Llh\ |Il||

w
gyl S

o
\\ 1859
S, w2

Politecnico di Torino

Computer Engineering
AY. 2024/2025
Graduation Session October 2025

Accelerating Inter-Host

Communication Between
Microservices with RDMA /eBPF

Supervisors: Candidate:
Prof. Fulvio Risso Luca Menozzi
Dott. Davide Miola

Abstract

As the cloud-native paradigm increases in popularity and quickly becomes the
de-facto standard for datacenter software development, monolithic applications
are split into functionally distinct microservices. Consequently, east-west network
traffic becomes critical to ensure system correctness. Traditionally, node-to-node
communication relies on the TCP /IP stack, which provides reliable, ordered message
delivery between applications. Recently, technologies such as Remote Direct Mem-
ory Access (RDMA) have emerged, offering equivalent reliability while supporting
higher data rates and lower latency.

This thesis presents a TCP-to-RDMA proxy that bridges these technologies.
The proxy transparently intercepts outbound application traffic at the socket level
and leverages RDMA to transport it reliably, effectively bypassing the TCP /TP
stack while maintaining full application compatibility. Achieving full transparency
without kernel modifications is challenging; our solution exploits the eBPF frame-
work, which enables in-kernel programmability and allows network traffic to be
dynamically monitored and redirected. This approach ensures portability, low
overhead, and seamless integration with existing applications.

In addition to outlining the overall architecture, this work discusses the main
design choices and the implementation of the proxy, focusing on how eBPF was
leveraged to ensure transparency and flexibility, and how RDMA was exploited to
achieve higher throughput. We also conducted a preliminary performance evalua-
tion: although the results are not yet fully satisfactory, they already provide useful
insights into the system’s behavior and point to clear directions for improvement.
Along the way, we encountered unexpected issues with the SKMSG hook. While
this was not part of the initial objectives, it turned out to be an interesting and
valuable finding that sheds light on the limitations of current kernel mechanisms.

Looking ahead, we believe that this line of work opens the door for a new
generation of datacenter networking. By bridging legacy application interfaces with
modern transport technologies in a fully transparent way, it becomes possible to
rethink the role of the operating system in distributed environments, reduce the
reliance on traditional network stacks, and unlock new opportunities for performance
and scalability.

Acknowledgements

I would like to thank Professor Fulvio Risso for his support and guidance throughout
this thesis work.

I am especially grateful to Dr. Davide Miola for his constant availability,
insightful suggestions, and technical expertise. His support was fundamental in
shaping and improving the quality of this work.

A special thanks to the Lab9 team for their warm welcome and continued
support during this experience.

Finally, I'm grateful to everyone I've bothered while asking for dedicated NICs
to run RDMA — thank you for your patience!

11

Table of Contents

List of Figures

Glossary

1 Introduction

1.1

2 Background

2.1

2.2

2.3

Goals
Linux network stack oo
2.1.1 Overview
2.1.2 Network stack short-cutting
2.1.3 Direct memory accesso
eBPF
221 Key featuresof eBPFo
RDMA . . .
2.3.1 Data flow over TCP and RDMA
2.3.2 Operation modes
2.3.3 Transports layer oo
2.3.4 RDMA objects
2.3.5 Connection management in RDMA
2.3.6 RDMA verbs
2.3.7 Communication setup
2.3.8 Congestion control mechanisms

3 Architecture

3.1
3.2
3.3
3.4

Overview
Kernelspace
Userspace e
Application Logic
3.4.1 New Connection
342 Message Trip L

VI

VII

3.4.3 Event-Driven and Polling Modes

4 Implementation

4.1 Memory region and messages layout
4.1.1 Socket in user and kernelspace
4.1.2 Message structureo
4.1.3 Memory design Lo

4.2 KernelSpace: eBPFo
421 Maps.
4.2.2 SOCKOPS e
423 SK MSG.
4.2.4 TCP_DESTROY it

4.3 USerspace
4.3.1 Background threads

5 Results

5.1 Test and Debug Tools
5.1.1 Configurationo
5.1.2 Test devices L

5.2 SKMSG . o o ottt
5.2.1 Considerations on backpressure behavior
5.2.2 Performance L

5.3 Application Performance
5.3.1 Latency
5.3.2 Resource utilization o000
5.3.3 Throughput
5.3.4 Redis benchmark 00000

6 Conclusions
6.1 Future work & improvement opportunities

Bibliography

34
34
34
35
36
38
39
40
41
42
43
44

54
54
%)
95
%)
o6
o8
60
61
62
64
65

68
69

71

List of Figures

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9

3.1
3.2

4.1
4.2

5.1
5.2

9.3
5.4
9.5
5.6
5.7
0.8
2.9
5.10
5.11
5.12
5.13

The sk_buff structure L
Linux network stack with most important eBPF hook
DMA Command Block,
eBPF Framework
TCP (left) vs RDMA (right) architecture
RDMA performance [3]
RDMA transport layer
RDMA complete setup,
Shared Receive Queue,

Kernelspace and userspace communication
Message trip inside the application

Memory layout schema
Layout of RDMA connections between peers

SK MSG test schema
RAM usage over time while transferring 100 GB of data with SK_MSG
steering and slow receiver.
Local iperf3 test with and without SK_MSG using a single stream . .
Local iperf3 test with three streams
Local iperf3 test with three streams using SK_MSG hook
Application structure
TCP vs RDMA latency.
CPU utilization over time with iperf3 test between two nodes.

CPU utilization over time while running our application.
RDMA vs TCP iperf3 single-stream throughput comparison :
Redis benchmark with 10 parallel streams.
Redis benchmark with 30 parallel streams
Redis benchmark with 40 parallel streams

VI

Glossary

RDMA

Remote Direct Memory Access

eBPF
extended Berkeley Packet Filter

SKMSG
SocKet MeSsaGe

NIC
Network Interface Card

DMA

Direct Memory Access

IRQ
Interrupt Request

RSS

Receive Side Scaling

GRO

Generic Receive Offload

GSO

Generic Segmentation Offload

XDP
eXpress Data Path

VII

JIT
Just-In-Time (Compilation)

TCP

Transmission Control Protocol

RNIC
RDMA-capable Network Interface Card

QP

Queue Pair

SQ
Send Queue

RQ

Receive Queue

WR
Work Request
WQEs
Work Queue Elements

SGE
Scatter-Gather Element

CQ

Completion Queue

MR
Memory Region

L-KEY
Local Key

R-KEY
Remote Key

PD

Protection Domain

VIII

Chapter 1

Introduction

In recent years, the way applications are designed and developed has changed. In
the past, the trend was to develop large, monolithic applications that typically ran
on a single machine; today, there is a shift towards a new paradigm that is much
more modular. In this new paradigm, the once centralized application is divided
into many smaller, independent components that interact with each other. These
components are called microservices.

Today, microservices have become the standard approach to cloud-native appli-
cation development. Since each service is designed to focus on only a small part of
the overall problem, the ability to communicate is crucial to the proper functioning
of the entire application.

This communication has always been made possible by the TCP/IP stack, which
segments data into many small packets, sends them, and receives them on the
other side of the connection. However, in recent years, new technologies have
emerged that offer equally valid alternatives for data transfer, such as Remote
Direct Memory Access (RDMA).

RDMA is a new technology that aims to transfer data directly from the sender’s
memory to the receiver’s memory. With RDMA, a program specifies the local source
and remote destination, and the data is copied directly to the destination memory.
This results in extremely low latency and high throughput.

The objective of this thesis is to develop a mechanism to use RDMA as the
transport medium instead of TCP, while keeping everything completely transparent
to the applications running on top. To make this work without touching the
applications themselves, we need to:

(i) intercept the data being sent so it can be carried over RDMA, and

(ii) once it arrives, hand it over to the destination application exactly as it expects.

For this reason, we introduced a unit that works as a transparent bridge between

1

Introduction

the application and RDMA: eBPF. With eBPF, developers can inject code directly
into the kernel, which opens up a lot of new possibilities.

1.1 Goals

This thesis explores an experimental approach to communication in distributed
applications, proposing an alternative to the traditional TCP/IP stack.

In standard TCP-based communication, applications rely on sockets. The idea
here is to intercept data after it has been sent to the application’s socket but before
it enters the TCP layer. This interception can be achieved using the eBPF framework.
The captured data is then transferred to the destination peer via RDMA and, on the
receiving side, re-injected into a socket. The entire process is designed to remain
fully transparent to the applications. The proposed architecture thus replaces
TCP with RDMA, aiming to take advantage of the latter’s improved throughput and
latency for microservice-based applications.

The objectives of this work are twofold: first, to design an architecture capable of
intercepting data at the socket layer (before it reaches the TCP stack) using SK_MSG
and redirecting it through RDMA; and second, to evaluate both the practicality and
effectiveness of this architecture.

Chapter 2

Background

2.1 Linux network stack

2.1.1 Overview

Every time a device communicates on a network, the information is divided into
small units called packets. A packet is physically just a block of data, but it is
logically layered and structured, with each layer adding content.

At the bottom layer is the Ethernet header, which specifies the hardware
addresses and payload type. Above that is the IP header, which carries the source
and destination IP addresses, and then the transport layer, which provides all the
information necessary for the packet to be transmitted correctly over the network.

Together, these headers serve to specify where a packet comes from, where it is
going, and how it should be handled once it is received.

Ingress: the path into the system

When a packet is received on a Linux-based system, it first arrives at the Network
Interface Card (NIC). The NIC checks the destination MAC address and discards
irrelevant frames (unless in promiscuous mode), moreover, it also verifies the
Ethernet checksum, dropping corrupted frames avoiding wasting CPU time. If
valid, the NIC transfers the packet into main memory via Direct Memory Access
(DMA) and signals the CPU with an interrupt. Since this interrupt is generated by
the NIC, it is a hardware interrupt and will likely interrupt the CPU immediately,
potentially preempting currently running tasks.

Given that a non-preemptible interrupt cannot be interrupted while running, a
long-running handler would prevent other interrupts to be managed. Best practice
to solve this problem is to keep hardware interrupt work minimal, deferring most
processing to a software interrupt (softirq).

3

Background

This separation is known as the Top Half (urgent tasks) and Bottom Half
(deferred tasks) model:

« Top Half Handler (Hard IRQ): Runs immediately when the interrupt is
raised in order to handle time-critical work that cannot be delayed (eg copy
the packet and freeing memory in the NIC). During execution, interrupts and
preemption are disabled, so the handler must be as brief as possible.

« Bottom Half Handler (Soft IRQ): This handles tasks that take more
time and can be deferred without issue. During this phase, interrupts are
enabled, and preemption is disabled; Hence soft IRQs can be interrupted by
higher-priority hardware interrupts, which makes them more flexible than
top halves. If the workload in the bottom half becomes too heavy, it can be
split into smaller, more manageable tasks. Through Soft IRQ, the packet will
complete its trip inside the network stack.

Once the packet is in a buffer (thus the Hard IRQ ended) it is wrapped in a
data structure called sk_buff (socket buffer). The sk_buff contains fields that
assist in further packet processing. Initially, only the primary fields are allocated,
then other fields can be populated by different components as needed. One main
advantages of this structure is to allow headers to be “removed” or “re-added”
simply by adjusting pointers, avoiding expensive memory copies (Figure 2.1).

sk_buff struct
(MetaData)
; sk_buff Data
interface (Value) (Packet Buffer)
protocol (Value) | Empty
head (Painter) Ethernet Header
IPv4 Header
data (Pointer) —
TCP Header
tail (Pointer) —
end (Pointer) Data
MAC Header (Pointer)
Empty
IPv4 Header (Pointer) -
Memory (RAM)

TCP Headr (Pointer)

Socket Buffer Components |

Figure 2.1: The sk_buff structure

4

Background

After the sk_buff has been initialized, the packet travels up the full network
stack for processing: the Ethernet header is removed, the IP header is validated,
firewall rules may be applied, and routing decisions are made.

If the packet is not destined for the host, it may be forwarded; otherwise, it
moves to the TCP stack, where it is parsed and delivered to the application through
the appropriate socket. Finally, when the application calls read (), it receives the
contents of the packet.

Egress: the path out

The reverse journey begins when an application calls the write () system call on a
socket.

At this point, the kernel allocates a socket buffer, fills it with the payload, and
constructs the necessary headers. The TCP layer sets its parameters, such as ports
and sequence numbers, the IP layer adds the source and destination addresses, and
finally the Ethernet layer appends the MAC addresses. Once all the required fields
are in place, the packet is queued onto the NIC driver.

The NIC then fetches the packet via DMA, computes the final checksum, and
transmits it onto the network.

Is important to note that, from the application’s perspective, this entire process
is completely transparent; It simply sees the write () call return.

2.1.2 Network stack short-cutting

While the basic process is straightforward, modern throughput demands require
optimization. General-purpose CPUs are not the most efficient platform for
implementing network functions. Consequently, processing tasks related to the
network stack can consume a substantial portion of the CPU’s overall resources,
reducing the cycles available for application logic. To address this challenge, Linux
incorporates various offloading techniques aimed at enhancing the efficiency of the
software network stack and accelerating packet processing. These include both
hardware- and software-based solutions.
Key techniques include:

e Checksum offloading: Letting the NIC compute and verify checksums
instead of the CPU.

« RSS (Receive-side scaling): Distributing traffic across CPU cores (The
NIC must be compatible)

e NAPI: Switching from interrupts to polling under heavy load, reducing
interrupt overhead.

Background

» Generic Receive Offload (GRO): Merging small packets into larger ones
for efficiency.

+ Generic Segmentation Offload (GSO): Keeping data aggregated and
splitting only at transmission, often in hardware.

Another way to accelerate traffic is by working directly within the Linux network
stack. Not all packets need to pass through every stage of processing; some well-
known packets can safely skip certain steps since the system already knows how to
handle them.

Two important techniques are worth highlighting:

« Traffic Control (TC): Flower is one of the TC filters (or classifiers) available
in Linux. It matches packets based on specific flow information (inspired by
OpenFlow) and can apply various actions such as drop, police, or mirred. The
most relevant action here is mirred (mirror/redirect), which allows packets to
be mirrored or redirected. This makes it possible to intercept packets based on
their flow and forward them directly to another part of the Linux networking
stack, effectively skipping unnecessary processing steps.

o Flowtables: Flowtables enable the automatic offloading of established flows.
They act as the filtering component of the Linux firewall, invoked at specific
points in the stack when packets pass through. Information about flows is
stored in the flowtable, which can then be used to accelerate operations such
as NAT by avoiding repeated processing.

Another important approach to consider is the use of eBPF. As will be explained
later (Section 2.2), eBPF is a native Linux framework that allows users to inject
code directly into the kernel, avoiding the need for direct kernel modifications,
which can quickly become complex and difficult to maintain.

An eBPF program can be attached to various hook points within the kernel,
including points located directly inside the networking stack. These programs can
perform a wide variety of packet processing tasks, though with some restrictions
on what is otherwise “almost arbitrary” processing. Once a packet is processed, an
eBPF program has several options: pass, drop or redirect.

