e, s e o .
\’. [T s] || :‘ d | TO rino
W 1859 ,}'

POLITECNICO DI TORINO

Computer Engineering
A.a. 2024/2025
Graduation Session October 2025

Validation of Automatically
Synthesized Smart Contract

Invariants

A validation framework for the FLAMES tool

Supervisor: Candidate:

Prof. Maurizio Morisio Matteo Lauretano

Dr. Mojtaba Eshghie

“Attraverso la finestra sbarrata, vedo un quadrato
di grano in un recinto, un cielo molto grande e
un albero di gelso. .. E ogni giorno, il sole colora
quel campo di sfumature diverse. Il mattino é
dorato, il mezzogiorno é bianco, la sera diventa
rame. Non posso uscire, ma questo piccolo angolo
contiene gia tutto un mondo.”

— Vincent Van Gogh, Lettera a Theo

“Quando ti viene data la possibilita di scegliere,

scegli sempre quello che ti fa tremare.”
— Haruki Murakami, Kafka sulla spiaggia

II1

Acknowledgements

Prima di tutto, mi sento in dovere di dire a te, caro lettore che stai per leggere
questa tesi, che quest’ultima e stata uno dei lavori pitt impegnativi e allo stesso
tempo soddisfacenti della mia vita. E la prima volta che produco qualcosa di cui
mi sento veramente orgoglioso e su cui sento di aver messo tutto me stesso e spero
che questo si percepisca man mano che si va avanti nella lettura. Inoltre, questi
due anni passati prima a Torino e poi a Stoccolma sono stati i piu caotici, intensi
e pieni di esperienze della mia vita. Ho conosciuto molte persone, molte culture,
molti usi e costumi che mi hanno arricchito profondamente, lasciando un’impronta
indelebile che portero per sempre con me.

Voglio ricordare, prima di iniziare la vera e propria sezione di ringraziamenti, la
mia citta, Avellino, che ho dovuto abbandonare per scoprire il mondo, ma che sara
sempre la mia amata terra, a cui non vedo l’ora di ritornare dopo lunghi periodi
lontana da lei. Chi I’avrebbe detto che, un ragazzino timido e impacciato come
me, sarebbe arrivato a questo punto, dopo aver girato prima 'Italia e poi I’'Europa,
completamente cambiato e pieno di amici sempre presenti, anche nei momenti
piu difficili? Mi sento molto fortunato ad avere tutto cio, a priori non ’avrei mai
immaginato e per questo mi sento profondamente grato ogni giorno della mia vita.

Detto questo, inizia la vera e propria sezione di ringraziamenti, quella specifica
in cui ognuna delle persone che ha fatto parte della mia vita trovera un paragrafo
apposta, dedicato a lei. Spero che questo sia un modo per ripagare almeno un
minimo tutto cio che hanno fatto per me, oltre ad un caffe al bar in Italia ovviamente.
Piccola nota, a diffenza della tesi triennale questi ringraziamenti saranno molto
personali, se vuoi caro lettore leggili pure ma tienili per te, non parlarne con me,
mi imbarazzo facilmente.

Ringrazio il Prof. Maurizio Morisio per aver accettato di essere il mio relatore
anche trovandomi dall’altra parte di Europa.

Ringrazio i miei genitori, insieme perche non mi ¢ possibile immaginarli separati.
Grazie per avermi sempre dato retta, non aver mai mollato, per avermi sempre dato
un abbraccio o una carezza quando ne avevo bisogno. Nei momenti di sconforto
siete sempre stati il mio punto di riferimento, grazie per darmi sempre un esempio
di cosa vuol dire amare e essere amati, nonostante tutto.

A%

Ringrazio i miei fratelli, per esserci sempre quando ho bisogno di qualcosa, di
qualsiasi cosa si tratti. Non sono il tipo da dirvelo in faccia, ma sono sempre
stato grato di avermi come mio fratello e mia sorella, nonostante tutte le litogate
e mazzate che ci siamo dati. Dopotutto e il nostro modo do esprimere il nostro
affetto reciproco.

Ringrazio anche tutti i miei parenti, i miei zii e zie Eugenio, Antonietta, Anna,
Gerardo, Ester, Antonio e i miei cugini e cugine Amato, Gerardina, Carmela e
Antonio. Ci tengo a nominarli tutti perche tutti nel momento del bisogno ci sono
sempre stati, se ho potuto fare tutto quello che ho fatto in questi 24 anni di vita e
anche grazie al loro supporto.

Voglio ringraziare anche mia zia Anna Maria, che purtroppo € venuta a mancare
a causa del Covid, per avermi supportato sempre e avermi regalato il mio primo
strumento musicale, una tastiera elettronica, dandomi la spinta per suonare il
pianoforte e immergermi nel mondo della musica.

Ringrazio Donatella e Salvatore per avermi accolto nella loro casa questa es-
tate, facendomi sentire parte della famiglia nella fase finale di revisione della tesi.
Ringrazio la signora Caterina per avermi preparato tutto il cibo tipico possibile nel
mio periodo di soggiorno in Sicilia, per avermi fatto sentire cosa vuol dire ricevere
I’affetto di una nonna dopo tutto questo tempo.

Passiamo alla parte meno formale, i ringraziamenti agli amici. Il termine amici
lo trovo riduttivo, perché non sono solo questo, sono parte della mia vita, le persone
con cui ho passato piu tempo in assoluto, direi anche piu della mia famiglia in
questi cinque e piu anni.

Ringrazio Luca, per esserci sempre stato come un fratello, per avermi sempre
dato fastidio, dalla prima volta che ci siamo incontrati, passando dal trasferimento
a Torino e ’Erasmus a Stoccolma, fino ad ora. I vocali di 15 minuti, le chiamate
su Discord e le continue discussioni e litigi sono ormai una parte inamovibile della
mia vita, chissa quando capirai che e piu facile fare una chiamata piuttosto che
recitare l'intero rosario in un vocale? Comunque sia, grazie veramente, mi hai
sempre sostenuto, anche nei momenti in cui io stesso non ero capace di sostenere me
stesso e mi sembrava non ci fosse via di uscita allo sconforto che provavo. Grazie
per darmi sempre consiglio, sopratutto per avermi rassicurato sulla mia scelta di
andare a Stoccolma quando io stesso ero incerto. Grazie per starmi sempre ad
ascoltare, dalle babbiate ai miei sfoghi piu pesanti. E niente, aspetto ancora un
pranzo offerto, cacc i sord pappooo.

Ringrazio Sara, la persona piu buona e cara che conosco. Una amica, una
confidente e I'unica che mi e venuta a trovare nel freddo e nella neve di Stoccolma.
Una delle poche persone capace di aiutarmi a sbrogliare i miei pensieri, a farmi
sempre ridere e sorridere. Non so come avrei fatto senza di te nel periodo piu
brutto di questi ultimi anni, sei stata sempre pronta a darmi una parola di conforto
e a farmi sentire meglio, nonostante la distanza. Grazie per essere sempre pronta

VI

ad inciuciare, una delle mie attivita preferite. Grazie per essere sempre capace
di arricchire ogni nostra discussione, che sia seria o leggera. Grazie per essere
semplicemente cosi come sei, solare, come il quadro Albero di pesco in fiore di Van
Gogh. Per concludere, ma che ci vuoi fare, se puzzi di pesce.

Ringrazio mbare Gabriele per essere stato come un fratello durante la nostra
convivenza in Collegio. Lo ringrazio per avermi aperto la porta della 417 ogni volta,
a qualsiasi orario e per qualsiasi motivo io bussassi. Grazie per avermi aiutato ad
uscire dalla mio essere introverso e ad aver iniziato a condividere ogni momento
della quotidianita con me, dalla colazione alla cena, dallo studio allo svago, dalle
cose piu importanti a quelle non necessarie, ma si sa, non ci sono segreti tra fratelli.
Nonostante i problemi che ci sono stati, nonostante le incomprensioni, nonostante
tutto, non posso non essere grato per tutto quello che abbiamo fatto insieme. Ma
una cosa ti devo ricordare per le prossime volte, quando parlo io, muto ti devi stare
e devi ascoltare.

Ringrazio tutta la compagnia di Torino, Tonino, il Dottore, Michele, Manuel,
Raffaele e Alice, ormai campana acquisita, per avermi fatto sentire a mio agio
anche a Torino, cosi distante sia geograficamente che culturalmente dalla nostra
Campania. Grazie per le serate passate insieme, in giro alla scoperta di Torino
oppure a Via Vernazza o Via Osasco a vedere le partite dell'Italia. Ringrazio in
particolare Chiara per essere stata la prima con me a imbaccarsi in questo viaggio
verso l’ignoto, senza conoscere nulla del Politecnico o di Torino. Non ho altro da
dire se non lavali, lavali, lavali col fuoco.

Ringrazio tutto il quarto piano del Collegio Einaudi e i miei coinquilini, Kekko,
Andrea, Giulia e Giorgia, che mi hanno accolto in questo ambiente multiculturale e
cosl nuovo per me, facendomi sempre sentire a mio agio. E’ stato incredibile scoprire
come basti passare da una regione all’altra per incontrare culture completamente
diverse dalla mia. Grazie a tutti i momenti di quotidianita, dalla pausa studio
alla tisanina prima di andare a letto. Grazie per tutte le serate passate insieme a
giocare a giochi da tavolo, a guardare film o a girare senza meta a Torino, tra un
gelato o una birra. E ricordatevi, sono di Avellino, non di Napoli.

Ringrazio Raffaele, mio amico dalle superiori, che mi conosce da piu tempo di
tutti. 10 anni non sono pochi, la meta di quelli serviti a finire la galleria sotto il
Corso. Grazie per farmi sentire sempre, ogni volta che torno ad Avellino, come
se non fossi mai andato via, come se non ci fossero mesi e chilometri a dividerci.
Alla fine, non ¢ cambiato nulla dalle superiori, la nostra amicizia rimane sempre
la stessa e spero rimanga sempre cosi. Ma una domanda importante, sto stadio
quando lo fanno?

Ringrazio anche i miei amici rimasti purtroppo ingiustamente carcerati a Salerno,
Pietro e Manuel. Nonostante la distanza, sono sempre raggiungibili e sempre
presenti, come se non fosse cambiato niente dalla triennale. Rimane un interrogativo,
ma il numero 17 da dove € uscito?

VII

https://www.vangoghmuseum.nl/en/collection/s0025v1962

Ho deciso di aggiungere una sezione un po particolare in questi ringraziamenti,
dedicata a quelle cose un po piu banali che pero voglio comunque menzionare, perche
anche le cose pit semplici possono dare la spinta per non fermarsi e continuare ad
andare avanti.

Ringrazio la musica per avermi sempre accompagnato in tutti i miei viaggi, dal
bus per arrivare all’universita ai viaggi della speranza per tornare da Stoccolma a
casa. In particolare voglio ringraziare i miei artisti preferiti, Nitro e Madman, che
mi hanno accompagnato dal primo anno delle superiori fino ad ora.

Ringrazio il mio artista preferito, Vincent Van Gogh, per avermi ispirato ed
emozionato con tutte le sue opere. La visita al Vincent Van Gogh Museum di
Amsterdam rimarra sempre nella mia memoria.

Ringrazio gli innumerevoli libri che ho letto, da Uno, Nessuno e Centomila a
It fino a Norwegian Wood, che mi hanno fatto riflettere su me stesso e viaggiare
con la testa. In particolare, ringrazio il giorno in cui ho deciso di chiedere a mia
madre la collana intera di Harry Potter, che ha dato il via alla mia passione per la
letteratura.

Ringrazio il mio scrittore italiano preferito, Luigi Pirandello, per aver cambiato
il mio modo di vedere il mondo con le sue opere.

Ringrazio il mio scrittore preferito, Stephen King, per avermi fatto innamorare
della scrittura, la quale e capace di esprimere svariati concetti con precisione
assoluta.

Ringrazio lo scrittore Haruki Murakami, per avermi accompagnato con le sue
opere in questo anno in Svezia, dandomi una nuova spinta nella lettura.

Ringrazio il mio mangaka preferito, Shin’ichi Sakamoto, per avermi sempre
affascinato con il suo stile di disegno e intrattenuto con i suoi complessi e crudi
racconti.

Ringrazio il mangaka Eiichiro Oda, che con la sua opera maestra One Piece mi
ha introdotto all’'universo dei manga e degli anime, rendendo questo mondo uno
dei miei interessi principali tuttora.

Ringrazio Torino, che mi ha accolto nella mia prima esperienza da fuorisede e
mi ha fatto sentire a casa.

Ringrazio Stoccolma, che nonostante tutte le difficolta mi ha accolto e si e
dimostrata una citta straordinaria, piena di natura e cultura.

Ringrazio, anche se con dispiacere, Genshin Impact e Rocket League, per avermi
accompagnato in tutta la mia carriera accademica, concedendomi sempre uno
stacco dallo studio.

Ringrazio Expedition 33, che mi ha accompagnato nella stesura della tesi e nelle
sue mille revisioni.

Ringrazio anche tutti i content creators che sono stati il background dei miei
studi, Yotobi, Sabaku, Cydonia e molti altri, che mi hanno tenuto compagnia in
questi momenti solo con me stesso.

VIII

Ringrazio Rami Kebab, che a Torino mi ha sfamato innumerevoli volte, in
sessione o meno.

Ringrazio la catena di fast food Max, che in Svezia mi ha sfamato piu di una
volta.

Un’altra sezione che tengo ad aggiungere contiene i ringraziamenti presenti nella
mia tesi del KTH, dedicati alle persone che ho conosciuto li e quindi scritta in inglese.

I would like to thank my supervisor, Mojtaba Eshghie, and my examiner, Cyrille
Artho, for their invaluable guidance and advice throughout the writing of this
thesis. A special thanks to Mojtaba for his patience in answering all my questions
throughout the process and for the continuous support he provided.

I also want to thank the Apt. 51 for making me feel like I had a family here,
even though I was far from home. In particular, thank you to Ronya for being my
confidante during this time, like a sister to me.

Last but not least, I want to thank my friend Sara for making me feel like I was
in Italy, even while in Sweden.

Stockholm, August 2025

Matteo Lauretano

E per finire, prima di iniziare con la vera e propria tesi, aggiungo un QR code che
se desideri, caro lettore, puoi scansionare e lasciare in esecuzione mentre leggi la
tesi. In questo modo potrai ascoltare cio che ho ascoltato io durante la scrittura di
questa tesi, per vivere in minima parte le stesse sensazioni che io ho provato nella
sua stesura.

E grazie anche a te, caro lettore, per aver letto questi ringraziamenti cosi prolissi
e buona lettura, spero ti piaccia questa mia opera.

IX

Abstract

Smart contracts are immutable programs deployed on blockchain platforms to
enable decentralized applications and financial systems without intermediaries.
However, their immutability and public execution make them especially vulnerable
to security flaws, which can lead to irreversible significant financial losses.

A promising approach to improve security is the use of invariants, properties
that must always hold during contract execution. FLAMES (Fine-tuned Large
Language Model for Invariant Synthesis) is a tool that leverages fine-tuned large
language models to automatically generate security-relevant invariants for Solidity
smart contracts. Automatically generating and validating such invariants remains
a key challenge. This thesis evaluates FLAMES ability to synthesize and validate
security-relevant invariants for Solidity smart contracts. The goal is to determine
whether these invariants are both syntactically correct and semantically effective.
To this end, two automated evaluation pipelines were implemented. The first tests
whether smart contracts with injected invariants still compile successfully. The
second examines whether these invariants prevent real exploits while preserving
benign functionality.

Experimental results show that FLAMES20K and FLAMES100K achieved
high compilability rates and successfully patched known vulnerabilities. This
work bridges the gap between theoretical invariant generation and practical smart
contract security. By automating the validation of synthesized invariants, the pro-
posed framework supports the development of more secure and reliable blockchain
applications.

