begin by examining two key resources: FLAMES [19], a fine-
tuned large language model approach for invariant synthesis described in Section
2.1, and DISL [20], a dataset for smart contract analysis presented in Section
2.2. Subsequently, we explore in Section 2.3 the most common smart contract
vulnerabilities that threaten blockchain applications, demonstrating how automated
security measures such as require statement injection can mitigate these risks.

2.1 FLAMES: An AI Model for Defensive Code
Synthesis

FLAMES [19] presents an approach to enhancing smart contract security through
automated invariant generation. The framework leverages CODELLAMA [21] models
fine-tuned on smart contract code to automatically produce invariants for Solidity
smart contracts. It employs three model variants: a smaller fine-tuned model
trained on 20,000 smart contracts, a larger fine-tuned model trained on 100,000
smart contracts, and a baseline model using the original CodeLlama.

FLAMES incorporates a Fill-in-the-Middle (FIM) token infilling technique [22].
This technique enables the model to predict missing security checks with contextual
relevance. The framework uses Abstract Syntax Tree (AST) analysis [23] to identify
strategic points for inserting security checks, placing <FILL_ME> tokens accordingly.
This injection ensures that the model learns to generate contextually appropriate
security invariants at syntactically and semantically correct locations in the smart
contract code.

An example is a Solidity function that transfers tokens between user accounts.
A potential vulnerability arises if the sender’s balance is insufficient for the trans-
fer, which could result in underflow or failed transactions. Using FLAMES, an

5)



Background

invariant such as require(balance[sender] >= amount, "Insufficient balance"); can
be automatically generated and inserted at the relevant location. This ensures that
the function enforces the necessary safety condition while preserving its intended
functionality.

2.2 The DISL Dataset for Training AI Models

The DISL [20] (Dataset for Intelligent Smart Contract anal.ysis) dataset serves
as a resource for smart contract research and machine learning applications. The
DISL dataset presents a collection of 514,506 unique Solidity files that have been
deployed to Ethereum main net. This makes it one of the largest of real-world
smart contracts available for research purposes.

DISL includes only the verified source code of smart contracts deployed on
Ethereum, ensuring that the dataset comprises real, in-use contracts. Moreover, its
focus on uniqueness of the included smart contracts, ensures a diverse dataset.

2.3 Smart Contract Vulnerabilities

Smart contracts face several security challenges due to their immutable nature and
the high-stakes financial applications they often support.

2.3.1 Reentrancy Attacks

Reentrancy vulnerabilities occur when external calls to untrusted contracts can
recursively invoke the calling contract before the first invocation completes. This
can lead to unexpected state changes and allow attackers to drain funds. The most
notorious example is the DAO attack of 2016 [5].

A simple require statement ensuring state updates are performed before ex-
ternal calls can prevent many reentrancy attacks. For instance, consider the safe
withdrawal pattern in Figure 2.1.

2.3.2 Access Control Vulnerabilities

Access control issues arise when functions lack proper permission checks, allowing
unauthorized users to execute privileged operations. These vulnerabilities can be
prevented by implementing role-based access control with appropriate require
statements, as illustrated in Figure 2.2.
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2.3 — Smart Contract Vulnerabilities

contract SecureWithdraw {
mapping (address => uint256) public balances;

function withdraw(uint256 amount) public {
require(balances [msg.sender] >= amount, "Insufficient balance");

// Update state before external call

balances [msg.sender] -= amount;
(bool success, ) = msg.sender.call{value: amount}("");
require (success, "External call failed");

}

receive () external payable {
balances [msg.sender] += msg.value;

}

Figure 2.1: SecureWithdraw contract using checks-effects-interactions to prevent
reentrancy.

contract AdminControl {
address public owner;
mapping (address => bool) public admins;

modifier onlyOwner () {
require (msg.sender == owner, "Only owner can perform this action");

-

}

modifier onlyAdmin () {
require (admins [msg.sender], "Insufficient privileges");

-

}

function addAdmin(address _admin) public onlyOwner {
admins [_admin] = true;

}

function sensitiveFunction() public onlyAdmin {
// privileged logic
}

Figure 2.2: Example of role-based access control with owner and admin checks.

2.3.3 Arithmetic Vulnerabilities

Integer overflow and underflow vulnerabilities can cause unexpected behavior in
smart contracts. While Solidity 0.8+ includes built-in overflow protection[24], older
contracts and unchecked blocks remain vulnerable. Manual checks are shown in
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Figure 2.3.

contract ArithmeticSafe {
function safeAdd(uint256 a, uint256 b) public pure returns (uint256) {

require(a + b >= a, "Addition overflow");

return a + b;

}

function safeSub(uint256 a, uint256 b) public pure returns (uint256) {
require(a >= b, "Subtraction underflow");
return a - b;

Figure 2.3: Manual overflow and underflow checks in arithmetic operations.

2.3.4 Front-Running Attacks

Front-running occurs when attackers observe pending transactions and submit their
own transactions with higher gas prices to be executed first. This is particularly
problematic in DeFi applications. Commit-reveal schemes help mitigate such risks,
as shown in Figure 2.4.

contract CommitReveal {
mapping (address => bytes32) public commits;
uint256 public revealPhase;

function commit(bytes32 hash) public {

commits [msg.sender] = hash;
}
function reveal(uint256 value, bytes32 salt) public {
require(block.timestamp >= revealPhase, "Still in commit phase");
require (commits [msg.sender] != 0, "No commit found");
require (keccak256 (abi.encodePacked(value, salt)) == commits[msg.sender], "

Invalid reveal");
// process value

}

Figure 2.4: Commit-reveal scheme to mitigate front-running.

2.3.5 Unchecked Low-Level Calls

Low-level calls such as call, delegatecall, and staticcall can fail silently if
their return values are not checked. Always ensure their success explicitly, as shown

8
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2.3 — Smart Contract Vulnerabilities

in Figure 2.5.

contract SafeCall {
function callExternal (address target, bytes memory data) public {
(bool success, ) = target.call(data);
require (success, "Low-level call failed");

Figure 2.5: Explicit return value check on low-level call.

2.3.6 Bad Randomness

Smart contracts cannot generate truly random numbers due to the deterministic
nature of the blockchain. Predictable sources like block hashes can be exploited. A
safer approach involves external oracles, as in Figure 2.6.

interface RandomnessOracle {
function isValid () external view returns (bool);
function getRandom() external view returns (uint256);

}

contract RandomSafe {
RandomnessOracle public oracle;
uint256 public lastRandomUpdate;
uint256 constant MIN_DELAY = 1 hours;

function updateRandom () public {

require (block.timestamp > lastRandomUpdate + MIN_DELAY, "Randomness too
recent") ;

require (oracle.isValid (), "Invalid randomness source");

uint256 random = oracle.getRandom();
lastRandomUpdate = block.timestamp;

// use random

Figure 2.6: Randomness via external oracle with freshness and validity checks.

2.3.7 Denial of Service

Denial of Service (DoS) attacks in smart contracts aim to make a function or
the entire contract unusable. These issues commonly arise from patterns such
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as unbounded loops, reliance on external contract calls, or blocking operations.
To prevent DoS vulnerabilities, developers should avoid writing logic that can be
indefinitely blocked or fail due to untrusted interactions. Figure 2.7 demonstrates
a safer approach by using pull-over-push patterns to mitigate such risks.

contract SecureWithdrawal {
mapping (address => uint256) public balances;

function deposit() public payable {
balances [msg.sender] += msg.value;

}

function withdraw () public {
uint256 amount = balances[msg.sender];
require (amount > 0, "Nothing to withdraw");

balances [msg.sender] = 0;

(bool sent, ) = msg.sender.call{value: amount}("");
require(sent, "Failed to send Ether");

Figure 2.7: Example of secure withdrawal pattern to avoid DoS via external calls.
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Chapter 3

Related Works

Blockchains enable decentralized and trustless applications by removing the need
for central authorities and enabling verifiable, tamper-resistant execution of transac-
tions [2]. Smart contracts bring this vision to life by providing programmable logic
that runs on the blockchain. They enforce rules and automate transactions in a
secure and transparent manner. They have become the core enabler of decentralized
finance (DeFi), non-fungible tokens (NFTs), and decentralized autonomous organi-
zations (DAOs). As their complexity and adoption continue to grow, traditional
manual development approaches face increasing scalability and security challenges.
This has led to a growing interest in automated synthesis techniques capable of
generating correct and secure smart contract code at scale.

The rise of large language models (LLMs) and advanced program synthesis
techniques has opened new possibilities for automated smart contract generation.
However, the immutable nature of deployed contracts and their direct control over
valuable digital assets make the validation of synthesized code not merely important,
but absolutely critical. Bugs and vulnerabilities are both harder to patch due to
the immutability of the code section of smart contracts and also have a significant
financial impact. While patching is possible using upgradability /proxy patterns [25,
26], this approach has limitations: once an attack transaction is confirmed on
the blockchain, it cannot be reverted. As a result, vulnerabilities can lead to the
irreversible loss of assets and funds, as demonstrated in past attacks [6]. This
makes rigorous validation an indispensable part of any automated code synthesis
workflows. A recent systematization of real-world incidents [27] reinforces this need
by showing that many high-impact exploits are not caused solely by low-level bugs,
but by combinations of vulnerabilities, many of which could be prevented using
proper checks in smart contract functions.

This literature review provides an examination of current approaches, tools, and
methodologies for validating automatically synthesized smart contract code.
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3.1 Validation Techniques for Generated Code

The validation of automatically generated smart contracts presents unique chal-
lenges. Unlike manually written code, synthesized contracts may show unexpected
patterns, novel vulnerability combinations, or subtle logical inconsistencies that
emerge from the generation process itself. The following subsections examine the
formal, dynamic, adversarial, and empirical methodologies that form the foundation
of robust validation for generated smart contract code.