The most important hook point inside the linux network stack are:

« XDP (eXpress Data Path) [1]: The earliest hook in the NIC driver’s
RX path. It is extremely fast and well-suited for dropping, redirecting, or
forwarding packets before they reach the kernel stack. Typical use cases
include DDoS mitigation and load balancing.

o TC (Traffic Control): Ingress and egress hooks that operate on sk_buffs.
TC is more flexible than XDP, supporting rich packet manipulation, shaping,

6

Background

and policy enforcement. It is widely used in container networking solutions
(e.g., Cilium [2]).

SockOps (Socket Operations): Hooks into TCP connection lifecycle events,
enabling custom congestion control, connection steering, and advanced in-
kernel load balancing mechanisms.

Cgroup Hooks: Attach to traffic within specific control groups, making it
possible to enforce per-container or per-tenant network policies. They are
particularly useful in Kubernetes environments for traffic redirection and
isolation.

In general, eBPF can be applied in two ways: either to shortcut parts of the
Linux networking stack or to cooperate with it. When bypassing portions of the
stack, eBPF can deliver significant performance improvements. On the other hand,
it can also be used to enhance existing functionality by working alongside the
kernel. For instance, eBPF can take over firewalling tasks, removing the need for
traditional iptables rules. In this role, it effectively acts as a Netfilter module,
simplifying firewall management and improving flexibility.

Userspace
Traditional app
Packet processing Packet sniffer (e.g., Web server)
app (e.g., DPDK) | |(e.g., tcpdump)
O O
f i
eBPF/socket eBPF/socket
L4
TCP/UDP TCP/UDP
processing processing
L3 routing
Netfilter INPUT decision
T Netfilter
Netfilter Netfilter
PREROUTING POSTROUTING]
L2 AF_XDP taps
. ingress . L egress .
interface skb eBPF/| - bridge Netfilter bridging Netfilter Netfilter eBPF/ > interface
BPF/XDP [—»{ Traffic [= H —» Traffic —»|
input |87/ allocation TC C:)ant:)\ check PREROUTING decision FORWARD POSTROUTING TC Coritr‘;\ output
[]

Figure 2.2: Linux network stack with most important eBPF hook

Although the Linux kernel is already heavily optimized, eBPF can often outper-

form standard packet processing in these scenarios.

2.1.3 Direct memory access

Data movements (either memory-to-memory, device-to-memory, or vice-versa)
normally require an active CPU intervention: the data should be read from the

7

Background

source address and then written to the destination address. It can thus be noted
that this process may become highly inefficient since the CPU cannot perform
other computations during the transfer.

To address this inefficiency, modern computer architectures employ a special-
purpose component called a Direct Memory-Access (DMA) controller, which allows
the CPU to offload much of this work to hardware.

The process begins when the host system writes a DMA command block into
memory. This block contains a pointer to the source of the data, a pointer to its
destination, and also the number of the bytes to be transferred. In more complex
scenarios, a single command block can specify multiple, noncontiguous memory
regions in what is called a scatter—gather transfer.

» Data Count

Data Lines

F 3

' 4 Data Register

|-
[Address Register

Lt

Address Lines

r 3

DMA request

DMA acknowledge
Interrupt

Read

Write

»

F 3

Control Logic

Figure 2.3: DMA Command Block

Once the CPU hands off the command block to the DMA controller, it is free
to perform other tasks while the DMA controller takes over the memory bus and
carries out the data transfer autonomously.

Usually, it is better to set DMA target inside kernel memory rather than user
space. If user-space memory were used directly, there is a risk that the user could
modify the data mid-transfer, potentially resulting in lost or corrupted data. To
make DMA-transferred data accessible to user-space threads, an additional copy
operation—from kernel memory to user memory—is required. This double buffering
introduces inefficiency, which has been solved in modern operating systems by
adopting memory-mapped 1/0, allowing devices to interact directly with user-space
memory without extra copying.

Although temporarily seizing the memory bus can momentarily prevent the
CPU to access the main memory (but not the cache), the overall effect is positive:
offloading data transfer tasks to a DMA controller usually accelerates total system

8

Background

throughput.

Another feature that has been introduced is Direct Virtual Memory Access
(DVMA), which allows a system to perform DMA operations using virtual memory
addresses, rather than being limited to physical addresses.

In conclusion, the introduction of DMA significantly reduces CPU overhead and
improves overall system performance. DMA controllers are now standard in all
computing devices, from smartphones to servers.

2.2 eBPF

The extended Berkeley Packet Filter (eBPF') is a very important advancement in
operating system design, originating from the Linux kernel.

eBPF allows to execute sandboxed programs directly within privileged contexts
such as the kernel itself. This ability provides a safe and efficient mechanism to
enhance kernel functionality without the need to alter the kernel source code or
load new kernel modules.

The kernel enjoys a privileged position due to its unique oversight of the entire
system, which allows it to monitor, regulate, and enforce the behavior of all
processes. However, this centrality has also imposed limitations on modifications
and the addition of new features. In fact, its central position in the system has
made it particularly difficult to manage since any change must pass extremely high
standards of stability and security, and as a result, the pace of innovation at the
kernel level has often lagged behind that of user space technologies.

eBPF changed this balance. By enabling sandboxed programs to execute safely
within the kernel, it allows developers to extend kernel behavior dynamically and
without risk to system integrity.

The scripts injected in the kernel are subject to rigorous verification and benefit
from the performance of a Just-In-Time (JIT) compiler, enabling eBPF programs
to run both safely and with near-native efficiency.

2.2.1 Key features of eBPF
Event-driven execution and hooking

eBPF programs are inherently event-driven, executing only when the kernel or an
application triggers a specific hook point. These hooks are predefined for a variety
of common scenarios, including: system calls, function entry and exit points, kernel
tracepoints, network events, and more.

In case we are looking to hook the program to a particular position where a
predefined hook does not exist, it is still possible to create a kernel probe (kprobe)
or a user probe (uprobe), allowing for extensive observability of both the kernel

9

Background

and user-space applications. However, these probes offer limited customization
compared to other hooking mechanisms.

Maps and Helper

A crucial aspect of eBPF programs is their ability to store state and share collected
information across different execution contexts. To achieve this, eBPF provides
maps. Maps are kernel-managed data structures that allow programs to store
and retrieve data efficiently. These maps can be accessed both from within eBPF
programs and from user-space applications (through system calls), facilitating
communication between kernel and user space.

Maps enable effective communication and coordination across multiple eBPF
programs, even when they are running on different CPU cores. This shared approach
enhances scalability and allows programs to maintain persistent state without the
need to embed the data directly in the code. In this model, the eBPF code remains
stateless, while the maps hold all program state and configuration data. This
separation of data from code improved both the efficiency by avoiding unnecessary
data copying and also the flexibility.

eBPF supports multiple map types, often with both shared and per-CPU
variations. Common examples include:

Hash tables and arrays

LRU (Least Recently Used) caches

Ring buffers

Stack traces

LPM (Longest Prefix Match) tables

Within the eBPF framework, programs are deliberately restricted from accessing
arbitrary kernel memory or calling kernel functions directly. Instead, any interaction
with data outside the program’s context must go through eBPF helper functions.
These helpers provide a controlled and privilege-aware access, ensuring that a
program can read and modify only the data it is allowed to handle.

Loader and verification architecture

Because eBPF code executes directly within the kernel, security becomes a fun-
damental concern: any flaw, bug, or malicious behavior could compromise the
stability of the entire system. To guard against this, eBPF relies on two main
mechanisms: a sandbox and a verifier.

10

Background

The sandbox provides an isolated execution environment where eBPF programs
run safely. It enforces strict boundaries, preventing any unauthorized or invalid
memory access that might destabilize the kernel. This design ensures that even
though eBPF code is highly integrated into kernel operations, it cannot directly
interfere with or damage critical system resources.

The verifier acts as a safeguard that examines every eBPF program before it is
executed in the kernel. Its role is to guarantee safety and correctness by performing
a series of checks, including:

o Guaranteed termination: Programs must always run to completion. Loops
are only permitted if the verifier can prove that an exit condition is guaranteed
to be reached.

e Memory safety: Programs may not access uninitialized variables or read-
/write memory outside of allowed bounds.

o Size limits: Programs must fit within system-defined size constraints; exces-
sively large programs are rejected.

o Finite complexity: The verifier evaluates all possible execution paths,
ensuring that analysis completes within the configured complexity limits.

Through these mechanisms, the verifier prevents unsafe or unstable code from
reaching kernel space, ensuring that only well-formed and secure eBPF programs
are admitted into the kernel.

Once a program successfully passes verification, it undergoes a hardening process
that depends on whether it was loaded by a privileged or unprivileged process. Key
hardening measures include:

e Program execution protection: Kernel memory storing eBPF programs
is marked read-only. Any attempt to modify the program, whether due to
a kernel bug or malicious action, will result in a kernel crash rather than
continued execution of a corrupted program.

« Mitigation against speculative execution attacks: To mitigate Spectre,
eBPF programs mask memory accesses to redirect speculative instructions
safely, the verifier inspects paths reachable only during speculation, and the
JIT compiler emits Retpolines when tail calls cannot be turned into direct
calls.

o Constant blinding: All constants in eBPF programs are blinded to prevent
JIT-spraying attacks, which could otherwise allow an attacker to execute
injected code in the presence of another kernel vulnerability.

11

Background

Once an eBPF program has been verified as safe and the appropriate hook point
has been identified, it can be loaded into the Linux kernel using the bpf system
call, typically via one of the available eBPF framework libraries.

= = eBPF
== Program == Program

l; clang -target bpf]\—> Program Maps Process

Development

‘ @'e,BPF Go Library] sendmsg() recvmsg()

— p— (31 2
T eBPF Y|
J Maps

>3< GCJ [ﬁe.BPF Verifier e afe,app Sockets

cC o

3 fé [ﬁe&PF JIT Compiler } [TCP/IP]
Runtime

Figure 2.4: eBPF Framework

2.3 RDMA

RDMA technologies build on concepts from traditional networking but differ
significantly from standard IP networks. The key distinction is that RDMA offers
a messaging service enabling applications to directly access the virtual memory
of remote computers. This has diverse applications, including: inter-process
communication (IPC), communication with remote servers, or interaction with
storage devices via Upper Layer Protocols such as iSER, SRP, SMB, Samba, Lustre,
and ZFS.

RDMA achieves low latency by bypassing the OS network stack and avoiding
unnecessary memory copies. It also reduces CPU utilization, alleviates memory
bandwidth bottlenecks, and supports high-bandwidth usage. By providing channel-
based 1/O, RDMA allows applications to directly read and write remote virtual
memory.

In contrast, traditional socket-based networks rely on the operating system
to mediate data transfers via an API. RDMA uses the OS only to establish the
communication channel, after which applications can exchange messages directly.
These messages may be RDMA Read, RDMA Write, or Send/Receive operations.

12

Background

The core idea of Remote Direct Memory Access (RDMA) is to extend the
concept of DMA (Section 2.1.3) across the network. With RDMA, one computer
can directly access the memory of another computer, bypassing the CPUs, caches,
and operating systems of both machines. This capability enables highly efficient
data transfers between systems, which is particularly beneficial in high-performance
computing and data-intensive applications.

As mentioned, the key advantages of RDMA includes:

Zero-copy data transfer: RDMA eliminates the need to copy data between
buffers, thereby reducing latency and improving performance.

CPU bypass: Memory operations do not consume CPU resources, allowing
the processor to handle other tasks concurrently.

Operating system bypass: By avoiding system calls, RDMA reduces the
overhead associated with kernel involvement (context switch), leading to faster
data movement.

Low latency: By avoiding unnecessary processing steps, RDMA minimizes
response times for memory access.

High bandwidth: RDMA maximizes data transfer speeds by minimizing
bottlenecks in the communication path.

Overall, RDMA provides a powerful mechanism for high-speed, low-latency
communication between computers, making it a very popular tool in modern
computing environments.

2.3.1 Data flow over TCP and RDMA

In a traditional Transmission Control Protocol (TCP) communication, data transfer
involves several intermediate steps:

1

2.

The sending application copies data to the kernel
TCP stack handles packetization and other processing tasks
The network interface card (NIC) transmits the packets over the network

On the receiving side, the NIC receives the incoming packets and forwards
them back through the TCP stack

The kernel reconstructs the original data

Finally, the kernel delivers the data to the receiving application

13

Background

Each of these steps requires CPU cycles, which can increase latency and reduce
the system efficiency.

RDMA modifies this process by eliminating many of the intermediate steps.
In an RDMA-enabled system, an RDMA-capable NIC (RNIC) communicates
directly with the application, bypassing the operating system kernel and the
traditional networking stack. This technique, commonly referred to as kernel
bypass, substantially reduces CPU overhead and allows data to move between
applications more quickly and efficiently, resulting in lower latency and improved
performance.

This approach is made possible by the use of shared memory. During RDMA
configuration, among other things, a shared memory region is registered and pinned,
allowing the RNIC to access it directly. The memory physically resides in user
space but is made accessible to the RNIC through kernel-managed mappings. This
mechanism allows processes using RDMA to bypass system calls entirely.

SRV1 SRV2 SRV1 SRV2

e N

~

Process A

Buffer
/
/
|

Process B

Buffer
X
\
\
\

Process B

Process A

Buffer

Buffer “

/
i

kernel

L= kernel

o Buffer kernel

/
Bufferkernel <
N

TCP process

I/\I/

/

TCP process 4
\
\

a NIC drivers NIC drivers =
\

Figure 2.5: TCP (left) vs RDMA (right) architecture

2.3.2 Operation modes

Remote Direct Memory Access (RDMA) supports two primary categories of opera-
tions, each offering distinct approaches for transferring data between machines.

Channel semantics (Send/Receive Model)

In the channel semantics model, data transmission requires active participation
from both the sender and the receiver. This model includes the following operations:

14

Background

)
% ;g [* S] = 20 g 100 TCP -8
g 3. " 4 S gfea ROMA ——
@ %l N I
5) k) 5 80
a 20 w10 + N
5 15 A & : 4w
3 10+ b 5 b,
£ 5w ROMA e ry a o S
4KB 16KB B4KB 256KB 1MB 4MB (= P RDMA 4KB 16KB B4KB 256KB 1MB 4MB
Message size Message size
o Increase throughput up to 86% o Reduced latency up to 88% o Reduced CPU usage up to 65%

Figure 2.6: RDMA performance [3]

e Send Operation: The sender initiates the transfer by sending data to the
receiver without precise knowledge of the memory location where the data
will be stored on the receiving side

e Receive Operation: To handle this incoming data, the receiver must have a
corresponding receive operation prepared in advance, used to specify where
the data will be inserted inside the memory.