Table of Contents

List of Tables

List of Figures

1 Introduction

Problem Statement
Purpose and Goals
Research Questions,
Research Methodology
Structure of the thesis,

1.1
1.2
1.3
1.4
1.5

2 Background
2.1 FLAMES: An AI Model for Defensive Code Synthesis
2.2 The DISL Dataset for Training AT Models
2.3 Smart Contract Vulnerabilities

2.3.1
2.3.2
2.3.3
234
2.3.5
2.3.6
2.3.7

Reentrancy Attacks L.
Access Control Vulnerabilities
Arithmetic Vulnerabilities
Front-Running Attacks
Unchecked Low-Level Calls
Bad Randomness
Denial of Service

3 Related Works
3.1 Validation Techniques for Generated Code

3.2

3.1.1
3.1.2
3.1.3
3.1.4

Formal Verification Approaches
Dynamic Analysis and Testing Methodologies
Threat Modeling and Adversarial Analysis
Performance Evaluation and Quality Metrics

Cutting-Edge Synthesis-Validation Integration Systems

3.2.1

Solidity-Centric Development Trends

II1

3.2.2
3.2.3
3.2.4
3.2.5
3.2.6

Specification Mining and Property Synthesis
Code Generation with Integrated Verification
End-to-End Smart Contract Security
Verification Infrastructure
Business Logic and Behavioral Verification

4 Experimental Setup
4.1 Evaluation Dataset
4.2 FEvaluation Method

4.2.1
4.2.2

RQ1 Protocol
RQ2 Protocol

4.3 Experimental Infrastructure

5 Results

5.1 RQI1 Results: Compilability Evaluation

5.1.1
5.1.2

Etherscan compilation failures
Comparative Compilability Analysis

5.2 RQ2 Results: Validating Security Invariants

5.2.1
5.2.2
5.2.3
5.2.4
5.2.5
5.2.6

6 Discussion

Evaluation Metrics
FLAMES20K Results
FLAMESIOOK Results
CodeLlama Results
Comparative Validity Analysis
Outliers and Study Cases

6.1 Robustness, Accuracy and Human Effort
6.2 Threats to Validity o000

7 Conclusion and Future Work
7.1 Conclusion

7.2 Future

Work

7.3 Reflections

A Additional

outliers

A.1 Additional require(false) cases

v

List of Tables

5.1

5.2

2.3

5.4

3.5

2.6

2.7

Aggregated results for FLAMES20K by vulnerability category and
inference strategy. L
Isolated results for FLAMES20K by vulnerability category and
inference strategy. L
Aggregated results for FLAMES100K by vulnerability category
and inference strategy. L.
Isolated results for FLAMES100K by vulnerability category and
inference strategy.
Aggregated results for CodeLLlama7B by vulnerability category and
inference strategy.o
Isolated results for CodelLlama-7B by vulnerability category and
inference strategy.
Validation results for all models in both inference strategies

List of Figures

2.1
2.2
2.3
2.4
2.5

2.6
2.7

4.1
4.2

4.3

0.1

5.2
2.3

5.4

2.5

2.6

2.7

5.8

2.9

SecureWithdraw contract using checks-effects-interactions to prevent

TEENTTANCY. v o o e e e e 7
Example of role-based access control with owner and admin checks. 7
Manual overflow and underflow checks in arithmetic operations. . . 8
Commit-reveal scheme to mitigate front-running. 8
Explicit return value check on low-level ca11. 9
Randomness via external oracle with freshness and validity checks. . 9

Example of secure withdrawal pattern to avoid DoS via external calls. 10

Automated pipeline RQ1 Experimental Setup 21
Annotated Solidity snippet showing precondition, postcondition, and
vulnerability line.o oo 22
Automated pipeline RQ2 Experimental Setup 23
Example of a Solidity contract flattening error: duplicate pragma
and contract declarations.o 26
Compilation success rate after invariant injection across datasets. . 27
Vulnerability per best strategy spider graph for FLAMES20K,
aggregated results oL 33
Performances per strategy spider graph for FLAMES20K, aggre-
gated results Lo 34
Vulnerability per best strategy spider graph for FLAMES20K,
isolated results 35
Performances per strategy spider graph for FLAMES20K, isolated
results 36
Vulnerability per best strategy spider graph for FLAMES100K,
aggregated results 37
Performances per strategy spider graph for FLAMES100K, aggre-
gatedresults 38
Vulnerability per best strategy spider graph for FLAMES100K,
isolated results 39

5.10 Performances per strategy spider graph for FLAMES100K, isolated
results
5.11 Vulnerability per best strategy spider graph CodeLlama, aggregated
results
5.12 Performances per strategy spider graph for Codellama, aggregated
results
5.13 Vulnerability per best strategy spider graph for CodeLlama, isolated
results

43

5.14 Performances per strategy spider graph for CodeLlama, isolated results 44

5.15 0x4bT71 contract with post injection strategy applied in aggregated
inference strategy CodeLlama-7B.
5.16 0xe894 contract with pre VL_ post injection strategy applied in
CodeLlama-7B.
5.17 0x4051 contract with pre_VL_ post injection strategy applied in
CodeLlama-7B.
5.18 FibonacciBalance.sol contract with pre post injection strategy ap-
plied in aggregated inference strategy FLAMES20K.
5.19 FibonacciBalance.sol contract with pre post injection strategy ap-
plied in aggregated inference strategy FLAMES100K.
5.20 0x52d2 contract with VL injection strategy applied in isolated infer-
ence strategy FLAMES20K.
5.21 0x52d2 contract with VL injection strategy applied in isolated infer-
ence strategy FLAMES100K.
5.22 dos_number.sol contract with pre injection strategy applied in iso-
lated inference strategy CodeLlama-7B.
5.23 dos_ number.sol contract with pre injection strategy applied in iso-
lated inference strategy FLAMESI00K.
5.24 token.sol contract with pre injection strategy applied in aggregated
inference strategy CodeLlama-7B.
5.25 token.sol contract with pre injection strategy applied in aggregated
inference strategy FLAMES20K.

A.1 dos_simple.sol contract with post injection strategy applied in
FLAMES20K.

A.2 incorrect_ constructor namel.sol contract with pre injection strat-
egy applied in aggregated inference strategy FLAMES100K.

VIII

52

https://etherscan.io/address/0x4b71ad9c1a84b9b643aa54fdd66e2dec96e8b152
https://etherscan.io/address/0xe894d54dca59cb53fe9cbc5155093605c7068220
https://etherscan.io/address/0x4051334adc52057aca763453820cb0e045076ef3
https://etherscan.io/address/0x52d2e0f9b01101a59b38a3d05c80b7618aeed984
https://etherscan.io/address/0x52d2e0f9b01101a59b38a3d05c80b7618aeed984

Chapter 1

Introduction

Smart contracts are self-executing programs that enforce the terms of digital
agreements once predefined conditions are met. Originally conceptualized by Nick
Szabo in the 1990s [1], they were envisioned as tools for minimizing trust and
automating contract enforcement through precise code. In this way, they reduce
reliance on intermediaries and minimize the risk of human mistakes in processes [2].

With the emergence of blockchain platforms like Ethereum [3], Szabo’s vision
became technically feasible. Today, smart contracts underpin decentralized ap-
plications (dApps) such as decentralized finance (DeFi), token standards, and
on-chain governance. Their deployment on the blockchain ensures immutability
and transparency; once published, the code cannot be altered, and its logic executes
publicly and deterministically. While this fosters trustlessness, it also introduces
significant engineering and security challenges. Smart contracts are often written
in Solidity, where small bugs can lead to severe exploits which has been observed
before [4].

The high-value nature of smart contracts and their open execution environment
make them prime targets for attacks. Incidents such as the DAO hack in 2016 [5]
and multiple DeFi breaches have resulted in irreversible losses totaling millions of
dollars [6, 7, 8.

As decentralized applications continue to evolve and scale, ensuring the cor-
rectness and robustness of smart contracts becomes increasingly critical. These
programs are no longer isolated scripts but foundational components of a global
financial and computational infrastructure.

A common example is a crowdfunding platform. Instead of relying on an
intermediary to manage the funds, a smart contract can be programmed to auto-
matically collect contributions from backers. The rules are encoded in advance:
if the campaign reaches its funding goal within the specified deadline, the smart
contract releases the funds directly to the project creator; otherwise, it refunds the
contributions to the backers.

Introduction

1.1 Problem Statement

Smart contracts, once deployed to a blockchain network, are immutable and operate
autonomously. This immutability, while beneficial for transparency and trust,
also means that any vulnerabilities in the contract code become permanent and
exploitable. Even minor logic errors can have catastrophic financial consequences [9,
10, 6], and the adversarial nature of public blockchains exacerbates the risk.

To address these risks, one promising direction involves the use of invariants [11].
They are properties of the contract state that must always hold true [12, 13].
For example, an invariant might specify that the total balance in a vault must
never decrease outside of an authorized withdrawal function. If such invariants are
enforced at runtime by the injection of require/assert statements directly into the
contract’s Solidity code, malicious transactions that violate them can be reverted
automatically, neutralizing potential exploits.

Recent research has explored automated invariant synthesis, particularly through
dynamic analysis techniques that extract candidate invariants from historical trans-
action data [14, 15]. While such methods are effective in capturing behavioral
patterns, they often lack semantic rigor and generalizability, limiting their applica-
bility to unseen or adversarial scenarios [11, 16].

Moreover, empirical studies [17] highlight recurring classes of vulnerabilities in
deployed contracts and suggest that ad hoc fixes or manual auditing are insufficient.
These findings underscore the need for automated, scalable mechanisms that can
generate, verify, and integrate security-critical invariants directly into smart contract
code.

Despite ongoing progress, the literature lacks a comprehensive and empirically
validated framework for the end-to-end use of invariants in real-world smart con-
tracts. This thesis addresses this gap by proposing a framework for the validation
of automatically-synthesized invariants in Solidity smart contracts.

1.2 Purpose and Goals

The purpose of this thesis is to validate automatically synthesized invariants
and develop a comprehensive automated evaluation framework for assessing the
FLAMES tool. FLAMES is a tool that utilizes fine-tuned large language models
to automatically produce security invariants for Solidity smart contracts. By
analyzing contract code and predicting necessary safety checks, FLAMES assists
in preventing common vulnerabilities such as overflows, unauthorized transfers, or
state inconsistencies. This evaluation framework is specifically designed to test
whether the generated invariants are both syntactically correct and semantically
effective when applied to real-world vulnerable contracts.

2

1.3 — Research Questions

This research aims to bridge the gap between theoretical vulnerability detection
and practical application in deployed smart contracts. The work provides empirical
evidence of FLAMES’s ability to generate invariants that compile successfully and
mitigate known security issues, offering a systematic approach to improving smart
contract reliability.

1.3 Research Questions

RQ1-Compilability To what extent do invariants synthesised by FLAMES
preserve the ability of existing smart contracts to compile?

RQ2—-Security Do FLAMES invariants prevent known exploits without altering
benign behaviour?

1.4 Research Methodology

This thesis adopted a positivist philosophical stance, emphasizing objective mea-
surement and empirical observation as the foundation for knowledge generation [18].
The research employed an applied, iterative methodology [18], where automated
evaluation pipelines were systematically developed, tested, and refined through
multiple cycles. Two distinct automated pipelines were developed. Each pipeline
was designed to address a specific research question:

RQ1 Pipeline: focuses on evaluating the syntactic correctness of generated
invariants. It verifies that the generated invariants can be successfully compiled
and integrated into existing smart contracts without introducing compilation
errors.

RQ2 Pipeline: assesses the semantic effectiveness of the generated invari-
ants. It measures their practical utility in patching known vulnerabilities and
evaluates whether the invariants change the contract’s behavior.

The overall reasoning process was inductive. Theoretical insights and general-
izations emerged from patterns identified in the empirical data generated by the
automated pipelines [18].

1.5 Structure of the thesis

Chapter 2 provides the theoretical foundations relevant to the topics addressed
in this thesis. Chapter 3 offers a comprehensive review of the existing literature.
The experimental methodology and rationale behind key decisions are detailed

3

Introduction

in Chapter 4. Chapter 5 shows the experimental findings accompanied by a
thorough analysis. Chapter 6 presents a discussion of the limitations and the
multi-dimensional trade-off between robustness, accuracy, and the human effort
required to review the output. Finally, Chapter 7 summarizes the work, suggests
directions for future research, and offers reflections on the impact of this study.

Chapter 2

Background

This chapter provides the knowledge necessary to understand the research presented
in this thesis. We begin by examining two key resources: FLAMES [19], a fine-
tuned large language model approach for invariant synthesis described in Section
2.1, and DISL [20], a dataset for smart contract analysis presented in Section
2.2. Subsequently, we explore in Section 2.3 the most common smart contract
vulnerabilities that threaten blockchain applications, demonstrating how automated
security measures such as require statement injection can mitigate these risks.

2.1 FLAMES: An AI Model for Defensive Code
Synthesis

FLAMES [19] presents an approach to enhancing smart contract security through
automated invariant generation. The framework leverages CODELLAMA [21] models
fine-tuned on smart contract code to automatically produce invariants for Solidity
smart contracts. It employs three model variants: a smaller fine-tuned model
trained on 20,000 smart contracts, a larger fine-tuned model trained on 100,000
smart contracts, and a baseline model using the original CodeLlama.

FLAMES incorporates a Fill-in-the-Middle (FIM) token infilling technique [22].
This technique enables the model to predict missing security checks with contextual
relevance. The framework uses Abstract Syntax Tree (AST) analysis [23] to identify
strategic points for inserting security checks, placing <FILL_ME> tokens accordingly.
This injection ensures that the model learns to generate contextually appropriate
security invariants at syntactically and semantically correct locations in the smart
contract code.

An example is a Solidity function that transfers tokens between user accounts.
A potential vulnerability arises if the sender’s balance is insufficient for the trans-
fer, which could result in underflow or failed transactions. Using FLAMES, an

5)

Background

invariant such as require(balance[sender] >= amount, "Insufficient balance"); can
be automatically generated and inserted at the relevant location. This ensures that
the function enforces the necessary safety condition while preserving its intended
functionality.

2.2 The DISL Dataset for Training AI Models

The DISL [20] (Dataset for Intelligent Smart Contract anal.ysis) dataset serves
as a resource for smart contract research and machine learning applications. The
DISL dataset presents a collection of 514,506 unique Solidity files that have been
deployed to Ethereum main net. This makes it one of the largest of real-world
smart contracts available for research purposes.

DISL includes only the verified source code of smart contracts deployed on
Ethereum, ensuring that the dataset comprises real, in-use contracts. Moreover, its
focus on uniqueness of the included smart contracts, ensures a diverse dataset.

2.3 Smart Contract Vulnerabilities

Smart contracts face several security challenges due to their immutable nature and
the high-stakes financial applications they often support.

2.3.1 Reentrancy Attacks

Reentrancy vulnerabilities occur when external calls to untrusted contracts can
recursively invoke the calling contract before the first invocation completes. This
can lead to unexpected state changes and allow attackers to drain funds. The most
notorious example is the DAO attack of 2016 [5].

A simple require statement ensuring state updates are performed before ex-
ternal calls can prevent many reentrancy attacks. For instance, consider the safe
withdrawal pattern in Figure 2.1.

2.3.2 Access Control Vulnerabilities

Access control issues arise when functions lack proper permission checks, allowing
unauthorized users to execute privileged operations. These vulnerabilities can be
prevented by implementing role-based access control with appropriate require
statements, as illustrated in Figure 2.2.

=
H O © 00 N O 0w N

e s e e e
N o O W N

© 0 N O G R W N =

P I I N Ty
= R R R L TS

2.3 — Smart Contract Vulnerabilities

contract SecureWithdraw {
mapping (address => uint256) public balances;

function withdraw(uint256 amount) public {
require(balances [msg.sender] >= amount, "Insufficient balance");

// Update state before external call

balances [msg.sender] -= amount;
(bool success,) = msg.sender.call{value: amount}("");
require (success, "External call failed");

}

receive () external payable {
balances [msg.sender] += msg.value;

}

Figure 2.1: SecureWithdraw contract using checks-effects-interactions to prevent
reentrancy.

contract AdminControl {
address public owner;
mapping (address => bool) public admins;

modifier onlyOwner () {
require (msg.sender == owner, "Only owner can perform this action");

-

}

modifier onlyAdmin () {
require (admins [msg.sender], "Insufficient privileges");

-

}

function addAdmin(address _admin) public onlyOwner {
admins [_admin] = true;

}

function sensitiveFunction() public onlyAdmin {
// privileged logic
}

Figure 2.2: Example of role-based access control with owner and admin checks.

2.3.3 Arithmetic Vulnerabilities

Integer overflow and underflow vulnerabilities can cause unexpected behavior in
smart contracts. While Solidity 0.8+ includes built-in overflow protection[24], older
contracts and unchecked blocks remain vulnerable. Manual checks are shown in

7

© 0N U e W N

=
=]

© 0N U W N

== e
N = O

_ e
[SUN NN

Background

Figure 2.3.

contract ArithmeticSafe {
function safeAdd(uint256 a, uint256 b) public pure returns (uint256) {

require(a + b >= a, "Addition overflow");

return a + b;

}

function safeSub(uint256 a, uint256 b) public pure returns (uint256) {
require(a >= b, "Subtraction underflow");
return a - b;

Figure 2.3: Manual overflow and underflow checks in arithmetic operations.

2.3.4 Front-Running Attacks

Front-running occurs when attackers observe pending transactions and submit their
own transactions with higher gas prices to be executed first. This is particularly
problematic in DeFi applications. Commit-reveal schemes help mitigate such risks,
as shown in Figure 2.4.

contract CommitReveal {
mapping (address => bytes32) public commits;
uint256 public revealPhase;

function commit(bytes32 hash) public {

commits [msg.sender] = hash;
}
function reveal(uint256 value, bytes32 salt) public {
require(block.timestamp >= revealPhase, "Still in commit phase");
require (commits [msg.sender] != 0, "No commit found");
require (keccak256 (abi.encodePacked(value, salt)) == commits[msg.sender], "

Invalid reveal");
// process value

}

Figure 2.4: Commit-reveal scheme to mitigate front-running.