3.1.1 Formal Verification Approaches

Formal verification provides the strongest guarantees for smart contract correct-
ness, making it particularly valuable for validating synthesized code where the
development process may introduce subtle errors.

The theoretical foundations of smart contract verification trace back to classical
symbolic execution techniques. King’s seminal work [28] established the funda-
mental principles of symbolic execution, where program inputs are represented
as symbolic values rather than concrete data, enabling systematic exploration of
execution paths.

Building upon these foundations, Baldoni et al. [29] provide a survey of symbolic
execution techniques, highlighting key challenges such as path explosion, constraint
solving complexity, and the trade-offs between precision and scalability. These
challenges are particularly relevant in the smart contract domain, where contracts
may have complex state spaces and intricate interaction patterns.

Formal verification tools can be broadly categorized into symbolic execution-
based analyzers, such as SOLSEE [30] and SYMGPT [31], and model checking
approaches, such as ESBMC-SoLIDITY [32].

SOLSEE [30] performs symbolic execution on Solidity source code rather than
bytecode, preserving high-level semantic information for debugging and interactive
analysis.

SYMGPT [31] integrates large language models with symbolic execution for
smart contract auditing. This tool shows how Al can improve formal verification
by generating property specifications and invariants, which are then verified using
traditional symbolic methods..

ESBMC-SoLIDITY [32] extends satisfiability modulo theories (SMT) based
model checking to Solidity contracts, providing bounded model checking capabilities
that can verify safety properties and detect common vulnerabilities such as integer
overflows and reentrancy attacks.

12
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3.1.2 Dynamic Analysis and Testing Methodologies

Testing approaches for synthesized smart contracts must address both functional
correctness and security properties. Traditional testing methodologies require adap-
tation to handle the unique characteristics of generated code, including potentially
complex interaction patterns and new vulnerability vectors.

Dynamic testing approaches for synthesized contracts span a spectrum from
machine learning-guided fuzzing, exemplified by SMARTEST [33], to temporal
logic-based validation, as implemented in tools like SMARTPULSE [34] and T2 [35].

SMARTEST [33] introduces a new approach by combining symbolic execution
with language model guidance to find vulnerable transaction sequences. The
tool addresses the path explosion problem by using machine learning to prioritize
exploration of potentially vulnerable execution paths, demonstrating superior
effectiveness in discovering complex multi-transaction vulnerabilities. This aligns
with the empirical findings of [27], which show that multi-step exploit chains are
responsible for a large portion of real-world smart contract losses. It highlightes the
importance of testing methodologies that go beyond single-transaction execution
traces.

SMARTPULSE [34] provides automated checking of temporal properties in smart
contracts, utilizing temporal logic frameworks to reason about contract lifecycles
and state transitions.

T2 [35] is specialized in temporal property verification, offering automatic
generation of proofs for liveness and safety properties. Its integration with the
LLVM framework enables analysis of contracts compiled from various high-level
languages, broadening its applicability to different synthesis approaches.

A mention to formal temporal reasoning is provided by the work of Sergey et
al. [36]. This work describes a treatment of temporal properties in smart contracts,
demonstrating how traditional temporal logic can be adapted to reason about
blockchain-specific concepts such as block ordering, transaction atomicity, and
cross-contract interactions. Their approach using Coq for mechanized verification
establishes important foundations for formal reasoning about contract temporality.

3.1.3 Threat Modeling and Adversarial Analysis

Security analysis for synthesized smart contracts requires specialized approaches
that can handle both traditional vulnerability patterns and novel security issues that
may arise from the synthesis process. The automated nature of code generation may
introduce unexpected interaction patterns or subtle logical errors that traditional
security analysis tools might miss.

Threat modeling and adversarial analysis tools for synthesized contracts can be
categorized based on their core capability: from formal temporal safety verification,
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as implemented in VERX [37], to benchmarking and multi-tool evaluation frame-
works, such as SmartBugs 2.0 [38], and to adversarial exploit generation guided by
formal specifications and language models, as proposed in XPLOGEN [39].

VERX [37] provides safety verification capabilities with particular strength
in temporal specification checking, enabling detection of complex vulnerability
patterns that span multiple transactions.

SMARTBUGS 2.0 [38] offers a standardized execution framework for weakness
detection, providing benchmarking capabilities that are crucial for evaluating the
effectiveness of different analysis approaches on synthesized code. The framework’s
ability to compare multiple analysis tools systematically shows the strengths
and limitations of different validation approaches when applied to automatically
generated contracts.

The work by Eshghie and Artho [39] presents XPLOGEN which is a methodology
to generate benchmarks for smart contract analysis tools. Their approach uses
formal specifications combined with LLMs to synthesize valid exploits. Their
methodology achieved a 57% success rate in exploiting targeted contract aspects
with an average of 3.5 transactions per exploit, demonstrating the efficiency of
guided exploit generation. While such tools focus on exploit generation and
validation, recent work has shown that many real-world attacks do not stem from
isolated code-level bugs alone. Rezaei et al. [27] systematically analyzed 50 major
incidents and revealed that exploit chains often arise from intertwined flaws across
protocol logic, governance, external dependencies, and implementation. Their
four-tier root-cause framework highlights the importance of going beyond static
bug detection and considering systemic and operational factors when validating
synthesized contracts.

3.1.4 Performance Evaluation and Quality Metrics

Empirical evaluation frameworks provide crucial infrastructure for comparing differ-
ent synthesis and validation approaches. The development of complete benchmarks
specifically designed for synthesized smart contracts is essential for advancing the
field and ensuring reproducible research results.

Recent work by Bobadilla et al. using SB-HEIST [40] examines whether au-
tomated fixes truly mitigate smart contract exploits, providing insights into the
effectiveness of current vulnerability remediation approaches for synthesized code.
This research highlights the gap between detecting vulnerabilities and effectively
addressing them in automatically generated contracts, revealing that many au-
tomated fixes may not provide the security guarantees they claim to offer. The
establishment of standardized evaluation metrics and benchmark datasets enables
systematic comparison of different validation approaches.
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3.2 Cutting-Edge Synthesis-Validation Integra-
tion Systems

The integration of synthesis and validation processes represents a paradigm shift
from traditional sequential development models where verification occurs after code
completion. Modern approaches increasingly recognize that effective validation
of automatically generated smart contracts requires tight coupling between the
generation and verification processes, creating feedback loops that improve both
synthesis quality and validation coverage. This integration enables real-time
constraint checking, specification-guided generation, and iterative refinement that
would be impossible with purely post-hoc validation approaches.

3.2.1 Solidity-Centric Development Trends

Given Ethereum’s dominant position in the smart contract ecosystem, Solidity
has become the primary target for automated synthesis research. The language’s
complexity, with features such as inheritance, modifiers, events, and low-level
assembly integration, presents significant challenges for automated generation and
subsequent validation.

As a benchmarking framework, SOLEVAL [41] provides infrastructure for com-
paring different synthesis approaches and their associated validation techniques.
The framework gives a systematic evaluation of LLM-generated smart contracts by
providing metrics and evaluation protocols. These metrics include standardized
measures such as pass@k, the proportion of tasks for which at least one of the
top-k generated candidates passes all test cases, and compile@k, the proportion of
generations that result in syntactically correct, compilable code, along with gas
usage estimation and vulnerability detection via tools like Slither.

3.2.2 Specification Mining and Property Synthesis

Specification mining and property synthesis approaches for smart contracts can
be categorized based on their core methodology: from retrieval-augmented LLM-
based property generation, as in PROPERTYGPT [42], to automated invariant
inference for Solidity, as demonstrated by Liu et al. [14], to multimodal learning for
invariant mining, as in SMARTINV [43], and domain-adapted LLM-based synthesis,
as implemented in FLAMES [19].

PROPERTYGPT [42] introduces techniques for retrieval-augmented property
generation, using LLMs to generate formal specifications from natural language
descriptions and code analysis. The retrieval-augmented approach ensures that
generated properties are grounded in existing knowledge and best practices.
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Invariant generation has emerged as a critical component of smart contract
verification, as invariants capture essential correctness properties that must hold
throughout contract execution. Liu et al. [14] present automated techniques for
generating invariants specific to Solidity contracts, addressing challenges such as
handling dynamic arrays, mappings, and complex state relationships.

SMARTINV [43] employs multimodal learning to infer smart contract invariants,
combining code analysis with natural language processing to understand contract
documentation and comments.

FLAMES [19] uses fine-tuned large language models for invariant synthesis,
showing how domain-specific training can improve the quality and relevance of
generated invariants for smart contract verification. The fine-tuning approach
generates meaningful invariants for synthesized contracts by incorporating domain-
specific knowledge.

3.2.3 Code Generation with Integrated Verification

FSM-SCG [44] shows how finite state machines can guide LLM-based smart
contract generation with validation. The approach uses formal state models to
structure the synthesis process, making the resulting contracts more amenable
to formal verification by ensuring that the generated code follows predictable
state transition patterns. The iterative validation component of FSM-SCG allows
continuous refinement based on feedback.

Complementing this, VERISOLID [45] presents a correct-by-design framework
for smart contract development based on formal state machine models. Developers
define contracts using a high-level FSM specification with clear operational seman-
tics. This specification is then subjected to formal verification to ensure properties
such as deadlock-freedom and state reachability. Once verified, the specification is
automatically compiled into Solidity code, preserving the correctness guarantees.