Memory semantics (RDMA Read/Write — CPU and Kernel Bypass)

The memory semantics model enables RDMA to transfer data directly between
the memory spaces of two machines, bypassing the CPU and the operating system
kernel entirely. The available operations are:

« Read: Data is read directly from remote memory into local memory.
o Write: Data is written directly to a specified location in remote memory.

e Atomic Operations: These operations perform read-modify-write sequences
on remote memory atomically, ensuring data consistency in environments with
concurrent access.

Overall, the memory semantics mode leverages the full potential of RDMA by
minimizing overhead from the traditional networking stack and providing efficient
low-latency data transfers and a CPU usage reduction.

2.3.3 Transports layer

Remote Direct Memory Access (RDMA) can be implemented over different transport
protocols, each of which handles Layers 2, 3, and 4 of the network stack differently.
The three main RDMA transport protocols are:

« RoCE (RDMA over Converged Ethernet)
15

Background

« iWARP (Internet Wide Area RDMA Protocol)
« InfiniBand

While all three share a common user API (RDMA Verbs), they differ in their
physical and link layers.

In modern data centers, RoCE is widely used to enable RDMA over Ethernet. It
achieves this by replacing the link and physical layers of InfiniBand while keeping
the upper layers unchanged. On an Ethernet network, RoCE traffic is identified
using the EtherType 0x8915, allowing high-speed, low-latency communication
without the overhead of traditional TCP/IP networking.

RoCEv1 operates only at Layer 2, limiting it to a single Ethernet broadcast
domain. RoCEv2 adds UDP encapsulation, which allows RDMA traffic to traverse
Layer 3 networks, making it scalable and routable over both IPv4 and IPv6.
Despite these advantages, RoCE depends on a lossless network, requiring careful
configuration of congestion control mechanisms in data center networks.

Appliciaation

SW A | - |
N RDMAVerbs _ |
| IB Transport | | IB Transport | | IB Transport | | iWARP |
[uop | [tcr |

HW o IB Network |:| IB Network
| IP | | P |

RoCE V1 RoCE V2 iWARP

Figure 2.7: RDMA transport layer

2.3.4 RDMA objects

When an application interacts with RDMA, it communicates with an RNIC using
a specialized “verbs” API. To efficiently manage data transfers, RDMA relies on
several key objects. Although there are many components involved, the most
important are queue pairs (QP), completion queues (CQ), and memory regions
(MR).

Queue pairs (QP)

At the core of RDMA communication lies the concept of the Queue Pair (QP),
which serves as a dedicated communication channel between two applications.

16

Background

Whenever an application intends to send or receive data using RDMA, it performs
these operations through a QP.

Unlike traditional networking, which relies heavily on CPU interrupts and
kernel involvement for sending and receiving data, RDMA allows applications
to interact directly with memory by posting operations to these queues. This
direct memory access eliminates much of the overhead associated with conventional
network communication.

Each queue pair consists of two primary components:

« Send Queue (SQ): This queue is used for outgoing operations such as Read,
Write, and Send.

» Receive Queue (RQ): This queue handles incoming data from a remote
application. Operation like receive are posted on this queue.

Queue Pairs (QPs) accept only specific types of data to be posted. In fact,
within each QP, operations are described using Work Queue Elements (WQEs).
A WQE, also referred to as a Work Request (WR), serves as a descriptor for a
particular RDMA operation and contains essential information such as:

 Opcode: the type of operation (e.g., Read, Write, Send);

e Remote_addr: pointer to the location in the remote memory where the data
will be placed.

e R_key: remote key of the Memory Region registered in the other side that
will be used to store the data.

In addition, a Work Request (WR) must be linked to the local source of the
data that will be transmitted. This is specified through the Scatter-Gather field,
which is used to provide an SGE object. The SGE contains:

e Address: pointer to the local buffer that store the data to transfer
e Size: Size of the data that will be read from the address and sent.

o L_key: local key of a Memory Region that was registered and that store the
buffer

Each Work Request (WR) can contain one or more Scatter-Gather Entries
(SGEs), with the maximum number determined by the RNIC.

WRs can also be linked together to form a batch, reducing the number of calls
required for posting operations.

17

Background

An application may maintain multiple Queue Pairs (QPs) at the same time,
enabling parallel processing of different data streams. This is especially useful
in high-performance computing (HPC) clusters, where many applications often
communicate concurrently. By creating multiple QPs, an application can effi-
ciently manage separate traffic channels instead of relying on a single queue for all
communication.

By leveraging multiple QPs and carefully managing WQEs, RDMA systems can
handle large-scale parallel workloads efficiently with minimal CPU involvement.
This architecture makes RDMA particularly well suited for high-speed, low-latency
networking in demanding computational environments.

Completion queue (CQ)

In RDMA, once an application posts a work request to a QP, it needs a mechanism
to determine when the operation has completed. This role is fulfilled by Completion
Queues (CQs), which serve as a notification system for finished work requests.

A CQ allows an application to avoid constantly checking whether a work request,
represented by a Work Queue Element (WQE), has completed. Instead, the
application can monitor the CQ and be notified when the RNIC signals that an
operation is done. This reduces unnecessary CPU usage and allows more efficient
handling of network operations.

e SQ and RQ must be associated with a CQ. However, this is not necessarily a
strict one-to-one mapping: a single CQ can handle completions from multiple

SQs and RQs.

o When an operation completes, the RNIC writes a completion entry into the
associated CQ.

e The application then processes the CQ to determine which operations have
finished and take appropriate action.

There are two primary methods by which an application can process completions
from a CQ:

« Polling Mode: The application continuously checks the CQ for completed
operations. This approach delivers low latency and high throughput but is
CPU-intensive, as the processor constantly consumes cycles to monitor the
queue.

o Interrupt-Based Mode: The RNIC interrupts the CPU only when a com-
pletion occurs, reducing CPU usage. However, this method introduces slightly
higher latency, since the CPU must handle the interrupt before processing the
completed operation.

18

Background

By carefully selecting between polling and interrupt modes, applications can
optimize performance according to their requirements. For ultra-low latency tasks,
such as high-frequency trading, polling is often preferred. For workloads where
power efficiency is more critical, interrupt-based processing is typically the better
choice.

Memory region (MR)

A key aspect of RDMA high performance is its ability to read from and write
directly to remote memory. To safely control access to memory areas, RDMA uses
the concept of Memory Regions (MRs). Before an application can perform RDMA
operations on a particular memory area, it must first register that region with the
RDMA-capable network interface card (RNIC). This registration process effectively
"pins" the memory, ensuring that the operating system does not move it during
data transfers, which could otherwise lead to errors.

When a memory region is registered, the RNIC provides two keys that govern
access to the memory:

o« L-KEY (Local Key): Used by the local application to access the registered
memory.

+« R-KEY (Remote Key): Used by a remote application to read from or write
to this memory region.

Whenever a Work Queue Element (WQE) is posted, it specifies the memory
locations involved in the operation through a SGE list. SGEs allow applications
to read from or write to multiple non-contiguous memory regions in a single
operation. This capability makes RDMA highly efficient when handling complex
data structures or large datasets.

Protection domains (PD)

To ensure secure and controlled access to memory and other RDMA resources,
RDMA introduces the concept of Protection Domains (PDs). A PD acts as a
security container that groups related RDMA objects—such as Queue Pairs (QPs)
and Memory Regions (MRs)—together.

When an RDMA operation is initiated, the RNIC verifies that the QP and MR
involved belong to the same PD. If they do not, the operation fails with an error.
This enforcement guarantees that only authorized components can interact with
each other, preventing unintended or malicious access to memory.

By logically separating RDMA resources into protection domains, multiple
applications or processes can safely share the same system without interfering with
one another, maintaining both security and operational integrity.

19

Background

Figure 2.8: RDMA complete setup

Shared receive queue (SRQ)

In a standard RDMA setup, each Queue Pair (QP) maintains its own Receive
Queue (RQ), which requires a dedicated set of memory buffers for incoming
messages. While this design works well in many scenarios, it can be inefficient when
multiple QPs handle similar types of messages, as memory buffers are duplicated
unnecessarily.

To address this issue, RDMA provides the concept of a Shared Receive Queue
(SRQ). An SRQ allows multiple QPs to share a single RQ, centralizing the man-
agement of incoming messages and memory buffers.

The primary benefits of using SRQs include:

 Reduced memory consumption: By sharing buffers across multiple QPs,
SRQs eliminate the need to duplicate memory for each individual queue.

o Simplified management: With fewer receive buffers to maintain, applica-
tions can manage incoming data more efficiently and with less overhead.

By enabling multiple QPs to use a shared pool of receive buffers, SRQs improve
memory utilization and simplify the overall management of incoming messages,
making RDMA communication more efficient in high-performance environments.

20

Background

g
J
g
J
g
J

] # i (] [0} # E [}] % E (]
N AN AN W,
v Y v V)
SRQ
v
Figure 2.9: Shared Receive Queue
summary
Object Purpose
QP Handles RDMA operations (Read, Write, Send,
Atomic). Contains SQ and RQ.
CQ Notifies applications when an operation is complete.
Supports polling and interrupt modes.
MR Registered memory for RDMA transfers. Requires
L-KEY and R-KEY.
PD Group of RDMA objects to ensure valid access.
SRQ Allows multiple QPs to share a single RQ for better

memory efficiency.

Address vector (AV)

Another important component in RDMA is the Address Vector (AV). While it
is hidden from the developer’s point of view, it plays a crucial role in ensuring
that packets are routed correctly. An AV describes the route from the local node
to the remote node. In every UC or RC Queue Pair, an AV is included in the
QP context, whereas in a UD QP, the AV must be specified for each posted Send
Request. Address vectors are implemented using struct ibv_ah.

21

Background

Global routing header (GRH)

The Global Routing Header (GRH) is used for routing between subnets. When using
RoCE, the GRH handles routing within the subnet and is therefore mandatory.

For Unreliable Datagram (UD) Queue Pairs (QPs) with global routing, a GRH
occupies the first 40 bytes of the receive buffer. This space stores global routing
information, allowing the receiver to generate a correct Address Vector to be used
as response path to the received packet. GRHs are implemented using struct
ibv_grh.

2.3.5 Connection management in RDMA

RDMA supports various types of Queue Pairs (QPs) depending on the level of
reliability required for data transmission. These connection types provide flexibility
for different application needs:

» Reliable Connection (RC): Ensures ordered and reliable delivery of data,
similar to TCP. This type is suitable for critical applications that require
guaranteed data integrity.

« Unreliable Connection (UC): Offers similar functionality to RC but with-
out retransmission. Lost packets are not recovered, which may be acceptable
for applications that can tolerate occasional data loss.

» Reliable Datagram (RD): Combines the reliability of RC with datagram-
based communication, providing ordered and reliable delivery in a datagram-
oriented model.

« Unreliable Datagram (UD): Provides connectionless, UDP-like communi-
cation. UD only supports Send operations and does not allow Read or Write
operations, making it suitable for lightweight messaging scenarios.

Typically, RDMA connections are established out-of-band (OOB), meaning that
the connection setup occurs separately from the actual data transfer, allowing
applications to use their preferred mechanisms, such as TCP sockets, to exchange
the necessary setup information before RDMA operations begin.

2.3.6 RDMA verbs

RDMA verbs define the set of operations that an application can use to interact
with an RDMA-capable Network Interface Card (RNIC). Conceptually, these verbs
act as low-level instructions, directing the RNIC on how to carry out specific tasks,

22

Background

similar to how application programming interfaces (APIs) provide structured access
to software functions.

The operating system exposes RDMA verbs through a dedicated API; however,
not all RNICs support the full range of verbs. The actual capabilities depend on the
hardware and the corresponding driver implementation. One of the key advantages
of RDMA is that the same set of verbs can be used across multiple wire protocols,
including InfiniBand (IB), RDMA over Converged Ethernet (RoCE), and iWARP.
This universality enables applications to run on different RDMA implementations
with minimal changes.

In general, RDMA verbs can be categorized into two distinct groups:

» Slow-Path Verbs (Control Operations): These verbs are used for setting
up and managing RDMA resources.

o Fast-Path Verbs (Data Operations): These verbs handle the actual
transfer of data and other high-speed memory operations.

Slow-path verbs: managing RDMA resources

Slow-path verbs correspond to control operations that are primarily responsible
for configuring RDMA resources, such as Queue Pairs (QP), Completion Queues
(CQ), and Memory Regions (MR). Since these operations involve the allocation,
modification, or deallocation of system resources, they typically require privileged
access and interact with the RDMA driver in the operating system kernel.

RDMA Component Operations Purpose

Device Open / Close Device Initializes or shuts down
an RNIC device.

Protection Domain (PD) | Allocate / Deallocate Creates a logical group-

ing of RDMA objects
(QPs, MRs, etc.).

Memory Region (MR) Register / Deregister Registers memory so the
RNIC can access it.

Queue Pair (QP) Create / Destroy / Mod- | Establishes and config-

ify ures communication be-

tween peers.

Completion Queue (CQ) | Create / Resize / Destroy | Manages work comple-
tion notifications.
Shared Receive Queue | Create / Resize / Destroy | Allows multiple QPs to
(SRQ) share receive buffers.

Table 2.1: RDMA Components, Operations, and Purpose

23

Background

Example Use Case: Before an application can send or receive data over RDMA,
it must perform several initialization steps:

1. Register memory (MR) so that the RNIC can directly access it.

2. Create a queue pair (QP) to establish communication with a remote applica-

tion.

3. Set up a completion queue (CQ) to track completed operations.

All of these steps rely on slow-path verbs because they involve managing resources
at the OS or driver level.

Fast-path verbs: high-speed data operations

Once RDMA resources have been configured, applications require a mechanism
for fast and efficient data transfer. Fast-path verbs provide this capability by
allowing user-space applications to interact directly with the RNIC, bypassing the
operating system kernel. This bypass is a key factor in RDMA high performance,
as it significantly reduces both latency and CPU overhead during data transfers.

Operation Type

Description

Send Operation

Sends data to a remote QP. The receiver must have already
posted a receive request.

Receive Operation

Receives incoming data. The application must post a
receive request before the sender sends data.

RDMA Write Writes data directly into a remote memory location. The
remote application is not notified.
RDMA Read Reads data from a remote memory location. The remote

application is not notified.

Atomic Operations

Performs atomic memory updates, such as fetch-and-add
or compare-and-swap.

Memory Operations

Includes binding memory windows, fast memory registra-
tion, and local invalidation.

Table 2.2: RDMA Operation Types and Descriptions

Send vs. RDMA Write:

« Send/Receive: Requires the receiver to post a receive request before the
sender transmits data.

« RDMA Write: Does not require a matching receive request, as data is
directly written into the target’s memory.

24

Background

Optimizing memory operations

Memory registration, a slow-path operation, can be expensive because it involves
pinning physical memory pages. RDMA provides two key optimizations to mitigate
this overhead:

e Memory Windows (MW): A Memory Window (MW) gives applications

more flexible control over remote access to local memory. It ca be used
when an application needs to grant and revoke remote access rights to a
registered region dynamically, without incurring the performance penalty of
deregistration/registration or reregistration or want to grant different remote
access besed on the remote agent. Different MWs can overlap the same MR
(event with different access permissions).