2.3.5 Unchecked Low-Level Calls

Low-level calls such as call, delegatecall, and staticcall can fail silently if
their return values are not checked. Always ensure their success explicitly, as shown

8

o Ut W N

=
= O © 00 N O 0 W N

Jun
M)

13
14
15
16
17
18
19
20

2.3 — Smart Contract Vulnerabilities

in Figure 2.5.

contract SafeCall {
function callExternal (address target, bytes memory data) public {
(bool success,) = target.call(data);
require (success, "Low-level call failed");

Figure 2.5: Explicit return value check on low-level call.

2.3.6 Bad Randomness

Smart contracts cannot generate truly random numbers due to the deterministic
nature of the blockchain. Predictable sources like block hashes can be exploited. A
safer approach involves external oracles, as in Figure 2.6.

interface RandomnessOracle {
function isValid () external view returns (bool);
function getRandom() external view returns (uint256);

}

contract RandomSafe {
RandomnessOracle public oracle;
uint256 public lastRandomUpdate;
uint256 constant MIN_DELAY = 1 hours;

function updateRandom () public {

require (block.timestamp > lastRandomUpdate + MIN_DELAY, "Randomness too
recent") ;

require (oracle.isValid (), "Invalid randomness source");

uint256 random = oracle.getRandom();
lastRandomUpdate = block.timestamp;

// use random

Figure 2.6: Randomness via external oracle with freshness and validity checks.

2.3.7 Denial of Service

Denial of Service (DoS) attacks in smart contracts aim to make a function or
the entire contract unusable. These issues commonly arise from patterns such

9

© 0N DU e W N

e e e
N OOk W N = O

Background

as unbounded loops, reliance on external contract calls, or blocking operations.
To prevent DoS vulnerabilities, developers should avoid writing logic that can be
indefinitely blocked or fail due to untrusted interactions. Figure 2.7 demonstrates
a safer approach by using pull-over-push patterns to mitigate such risks.

contract SecureWithdrawal {
mapping (address => uint256) public balances;

function deposit() public payable {
balances [msg.sender] += msg.value;

}

function withdraw () public {
uint256 amount = balances[msg.sender];
require (amount > 0, "Nothing to withdraw");

balances [msg.sender] = 0;

(bool sent,) = msg.sender.call{value: amount}("");
require(sent, "Failed to send Ether");

Figure 2.7: Example of secure withdrawal pattern to avoid DoS via external calls.

10

Chapter 3

Related Works

Blockchains enable decentralized and trustless applications by removing the need
for central authorities and enabling verifiable, tamper-resistant execution of transac-
tions [2]. Smart contracts bring this vision to life by providing programmable logic
that runs on the blockchain. They enforce rules and automate transactions in a
secure and transparent manner. They have become the core enabler of decentralized
finance (DeFi), non-fungible tokens (NFTs), and decentralized autonomous organi-
zations (DAOs). As their complexity and adoption continue to grow, traditional
manual development approaches face increasing scalability and security challenges.
This has led to a growing interest in automated synthesis techniques capable of
generating correct and secure smart contract code at scale.

The rise of large language models (LLMs) and advanced program synthesis
techniques has opened new possibilities for automated smart contract generation.
However, the immutable nature of deployed contracts and their direct control over
valuable digital assets make the validation of synthesized code not merely important,
but absolutely critical. Bugs and vulnerabilities are both harder to patch due to
the immutability of the code section of smart contracts and also have a significant
financial impact. While patching is possible using upgradability /proxy patterns [25,
26], this approach has limitations: once an attack transaction is confirmed on
the blockchain, it cannot be reverted. As a result, vulnerabilities can lead to the
irreversible loss of assets and funds, as demonstrated in past attacks [6]. This
makes rigorous validation an indispensable part of any automated code synthesis
workflows. A recent systematization of real-world incidents [27] reinforces this need
by showing that many high-impact exploits are not caused solely by low-level bugs,
but by combinations of vulnerabilities, many of which could be prevented using
proper checks in smart contract functions.

This literature review provides an examination of current approaches, tools, and
methodologies for validating automatically synthesized smart contract code.

11

Related Works

3.1 Validation Techniques for Generated Code

The validation of automatically generated smart contracts presents unique chal-
lenges. Unlike manually written code, synthesized contracts may show unexpected
patterns, novel vulnerability combinations, or subtle logical inconsistencies that
emerge from the generation process itself. The following subsections examine the
formal, dynamic, adversarial, and empirical methodologies that form the foundation
of robust validation for generated smart contract code.

3.1.1 Formal Verification Approaches

Formal verification provides the strongest guarantees for smart contract correct-
ness, making it particularly valuable for validating synthesized code where the
development process may introduce subtle errors.

The theoretical foundations of smart contract verification trace back to classical
symbolic execution techniques. King’s seminal work [28] established the funda-
mental principles of symbolic execution, where program inputs are represented
as symbolic values rather than concrete data, enabling systematic exploration of
execution paths.

Building upon these foundations, Baldoni et al. [29] provide a survey of symbolic
execution techniques, highlighting key challenges such as path explosion, constraint
solving complexity, and the trade-offs between precision and scalability. These
challenges are particularly relevant in the smart contract domain, where contracts
may have complex state spaces and intricate interaction patterns.

Formal verification tools can be broadly categorized into symbolic execution-
based analyzers, such as SOLSEE [30] and SYMGPT [31], and model checking
approaches, such as ESBMC-SoLIDITY [32].

SOLSEE [30] performs symbolic execution on Solidity source code rather than
bytecode, preserving high-level semantic information for debugging and interactive
analysis.

SYMGPT [31] integrates large language models with symbolic execution for
smart contract auditing. This tool shows how Al can improve formal verification
by generating property specifications and invariants, which are then verified using
traditional symbolic methods..

ESBMC-SoLIDITY [32] extends satisfiability modulo theories (SMT) based
model checking to Solidity contracts, providing bounded model checking capabilities
that can verify safety properties and detect common vulnerabilities such as integer
overflows and reentrancy attacks.

12

3.1 — Validation Techniques for Generated Code

3.1.2 Dynamic Analysis and Testing Methodologies

Testing approaches for synthesized smart contracts must address both functional
correctness and security properties. Traditional testing methodologies require adap-
tation to handle the unique characteristics of generated code, including potentially
complex interaction patterns and new vulnerability vectors.

Dynamic testing approaches for synthesized contracts span a spectrum from
machine learning-guided fuzzing, exemplified by SMARTEST [33], to temporal
logic-based validation, as implemented in tools like SMARTPULSE [34] and T2 [35].

SMARTEST [33] introduces a new approach by combining symbolic execution
with language model guidance to find vulnerable transaction sequences. The
tool addresses the path explosion problem by using machine learning to prioritize
exploration of potentially vulnerable execution paths, demonstrating superior
effectiveness in discovering complex multi-transaction vulnerabilities. This aligns
with the empirical findings of [27], which show that multi-step exploit chains are
responsible for a large portion of real-world smart contract losses. It highlightes the
importance of testing methodologies that go beyond single-transaction execution
traces.

SMARTPULSE [34] provides automated checking of temporal properties in smart
contracts, utilizing temporal logic frameworks to reason about contract lifecycles
and state transitions.

T2 [35] is specialized in temporal property verification, offering automatic
generation of proofs for liveness and safety properties. Its integration with the
LLVM framework enables analysis of contracts compiled from various high-level
languages, broadening its applicability to different synthesis approaches.

A mention to formal temporal reasoning is provided by the work of Sergey et
al. [36]. This work describes a treatment of temporal properties in smart contracts,
demonstrating how traditional temporal logic can be adapted to reason about
blockchain-specific concepts such as block ordering, transaction atomicity, and
cross-contract interactions. Their approach using Coq for mechanized verification
establishes important foundations for formal reasoning about contract temporality.

3.1.3 Threat Modeling and Adversarial Analysis

Security analysis for synthesized smart contracts requires specialized approaches
that can handle both traditional vulnerability patterns and novel security issues that
may arise from the synthesis process. The automated nature of code generation may
introduce unexpected interaction patterns or subtle logical errors that traditional
security analysis tools might miss.

Threat modeling and adversarial analysis tools for synthesized contracts can be
categorized based on their core capability: from formal temporal safety verification,

13

Related Works

as implemented in VERX [37], to benchmarking and multi-tool evaluation frame-
works, such as SmartBugs 2.0 [38], and to adversarial exploit generation guided by
formal specifications and language models, as proposed in XPLOGEN [39].

VERX [37] provides safety verification capabilities with particular strength
in temporal specification checking, enabling detection of complex vulnerability
patterns that span multiple transactions.

SMARTBUGS 2.0 [38] offers a standardized execution framework for weakness
detection, providing benchmarking capabilities that are crucial for evaluating the
effectiveness of different analysis approaches on synthesized code. The framework’s
ability to compare multiple analysis tools systematically shows the strengths
and limitations of different validation approaches when applied to automatically
generated contracts.

The work by Eshghie and Artho [39] presents XPLOGEN which is a methodology
to generate benchmarks for smart contract analysis tools. Their approach uses
formal specifications combined with LLMs to synthesize valid exploits. Their
methodology achieved a 57% success rate in exploiting targeted contract aspects
with an average of 3.5 transactions per exploit, demonstrating the efficiency of
guided exploit generation. While such tools focus on exploit generation and
validation, recent work has shown that many real-world attacks do not stem from
isolated code-level bugs alone. Rezaei et al. [27] systematically analyzed 50 major
incidents and revealed that exploit chains often arise from intertwined flaws across
protocol logic, governance, external dependencies, and implementation. Their
four-tier root-cause framework highlights the importance of going beyond static
bug detection and considering systemic and operational factors when validating
synthesized contracts.

3.1.4 Performance Evaluation and Quality Metrics

Empirical evaluation frameworks provide crucial infrastructure for comparing differ-
ent synthesis and validation approaches. The development of complete benchmarks
specifically designed for synthesized smart contracts is essential for advancing the
field and ensuring reproducible research results.

Recent work by Bobadilla et al. using SB-HEIST [40] examines whether au-
tomated fixes truly mitigate smart contract exploits, providing insights into the
effectiveness of current vulnerability remediation approaches for synthesized code.
This research highlights the gap between detecting vulnerabilities and effectively
addressing them in automatically generated contracts, revealing that many au-
tomated fixes may not provide the security guarantees they claim to offer. The
establishment of standardized evaluation metrics and benchmark datasets enables
systematic comparison of different validation approaches.

14

3.2 — Cutting-Edge Synthesis-Validation Integration Systems

3.2 Cutting-Edge Synthesis-Validation Integra-
tion Systems

The integration of synthesis and validation processes represents a paradigm shift
from traditional sequential development models where verification occurs after code
completion. Modern approaches increasingly recognize that effective validation
of automatically generated smart contracts requires tight coupling between the
generation and verification processes, creating feedback loops that improve both
synthesis quality and validation coverage. This integration enables real-time
constraint checking, specification-guided generation, and iterative refinement that
would be impossible with purely post-hoc validation approaches.

3.2.1 Solidity-Centric Development Trends

Given Ethereum’s dominant position in the smart contract ecosystem, Solidity
has become the primary target for automated synthesis research. The language’s
complexity, with features such as inheritance, modifiers, events, and low-level
assembly integration, presents significant challenges for automated generation and
subsequent validation.

As a benchmarking framework, SOLEVAL [41] provides infrastructure for com-
paring different synthesis approaches and their associated validation techniques.
The framework gives a systematic evaluation of LLM-generated smart contracts by
providing metrics and evaluation protocols. These metrics include standardized
measures such as pass@k, the proportion of tasks for which at least one of the
top-k generated candidates passes all test cases, and compile@k, the proportion of
generations that result in syntactically correct, compilable code, along with gas
usage estimation and vulnerability detection via tools like Slither.

3.2.2 Specification Mining and Property Synthesis

Specification mining and property synthesis approaches for smart contracts can
be categorized based on their core methodology: from retrieval-augmented LLM-
based property generation, as in PROPERTYGPT [42], to automated invariant
inference for Solidity, as demonstrated by Liu et al. [14], to multimodal learning for
invariant mining, as in SMARTINV [43], and domain-adapted LLM-based synthesis,
as implemented in FLAMES [19].

PROPERTYGPT [42] introduces techniques for retrieval-augmented property
generation, using LLMs to generate formal specifications from natural language
descriptions and code analysis. The retrieval-augmented approach ensures that
generated properties are grounded in existing knowledge and best practices.

15

Related Works

Invariant generation has emerged as a critical component of smart contract
verification, as invariants capture essential correctness properties that must hold
throughout contract execution. Liu et al. [14] present automated techniques for
generating invariants specific to Solidity contracts, addressing challenges such as
handling dynamic arrays, mappings, and complex state relationships.

SMARTINV [43] employs multimodal learning to infer smart contract invariants,
combining code analysis with natural language processing to understand contract
documentation and comments.

FLAMES [19] uses fine-tuned large language models for invariant synthesis,
showing how domain-specific training can improve the quality and relevance of
generated invariants for smart contract verification. The fine-tuning approach
generates meaningful invariants for synthesized contracts by incorporating domain-
specific knowledge.

3.2.3 Code Generation with Integrated Verification

FSM-SCG [44] shows how finite state machines can guide LLM-based smart
contract generation with validation. The approach uses formal state models to
structure the synthesis process, making the resulting contracts more amenable
to formal verification by ensuring that the generated code follows predictable
state transition patterns. The iterative validation component of FSM-SCG allows
continuous refinement based on feedback.

Complementing this, VERISOLID [45] presents a correct-by-design framework
for smart contract development based on formal state machine models. Developers
define contracts using a high-level FSM specification with clear operational seman-
tics. This specification is then subjected to formal verification to ensure properties
such as deadlock-freedom and state reachability. Once verified, the specification is
automatically compiled into Solidity code, preserving the correctness guarantees.

3.2.4 End-to-End Smart Contract Security

Security in smart contracts can be addressed at different stages of their lifecycle.
CODEBC [46] presents a security-aware approach to LLM-based smart contract
generation, incorporating security considerations directly into the synthesis process
through a three-stage fine-tuning method. Instead of relying on annotated vulnera-
bility datasets or formal specifications, CodeBC leverages lightweight vulnerability
and security tags to differentiate between secure and insecure code during training.
In addition to generation-time security, SOLYTHESIS [47] presents how contracts
can be instrumented to enforce invariants during execution, showing that runtime
validation overhead is negligible in the blockchain context. The system operates as
a source-to-source Solidity compiler that takes a smart contract and user-specified

16

3.2 — Cutting-Edge Synthesis-Validation Integration Systems

invariants as input, producing an instrumented contract that rejects transactions
violating the invariants. These invariants are specified in a formal specification
language that supports quantifiers, summations, and stateful expressions. It allows
users to define complex properties over arrays, mappings, and global contract state.

3.2.5 Verification Infrastructure

Verification tools can be categorized by verification level: SOLC-VERIFY [48] operates
at the source-code level and KEVM [49] at the bytecode level.

SOLC-VERIFY [48] provides a modular verification framework that enables devel-
opers to annotate contracts with specifications and automatically verify compliance.
The tool’s integration with the Solidity compiler workflow makes formal verification
more accessible to practitioners working with synthesized contracts.

KEVM [49] provides complete formal semantics of the Ethereum Virtual Ma-
chine, establishing the formal foundations necessary for rigorous verification of
smart contract execution.

3.2.6 Business Logic and Behavioral Verification

The work by Shishkin [50] addresses debugging smart contracts’ business logic
using symbolic model-checking, providing techniques for verifying that contracts
correctly implement intended business rules. The proposed approach involves
translating smart contracts written in Solidity into an intermediate formal model
and expressing business logic properties as state and trace specifications.

HIGHGUARD [51] introduces cross-chain business logic monitoring, using dy-
namic condition response (DCR) graph models to specify and verify contract
behaviors at runtime. The system employs DCR graphs [26, 25] as formal spec-
ifications to verify contract execution against these models. Another interesting
aspect about this work is the capability of operating in cross-chain environments
for detecting business logic flaws.

17

Chapter 4

Experimental Setup

This chapter describes the empirical protocol adopted to evaluate automatically
synthesized invariants for smart contract security. This chapter is organised
following conventional research-paper structure: we elaborate upon the experimental
setup, datasets used, and evaluation metrics. All artefacts (code, data, and raw
results) needed to reproduce the experiments are publicly available at:

o RQ1 Artefacts
o RQ2 Artefacts

4.1 Evaluation Dataset

The following datasets are available at Flames Results.

FLAMES-20K: 20,000 smart contracts dataset extracted from DISL [20] used
for fine tuning the model. Each element in the dataset is composed of
multiple attributes, including:

o predicate — the original (ground-truth) invariant associated with the
contract,
e results — the invariant synthesized by the model,
e original_idx — index linking to the original entry in the DISL dataset.
FLAMES-100K: 100,000 smart contracts dataset derived from DISL, used for
fine tuning the model. Each entry contains:
e predicate — the original invariant,

e results — the invariant synthesized by the model,

19

https://github.com/ASSERT-KTH/FLAMES/tree/master/raw-validation-results/compilability-results
https://github.com/ASSERT-KTH/FLAMES/tree/master/raw-validation-results/sb-heists
https://huggingface.co/datasets/ASSERT-KTH/FLAMES_results

Experimental Setup

e original_idx — index pointing to the corresponding DISL record.