3.2.4 End-to-End Smart Contract Security

Security in smart contracts can be addressed at different stages of their lifecycle.
CODEBC [46] presents a security-aware approach to LLM-based smart contract
generation, incorporating security considerations directly into the synthesis process
through a three-stage fine-tuning method. Instead of relying on annotated vulnera-
bility datasets or formal specifications, CodeBC leverages lightweight vulnerability
and security tags to differentiate between secure and insecure code during training.
In addition to generation-time security, SOLYTHESIS [47] presents how contracts
can be instrumented to enforce invariants during execution, showing that runtime
validation overhead is negligible in the blockchain context. The system operates as
a source-to-source Solidity compiler that takes a smart contract and user-specified
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invariants as input, producing an instrumented contract that rejects transactions
violating the invariants. These invariants are specified in a formal specification
language that supports quantifiers, summations, and stateful expressions. It allows
users to define complex properties over arrays, mappings, and global contract state.

3.2.5 Verification Infrastructure

Verification tools can be categorized by verification level: SOLC-VERIFY [48] operates
at the source-code level and KEVM [49] at the bytecode level.

SOLC-VERIFY [48] provides a modular verification framework that enables devel-
opers to annotate contracts with specifications and automatically verify compliance.
The tool’s integration with the Solidity compiler workflow makes formal verification
more accessible to practitioners working with synthesized contracts.

KEVM [49] provides complete formal semantics of the Ethereum Virtual Ma-
chine, establishing the formal foundations necessary for rigorous verification of
smart contract execution.

3.2.6 Business Logic and Behavioral Verification

The work by Shishkin [50] addresses debugging smart contracts’ business logic
using symbolic model-checking, providing techniques for verifying that contracts
correctly implement intended business rules. The proposed approach involves
translating smart contracts written in Solidity into an intermediate formal model
and expressing business logic properties as state and trace specifications.

HIGHGUARD [51] introduces cross-chain business logic monitoring, using dy-
namic condition response (DCR) graph models to specify and verify contract
behaviors at runtime. The system employs DCR graphs [26, 25] as formal spec-
ifications to verify contract execution against these models. Another interesting
aspect about this work is the capability of operating in cross-chain environments
for detecting business logic flaws.
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Chapter 4

Experimental Setup

This chapter describes the empirical protocol adopted to evaluate automatically
synthesized invariants for smart contract security. This chapter is organised
following conventional research-paper structure: we elaborate upon the experimental
setup, datasets used, and evaluation metrics. All artefacts (code, data, and raw
results) needed to reproduce the experiments are publicly available at:

o RQ1 Artefacts
o RQ2 Artefacts

4.1 Evaluation Dataset

The following datasets are available at Flames Results.

FLAMES-20K: 20,000 smart contracts dataset extracted from DISL [20] used
for fine tuning the model. Each element in the dataset is composed of
multiple attributes, including:

o predicate — the original (ground-truth) invariant associated with the
contract,
e results — the invariant synthesized by the model,
e original_idx — index linking to the original entry in the DISL dataset.
FLAMES-100K: 100,000 smart contracts dataset derived from DISL, used for
fine tuning the model. Each entry contains:
e predicate — the original invariant,

e results — the invariant synthesized by the model,
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Experimental Setup

e original_idx — index pointing to the corresponding DISL record.

DISL: !the main source dataset of verified smart contracts from which FLAMES-20K
and FLAMES-100K are derived. Each element includes multiple metadata
attributes, such as:

e contract_address — on-chain address of the contract, to retrieve the
source code from Etherscan.io,

e compiler_version — version of the Solidity compiler used to deploy it.
CodeLlama-7B: same contracts as FLAMES20K dataset, but the invariants

are generated by default CODELLAMA. This acts as a baseline to evaluate

generation quality. Each entry contains:

e predicate — the original invariant,

e codeLlama_results — the invariant synthesized by the model.
SB-Heist-4.x: a subset (n = 110) of SB-Heist, consisting of contracts written

in Solidity 0.4.x. Each contract contains ground-truth exploit annotations,
used for evaluating security-relevant inference in RQ2.

4.2 Evaluation Method

The study is divided into two phases, each mapped to a research question:

RQ1-Compilability To what extent do invariants synthesised by FLAMES
preserve the ability of existing smart contracts to compile?

RQ2-Security Do FLAMES invariants prevent known exploits without altering
benign behaviour?

4.2.1 RQ1 Protocol

For every contract C' in a dataset we perform: (i) native compilation to establish a
baseline; (ii) invariant injection using the candidate model; and (iii) re-compilation
with the original compiler version. All steps are fully automated and the automated
pipeline is shown in Figure 4.1.

'https://huggingface.co/datasets/ASSERT-KTH/DISL
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Injection
— generated D —
invariant
Injected contracts Compiled contracts
From Etherscan.io
2
Contract source code —> I Compilation
i‘.’i solex results

Figure 4.1: Automated pipeline RQ1 Experimental Setup

Metrics

« Compilation Success: percentage of contracts that compile after injection.

o Failure categories: syntax error, etc..

4.2.2 RQ2 Protocol

For each vulnerable contract V in SB-Heist, and for every combination of in-
ference strategy inf € {Aggregated, Isolated} as described in Section 4.2.2, and
invariant-injection strategy inj € { VL, Pre, Post, ...} as showed in Figure 4.2, we:

1) Patch V' with the inf model-generated require statements at inj locations;

2) Execute the benign transaction suite (regression test);

3) Replay the ground-truth exploit;

4) Record the outcome (pass/fail).
21
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1 |pragma solidity ~0.4.10;

2

3 |contract IntegerOverflowAdd {

4 mapping (address => uint256) public balanceOf;

5

6 // INSECURE

7 function transfer (address _to, uint256 _value)
public {

8 // PRECONDITION - PRE

9

10 balanceOf [msg.sender] -= _value;

11

12 // Vulnerability: potential integer overflow
if _value is very large

13 // VULNERABLE LINE - VL (line 18 in original):

14 balanceOf [_to] += _value;

15

16 // POSTCONDITION - POST

17 b

18 [}

Figure 4.2: Annotated Solidity snippet showing precondition, postcondition, and
vulnerability line.

Inference Strategies

Considering the inference process described in Section 2.1, we evaluate two different
strategies for inferring invariants:

o Aggregated — at each inference step, we inject the FILL-ME token while retain-
ing the previously inferred invariants within the contract (i.e., from Vulnerable
Line to Pre-condition to Post-condition). This allows each new inference to
build upon the results of the previous ones.

» Isolated — each inference step is performed independently, without incorporat-
ing any information or invariants generated in previous iterations.

Injection Strategies

We evaluate seven placement variants inspired by prior work on smart contracts
discussed in Section 3.2.2:
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4.2 — Evaluation Method

o VL (Vulnerability Line) — invariant inserted exactly on the line that contains
the vulnerability.

o Pre (Pre-condition) — immediately after the function signature that encloses
the VL.

o Post (Post-condition) — immediately before the closing brace of the same
function.

e Pre + VL — both pre-condition and vulnerability line.
e VL 4 Post — vulnerability line and post-condition.
e Pre + Post — pre-condition and post-condition.

e Pre + VL 4 Post — invariant at all three positions.

The automated pipeline is shown in Figure 4.3.

From Sb-Heist dataset 4.X

Vulnerable contract

Fi

SB-Heist

‘ Generated Invariants

3 5]
Injection ;
<FILL_ME> Injected contracts FLAMES

token

Figure 4.3: Automated pipeline RQ2 Experimental Setup

Metrics

RPR Regression Tests Pass Rate: the contract behaves identically for benign
inputs.

RPV Ratio of patched vulnerabilities: the exploit is stopped by the injected
invariant.

MP Matching Patches: contracts where both RPR and RPV hold.
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Experimental Setup

4.3 Experimental Infrastructure

Experiments ran on a dedicated Ubuntu 22.04 server equipped with a 64-core
AMD EPYC 7742 CPU, 256 GB RAM, and one NVIDIA A100 (80 GB) GPU. The
GPU is only required for model inference; compilation and SB-Heist replay are
CPU-bound.

Furthermore, we used the following software packages to build the experimental
pipeline:

o Python 3.12.1 (for scripts)

« Solidity compiler: solc via py-solc-x (versions 0.4.11-0.8.24) based on
contracts under test individually.

« SB-Heist [40] for replay-based security testing.
o Auxiliary libraries: pandas, requests, difflib, fuzzywuzzy, and re

Container specifications and an exact conda environment file are included in the
replication package.
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Chapter 5

Results

This chapter presents and discusses the results obtained from the experimental
setup described in Chapter 4. In particular, it addresses both research questions
defined in Section 1.3. Specifically, RQ1 is addressed in Section 5.1, while RQ2
is discussed in Section 5.2. Finally, Section 6.2 analyzes possible limitations and
threats to the validity of our work.

5.1 RQ1 Results: Compilability Evaluation

The objective of this phase was to assess whether smart contracts remain compilable
after the injection of automatically synthesized invariants. For each contract,
compilation was tested before and after the injection of synthesized invariants.
A sample of 5,000 was randomly extracted from the FLAMES produced dataset
hosted by HuggingFace ! to establish a valuable dataset for the evaluation.

The following metrics were tracked:

o Successfully compiled contracts before invariant injection

o Contracts that failed to compile due to Etherscan-related issues described
in Section 5.1.1

o Contracts that compiled successfully after injecting the synthesized
invariants

https://huggingface.co/datasets/ASSERT-KTH/FLAMES_results
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Results

5.1.1 Etherscan compilation failures

A notable portion of compilation failures on Etherscan derive from issues with
flattened source code retrieved via their API. Flattened source code refers to a
single Solidity file created by combining all imported and dependent files of a smart
contract into one file. These include inconsistent compiler settings (e.g., incorrect
pragma versions) and duplicated or reordered imports.