Fast Memory Registration (Fast Register MR): allows an application
to expose a set of contiguous memory locations to the network adapter
using virtual addresses. Registered memory pages are pinned to preserve
their physical-virtual mapping, and permissions such as local write, remote
read /write, atomic, and bind are enforced. Each MR has a local key (1_key)
for local access and a remote key (r_key) for remote RDMA operations. A
memory buffer can be registered multiple times with different permissions,
generating distinct keys for each registration.

2.3.7 Communication setup

The structure of a typical RDMA application can be summarized as follows:

1.

Get the device list: Retrieve the list of available InfiniBand (IB) devices on
the local host. Each device includes a name and a GUID (e.g. mlx4_1).

Open the requested device: Iterate over the device list, select a device by
name or GUID, and open it.

Allocate a Protection Domain (PD): A PD restricts which components
(AH, QP, MR, MW, SRQ) can interact with each other.

Register a memory region (MR): Only registered memory can be used
in RDMA operations. Set memory permissions and obtain local and remote
keys (1lkey/rkey) to refer to this buffer.

Create a Completion Queue (CQ): The CQ holds completed Work
Requests (WRs).

Create a Queue Pair (QP): Creating a QP also creates an associated Send
Queue and Receive Queue.

25

Background

7. Bring up a QP: Transition the QP through several states until it reaches
Ready To Send (RTS), providing the information necessary for sending and
receiving data.

8. Post Work Requests and poll for completion: Use the QP for communi-
cation operations.

9. Cleanup: Destroy resources in reverse order of creation: delete QP, delete
CQ), deregister MR, deallocate PD, close device

2.3.8 Congestion control mechanisms

Effective congestion control is essential for maintaining low-latency, high-bandwidth
performance in RoCE networks. Common mechanisms include:

« PFC (Priority Flow Control) - Layer 2: Pauses specific traffic flows
during congestion using PAUSE frames. Prevents packet loss but may cause
head-of-line blocking; careful tuning is required.

« DCQCN (Data Center Quantized Congestion Notification) - Layer 3:
Uses ECN to signal congestion and dynamically adjusts traffic rates. Allows
critical traffic to continue and is effective for NVMe-oF storage systems.

+ RoCC (Robust Congestion Control) - Switch-Based: Monitors switch
queue sizes and adjusts flow rates for fairness and efficiency, preventing buffer
overflows at the switch level.

26

Chapter 3

Architecture

3.1 Overview

To address the challenge of replacing TCP with RDMA, an application has been
developed. Its core functionality is based on intercepting messages traveling over
sockets. This operation is not possible using conventional approaches, so it is
necessary to operate inside the kernel. Since working directly in the kernel is
typically complex and reduces portability, we rely on the eBPF framework (Section
2.2). This allows us to inject programs directly into the kernel and capture data
from sockets in a safe and portable way.

The application is composed of two interacting components that cooperate to
guarantee the correct functioning of the system. The first component (eBPF traffic
interceptor) is implemented with eBPF and runs inside the kernel. Its main task
is to intercept messages generated by the original application and forward them
to the second component (and vice-versa). The second component (TCP/RDMA
proxy) is then responsible for delivering these messages to the remote endpoint
using RDMA.

On the remote side, where the same application is running, the data is received
through RDMA by the TCP/RDMA proxy unit and is sent to the kernel. Once
again, eBPF is employed to redirect the messages to their intended final destination,
thereby completing the communication workflow. It is important to emphasize
that both the original sender and the original receiver remain completely unaware
of the underlying architecture.

3.2 Kernelspace

Kernelspace is the domain of eBPF program. A crucial aspect concerns the
communication between the two modules. At startup, the application loads the

27

Architecture

eBPF program into the kernel and creates a pool of spare sockets prepared to
receive data. These sockets serve as a bridge between kernelspace and userspace:
the eBPF program intercepts data from the original sockets and redirects it to one
of the available proxy sockets. Symmetrically, to ensure correct operation in the
reverse direction, eBPF also manages the redirection of messages from the proxy

sockets back to the original destination sockets. This process is explained in Figure
3.1

RDMA

Figure 3.1: Kernelspace and userspace communication

Inside the eBPF traffic interceptor unit, three hooks drive the mechanism:

o SOCKOPS: Invoked during various socket operations, of which socket creation
is the most relevant for our use case. Upon creation, sockops associates the
new socket with one from the pool of sockets previously allocated and loaded
by the userspace module.

o SK_MSG: Triggered whenever a message is sent through a socket. Its role is
to redirect messages: if the message originates from the original application,
it is forwarded to the proxy; conversely, if the proxy sends the message, it is
redirected back to the original application.

o TCP_DESTROY: Invoked upon socket closure. This hook releases the association
previously established by the sockops hook. it is attached to the trace point:
tracepoint/tcp /tep destroy sock

By combining these hooks, the system can detect sockets that need to be
intercepted and redirect their messages directly to the proxy, enabling efficient
kernel-to-user space communication.

28

Architecture

3.3 Userspace

The user-space program constitutes the second major component driving the
mechanism. Its primary responsibilities are to establish RDMA connections between
peers that wish to communicate and to manage the transmission and reception of
messages.

To enhance performance, the TCP/RDMA proxy unit leverages multi-threading,
allowing different tasks to be carried out concurrently. In particular, it relies on six
dedicated background threads, each serving a specific purpose:

o Server thread: Runs in the background, waiting for incoming connection
requests. When a request arrives, it accepts the connection and initiates
the entire RDMA handshake procedure required before data transmission can
begin. Once the handshake is complete, the thread returns to waiting for new
requests.

o Writer thread: Waits for data arriving from the proxy socket (i.e., data
redirected by the SK_MSG program). When new data is received, the Writer
places it into a dedicated buffer allocated within the RDMA memory region
(Section 2.3.4).

e Flush thread: Works in tandem with the Writer to complete the data
transmission pipeline. It continuously monitors how much data has been
written into the buffer, and once a certain threshold (or timeout) is reached,
it sends the data using an RDMA WRITE operation over one of the queue pairs
(QP (Section 2.3.4)) allocated for the connection.

e Reader thread: Complements the Writer. It waits for new data to arrive in
the buffer on the receiving side. When data is available, the Reader passes
it back into the kernel, where the SK_MSG program redirects it to the correct
destination socket.

e Index thread: Completes the work of the reader threads by updating the
remote index, allowing the sender to determine how much space is available
in the buffer.

» Notification thread: Balances efficiency and responsiveness by dynamically
switching between two modes: send/receive (notification-based, low CPU
cost) and read/write (polling-based, high responsiveness). Under light traffic,
notifications are preferred; when traffic increases, the system switches to
polling. Idle periods revert back to notifications. The Notification thread is
responsible for listening to these events and deciding when to switch modes.

29

Architecture

This way, the TCP/RDMA proxy unit ensures efficient and scalable manage-
ment of communication within userspace, balancing responsiveness with resource
utilization.

3.4 Application Logic

3.4.1 New Connection

When a new socket is created between two applications, the SOCKOPS subsystem
begins its operation. It first checks whether the newly created socket should be
intercepted. If the socket is not meant to be intercepted, it is ignored. Otherwise, it
is added to the list of intercepted sockets. Once the socket has been added to this
list, SOCKOPS notifies the userspace about the creation of the new socket adding
the related information into the shared ring buffer.

Upon receiving the notification, in the userspace the function associated with
the ring buffer is triggered. At this point, only the client node (identified by the
BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB callback) is responsible for initiating the
RDMA connection with the other peer and will act as a client.

The RDMA setup phase proceeds over TCP, during which the two peers ex-
change all required RDMA configuration parameters (such as QPN, LID, r_key, and
remote_addr). This exchange ensures that both endpoints possess the necessary
information to instantiate their RDMA contexts.

Once the RDMA context has been successfully created, direct RDMA-based
communication can commence, enabling low-latency and efficient data transfer
between peers.

3.4.2 Message Trip

1: Kernelspace sender

Since the socket has been added to the intercepted socket map, the messages
travelling on it will trigger the execution of the hook SK_MSG. This hook plays
a central role in message redirection. Upon interception, the hook examines the
destination port to determine whether the message should be forwarded to the proxy
or delivered directly to the original application. Depending on the communication
direction, the hook performs a lookup in a dedicated map to identify the correct
forwarding path. Once the appropriate association is identified, the message is
redirected along the corresponding socket path using the bpf_msg redirect()
helper. This ensures that messages are transparently redirected without requiring
changes in the application logic.

30

Architecture

2: Userspace

We now examine in detail how the architecture transfers data from one side to
the other. The process unfolds through a coordinated sequence of steps, involving
multiple threads within the TCP/RDMA proxy unit:

1. When a message is redirected to one of the proxy sockets by the SK_MSG
hook, the writer thread—which is blocked on a select() call over the
corresponding file descriptor—is triggered.

2. Upon notification, the writer thread retrieves the incoming data and encapsu-
lates it into a message object. This message is then stored in the ring buffer
(inside the MR), making it ready for transmission through RDMA.

3. Once the message has been placed into the ring buffer, responsibility shifts to
the flush thread. Running periodically, the flush thread is waiting for data
to transfer to be placed into the RDMA buffer. When some data is found,
it performs an RDMA write operation to transfer the content directly into
the remote buffer. This mechanism bypasses both the CPU and kernel on the
sending and receiving sides, ensuring high efficiency.

4. Assuming this is the first communication performed by the proxy after startup,
the receiving peer operates in send/recv mode rather than through active
polling. As a result, it must be explicitly notified whenever new data becomes
available. To handle this, the flush thread sends a notification to the remote
side.

5. On the receiving end, the notification thread is awakened from its sleep upon
detecting the incoming notification via the RDMA send/recv mechanism.
After parsing the message, it signals the reader thread that new data is
ready to be consumed.

6. The reader thread starts and begins consuming the data stored in the buffer.
Each message is parsed, the corresponding proxy socket is identified, and the
message is then forwarded to the kernel through that socket.

7. Finally, once the reader thread has processed all the incoming messages, the
system updates the read index on the remote side. This step is essential, as it
marks portions of the shared buffer as consumed, thereby freeing up space for
the sender to store subsequent messages.

31

Architecture

_ !
/ d / \\ \
\
/ i \ \‘
! \
[) \
[/ \ \
/ \
’ .
’/I N
2N,
2N,
S
}

/Flush T™H

Notification TH

b Data? . .
{
NN g
U J
(\Nriter TH)
B a
1 R
\ g J

Figure 3.2: Message trip inside the application

3: Kernelspace receiver

On the receiving side, the process is symmetrical. When eBPF (specifically the
SK_MSG hook) detects a message arriving from a proxy socket (hence sent by a
reader thread), it begins to process it. Since the intercepted message originates from
a proxy socket, the hook consults the association map to identify the corresponding
destination socket, namely the actual application socket.

After locating the correct association, the message is redirected to the intended
receiver socket, ensuring that the data reaches the target application transparently.
In this way, the redirection mechanism remains invisible to the application layer
while maintaining control and flexibility at the system level.

3.4.3 Event-Driven and Polling Modes

As discussed in the background chapter (Section 2.3.6), RDMA supports two
communication modes: send/receive and read/write. Besides their differences in
resource usage and implementation, the most relevant aspect here is the way they
handle signaling. The send/receive mode can generate notifications, while the
read/write mode simply updates memory and requires polling to detect changes.
To take advantage of both approaches, the application adopts a hybrid strategy
that combines event-driven notifications with polling. At startup, the system
operates in send/receive mode. In this phase, the sender issues a notification after
writing data, and the receiver, which is blocked on a select(), is awakened to
process it. This notification-based mechanism is efficient in terms of CPU usage,

32

Architecture

making it well-suited for periods of low traffic.

When traffic increases, however, the overhead of handling frequent notifications
becomes significant. To address this, the receiver monitors the number of notifi-
cations arriving in a given time window. If the threshold is exceeded, the system
switches to polling mode. In this mode, the receiver actively checks the buffer
waiting for new data to consume written by the sender, enabling faster response
times at the cost of higher CPU usage.

The system does not remain in polling mode indefinitely. If no new updates are
detected for a certain period, the receiver transitions back to send/receive mode. In
this way, the application balances efficiency and performance: notifications handle
low-traffic scenarios with minimal overhead, while polling ensures responsiveness
under heavy load. Note that the data are always transferred using write operation,
the only difference is how to notify the receivers that there are new data to consume.

The application has been developed to operate effectively under this trade-
off. However, in order to maximize throughput and minimize latency, power
consumption reduction has been relegated to a secondary priority.

Nonetheless, this functionality is still present in the final software, although it
remains unused.

33

N OOk W N

Chapter 4

Implementation

4.1 Memory region and messages layout

4.1.1 Socket in user and kernelspace

The entire project is based on communication between kernelspace and userspace
in the context of socket handling. In user space, a socket is identified using a
file descriptor. In kernel space, however, a socket is represented solely by its
corresponding struct. The file descriptor itself serves as an index in the process’s
file descriptor table, linking the descriptor to the underlying socket.

Since this application relies on interaction between kernelspace and userspace,
a common approach was needed to bridge this gap. To address this limitation, a
dedicated structure called sock_id_t was introduced. This structure stores the
information required to uniquely identify a socket: source IP, destination IP, source
port, and destination port.

typedef struct sock_id sock_id_t;
struct sock_id {
__u32 sip; // stored in NET order
__u32 dip; // stored in NET order
__ul6 sport; // stored in HOST byte
__ulé dport; // stored in HOST byte
3

Listing 4.1: sock_id_t struct

It is also important to note that when two peers open a socket, they will see
the source and destination inverted because each side views the connection from
its own perspective. From the kernel’s point of view, the “source” is always the
local endpoint, and the “destination” is the remote endpoint. Therefore, what one
peer considers the source IP and port, the other peer sees as the destination IP

34

Implementation

and port, and vice versa.
For example, if Peer A connects from 10.0.0.1:5000 to Peer B at 10.0.0.2:80
Peer A sees:

e Source: 10.0.0.1:5000

e Destination: 10.0.0.2:80
While Peer B sees:

e Source: 10.0.0.2:80

e Destination: 10.0.0.1:5000

This inversion is crucial when using the sock_id_t structure, as it ensures that
a socket can be uniquely identified regardless of whether the perspective is local
or remote. By storing both source and destination IPs and ports, the structure
provides a consistent representation of the connection that can be recognized from
either side.

From now, sock_id will be used as a reference to this struct.

4.1.2 Message structure

Since each message that needs to be transferred is sent via sockets, the receiver
must know not only the data but also which socket originated the message. Each
message consists of several fields:

o seq_number_header: A number that uniquely identifies each message and
strictly increases with every new message. It is used by the receiver to detect
newly arrived messages.

o msg_flags: Intended to annotate the message with additional information.
This feature is not yet implemented but serves as a placeholder for future
extensions.

e original sk_id: Specifies the sock_id of the original socket responsible for
the communication.