DISL: !the main source dataset of verified smart contracts from which FLAMES-20K
and FLAMES-100K are derived. Each element includes multiple metadata
attributes, such as:

e contract_address — on-chain address of the contract, to retrieve the
source code from Etherscan.io,

e compiler_version — version of the Solidity compiler used to deploy it.
CodeLlama-7B: same contracts as FLAMES20K dataset, but the invariants

are generated by default CODELLAMA. This acts as a baseline to evaluate

generation quality. Each entry contains:

e predicate — the original invariant,

e codeLlama_results — the invariant synthesized by the model.
SB-Heist-4.x: a subset (n = 110) of SB-Heist, consisting of contracts written

in Solidity 0.4.x. Each contract contains ground-truth exploit annotations,
used for evaluating security-relevant inference in RQ2.

4.2 Evaluation Method

The study is divided into two phases, each mapped to a research question:

RQ1-Compilability To what extent do invariants synthesised by FLAMES
preserve the ability of existing smart contracts to compile?

RQ2-Security Do FLAMES invariants prevent known exploits without altering
benign behaviour?

4.2.1 RQ1 Protocol

For every contract C' in a dataset we perform: (i) native compilation to establish a
baseline; (ii) invariant injection using the candidate model; and (iii) re-compilation
with the original compiler version. All steps are fully automated and the automated
pipeline is shown in Figure 4.1.

'https://huggingface.co/datasets/ASSERT-KTH/DISL

20

https://huggingface.co/datasets/ASSERT-KTH/DISL

4.2 — Evaluation Method

Injection
— generated D —
invariant
Injected contracts Compiled contracts
From Etherscan.io
2
Contract source code —> I Compilation
i‘.’i solex results

Figure 4.1: Automated pipeline RQ1 Experimental Setup

Metrics

« Compilation Success: percentage of contracts that compile after injection.

o Failure categories: syntax error, etc..

4.2.2 RQ2 Protocol

For each vulnerable contract V in SB-Heist, and for every combination of in-
ference strategy inf € {Aggregated, Isolated} as described in Section 4.2.2, and
invariant-injection strategy inj € { VL, Pre, Post, ...} as showed in Figure 4.2, we:

1) Patch V' with the inf model-generated require statements at inj locations;

2) Execute the benign transaction suite (regression test);

3) Replay the ground-truth exploit;

4) Record the outcome (pass/fail).
21

Experimental Setup

1 |pragma solidity ~0.4.10;

2

3 |contract IntegerOverflowAdd {

4 mapping (address => uint256) public balanceOf;

5

6 // INSECURE

7 function transfer (address _to, uint256 _value)
public {

8 // PRECONDITION - PRE

9

10 balanceOf [msg.sender] -= _value;

11

12 // Vulnerability: potential integer overflow
if _value is very large

13 // VULNERABLE LINE - VL (line 18 in original):

14 balanceOf [_to] += _value;

15

16 // POSTCONDITION - POST

17 b

18 [}

Figure 4.2: Annotated Solidity snippet showing precondition, postcondition, and
vulnerability line.

Inference Strategies

Considering the inference process described in Section 2.1, we evaluate two different
strategies for inferring invariants:

o Aggregated — at each inference step, we inject the FILL-ME token while retain-
ing the previously inferred invariants within the contract (i.e., from Vulnerable
Line to Pre-condition to Post-condition). This allows each new inference to
build upon the results of the previous ones.

» Isolated — each inference step is performed independently, without incorporat-
ing any information or invariants generated in previous iterations.

Injection Strategies

We evaluate seven placement variants inspired by prior work on smart contracts
discussed in Section 3.2.2:

22

4.2 — Evaluation Method

o VL (Vulnerability Line) — invariant inserted exactly on the line that contains
the vulnerability.

o Pre (Pre-condition) — immediately after the function signature that encloses
the VL.

o Post (Post-condition) — immediately before the closing brace of the same
function.

e Pre + VL — both pre-condition and vulnerability line.
e VL 4 Post — vulnerability line and post-condition.
e Pre + Post — pre-condition and post-condition.

e Pre + VL 4 Post — invariant at all three positions.

The automated pipeline is shown in Figure 4.3.

From Sb-Heist dataset 4.X

Vulnerable contract

Fi

SB-Heist

‘ Generated Invariants

3 5]
Injection ;
<FILL_ME> Injected contracts FLAMES

token

Figure 4.3: Automated pipeline RQ2 Experimental Setup

Metrics

RPR Regression Tests Pass Rate: the contract behaves identically for benign
inputs.

RPV Ratio of patched vulnerabilities: the exploit is stopped by the injected
invariant.

MP Matching Patches: contracts where both RPR and RPV hold.
23

Experimental Setup

4.3 Experimental Infrastructure

Experiments ran on a dedicated Ubuntu 22.04 server equipped with a 64-core
AMD EPYC 7742 CPU, 256 GB RAM, and one NVIDIA A100 (80 GB) GPU. The
GPU is only required for model inference; compilation and SB-Heist replay are
CPU-bound.

Furthermore, we used the following software packages to build the experimental
pipeline:

o Python 3.12.1 (for scripts)

« Solidity compiler: solc via py-solc-x (versions 0.4.11-0.8.24) based on
contracts under test individually.

« SB-Heist [40] for replay-based security testing.
o Auxiliary libraries: pandas, requests, difflib, fuzzywuzzy, and re

Container specifications and an exact conda environment file are included in the
replication package.

24

Chapter 5

Results

This chapter presents and discusses the results obtained from the experimental
setup described in Chapter 4. In particular, it addresses both research questions
defined in Section 1.3. Specifically, RQ1 is addressed in Section 5.1, while RQ2
is discussed in Section 5.2. Finally, Section 6.2 analyzes possible limitations and
threats to the validity of our work.

5.1 RQ1 Results: Compilability Evaluation

The objective of this phase was to assess whether smart contracts remain compilable
after the injection of automatically synthesized invariants. For each contract,
compilation was tested before and after the injection of synthesized invariants.
A sample of 5,000 was randomly extracted from the FLAMES produced dataset
hosted by HuggingFace ! to establish a valuable dataset for the evaluation.

The following metrics were tracked:

o Successfully compiled contracts before invariant injection

o Contracts that failed to compile due to Etherscan-related issues described
in Section 5.1.1

o Contracts that compiled successfully after injecting the synthesized
invariants

https://huggingface.co/datasets/ASSERT-KTH/FLAMES_results

25

https://huggingface.co/datasets/ASSERT-KTH/FLAMES_results

Results

5.1.1 Etherscan compilation failures

A notable portion of compilation failures on Etherscan derive from issues with
flattened source code retrieved via their API. Flattened source code refers to a
single Solidity file created by combining all imported and dependent files of a smart
contract into one file. These include inconsistent compiler settings (e.g., incorrect
pragma versions) and duplicated or reordered imports.

1|// SPDX-License-Identifier: MIT

pragma solidity ~0.5.0;

pragma solidity ~0.5.0; // Duplicate pragma - can
cause compiler warnings/errors

4 |library SafeMath {

5 //code. ..

6|}

7|// Original contract

8 |contract MyToken {

9 using SafeMath for uint256;

10 mapping (address => uint256) public balances;

11 constructor () public {

12 balances [msg.sender] = 1000;

13 b

14 function transfer (address to, uint256 amount)
public {

15 balances [msg.sender] -= amount;

16 balances [to] += amount;

17 }

18 |}

19 |// Duplicate contract - compilation error: Identifier

already declared
20 | contract MyToken {

21 mapping (address => uint256) public balances;
22 constructor () public {

23 balances [msg.sender] = 1000;

24 b

25 |}

Figure 5.1: Example of a Solidity contract flattening error: duplicate pragma and
contract declarations.

Errors show in Figure 5.1 have been observed in multiple community cases. They
include an ERC-20 contract combined with a Crowdsale and deployed on Ropsten

26

5.1 — RQ1 Results: Compilability Evaluation

using OpenZeppelin v2.5.02 and the ShahToken flat.sol contract compiled with
Solidity ~0.8.5 [52]. Both exhibited issues with duplicated pragma directives or
improperly flattened Solidity files.

5.1.2 Comparative Compilability Analysis

Figure 5.2 illustrates a comparative summary of compilation success rates across
the three datasets.

4000

2000

Number of Contracts

HEl Compiled Pre-Injection
MR Failed (Etherscan)
EEX Compiled Post-Injection

Figure 5.2: Compilation success rate after invariant injection across datasets.

The results obtained using the FLAMES20K model indicate a high level of
syntactic and semantic compatibility between the generated invariants and the
original contract code, with over 90% of contracts compiling successfully after
invariant injection. When using the larger FLAMES100K model, the compilation
success rate was slightly higher, suggesting that increasing the amount of training
data may improve the quality or consistency of the synthesized invariants. Although
the precise training/test split for these datasets is not specified, the observed trend
highlights the potential benefits of scaling the training corpus for enhanced model
performance.

Zhttps:/ /forum.openzeppelin.com/t /verification-failed-after-flattening-contract /2366
27

https://forum.openzeppelin.com/t/verification-failed-after-flattening-contract/2366

Results

In clear contrast to the FLAMES datasets, the CodeLlama-generated invariants
resulted in a significantly lower compilation success rate. Only 17.8% of contracts
remained compilable after invariant injection. This suggests that the invariants
produced by the CodeLlama model were syntactically or semantically incompatible
in the majority of cases. This is due to less targeted training, bringing to incomplete
invariants. These results indicate that, for the FLAMES20K and FLAMES100K
models, the synthesis pipeline is effective at generating deployable security invariants
in a substantial portion of cases. While the compilation success rate is not 100%,
verifying compilation requires no human effort. As a result, a non-negligible failure
rate does not diminish the utility of the correctly compiled invariants.

5.2 RQ2 Results: Validating Security Invariants

The second experimental phase aimed to assess the practical security effectiveness of
the synthesized invariants injected into vulnerable smart contracts. The evaluation
was conducted using the SB-Heist framework [40], which provides reproducible
exploit scenarios derived from the SmartBugs-Curated dataset. The contracts
were selected from the Sb-Heist dataset [40], in particular the 4.X Solitidy version
dataset. This dataset does not overlap with the training dataset of FLAMES
models.

For this experiment, contracts vulnerable to known exploits were patched using
require statements generated by the 3 different FLAMES models described in 2.1.
Each patched contract was then validated against the associated exploit using SB-
Heist, which performs both regression and exploit-based testing. The goal was to
determine whether the injected invariants successfully neutralized the documented
vulnerabilities without introducing new unintended behavior.

Validation was carried out for each model across multiple injection strategies
and inference strategies as described in Section 4.2.2. A patch was considered
matching if it both passed the regression test and patched the vulnerability.

5.2.1 Evaluation Metrics

We tracked the following metrics:
o Vulnerability Patched: if the injected invariant covered the related exploit.

» Regression Test success: if the injected invariant did not change the
contract behaviour.

e Matching Patch: the exploit was covered and the behaviour did not change
after the injection.

28

5.2 — RQ2 Results: Validating Security Invariants

To improve clarity, summary tables for the spider graphs are provided as follows:
Tables 5.2 and 5.1 present the results for FLAMES20K, while Tables 5.4 and 5.3
show the results for FLAMES100K. Tables 5.6 and 5.5 report the results for
CodeLlama-7B. Each cell in the tables reports results in the format: REGRESSION
TEST SUCCESS / VULNERABILITY PATCHED / MATCHING PATCH.

Table 5.1: Aggregated results for FLAMES20K by vulnerability category and
inference strategy.

Vulnerability VL pre_ post pre post pre_VL_post pre_ VL VL_ post
denial of service (4) 3,1/,1 2/1/0 4/1/1 2/1/,/0 2/1/0 3/1/1 2/1/0
other (2) 1/1/0 2/0/0 2/0/0 2/0/0 2/0/0 2/0/0 1/0/0
unchecked low level calls (22) 15/16/ 9 9/ 9/ 0 17/ 1/ 0 13/ 7/ 0 8/15/ 3 17/15/10 10/13/ 3
access_control (16) 11/11/6 9/12/ 6 10/10/ 5 12/ 9/ 5 7/14/ 6 7/14/ 6 8/12/ 4
reentrancy (26) 18/ 5/ 0 14/18/ 7 21/ 5/ 1 13/16/ 4 15/16/ 6 19/ 6/ 2 14/17/ 6
front_running (6) 5/0/0 3/,2/0 6/,0/0 3/2/0 3/2/0 5/0/0 3/2/0
bad_randomness (8) 7/ 1/ 1 7/ 4,4 7)2/)2 6/ 4/ 3 6/5/4 T7/)3/3 5/ 3/ 2
arithmetic (20) 4/13/ 7 10/12/ 5 15/ 8/ 4 12/12/ 7 13/11/ 6 15/11/ 6 11/12/ 5
time_manipulation (4) 2/ 1/ 1 1/3/0 4/0/0 3/2/1 1/2/0 2/2/1 2/ 2/ 1

Table 5.2: Isolated results for FLAMES20K by vulnerability category and
inference strategy.

Vulnerability VL pre_post pre post pre_VL_ post pre_VL VL_ post

denial of service (4) 3,1/1 2/, 1/0 3/2/1 2/1/0 1/2/0 2/2/1 2/ 1/0
other (2) 1/1/0 1/0/0 1/1/0 1/0/0 1/0/0 2/0/0 1/ 0/ 0
unchecked low level calls (22) 14/16/ 8 7/10/ 3 13/11/ 5 7/10/ 2 9/10/ 4 15/14/ 7 7/10/ 2
access__control (16) 2/9/6 13/ 7/ 6 10/ 7/ 3 14/5/4 12/ 8/ 6 12/ 7/ 5 13/ 8/ 6
reentrancy (26) 21/ 4/ 1 8/ 6/ 0 24/ 2/ 0 7/ 7/0 7/, 7/0 2/6/2 7/ 7/0
front_ running (6) 3/2/0 2/3/0 2/3/0 2/4/,0 2/3/0 2/3/0 2/3/0
bad_randomness (8) 7/ 0/0 5/,1/0 7/0/0 5/1/0 5/1/0 6/1/0 5/0/0
arithmetic (20) 16/11/ 7 13/12/ 8 16/11/ 7 17/10/10 13/12/ 8 16/11/ 7 13/13/ 8
time_manipulation (4) i/1/,0 0/2/0 2/1/,0 1/2/0 0/2/0 0/2/0 0/2/0

Table 5.3: Aggregated results for FLAMES100K by vulnerability category and
inference strategy.

Vulnerability VL pre__post pre post pre_VL_ post pre_VL VL_ post

denial of service (4) 3,1/1 2/3/1 4/2/2 2/2/,0 2/3/1 3/2/2 2/3/1
other (2) 2/0/0 2/0/0 2/0/0 2/0/0 2/0/0 2/0/0 2/0/0
unchecked low_level calls (22) 17 /11 / 7 14/ 1/ 0 16/ 2/ 0 16/ 0/ 0 14/ 6/ 4 16/11/ 6 15/ 5/ 4
access__control (16) 0/12/ 6 11/12/ 7 11/12/ 7 13/10/ 7 9/14/ 7 9/14/ 7 10/13/ 7
reentrancy (26) 2/ 3/ 0 8/21/3 23/10/ 7 10/18/ 2 7/22/ 3 21/12/ 7 9/19/ 2
front_ running (6) 4/1/0 3/3/0 4/2/0 4/ 2/0 3/3/0 3/2/0 4/ 2/ 0
bad_randomness (8) 7/ 0/ 0 5/3/1 7/1/1 5/3/1 5/ 3/ 1 6/ 2/ 1 5/ 2/ 1
arithmetic (20) 13/13/ 6 14/11/ 6 16/ 6/ 3 16/ 9/ 7 12/12/ 4 12/14/ 6 11/14/ 5
time_manipulation (4) 4,0/ 0 3/3/2 4/1/1 3/3/2 2/3/1 4/ 1/ 1 2/ 3/ 1

29

Results

Table 5.4: Isolated results for FLAMES100K by vulnerability category and

inference strategy.

Vulnerability VL pre_post pre post pre_VL_post pre_ VL VL_ post
denial of service (4) 3/ 1/ 1 1/2/0 4/ 1/ 1 1/ 2/0 1/ 2/0 3/1/1 1/ 2/0
other (2) 2/0/0 1/0/0 2/0/0 1/0/0 1/0/0 2/0/0 1/0/ 0
unchecked_low level calls (22) 15/14/ 8 8/ 9/ 3 14/ 5/ 1 8/ 9/ 3 8/11/ 5 14/14/ 7 8/11/ 5
access_control (16) 10/12/ 6 9/13/ 7 9/12/ 6 12/10/ 6 9/13/ 7 9/12/ 6 10/13/ 7
reentrancy (26) 23/ 3/ 0 7/18/ 1 22)/10/6 9/15/0 6/19/ 1 21/11/ 6 8/16/ 0
front_ running (6) 4, 1/,0 2/1/0 3/1/0 4/1/0 2/1/0 3/1/0 3/ 1/0
bad_randomness (8) 7/ 0/ 0 5/5/ 4 7/0/0 5/5/4 5/5/4 T7/0/0 5/ 4/ 4
arithmetic (20) 13/13/ 6 12/13/ 6 13/12/ 5 17/11/ 9 11/14/ 6 12/13/ 5 12/14/ 7
time manipulation (4) 4,0/ 0 0/0/0 4/0/0 0/0/0 O0/0/0 4/0/0 0/0/0

Table 5.5: Aggregated results for CodeLlama7B by vulnerability category and

inference strategy.