1|// SPDX-License-Identifier: MIT

pragma solidity ~0.5.0;

pragma solidity ~0.5.0; // Duplicate pragma - can
cause compiler warnings/errors

4 |library SafeMath {

5 //code. ..

6|}

7|// Original contract

8 |contract MyToken {

9 using SafeMath for uint256;

10 mapping (address => uint256) public balances;

11 constructor () public {

12 balances [msg.sender] = 1000;

13 b

14 function transfer (address to, uint256 amount)
public {

15 balances [msg.sender] -= amount;

16 balances [to] += amount;

17 }

18 |}

19 |// Duplicate contract - compilation error: Identifier

already declared
20 | contract MyToken {

21 mapping (address => uint256) public balances;
22 constructor () public {

23 balances [msg.sender] = 1000;

24 b

25 |}

Figure 5.1: Example of a Solidity contract flattening error: duplicate pragma and
contract declarations.

Errors show in Figure 5.1 have been observed in multiple community cases. They
include an ERC-20 contract combined with a Crowdsale and deployed on Ropsten
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5.1 — RQ1 Results: Compilability Evaluation

using OpenZeppelin v2.5.02 and the ShahToken flat.sol contract compiled with
Solidity ~0.8.5 [52]. Both exhibited issues with duplicated pragma directives or
improperly flattened Solidity files.

5.1.2 Comparative Compilability Analysis

Figure 5.2 illustrates a comparative summary of compilation success rates across
the three datasets.

4000

2000

Number of Contracts

HEl Compiled Pre-Injection
MR Failed (Etherscan)
EEX Compiled Post-Injection

Figure 5.2: Compilation success rate after invariant injection across datasets.

The results obtained using the FLAMES20K model indicate a high level of
syntactic and semantic compatibility between the generated invariants and the
original contract code, with over 90% of contracts compiling successfully after
invariant injection. When using the larger FLAMES100K model, the compilation
success rate was slightly higher, suggesting that increasing the amount of training
data may improve the quality or consistency of the synthesized invariants. Although
the precise training/test split for these datasets is not specified, the observed trend
highlights the potential benefits of scaling the training corpus for enhanced model
performance.

Zhttps:/ /forum.openzeppelin.com/t /verification-failed-after-flattening-contract /2366
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Results

In clear contrast to the FLAMES datasets, the CodeLlama-generated invariants
resulted in a significantly lower compilation success rate. Only 17.8% of contracts
remained compilable after invariant injection. This suggests that the invariants
produced by the CodeLlama model were syntactically or semantically incompatible
in the majority of cases. This is due to less targeted training, bringing to incomplete
invariants. These results indicate that, for the FLAMES20K and FLAMES100K
models, the synthesis pipeline is effective at generating deployable security invariants
in a substantial portion of cases. While the compilation success rate is not 100%,
verifying compilation requires no human effort. As a result, a non-negligible failure
rate does not diminish the utility of the correctly compiled invariants.

5.2 RQ2 Results: Validating Security Invariants

The second experimental phase aimed to assess the practical security effectiveness of
the synthesized invariants injected into vulnerable smart contracts. The evaluation
was conducted using the SB-Heist framework [40], which provides reproducible
exploit scenarios derived from the SmartBugs-Curated dataset. The contracts
were selected from the Sb-Heist dataset [40], in particular the 4.X Solitidy version
dataset. This dataset does not overlap with the training dataset of FLAMES
models.

For this experiment, contracts vulnerable to known exploits were patched using
require statements generated by the 3 different FLAMES models described in 2.1.
Each patched contract was then validated against the associated exploit using SB-
Heist, which performs both regression and exploit-based testing. The goal was to
determine whether the injected invariants successfully neutralized the documented
vulnerabilities without introducing new unintended behavior.

Validation was carried out for each model across multiple injection strategies
and inference strategies as described in Section 4.2.2. A patch was considered
matching if it both passed the regression test and patched the vulnerability.

5.2.1 Evaluation Metrics

We tracked the following metrics:
o Vulnerability Patched: if the injected invariant covered the related exploit.

» Regression Test success: if the injected invariant did not change the
contract behaviour.

e Matching Patch: the exploit was covered and the behaviour did not change
after the injection.
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5.2 — RQ2 Results: Validating Security Invariants

To improve clarity, summary tables for the spider graphs are provided as follows:
Tables 5.2 and 5.1 present the results for FLAMES20K, while Tables 5.4 and 5.3
show the results for FLAMES100K. Tables 5.6 and 5.5 report the results for
CodeLlama-7B. Each cell in the tables reports results in the format: REGRESSION
TEST SUCCESS / VULNERABILITY PATCHED / MATCHING PATCH.

Table 5.1: Aggregated results for FLAMES20K by vulnerability category and
inference strategy.

Vulnerability VL pre_ post pre post pre_VL_post pre_ VL VL_ post
denial of service (4) 3,1/,1 2/1/0 4/1/1 2/1/,/0 2/1/0 3/1/1 2/1/0
other (2) 1/1/0 2/0/0 2/0/0 2/0/0 2/0/0 2/0/0 1/0/0
unchecked low level calls (22) 15/16/ 9 9/ 9/ 0 17/ 1/ 0 13/ 7/ 0 8/15/ 3 17/15/10 10/13/ 3
access_control (16) 11/11/6 9/12/ 6 10/10/ 5 12/ 9/ 5 7/14/ 6 7/14/ 6 8/12/ 4
reentrancy (26) 18/ 5/ 0 14/18/ 7 21/ 5/ 1 13/16/ 4 15/16/ 6 19/ 6/ 2 14/17/ 6
front_running (6) 5/0/0 3/,2/0 6/,0/0 3/2/0 3/2/0 5/0/0 3/2/0
bad_randomness (8) 7/ 1/ 1 7/ 4,4 7)2/)2 6/ 4/ 3 6/5/4 T7/)3/3 5/ 3/ 2
arithmetic (20) 4/13/ 7 10/12/ 5 15/ 8/ 4 12/12/ 7 13/11/ 6 15/11/ 6 11/12/ 5
time_manipulation (4) 2/ 1/ 1 1/3/0 4/0/0 3/2/1 1/2/0 2/2/1 2/ 2/ 1

Table 5.2: Isolated results for FLAMES20K by vulnerability category and
inference strategy.

Vulnerability VL pre_post pre post pre_VL_ post pre_VL VL_ post

denial of service (4) 3,1/1 2/, 1/0 3/2/1 2/1/0 1/2/0 2/2/1 2/ 1/0
other (2) 1/1/0 1/0/0 1/1/0 1/0/0 1/0/0 2/0/0 1/ 0/ 0
unchecked low level calls (22) 14/16/ 8 7/10/ 3 13/11/ 5 7/10/ 2 9/10/ 4 15/14/ 7 7/10/ 2
access__control (16) 2/9/6 13/ 7/ 6 10/ 7/ 3 14/5/4 12/ 8/ 6 12/ 7/ 5 13/ 8/ 6
reentrancy (26) 21/ 4/ 1 8/ 6/ 0 24/ 2/ 0 7/ 7/0 7/, 7/0 2/6/2 7/ 7/0
front_ running (6) 3/2/0 2/3/0 2/3/0 2/4/,0 2/3/0 2/3/0 2/3/0
bad_randomness (8) 7/ 0/0 5/,1/0 7/0/0 5/1/0 5/1/0 6/1/0 5/0/0
arithmetic (20) 16/11/ 7 13/12/ 8 16/11/ 7 17/10/10 13/12/ 8 16/11/ 7 13/13/ 8
time_manipulation (4) i/1/,0 0/2/0 2/1/,0 1/2/0 0/2/0 0/2/0 0/2/0

Table 5.3: Aggregated results for FLAMES100K by vulnerability category and
inference strategy.

Vulnerability VL pre__post pre post pre_VL_ post pre_VL VL_ post

denial of service (4) 3,1/1 2/3/1 4/2/2 2/2/,0 2/3/1 3/2/2 2/3/1
other (2) 2/0/0 2/0/0 2/0/0 2/0/0 2/0/0 2/0/0 2/0/0
unchecked low_level calls (22) 17 /11 / 7 14/ 1/ 0 16/ 2/ 0 16/ 0/ 0 14/ 6/ 4 16/11/ 6 15/ 5/ 4
access__control (16) 0/12/ 6 11/12/ 7 11/12/ 7 13/10/ 7 9/14/ 7 9/14/ 7 10/13/ 7
reentrancy (26) 2/ 3/ 0 8/21/3 23/10/ 7 10/18/ 2 7/22/ 3 21/12/ 7 9/19/ 2
front_ running (6) 4/1/0 3/3/0 4/2/0 4/ 2/0 3/3/0 3/2/0 4/ 2/ 0
bad_randomness (8) 7/ 0/ 0 5/3/1 7/1/1 5/3/1 5/ 3/ 1 6/ 2/ 1 5/ 2/ 1
arithmetic (20) 13/13/ 6 14/11/ 6 16/ 6/ 3 16/ 9/ 7 12/12/ 4 12/14/ 6 11/14/ 5
time_manipulation (4) 4,0/ 0 3/3/2 4/1/1 3/3/2 2/3/1 4/ 1/ 1 2/ 3/ 1
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Table 5.4: Isolated results for FLAMES100K by vulnerability category and

inference strategy.