» msg_size: Indicates the size of the message in bytes.

e number_of slots: Denotes how many slots in the ring buffer the message
occupies (default is 1).

« msg: An array of bytes that stores the actual message payload.

35

© 00~ O Uik W

Implementation

e seq_number_tail: Similar in purpose to seq_number_ header, this field en-
sures that the entire message has been internally transferred, not just its first
part.

typedef struct {
uint32_t seq_number_head;
uint32_t msg_flags;
struct sock_id original_sk_id; // id of the socket
uint32_t msg_size;
uint32_t number_of_slots;
char msg[Config::MAX_PAYLOAD_SIZE]; // message
uint32_t seq_number_tail;
} rdma_msg_t;

Listing 4.2: Message data structure

The seq_number_tail is a critical component because, once data is posted over
RDMA, the segmentation of the message during transmission is not known in
advance. By examining the seq_number_tail, the receiver can determine when
a message has been completely transferred. Only after confirming that the tail
sequence matches the head sequence and that both correspond to the actual
sequence number can the receiver safely consider the message fully received and
forward it to its final destination.

4.1.3 Memory design

This application uses RDMA to exchange data between peers. To enable this, a
memory region (MR) must be allocated by both peers. As explained in a previous
chapter (Section 2.3.4), an MR is a section of memory that supports remote
operations such as read and write. Naturally, this memory must be designed
according to specific criteria to ensure proper communication. In practice, messages
are written to the local memory region of one peer and then copied to the remote
memory region using RDMA write operations.

To preserve message order, a ring buffer structure is used to manage data
transfer. The ring buffer size can be specified in the configuration, and a small
portion of the buffer is always left empty to distinguish between full and empty
states.

The memory region is a contiguous block of memory, logically divided into
three main parts: the Notification area, ringbufferl, and ringbuffer2. This
double-ring-buffer design allows both peers to write and read simultaneously.
Specifically, ringbufferl is used by the client to write and the server to read,
while ringbuffer?2 is used in the opposite direction (server writes, client reads).

36

Implementation

A notification space is also included to manage the send/receive mechanism
of RDMA (Section 2.3.6), allowing the system to move from polling-based to
event-driven operation for better resource management.

Each ring buffer is composed of the following elements:

e rdma_flag t: indicates the current status of the peer. For instance, it can be
used to know if the peer is in polling or notification mode.

o remote_read_index: tracks the position reached by the remote peer when
reading, indicating which spaces are free for reuse without overwriting data.

e local write index: tracks the position reached by the sender when writing
data.

e local _read_index: tracks the position reached by the receiver when writing
data.

o buffer: the array of rdma_msg_t elements that stores the actual messages.

The transmitter inserts messages into the buffer, each with an increasing sequence
number. The receiver waits for the expected sequence number and parses the
message. Upon completing parsing, it is crucial that the receiver updates the
remote_read_index to notify the transmitter that the data have been consumed
and the space can be reused. Without this update, the transmitter may stall, as it
would perceive the buffer as full.

'g N\ 4 '
Notification_t Notification_t
rdma_flag_t rdma_flag_t
remote_read_index remote_read_index
local_write_index local_write_index

Write .\ _ __ | 77077 > Read

pom—— > Buffer Buffer ---gé--;

] RDMA !

1

= i

1

o I rdma_flag_t rdma_flag_t | » O
b
------ y remote_read_index remote_read_index pmm=——= ¢
. 1 A
Client | Local_read_index Local_read_index i Server

| :
: :
i Buffer <4------ Buffer q-----

Read RDMA Write

. J . S

Figure 4.1: Memory layout schema

37

N OO Ww N

0O Ui Wi =

Implementation

typedef struct {
rdma_flag_t flags;
uint32_t local_read_index;
std::atomic<uint32_t> remote_read_index;
uint32_t local_write_index;
rdma_msg_t data[Config::MAX_MSG_BUFFER];
} rdma_ringbuffer_t;

Listing 4.3: Ringbuffer structure

As discussed earlier, the notification area is responsible for storing the notifica-
tions exchanged between peers. This area is further divided into two parts: one
dedicated to messages sent from the server to the client, and the other dedicated to
messages sent from the client to the server. A notification itself is represented by a
simple code. When a peer receives a notification, it retrieves the corresponding
code from the notification area and performs the appropriate action based on its
meaning.

enum class CommunicationCode : int32_t {
RDMA_DATA_READY = 10,
RDMA_CLOSE_CONTEXT = 5,
NONE = -1

3

typedef struct {
CommunicationCode code; // code of the notification
} notification_data_t;

typedef struct {
notification_data_t from_server; // notification from server
notification_data_t from_client; // notification from client
} notification_t;

Listing 4.4: Notification structure

4.2 KernelSpace: eBPF

This component is designed to operate within the eBPF framework, running
in kernel mode. It is composed of three main blocks: SOCKOPS, SK_MSG, and
TCP_DESTROY, and it utilizes various maps to store data in a persistent way and
share it with userspace.

In order to redirect messages to userspace, the application creates multiple
sockets (proxy sockets), which are then pushed to the eBPF program into a specific
map. When a new socket is created, it is associated with one of the sockets exposed
by the application in userspace granting the possibility to redirect messages.

38

Implementation

4.2.1 Maps

As discussed in Section 2.2, eBPF does not allow data to be stored directly within
the program itself; instead, it requires the use of specific data structures provided
by the kernel, called maps (see Section 2.2.1). Our eBPF program leverages several
different maps to facilitate message redirection:

e new_sk: Implemented as a BPF_MAP_TYPE_RINGBUF, this map is used to notifies
userspace whenever a new socket is intercepted. Each notification includes
the socket data (source IP, destination IP, source port, and destination port)
as well as the operation type, which is used to indicate whether the peer will
act as a client or server in subsequent phases.

o intercepted_sockets: A BPF_MAP_TYPE_SOCKHASH map that stores all sock-
ets whose messages are to be intercepted by SK_MSG. Only sockets inserted
into this map will have their messages intercepted.

o free _sockets: A BPF_MAP_TYPE_QUEUE map that maintains a list of available
sockets. During the startup phase, userspace populates this map with all
pre-created sockets (proxy sockets) that will be used to receive messages.

o socket _association: A BPF_MAP _TYPE HASH map that tracks associations
between proxy sockets and application sockets. It is used by SK_MSG to
determine the destination of each intercepted message. Each entry is a key-
value pair where both the key and value are sock_id structures (including
source IP; destination IP, source port, and destination port). Whenever a new
association is inserted, a corresponding reverse entry is also added to handle
message directionality correctly.

o target port: A BPF_MAP_TYPE HASH map storing ports that need to be
intercepted. When a new socket is created, its destination and source ports are
checked against this map. The map uses a key-value structure where the key
is the port number and the value is an integer indicating whether interception
is required.

o target_ip: A BPF_MAP_TYPE_HASH map storing [P addresses that need to be
intercepted. Each time a new socket is created, its destination IP is compared
against this map. Similar to target_port, the key is the IP address and the
value indicates whether interception is required.

o server_port: A BPF_MAP_TYPE HASH map storing the server port information.
The key is always 0, and the value is the port number where the proxy is
listening. This map is used by SK_MSG to determine the direction of the
message flow.

39

Implementation

4.2.2 SOCKOPS

Socket operations (SOCKOPS) programs are attached to cGroups and are triggered
by various socket lifecycle events. This allows the program to modify connection
settings or record the existence of a socket as needed.

In our application, the SOCKOPS program intercepts sockets during their creation,
responding to specific events of interest. For the purposes of this system, we focus on
two particular events, denoted as BPF_SOCK_0PS_PASSIVE_ESTABLISHED CB and
BPF_SOCK_OPS_ACTIVE_ESTABLISHED CB. Due to the client-server nature of socket
creation, one side will receive event BPF_SOCK_0PS_ACTIVE_ESTABLISHED CB while
the other side will receive BPF_SOCK_0OPS_PASSIVE ESTABLISHED CB.

All other operations that may be triggered during the lifetime of the socket will
be ignored, as we are currently not concerned with their management.

Upon intercepting a socket, the SOCKOPS program performs several actions:

1. Determine if the socket is a target: The program checks whether the
socket should be intercepted by consulting the target_port and target_ip
maps. If the socket does not belong to the target application, it is ignored.

2. Add the socket to intercepted sockets: The socket is added to the
intercepted_sockets map, enabling SK_MSG to intercept its messages.

3. Retrieve a free proxy socket: one of the available proxy sockets is obtained
from the free_sockets map, and will be used to forward data to userspace.
At this stage, it is crucial that the userspace allocates a sufficient number of
sockets to handle the traffic. This value can be manually tuned through the
application’s configuration. If no sockets are available in the queue, the socket
is skipped.

4. Create socket associations: To track the new association, two new entries
are added into the socket_association map: one linking the original socket
to the proxy socket, and the other linking the proxy socket back to the original
application socket. This mapping allows SK_MSG to correctly correlate messages
between the original and proxy sockets.

5. Notify userspace: Before completing its operation, SOCKOPS must inform
the userspace component about the new socket. This is done using the new_sk
map, where the new entry contains the sock_id_t (composed by source and
destination IPs and source and destination ports) corresponding to the new
socket and the operation that was intercepted.

40

Implementation

1 |sockops (app_sk) {

2 switch (operation) {

3 case BPF_SOCK_OPS_PASSIVE ESTABLISHED CB: // server
4 case BPF_SOCK_OPS_ACTIVE ESTABLISHED CB: // client
) if (SOCKET_NOT_TARGET) return;

6

7 // Add the socket to the map for SK_MSG

8 add (intercepted_sockets, app_sk);

9

10 // Get a free proxy sk

11 proxy_sk = pop(free_sockets)

12

13 // add the association

14 add (socket_association, proxy_sk -> app_sk);
15 add (socket_association, app_sk -> proxy_sk);
16

17 // Notify the user space about the new socket
18 ring_buff_add(operation, new_sk);

19 default

20 break; // ignore other operations

21 }

22 |}

23

Listing 4.5: SOCKOPS hook pseudo code

4.2.3 SK_MSG

The SK_MSG program is responsible for redirecting messages and operates on the
sockets stored in the intercepted_sockets map. Upon receiving a message,
SK_MSG follows a specific sequence of actions:

1. Determine the message direction: Messages can flow either from the
application to the proxy or from the proxy to the application. To determine
the direction, SK_MSG checks the source port. If the source port matches the
server port (stored in the server_port map), the message comes from the
proxy and should be redirected to the application. Otherwise, the message
originates from the application and must be sent to the proxy socket.

2. Retrieve the destination socket: Once the direction is known, SK_MSG
looks up the destination socket in the socket_association map. Using the
current socket as a key, it identifies the corresponding socket to which the
message should be sent.

3. Redirect the message: Finally, SK_MSG, uses the bpf_msg redirect_hash
helper to forward the message to the correct destination socket.

41

—_

Implementation

Note that all proxy sockets created at boot time are already inserted into

the intercepted_sockets map. This is necessary to allow the SK_MSG hook to
intercept messages sent by the proxy (i.e., messages directed to the end application).

= O © 00O Ot Wwih K-

sk_msg(source_sk) {

if (app_sk.dest_port == server_port){
// directed to proxy -> direct it to app
app_sk = get(socket_association, source_sk);
bpf_msg_redirect_hash(app_sk);

} else {
// directed to app -> direct it to proxy
proxy_sk = get(socket_association, source_sk);

bpf_msg_redirect_hashproxy_sk;

Listing 4.6: SK_MSG hook pseudo code

4.2.4 TCP_DESTROY

The TCP_DESTRQY program represents the final component of the eBPF system. It
handles the last phase of a socket’s lifecycle: the socket closure event. Its role is
to notify the application to stop propagating messages and release any allocated
resources. This hook is triggered whenever a socket is closed and operates as
follows:

1. Identify the corresponding proxy socket: The function checks the
socket association map to locate the proxy socket previously associated
with the socket being closed.

2. Remove association entries: Both entries linking the application socket to

the proxy, and vice versa, are removed from the socket _association map.

3. Return the proxy socket to the pool: The proxy socket is returned to

the free_sockets map, making it available for reuse.

4. Notify userspace: Userspace is informed of the socket closure by adding a

new entry to the new_sk map, containing the sock_id_t of the closed socket.
This allows userspace to perform any necessary cleanup or follow-up actions.

42

Implementation

1 |tcp_destroy(source_sk) {

2 // Delete the entries in the association table

3 associated_sk = get(socket_association, source_sk);
4 delete(socket_association, source_sk);

5 delete(socket_association, associated_sk);

6

7 // Mark the sk as free

8 push(free_socket, associated_sk);

9

10 // Notify the user space about the socket deleted
11 ring_buff_add(source_sk, SK_DELETED);

12 |}

Listing 4.7: TCP_DESTROY hook pseudo code

4.3 Userspace

Once a message has been forwarded by the eBPF program into one of the available
proxy sockets, the userspace component of the application reads the message from
that socket and transfers it to the remote peer using RDMA. This userspace compo-
nent is further organized into two main parts: SocketManager and RdmaManager.

The SocketManager component is responsible for handling all the proxy sockets
used to forward messages from SK_MSG to user space. Its main role is to create these
sockets and store them in the free_sockets map (queue). This design allows the
eBPF program to pop sockets on demand and link them to the original socket from
which the messages were generated. Since sockets are represented differently in
kernel and user space, SocketManager also maintains a mapping between sock_id
identifiers (used in kernel space) and file descriptors (used in user space).

The unit responsible for managing data transfer in RDMA is divided into
two components: RdmaContext and RdmaManager. The RdmaContext represents
a connection between two peers and is used for point-to-point communication.
Consequently, in a network of N nodes, W contexts are required to enable full
connectivity among all nodes. In contrast, the RdmaManager is a per-peer object
that oversees all created contexts (Figure 4.2).

A connection between two peers is established only when necessary, namely at
the time of socket creation. As explained in Section 4.2.2, SOCKOPS intercepts the
creation of new sockets and performs several actions, one of which is notifying user
space of the new socket via a ring buffer. Each message in this buffer includes
the sock_id of the new socket along with the intercepted operation. Among
these operations, the relevant ones are BPF_SOCK_0PS_PASSIVE_ESTABLISHED CB
and BPF_SOCK_0PS_ACTIVE ESTABLISHED CB, which are triggered on the server
(passive) and client (active) sides, respectively.

43

Implementation

SRV2

RDMA
Manager

4

SN ’
. ’
5 7

RDMA
Manager

SRvV4

Figure 4.2: Layout of RDMA connections between peers

4.3.1 Background threads

As mentioned in the previous chapter, to achieve higher throughput and parallelism,
the application runs multiple independent threads in parallel.