Vulnerability VL pre_ post pre post pre_ VL_ post pre_ VL VL_ post
denial_of service (4) 2/ 2/ 1 1/2/1 3/1/1 1/1/0 1/2/1 1/2/1 1/2/1
other (2) 2/0/0 1/0/0 1/0/0 1/0/0 1/0/0 1/0/0 1/ 0/ 0
unchecked low level calls (22) 16/11/ 6 7/ 8/ 4 14/ 6/ 4 10/ 8/ 4 7/13/ 7 14/14/10 7/13/ 7
access__control (16) 12/)8/ 7 3/ 4/ 3 8/ 6/ 4 4/ 3/ 3 3/ 4/ 3 8/ 6/ 4 4/ 3/ 3
reentrancy (26) 24/ 7/ 5 8/11/ 0 25/ 2/ 1 811/ 0 7/16/ 4 24/ 7/ 5 7/16/ 4
front_running (6) 2/3/0 0/2/0 2/2/0 0/2/0 0/2/0 1/3/0 0/ 2/ 0
bad_ randomness (8) 2/3/0 3/2/1 5/ 1/0 4/ 2/ 1 1/ 3/ 1 1/3/0 2/3/1
arithmetic (20) 13/6/6 5/5/411/6/6 6/ 1/1 5/5/4 11/8/8 5/ 3/ 2
time manipulation (4) 3/ 0/0 0/0/0 2/0/0 1/1/1 0/ 0/ 0 1/0/0 0/ 1/0

Table 5.6: Isolated results

inference strategy.

for CodeLlama-7B by vulnerability category and

Vulnerability VL pre_ post pre post pre_ VL_ post pre_ VL VL_ post

denial_of_service (4) 2/ 2/ 1 0/2/0 3/2/2 1/2/0 0/2/0 1/2/1 1/ 2/ 0
other (2) 2/0/0 0/0/0 1/0/0 0/0/0 0/0/0 1/0/0 0/0/0
unchecked low_level calls (22) 16/11/ 6 6/ 2/ 1 14/ 5/ 4 10/ 5/ 1 6/ 8/ 4 13/13/ 8 6/11/ 4
access__control (16) 1/8/6 6/9/6 9/9/6 7/8/ 4 6/9/6 9/9/6 6/ 8/ 5
reentrancy (26) 2/ 7/ 5 1/3/0 24/ 3/ 2 2/3/0 1/3/0 19/ 8/ 2 2/ 4/ 1
front_ running (6) 2/3,0 1/,2/0 3/2/0 1/2/0 0/3/0 2/3/0 0/3/0
bad_randomness (8) 2/3/0 0/1/,0 7/1/0 0/1/0 o0/1/0 2/3/0 0/1/0
arithmetic (20) 3/6/6 6/5/5 1/5/5 12/ 5/5 6/ 7/ 5 11/ 7/, 7 7/ 7] 4
time manipulation (4) 3/0/0 0/0/0 1/0/0 0/0/0 0/0/O 1/ 0/ 0 0/ 0/ 0

Spider Graphs

The spider graphs presented in the following Sections [5.2.2; 5.2.3; 5.2.4] display,
along each axis, either a vulnerability type or an injection strategy. For each
category, the graphs report the corresponding counts of Regression test successes,
Vulnerability patched, and Matching Patch. In the “Vulnerability per best strategy
spider graph (e.g., Figure 5.3), each vulnerability label is accompanied by the
injection strategy that resulted in the highest number of matching patches, showing
the most effective approach for that specific vulnerability.

30

2

5.2 — RQ2 Results: Validating Security Invariants

5.2.2 FLAMES20K Results

In this section, we present the results of both inference strategies applied to
FLAMES20K. Figures 5.3 and 5.5 illustrate the results for each vulnerability
under the aggregated and isolated inference strategies, respectively, while Figures 5.4
and 5.6 display the results for each injection strategy under the same configurations.

Aggregated Inference Results

Under the aggregated strategy, performance is balanced across most categories.
Arithmetic records the highest matching patches (40), while reentrancy achieves
the strongest test coverage (114 successes, 83 patched vulnerabilities). The pre_ VL
strategy leads overall with 29 matching patches.

Isolated Inference Results

Without context propagation, FLAMES20K retains strong performance. Arith-
metic remains the top category (40 matching patches), and VL is the most effective
strategy (23 matching patches).

5.2.3 FLAMES100K Results

In this section, we report the results of both inference strategies for FLAMES100K.
Figures 5.7 and 5.9 present the outcomes per vulnerability for the aggregated and
isolated settings, respectively, whereas Figures 5.8 and 5.10 show the results per
injection strategy for the two settings.

Aggregated Inference Results

Compared to FLAMES20K, performance improves, especially in access_control
(48 matching patches). The pre_ VL strategy reaches the highest score in this
setting (30 matching patches).

Isolated Inference Results

This model outperforms all others in the isolated configuration, with access control
(45) and arithmetic (44) leading in matching patches. The pre_ VL strategy remains
the most effective (25 matching patches).

5.2.4 CodeLlama Results

In this section, we present the results of both inference strategies for CodeLlama-7B.
Figures 5.11 and 5.13 display the outcomes per vulnerability for the aggregated

31

Results

and isolated settings, respectively, while Figures 5.12 and 5.14 illustrate the results
per injection strategy for the two settings.
Aggregated Inference Results

CodeLlama-7B struggles with complex categories such as access control but per-
forms comparatively well in unchecked low_level calls (42 matching patches).
Pre__ VL yields the best aggregated results (28 matching patches).

Isolated Inference Results

Performance improves slightly when run in isolation, particularly in access control
(39) and arithmetic (37). The pre_ VL and VL strategies tie for the lead (24
matching patches).

32

5.2 — RQ2 Results: Validating Security Invariants

pre_VL
(10)

unchecked_low_level

89

time_manipulation VL

(1)

83

114

reentrancy
pre_post
(7)

Figure 5.3: Vulnerability per best strategy spider graph for FLAMES20K,

aggregated results

VL
(6)
access_control

_calls
82
64
76
38
40
25
152 122
4@37
7 138 18
28
other
VL

(0)

33

Regression Test Success
Vulnerability Patched
Matching Patch

VL
(7)
arithmetic

90
79

pre_VL_post
bad_randomness (4)
45

denial_of service
VL
(1)

front_running

VL
(0)

Results

Regression Test Success
Vulnerability Patched
Matching Patch

VL
76
pre_post VL_post

49

6157 5662
25

22 21
25 20
66l 57 13 53 66
pre_VL_post MV o post
52
77
86
pre_VL pre

Figure 5.4: Performances per strategy spider graph for FLAMES20K, aggregated
results

34

5.2 — RQ2 Results: Validating Security Invariants

VL
(6)

Regression Test Success
Vulnerability Patched
Matching Patch

access_control

VL

post

® (10)
unchecked_low_level_calls 86 arithmetic

104
81 80
& 51
55
36
31 x)'-)
time_manipulation VL bad_randomness
(0) o 40
%994
g\ 145
15
39 21
94
reentrancy denial_of_service
pre_VL VL
(2) (1)
other front_running
VL VL

(0)

Figure 5.5: Vulnerability per best strategy spider graph for FLAMES20K,

isolated results

(0)

35

Results

VL
78
pre_post
45
51
42 3
17 16
18 16
5045
16
pre_VL_post 22
38
46
75
pre_VL

Regression Test Success
Vulnerability Patched
Matching Patch

VL_post

50
44

40
56

post

78

pre

Figure 5.6: Performances per strategy spider graph for FLAMES20K, isolated

results

36

5.2 — RQ2 Results: Validating Security Invariants

Regression Test Success
Vulnerability Patched

VL_post Matching Patch
(7)

access_control

VL
post
™)
unchecked_low_level_calls 87 arithmetic
108
73 94
79
48
36 37 VL_post
time_manipulation post Y bad_randomness 1
(2) 40
2214g 614
e
25
1687
reentrancy denial_of_service
pre pre
(7) (2)
other front_running
VL VL

(0) (0)

Figure 5.7: Vulnerability per best strategy spider graph for FLAMES100K,
aggregated results

37

Results

Regression Test Success
Vulnerability Patched
Matching Patch

VL
83
pre_post VL_post
41
6257 &4

20

20 21

21 19
66/ ¢ s 71
pre_VL_post oy post
30
36
58
76
87
pre_VL pre

Figure 5.8: Performances per strategy spider graph for FLAMES100K, aggre-
gated results

38

5.2 — RQ2 Results: Validating Security Invariants

Regression Test Success
Vulnerability Patched

v"ﬁ;’St Matching Patch
access_control
VL
(8) post
85 (9)
unchecked_low_level_calls arithmetic
68 90
B
45
44
32 VL_post
. . . (4)
time_manipulation VL bad_randomness
(0) 41
12 189
%3 .
147\l
21
982
reentrancy denial_of_service
pre VL
(6) (1)
other front_running
VL VL

(0) (0)

Figure 5.9: Vulnerability per best strategy spider graph for FLAMES100K,
isolated results

39

Results

Regression Test Success
Vulnerability Patched
Matching Patch

VL
81
pre_post VL_post
44
61 61
45 48

21

23 22

o5 = 537
19
pre_VL_post 38 post
41
52
7 78
pre_VL pre

Figure 5.10: Performances per strategy spider graph for FLAMES100K, isolated
results

40

5.2 — RQ2 Results: Validating Security Invariants

pre_VL
(10)

unchecked_low_level_calls

3
42
time_manipulation
- post
(1)
70
103
reentrancy
VL
(5)
other
VL

(0)

Figure 5.11: Vulnerability per best strategy spider graph CodeLlama, aggregated

results

Regression Test Success

Vulnerability Patched

VL Matching Patch

(7)

access_control

pre_VL
(8)
arithmetic

42 56

34

27 3 VL_post

1
bad_randomness @
7 Z@ 4q 1B
167783 19
16

denial_of _service

VL
(1)

front_running

VL
(0)

41

Results

Regression Test Success
Vulnerability Patched
Matching Patch

VL
76
pre_post VL_post
40
25 43
34
28 27
13 18
10
20
45 4 2935
16
pre_VL_post A post
28
43
62
71
pre_VL pre

Figure 5.12: Performances per strategy spider graph for CodeLlama, aggregated
results

42

5.2 — RQ2 Results: Validating Security Invariants

(6) Vulnerability Patched
Matching Patch
Pr&_)VL access_control pre_VL
(7)
unchecked_low_level_calls 60 arithmetic
71 54,
66
55 0
42
37
28
time_manipulation bad_randomness
VL
(0) Qﬂ) 11
4
/] 8
g L4
31 o
73
reentrancy denial_of_service
VL pre
(5) (2)
other front_running
VL VL

(0)

Figure 5.13: Vulnerability per best strategy spider graph for CodeLlama, isolated

results

Regression Test Success

VL

(0)

43

VL
(0)

Results

Regression Test Success
Vulnerability Patched
Matching Patch

VL
75
pre_post VL_post
40
24 36
%0 22
5 10
33 ¢ 26\33
pre_VL_post Y ¥ post
27
45
59
73
pre_VL pre

Figure 5.14: Performances per strategy spider graph for CodeLlama, isolated
results

44

5.2 — RQ2 Results: Validating Security Invariants

5.2.5 Comparative Validity Analysis

Table 5.7: Validation results for all models in both inference strategies

RegTr‘éSsgion Vulnerabilities Matching pﬁgﬁgd In}?ei?izon
Successes Patched Patches Vulnerability Strategy
FLAMES20K
Aggregated 475 370 151 arithmetic pre__ VL
Isolated 438 300 128 arithmetic VL
FLAMES100K
Aggregated 486 355 152 access__control pre__ VL
Isolated 427 377 154 access _control pre_ VL
CodeLlama-7B
Aggregated 324 258 130 unchecked__low_level call pre_ VL
Isolated 301 231 118 access _control VL - pre_ VL

Table 5.7 summarizes the overall performance of different models and inference
strategies in terms of test regression success, number of vulnerabilities patched,
matching patches, the most frequently patched vulnerability type, and the best-
performing injection strategy. The table allows for a comparison between aggregated
and isolated settings for all the FLAMES models.

For the FLAMES20K, the aggregated configuration achieves higher test re-
gression success (475) and more vulnerabilities patched (370) compared to the
isolated configuration. However, both configurations share the same most fre-
quently patched vulnerability type, arithmetic. This suggests that the nature of
vulnerabilities does not change between configurations. Interestingly, while the
aggregated setup favors the pre VL strategy, the isolated setup benefits more from
the VL strategy, indicating that isolation emphasizes verification-focused inference.

In the case of FLAMES100K, the pattern differs slightly. Aggregated results
yield the highest test regression success (486), whereas isolated settings result in
a slightly lower regression success (427) but achieve a higher number of vulnera-
bilities patched (377) and matching patches (154). Notably, FLAMES100K in
isolated configuration achieves the most matching patches across all models and
configurations. This result demonstrates that isolated inference can maximize patch
quality and approval rates, possibly due to reduced interference from unrelated
vulnerabilities. Both configurations identify access control as the most patched
vulnerability type and favor pre VL as the optimal strategy, reinforcing its general
effectiveness.

Comparing the two FLAMES models, FLAMES100K shows generally stronger
performance in terms of test regression success and matching patches, especially in
the isolated configuration. While FLAMES20K achieves slightly better regression
success in the aggregated setting, FLAMES100K provides more effective and
higher-quality patches overall. This improvement is likely attributable to the larger

45

Results

dataset size, which facilitates more effective learning and better generalization of
patching strategies. These results suggest that dataset scale plays a critical role in
determining both the quantity and quality of generated patches.

For Codellama-7B, aggregated performance shows a test regression success
of 324 and 258 vulnerabilities patched, with unchecked_low level call being the
most frequently patched vulnerability. The isolated configuration exhibits a drop in
performance (301 regression success and 231 vulnerabilities patched), and the most
patched vulnerability shifts to access control. Additionally, the best strategy in the
isolated setting are VL and pre_ VL, suggesting that multiple injection strategies
may need to be blended to handle diverse vulnerability types effectively. Compared
to the previous FLAMES models, CodeLlama-7B demonstrates the weakest overall
performance, both in terms of regression success and number of vulnerabilities
patched. This performance degradation highlights potential limitations in its
capacity to generate effective patches under the tested configurations.

Overall, these results reveal several key trends. Aggregated configurations tend
to maximize test regression success. Isolated configurations can sometimes achieve
higher patch quality, as reflected in the number of matching patches. The choice
of the most effective injection strategy is context-dependent: pre VL performs
consistently well across FLAMES models, whereas for CodeLlama-7B, a hybrid
approach is preferable when vulnerabilities are isolated. Moreover, fine-tuning on a
specialized dataset proves crucial for generating high-quality invariants. FLAMES
models are significantly more accurate than the general-purpose CodelLlama, and
increasing the fine-tuning data size yields further improvements. Finally, the shift in
the most frequently patched vulnerability type between models and configurations
highlights the interaction between model architecture, dataset size, and inference
strategy in determining overall effectiveness.

5.2.6 Outliers and Study Cases

In this section, we describe and analyze various case studies involving the generated
invariants and the outliers observed in the results presented in Sections 5.2.2, 5.2.3,
and 5.2.4.

Synthesized require(false)

The three models occasionally generate the require(false); invariant. It represents
a specific type of response indicating that the model could not identify a valid
invariant to patch the vulnerability at that particular line in the contract. In such
cases, the model determines that the most effective approach to prevent exploitation
of the vulnerability is to force the contract to revert. Since the require(false);
statement always evaluates to false, it will invariably cause the contract execution

46

5.2 — RQ2 Results: Validating Security Invariants

to fail and revert.

When comparing models, a clear pattern emerges. FLAMES100K produces
the fewest require(false); statements, FLAMES20K a moderate amount, and
CodeLlama-7B the most. This distribution suggests that CodeLlama-7B struggles
more often to synthesize correct and contextually appropriate invariants, falling
back to unconditional reversion. In contrast, FLAMES100K more consistently
infers the intended contract semantics and generates targeted invariants.

Although these cases are generally symptomatic of incomplete vulnerability
understanding, they also reveal the role of inference strategy. Aggregated inference
can occasionally enable non-trivial alternatives to require(false);, even in weaker
models. For instance, CodeLlama-7B under aggregated inference was able to
generate a require(true); invariant in the post-injection scenario for the 0x4b71
contract (Figure 5.15). While semantically vacuous, as described in Section 5.2.6,
this output still provides insight into the synthesis process. It shows that additional
context from earlier inference steps can influence the generated invariant. In some
cases, this context can steer the model away from the most conservative fallback.
More cases are shown in Appendix Section A.1.