Vulnerability VL pre_post pre post pre_VL_post pre_ VL VL_ post
denial of service (4) 3/ 1/ 1 1/2/0 4/ 1/ 1 1/ 2/0 1/ 2/0 3/1/1 1/ 2/0
other (2) 2/0/0 1/0/0 2/0/0 1/0/0 1/0/0 2/0/0 1/0/ 0
unchecked_low level calls (22) 15/14/ 8 8/ 9/ 3 14/ 5/ 1 8/ 9/ 3 8/11/ 5 14/14/ 7 8/11/ 5
access_control (16) 10/12/ 6 9/13/ 7 9/12/ 6 12/10/ 6 9/13/ 7 9/12/ 6 10/13/ 7
reentrancy (26) 23/ 3/ 0 7/18/ 1 22)/10/6 9/15/0 6/19/ 1 21/11/ 6 8/16/ 0
front_ running (6) 4, 1/,0 2/1/0 3/1/0 4/1/0 2/1/0 3/1/0 3/ 1/0
bad_randomness (8) 7/ 0/ 0 5/5/ 4 7/0/0 5/5/4 5/5/4 T7/0/0 5/ 4/ 4
arithmetic (20) 13/13/ 6 12/13/ 6 13/12/ 5 17/11/ 9 11/14/ 6 12/13/ 5 12/14/ 7
time manipulation (4) 4,0/ 0 0/0/0 4/0/0 0/0/0 O0/0/0 4/0/0 0/0/0

Table 5.5: Aggregated results for CodeLlama7B by vulnerability category and

inference strategy.

Vulnerability VL pre_ post pre post pre_ VL_ post pre_ VL VL_ post
denial_of service (4) 2/ 2/ 1 1/2/1 3/1/1 1/1/0 1/2/1 1/2/1 1/2/1
other (2) 2/0/0 1/0/0 1/0/0 1/0/0 1/0/0 1/0/0 1/ 0/ 0
unchecked low level calls (22) 16/11/ 6 7/ 8/ 4 14/ 6/ 4 10/ 8/ 4 7/13/ 7 14/14/10 7/13/ 7
access__control (16) 12/)8/ 7 3/ 4/ 3 8/ 6/ 4 4/ 3/ 3 3/ 4/ 3 8/ 6/ 4 4/ 3/ 3
reentrancy (26) 24/ 7/ 5 8/11/ 0 25/ 2/ 1 811/ 0 7/16/ 4 24/ 7/ 5 7/16/ 4
front_running (6) 2/3/0 0/2/0 2/2/0 0/2/0 0/2/0 1/3/0 0/ 2/ 0
bad_ randomness (8) 2/3/0 3/2/1 5/ 1/0 4/ 2/ 1 1/ 3/ 1 1/3/0 2/3/1
arithmetic (20) 13/6/6 5/5/411/6/6 6/ 1/1 5/5/4 11/8/8 5/ 3/ 2
time manipulation (4) 3/ 0/0 0/0/0 2/0/0 1/1/1 0/ 0/ 0 1/0/0 0/ 1/0

Table 5.6: Isolated results

inference strategy.

for CodeLlama-7B by vulnerability category and

Vulnerability VL pre_ post pre post pre_ VL_ post pre_ VL VL_ post

denial_of_service (4) 2/ 2/ 1 0/2/0 3/2/2 1/2/0 0/2/0 1/2/1 1/ 2/ 0
other (2) 2/0/0 0/0/0 1/0/0 0/0/0 0/0/0 1/0/0 0/0/0
unchecked low_level calls (22) 16/11/ 6 6/ 2/ 1 14/ 5/ 4 10/ 5/ 1 6/ 8/ 4 13/13/ 8 6/11/ 4
access__control (16) 1/8/6 6/9/6 9/9/6 7/8/ 4 6/9/6 9/9/6 6/ 8/ 5
reentrancy (26) 2/ 7/ 5 1/3/0 24/ 3/ 2 2/3/0 1/3/0 19/ 8/ 2 2/ 4/ 1
front_ running (6) 2/3,0 1/,2/0 3/2/0 1/2/0 0/3/0 2/3/0 0/3/0
bad_randomness (8) 2/3/0 0/1/,0 7/1/0 0/1/0 o0/1/0 2/3/0 0/1/0
arithmetic (20) 3/6/6 6/5/5 1/5/5 12/ 5/5 6/ 7/ 5 11/ 7/, 7 7/ 7] 4
time manipulation (4) 3/0/0 0/0/0 1/0/0 0/0/0 0/0/O 1/ 0/ 0 0/ 0/ 0

Spider Graphs

The spider graphs presented in the following Sections [5.2.2; 5.2.3; 5.2.4] display,
along each axis, either a vulnerability type or an injection strategy. For each
category, the graphs report the corresponding counts of Regression test successes,
Vulnerability patched, and Matching Patch. In the “Vulnerability per best strategy
spider graph (e.g., Figure 5.3), each vulnerability label is accompanied by the
injection strategy that resulted in the highest number of matching patches, showing
the most effective approach for that specific vulnerability.
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5.2.2 FLAMES20K Results

In this section, we present the results of both inference strategies applied to
FLAMES20K. Figures 5.3 and 5.5 illustrate the results for each vulnerability
under the aggregated and isolated inference strategies, respectively, while Figures 5.4
and 5.6 display the results for each injection strategy under the same configurations.

Aggregated Inference Results

Under the aggregated strategy, performance is balanced across most categories.
Arithmetic records the highest matching patches (40), while reentrancy achieves
the strongest test coverage (114 successes, 83 patched vulnerabilities). The pre_ VL
strategy leads overall with 29 matching patches.

Isolated Inference Results

Without context propagation, FLAMES20K retains strong performance. Arith-
metic remains the top category (40 matching patches), and VL is the most effective
strategy (23 matching patches).

5.2.3 FLAMES100K Results

In this section, we report the results of both inference strategies for FLAMES100K.
Figures 5.7 and 5.9 present the outcomes per vulnerability for the aggregated and
isolated settings, respectively, whereas Figures 5.8 and 5.10 show the results per
injection strategy for the two settings.

Aggregated Inference Results

Compared to FLAMES20K, performance improves, especially in access_control
(48 matching patches). The pre_ VL strategy reaches the highest score in this
setting (30 matching patches).

Isolated Inference Results

This model outperforms all others in the isolated configuration, with access control
(45) and arithmetic (44) leading in matching patches. The pre_ VL strategy remains
the most effective (25 matching patches).

5.2.4 CodeLlama Results

In this section, we present the results of both inference strategies for CodeLlama-7B.
Figures 5.11 and 5.13 display the outcomes per vulnerability for the aggregated
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and isolated settings, respectively, while Figures 5.12 and 5.14 illustrate the results
per injection strategy for the two settings.
Aggregated Inference Results

CodeLlama-7B struggles with complex categories such as access control but per-
forms comparatively well in unchecked low_level calls (42 matching patches).
Pre__ VL yields the best aggregated results (28 matching patches).

Isolated Inference Results

Performance improves slightly when run in isolation, particularly in access control
(39) and arithmetic (37). The pre_ VL and VL strategies tie for the lead (24
matching patches).
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5.2.5 Comparative Validity Analysis

Table 5.7: Validation results for all models in both inference strategies

RegTr‘éSsgion Vulnerabilities Matching pﬁgﬁgd In}?ei?izon
Successes Patched Patches Vulnerability Strategy
FLAMES20K
Aggregated 475 370 151 arithmetic pre__ VL
Isolated 438 300 128 arithmetic VL
FLAMES100K
Aggregated 486 355 152 access__control pre__ VL
Isolated 427 377 154 access _control pre_ VL
CodeLlama-7B
Aggregated 324 258 130 unchecked__low_level call pre_ VL
Isolated 301 231 118 access _control VL - pre_ VL

Table 5.7 summarizes the overall performance of different models and inference
strategies in terms of test regression success, number of vulnerabilities patched,
matching patches, the most frequently patched vulnerability type, and the best-
performing injection strategy. The table allows for a comparison between aggregated
and isolated settings for all the FLAMES models.

For the FLAMES20K, the aggregated configuration achieves higher test re-
gression success (475) and more vulnerabilities patched (370) compared to the
isolated configuration. However, both configurations share the same most fre-
quently patched vulnerability type, arithmetic. This suggests that the nature of
vulnerabilities does not change between configurations. Interestingly, while the
aggregated setup favors the pre VL strategy, the isolated setup benefits more from
the VL strategy, indicating that isolation emphasizes verification-focused inference.

In the case of FLAMES100K, the pattern differs slightly. Aggregated results
yield the highest test regression success (486), whereas isolated settings result in
a slightly lower regression success (427) but achieve a higher number of vulnera-
bilities patched (377) and matching patches (154). Notably, FLAMES100K in
isolated configuration achieves the most matching patches across all models and
configurations. This result demonstrates that isolated inference can maximize patch
quality and approval rates, possibly due to reduced interference from unrelated
vulnerabilities. Both configurations identify access control as the most patched
vulnerability type and favor pre VL as the optimal strategy, reinforcing its general
effectiveness.

Comparing the two FLAMES models, FLAMES100K shows generally stronger
performance in terms of test regression success and matching patches, especially in
the isolated configuration. While FLAMES20K achieves slightly better regression
success in the aggregated setting, FLAMES100K provides more effective and
higher-quality patches overall. This improvement is likely attributable to the larger

45



Results

dataset size, which facilitates more effective learning and better generalization of
patching strategies. These results suggest that dataset scale plays a critical role in
determining both the quantity and quality of generated patches.

For Codellama-7B, aggregated performance shows a test regression success
of 324 and 258 vulnerabilities patched, with unchecked_low level call being the
most frequently patched vulnerability. The isolated configuration exhibits a drop in
performance (301 regression success and 231 vulnerabilities patched), and the most
patched vulnerability shifts to access control. Additionally, the best strategy in the
isolated setting are VL and pre_ VL, suggesting that multiple injection strategies
may need to be blended to handle diverse vulnerability types effectively. Compared
to the previous FLAMES models, CodeLlama-7B demonstrates the weakest overall
performance, both in terms of regression success and number of vulnerabilities
patched. This performance degradation highlights potential limitations in its
capacity to generate effective patches under the tested configurations.