Writer thread

The Writer Thread (WT) is responsible for reading data from a socket and writing
it into the memory region (MR). In practice, there can be multiple writer threads,
up to the number of sockets that must be monitored, hence the number of proxy
socket. The general behavior of a WT is to continuously check for new data to
consume.

Given one or more file descriptors associated with sockets, the WT performs a
select () call to wait for events. When new data is available, the operating system
wakes the thread, allowing it to proceed with its work.

The first step consists of checking the RDMA buffer for free slots where new data
can be written. The availability of slots is determined by the difference between
two indices: local write_index that specifies the position up to which data
has already been written locally and remote_read_index: indicates the position
reached by the remote peer in consuming the data.

44

Implementation

It is crucial to ensure that unconsumed data is not overwritten. For this reason,
if no free space is available, the WT remains in a busy-waiting loop until space is
released.

Once free slots are found, the thread moves to the second phase: invoking
recv() on the target file descriptor to retrieve the incoming data. The system
call directly writes the received data into the buffer, by using the pointer of a free
slot as the destination. This ensures that the data is copied only once, thereby
minimizing overhead.

The WT continues to perform recv() calls until either (i) the available buffer
space is exhausted, or (ii) the sockets have no more data to transmit. In the case
where buffer space runs out but the sockets still hold data, the thread returns to
the waiting state until new space is freed.

For each message, the WT does not perform a single recv, but multiple ones.
This approach helps optimize buffer usage by reducing the number of RDMA posts
and increasing the size of each post. This is possible because the proxy sockets
operate in non-blocking mode, so a recv call may return even when no data has
been read.

For each message, the WT also writes some additional metadata:

e Sets the message size.

o Sets the current sequence number and increments the sequence counter to
prepare for subsequent messages.

e Sets the sock_id_t associated with the socket that originated the message.
« Sets the number of slots that the message occupies.

e Sets the message flags.

This additional information is necessary to construct a header for the message,
which is used on the receiving side to correctly parse the message during the
reception phase.

Since multiple writer threads may coexist, access to shared resources in the
memory region must be synchronized. For this purpose, a mutex is employed to
guarantee mutual exclusion and prevent race conditions.

The work of the WT does not end with writing the message; there is still another
operation to perform: signaling the data to the Flush thread. The system uses
multiple queues, one for each employed QP. The WT pushes the index of the
message that has been written into one of the queue available (selected in round
robin), and later the FT pops from the same queue to perform the flush of the
message.

The behavior of WT is illustrated through pseudocode in Listing 4.8.

45

Implementation

1 |WriterThread (£fd) {

2 // wait for data to consume

3 select (£fd);

4 // wait for available space

5 while (1) A

6 space = remote_read_index - local_write_index
7 if (space > 1) break;

8 ¥

9 // write the data inside the buffer

10 while (space > 0) {

11 msg = buffer[local_write_index];

12 msg.size = recv(fd, msg, MAX_MSG_SZ);

13 msgs_idx_to_flush_queue.push(local_write_index);
14 local _write_index++;

15 space--;

16 ¥

17 ¥

Listing 4.8: Writer thread pseudo code

Flush thread

The Flush Thread (FT) works in coordination with the Writer Thread (WT) to
complete data transmission. As mentioned earlier, dedicated queues store the
indices of messages ready to be flushed. The FT continuously monitors these
queues by popping elements.

The FT does not operate directly on the messages. RDMA communication
relies on Work Requests (WRs), which specify the operations to be performed (in
this case, indicating where to write the incoming data). The FT is responsible for
preparing the WRs to be posted.

Each FT maintains a pre-allocated array of WRs to minimize runtime allocations.
For each popped message, the F'T creates the corresponding WR and stores it in
the local array, ready to be flushed.

Once the number of WRs in the local queue reaches a threshold defined in the
configuration, the FT posts the corresponding WRs to the Network Interface Card
(NIC).

If the number of WRs does not reach the threshold within a specified time
window, the F'T still flushes the WRs that have been collected, ensuring that no
data remains unprocessed indefinitely.

Once an FT has prepared the WRs into the queue, the posting process does not
begin immediately. Before the data can be sent to the Queue Pair (QP), the FT
retrieves the corresponding WRs and links them together. This aggregation is crucial
because the ibv_post_send() call is relatively expensive. By linking multiple

46

00 O Ui Wi

Implementation

WRs and posting them in a single call, the NIC can process them sequentially and
efficiently.

Typically, multiple FTs are employed, with each thread associated with a specific
Completion Queue (CQ). This association avoids race conditions and increases
parallelism, allowing multiple F'Ts to operate concurrently.

The behavior of FT is illustrated through pseudocode in Listing 4.9.

FlushThread () {

j=0;

while (true){
idx = busy_idx.pop();
jtts
wr_to_post.push(wrs[idx])
if(j > MAX_WR_PER_CQ ||

time.now() - last_flush > TIME_FLUSH)

break;

}

post_wr (wr_to_post, QP[i])

Listing 4.9: Flush thread pseudo code

Since RDMA post operations are asynchronous, it is necessary to verify that
they have been completed correctly. To this end, RDMA introduces the concept of
a Completion Queue (CQ) (Section 2.3.4). Each Queue Pair (QP) is associated
with a CQ, which can be queried to determine whether a given Work Request (WR)
has been completed.

This check is performed through the function ibv_poll cq(), which returns
the number of completed events. As ibv_poll _cq() is a single call, it must be
executed within a loop until the required number of completions has been obtained.

Because polling introduces some overhead, the best practice is not to poll the CQ
for every single posted WR. Instead, completions are checked after many batches
of WRs have been posted. The usual approach is to link multiple WRs together
and mark only the last one with the flag IBV_SEND_SIGNALED. This flag ensures
that only the final WR in the batch generates a completion event, which can later
be retrieved from the CQ.

The Flush Thread (FT) maintains a counter of posted WRs. Since each batch
contributes exactly one signaled WR, the FT can decide when to poll the CQ
by comparing this counter against a predefined threshold. Once the threshold is
reached, the CQ is polled to retrieve the completion event corresponding to the
earlier WRs.

This mechanism serves a dual purpose: it reduces overhead by limiting the num-
ber of CQ polls, and it prevents the QP from becoming overloaded. If completion
events are not retrieved in time, it is common for post operations to fail due to the

47

Implementation

lack of available space for enqueuing new jobs.

The possibility of having multiple independent Flush Threads (FTs) is enabled
by two key design elements. First, each message includes a sequence number, which
allows the receiver to determine whether a given slot in the memory buffer contains
a message ready to be consumed. Second, when creating a Work Request (WR),
the WT explicitly specifies the target location in the remote memory where the
data should be stored. These two mechanisms together ensure that multiple F'Ts
can operate concurrently without conflicts. Each FT can post WRs to the NIC
independently, knowing that the sequence numbers will maintain message ordering
and that the remote memory addresses prevent data from being overwritten or
misrouted.

Reader thread

The Reader Thread is responsible for parsing messages on the receiving side. As
previously explained, the Writer Thread (WT) writes data into the local buffer,
and the Flush Thread (FT) transfers it into the remote buffer. The Reader Thread
then reads data from the remote buffer and forwards it to the destination socket.

The Reader Thread operates in a loop that iterates over the ring buffer. For
each index, it checks the seq_number_head and seq_number_tail against its local
sequence counters. If the sequence numbers match, it indicates that the message
has been fully transferred and is ready to be parsed.

During the forwarding phase, an additional challenge arises: the message contains
only the sock_id of the sender, which is not directly useful for sending data to the
correct socket. To address this, the Reader Thread performs two important steps:

1. Swap the sock_id to indicate the correct direction.

2. Perform a lookup for the file descriptor of the proxy socket associated with
the sender’s sock_id.

Since this lookup is relatively expensive, the Reader Thread maintains a hash
map to cache previously resolved associations, improving efficiency for subsequent
messages.

Once the file descriptor is determined, the sending phase begins. To minimize
system calls and context switches, the Reader Thread does not immediately call
send (). Instead, it uses the sendmmsg() system call, which allows sending multiple
buffers from different memory locations in a single operation. The rationale is as
follows: messages often arrive in bursts (previously batched by the F'T). The Reader
Thread accumulates pointers to messages in an iovec structure. While waiting for
the next burst, the thread can send the accumulated data to the destination socket
improving throughput.

48

0O Ui Wi -

© 00 O Ui Wi

Implementation

Once the data have been successfully sent to the destination socket, the Reader
Thread (RT) updates the local_read_index of the ring buffer. This update is a
local operation, but it must also be propagated to the remote side to ensure that
the sender knows which slots have been consumed.

The responsibility of communicating these updates to the remote peer is del-
egated to a separate thread. This design separates the concerns of reading and

forwarding messages from the task of synchronizing buffer indices, reducing the
overhead of the RT.

ReaderThread () {
for(int i=0; i<MSG_PER_BUFFER; ++i) {
*msg = &buffer[i];
// Wait for the message to come for entire
while (msg.header != seq_n || msg.tail != seq_n) {}
seq_n++;
// retrieve the associated fd from the cached map
int fd = lookup(fds, msg.origin_sk_id);
// send data to the socket
send (fd, msg.data);
}
}

Listing 4.10: Reader thread pseudo code

Index thread

The Index Thread (IT) is responsible for propagating updates of the read index
to the remote peer. As explained earlier, the Reader Thread (RT) advances the
local_read_index whenever data has been consumed. The IT detects these
changes and reflects them by updating the remote_read index. It then issues
an RDMA operation to synchronize the new index value with the other peer. To
prevent interference with the Flush Threads (FTs), the IT is assigned a dedicated
Queue Pair (QP). This separation ensures that index synchronization traffic remains
isolated from data transmission traffic, thereby avoiding contention and preserving
the overall performance of the system.

IndexThread () {
idx = local_read_index
while (true) A
if (idx == local_read_index) continue;
remote_read_index = local_read_indesx;
idx = local_read_index;
RDMA _post (&remote_read_index, QP_idx);
}
}

49

Implementation

Listing 4.11: Index thread pseudo code

Server thread

When an RdmaManager instance is initialized, it launches a dedicated thread that
acts as a server to accept incoming RDMA connections. Its role is to wait for client
requests and establish the corresponding RdmaContext performing the RDMA
handshake. When a client attempts to connect, the context is instructed to process
the request. At this stage, the connection is established, and the context becomes
bound to the client. To record this relationship, the server adds the context to its
collection of active contexts.

In addition, once the first client is connected, the ST also starts certain back-
ground threads. In particular, it launches the Notification Thread, which is created
only once and shared across contexts.

After completing the handling of a connection, the ST resumes its main loop,
preparing new contexts and waiting for subsequent client connections.

RDMA handshake The RDMA setup is complex and is divided into two phases:
pre-handshake and post-handshake. The pre-handshake phase, which can be
executed locally by each peer, involves the following steps:

1. Open the RDMA device and create a protection domain: The device
represents the network interface capable of performing RDMA operations,
while the protection domain defines the scope of memory and queue pair (QP)
resources that can access each other. This ensures isolation and protection of
communication resources.

2. Establish completion queues (CQs) and a completion channel: RDMA
operations are asynchronous. Multiple send CQs are typically used for load
balancing, while a dedicated receive CQ tracks incoming messages. The
completion channel allows event-driven notifications of work completions,
improving efficiency compared to constant polling.

3. Optionally create a shared receive queue (SRQ): An SRQ allows multiple
QPs to share the same pool of receive buffers, reducing memory duplication

and improving scalability. If unsupported, individual receive queues can be
used for each QP.

4. Allocate and register memory: All memory involved in RDMA com-
munication must be registered with the device, providing a memory region

50

Implementation

key (rkey). This allows remote peers to read or write directly without CPU
intervention.

. Create and initialize queue pairs (QPs): Each QP consists of a send
queue and a receive queue, and multiple QPs are created to increase parallelism.
QPs are initialized with associated CQs, access permissions, and optionally
linked to the SRQ. They are then moved to the INIT state, preparing them
for handshake transitions.

. Gather local connection information: Each RDMA-capable port has
identifiers such as the local identifier (LID) and global identifier (GID). These
identifiers, along with QP numbers, memory addresses, and memory keys,
constitute the local connection information necessary for the remote peer to
establish a valid RDMA connection.

This pre-handshake setup ensures that the local system is fully prepared for

RDMA communication, enabling low-latency, high-throughput transfers once the
handshake with the remote peer is complete.

After completing the first phase, we must proceed to the second one. Unlike the

initial step, this second phase cannot be completed locally; it requires the exchange
of information between peers. Since the RDMA connection is not yet established,
such information must be communicated using an out-of-band (OOB) mechanism.

For the application under development, TCP has been chosen as the transport

channel for this exchange. In particular, the handshake requires the following data
to be communicated:

gp_num: Each Queue Pair (QP) is assigned a unique identifier. During the
handshake, peers exchange QP numbers so that each side knows which QP to
target when posting work requests.

rq_psn: The Receive Queue Packet Sequence Number (PSN). Every QP keeps
track of PSNs to ensure reliable connections (RC). Exchanging initial PSNs
guarantees that both peers agree on the starting point of the sequence, thus
avoiding the misinterpretation of old or retransmitted packets as valid.

rkey: Extracted from the registered memory region, this key grants access to
remote memory for both read and write operations.

addr: The starting address of the remote memory region.

gid: The Global Identifier (128-bit) used to identify the correct port or
interface for RDMA communication. Since the implementation relies on
RoCEv2, the GID is mapped to an IP address, enabling RDMA to operate
over routed networks.

51

N OO Ww N

Implementation

struct conn_info {
uint32_t qp_num[Config::QP_N];
uint32_t rq_psn[Config::QP_N];
uint32_t rkey;
uint64_t addr;
union ibv_gid gid;

} __attribute__((packed));

Listing 4.12: RDMA handshake data

Once the peers have exchanged these data, the process advances to the final
phase of the RDMA handshake: moving the QPs into the Ready to Receive (RTR)
state. RDMA QPs must transition through a series of well-defined states before
becoming fully operational. The key states are as follows:

« RESET: The initial state of a newly created QP, with empty queues.

o INIT: Basic information has been configured, and the QP is ready to accept
postings to its receive queue.

« RTR (Ready to Receive): Remote addressing information is set for con-
nected QPs. In this state, the QP can now receive incoming packets.

« RTS (Ready to Send): Timeout and retry parameters are configured,
allowing the QP to send packets.

At the conclusion of this procedure, both peers have their QPs configured and
are fully prepared to use RDMA.

Notification thread

The Notification Thread (NT) implements the event-driven portion of RDMA
(Section 3.4.3) communication, its role is to process completion events from multiple
RDMA contexts.

The NT operates in a loop, scanning all active contexts to identify the file
descriptors associated with completion channels that are waiting for notifications
(e.g., RDMA send/recv approach). Once the scan is complete, the NT blocks on
a select() call over these descriptors. The call returns when one or more file
descriptors become ready, indicating that new events are available.