1 |pragma solidity ~0.4.24;
contract airPort{

3 function transfer (address from,address caddress,
address[] _tos,uint v)public returns (bool){

4 require(_tos.length > 0);

5 bytes4 id=bytes4 (keccak256("transferFrom
address ,address ,uint256)")) ;

6 for(uint i=0;i<_tos.length;i++){

7 caddress.call(id,from, _tos[i],v);

8 }

9 return true;

10 |require (true) ; //POST INVARIANT

11 }

12 |}

Figure 5.15: 0x4b71 contract with post injection strategy applied in aggregated
inference strategy CodeLlama-7B.

Synthesized require(true)

In certain scenarios, the model generates a require(true); invariant. This typically
occurs for one of two reasons. First, the model may correctly determine that there
is no exploitable vulnerability at the specific line in the contract, and therefore no

47

https://etherscan.io/address/0x4b71ad9c1a84b9b643aa54fdd66e2dec96e8b152
https://etherscan.io/address/0x4b71ad9c1a84b9b643aa54fdd66e2dec96e8b152

Results

patch is needed. Second, the model may mistakenly fall into this first case by failing
to detect an existing vulnerability. As a result, it still inserts a require(true);
statement as a neutral placeholder. Since this condition always evaluates to true, it
does not affect the execution or behavior of the contract in any way. An example
of this behavior are the 0xe894 and 0x4051 contracts. CodelLlama-7B with both
inference strategies produces the require(true); invariant in the post injection
scenario as shown in Figure 5.16 and Figure 5.17. Notably, in this case the VL
invariant provides an Matching Patch, and in all strategy combinations where the
VL appears, including those with the post invariant, the patch is matching as
expected by the require(true);.

1 |pragma solidity ~0.4.24;

contract airDropf{

3 function transfer (address from,address caddress,
address[] _tos,uint v, uint _decimals)public
returns (bool){

4 |require(_tos.length <= 20); //PRE INVARIANT

5 require (_tos.length > 0);

6 bytes4 id=bytes4 (keccak256("transferFrom (
address ,address ,uint256) ")) ;

7 uint _value = v * 10 ** _decimals;

8 for(uint i=0;i<_tos.length;i++){

9 |require(caddress.call(id,from, _tos[i], _value));//VL

INVARIANT
10 caddress.call(id,from, tos[i], value);
11 }
12 return true;
13 |require (true) ; //POST INVARIANT
14 }

15 |}

Figure 5.16: 0xe894 contract with pre VL _post injection strategy applied in
CodeLlama-7B.

48

https://etherscan.io/address/0xe894d54dca59cb53fe9cbc5155093605c7068220
https://etherscan.io/address/0x4051334adc52057aca763453820cb0e045076ef3
https://etherscan.io/address/0xe894d54dca59cb53fe9cbc5155093605c7068220

5.2 — RQ2 Results: Validating Security Invariants

1 |pragma solidity ~0.4.24;
contract airdrop{

3 function transfer (address from,address caddress,
address[] _tos,uint v)public returns (bool)({

4 |require(msg.sender==from) ; //PRE INVARIANT

5 require (_tos.length > 0);

6 bytes4 id=bytes4 (keccak256("transferFrom(
address ,address ,uint256) ")) ;

7 for(uint i=0;i<_tos.length;i++){

8 |require (caddress.call(id,from, _tos[il,v)); //VL
INVARIANT

9 caddress.call(id,from, _tos[i],v);

10 }

11 return true;

12 |[require (true) ; //POST INVARIANT

13 }

14 |}

Figure 5.17: 0x4051 contract with pre_ VL_ post injection strategy applied in
CodeLlama-7B.

As previously noted, this type of invariant may arise due to two primary factors.
First, the identified vulnerability is not directly patchable at the specific line of
code. Second, the model may be producing a false negative. It incorrectly assumes
the code is secure when, in fact, a vulnerability exists. FLAMES100K is the
only model that produces 0 instances of require(true);. This demonstrates its
capacity to generate meaningful invariants regardless of the injection strategy and
inference strategy employed. Regarding FLAMES20K, it produces require(true);
statements when using the isolated inference strategy to produce post invariants.
This is likely due to the lack of context provided by previous invariants, which is
available in the aggregated inference strategy. CodeLlama-7B generates these types
of invariant with both inference strategies. This behavior highlights the superior
capacity of FLAMES models to understand the contract’s context and consequently
produce sound invariants.

FLAMES20K Better Than FLAMES100K

Globally, the FLAMES100K model demonstrates superior performance compared
to the other models. However, there are specific cases where the FLAMES20K
model successfully generates a Matching Patch while the FLAMES100K model
fails to do so. A notable example is the FibonacciBalance.sol case. Using

49

https://etherscan.io/address/0x4051334adc52057aca763453820cb0e045076ef3

Results

the aggregated inference strategy with the pre_post injection approach, the
FLAMES20K model generates a Matching Patch. In contrast, the FLAMES100K
model fails both the regression test and produces no valuable patch. In the case
of FLAMES20K, the patch is considered matching because both the invari-
ants, require(msg.data.length > 0); and require(calculatedFibNumber > 0);, work
together to effectively mitigate the access_control vulnerability as shown in Figure
5.18. The first ensures that the fallback function is not called without data, pre-
venting accidental or fuzzed calls. The second acts as a true guard by enforcing
that only specific library functions that correctly update the calculatedFibNumber
are allowed to execute. This combination blocks unauthorized access and misuse of
delegatecall. In contrast, the FLAMES100K case includes the same pre-invariant
require(msg.data.length > 0);, but replaces the post-condition with require (msg.
value == 0); as shown in Figure 5.19. While this check is logically sound, ensuring
that no Ether is sent during the fallback, it does not fully address the core vulner-
ability. It fails to restrict which library functions can be called via delegatecall.
Therefore, this patch is incomplete and does not fully mitigate the vulnerability.

50

5.2 — RQ2 Results: Validating Security Invariants

1 |pragma solidity ~0.4.22;

2 |contract FibonacciBalance {

3 address public fibonaccilibrary;

4 // the current fibonacci number to withdraw

) uint public calculatedFibNumber;

6 // the starting fibonacci sequence number

7 //...code

8 // allow users to call fibonacci library functions

9 function () public {

10 |require (msg.data.length>0) ; //PRE INVARIANT

11 require (fibonaccilibrary.delegatecall (msg.data));

12 |[require (calculatedFibNumber >0) ; //POST INVARIANT

13 X

14 |}

15 |// library contract - calculates fibonacci-1like
numbers;

16 | contract Fibonaccilib {

17 // initializing the standard fibonacci sequence;

18 uint public start;

19 uint public calculatedFibNumber;

20 // modify the zeroth number in the sequence

21 function setStart(uint _start) public {

22 start = _start;

23 X

24 function setFibonacci(uint n) public {

25 calculatedFibNumber = fibonacci(n);

26 3

27 function fibonacci(uint n) internal returns (uint)
{

28 //...code

29 X

30 |}

Figure 5.18: FibonacciBalance.sol contract with pre post injection strategy
applied in aggregated inference strategy FLAMES20K.

51

Results

© 00 N O Uk W N

I T = T = S Sy
QL = W N = O

16
17
18
19
20
21
22
23
24
25
26
27

28
29
30

Figure 5.19: FibonacciBalance.sol contract with pre post injection strategy

pragma solidity ~0.4.22;
contract FibonacciBalance {
address public fibonaccilibrary;
// the current fibonacci number to withdraw
uint public calculatedFibNumber;
// the starting fibonacci sequence number
//...code
// allow users to call fibonacci library functions
function () public {

require (msg.data.length>0) ; //PRE INVARIANT
require (fibonaccilibrary.delegatecall (msg.data));
require (msg.value==0) ; //POST INVARIANT
}
}
// library contract - calculates fibonacci-1like
numbers;

contract Fibonaccilib {
// initializing the standard fibonacci sequence;
uint public start;
uint public calculatedFibNumber;
// modify the zeroth number in the sequence
function setStart(uint _start) public {

start = _start;
}
function setFibonacci(uint n) public {
calculatedFibNumber = fibonacci(n);
}
function fibonacci(uint n) internal returns (uint)
{
// ...code
}

applied in aggregated inference strategy FLAMES100K.

Another notable case is the 0x52d2. In this scenario, FLAMES20K produces a
Matching Patch using the isolated inference strategy in the VL injection scenario.
Meanwhile, its stronger counterpart fails to fix the vulnerability. The vulnerabil-
ity in question is an unchecked low level call, as shown in Figure 5.20. The
FLAMES20K model effectively mitigates this issue through a require(Token (0
xd2a4c91875a07c740680799768e67dfe7fd5d34e) . transfer (addr,Owei)) statement. This

52

https://etherscan.io/address/0x52d2e0f9b01101a59b38a3d05c80b7618aeed984

5.2 — RQ2 Results: Validating Security Invariants

statement ensures that a preceding call to a known token contract succeeds before
executing the dangerous addr.call.value(0 wei)();. The added constraint intro-
duces an implicit limitation on arbitrary call behavior. This approach effectively
reduces the attack surface and addresses the vulnerability. On the other hand,
the FLAMES100K patch inserts a require(msg.sender==owner); check as shown
in Figure 5.21, which, while reasonable in context, does not directly address the
core issue. Since the low-level call remains unchecked, the vulnerability persists.

1 |pragma solidity ~0.4.19;
contract Token {

3 function transfer (address _to, uint _value)
returns (bool success);

4 function balanceOf (address _owner) constant
returns (uint balance) ;

51}

6 |contract EtherGet {

7 address owner;

8 function EtherGet () {

9 owner = msg.sender;

10 }

11 function withdrawTokens (address tokenContract)
public {

12 Token tc = Token(tokenContract);

13 tc.transfer (owner, tc.balanceOf (this));

14 }

15 function withdrawEther () public {

16 owner .transfer (this.balance);

17 }

18 function getTokens(uint num, address addr) public
{

19 for(uint 1 = 0; i < num; i++){

20 |require (Token (0
xd2a4c91875a07c740680799768e67dfe7fd5d34e) . transfer

(addr ,0wei)); //VL INVARIANT
21 addr.call.value (0 wei) ();
22 }
23 }

24 |}

Figure 5.20: 0x52d2 contract with VL injection strategy applied in isolated
inference strategy FLAMES20K.

53

https://etherscan.io/address/0x52d2e0f9b01101a59b38a3d05c80b7618aeed984

Results

© 00 N O Ot

10
11

12
13
14
15
16
17
18

19
20
21
22
23
24

Figure 5.21: 0x52d2 contract with VL injection strategy applied in isolated

pragma solidity ~0.4.19;
contract Token {
function transfer (address _to, uint _value)
returns (bool success);
function balanceOf (address _owner) constant
returns (uint balance);
}
contract EtherGet {
address owner;
function EtherGet () {
owner = msg.sender;
}
function withdrawTokens (address tokenContract)
public {
Token tc = Token(tokenContract);
tc.transfer (owner, tc.balanceOf (this));
}
function withdrawEther () public {
owner .transfer (this.balance);
}
function getTokens(uint num, address addr) public
{
for(uint i = 0; i < num; i++){
require (msg.sender==owner) ; //VL INVARIANT
addr.call.value (0 wei) ();
}

inference strategy FLAMES100K.

Therefore, despite its larger search space and stronger overall performance,
FLAMES100K fails to generate a functionally correct patch in this case. While
FLAMES100K demonstrates superior results globally, these outliers reveal that
increased model capacity does not guarantee success in every scenario. This suggests
that certain specific cases may benefit from a different approach. The more focused
methodology of the smaller FLAMES20K model can be advantageous in these
instances. These findings highlight the context-dependent nature of automated

patch generation.

54

https://etherscan.io/address/0x52d2e0f9b01101a59b38a3d05c80b7618aeed984

5.2 — RQ2 Results: Validating Security Invariants

CodeLlama-7B Better Than FLAMES

T W N

© 00 N >

10
11
12
13
14
15
16
17
18
19
20
21
22
23

24
25
26

27
28
29

Figure 5.22: dos number.sol contract with pre injection strategy applied in

pragma solidity ~0.4.25;
contract DosNumber {
uint numElements = 0;
uint [] array;
function insertNnumbers (uint value,uint numbers)
public {
require (numElements <1500) ; //PRE INVARIANT
for(uint i=0;i<numbers;i++) {
if (numElements == array.length) {
array.length += 1;
}
array [numElements++] = value;
}
+
function clear () public {
require (numElements >1500) ;
numElements = 0;
}
function clearD0S() public {
require (numElements >1500) ;
array = new uint [](0);
numElements = 0;
}
function getLengthArray () public view returns(uint
) o
return numElements;
}
function getReallengthArray() public view returns(
uint) {
return array.length;

isolated inference strategy CodeLlama-7B.

As demonstrated in Section 5.2.4, Codellama-7B shows worse performance
than the FLAMES models. However, there are some outliers where CodeLlama
successfully produces matching patches while the FLAMES models fail to do so.

One such case is dos_number.sol. This occurs using the isolated inference

55

Results

strategy with the pre injection strategy. CodeLlama produces a Matching Patch
in this scenario while FLAMES100K is only capable of passing the regression
test. In Figure 5.22, the denial of service vulnerability is effectively patched by
using a require statement that limits the overall size of the array via the condition
numElements < 1500. This constraint prevents the array from growing indefinitely.
In this way it controls the gas consumption and avoids gas limit exhaustion during
the insertion loop. In contrast, the patch produced by FLAMES100K, shown in
Figure 5.23, fails to fix the vulnerability. It only limits the number of elements
inserted per transaction (e.g., through require (numbers <= 382);) without restricting
the total array size. This allows multiple consecutive calls to accumulate elements
beyond safe gas limits, leaving the contract vulnerable to denial of service attacks
via gas exhaustion.

56

5.2 — RQ2 Results: Validating Security Invariants

U s W N =

© 00 N O

10
11
12
13
14
15
16
17
18
19
20
21
22
23

24
25
26

27
28
29

Figure 5.23: dos number.sol contract with pre injection strategy applied in

pragma solidity ~0.4.25;
contract DosNumber {
uint numElements = 0;
uint [] array;
function insertNnumbers (uint value,uint numbers)
public {
require (numbers <=382) ; //PRE INVARIANT
for (uint i=0;i<numbers;i++) {
if (numElements == array.length) {
array.length += 1;
}
array [numElements++] = value;
+
}
function clear () public {
require (numElements >1500) ;
numElements = 0;
}
function clearDOS() public {
require (numElements >1500) ;
array = new uint [](0);
numElements = 0;
}
function getLengthArray () public view returns (uint
) o
return numElements;
}
function getReallengthArray () public view returns(
uint) {
return array.length;

isolated inference strategy FLAMES100K.

Another interesting case is the token.sol contract analyzed under the aggregated
inference strategy with the pre injection invariant. CodelLlama-7B generates a
Matching Patch, while FLAMES20K fails to adequately address the arithmetic

vulnerability.

As shown in Figure 5.24, CodeLlama-7B correctly patches the underflow by

57

Results

adding require(balances[msg.sender] >= _value); before the subtraction. This en-
sures the sender has sufficient balance for the transfer. Since the contract uses Solid-
ity versions prior to 0.8.0, this check is essential to prevent dangerous wraparound
behavior. In contrast, FLAMES20K’s patch in Figure 5.25 misses the core issue.
It adds the check require(_to !'= 0x0); to prevent transfers to the zero address,
a safeguard against accidental token burning. However, it does not address the
original ineffective check require(balances[msg.sender] - _value >= 0);.

This check fails because in Solidity 0.4.18, the subtraction is performed before
the comparison. When _ value exceeds the balance, the subtraction underflows,
resulting in a very large positive number that still passes the >=0 check.

Therefore, the patch introduces address validation but leaves the arithmetic
vulnerability unresolved.

1 |pragma solidity ~0.4.18;

2 |contract Token {

3 mapping (address => uint) balances;

4 uint public totalSupply;

5 function Token (uint _initialSupply) {

6 balances [msg.sender] = totalSupply =
_initialSupply;

7 }

8 function transfer (address _to, uint _value) public
returns (bool) {

9 require (balances [msg.sender] >= _value); //PRE
INVARTIANT

10 require (balances [msg.sender] - _value >= 0);

11 balances [msg.sender] -= _value;

12 balances[_to] += _value;

13 return true;

14 b

15 function balanceOf (address _owner) public constant
returns (uint balance) {

16 return balances[_owner];

17 b

18 |}

Figure 5.24: token.sol contract with pre injection strategy applied in aggregated
inference strategy CodelLlama-7B.

CodeLlama-7B’s occasional success despite its generally weaker performance re-
inforces the observation made in Section 5.2.6. These exceptional cases demonstrate

58

5.2 — RQ2 Results: Validating Security Invariants

that automated patch generation is inherently unpredictable and context-sensitive.
These findings highlight the context-dependent nature of automated patch gen-
eration and suggest to explore multi-model strategies that can adapt to different
vulnerability characteristics.