Overall, these results reveal several key trends. Aggregated configurations tend
to maximize test regression success. Isolated configurations can sometimes achieve
higher patch quality, as reflected in the number of matching patches. The choice
of the most effective injection strategy is context-dependent: pre VL performs
consistently well across FLAMES models, whereas for CodeLlama-7B, a hybrid
approach is preferable when vulnerabilities are isolated. Moreover, fine-tuning on a
specialized dataset proves crucial for generating high-quality invariants. FLAMES
models are significantly more accurate than the general-purpose CodelLlama, and
increasing the fine-tuning data size yields further improvements. Finally, the shift in
the most frequently patched vulnerability type between models and configurations
highlights the interaction between model architecture, dataset size, and inference
strategy in determining overall effectiveness.

5.2.6 Outliers and Study Cases

In this section, we describe and analyze various case studies involving the generated
invariants and the outliers observed in the results presented in Sections 5.2.2, 5.2.3,
and 5.2.4.

Synthesized require(false)

The three models occasionally generate the require(false); invariant. It represents
a specific type of response indicating that the model could not identify a valid
invariant to patch the vulnerability at that particular line in the contract. In such
cases, the model determines that the most effective approach to prevent exploitation
of the vulnerability is to force the contract to revert. Since the require(false);
statement always evaluates to false, it will invariably cause the contract execution
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to fail and revert.

When comparing models, a clear pattern emerges. FLAMES100K produces
the fewest require(false); statements, FLAMES20K a moderate amount, and
CodeLlama-7B the most. This distribution suggests that CodeLlama-7B struggles
more often to synthesize correct and contextually appropriate invariants, falling
back to unconditional reversion. In contrast, FLAMES100K more consistently
infers the intended contract semantics and generates targeted invariants.

Although these cases are generally symptomatic of incomplete vulnerability
understanding, they also reveal the role of inference strategy. Aggregated inference
can occasionally enable non-trivial alternatives to require(false);, even in weaker
models. For instance, CodeLlama-7B under aggregated inference was able to
generate a require(true); invariant in the post-injection scenario for the 0x4b71
contract (Figure 5.15). While semantically vacuous, as described in Section 5.2.6,
this output still provides insight into the synthesis process. It shows that additional
context from earlier inference steps can influence the generated invariant. In some
cases, this context can steer the model away from the most conservative fallback.
More cases are shown in Appendix Section A.1.

1 |pragma solidity ~0.4.24;
contract airPort{

3 function transfer (address from,address caddress,
address[] _tos,uint v)public returns (bool){

4 require(_tos.length > 0);

5 bytes4 id=bytes4 (keccak256("transferFrom
address ,address ,uint256)")) ;

6 for(uint i=0;i<_tos.length;i++){

7 caddress.call(id,from, _tos[i],v);

8 }

9 return true;

10 |require (true) ; //POST INVARIANT

11 }

12 |}

Figure 5.15: 0x4b71 contract with post injection strategy applied in aggregated
inference strategy CodeLlama-7B.

Synthesized require(true)

In certain scenarios, the model generates a require(true); invariant. This typically
occurs for one of two reasons. First, the model may correctly determine that there
is no exploitable vulnerability at the specific line in the contract, and therefore no

47


https://etherscan.io/address/0x4b71ad9c1a84b9b643aa54fdd66e2dec96e8b152
https://etherscan.io/address/0x4b71ad9c1a84b9b643aa54fdd66e2dec96e8b152

Results

patch is needed. Second, the model may mistakenly fall into this first case by failing
to detect an existing vulnerability. As a result, it still inserts a require(true);
statement as a neutral placeholder. Since this condition always evaluates to true, it
does not affect the execution or behavior of the contract in any way. An example
of this behavior are the 0xe894 and 0x4051 contracts. CodelLlama-7B with both
inference strategies produces the require(true); invariant in the post injection
scenario as shown in Figure 5.16 and Figure 5.17. Notably, in this case the VL
invariant provides an Matching Patch, and in all strategy combinations where the
VL appears, including those with the post invariant, the patch is matching as
expected by the require(true);.

1 |pragma solidity ~0.4.24;

contract airDropf{

3 function transfer (address from,address caddress,
address[] _tos,uint v, uint _decimals)public
returns (bool){

4 |require(_tos.length <= 20); //PRE INVARIANT

5 require (_tos.length > 0);

6 bytes4 id=bytes4 (keccak256("transferFrom (
address ,address ,uint256) ")) ;

7 uint _value = v * 10 ** _decimals;

8 for(uint i=0;i<_tos.length;i++){

9 |require(caddress.call(id,from, _tos[i], _value));//VL

INVARIANT
10 caddress.call(id,from, tos[i], value);
11 }
12 return true;
13 |require (true) ; //POST INVARIANT
14 }

15 |}

Figure 5.16: 0xe894 contract with pre VL _post injection strategy applied in
CodeLlama-7B.
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1 |pragma solidity ~0.4.24;
contract airdrop{

3 function transfer (address from,address caddress,
address[] _tos,uint v)public returns (bool)({

4 |require(msg.sender==from) ; //PRE INVARIANT

5 require (_tos.length > 0);

6 bytes4 id=bytes4 (keccak256("transferFrom(
address ,address ,uint256) ")) ;

7 for(uint i=0;i<_tos.length;i++){

8 |require (caddress.call(id,from, _tos[il,v)); //VL
INVARIANT

9 caddress.call(id,from, _tos[i],v);

10 }

11 return true;

12 |[require (true) ; //POST INVARIANT

13 }

14 |}

Figure 5.17: 0x4051 contract with pre_ VL_ post injection strategy applied in
CodeLlama-7B.

As previously noted, this type of invariant may arise due to two primary factors.
First, the identified vulnerability is not directly patchable at the specific line of
code. Second, the model may be producing a false negative. It incorrectly assumes
the code is secure when, in fact, a vulnerability exists. FLAMES100K is the
only model that produces 0 instances of require(true);. This demonstrates its
capacity to generate meaningful invariants regardless of the injection strategy and
inference strategy employed. Regarding FLAMES20K, it produces require(true);
statements when using the isolated inference strategy to produce post invariants.
This is likely due to the lack of context provided by previous invariants, which is
available in the aggregated inference strategy. CodeLlama-7B generates these types
of invariant with both inference strategies. This behavior highlights the superior
capacity of FLAMES models to understand the contract’s context and consequently
produce sound invariants.

FLAMES20K Better Than FLAMES100K

Globally, the FLAMES100K model demonstrates superior performance compared
to the other models. However, there are specific cases where the FLAMES20K
model successfully generates a Matching Patch while the FLAMES100K model
fails to do so. A notable example is the FibonacciBalance.sol case. Using
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the aggregated inference strategy with the pre_post injection approach, the
FLAMES20K model generates a Matching Patch. In contrast, the FLAMES100K
model fails both the regression test and produces no valuable patch. In the case
of FLAMES20K, the patch is considered matching because both the invari-
ants, require(msg.data.length > 0); and require(calculatedFibNumber > 0);, work
together to effectively mitigate the access_control vulnerability as shown in Figure
5.18. The first ensures that the fallback function is not called without data, pre-
venting accidental or fuzzed calls. The second acts as a true guard by enforcing
that only specific library functions that correctly update the calculatedFibNumber
are allowed to execute. This combination blocks unauthorized access and misuse of
delegatecall. In contrast, the FLAMES100K case includes the same pre-invariant
require(msg.data.length > 0);, but replaces the post-condition with require (msg.
value == 0); as shown in Figure 5.19. While this check is logically sound, ensuring
that no Ether is sent during the fallback, it does not fully address the core vulner-
ability. It fails to restrict which library functions can be called via delegatecall.
Therefore, this patch is incomplete and does not fully mitigate the vulnerability.
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1 |pragma solidity ~0.4.22;

2 |contract FibonacciBalance {

3 address public fibonaccilibrary;

4 // the current fibonacci number to withdraw

) uint public calculatedFibNumber;

6 // the starting fibonacci sequence number

7 //...code

8 // allow users to call fibonacci library functions

9 function () public {

10 |require (msg.data.length>0) ; //PRE INVARIANT

11 require (fibonaccilibrary.delegatecall (msg.data));

12 |[require (calculatedFibNumber >0) ; //POST INVARIANT

13 X

14 |}

15 |// library contract - calculates fibonacci-1like
numbers;

16 | contract Fibonaccilib {

17 // initializing the standard fibonacci sequence;

18 uint public start;

19 uint public calculatedFibNumber;

20 // modify the zeroth number in the sequence

21 function setStart(uint _start) public {

22 start = _start;

23 X

24 function setFibonacci(uint n) public {

25 calculatedFibNumber = fibonacci(n);

26 3

27 function fibonacci(uint n) internal returns (uint)
{

28 //...code

29 X

30 |}

Figure 5.18: FibonacciBalance.sol contract with pre post injection strategy
applied in aggregated inference strategy FLAMES20K.