For each file descriptor that becomes ready, the Notification Thread (NT) follows
a series of steps to handle the event. First, it determines which RdmaContext the
descriptor belongs to, ensuring that the event is properly associated with the right
connection. It then retrieves the corresponding completion event from the queue
and immediately acknowledges it, confirming that the event has been received and
processed.

52

Implementation

Next, the N'T re-arms the completion queue so that it will continue to generate
notifications for future events.

To ensure that RDMA remains able to receive subsequent notifications, the NT
also posts a receive Work Request (WR) onto the receive queue. This queue may
be implemented either as a Shared Receive Queue (SRQ) or as a dedicated Receive
Queue (RQ).

Finally, once the work completion has been retrieved, the N'T' processes the
event by interpreting the incoming message or notification and dispatching it to
the appropriate handler. In this way, the NT serves as the central dispatcher for
asynchronous RDMA events across all contexts.

Since the RDMA part of the application is almost entirely based on WRITE
operations (which are posted on the send queue of a QP), this thread is the only
one that actually makes use of the receive queue by posting the work requests
required to handle incoming sends.

Given the limited use of the receive queue and the fact that the application
employs many QPs, a Shared Receive Queue (SRQ) (Section 2.3.4) is adopted to
reduce memory consumption and improve efficiency. However, if for any reason
(e.g., NIC incompatibility) an SRQ cannot be used, the application falls back to
the classic approach: it reverts to using the standard receive queue, with only the
one associated with QP index 0 serving as the SRQ.

53

Chapter 5

Results

5.1 Test and Debug Tools

During this work, alongside the main application, three additional applications
were developed, all related to the main one. These applications proved very useful
for performance testing and for breaking down the larger problem into smaller,
more manageable parts, allowing for more detailed and tailored debugging.

In particular, three auxiliary applications were developed:

e Socket app: This application consists of two main components, a client and a
server. The core functionality is that they create a TCP socket and exchange
a specified amount of data in gigabytes to test throughput, latency and data
integrity.

o eBPF app: Extracted from the main application, this app acts as a lightweight
proxy that emulates the main application locally. The eBPF script is very
similar to the main one but lacks RDMA support. It is primarily used
to leverage the SK_MSG feature locally and is particularly useful for testing
purposes.

« RDMA app: This application is used to fine-tune RDMA performance. It
consists of a server and a client that establish an RDMA connection and
exchange data. It is essential when developing and optimizing the core RDMA
transport method.

In conclusion, the Socket app is intended solely for testing purposes, while the
other two applications can be considered as modular parts of the main application.

o4

01O Ui Wi =

Results

5.1.1 Configuration

All application parameters can be manually tuned by modifying the Config.hpp
file. This file contains all the constants used to configure the entire setup. The most
important parameters are related to RDMA communication, such as the number of
queue pairs (QPs), the maximum number of messages that can reside in a buffer,
and the maximum number of work requests (WRs) that can be posted in a single
batch.

These parameters provide fine-grained control over the application, allowing
it to be adapted to specific scenarios—for example, to optimize either latency or
throughput.

inline static const int MAX_MSG_BUFFER = (256);

inline static const int MAX_PAYLOAD_SIZE = (128 * 1024)
inline static const int QP_N = 2 + 1;

inline static const int DEFAULT_QP_IDX = O0;

inline static const int N_OF_QUEUES = QP_N - 1;

inline static const int POLL_CQ_AFTER_WR = 64;

inline static const int MAX_WR_PER_POST_PER_QP = 32;
inline static const int FLUSH_INTERVAL_NS = 150;

inline static int IOVS_BATCH_SIZE = 32;

inline static int N_RETRY_WRITE_MSG = 30;

5.1.2 Test devices

All testing and development has been performed using Intel E810 and Nvidia
ConnectX-7 100 Gbps NICs, with the RoCE v2 RDMA transport.

5.2 SK_MSG

Let us now take into account some numerical results. These tests were carried out
using the auxiliary applications described in Section 5.1, in particular the Socket
app and the eBPF app.

The idea was to leverage the SK_MSG feature locally to transfer data. The
complete setup is illustrated in Figure 5.1.

In this setup, the client and the server establish a TCP socket. The client begins
sending messages over the socket, while the server is intentionally slowed down by
introducing a timeout in each loop, preventing it from receiving at full speed.

The message path can be summarized as follows:

59

-
1
1

<)

--------------------- E—»Oa

Server

Figure 5.1: SK_MSG test schema

1. The client sends a message through socket A.

2. SK_MSG intercepts the message and redirects it to socket B, which connects to
the proxy.

3. The proxy reads the message from socket B and forwards it to socket C, again
passing through SK_MSG.

4. SK_MSG intercepts the message once more and redirects it back to socket A,
finally delivering it to the server.

5.2.1 Considerations on backpressure behavior

The first phase of development focused on creating the eBPF script. During early
testing, we observed a concerning issue related to the eBPF SK_MSG hook.

In a typical TCP socket communication, it is the responsibility of TCP to
handle situations where the receiver is slow and cannot consume the data sent by
the transmitter in a timely manner. This mechanism is known as backpressure.
TCP backpressure is crucial for maintaining network stability and efficiency, as
it prevents the transmitter from overwhelming the receiver by sending more data
than it can handle.

Backpressure occurs when a receiving node (e.g., a server) cannot process
incoming data at the rate it is being sent by the sending node (e.g., a client). This
can happen due to various factors, such as limited processing capabilities, buffer
overflows, or temporary network congestion.

56

Results

From our tests, it emerged that SK_MSG fails to adhere to the expected
backpressure behavior. In the case of a slow receiver, all data accumulates in
the socket until it is consumed. SK_MSG continuously allocates kernel memory to
store incoming data. This process continues until a substantial amount of memory
(around 40 GB) has been allocated, at which point the receiver encounters the
error: ENOMEM, which indicates a condition of "Not Enough Memory". This can
potentially break applications that are not designed to handle this error code.

Memory usage test

As shown in Figure 5.2, memory usage rapidly peaks at approximately 50 GB
within a period of roughly ten seconds. Afterwards, the graph exhibits a series
of rises and falls: a decrease indicates that the sender is being blocked with the
ENOMEM error, whereas an increase reflects ongoing transmission by the sender.

RAM Usage Over Time

50
—— RAM Usage

RAM (GB)
N N w w IN IS
o Ul o o o o

=
w

0 20 40 60 80 100 120
Time (s)

Figure 5.2: RAM usage over time while transferring 100 GB of data with SK_MSG
steering and slow receiver.

Notably, once the peak is reached, the kernel halts further memory allocation
and returns the ENOMEM error to the send() system call invoked by the sender.
Subsequently, the consumer gradually processes the data, leading to a steady
decline in memory usage until it returns to the baseline of around 5 GB.

This graph clearly illustrates the lack of backpressure in SK_MSG: the system is

57

Results

not limited by the receiver’s processing capacity, but only by the kernel, which stops
the process when memory usage becomes excessive. We believe that this behavior
may be causing inefficiencies in the system that limit the maximum performance
improvement achievable by our RDMA-accelerated transport; future work should
thus focus on investigating alternative socket-level traffic steering techniques for
the project.

5.2.2 Performance

Let us now analyze the SK_MSG hook in more detail and the overhead it introduces.
According to the main design (Figure 3.1), data needs to traverse the kernel twice,
and consequently pass through the SK_MSG hook twice as well. These two steps
occur respectively at the first peer and at the second one.

As shown in Figure 5.1, we can leverage this design to measure the average
performance of the system.

Figure 5.3 presents the results of an iperf3 test executed locally, with both the
client and server running on the same machine. The figure displays two graphs:
one showing the throughput of the baseline local test, and the other showing the
same test performed with the SK_MSG hook enabled.

TCP vs TCP + SKMSG Throughput
68
66
64
62

60 Y oty -1 - NN

Throughput (Gbps)

58

56
—eo— TCP (avg: 66.03 Gbps)

54 —a— SKMSG (avg: 60.18 Gbps)

0 10 20 30 40 50 60
Time (s)

Figure 5.3: Local iperf3 test with and without SK_MSG using a single stream

From this comparison, we can clearly observe a performance penalty introduced

58

Results

by SK_MSG, amounting to approximately 5 Gbit/s, or around 10% slower throughput.
This penalty is not negligible, but it is important to consider that data incurs an
additional copy when employing the SK_MSG data path:

1. The proxy reads the data from the socket (received via SK_MSG) using the
recv() system call.

2. The proxy writes the data to another socket (directed through SK_MSG) using
the send () system call.

The overhead of SK_MSG becomes even more evident in Figures 5.4 and 5.5,
where iperf3 is executed with three parallel streams (=P 3).

In the baseline case without SK_MSG, all three streams align at roughly 60 Gbps.
However, when skmsg is enabled, the average throughput drops to around 45 Gbps.
This represents a 15 Gbit /s decrease, or approximately 30% of the total throughput.

While the behavior in the single-stream case can be justified by the additional
data copies, the multi-stream result is more surprising.

Since the proxy uses a multi-threaded approach, creating a new thread for each
newly established stream, the throughput per stream should theoretically remain
similar to that observed in the single-stream scenario. However, the aggregate
performance drops significantly when multiple streams are active.

Throughput per Stream

70

60

ul
o
7

N
o

w
o

Throughput (Gbps)

N
o

—e— Stream 1 (avg: 60.41 Gbps)
—eo— Stream 2 (avg: 59.64 Gbps)
—e— Stream 3 (avg: 47.95 Gbps)

10

0 10 20 30 40 50 60
Time (s)

Figure 5.4: Local iperf3 test with three streams

59

Results

Throughput per Stream

60
55
m
o
QO
LD |
~ 50
e
S
: \
b= |
[@)] ‘ ‘ i \
> \ \
a5 : { \ IR ‘ :
< i T : | i I
= / ‘
)/
]
40 —e— Stream 1 (avg: 44.34 Gbps)
Q —eo— Stream 2 (avg: 45.49 Gbps)
—e— Stream 3 (avg: 45.09 Gbps)
0 10 20 30 40 50 60
Time (s)

Figure 5.5: Local iperf3 test with three streams using SK_MSG hook

5.3 Application Performance

We now turn our attention to the overall system performance. The following analysis
is conducted by considering the complete application architecture, illustrated in
Figure 5.6.

«,
<
\
Y
LY
Y
FRERY
o
o
[
TR
Y
Voo
i \
i \
: l*

RDMA

Figure 5.6: Application structure

60

Results

5.3.1 Latency

Since latency is one of RDMA’s major strengths, we expect it to outperform TCP
in this regard. The test was conducted using the socket application described in
Section 5.1. The first run was performed on a raw connection between two servers
—i.e., a standard TCP socket connection — while the second was done using our
application as transport method.

The results reported in Figure 5.7 show an average TCP latency of 54.64 s com-
pared to an average RDMA latency of 48.81 ps. This represents an improvement
of about 6 ps, which corresponds to roughly 12%.

It is worth noting that the graph begins displaying values only after 400 packets.
This choice was made because the first 300 packets were required to trigger the
Linux NAPI mechanism, effectively switching the kernel from an event-driven mode
to a polling-based approach, which leads to lower latency. Before this transition,
the average TCP latency was around 200 ps. In contrast, our application is able to
maintain consistently low latency across all circumstances.

RTT: RDMA vs TCP
80

75

RTT (us)
[*2]
<)

:: e

45 —— TCP (avg: 54.67 us)
—— RDMA (avg: 48.81 us)

400 500 600 700 800 900 1000
Packet Number

Figure 5.7: TCP vs RDMA latency.

It is also important to emphasize that this experiment was conducted after
carefully tuning the application for optimal latency. The following optimizations
were applied:

« Flush Thread (FT) code (Listing 4.3.1): The FT continuously polls the
61

Results

queue for work requests (WRs). Once a predefined threshold is reached, it
flushes the WRs. To avoid application stalls, a timeout mechanism is employed
in addition to queue polling. The timeout value is a critical parameter: a
shorter timeout improves latency but can reduce throughput. In this test, the
timeout was set to 20 ns to prioritize latency.

o Write Thread (WT) (Listing 4.8): The WT was optimized to minimize
unused portions of message payloads by performing multiple read operation.
For latency optimization, the WT performs only a single read iteration from
the socket, rather than multiple retries, in order to reduce overhead.

o« Maximum message payload size: To further reduce latency, the maximum
payload size was decreased from 128 kB to 256 B to reduce the overhead.

On the other hand, to maximize throughput, higher values of the time threshold
and maximum payload size are preferable, as they allow the thread to start with
more work, thereby exploiting batching and optimizing resource utilization.

5.3.2 Resource utilization

Let us now compare resource utilization between our new approach and the classical
TCP implementation. The analysis focuses only on CPU usage, since the application
does not impose significant memory demands.

Two tests were conducted while monitoring CPU consumption: (i) a standard
iperf3 benchmark between nodes, and (ii) the same benchmark executed with our
application running in the middle.

This comparison is not straightforward, as our application relies heavily on
parallelism and multithreading to achieve high performance, whereas the standard
TCP path is simpler. For this reason, we chose overall CPU utilization as the unit
of measurement. Moreover, these tests have been conducted on the transmitter
side, but the situation is largely symmetrical on the receiving side.

The figures present two graphs: one showing CPU usage in kernel mode and
the other showing CPU usage in user mode. The Y-axis represents the percentage
of CPU utilization, where 100% corresponds to a single fully utilized core.

Figure 5.8 illustrates the CPU usage during a simple iperf3 test. It can be
observed that CPU consumption in user space is negligible, while kernel space
accounts for nearly a full core, with an approximate 80% utilization.

On the other hand, Figure 5.9 illustrates the CPU utilization of our application.
In this case, CPU consumption is significantly higher than in the previous experi-
ment, reaching a peak of 500% of the total available capacity, corresponding to
five fully utilized cores.

62

Results

CPU Usage Over Time

—— % CPU User

80 —/% CPU System

60

% CPU

40

20

0 5 10 15 20 25 30
Time (s)

Figure 5.8: CPU utilization over time with iperf3 test between two nodes.

CPU Usage Over Time

IPERF3_RUNNING IPERF3_END
T T

500 —— % CPU User
—— % CPU System

400

300

% CPU

200

100

0 10 20 30
Time (s)

Figure 5.9: CPU utilization over time while running our application.

By taking a closer look at the application graph, we can identify three main
phases:

1. Application startup (no load): No contexts are created, so the application
runs with minimal resource usage.

63

Results

2. iperf3 execution: A context is created, and the application becomes active.
During this phase, five threads operate in polling mode: ReadT, WriteT, two
FlushT threads, and UpdateIdxT.

3. After iperf3 completion: The writer and reader threads enter a sleep state,
waiting for new data. However, the flush and index threads continue polling,
which results in noticeable CPU usage.

Clearly, this behavior is not optimal, and further optimizations are needed to
reduce overhead.