1 |pragma solidity ~0.4.18;
2 |contract Token {
3 mapping (address => uint) balances;
4 uint public totalSupply;
5 function Token(uint _initialSupply) {
6 balances [msg.sender] = totalSupply =
_initialSupply;
}
8 function transfer (address _to, uint _value) public
returns (bool) {
9 require (_to!=0x0); //PRE INVARIANT
10 require (balances [msg.sender] - _value >= 0);
11 balances [msg.sender] -= _value;
12 balances[_to] += _value;
13 return true;
14 }
15 function balanceOf (address _owner) public constant
returns (uint balance) {
16 return balances[_owner];
17 by
18 |}

Figure 5.25: token.sol contract with pre injection strategy applied in aggregated
inference strategy FLAMES20K.

59

Chapter 6

Discussion

In this chapter, we reflect on the implications of our experimental results. In
Section 6.1, we analyze the robustness, accuracy, and human effort involved in
using the FLAMES models. In Section 6.2, we discuss potential threats to validity,
considering limitations in our experimental setup.

6.1 Robustness, Accuracy and Human Effort

An important aspect to consider when evaluating the performance of the models
is the multi-dimensional trade-off between robustness, accuracy, and the human
effort required to review the output.

As shown in Section 5.1.2, FLAMES models do not achieve perfect compilation
rates. However, since the compilation verification process is fully automated, the
practical value of the tool remains high for invariants that compile successfully,
even when some attempts fail. In this context, robustness should be assessed not
solely by success rate, but by the model’s ability to produce valid, deployable
invariants when compilation succeeds. The tool’s robustness lies in its capacity
to fail gracefully. Unsuccessful attempts are automatically filtered out without
requiring human intervention.

The generated invariants vary significantly across models and inference strategies,
creating important implications for both accuracy and review effort. FLAMES100K]
demonstrates the highest overall correctness, producing fewer semantically vacuous
fallbacks as described in Section 5.2.6 and Section 5.2.6, which translates directly
into reduced human review burden. This superior performance is further evi-
denced by FLAMES100K generating the highest number of matching patches and
achieving the best overall results across evaluation metrics as shown in Section 5.2.
FLAMES20K shows moderate performance with a correspondingly intermediate
number of matching patches, while CodeLlama-7B tends to rely more heavily on

61

Discussion

conservative outputs and produces the fewest matching patches, indicating lower
semantic understanding of contract logic. This progression clearly demonstrates
how model sophistication directly correlates with both the quantity and quality of
deployable invariants, establishing a clear performance hierarchy that practitioners
must consider when balancing computational resources against output quality.

The human effort required to review and approve patches remains manageable
for cases that compile successfully, as reviewers only need to inspect invariants
that the model has synthesized rather than manually verifying compilation itself.
However, the effort required scales inversely with the chosen model. The automated
filtering of non-compilable outputs ensures that human effort is never wasted on
syntactically invalid invariants, allowing practitioners to focus their limited review
time on semantically meaningful invariants rather than basic syntactic validation.

This multi-dimensional trade-off reveals that the synthesis pipeline’s practi-
cal value depends heavily on deployment context and organizational constraints.
Even with partial compilation success, the tool provides significant advantages
by reducing the overall time and expertise required to generate security-relevant
contract invariants. In this way, it maintains flexibility in how organizations bal-
ance robustness, accuracy, and review effort according to their specific needs and
resources.

6.2 Threats to Validity

This study provides empirical evidence for the effectiveness of FLAMES synthesized
invariants in improving the security of smart contracts. The evaluation was
conducted on a curated and widely adopted benchmark dataset derived from
SmartBugs Curated [38]. It offers a realistic yet controlled setting for reproducible
experiments. The use of fully automated pipelines allowed for consistent testing of
both compilability and vulnerability prevention across hundreds of real contracts.

Nevertheless, a few threats to validity remain, especially with regard to the
security validation pipeline.

First, the experiments are limited to smart contracts written in Solidity version
4.X. This excludes newer versions and alternative programming languages. These
versions may introduce language-specific features or behaviors that are not captured
in this evaluation.

Second, each contract in the evaluation dataset contains only a single vulnerabil-
ity. While this simplification facilitates controlled testing and analysis, it does not
reflect the complexity of real-world contracts. Real-world contracts often contain
multiple vulnerabilities that may interact with each other.

Lastly, the validity of the comparative analysis is limited by the fact that
CodeLlama-7B was used as the sole baseline model. This limitation may reduce

62

6.2 — Threats to Validity

the robustness of the conclusions. Performance differences could vary if alternative
or more diverse baseline models were considered.

Despite these considerations, the evaluation framework and results presented
in this study offer valuable insights into the potential of invariant synthesis as a
strategy for smart contract hardening. The experimental setup is reproducible and
extensible. In this way, it provides a solid foundation for future research to explore
more diverse settings and richer vulnerability profiles.

63

Chapter 7

Conclusion and Future Work

This chapter serves three primary purposes: to assess the extent to which our
research objectives have been achieved, to identify promising avenues for future work,
and to reflect on the broader implications. Section 7.1 addresses the fulfillment of
our goals, Section 7.2 outlines potential research directions and Section 7.3 provides
critical reflections on the research journey.

7.1 Conclusion

The purpose of this thesis was to validate automatically synthesized invariants
and evaluate the ability of the FLAMES tool to produce compilable and effective
invariants for patching vulnerabilities in real smart contracts. This evaluation
was conducted through two comprehensive automated pipelines. Both FLAMES
models were systematically tested and compared against CodeLlama-7B to assess
their relative performance.

The experimental results demonstrate that the FLAMES tool successfully
produces deployable invariants that surpass off-the-shelf models in vulnerability-
preventiveness. FLAMES20K achieved a compilability rate of 90.5% after invariant
injection, while FLAMES100K reached 92%. More importantly, smart contracts
were effectively patched against known vulnerabilities, with both models producing
a substantial number of matching patches. Both FLAMES models consistently
showed superior performance compared to the CodeLlama-7B baseline model across
all evaluation metrics. Generating security invariants that revert attack transac-
tions prevents the deployment of exploitable contracts. Furthermore, if included
in automated contract repair pipelines, it helps patching vulnerabilities early in
the development cycle mitigating potential financial losses and security breaches.
Such preventive measures are crucial in the blockchain ecosystem, where deployed
contracts are immutable and vulnerabilities can lead to significant economic damage.

65

Conclusion and Future Work

7.2 Future Work

Several promising research directions emerge from the validation of synthesized
invariants discussed in this thesis.

Firstly, the current work could benefit from a more comprehensive comparative
analysis by evaluating additional state-of-the-art models alongside FLAMES. Specif-
ically, testing models such as ChatGPT-40 or Claude Sonnet 4 would significantly
enhance the quality of the comparison presented in this work. Currently, the only
baseline comparison has been conducted against CodeLlama-7B. It limits the scope
of our evaluation and may not reflect the full landscape of available capabilities.

Secondly, a promising avenue for improvement involves utilizing a larger and
more complex dataset for the validation phase described in Section 4.2.2. The
current study employed the 4.X Solidity version dataset from SB-HEIST, which is
relatively small and contains contracts of limited complexity. Testing the capacity of
FLAMES models to produce valid invariants on a more challenging and semantically
richer dataset would provide valuable insights into the scalability and robustness
of the approach.

Finally, there is significant potential in validating contracts containing multiple
or different types of vulnerabilities. In the current work, the models generate
patches for contracts with vulnerabilities described in Section 2.3. Each contract
contains only a single type of vulnerability. Extending this to contracts with
multiple vulnerabilities of different kinds would be both intellectually interesting
and practically valuable. Real-world smart contracts often exhibit interconnected
security issues that require comprehensive analysis and remediation strategies.

7.3 Reflections

While the FLAMES tool represents a significant advancement in automated smart
contract vulnerability patching, this research journey has revealed both the immense
potential and inherent challenges of applying artificial intelligence techniques to
blockchain security.

The implications of this research extend far beyond the technical domain. In
alignment with the UN SDGs, the development of more reliable smart contract se-
curity tools could substantially impact SDGs 8 (decent work and economic growth),
9 (industry, innovation, and infrastructure), and 10 (reduced inequalities). By
enhancing the security and trustworthiness of blockchain technology, automated
security tools like FLAMES have the potential to democratize access to decentral-
ized financial services. However, realizing this democratization potential depends
critically on the continued development of robust, accessible, and reliable security
frameworks.

66

7.3 — Reflections

This research also illuminates a fundamental tension between automation and
human oversight in security-critical systems. While FLAMES successfully demon-
strates the feasibility of automated patch generation, the essential role of human
validation and understanding of generated invariants cannot be overlooked. This
delicate balance between automation and human expertise will likely shape the fu-
ture trajectory of blockchain security tools, ensuring that technological advancement
serves both efficiency and safety in equal measure.

67

Appendix A

Additional outliers

In this appendix, we present additional outlier cases that were not included in the
main analysis to avoid redundancy.

A.1 Additional require(false) cases

Among the tested models, only FLAMES20K produces the require(false); invari-
ant for the dos_simple.sol contract in the post-injection scenario, as demonstrated
in Figure A.1. This behavior is consistent across both inference strategies employed.

Another case where the require(false); invariant appears is in the incorrect
_constructor_namel.sol contract. All models generate the require(false); in-
variant in the pre injection scenario across both inference strategies, with the
exception of FLAMES100K when using the aggregated inference strategy, as
shown in Figure A.2.

This demonstrates the capability of the FLAMES100K model with aggregated
inference strategy to produce valid invariants by leveraging information from
previous steps in the inference process.

69

Additional outliers

1 |pragma solidity ~0.4.25;

2 | contract DosOneFunc {

3 address[] listAddresses;

4 function ifillArray () public returns (bool){
5 if (listAddresses.length<1500) {

6 for(uint i=0;i<350;i++) {

7 listAddresses.push(msg.sender);
8 }

9 return true;

10 } else {

11 listAddresses = new address[](0);
12 return false;

13 }

14 |[require (false); //POST INVARIANT

15 }

16 |}

Figure A.1: dos simple.sol contract with post injection strategy applied in
FLAMES20K.

70

A.1 - Additional require (false) cases

1 |pragma solidity ~0.4.24;

2 |contract Missing{

3 |require (msg.sender==tx.origin) ; //PRE INVARIANT
4 address private owner;

5 modifier onlyowner {

6 require (msg.sender==owner) ;
7 _

8 }

9 function IamMissing()

10 public

11 {

12 owner = msg.sender;

13 b

14 function () payable {}

15 function withdraw()

16 public

17 onlyowner

18 {

19 owner .transfer (this.balance) ;
20 }

21 |}

Figure A.2: incorrect_ constructor_namel.sol contract with pre injection strategy
applied in aggregated inference strategy FLAMES100K.

71

Bibliography

Nick Szabo. «Formalizing and securing relationships on public networksy. In:
First Monday 2.9 (1997) (cit. on p. 1).

Nick Szabo. Smart Contracts: Building Blocks for Digital Markets. http:
//www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Lit
erature/LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.
html. 1996 (cit. on pp. 1, 11).

Gavin Wood. Ethereum: A secure decentralised generalised transaction ledger.
Tech. rep. Ethereum Foundation, 2014 (cit. on p. 1).

Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. « A Survey of Attacks
on Ethereum Smart Contracts (SoK)». In: Principles of Security and Trust.
Ed. by Matteo Maffei and Mark Ryan. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2017, pp. 164-186. ISBN: 978-3-662-54455-6 (cit. on p. 1).

Ethereum Foundation. Hard Fork Completed. Ethereum Foundation. 2016.
URL: https://blog.ethereum.org/2016/07/20/hard-fork-completed
(cit. on pp. 1, 6).

Mojtaba Eshghie, Mikael Jafari, and Cyrille Artho. «From Creation to Ex-
ploitation: The Oracle Lifecycle». In: 202/ IEEE International Conference on
Software Analysis, Evolution and Reengineering - Companion (SANER-C).
2024, pp. 23-34. DOIL: 10.1109/SANER-C62648.2024.00009 (cit. on pp. 1, 2,
11).

Loi Luu, Duc-Hieu Chu, Hoi Olickel, Prateek Saxena, and Aquinas Hobor.
«Making smart contracts smarter». In: ACM Conference on Computer and
Communications Security. 2016, pp. 254-269 (cit. on p. 1).

Christoph Torres, Marco Steichen, and Radu State. «The art of the scam:
Demystifying honeypots in Ethereum smart contracts». In: USENIX Security
Symposium (2021) (cit. on p. 1).

73

http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html
https://blog.ethereum.org/2016/07/20/hard-fork-completed
https://doi.org/10.1109/SANER-C62648.2024.00009

BIBLIOGRAPHY

[12]

[18]

Dan Grossman, Emina Torlak, and Xi Wang. «Online detection of effectively
callback free objects with applications to smart contracts». In: Proceedings

of the ACM on Programming Languages. Vol. 1. OOPSLA. 2017, pp. 1-28
(cit. on p. 2).

Zhining Wu, Lei Song, Yi Zhang, and Jianjun Zhou. « An empirical analysis
of real-world smart contract vulnerabilities: Lessons from 10 years of attacksy.
In: IEEFE Transactions on Software Engineering (2023) (cit. on p. 2).

Mojtaba Eshghie, Gustav Andersson Kasche, Cyrille Artho, and Martin Mon-
perrus. SInDi: Semantic Invariant Differencing for Solidity Smart Contracts.
Manuscript (preprint). URN: urn:nbn:se:kth:diva-363066, OAI: oai:DiVA.org:kth{
363066, DivA id: diva2:1956137. KTH Royal Institute of Technology, School
of Electrical Engineering and Computer Science, May 2025 (cit. on p. 2).

C. A. R. Hoare. «An axiomatic basis for computer programming». In: Com-
mun. ACM 12.10 (Oct. 1969), pp. 576-580. 1SSN: 0001-0782. por: 10.1145/
363235.363259. URL: https://doi.org/10.1145/363235.363259 (cit. on
p. 2).

Robert W. Floyd. «Assigning Meanings to Programs». In: Program Verifica-
tion: Fundamental Issues in Computer Science. Ed. by Timothy R. Colburn,
James H. Fetzer, and Terry L. Rankin. Dordrecht: Springer Netherlands, 1993,
pp. 65-81. 1SBN: 978-94-011-1793-7. DOI: 10.1007/978-94-011-1793-7_4.
URL: https://doi.org/10.1007/978-94-011-1793-7_4 (Cit. on p. 2).

Ye Liu, Chengxuan Zhang, and Yi Li. Automated Invariant Generation for
Solidity Smart Contracts. 2024. arXiv: 2401.00650 [cs.SE]. URL: https:
//arxiv.org/abs/2401.00650 (cit. on pp. 2, 15, 16).

Zhiyang Chen, Ye Liu, Sidi Mohamed Beillahi, Yi Li, and Fan Long. «Demys-
tifying Invariant Effectiveness for Securing Smart Contracts». In: Proceedings
of ACM/IEEE FSE 2024 (2024) (cit. on p. 2).

Gustav Andersson Kasche. InvPurge: Reducing Invariant Noise with Logical
Differencing. 2024 (cit. on p. 2).

Yue Wang, Lin Liu, Chao Zhou, and Ming Zhang. « An Empirical Study of
Vulnerabilities in Real-world Ethereum Smart Contracts». In: Proceedings
of the 38th IEEE/ACM International Conference on Automated Software
Engineering (ASE). 2023, pp. 233-244 (cit. on p. 2).

Anna Hakansson. «Portal of Research Methods and Methodologies for Re-
search Projects and Degree Projects». In: The 2013 World Congress in Com-
puter Science, Computer Engineering, and Applied Computing. CSREA Press,

2013, pp. 67-73 (cit. on p. 3).

74

https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/363235.363259
https://doi.org/10.1007/978-94-011-1793-7_4
https://doi.org/10.1007/978-94-011-1793-7_4
https://arxiv.org/abs/2401.00650
https://arxiv.org/abs/2401.00650
https://arxiv.org/abs/2401.00650

BIBLIOGRAPHY

[19]

[20]

[27]

Gabriele Morello. FLAMES: Fine-tuned Large Language Model for Invariant
Synthesis. 2024 (cit. on pp. 5, 15, 16).

Gabriele Morello, Mojtaba Eshghie, Sofia Bobadilla, and Martin Monperrus.
DISL: Fueling Research with A Large Dataset of Solidity Smart Contracts.
2024. arXiv: 2403.16861 [cs.SE]. URL: https://arxiv.org/abs/2403.
16861 (cit. on pp. 5, 6, 19).

Baptiste Roziere et al. Code Llama: Open Foundation Models for Code. 2024.
arXiv: 2308.12950 [cs.CL]. URL: https://arxiv.org/abs/2308.12950
(cit. on p. 5).

Wanrong Zhu, Zhiting Hu, and Eric Xing. «Text Infilling». In: arXiv preprint
arXiw:1901.00158 (2019). URL: https://arxiv.org/abs/1901.00158 (cit.
on p. H).

Mojtaba Eshghie, Viktor Aryd, Cyrille Artho, and Martin Monperrus. SoliD-
iffy: AST Differencing for Solidity Smart Contracts. 2025. arXiv: 2411.07718
[cs.SE]. URL: https://arxiv.org/abs/2411.07718 (cit. on p. 5).