51



Results

© 00 N O Uk W N

I T = T = S Sy
QL = W N = O

16
17
18
19
20
21
22
23
24
25
26
27

28
29
30

Figure 5.19: FibonacciBalance.sol contract with pre post injection strategy

pragma solidity ~0.4.22;
contract FibonacciBalance {
address public fibonaccilibrary;
// the current fibonacci number to withdraw
uint public calculatedFibNumber;
// the starting fibonacci sequence number
//...code
// allow users to call fibonacci library functions
function () public {

require (msg.data.length>0) ; //PRE INVARIANT
require (fibonaccilibrary.delegatecall (msg.data));
require (msg.value==0) ; //POST INVARIANT
}
}
// library contract - calculates fibonacci-1like
numbers;

contract Fibonaccilib {
// initializing the standard fibonacci sequence;
uint public start;
uint public calculatedFibNumber;
// modify the zeroth number in the sequence
function setStart(uint _start) public {

start = _start;
}
function setFibonacci(uint n) public {
calculatedFibNumber = fibonacci(n);
}
function fibonacci(uint n) internal returns (uint)
{
// ...code
}

applied in aggregated inference strategy FLAMES100K.

Another notable case is the 0x52d2. In this scenario, FLAMES20K produces a
Matching Patch using the isolated inference strategy in the VL injection scenario.
Meanwhile, its stronger counterpart fails to fix the vulnerability. The vulnerabil-
ity in question is an unchecked low level call, as shown in Figure 5.20. The
FLAMES20K model effectively mitigates this issue through a require(Token (0
xd2a4c91875a07c740680799768e67dfe7fd5d34e) . transfer (addr,Owei)) statement. This
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statement ensures that a preceding call to a known token contract succeeds before
executing the dangerous addr.call.value(0 wei)();. The added constraint intro-
duces an implicit limitation on arbitrary call behavior. This approach effectively
reduces the attack surface and addresses the vulnerability. On the other hand,
the FLAMES100K patch inserts a require(msg.sender==owner); check as shown
in Figure 5.21, which, while reasonable in context, does not directly address the
core issue. Since the low-level call remains unchecked, the vulnerability persists.

1 |pragma solidity ~0.4.19;
contract Token {

3 function transfer (address _to, uint _value)
returns (bool success);

4 function balanceOf (address _owner) constant
returns (uint balance) ;

51}

6 |contract EtherGet {

7 address owner;

8 function EtherGet () {

9 owner = msg.sender;

10 }

11 function withdrawTokens (address tokenContract)
public {

12 Token tc = Token(tokenContract);

13 tc.transfer (owner, tc.balanceOf (this));

14 }

15 function withdrawEther () public {

16 owner .transfer (this.balance);

17 }

18 function getTokens(uint num, address addr) public
{

19 for(uint 1 = 0; i < num; i++){

20 |require (Token (0
xd2a4c91875a07c740680799768e67dfe7fd5d34e) . transfer

(addr ,0wei)); //VL INVARIANT
21 addr.call.value (0 wei) ();
22 }
23 }

24 |}

Figure 5.20: 0x52d2 contract with VL injection strategy applied in isolated
inference strategy FLAMES20K.
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Figure 5.21: 0x52d2 contract with VL injection strategy applied in isolated

pragma solidity ~0.4.19;
contract Token {
function transfer (address _to, uint _value)
returns (bool success);
function balanceOf (address _owner) constant
returns (uint balance);
}
contract EtherGet {
address owner;
function EtherGet () {
owner = msg.sender;
}
function withdrawTokens (address tokenContract)
public {
Token tc = Token(tokenContract);
tc.transfer (owner, tc.balanceOf (this));
}
function withdrawEther () public {
owner .transfer (this.balance);
}
function getTokens(uint num, address addr) public
{
for(uint i = 0; i < num; i++){
require (msg.sender==owner) ; //VL INVARIANT
addr.call.value (0 wei) ();
}

inference strategy FLAMES100K.

Therefore, despite its larger search space and stronger overall performance,
FLAMES100K fails to generate a functionally correct patch in this case. While
FLAMES100K demonstrates superior results globally, these outliers reveal that
increased model capacity does not guarantee success in every scenario. This suggests
that certain specific cases may benefit from a different approach. The more focused
methodology of the smaller FLAMES20K model can be advantageous in these
instances. These findings highlight the context-dependent nature of automated

patch generation.
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Figure 5.22: dos number.sol contract with pre injection strategy applied in

pragma solidity ~0.4.25;
contract DosNumber {
uint numElements = 0;
uint [] array;
function insertNnumbers (uint value,uint numbers)
public {
require (numElements <1500) ; //PRE INVARIANT
for(uint i=0;i<numbers;i++) {
if (numElements == array.length) {
array.length += 1;
}
array [numElements++] = value;
}
+
function clear () public {
require (numElements >1500) ;
numElements = 0;
}
function clearD0S() public {
require (numElements >1500) ;
array = new uint [](0);
numElements = 0;
}
function getLengthArray () public view returns(uint
) o
return numElements;
}
function getReallengthArray() public view returns(
uint) {
return array.length;

isolated inference strategy CodeLlama-7B.

As demonstrated in Section 5.2.4, Codellama-7B shows worse performance
than the FLAMES models. However, there are some outliers where CodeLlama
successfully produces matching patches while the FLAMES models fail to do so.

One such case is dos_number.sol. This occurs using the isolated inference

55




Results

strategy with the pre injection strategy. CodeLlama produces a Matching Patch
in this scenario while FLAMES100K is only capable of passing the regression
test. In Figure 5.22, the denial of service vulnerability is effectively patched by
using a require statement that limits the overall size of the array via the condition
numElements < 1500. This constraint prevents the array from growing indefinitely.
In this way it controls the gas consumption and avoids gas limit exhaustion during
the insertion loop. In contrast, the patch produced by FLAMES100K, shown in
Figure 5.23, fails to fix the vulnerability. It only limits the number of elements
inserted per transaction (e.g., through require (numbers <= 382);) without restricting
the total array size. This allows multiple consecutive calls to accumulate elements
beyond safe gas limits, leaving the contract vulnerable to denial of service attacks
via gas exhaustion.
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Figure 5.23: dos number.sol contract with pre injection strategy applied in

pragma solidity ~0.4.25;
contract DosNumber {
uint numElements = 0;
uint [] array;
function insertNnumbers (uint value,uint numbers)
public {
require (numbers <=382) ; //PRE INVARIANT
for (uint i=0;i<numbers;i++) {
if (numElements == array.length) {
array.length += 1;
}
array [numElements++] = value;
+
}
function clear () public {
require (numElements >1500) ;
numElements = 0;
}
function clearDOS() public {
require (numElements >1500) ;
array = new uint [](0);
numElements = 0;
}
function getLengthArray () public view returns (uint
) o
return numElements;
}
function getReallengthArray () public view returns(
uint) {
return array.length;

isolated inference strategy FLAMES100K.

Another interesting case is the token.sol contract analyzed under the aggregated
inference strategy with the pre injection invariant. CodelLlama-7B generates a
Matching Patch, while FLAMES20K fails to adequately address the arithmetic

vulnerability.

As shown in Figure 5.24, CodeLlama-7B correctly patches the underflow by
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adding require(balances[msg.sender] >= _value); before the subtraction. This en-
sures the sender has sufficient balance for the transfer. Since the contract uses Solid-
ity versions prior to 0.8.0, this check is essential to prevent dangerous wraparound
behavior. In contrast, FLAMES20K’s patch in Figure 5.25 misses the core issue.
It adds the check require(_to !'= 0x0); to prevent transfers to the zero address,
a safeguard against accidental token burning. However, it does not address the
original ineffective check require(balances[msg.sender] - _value >= 0);.

This check fails because in Solidity 0.4.18, the subtraction is performed before
the comparison. When _ value exceeds the balance, the subtraction underflows,
resulting in a very large positive number that still passes the >=0 check.

Therefore, the patch introduces address validation but leaves the arithmetic
vulnerability unresolved.

1 |pragma solidity ~0.4.18;

2 |contract Token {

3 mapping (address => uint) balances;

4 uint public totalSupply;

5 function Token (uint _initialSupply) {

6 balances [msg.sender] = totalSupply =
_initialSupply;

7 }

8 function transfer (address _to, uint _value) public
returns (bool) {

9 require (balances [msg.sender] >= _value); //PRE
INVARTIANT

10 require (balances [msg.sender] - _value >= 0);

11 balances [msg.sender] -= _value;

12 balances[_to] += _value;

13 return true;

14 b

15 function balanceOf (address _owner) public constant
returns (uint balance) {

16 return balances[_owner];

17 b

18 |}

Figure 5.24: token.sol contract with pre injection strategy applied in aggregated
inference strategy CodelLlama-7B.

CodeLlama-7B’s occasional success despite its generally weaker performance re-
inforces the observation made in Section 5.2.6. These exceptional cases demonstrate
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that automated patch generation is inherently unpredictable and context-sensitive.
These findings highlight the context-dependent nature of automated patch gen-
eration and suggest to explore multi-model strategies that can adapt to different
vulnerability characteristics.

1 |pragma solidity ~0.4.18;
2 |contract Token {
3 mapping (address => uint) balances;
4 uint public totalSupply;
5 function Token(uint _initialSupply) {
6 balances [msg.sender] = totalSupply =
_initialSupply;
}
8 function transfer (address _to, uint _value) public
returns (bool) {
9 require (_to!=0x0); //PRE INVARIANT
10 require (balances [msg.sender] - _value >= 0);
11 balances [msg.sender] -= _value;
12 balances[_to] += _value;
13 return true;
14 }
15 function balanceOf (address _owner) public constant
returns (uint balance) {
16 return balances[_owner];
17 by
18 |}

Figure 5.25: token.sol contract with pre injection strategy applied in aggregated
inference strategy FLAMES20K.
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Chapter 6

Discussion

In this chapter, we reflect on the implications of our experimental results. In
Section 6.1, we analyze the robustness, accuracy, and human effort involved in
using the FLAMES models. In Section 6.2, we discuss potential threats to validity,
considering limitations in our experimental setup.