Additionally, we observe that kernel CPU usage remains around 100%, corre-
sponding to a fully utilized core, which is consistent with the TCP baseline from
the iperf3 test. In contrast, our application demonstrates effective exploitation of
the RDMA paradigm while remaining entirely in user space.

In conclusion, in terms of resource utilization, the classical TCP approach is
currently preferable.

5.3.3 Throughput

Let us now analyze the final pillar of this work: throughput. First, it is important
to note that the setup used for testing can achieve a maximum baseline RDMA
throughput of approximately 88 Gbit/s.

Figure 5.10 shows the results of an iperf3 test in which the data is proxied
through our application. The results indicate that we are able to achieve an
average throughput of approximately 73.43 Gbit /s, with occasional peaks reaching
77 Gbit /s, which is a very satisfactory outcome.

In the same figure, we also report the results of an iperf3 test performed using
TCP, where the average throughput is about 47.86 Gbit/s. Thus, our approach
introduces an improvement of approximately 55% in single-stream throughput.

However, a limitation arises related to the SK_MSG hook, particularly when
multiple streams are involved. As discussed in Section 5.2.1, SK_MSG does not
implement any form of backpressure. Consequently, when multiple streams push
data simultaneously at their maximum rate, SK_MSG redirects the messages to the
proxy. In our application structure, each stream is associated with a dedicated
thread, and messages are written into a shared buffer. To prevent synchronization
issues, the buffer is protected by a mutex.

The problem emerges because the maximum throughput achievable with a single
stream is, as observed, about 74 Gbit/s. One would expect a higher aggregate
throughput with multiple streams. However, the buffer quickly saturates, while
the remaining messages remain in the socket memory. Therefore, all data must be
fully transferred before the throughput can be accurately measured, which limits
the observed performance in multi-stream scenarios.

64

Results

TCP vs RDMA Throughput

70

60

50

Throughput (Gbps)

40

TCP (avg: 47.86 Gbps)
—s— RDMA (avg: 73.43 Gbps)

0 10 20 30 40 50 60
Time (s)

Figure 5.10: RDMA vs TCP iperf3 single-stream throughput comparison

5.3.4 Redis benchmark

To conclude, let us analyze a scenario closer to real-life conditions.

The last test was performed using the Redis benchmarking tool.

Redis [4] is an open-source, in-memory data structure store that can function
as a database, cache, and message broker. It supports a wide range of data
types, including strings, hashes, lists, sets, sorted sets, bitmaps, hyperloglogs, and
geospatial indexes. Renowned for its high performance, Redis is widely used in
scenarios that require rapid data retrieval, such as caching, session management,
real-time analytics, and message queuing.

To evaluate latency between two servers in this a specific scenario, we use Redis’s
built-in benchmarking tool, redis-benchmark, which simulates multiple clients
executing various commands to measure throughput and response times.

We present three graphs, each based on 1,000,000 requests of 2,048 B in size.
The first graph corresponds to 10 parallel streams, the second to 30 streams, and
the last to 40 streams. These graphs show the maximum operations per second
achieved in each test with SET, GET, HSET, HGET, LPUSH and LPOP

Figure 5.11 represents the test performed with 10 parallel streams. In this case,
we observe a significant performance increase, approximately double that of the
baseline.

65

Results

Redis Operations Performance Comparison with 10 streams

= TCP

160000 ™= RDMA
140000
120000
& 100000
u
a
O 80000
60000
40000
20000
0
SET GET LPUSH LPOP HSET
Operation

Figure 5.11: Redis benchmark with 10 parallel streams.

In the subsequent tests (Figures 5.12 and 5.13), we can observe the trade-off
between TCP and RDMA. With 30 streams, RDMA still performs better; however,
with 40 streams, TCP begins to gain performance. Further tests show that beyond
45 streams, the performance of our components drops significantly, whereas TCP
demonstrates much better scalability.

This slowdown is partially due to the mutex protecting thread access to the
buffer, which becomes a bottleneck under high concurrency.

In conclusion, these tests demonstrate that substantial performance gains are
possible, but improvements in scalability are still required.

66

Results

160000

140000

120000

100000

80000

Ops/sec

60000

40000

20000

o

140000

120000

100000

80000

Ops/sec

60000

40000

20000

o

Redis Operations Performance Comparison with 30 streams

mmm TCP

R.MI I I I I
LPUSH LPOP HSET
Operation

Figure 5.12: Redis benchmark with 30 parallel streams

Redis Operations Performance Comparison with 40 streams

LPUSH LPOP HSET
Operation

mmm TCP
mmm RDMA

Figure 5.13: Redis benchmark with 40 parallel streams

67

Chapter 6
Conclusions

As the cloud-native paradigm continues to grow in popularity and rapidly establishes
itself as the de-facto standard for datacenter software development, monolithic
applications are increasingly decomposed into functionally distinct microservices.
Consequently, east-west network traffic has become critical to ensuring system
correctness. Traditionally, node-to-node communication relies on the TCP/IP
stack, which provides reliable and ordered message delivery between applications.
More recently, technologies such as Remote Direct Memory Access (RDMA) have
emerged, offering comparable reliability while supporting higher throughput and
lower latency.

RDMA generalizes the concept of Direct Memory Access (DMA) to the net-
work scale, enabling one server to directly read from or write to the memory of
another server. This technology provides extremely high throughput, low latency,
and reduced resource consumption, as the workload is offloaded to the Network
Interface Card (NIC), thereby freeing the CPU to handle other tasks. Despite
these advantages, RDMA is still relatively new, and most applications are not de-
signed to leverage its features. Furthermore, RDMA requires specialized hardware:
servers must be equipped with RDMA-capable NICs, which can be costly and limit
widespread adoption.

The objective of our work is to deliver a solution that allows any application
to benefit from RDMA without requiring modifications. The guiding principle
here is transparency: to ensure compatibility, applications must remain unaware of
RDMA’s presence. Our system intercepts the data produced by the sender, transfers
it using RDMA, and delivers it to the receiver in a way that is indistinguishable
from traditional communication.

Directly intercepting application data is not normally feasible, as such operations
are restricted to kernel space. Modifying the kernel, however, would significantly
increase complexity and reduce portability. To address this challenge, our solution
leverages the eBPF framework, which allows the injection of custom code into the

68

Conclusions

kernel, enabling us to intercept traffic efficiently.

Finally, we chose sockets as the interception point since they have become the
standard abstraction for remote communication in modern systems.

The application has been successfully developed and is capable of operating over
RDMA, effectively replacing the traditional TCP stack. However, some limitations
remain. Most of these issues are related to the eBPF component, particularly the
SK_MSG hook used to intercept messages traveling through sockets.

As discussed during the evaluation (Section 5.2.1), the SK_MSG destination does
not provide any form of backpressure. This implies that, in the case of a slow
receiver, data continues to flow rapidly, leading to significant memory allocations
inside the kernel. These allocations are not on the order of a few megabytes, but
rather tens of gigabytes (up to 50 GB) of kernel memory. The only mechanism that
slows down the transmitter is the kernel itself, which eventually returns an ENOMEM
error when memory is exhausted.

In conclusion, although the SK_MSG hook functions as intended, it is not yet
mature enough to support high-performance use cases of this kind. The framework
requires further evolution and stabilization before it can be reliably deployed in
production environments.

Despite these limitations, the results achieved are remarkable in terms of through-
put and latency. Specifically, we reached a throughput of approximately 70 Gbit/s
and a latency of 48.81 ps, representing a significant improvement compared to the
baseline.

At the beginning of this work, the objectives were threefold: (i) reducing
latency, (ii) increasing throughput, and (iii) reducing resource utilization. As
development progressed, the resource utilization goal was partially abandoned
in favor of maximizing latency reduction and throughput. Indeed, achieving the
reported results required heavy reliance on parallelization (i.e., multithreading) and
polling, which in turn resulted in high resource consumption. This aspect remains
a key area for future improvement.

6.1 Future work & improvement opportunities

As demonstrated throughout this work, our approach is viable, but several aspects
require further refinement and optimization:

o Latency and throughput trade-off: As discussed in the results chapter
(Section 5.3.1), the tests were performed by carefully manually tuning the
application to optimize for either latency or throughput. Such behavior is not
acceptable in a production environment. A potential solution is to implement
dynamic control of the flush timeout: decreasing it during low traffic to reduce

69

Conclusions

latency, and increasing it under heavy traffic to enable batching and improve
throughput.

o SK_MSG limitations: We observed that the SK_MSG hook is not yet mature
enough for this specific use case. Future work could either explore alternative
methods for intercepting data or rely on forthcoming improvements to SK_MSG.
Currently, it represents the most critical component of the entire design.

o Optimization opportunities: The application already minimizes data
copying where possible. However, since much of the data handling occurs
inside the kernel, we do not have full control over all internal operations. These
steps could be further optimized to improve overall efficiency.

o Resource usage: As shown in the results section, the application is resource-
intensive, primarily due to the polling performed by multiple threads. This
behavior could be mitigated by introducing smarter resource management
strategies, particularly during low-traffic periods.

o Concurrency improvements: As discussed in the results section, our
application may encounter scalability issues due to the use of a single mutex to
control access to the buffer used for message transfer. Solving this limitation
would increasing the degree of parallelization, thereby improving performance
in multi-process communication.

In conclusion, this work demonstrates that the transparent integration of RDMA
into applications is a feasible and promising approach to enhance communication
performance in cloud-native systems, while highlighting critical areas for further
optimization and future development.

70

Bibliography

Wikipedia contributors. Ezpress Data Path. 2025. URL: https://en.wikipe
dia.org/wiki/Express_Data_Path (cit. on p. 6).

Cilium Project. Cilium: eBPF and Kubernetes Networking. 2025. URL: https:
//cilium.io/ (cit. on p. 7).

Erik Smith, Michal Kalderon, and Rohan Mehta. Fverything You Wanted
to Know About RDMA But Were Too Proud to Ask. 2025. URL: https :
//www.snia.org/sites/default/files/ESF/Everything-You-Wanted-
to-Know-About -RDMA-But-Were-Too-Proud-to-Ask-Final%20v2. pdf
(cit. on p. 15).

Redis. Redis — The Real-time Data Platform. 2025. URL: https://redis.io/
(cit. on p. 65).

Amr ElHusseiny. Linuz Networking Part 1: Kernel Net Stack. 2022. URL:
https ://amrelhusseiny . github.io/blog/ 004 _linux _0001 _unders

tanding_linux _networking/004_linux_0001 _understanding_linux _
networking part_1/.

Alok Prasad. What is the relationship of DMA ring buffer and TX/RX ring
for a network card? 2019. URL: https://stackoverflow.com/questions/
47450231 /what-is-the-relationship-of-dma-ring-buffer-and-tx-
rx-ring-for-a-network-card/59491902#59491902.

NVIDIA Corporation. RDMA Aware Networks Programming User Manual.
2023. URL: https://docs.nvidia.com/rdma-aware-networks-programmi
ng-user-manual-1-7.pdf.

GeeksforGeeks. Direct Memory Access (DMA) Controller in Computer Ar-
chitecture. 2025. URL: https://www.geeksforgeeks. org/computer-orga
nization-architecture/direct-memory-access-dma-controller-in-
computer-architecture/.

eBPF.io. What is eBPF? An Introduction and Deep Dive into the e BPF
Technology. 2025. URL: https://ebpf.io/what-is-ebpf/.

71

https://en.wikipedia.org/wiki/Express_Data_Path
https://en.wikipedia.org/wiki/Express_Data_Path
https://cilium.io/
https://cilium.io/
https://www.snia.org/sites/default/files/ESF/Everything-You-Wanted-to-Know-About-RDMA-But-Were-Too-Proud-to-Ask-Final%20v2.pdf
https://www.snia.org/sites/default/files/ESF/Everything-You-Wanted-to-Know-About-RDMA-But-Were-Too-Proud-to-Ask-Final%20v2.pdf
https://www.snia.org/sites/default/files/ESF/Everything-You-Wanted-to-Know-About-RDMA-But-Were-Too-Proud-to-Ask-Final%20v2.pdf
https://redis.io/
https://amrelhusseiny.github.io/blog/004_linux_0001_understanding_linux_networking/004_linux_0001_understanding_linux_networking_part_1/
https://amrelhusseiny.github.io/blog/004_linux_0001_understanding_linux_networking/004_linux_0001_understanding_linux_networking_part_1/
https://amrelhusseiny.github.io/blog/004_linux_0001_understanding_linux_networking/004_linux_0001_understanding_linux_networking_part_1/
https://stackoverflow.com/questions/47450231/what-is-the-relationship-of-dma-ring-buffer-and-tx-rx-ring-for-a-network-card/59491902#59491902
https://stackoverflow.com/questions/47450231/what-is-the-relationship-of-dma-ring-buffer-and-tx-rx-ring-for-a-network-card/59491902#59491902
https://stackoverflow.com/questions/47450231/what-is-the-relationship-of-dma-ring-buffer-and-tx-rx-ring-for-a-network-card/59491902#59491902
https://docs.nvidia.com/rdma-aware-networks-programming-user-manual-1-7.pdf
https://docs.nvidia.com/rdma-aware-networks-programming-user-manual-1-7.pdf
https://www.geeksforgeeks.org/computer-organization-architecture/direct-memory-access-dma-controller-in-computer-architecture/
https://www.geeksforgeeks.org/computer-organization-architecture/direct-memory-access-dma-controller-in-computer-architecture/
https://www.geeksforgeeks.org/computer-organization-architecture/direct-memory-access-dma-controller-in-computer-architecture/
https://ebpf.io/what-is-ebpf/

BIBLIOGRAPHY

[10] Arpit Kumar. Understanding TCP Protocol and Backpressure. 2023. URL:
https://sumofbytes . com/blog/understanding-tcp-protocol-and-
backpressure.

72

https://sumofbytes.com/blog/understanding-tcp-protocol-and-backpressure
https://sumofbytes.com/blog/understanding-tcp-protocol-and-backpressure

	List of Figures
	Glossary
	Introduction
	Goals

	Background
	Linux network stack
	Overview
	Network stack short-cutting
	Direct memory access

	eBPF
	Key features of eBPF

	RDMA
	Data flow over TCP and RDMA
	Operation modes
	Transports layer
	RDMA objects
	Connection management in RDMA
	RDMA verbs
	Communication setup
	Congestion control mechanisms

	Architecture
	Overview
	Kernelspace
	Userspace
	Application Logic
	New Connection
	Message Trip
	Event-Driven and Polling Modes

	Implementation
	Memory region and messages layout
	Socket in user and kernelspace
	Message structure
	Memory design

	KernelSpace: eBPF
	Maps
	SOCKOPS
	SK_MSG
	TCP_DESTROY

	Userspace
	Background threads

	Results
	Test and Debug Tools
	Configuration
	Test devices

	SK_MSG
	Considerations on backpressure behavior
	Performance

	Application Performance
	Latency
	Resource utilization
	Throughput
	Redis benchmark

	Conclusions
	Future work & improvement opportunities

	Bibliography