Solidity Team. Solidity v0.8.0 Breaking Changes. https://docs.solidit
ylang.org/en/latest/080-breaking-changes.html. 2020. URL: https:
//docs . soliditylang.org/en/latest/080-breaking- changes . html
(cit. on p. 7).

Mojtaba Eshghie, Wolfgang Ahrendt, Cyrille Artho, Thomas Troels Hilde-
brandt, and Gerardo Schneider. Formalizing Smart Contract Design Patterns
with DCR Graphs. 2025. (Visited on 06/02/2025) (cit. on pp. 11, 17).

Mojtaba Eshghie, Wolfgang Ahrendt, Cyrille Artho, Thomas Troels Hilde-
brandt, and Gerardo Schneider. « Capturing Smart Contract Design with DCR
Graphs». In: Software Engineering and Formal Methods. Ed. by Carla Fer-
reira and Tim A. C. Willemse. Cham: Springer Nature Switzerland, 2023,
pp. 106-125. 1SBN: 978-3-031-47115-5 (cit. on pp. 11, 17).

Hadis Rezaei, Mojtaba Eshghie, Karl Anderesson, and Francesco Palmieri.
SoK: Root Cause of $1 Billion Loss in Smart Contract Real-World Attacks via
a Systematic Literature Review of Vulnerabilities. 2025. arXiv: 2507.20175
[cs.CR]. URL: https://arxiv.org/abs/2507.20175 (cit. on pp. 11, 13,
14).

James C. King. «Symbolic execution and program testing». In: Commun.
ACM 19.7 (July 1976), pp. 385-394. 1SsN: 0001-0782. DOI: 10.1145/360248.
360252. URL: https://doi.org/10.1145/360248.360252 (cit. on p. 12).

75

https://arxiv.org/abs/2403.16861
https://arxiv.org/abs/2403.16861
https://arxiv.org/abs/2403.16861
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/1901.00158
https://arxiv.org/abs/2411.07718
https://arxiv.org/abs/2411.07718
https://arxiv.org/abs/2411.07718
https://docs.soliditylang.org/en/latest/080-breaking-changes.html
https://docs.soliditylang.org/en/latest/080-breaking-changes.html
https://docs.soliditylang.org/en/latest/080-breaking-changes.html
https://docs.soliditylang.org/en/latest/080-breaking-changes.html
https://arxiv.org/abs/2507.20175
https://arxiv.org/abs/2507.20175
https://arxiv.org/abs/2507.20175
https://doi.org/10.1145/360248.360252
https://doi.org/10.1145/360248.360252
https://doi.org/10.1145/360248.360252

BIBLIOGRAPHY

[29]

[32]

[33]

[34]

Roberto Baldoni, Emilio Coppa, Daniele Cono D’elia, Camil Demetrescu,
and Irene Finocchi. «A Survey of Symbolic Execution Techniques». In: ACM
Comput. Surv. 51.3 (May 2018). 1sSN: 0360-0300. DOI: 10.1145/3182657.
URL: https://doi.org/10.1145/3182657 (cit. on p. 12).

Shang-Wei Lin, Palina Tolmach, Ye Liu, and Yi Li. «SolSEE: a source-
level symbolic execution engine for solidity». In: Proceedings of the 30th
ACM Joint European Software Engineering Conference and Symposium on
the Foundations of Software Engineering. ESEC/FSE 2022. Singapore, Sin-
gapore: Association for Computing Machinery, 2022, pp. 1687-1691. ISBN:
9781450394130. pOI: 10.1145/3540250.3558923. URL: https://doi.org/
10.1145/3540250.3558923 (cit. on p. 12).

Shihao Xia, Mengting He, Shuai Shao, Tingting Yu, Yiying Zhang, and
Linhai Song. SymGPT: Auditing Smart Contracts via Combining Symbolic
Ezecution with Large Language Models. 2025. arXiv: 2502.07644 [cs.AI].
URL: https://arxiv.org/abs/2502.07644 (cit. on p. 12).

Kunjian Song, Nedas Matulevicius, Eddie B. de Lima Filho, and Lucas C.
Cordeiro. « ESBMC-Solidity: An SMT-Based Model Checker for Solidity Smart
Contractsy. In: 2022 IEEE/ACM 44th International Conference on Software
Engineering: Companion Proceedings (ICSE-Companion). 2022, pp. 65-69.
DOI: 10.1145/3510454.3516855 (cit. on p. 12).

Sunbeom So, Seongjoon Hong, and Hakjoo Oh. «SmarTest: Effectively Hunting
Vulnerable Transaction Sequences in Smart Contracts through Language
Model-Guided Symbolic Execution». In: 30th USENIX Security Symposium
(USENIX Security 21). USENIX Association, Aug. 2021, pp. 1361-1378.
ISBN: 978-1-939133-24-3. URL: https://www . usenix . org/conference/
usenixsecurity21/presentation/so (cit. on p. 13).

Jon Stephens, Kostas Ferles, Benjamin Mariano, Shuvendu Lahiri, and Isil
Dillig. «SmartPulse: Automated Checking of Temporal Properties in Smart
Contracts». In: 2021 IEEE Symposium on Security and Privacy (SP). 2021,
pp. 555-571. DOI: 10.1109/SP40001.2021.00085 (cit. on p. 13).

Marc Brockschmidt, Byron Cook, Samin Ishtiaq, Heidy Khlaaf, and Nir
Piterman. «T2: Temporal Property Verification». In: Proceedings of the 22nd
International Conference on Tools and Algorithms for the Construction and
Analysis of Systems - Volume 9636. Berlin, Heidelberg: Springer-Verlag, 2016,
pp. 387-393. ISBN: 9783662496732. DOI: 10.1007/978-3-662-49674-9_22.
URL: https://doi.org/10.1007/978-3-662-49674-9_22 (cit. on p. 13).

76

https://doi.org/10.1145/3182657
https://doi.org/10.1145/3182657
https://doi.org/10.1145/3540250.3558923
https://doi.org/10.1145/3540250.3558923
https://doi.org/10.1145/3540250.3558923
https://arxiv.org/abs/2502.07644
https://arxiv.org/abs/2502.07644
https://doi.org/10.1145/3510454.3516855
https://www.usenix.org/conference/usenixsecurity21/presentation/so
https://www.usenix.org/conference/usenixsecurity21/presentation/so
https://doi.org/10.1109/SP40001.2021.00085
https://doi.org/10.1007/978-3-662-49674-9_22
https://doi.org/10.1007/978-3-662-49674-9_22

BIBLIOGRAPHY

[36]

[37]

[39]

[40]

[41]

[43]

Ilya Sergey, Amrit Kumar, and Aquinas Hobor. «Temporal Properties of
Smart Contracts». In: Leveraging Applications of Formal Methods, Verification
and Validation. Industrial Practice: 8th International Symposium, ISoLA
2018, Limassol, Cyprus, November 5-9, 2018, Proceedings, Part V. Limassol,
Cyprus: Springer-Verlag, 2018, pp. 323-338. 1SBN: 978-3-030-03426-9. DOTI:
10.1007/978-3-030-03427-6_25. URL: https://doi.org/10.1007/978-
3-030-03427-6_25 (cit. on p. 13).

Anton Permenev, Dimitar Dimitrov, Petar Tsankov, Dana Drachsler-Cohen,
and Martin Vechev. «VerX: Safety Verification of Smart Contracts». In: 2020
IEEFE Symposium on Security and Privacy (SP). 2020, pp. 1661-1677. DOT:
10.1109/SP40000.2020.00024 (cit. on p. 14).

Monika di Angelo, Thomas Durieux, Joao F. Ferreira, and Gernot Salzer.
SmartBugs 2.0: An Ezxecution Framework for Weakness Detection in Ethereum
Smart Contracts. 2023. arXiv: 2306.05057 [cs.CR]. URL: https://arxiv.
org/abs/2306.05057 (cit. on pp. 14, 62).

Mojtaba Eshghie and Cyrille Artho. «Oracle-Guided Vulnerability Diversity
and Exploit Synthesis of Smart Contracts Using LLMs». In: Proceedings
of the 39th IEEE/ACM International Conference on Automated Software
Engineering. ASE ’24. Sacramento, CA, USA: Association for Computing
Machinery, 2024, pp. 2240-2248. 1SBN: 9798400712487. DOI1: 10.1145/3691
620.3695292. URL: https://doi.org/10.1145/3691620.3695292 (Cit. on
p. 14).

Sofia Bobadilla, Monica Jin, and Martin Monperrus. Do Automated Fixes
Truly Mitigate Smart Contract Ezploits? 2025. arXiv: 2501.04600 [cs.SE].
URL: https://arxiv.org/abs/2501.04600 (cit. on pp. 14, 24, 28).

Zhiyuan Peng, Xin Yin, Rui Qian, Peiqin Lin, Yongkang Liu, Chenhao
Ying, and Yuan Luo. SolFval: Benchmarking Large Language Models for
Repository-level Solidity Code Generation. 2025. arXiv: 2502.18793 [cs.SE].
URL: https://arxiv.org/abs/2502.18793 (cit. on p. 15).

Ye Liu, Yue Xue, Daoyuan Wu, Yuqiang Sun, Yi Li, Miaolei Shi, and Yang
Liu. «PropertyGPT: LLM-driven Formal Verification of Smart Contracts
through Retrieval-Augmented Property Generationy. In: Proceedings 2025
Network and Distributed System Security Symposium. NDSS 2025. Internet
Society, 2025. DOI: 10.14722/ndss.2025.241357. URL: http://dx.doi.
org/10.14722/ndss.2025.241357 (cit. on p. 15).

Sally Junsong Wang, Kexin Pei, and Junfeng Yang. «SmartInv: Multimodal
Learning for Smart Contract Invariant Inference». In: 2024 IEEE Symposium
on Security and Privacy (SP). 2024, pp. 2217-2235. DOT: 10.1109/SP54263.
2024.00126 (cit. on pp. 15, 16).

77

https://doi.org/10.1007/978-3-030-03427-6_25
https://doi.org/10.1007/978-3-030-03427-6_25
https://doi.org/10.1007/978-3-030-03427-6_25
https://doi.org/10.1109/SP40000.2020.00024
https://arxiv.org/abs/2306.05057
https://arxiv.org/abs/2306.05057
https://arxiv.org/abs/2306.05057
https://doi.org/10.1145/3691620.3695292
https://doi.org/10.1145/3691620.3695292
https://doi.org/10.1145/3691620.3695292
https://arxiv.org/abs/2501.04600
https://arxiv.org/abs/2501.04600
https://arxiv.org/abs/2502.18793
https://arxiv.org/abs/2502.18793
https://doi.org/10.14722/ndss.2025.241357
http://dx.doi.org/10.14722/ndss.2025.241357
http://dx.doi.org/10.14722/ndss.2025.241357
https://doi.org/10.1109/SP54263.2024.00126
https://doi.org/10.1109/SP54263.2024.00126

BIBLIOGRAPHY

[44]

[46]

[47]

[48]

[50]

[51]

Hao Luo, Yuhao Lin, Xiao Yan, Xintong Hu, Yuxiang Wang, Qiming Zeng,
Hao Wang, and Jiawei Jiang. Guiding LLM-based Smart Contract Generation
with Finite State Machine. 2025. arXiv: 2505.08542 [cs.AI]. URL: https:
//arxiv.org/abs/2505.08542 (cit. on p. 16).

Anastasia Mavridou, Aron Laszka, Emmanouela Stachtiari, and Abhishek
Dubey. «VeriSolid: Correct-by-Design Smart Contracts for Ethereum». In:
Financial Cryptography and Data Security. Ed. by Ian Goldberg and Tyler
Moore. Cham: Springer International Publishing, 2019, pp. 446-465. 1SBN:
978-3-030-32101-7 (cit. on p. 16).

Lingxiang Wang, Hainan Zhang, Qinnan Zhang, Ziwei Wang, Hongwei Zheng,
Jin Dong, and Zhiming Zheng. CodeBC: A More Secure Large Language Model
for Smart Contract Code Generation in Blockchain. 2025. arXiv: 2504.21043
[cs.CR]. URL: https://arxiv.org/abs/2504.21043 (cit. on p. 16).

Ao Li, Jemin Andrew Choi, and Fan Long. «Securing smart contract with
runtime validationy. In: Proceedings of the 41st ACM SIGPLAN Conference
on Programming Language Design and Implementation. PLDI 2020. Lon-
don, UK: Association for Computing Machinery, 2020, pp. 438-453. ISBN:
9781450376136. DOI: 10.1145/3385412.3385982. URL: https://doi.org/
10.1145/3385412.3385982 (cit. on p. 16).

Akos Hajdu and Dejan Jovanovic. «solc-verify: A Modular Verifier for Solidity
Smart Contracts». In: Verified Software. Theories, Tools, and Fxperiments.
Springer International Publishing, 2020, pp. 161-179. 1SBN: 9783030416003.
DOI: 10.1007/978-3-030-41600-3_11. URL: http://dx.doi.org/10.
1007/978-3-030-41600-3_11 (cit. on p. 17).

Everett Hildenbrandt et al. «k KEVM: A Complete Formal Semantics of the
Ethereum Virtual Machiney. In: 2018 IEEE 31st Computer Security Founda-
tions Symposium (CSF'). 2018, pp. 204-217. pOI: 10.1109/CSF.2018.00022
(cit. on p. 17).

Evgeniy Shishkin. Debugging Smart Contract’s Business Logic Using Symbolic
Model-Checking. 2018. arXiv: 1812.00619 [cs.LO]. URL: https://arxiv.
org/abs/1812.00619 (cit. on p. 17).

Mojtaba Eshghie, Cyrille Artho, Hans Stammler, Wolfgang Ahrendt, Thomas
Hildebrandt, and Gerardo Schneider. «HighGuard: Cross-Chain Business
Logic Monitoring of Smart Contracts». In: Proceedings of the 39th IEEE/ACM
International Conference on Automated Software Engineering. ASE ’24. Sacra-
mento, CA, USA: Association for Computing Machinery, 2024, pp. 2378~
2381. 1SBN: 9798400712487. DOI: 10.1145/3691620.3695356. URL: https:
//doi.org/10.1145/3691620.3695356 (cit. on p. 17).

78

https://arxiv.org/abs/2505.08542
https://arxiv.org/abs/2505.08542
https://arxiv.org/abs/2505.08542
https://arxiv.org/abs/2504.21043
https://arxiv.org/abs/2504.21043
https://arxiv.org/abs/2504.21043
https://doi.org/10.1145/3385412.3385982
https://doi.org/10.1145/3385412.3385982
https://doi.org/10.1145/3385412.3385982
https://doi.org/10.1007/978-3-030-41600-3_11
http://dx.doi.org/10.1007/978-3-030-41600-3_11
http://dx.doi.org/10.1007/978-3-030-41600-3_11
https://doi.org/10.1109/CSF.2018.00022
https://arxiv.org/abs/1812.00619
https://arxiv.org/abs/1812.00619
https://arxiv.org/abs/1812.00619
https://doi.org/10.1145/3691620.3695356
https://doi.org/10.1145/3691620.3695356
https://doi.org/10.1145/3691620.3695356

BIBLIOGRAPHY

[52] Etherscan Team. Etherscan Developer APIs. https://docs.etherscan.io/
api-endpoints/contracts. 2023 (cit. on p. 27).

79

https://docs.etherscan.io/api-endpoints/contracts
https://docs.etherscan.io/api-endpoints/contracts

	List of Tables
	List of Figures
	Introduction
	Problem Statement
	Purpose and Goals
	Research Questions
	Research Methodology
	Structure of the thesis

	Background
	FLAMES: An AI Model for Defensive Code Synthesis
	The DISL Dataset for Training AI Models
	Smart Contract Vulnerabilities
	Reentrancy Attacks
	Access Control Vulnerabilities
	Arithmetic Vulnerabilities
	Front-Running Attacks
	Unchecked Low-Level Calls
	Bad Randomness
	Denial of Service

	Related Works
	Validation Techniques for Generated Code
	Formal Verification Approaches
	Dynamic Analysis and Testing Methodologies
	Threat Modeling and Adversarial Analysis
	Performance Evaluation and Quality Metrics

	Cutting-Edge Synthesis-Validation Integration Systems
	Solidity-Centric Development Trends
	Specification Mining and Property Synthesis
	Code Generation with Integrated Verification
	End-to-End Smart Contract Security
	Verification Infrastructure
	Business Logic and Behavioral Verification

	Experimental Setup
	Evaluation Dataset
	Evaluation Method
	RQ1 Protocol
	RQ2 Protocol

	Experimental Infrastructure

	Results
	RQ1 Results: Compilability Evaluation
	Etherscan compilation failures
	Comparative Compilability Analysis

	RQ2 Results: Validating Security Invariants
	Evaluation Metrics
	FLAMES20K Results
	FLAMES100K Results
	CodeLlama Results
	Comparative Validity Analysis
	Outliers and Study Cases

	Discussion
	Robustness, Accuracy and Human Effort
	Threats to Validity

	Conclusion and Future Work
	Conclusion
	Future Work
	Reflections

	Additional outliers
	Additional require(false) cases