6.1 Robustness, Accuracy and Human Effort

An important aspect to consider when evaluating the performance of the models
is the multi-dimensional trade-off between robustness, accuracy, and the human
effort required to review the output.

As shown in Section 5.1.2, FLAMES models do not achieve perfect compilation
rates. However, since the compilation verification process is fully automated, the
practical value of the tool remains high for invariants that compile successfully,
even when some attempts fail. In this context, robustness should be assessed not
solely by success rate, but by the model’s ability to produce valid, deployable
invariants when compilation succeeds. The tool’s robustness lies in its capacity
to fail gracefully. Unsuccessful attempts are automatically filtered out without
requiring human intervention.

The generated invariants vary significantly across models and inference strategies,
creating important implications for both accuracy and review effort. FLAMES100K]
demonstrates the highest overall correctness, producing fewer semantically vacuous
fallbacks as described in Section 5.2.6 and Section 5.2.6, which translates directly
into reduced human review burden. This superior performance is further evi-
denced by FLAMES100K generating the highest number of matching patches and
achieving the best overall results across evaluation metrics as shown in Section 5.2.
FLAMES20K shows moderate performance with a correspondingly intermediate
number of matching patches, while CodeLlama-7B tends to rely more heavily on
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conservative outputs and produces the fewest matching patches, indicating lower
semantic understanding of contract logic. This progression clearly demonstrates
how model sophistication directly correlates with both the quantity and quality of
deployable invariants, establishing a clear performance hierarchy that practitioners
must consider when balancing computational resources against output quality.

The human effort required to review and approve patches remains manageable
for cases that compile successfully, as reviewers only need to inspect invariants
that the model has synthesized rather than manually verifying compilation itself.
However, the effort required scales inversely with the chosen model. The automated
filtering of non-compilable outputs ensures that human effort is never wasted on
syntactically invalid invariants, allowing practitioners to focus their limited review
time on semantically meaningful invariants rather than basic syntactic validation.

This multi-dimensional trade-off reveals that the synthesis pipeline’s practi-
cal value depends heavily on deployment context and organizational constraints.
Even with partial compilation success, the tool provides significant advantages
by reducing the overall time and expertise required to generate security-relevant
contract invariants. In this way, it maintains flexibility in how organizations bal-
ance robustness, accuracy, and review effort according to their specific needs and
resources.

6.2 Threats to Validity

This study provides empirical evidence for the effectiveness of FLAMES synthesized
invariants in improving the security of smart contracts. The evaluation was
conducted on a curated and widely adopted benchmark dataset derived from
SmartBugs Curated [38]. It offers a realistic yet controlled setting for reproducible
experiments. The use of fully automated pipelines allowed for consistent testing of
both compilability and vulnerability prevention across hundreds of real contracts.

Nevertheless, a few threats to validity remain, especially with regard to the
security validation pipeline.

First, the experiments are limited to smart contracts written in Solidity version
4.X. This excludes newer versions and alternative programming languages. These
versions may introduce language-specific features or behaviors that are not captured
in this evaluation.

Second, each contract in the evaluation dataset contains only a single vulnerabil-
ity. While this simplification facilitates controlled testing and analysis, it does not
reflect the complexity of real-world contracts. Real-world contracts often contain
multiple vulnerabilities that may interact with each other.

Lastly, the validity of the comparative analysis is limited by the fact that
CodeLlama-7B was used as the sole baseline model. This limitation may reduce
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the robustness of the conclusions. Performance differences could vary if alternative
or more diverse baseline models were considered.

Despite these considerations, the evaluation framework and results presented
in this study offer valuable insights into the potential of invariant synthesis as a
strategy for smart contract hardening. The experimental setup is reproducible and
extensible. In this way, it provides a solid foundation for future research to explore
more diverse settings and richer vulnerability profiles.
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Chapter 7

Conclusion and Future Work

This chapter serves three primary purposes: to assess the extent to which our
research objectives have been achieved, to identify promising avenues for future work,
and to reflect on the broader implications. Section 7.1 addresses the fulfillment of
our goals, Section 7.2 outlines potential research directions and Section 7.3 provides
critical reflections on the research journey.

7.1 Conclusion

The purpose of this thesis was to validate automatically synthesized invariants
and evaluate the ability of the FLAMES tool to produce compilable and effective
invariants for patching vulnerabilities in real smart contracts. This evaluation
was conducted through two comprehensive automated pipelines. Both FLAMES
models were systematically tested and compared against CodeLlama-7B to assess
their relative performance.

The experimental results demonstrate that the FLAMES tool successfully
produces deployable invariants that surpass off-the-shelf models in vulnerability-
preventiveness. FLAMES20K achieved a compilability rate of 90.5% after invariant
injection, while FLAMES100K reached 92%. More importantly, smart contracts
were effectively patched against known vulnerabilities, with both models producing
a substantial number of matching patches. Both FLAMES models consistently
showed superior performance compared to the CodeLlama-7B baseline model across
all evaluation metrics. Generating security invariants that revert attack transac-
tions prevents the deployment of exploitable contracts. Furthermore, if included
in automated contract repair pipelines, it helps patching vulnerabilities early in
the development cycle mitigating potential financial losses and security breaches.
Such preventive measures are crucial in the blockchain ecosystem, where deployed
contracts are immutable and vulnerabilities can lead to significant economic damage.
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7.2 Future Work

Several promising research directions emerge from the validation of synthesized
invariants discussed in this thesis.

Firstly, the current work could benefit from a more comprehensive comparative
analysis by evaluating additional state-of-the-art models alongside FLAMES. Specif-
ically, testing models such as ChatGPT-40 or Claude Sonnet 4 would significantly
enhance the quality of the comparison presented in this work. Currently, the only
baseline comparison has been conducted against CodeLlama-7B. It limits the scope
of our evaluation and may not reflect the full landscape of available capabilities.

Secondly, a promising avenue for improvement involves utilizing a larger and
more complex dataset for the validation phase described in Section 4.2.2. The
current study employed the 4.X Solidity version dataset from SB-HEIST, which is
relatively small and contains contracts of limited complexity. Testing the capacity of
FLAMES models to produce valid invariants on a more challenging and semantically
richer dataset would provide valuable insights into the scalability and robustness
of the approach.

Finally, there is significant potential in validating contracts containing multiple
or different types of vulnerabilities. In the current work, the models generate
patches for contracts with vulnerabilities described in Section 2.3. Each contract
contains only a single type of vulnerability. Extending this to contracts with
multiple vulnerabilities of different kinds would be both intellectually interesting
and practically valuable. Real-world smart contracts often exhibit interconnected
security issues that require comprehensive analysis and remediation strategies.

7.3 Reflections

While the FLAMES tool represents a significant advancement in automated smart
contract vulnerability patching, this research journey has revealed both the immense
potential and inherent challenges of applying artificial intelligence techniques to
blockchain security.

The implications of this research extend far beyond the technical domain. In
alignment with the UN SDGs, the development of more reliable smart contract se-
curity tools could substantially impact SDGs 8 (decent work and economic growth),
9 (industry, innovation, and infrastructure), and 10 (reduced inequalities). By
enhancing the security and trustworthiness of blockchain technology, automated
security tools like FLAMES have the potential to democratize access to decentral-
ized financial services. However, realizing this democratization potential depends
critically on the continued development of robust, accessible, and reliable security
frameworks.
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7.3 — Reflections

This research also illuminates a fundamental tension between automation and
human oversight in security-critical systems. While FLAMES successfully demon-
strates the feasibility of automated patch generation, the essential role of human
validation and understanding of generated invariants cannot be overlooked. This
delicate balance between automation and human expertise will likely shape the fu-
ture trajectory of blockchain security tools, ensuring that technological advancement
serves both efficiency and safety in equal measure.
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Appendix A

Additional outliers

In this appendix, we present additional outlier cases that were not included in the
main analysis to avoid redundancy.

A.1 Additional require(false) cases

Among the tested models, only FLAMES20K produces the require(false); invari-
ant for the dos_simple.sol contract in the post-injection scenario, as demonstrated
in Figure A.1. This behavior is consistent across both inference strategies employed.

Another case where the require(false); invariant appears is in the incorrect
_constructor_namel.sol contract. All models generate the require(false); in-
variant in the pre injection scenario across both inference strategies, with the
exception of FLAMES100K when using the aggregated inference strategy, as
shown in Figure A.2.

This demonstrates the capability of the FLAMES100K model with aggregated
inference strategy to produce valid invariants by leveraging information from
previous steps in the inference process.
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Additional outliers

1 |pragma solidity ~0.4.25;

2 | contract DosOneFunc {

3 address[] listAddresses;

4 function ifillArray () public returns (bool){
5 if (listAddresses.length<1500) {

6 for(uint i=0;i<350;i++) {

7 listAddresses.push(msg.sender);
8 }

9 return true;

10 } else {

11 listAddresses = new address[](0);
12 return false;

13 }

14 |[require (false); //POST INVARIANT

15 }

16 |}

Figure A.1: dos simple.sol contract with post injection strategy applied in
FLAMES20K.
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A.1 - Additional require (false) cases

1 |pragma solidity ~0.4.24;

2 |contract Missing{

3 |require (msg.sender==tx.origin) ; //PRE INVARIANT
4 address private owner;

5 modifier onlyowner {

6 require (msg.sender==owner) ;
7 _

8 }

9 function IamMissing()

10 public

11 {

12 owner = msg.sender;

13 b

14 function () payable {}

15 function withdraw()

16 public

17 onlyowner

18 {

19 owner .transfer (this.balance) ;
20 }

21 |}

Figure A.2: incorrect_ constructor_namel.sol contract with pre injection strategy
applied in aggregated inference strategy FLAMES100K.
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